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Abstract

This thesis describes the preparation and reactions of some cyclomanganated chalcones,

dienones and aryl ketones.

Investigation has previously been undertaken into the reaction of cyclomanganated

chalcones and dienones with alkynes to give both pyranyl and cycloheptadienyl MnCO3

complexes. In the current study, the reaction was further investigated with a

cycloinanganated dienone derived from a cyclic ketone which gave only the

pyranylMnCO3 complex 2-6 and not the cycloheptadienyl product as consistent

with a mechanism previously proposed.

* Ph

Also extended in the current study was previous work involving the methylmanganese

pentacarbonyl-mediated transformation of enynes to cyclopropanated bicyclic

compounds and cyclopentanes bearing an exocyclic double bond. In the current study,

bcnzylmanganese pentacarbonyl was used instead of methylmanganese pentacarbonyl

under similar conditions. In the current study however, the type of product that formed in

diethyl ether 3-4 was the one dominant in acetonitrile in the MeMnCO5 study, and

that formed in acetonitrile 3-5 was the dominant product type in diethyl ether 3-4.

There was no apparent explanation for this reverse reactivity.
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Ferrocenyl pyryliurn salts of the type 5-5 have been prepared using a new route to

ferrocenyl pyryliuni from cyclonianganated chalcones and ferrocenylethyne. UV-visible

and electrochemical properties of the pyrylium salts have been investigated.

[FeCIrJ

The ferrocenyl pyrylium salt 5-5 was obtained by the oxidation of [2-ferrocenyl-46-

diphenyl--r5]-pyranyltricarbonylmanganese 5-6. The crystal structure of 5-6 was also

determined.
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Chapter 1 Introduction

101 Cyclometalation

Cyclometalated complexes have been of increasing interest to researchers over the past

30 years or so as is evident from the many comprehensive reviews that are available"2'3'4

Cyclometalated complexes have a wide variety of uses in organic synthesis5, catalysis6,

asymmetric transformations7, and photochemistry8. They also mimic some intermediates

in catalytic transformations9 and show promise as potential biologically active

materials1
.

1.1.1 Definition

The formation of a cyclornetalated complex involves the coordination of a ligand Y to a

metal centre M to fan-n a stable ring figure 1.1.

/Cn

M

M- Metal

Y- Coordinating atom or group

n> I

Figure 1.1: Cyclomanganated complex involving the coordination of a ligand Y to a metal centre M

The ligand Y is bonded to the metal M by the M-C sigma bond, with Y acting as a

donor group. The M-C bond is possibly formed by the intramolecular rupture of a C-H

bond within the coordination complex as shown by the following equation, Xhalogen

or alkyl.

1



HC----

_________

M +

Y

The preparation of a cyclomanganated complex normally involves the reaction of an

organic precursor with a manganese carbonyl complex such as niethylrnanganese

pentacarbonyl MeMnCO5 or benzylrnanganese pentacarbony! PhCH2MnCO5.

Some other indirect routes are available.

It was in 1975 that Kaesz's group
11,12,13.14

reported the preparation of the first

orthomanganated aromatic ketone. Metalation of aromatic substrates normally occurs in

the position ortho to the donor function Y and this has given rise to the term

"orthometalation". The preparation of the orthornanganated acetophenone is shown by

Equation 1.1.

C

O
MnCO4

-PhCI-I
PhC1-1,MnCO

Equation 1.1: Preparation of cyclomanganated acetophenone

In the case of orthomanganated complexes, the coordinating group directs the manganese

to the carbon ortho to the functional group. Varieties of functional groups have been used

in the preparation of cyclornanganated complexes including aldehydes15, ketones'6,

esters, thioesters'7, imines18, imidazoles'9 and benzamides15. A range of

triphenylphosphine chalcogenides2° and triphenyphosphites2' has also been

orthomanganated. Figure 1.2 gives some such examples:

2



N nCO4

Figure 1.2: Cyclonianganated complexes of a variety of functional groups

Because of the favourable geometry and entropy considerations, the five-membered ring

is tile most common amongst the cyclornanganated complexes. X-ray crystal structure

studies have shown that the five-membered ring configuration has closest to the ideal

geometry bond angles and bond lengths of all the possible rings2. However,

cyclornanganated complexes having sulphur or phosphorus as the donor atom have

shown an increasing tendency to form three- or four-membered rings compared to

corresponding complexes having oxygen or nitrogen donor atoms. Platinum and

palladium appear to be the metals lound most commonly in cyclometalated compounds

because of their widespread use in organic synthesis.

