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Abstract

We derive sharp bounds on the generaliza-
tion error of a generic linear classifier trained
by empirical risk minimization on randomly-
projected data. We make no restrictive
assumptions (such as sparsity or separability)
on the data: Instead we use the fact that, in
a classification setting, the question of inter-
est is really ‘what is the effect of random pro-
jection on the predicted class labels?’ and we
therefore derive the exact probability of ‘label
flipping’ under Gaussian random projection
in order to quantify this effect precisely in
our bounds.

1. Introduction

Random projection is fast becoming a workhorse in
high dimensional learning (e.g. Boyali & Kavakli,
2012; Fard et al., 2012; Mahoney, 2011;
Maillard & Munos, 2012; Paul et al., 2012;
Pillai et al., 2011). However, except in a few
specific settings, little is known about its effect on the
generalization performance of a classifier.
Previous work quantifying the generalization error of
a linear classifier trained on randomly projected data
has, to the best of our knowledge, only considered
specific families of classifiers and each approach
previously employed has also assumed constraints of
some form on the data. The earliest work is in a
seminal paper by Arriaga & Vempala (1999), where
the effect of randomly projecting well-separated data
on the performance of the Perceptron is quantified.
However the bounds in Arriaga & Vempala (1999)
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make use of high-probability geometry preservation
guarantees via the Johnson-Lindenstrauss lemma
(JLL) and therefore, contrary to expectation and ex-
perience, they become looser as the sample complexity
increases. More recently, Calderbank et al. (2009)
gave guarantees for SVM working with randomly
projected sparse data using ideas from the field of
compressed sensing (CS) - these however become
looser as the number of non-zero features in the sparse
representation of the data increases. Generative clas-
sifiers are considered in Davenport et al. (2010) where
Neyman-Pearson detector was analyzed assuming
spherical Gaussian classes, while Durrant & Kabán
(2010); Durrant & Kabán (2011) considered Fisher’s
Linear Discriminant, assuming general sub-Gaussian
classes. These bounds tighten with the sample com-
plexity, but the assumptions on the class-conditional
distributions may not hold in practice.

Along very different lines, Garg et al. (2002) use ran-
dom projections to estimate the generalization error of
a classifier learnt in the original data space, i.e. learn-
ing is not in the randomly projected domain, but ran-
dom projections are used instead as a tool for deriving
their generalization bounds. They have the nice idea,
which we will also use, of quantifying the effect of ran-
dom projection by how it changes class labels of pro-
jected points w.r.t. to the data space classifier. Their
approach yields a data-dependent term that captures
the margin distribution, and allows the use of existing
VC-dimension bounds in the low dimensional space.
However, although their result improves on previous
margin bounds, it is still generally trivial (the proba-
bility of misclassification obtained is greater than 1).
This is mainly because their estimate of how likely a
class label is to be ‘flipped’ with respect to its label
in the data space is extremely loose; in fact its con-
tribution to the generalization error bound is typically
greater than 1 and it never attains its true value. Here
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we turn around the approach in Garg et al. (2002)
in order to derive bounds for the generalization er-
ror of generic linear classifiers learnt by empirical risk
minimization (ERM) from randomly-projected data.
Moreover, instead of using bounds on the label-flipping
probability (i.e. the margin distribution) as obtained
in Garg et al. (2002) or Garg & Roth (2003), we de-
rive the exact form of this quantity. Finally, we show
that one can sometimes improve on their use of Markov
inequality by Chernoff-bounding the dependent sum,
and gain some additional improvement1. As a conse-
quence we obtain non-trivial bounds on the generaliza-
tion error of the randomly-projected classifier, which
we note can also be extended to improve the results in
Garg et al. (2002) in a straightforward way.

2. Preliminaries

2.1. The Classification Problem

We consider a 2-class classification problem where we
observe N examples of labelled training data T N =
{(xi, yi)}N

i=1 where (xi, yi) drawn i.i.d from an un-
known data distribution D over R

d × {0, 1}. For a
given class of functions H, our goal is to learn from
T N the classification function ĥ ∈ H with the low-
est possible generalization error in terms of some loss
function L. That is, find ĥ such that L(ĥ(xq), yq) =
arg min

h∈H

Exq,yq
[L(h(xq), yq)], where (xq, yq) ∼ D is a

query point with unknown label yq.

Here we use the (0, 1)-loss L(0,1) : {0, 1} × {0, 1} →
{0, 1} which is the measure of performance of interest
in classification, defined by:

L(0,1)(ĥ(xq), yq) =

{

0 if ĥ(xq) = yq

1 otherwise.

Working with the original data, the learned classifier
ĥ is a vector in R

d which, without loss of generality,
we take to pass through the origin. For an unlabelled
query point xq the label returned by ĥ is then:

1
{

ĥT xq > 0
}

where 1{·} is the indicator function which returns 1 if
its argument is true and 0 otherwise. Since we are only
interested in the sign of the dot product above, we may
clearly assume without loss of generality that in the
data space all data lie on the unit sphere Sd−1 ⊆ R

d

and that ‖ĥ‖ = 1, where ‖ · ‖ denotes the Euclidean
norm.

1Our approach is numerically tighter when the confi-
dence parameter δ in our bound is chosen to be small.

Now consider the case when d is very large and, for
practical reasons, we would like to work with a lower
dimensional representation of the data. There are
many methods for carrying out such dimensionality
reduction (see e.g. Fodor, 2002, for a survey) but
here we focus on random projection which is a recent
and very promising data-independent approach. Ran-
domly projecting the data consists of simply left mul-
tiplying the data with a random matrix R ∈ Mk×d,
k ≪ d, where R has entries rij drawn i.i.d from a
zero-mean subgaussian distribution. Again many ma-
trices fit this bill – examples can be found in Achlioptas
(2003); Dasgupta & Gupta (2002); Ailon & Chazelle
(2006) and Matoušek (2008) – but for concreteness and
analytical tractability we will focus here on matrices

R where the entries rij
i.i.d∼ N (0, σ2).

We are interested in quantifying the effect on the gen-
eralization error of randomly projecting the training
set to a k-dimensional subspace, k ≪ d, and learn-
ing the classifier there instead of in the original data
space. In this setting, the training set now con-
sists of instances of randomly-projected data T N

R =
{(Rxi, yi)}N

i=1, and the learned classifier is now a vec-
tor in R

k (possibly not through the origin - translation
does not affect our proof technique) which we will de-

note by ĥR. The label returned by ĥR is therefore:

1
{

ĥT
RRxq + b > 0

}

where b ∈ R. Denoting by ĥR(Rxq) the label returned
by this classifier, we want to estimate:

Exq,yq

[

L(0,1)(ĥR(Rxq), yq)
]

= Prxq,yq

{

ĥR(Rxq) 6= yq

}

where (xq, yq) ∼ D is a query point with unknown
label yq. To keep our results general we only assume
that the data points are drawn i.i.d from D, but we
make no particular assumptions on the data distri-
bution D, in particular we make no assumption of
a sparse data structure, nor do we assume that the
classes are linearly separable.

3. Results

Our main result is the following bound on the gener-
alization error of a classifier trained by ERM on the
randomly projected data set:

Theorem 3.1 (Generalization Error). Let T N =
{(xi, yi)|xi ∈ R

d, yi ∈ {0, 1}}N
i=1 be a set of d-

dimensional labelled training examples of size N , and
let ĥ be the linear ERM classifier estimated from T N .
Let R ∈ Mk×d, k < d be a random projection ma-

trix with entries rij
i.i.d∼ N (0, σ2). Denote by T N

R =
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{(Rxi, yi)}N
i=1 the random projection of the training

data T N , and let ĥR be the linear classifier estimated
from T N

R . Then for all δ ∈ (0, 1], with probability at
least 1 − 2δ w.r.t. the random choice of T N and R,
the generalization error of ĥR w.r.t the (0,1)-loss is
bounded above by:

Prxq,yq
{ĥR(Rxq) 6= yq} 6 Ê(T N , ĥ)

+
1

N

N
∑

i=1

fk(θi) + min







√

√

√

√3 log
1

δ

√

√

√

√

1

N

N
∑

i=1

fk(θi),

1 − δ

δ
· 1

N

N
∑

i=1

fk(θi)







+ 2

√

(k + 1) log 2eN
k+1 + log 1

δ

N

(3.1)

where fk(θi) := PrR{sign (ĥRT Rxi) 6= sign (ĥT xi)}
is the flipping probability for the i-th training exam-
ple with θi the principal angle between ĥ and xi, and
Ê(T N , ĥ) = 1

N

∑

(xi,yi)∈T N L(0,1)(ĥ(xi), yi) is the em-
pirical risk of the data space classifier.

This theorem says that with high probability, the
generalization error of any linear classifier trained
on randomly projected data is upper bounded
by the training error of the data space classifier
plus the average flipping probabilities of the train-
ing points plus a ‘projection-penalty’ term, either
√

1
N

∑N
i=1 fk(θi)

√

3 log 1
δ or 1−δ

δ
1
N

∑N
i=1 fk(θi), plus

the VC-complexity in the projection space. Notice
that the terms involving flipping probabilities vanish
when no flipping occurs and in particular, as k → d,
our bound recovers exactly the classical VC-bound for
linear classifiers in R

d. On the other hand, when
k < d, these terms represent the bias of the classi-
fier in the randomly projected domain and quantify
the price paid for working there instead of in the data
space.
Notice also that the average flipping probability term
depends on the angles between the training points and
the classifier; we therefore see from the geometry that
when there is a large margin separating the classes
this term will generally be small, and our bound cap-
tures well the effects of separated classes. On the other
hand, a small average flipping probability is still pos-
sible even when the margin is small – for example
provided that not too many points are close to the
decision hyperplane (in other words, if the data are
soft-separable with a large (soft) margin).
Finally we note that our theorem implies that we can
get close to the best linear classifier in R

d, but working
in R

k and even with a relatively small sample complex-
ity, provided that the data have some special struc-
ture which keeps this average flipping probability small

(and we have already identified two such special struc-
tures). A key tool in obtaining theorem 3.1, which
may also be of independent interest, is the following
theorem 3.2:

Theorem 3.2 (Flipping Probability). Let h, x ∈ R
d

and let the angle between them be θ ∈ [0, π/2]. Without
loss of generality take ‖h‖ = ‖x‖ = 1.
Let R ∈ Mk×d, k < d, be a random projection matrix

with entries rij
i.i.d∼ N (0, σ2) and let Rh, Rx ∈ R

k be
the images of h, x under R with angular separation θR.