3



1.1.2 Cyclomanganated Aryl Compounds

Kaesz and co-workers22 were the first to perform the preparation of cyclomanganated aryl

ketones. Before the work of the Kaesz group, the ortho-directing effects of oxygen

functional groups in the metallation of aromatic rings were established only for main

group metals such as lithium23 or thallium
24

Kaesz and co-woorkers tried to metallate

various aromatic ketones and quinones with MeMCO5 M Mn, Re.

Cyclometallation reactions
25

of arenes with N-donor groups were amongst the first to be

done with PhCH2IVInCO5. Bruce et al.3 noticed that the benzyl compound was more

efficient at promoting these reactions than the methyl compound and the benzyl

compound also gave higher yields.

A considerable number of manganated aryl ketones have been prepared since then. These

include those prepared by Gornrnans26, Robinson27, and Cooney28 using PhCI-I2MnCO5

instead of CH3MrmCO5, An example is the reaction26 of 3-benzyloxy-4,5-

dirnethoxyacetophenone with PhCH2MnCO5 to give the manganated product Equation

1.2.

Mc0

PhFI2CO PhU2CQ
lnCO4

hepLane

PhCI-l2MnCO,
eflux 1 ,5h

11CC FlCO

OCI I OCH3

Equation 1.2: Reacti on of 3 -beozyl oxy-4,5-diinethoxyacetophenone with PhCH2MnCO5 to give the

manganated product

4



1.1.3 Reactions of Cyclomanganated Aryl compounds

Robinson27 showed that the uncatalysed reaction of cyclomanganated aryl ketones with

alkynes like diphenylacetylene gave indenols Equation 1.3.

.- PhCPh

Equation 1.3: Reaction of cyclomanganated aryt ketones with alkynes like diphenylacetylene to give

indenols

The Liebeskind3' group obtained similar results by oxidative decarboxylation with

trimethylamine oxide Equation 1 .4

Me

0 EtCCEt
/

Me3NOIMeCN

- MiiCO4

Equation 1.4: Oxi dative decarbonyl ation of manganted acetophenone with trimethylarnine oxide

Robinson27 also showed that reactions of alkynes with cyclornanganated benzamides did

not form indenols but indenones Equation 1 .5

Me2N

+ Phcp1
hcnzne

Equation 1.5: Reactions of alkynes with cyclornanganated benzamides to form indenones

MnCO4
Ph

5



1.1.4 Uncatalysed reactions of alkenes with cyclomanaganated compounds

Previous studies28 have found that cyclomanaganated aryl ketones couple effectively with

alkenes like methyl acrylate. Depending on the solvents used, three main products

formed. When benzene was used as the solvent, indene and/or arylalkanes formed and in

carbon tetrachioride, indenes and indanols were formed predorninently. Equation 1 .6

,- MnCO

Me

OMe

indene arylalkane

Equation 1.6: Reaction of cyclomanaganated aryl ketones manganated acelophenone with methyl

acryl ate in different sol vents2a

1.1.5 Cyclometallated enones

One of the first known cyclometallated enones other than of manganese was formed by

the reaction of acyl compounds R'COCoCO4 with acety!enes29'30. The products were

i3-bonded lactonyl complexes oCthe type 2 generated from the intermediates of type 113.

R'-O
0 CoCO3

2

methyl acrylale

C6H6, CC!4

or MeCN

indanol

R

I

6



Stone32 later carried out reactions of acetylenes with RMCO3Cp and RCOMCO3Cp

M= Mo, W. Stone's reaction of CF3MoCO3Cp with but-2-yne in hexane gave 3.

Me
Me

CpCO2Mo CF3

3

Cyclometallated enones for a variety of other metals like tungsten, nickel, ruthenium and

platinum are also known. The equation below gives one of the initial syntheses of

manganated enones.

HMnCO5 + HCCF3

1. 40°C, 95 nuns

2. 25 °C, 4 hrs

H

_CF3

CO4fl'

The work was extended by Booth and Hargreaves33'34 using RMnCO5 R= Me, Ph

with alkynes. Such reactions when carried out in diethyl ether at room temperature in

glass ampoules over a period of 4-10 days gave cyclomanganated enones of type 4.

Similar successful reactions were also carried out by Booth et al.33 involving

PhCOMnCO5 with alkeries to give cyclomanganated products like 5. This reaction

involved dicyclopentadiene, in hexane, at 20°C for 7 days in a sealed ampoule.