1. Denote by fk(θ) the ‘flipping probability’ fk(θ) :=
Pr{(Rh)T Rx < 0|hT x > 0}. Then:

fk(θ) =
Γ(k)

(Γ(k/2))2

∫ ψ

0

z(k−2)/2

(1 + z)k
dz (3.2)

where ψ = (1 − cos(θ))/(1 + cos(θ)).

2. The expression above can be rewritten as the quo-
tient of the surface area of a hyperspherical cap
with an angle of 2θ by the surface area of the cor-
responding hypersphere, namely:

fk(θ) =

∫ θ

0
sink−1(φ) dφ

∫ π

0
sink−1(φ) dφ

(3.3)

3. The flipping probability is monotonic decreasing
as a function of k: Fix θ ∈ [0, π/2], then fk(θ) >

fk+1(θ).

4. Proofs

4.1. Proof of Flipping Probability - Theorem

3.2

Let h, x ∈ R
d be two unit vectors2 with the an-

gle between them θ ∈ [0, π/2] which we randomly
project by premultiplying them with a random matrix
R ∈ Mk×d with entries drawn i.i.d from the Gaus-
sian N (0, σ2) to obtain Rh,Rx ∈ R

k with the angle
between them θR. As a consequence of the Johnson-
Lindenstrauss lemma, the angle between the projected
vectors Rh,Rx is approximately θ with high proba-
bility (see e.g. Arriaga & Vempala (1999)) and the
images of the vectors h, x under the same random pro-
jection are not independent.
We want to find the probability that following random
projection the angle between these vectors becomes
θR > π/2, i.e. switches from being acute to being ob-
tuse. We call this probability the ‘flipping probability’

2In the proof of our generalization error bound, h will

be instantiated as the data space ERM classifier ĥ and x
as a single training point xi.
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because its effect is to ‘flip’ the predicted class label
in the projected space w.r.t the data space from the 1
class to the 0 class. It is easy to see that this probabil-
ity is symmetric in the class labels, e.g. by considering
the angle of x with −h, and so mutatis mutandis the
probability of flipping from the 0 class to the 1 class
has the same form.
We will prove parts 1 & 2 of theorem 3.2 here. Part 3 of
our theorem is easy to believe using part 2 and the fact
that the proportion of the surface of the k-dimensional
unit sphere covered by a spherical cap with angle of
2θ is bounded above by exp

(

− 1
2k cos2(θ)

)

(Ball, 1997,
Lemma 2.2, Pg 11); to save space we omit a rigorous
proof of part 3 – this can be found in Durrant (2013).

Before proving theorem 3.2 we make some preliminary
observations. First note, from the definition of the dot
product, for θ ∈ [0, π/2] in the original d-dimensional
space and θR in the k-dimensional randomly-projected
space we have PrR{θR > π/2} = PrR{(Rh)T Rx < 0},
and this is the probability of our interest. In fact the
arguments for the proof of parts 1 & 2 of our theorem
will not rely on the condition θ ∈ [0, π/2] - this is
only needed for part 3. Regarding random Gaussian
matrices we note that, for any non-zero vector x ∈ R

d,
the event Rx = 0 has probability zero with respect
to the random choices of R. This is because the null
space of R, ker(R) = R(Rd)⊥, is a linear subspace of
R

d with dimension d − k < d, and therefore ker(R)
has zero Gaussian measure in R

d. Hence PrR{x ∈
ker(R)} = PrR{Rx = 0} = 0. Likewise, R almost
surely has rank k. In this setting we may therefore
safely assume that h, x /∈ ker(R) and that R has rank
k. With these details out of the way, we begin:

4.1.1. Proof of part 1.

First we expand out the terms of (Rh)T Rx to obtain
PrR{(Rh)T Rx < 0}:

= PrR

(

k
X

i=1

 

d
X

j=1

rijhj

! 

d
X

j=1

rijxj

!

< 0

)

(4.1)

Recall that the entries of R are independent and iden-

tically distributed with rij
i.i.d∼ N (0, σ2) and make

the change of variables ui =
∑d

j=1 rijhj and vi =
∑d

j=1 rijxj . A linear combination of Gaussian vari-
ables is again Gaussian, however ui and vi are now
no longer independent since they both depend on the
same row of R. On the other hand, for i 6= j the vec-
tors (ui, vi) and (uj , vj) are independent of each other
since the i-th row of R is independent of its j-th row.
Moreover (ui, vi) ∼ (uj , vj), ∀i, j so it is enough to
consider a single term of the outer sum in (4.1). We

have:
„

ui

vi

«

∼ N
„

ER

»„

ui

vi

«–

, CovR

»„

ui

vi

«–«

Since ui and vi are zero mean, the expectation of this
distribution is just (0, 0)T , and its covariance is:

Σu,v =

»

Var(ui) Cov(ui, vi)
Cov(ui, vi) Var(vi)

–

(4.2)

Then:

Var(ui) = E[(ui − E(ui))
2]

= E[(ui)
2] since E(ui) = 0

=

d
X

j=1
j′=1

hjhj′E [rijrij′ ]

Now, when j 6= j′, rij and rij′ are independent, and so
E[rijrij′ ] = E[rij ]E[rij′ ] = 0. On the other hand, when
j = j′ we have E[rijrij′ ] = E[r2

ij ] = Var(rij) = σ2,

since rij ∼ N (0, σ2). Hence:

Var(ui) =

d
X

j=1

σ2ĥ2
j = σ2‖h‖2 = σ2 (4.3)

since ‖h‖ = 1. Likewise Var(vi) = σ2.
Next the covariance Cov(ui, vi) is:

Cov(ui, vi) = E [(ui − E[ui]) (vi − E[vi])] = E[uivi]

=
d
X

j=1
j′=1

hjxj′E[rijrij′ ] (4.4)

Now, when j 6= j′ the expectation is zero, as before,
and when j = j′ we have for (4.4):

=
d
X

j=1

hjxjE[(rij)
2] =

d
X

j=1

hjxjVar(rij) = σ2hT x (4.5)

Hence for each i ∈ {1, . . . , k} the covariance matrix
is:

Σu,v = σ2

»

1 hT x
hT x 1

–

= σ2

»

1 cos(θ)
cos(θ) 1

–

since ‖h‖ = ‖x‖ = 1, and we have (ui, vi)
T i.i.d∼

(0,Σu,v). Now the probability in (4.1) can be writ-
ten as:

Pr

(

k
X

i=1

uivi < 0

)

which it will be helpful to further rewrite as:

Pr

(

k
X

i=1

(ui, vi)

»

0 1
2

1
2

0

–„

ui

vi

«

< 0

)

(4.6)
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where the probability is now over the distribution of
(ui, vi)

T . Making the final change of variables:

(yi, zi)
T = Σ−1/2

u,v (ui, vi)
T (4.7)

where the new variables yi, zi are independent unit

variance spherical Gaussian variables, (yi, zi)
T iid∼

N (0, I), we substitute into (4.6) to obtain the flip
probability in the form:

Pr

(

1

2

k
X

i=1

(yi, zi)Σ1/2
u,v

»

0 1
1 0

–

Σ1/2
u,v

„

yi

zi

«

< 0

)

(4.8)

where the probability now is w.r.t the standard Gaus-
sian distribution. Now diagonalizing the symmetric

matrix Σ
1/2
u,v

[

0 1
1 0

]

Σ
1/2
u,v as UΛUT with UUT =

UT U = I and Λ a diagonal matrix of its eigenvalues,
we can rewrite (4.8) as:

Pr

(

1

2

k
X

i=1

(yi, zi)UΛUT

„

yi

zi

«

< 0

)

(4.9)

The standard Gaussian distribution is invariant under
orthogonal transformations, and so the form of U does
not affect this probability. We can therefore take U =
I without loss of generality and rewrite (4.9) as:

Pr

(

1

2

k
X

i=1

(yi, zi)Λ

„

yi

zi

«

< 0

)

Now we need the entries of Λ, which are the eigenval-
ues of:

Σ1/2
u,v

»

0 1
1 0

–

Σ1/2
u,v

Using the fact that the eigenvalues of AB are the same
as the eigenvalues of BA these are the eigenvalues of

σ2

»

1 cos(θ)
cos(θ) 1

– »

0 1
1 0

–

= σ2

»

cos(θ) 1
1 cos(θ)

–

which are λ = σ2(cos(θ) ± 1). Substituting into the
inequality (4.9) and dropping the positive scaling con-
stant 1

2σ2 since it does not affect the sign of the left
hand side, the probability we are after is:

Pr

(

k
X

i=1

(yi, zi)
T

»

cos(θ) + 1 0
0 cos(θ) − 1

–„

yi

zi

«

< 0

)

= Pr

(

k
X

i=1

((cos(θ) + 1)y2
i + (cos(θ) − 1)z2

i ) < 0

)

= Pr

(

(cos(θ) + 1)
k
X

i=1

y2
i + (cos(θ) − 1)

k
X

i=1

z2
i < 0

)

= Pr

(

Pk
i=1 y2

i
Pk

i=1 z2
i

<
1 − cos(θ)

1 + cos(θ)

)

(4.10)

Now, yi and zi are standard univariate Gaussian vari-

ables, hence y2
i , z2

i
iid∼ χ2, and so the left hand side of

(4.10) is F -distributed (Mardia et al., 1979, Appendix
B.4, pg 487). Therefore:

PrR{(Rh)T Rx < 0} =
Γ(k)

(Γ(k/2))2

Z ψ

0

w(k−2)/2

(1 + w)k
dw

where ψ = (1 − cos(θ))/(1 + cos(θ)) and Γ(·) is the
gamma function. This proves the first part of Theorem
3.2. ¤

4.1.2. Proof of part 2.

Note that ψ = tan2(θ/2) and make the substitution
w = tan2(θ/2). Then, from the trigonometric identity
sin(θ) = 2 tan(θ)/(1+tan2(θ)) and dw

dθ = tan(θ/2)(1+

tan2(θ/2)), we obtain:

fk(θ) =
Γ(k)

2k−1(Γ(k/2))2

Z θ

0

sink−1(φ)dφ (4.11)

To put the expression (4.11) in the form of the sec-
ond part of the theorem, we need to show that the
gamma term outside the integral is the reciprocal of
∫ π