4 5
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Amongst later studies, Cabral35 reported the first direct preparation of a cyclomanganated

enone. This was prepared by refluxing I -acetyl- 1 -cyclohexene with PhCH2MnCO5 in

heptane.

-I- -

Similarly, Robinson27 carried out the reaction that led to the preparation of 7 in 35%

yield.

heptane
PhCI-121V1nC05

reflux

0

6

heptane

+ PhCH,MnC05 reilux

A second product was later isolated by Woodgate et al.36 from the manganation of the

chalcone where the methyl group is replaced by a benzene in 6 above. This was the ring

manganated chalcone below.

In section 1 .1 .7, an example of a cascade reaction by Lee et al.39 is discussed. The

reaction also involves the formation of a manganated enone by the reaction of an enyne

with PhCH2MnCO5. This work is discussed in detail in chapter 3 of this thesis.

Mn

7
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1.1.6 Reactions of Cyclomanganated Enones

Apart from the work done by Tu11y37, few investigations into the reactions of

cyclornanganated enones have been carried out. Equation 1.7 for example shows the

reaction of diphenylacetylene with a cyclomanganated enone 8 to give a

tricarbonylmanganese complex 9.

0014

RcLlux

Ph1CPh

OMe

MeO Ph /Ph

MeO

OC3Mi

9

Equation 1.7: Reaction of phenylacetylene with a cyclomanganated enone to give a

tricarbonylnianganese complex

8 was reacted with methyl acrylate in carbon tetrachioride to give 10 in high yield.

8 reacted with mercury II chloride37 to give [1-phenyl-3-3,4,5- trimethoxyphenyiprop

2-en-yl-KC3 -1-one mercuryTI chloride 11, equation 1.8.

8

10
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OMe

Equation 1.8: Reaction of a cyclomanganated enone with mercury

1.1.7 Cascade reactions

Cascade reactions provide valuable pathways especially for the construction of various

carbo- and heterocyclic systems with two or more annelated rings. This area of cascade

chemistry is long established for palladium and has only recently been extended to

manganese.

The following Scheme Scheme 1 .9 shows the reaction modes of palladium-carbon

bonds. The initial step of the Heck reaction involves the formation of a new metal carbon

bond. This bond in principle can undergo any of the typical G-M-C bond reactions. If the

f3-hydride elimination is slow or if it could be totally suppressed, the palladium species

can undergo a number of reactions with new C-C bonds forming. If appropriate substrates

are chosen, the transformations can occur as a sequence of events in a single synthetic

operation.

11
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* R2

cyn-addition

internal rotation

PdL2X

R'II'R2

R'-X +

"Pd

R1 = alkenyl, aryl, allyl, ailcynyl, benzyl, alkoxycarbonylmethyl

R2
alkyl, alkenyl, aryl, CO2R', OR, SiR3 etc

R1-PdL2-X

PcIL2

-HX

bC

Spn-elirnination

R2

Scheme 1.9: The reaction modes of palladium-carbon bonds the mechanism of the Heck reaction

Given below are two examples of cascade processes of the type to be considered in the

current research. Further examples are discussed in chapter 3. An example is of

heteroaton-i-containing 2-bromo-1,6-diene reacting in the presence of dienophiles to give

heterocycles in good yields38.

itic
:q04

dppe 8 rnol%

xBr

:°::::
R'

R'

Scheme 1.10: Reaction ofaheteroatom-containing 2-bromo-1,6- dienes reacting in the presence of a

dienophile to give a heterocycle.

11



On the other hand treating the l-acetoxymethyl-2 bromo-1,6-diene with PdOAc2 gives

the vinylbicyclo[3.1 .O]hexane derivatives as shown by the following scheme. The

mechanism of this transformation is however not clear38.

OAC

PdOAc, 10 mol%

>E"

Schemel.1 1: Treatment of the l-acetoxymethyl-2-bromo-l,6- diene with PdOAc2 to give the

vi nylbicyclo[3.l .Olhexane derivative

The use of manganese in such cyclisation reactions has been rare. Two examples are

briefly given here and these are further discussed in chapter 3 where some reaction

schemes are also discussed.

Lee et al.39 reported the transformation of enynes to cyclopropanated bicyclic compounds

and cyclopentanes bearing an exocyclic double bond using methylmanganese

pentacarbonyl. The following scheme shows the general transformation that was carried

out by Lee ci' al. The dominant products in ether and acetonitrile are shown.