0
sink−1(φ)dφ. This can be shown in a straightfor-

ward way using the beta function. Recall that the beta
function is defined by (e.g. Abramowitz & Stegun,
1972, 6.2.2, pg 258):

B(w, z) =
Γ(w)Γ(z)

Γ(w + z)

= 2

Z π/2

0

sin2w−1(θ) cos2z−1(θ)dθ, Re(w), Re(z) > 0

(4.12)

and therefore from equation (4.12) we have:

1

2
B

„

k

2
,
1

2

«

=

Z π/2

0

sink−1(θ)dθ

Next, from the symmetry of the sine function about
π/2, equation (4.12), and using Γ(1/2) =

√
π we have:

Z π

0

sink−1(θ)dθ = 2

Z π/2

0

sink−1(θ)dθ

= B

„

k

2
,
1

2

«

=

√
π Γ(k/2)

Γ((k + 1)/2)

Now we just need to show that the leftmost factor on
the right hand side of (4.11):

Γ(k)

2k−1(Γ(k/2))2
=

Γ((k + 1)/2)√
π Γ(k/2)

(4.13)

To do this we use the duplication formula
((Abramowitz & Stegun, 1972), 6.1.18, pg 256):

Γ(2z) = (2π)−
1

2 22z− 1

2 Γ(z)Γ((2z + 1)/2)
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with z = k/2. Then the left hand side of (4.13) is
equal to:

2k− 1

2 Γ(k/2)Γ((k + 1)/2)√
2π 2k−1(Γ(k/2))2

=
Γ((k + 1)/2)√

π Γ(k/2)

as required. Putting everything together, we arrive at
the alternative form for (4.11) given in equation (3.3),
namely:

PrR{(Rĥ)T Rx < 0} =

R θ

0
sink−1(φ) dφ

R π

0
sink−1(φ) dφ

(4.14)

This proves the second part of Theorem 3.2. ¤

4.1.3. Proof of part 3.

For reasons of space we omit the proof that the flipping
probability is monotonic decreasing in the projection
dimension k - this can be found in Ch. 6 of Durrant
(2013). Note that although the value of the expres-
sions in (3.3) and (3.2) can be calculated exactly for
any given k and θ, e.g. using integration by parts, as
k grows this becomes increasingly inconvenient. The
final part of the theorem, bounding the flipping prob-
ability in the (k + 1)-dimensional case above by the
flipping probability in the k-dimensional case, is there-
fore useful in practice.

4.2. Proof of Generalization Error Bound -

Theorem 3.1

We begin by considering the case when R ∈ Mk×d,
k < d, is a fixed instance of a Gaussian random pro-
jection matrix. From classical VC theory (e.g. Vapnik,

1999; Herbrich, 2002) if ĥR is the classifier with min-
imal empirical risk in the randomly projected space
then we have, for any fixed R and any δ ∈ (0, 1), with
probability 1−δ over the random draws of the training
set T N the following:

Prxq,yq{ĥR(Rxq) 6= yq}

6 Ê(T N
R , ĥR) + 2

q

V Cdim·log(2eN/V Cdim)+log(1/δ)
N

where Ê(T N
R , ĥR) denotes the empirical risk

1
N

∑N
i=1 1{ĥR(Rxi) 6= yi}. Further, since ĥR is a

linear classifier in k-dimensional space we also have
V Cdim = k + 1 and we see immediately that random
projection reduces the complexity term w.r.t the data
space where V Cdim = d+1. However, unless the data
have some special structure, the empirical risk in the
projected space will typically be greater than in the
data space so we would especially like to quantify the
effect of random projection on this term. With this
goal in mind we first bound the empirical risk further
by:

Ê(T N
R , ĥR) 6 Ê(T N

R , Rĥ) (4.15)

= (Ê(T N
R , Rĥ) − Ê(T N , ĥ)) + Ê(T N , ĥ),∀ĥ ∈ R

d

where Ê(T N
R , Rĥ) denotes the empirical error of a pro-

jected d-dimensional classifier evaluated on the pro-

jected training set, i.e. 1
N

∑N
i=1 1{(Rĥ)T Rxi 6= yi} for

some ĥ ∈ R
d.

The inequality (4.15) holds because ĥR and Rĥ lie in

the same k-dimensional subspace of R
d, and ĥR is the

ERM classifier in that subspace. Now ĥ ∈ R
d is an

arbitrary vector that we can choose to minimize this
bound, but we will take it to be the ERM classifier
in R

d in order to keep the link between the randomly

projected classifier ĥR and its high-dimensional coun-

terpart ĥ. Now observe that:

Ê(T N
R , Rĥ) − Ê(T N , ĥ) . . .

6 1
N

P

i=1:N 1{sign((Rĥ)T Rxi) 6= sign(ĥT xi)}
and so, for any fixed R, w.p. 1 − δ w.r.t. random

draws of T N we have:

Prxq,yq{ĥT
RRxq 6= yq} . . .

6 1
N

PN
i=1 1{sign((Rĥ)T Rxi) 6= sign(ĥT xi)} + Ê(T N , ĥ)

+2
q

(k+1) log(2eN/(k+1))+log(1/δ)
N

(4.16)

Denote S := 1
N

∑N
i=1 1

{

sign (ĥT xi) 6= sign (ĥT RT Rxi)
}

in the above bound. This is an empirical estimate of
the average flipping probability on this data from a
single random projection. Our next step is to show
that this estimate is not far from its expectation (with
respect to random matrices R), that is S is close to

ER[S] = 1
N

∑N
i=1 fk(θi), where fk(θi) is the flipping

probability of theorem 3.2. The main technical issue

is the dependency between the ĥT RT Rxi due to
the common random matrix instance R and hence
we cannot obtain decay with N since the random
variable of interest is the projection matrix R and it is
independent of N . To make the best of the situation,
we derive two large deviation bounds for S: The first
is a straightforward application of Markov inequality
to give w.p. at least 1 − δ:

S 6

„

1 +
1 − δ

δ

«

ER[S] (4.17)

where we recall that ER[S] = 1
N

∑N
i=1 fk(θi). Re-

placing the empirical estimate of the average flipping
probability in (4.16) by RHS of (4.17) yields one high
probability upper bound on the generalization error.
The upper bound on S given in (4.17) can be improved
somewhat for small values of δ by using the follow-
ing lemma, which is Corollary 3 on page 24 of Siegel
(1995).

Lemma 4.1 (Chernoff bound for dependent vari-

ables). Let X =
∑N

i=1 Xi, where the Xi may be depen-

dent. Let Y =
∑N

i=1 Yi where the Yi are independent
and Yi ∼ Xi (i.e. Pr{Yi 6 a} = Pr{Xi 6 a}, ∀i). Let
B be a Chernoff bound on Pr{Y − E[Y ] > ǫ} then:

Pr {X − E[X] > ǫ} 6 B1/N



Sharp Generalization Error Bounds for Randomly-projected Classifiers

Now let Ri, i ∈ {1, 2, . . . , N} be a collection
of N i.i.d draws of random matrices with i.i.d
zero-mean Gaussian entries and define SN :=
1
N

∑N
i=1 1

{

sign (ĥT xi) 6= sign (ĥT RT
i Rixi)

}

. The

sum SN differs from S in that S has the same random
matrix in each summand while SN has independent
random matrices in each summand. However, for any
i ∈ {1, ..., N}, the i-th term of S has the same distri-
bution as the i-th term of SN and a Chernoff bound
for SN can therefore be used to bound the deviation
of S from its expectation, via lemma 4.1.
Now, by construction SN is a sum of indepen-
dent Bernoulli variables. Using a standard Cher-
noff bound for sums of Bernoulli random variables
(e.g. Anthony & Bartlett, 1999, Pg 360) we obtain
∀ǫ ∈ (0, 1):

Pr {SN > (1 + ǫ)ER[SN ]} 6 exp(−NER[SN ]ǫ2/3) (4.18)

and applying lemma 4.1 then yields:

PrR {S − ER[S] > ǫER[S]} 6 exp(−NER[SN ]ǫ2/3)1/N

= exp(−ER[SN ]ǫ2/3) (4.19)

This bound is ‘Chernoff tight’, i.e. tight w.r.t the
Chernoff bound (4.18), when no assumptions are made
on the set of points T N and, in particular, it gives the
appropriate Chernoff bound when all points of T N are
identical.
Now, specifying δ ∈ (0, 1), setting δ to the LHS of
eq. (4.19), and using the fact that ER[SN ] = ER[S],

we obtain ǫ
√

ER[S] =
√

3 log(1/δ). Rearranging we
obtain, w.p. at least 1 − δ:

S 6 ER[S] +
p

ER[S]
p

3 log(1/δ) (4.20)

Replacing the empirical estimate of the average
flipping probability in (4.16) with RHS of (4.20) yields
a further high probability upper bound on general-
ization error. Taking the minimum over these two
bounds, and finally applying union bound delivers the
theorem. ¤

5. Geometric Interpretation of Flipping

Probability

It is easy to verify that (4.14) recovers the known
result for k = 1, namely θ/π, as given in
Goemans & Williamson (1995, Lemma 3.2). Geomet-
rically, when k = 1 the flipping probability is the quo-
tient of the length of the arc with angle 2θ by the
circumference of the unit circle which is 2π. In the
form of (4.14) our result gives a natural generalization
of this result, as follows: Recall that the surface area
of the unit hypersphere in R

k+1 is given by (Kendall,
2004):

2π ·
k−1
∏

i=1

∫ π

0

sini(φ)dφ

while the surface area of the hyperspherical cap with
angle 2θ is given by:

2π ·
k−2
∏

i=1

∫ π

0

sini(φ)dφ ·
∫ θ

0

sink−1(φ)dφ

Now taking the quotient of these two areas all but the
last factors cancel and so we obtain our flipping prob-
ability as given in (4.14). Therefore, the probability
that the sign of a dot product flips from being posi-
tive to being negative (equivalently the angle flips from
acute to obtuse) after Gaussian random projection is
given by the ratio of the surface area in R

k+1 of a hy-
perspherical cap with angle 2θ to the surface area of
the unit hypersphere.