_

x

CH3MnCO5

x

Schemel.12: The transformation of enynes to cyclopropanated bicyclic compounds and cyclopentanes

bearing an exocyclic double bond using methylmanganese pentacarbonyl

12



Once the starting enyne I is reacted with CH3MnCO5, it forms a manganated enone

similar to those discussed in section 1.1.5 as reported by Tu11y37. The difference is the

presence of the intramolecuar alkene within the Lee et al.39 n-ianganated enone which

reacts further to give cyclised products as shown in Scheme 1.12.

Chung4° and his team reported the carbonylative MeMnCO5 mediated carbocyclisation

of 1,6-diynes to give [2,31-fused bicyclic cyclopentadiene derivatives by incorporating

carbon monoxide as hydroxyl and the methyl group as shown by scheme 1.13.

CI1MnCO
1. MNO

x
X /

2. H20
OH

Scheme 1.13: The carbonylative MeMnC05 mediated carbocyclisation of 1,6-diynes to give [2,3]-

fused bicyclic cyclopentadiene derivatives by incorporating carbon monoxide and a methyl group as

hydroxyl and methyl group

1.1.8 Pyrylium salts

Pyrylium salts function as intermediates for an extraordinary variety of syntheses. They

are interesting to study in themselves as the replacement of CI-! in the benzene ring by O'

modifies the electron distribution.

Pyrylium salts were prepared by Tully et al.41 from pyranylMnCO3 complexes by

reacting them with iodine to give pyrylium iodide salts. The pyranyl complexes were

prepared from 3-manganated chalcones with alkynes like phenyl acetylene. These

pyranyl complexes provide a ready source of pyrylium salts. Scheme 1.14 gives the

general equation for the reaction by which the pyrylium triiodide salts were prepared.

13



- R,C CR4

/
MnCO,

Scheme 1.14: Reaction ofpyranylMnCO3 complexes by iodine to give pyrylium triiodide salts

Unlike other ring systems, the pyrylium ring is as easily opened as it is formed. Pyrylium

and pyrone rings as well as the benzo derivatives of the systems appear in many natural

products and thus are of interest to natural product chemists. Later in chapter five, more

is discussed on the pyryliurn ions, in particular the preparations, properties and reactions

of the ferrocenyl-substituted pyrylium ions.

However, it is worth mentioning here that ferrocenyl-substituted pyrylium ions have

interesting electrochemistry. Apart from synthesizing and characterizing pyrylium ions

from cyclornanganated chalcones and ferrocenylethyne, their electrochemistry was to be

studied in the current study. An example of such a study was by Shaw et al.42 which

involved the synthesis and electrochemistry of iron-pyrylium complexes. An example of

their iron-pyryliurn complex is given by figure 10 below.

R1

oc1

Figure 10: An example of an iron-pyrylium complex

14



Figure 11 shows the cyclic voltammogram of the complex when R1 is Ph and R2 is a

CH3 in THF at 22°C and at scan rates larger than 400 mV/s it reveals a chemically

irreversible reduction at -1.49 V versus Cp2Fe. In comparison, Fp-CH3 is reduced at a

more negative potential which suggests that the pyryliurn ring is reduced first.

080 -0.20 -1.20 -2.20

Volts vs Cp2Fe

Figure 11: Cyclic voltarurnograms of the complex in figure 10 in THF at 22°C, Shaw, M. J. et. a!42

15
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Chapter 2: Pyranyl Complexesfrom Manganated Enones and

Dienones

21 Introduction

Scheme I shows the preparation of one of the first reported cyclornanganated enones. It

was prepared from the reaction of HMnCO5 with 3,3,3-trifluoropropyne1. The most

probable sequence of this reaction leading to the formation of the final product is the

initial formation of the forniyl group by the insertion of CO into the Mn-H bond. This is

followed by the insertion of the alkyne group to form the acyl-coordinated

manganocycle.

H
1. 40 °C/ 90 c-c' H

I-IMriC05 -F CF3CCH
2 25 °C/ 40 h / -

OC4Mn

Scheme 1: Preparation of one of the first reported cyclomanganated enones from the reaction of

1-IMnCO5 with 3,3,3-trifluoropropyne'

This work was later extended to a wide range of RMnCOsJ alkyne combinations
2

Cabral3 reported the first direct cyclornanganation of an enone. Heating 1-

acetylcyclohexene and MeMnCO5 in heptane gave 1 Scheme 2 in good yield.