Note the rather useful fact that the flipping proba-
bility depends only on the angular separation of the
two vectors and on the projection dimensionality k:
It is independent of the embedding dimensionality d
which can therefore be arbitrarily large without af-
fecting this quantity. Moreover this geometric inter-
pretation shows that equation (4.14) decays exponen-
tially with increasing k, since the proportion of the
surface of the k-dimensional unit sphere covered by
a spherical cap with angle of 2θ is bounded above
by exp

(

− 1
2k cos2(θ)

)

(Ball, 1997, Lemma 2.2, Pg 11).
Therefore we see that the additional loss arising from
random projection (that is, the cost of working with
randomly-projected data rather than working with the
original high-dimensional data) is both independent
of the original data dimensionality and will decay ap-
proximately exponentially as a function of k – approx-
imately because there is some trade-off with the com-
plexity term and the upper bound exp

(

− 1
2k cos2(θ)

)

is
not tight. Our results therefore generalize the findings
of Davenport et al. (2010); Durrant & Kabán (2010)
where the same exponential decay was observed, but
for specific choices of classifier. It is perhaps also worth
noting that this loose upper bound on the flipping
probability already improves considerably on the es-
timate of Garg et al. (2002), which is seen by substi-
tuting cos(θ) for ν in their error bounds.

6. Two Straightforward Corollaries

6.1. Upper Bound on Generalization Error for

Data Separable with a Margin

In proving theorem 3.1 we made no assumption that
the data classes were linearly separable. However, if
the classes are separable with a margin, m, in the
data space (Cristianini & Shawe-Taylor, 2000) then
straightforward geometry combined with Ball (1997,
Lemma 2.2, Pg 11) yields an upper bound on our
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flipping probability of exp
(

− 1
2km2

)

. This bound
holds deterministically, and so we then have the fol-
lowing high probability guarantee for separable data:

Corollary 6.1 (Generalization Error - Separable
Classes). If the conditions of Theorem 3.1 hold and
the data classes are also separable with a margin, m,
in the data space then for all δ ∈ (0, 1) with probability
at least 1 − 2δ we have:

Prxq,yq
{ĥR(Rxq) 6= yq} 6 Ê(T N , ĥ) + exp

(

−1

2
km2

)

+min

{

√

3 log
1

δ
·exp

(

−1

4
km2

)

,
1 − δ

δ
·exp

(

−1

2
km2

)

}

+ 2

√

(k + 1) log 2eN
k+1 + log 1

δ

N

Here we see that the bias introduced to the classi-
fier by random projection decays exponentially with
the square of the margin. Note that if we con-
sider the margin at each training point individu-
ally then we have a setting analogous to the mar-
gin distribution considered in Shawe-Taylor (1998);
Shawe-Taylor & Cristianini (1999). Using the mar-
gin distribution a tighter upper bound on the flipping
probability is straightforward to derive - for reasons of
space we do not do so here.

6.2. Upper Bound on Generalization Error in

Data Space

An upper bound on the average label flipping proba-
bility whose exact form we derived here is key in the
bounds of Garg et al. (2002), where it serves as a data-
dependent complexity measure (termed the ‘projection
profile’) to characterize the generalization error of data
space linear classifiers. It is now straightforward to use
our exact form in place of their projection profile term
to give the following bound on the generalization er-
ror of data space classifiers as a corollary, which is an
improvement on the main result in (Garg et al., 2002):

Corollary 6.2 (Data Space Generalization Error).
Let T 2N = {(xi, yi)}2N

i=1 be a set of d-dimensional la-
belled training examples drawn i.i.d. from some data
distribution D, and let ĥ be a linear classifier estimated
from T 2N by ERM. Let k ∈ {1, 2, . . . , d} be an inte-
ger and let R ∈ Mk×d be a random projection matrix,

with entries rij
i.i.d∼ N (0, σ2). Then for all δ ∈ (0, 1],

with probability at least 1−4δ w.r.t. the random draws
of T 2N and R the generalization error of ĥ w.r.t the
(0,1)-loss is bounded above by:

Prxq,yq{ĥT xq 6= yq} 6 Ê(T 2N , ĥ)

+ 2 · min
k

8

<

:

1

N

2N
X

i=1

fk(θi) + min

8

<

:

v

u

u

t3 log
1

δ

v

u

u

t

1

N

2N
X

i=1

fk(θi),

1 − δ

δ
· 1

N

2N
X

i=1

fk(θi)

9

=

;

+

s

(k + 1) log 2eN
k+1

+ log 1
δ

2N

9

=

;

(6.1)

Proof Sketch: Follow the two-part proof in Garg et al.
(2002): One part bounds the generalization error us-
ing classical tools of the double sample trick and Sauer
lemma after making a move into the random projec-
tion space; while the other is an estimate of our flipping
probability obtained using the JLL. To obtain the re-
sult in (6.1) plug in our exact form for the flipping
probability for their estimate and use lemma 4.1 as
well as Markov inequality in their lemma 3.4.

7. Summary and Discussion

We derived the exact probability of ‘label flipping’
as a result of Gaussian random projection, and used
it to derive sharp upper bounds on the generaliza-
tion error of a randomly-projected classifier. Un-
like earlier results of Arriaga & Vempala (1999) and
Calderbank et al. (2009), we require neither a large
margin nor data sparsity for our bounds to hold, while
unlike Davenport et al. (2010) and Durrant & Kabán
(2010); Durrant & Kabán (2011) our guarantees hold
for an arbitrary data distribution.
Our proof makes use of the orthogonal invariance of
the standard Gaussian distribution, which cannot be
applied for other random matrices with entries whose
distribution is not orthogonally invariant: It would be
interesting to extend these results to more general ran-
dom projection matrices, and we are working on ways
to do this. Furthermore we note that the form of VC
complexity term in our bounds is not optimal, for ex-
ample better guarantees (albeit without explicit con-
stants) are given in Bartlett & Mendelson (2002) and
these could be used in place of the bounds we adopted
to sharpen our results further.
Our findings show that good generalization perfor-
mance can be obtained from a classifier trained on
randomly projected data, provided that the data have
some structure which keeps the probability of label
flipping low – we saw that two such structures are
when data classes are separable or soft-separable with
a margin. Identifying other structural properties of
data which also imply a low flipping probability re-
mains for future work.



Sharp Generalization Error Bounds for Randomly-projected Classifiers

References

Abramowitz, M. and Stegun, I.A. Handbook of Mathemat-
ical Functions. Dover, New York, 10th edition, 1972.

Achlioptas, D. Database-friendly Random Projections:
Johnson-Lindenstrauss with Binary Coins. J. Computer
and System Sciences, 66(4):671–687, 2003.

Ailon, N. and Chazelle, B. Approximate Nearest Neigh-
bors and the Fast Johnson–Lindenstrauss Transform. In
Proc. 38th Annual ACM Symposium on Theory of Com-
puting (STOC 2006), pp. 557–563. ACM, 2006.

Anthony, M. and Bartlett, P.L. Neural Network Learning:
Theoretical Foundations. Cambridge University press,
1999.

Arriaga, R.I. and Vempala, S. An Algorithmic Theory of
Learning: Robust Concepts and Random Projection. In
40th Annual Symposium on Foundations of Computer
Science (FOCS 1999). , pp. 616–623. IEEE, 1999.

Ball, K. An Elementary Introduction to Modern Convex
Geometry. Flavors of Geometry, 31:1–58, 1997.

Bartlett, P.L. and Mendelson, S. Rademacher and Gaus-
sian Complexities: Risk Bounds and Structural Results.
J. Machine Learning Research, 3:463–482, 2002.

Boyali, A. and Kavakli, M. A Robust Gesture Recogni-
tion Algorithm based on Sparse Representation, Ran-
dom Projections and Compressed Sensing. In 7th IEEE
Conference on Industrial Electronics and Applications
(ICIEA 2012), pp. 243–249, july 2012.

Calderbank, R., Jafarpour, S., and Schapire, R. Com-
pressed Learning: Universal Sparse Dimensionality Re-
duction and Learning in the Measurement Domain.
Technical Report, Rice University, 2009.

Cristianini, N. and Shawe-Taylor, J. An Introduction to
Support Vector Machines and other Kernel-based Learn-
ing Methods. Cambridge University Press, 2000.

Dasgupta, S. and Gupta, A. An Elementary Proof of the
Johnson–Lindenstrauss Lemma. Random Structures &
Algorithms, 22:60–65, 2002.

Davenport, M.A., Boufounos, P.T., Wakin, M.B., and
Baraniuk, R.G. Signal Processing with Compressive
Measurements. IEEE J. Selected Topics in Signal Pro-
cessing, 4(2):445–460, April 2010.

Durrant, R.J. Learning in High Dimensions with Projected
Linear Discriminants. PhD thesis, School of Computer
Science, University of Birmingham, January 2013.

Durrant, R.J. and Kabán, A. Compressed Fisher Linear
Discriminant Analysis: Classification of Randomly Pro-
jected Data. In Proc. 16th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD 2010),
2010.

Durrant, R.J. and Kabán, A. A Tight Bound on the Per-
formance of Fishers Linear Discriminant in Randomly
Projected Data Spaces. Pattern Recognition Letters, 33
(7):911–919, 2011.

Fard, M., Grinberg, Y., Pineau, J., and Precup, D. Com-
pressed Least-squares Regression on Sparse Spaces. In
Proc. 26th AAAI Conference on Artificial Intelligence
(AAAI 2012), 2012.

Fodor, I.K. A Survey of Dimension Reduction Techniques.
Technical Report UCRL-ID-148494, US Dept. of Energy,
Lawrence Livermore National Laboratory, 2002.

Garg, A. and Roth, D. Margin Distribution and Learning
Algorithms. In Proc. 20th International Conference on
Machine Learning (ICML 2003), pp. 210–217, 2003.

Garg, A., Har-Peled, S., and Roth, D. On Generalization
Bounds, Projection Profile, and Margin Distribution. In
Proc. 19th International Conference on Machine Learn-
ing (ICML 2002), pp. 171–178, 2002.

Goemans, M.X. and Williamson, D.P. Improved Approxi-
mation Algorithms for Maximum Cut and Satisfiability
Problems using Semidefinite Programming. Journal of
the ACM, 42(6):1145, 1995.

Herbrich, R. Learning Kernel Classifiers: Theory and Al-
gorithms. The MIT Press, 2002.

Kendall, MG. A Course in the Geometry of n Dimensions.
Dover, New York, 2004.

Mahoney, M.W. Randomized Algorithms for Matrices and
Data. arXiv preprint arXiv:1104.5557, 2011.

Maillard, O. and Munos, R. Linear Regression with Ran-
dom Projections. J. Machine Learning Research, 13:
2735–2772, 2012.

Mardia, K.V., Kent, J.T., and Bibby, J.M. Multivariate
Analysis. Academic Press, London, 1979.
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