The same process was applied by Robinson4 and TulIy5 in the cyclornanganation of 4-

phenylbut-3-en-i-one and of 1,3-diarylprop-2-en-1-ones respectively forming 2 and 3

Figure 1.

MeMnCO

Scheme 2: Heating 1-acetylcyclohexene and PhCH2MnCO5 in heptane to give 1
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Me

C04Mn-*------O CO4Mn*-O

2 3

Figure 1: Cyclomanganation products of 4-phenyl-3 -en-I-one and of 1,3 -diary lprop-2-ones

Manganation reactions of l,3-diaryIprop2-en-l-ones can form two products, with

manganation occurring either at the f3-carbon or o-aryl carbon sites. Altering the

substituents on either of the aryl rings can influence the manganation sites6.

Tully7 described a reaction of cyclornanganated enones of the type 4 with alkynes to form

pyranylMnCO3 complexes S Scheme 3, which were analogous to the pyranyl

products obtained in low yield from the reaction of RMnCOs with excess alkynes
8

This type of product therefore was not unexpected.

R
R1R2

Scheme 3: Reaction of cyclomanganated enones of the type 4 with alkynes to form pyranylMnCO3

complexes 5
`

Similarly, the coupling with alkynes of manganated dienones 6, Scheme 4, led to the

two primary products 8 and 9 Scheme 4. Note that pyranyl complexes can also be

considered as oxocyciohexadienido complexes in which the ligand formally has a

negative rather than a positive charge. The 0 does not coordinate to the metal and the

carbon chemical shifts are similar to cyclopentadienyl carbon shifts.

R2

5
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67

Scheme 4: The coupling with alicynes ofmanganated dienones

Mace'0 in his studies attempted to determine the factors influencing the production ofthe

two products, pyranyl 8, Scheme 4 and oxocycloheptadienyl, 9, Scheme 4 which was

earlier studied by `full?. He found that the products formed depended on the

diarylpentadienone and the alkyne used in the reaction10. The cyclomanganated

diphenylpentadienone 10, Scheme 5a reacts with trimethylsilyl acetylene to form the

pyranyl product 11, Scheme 5a, similar to that seen for the diaryipropenones. When 10

Scheme 5a was macted with phenyl acetylene under the same conditions, the

cycloheptaclienyl product 12, Scheme 5a formed.

111Me3s1cH
`Nl%44/t%./Th

pflc

Scheme Sa: Formation ofthe pyranyl or the cyclobeptadlenyl product depends on the alkyne

Mace" used deuterium-labeled dienone to confirm the mechanism originally considered

by lull? for the formation of9 Scheme 4. The mechanism in which the rearrangement

occurs via initial alkene addition to form a 6-membered ring followed by ring expansion

tough addition of the manganated carbon in b Scheme 5b to the ketone CO with

subsequent elimination to reopen the cyclopropyl ring of c Scheme 5b. Here the Ph

2

7

2

S

CO4

U 12
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group does not migrate, rather the carbon atom with attached phenyl group and H, or D

as shown exchanges position to move adjacent to ketone CO.

COb

9

Scheme 5b: Mechanism involving rearrangement for the formation ofthe oxocyloheptadienyl

complex'1.

In the study by Tully5 when a solution of phenyl acetylene and 6 Scheme 4 was stirred

in CCL, at ambient temperature for 8 hours, the pyranyl product fonned 8, Scheme 4

and almost all the starting material was used up with only traces of the

oxocycloheptadienyl 9 forming.

When the pyranyl product was heated in heptane at reflux, the IR peaks for the pyranyl

product disappeared in just one hou?°. New JR peaks for the oxocycloheptadienyl

product 9, Scheme 4 appeared instead. After the repetition of a selection of these

reactions, it was confirmed that the pyranyl product dominated under milder conditions

and the oxocycloheptadienyl product formed at more forcing conditions i.e. at reflux and

with extended reaction times. This suggests that the pyranyl product is formed faster

kinetic control but the oxocycloheptadienyl product comes to dominate under reversible

conditions at higher temperatures thermodynamic control.

Similarly, when manganated 1,5-diarylpenta-1,4-dien-3-ones were reacted with alkynes,

the corresponding pyranylMnCO3 formed but the seven-membered

oxocycloheptadienyl product is also formed Both the manganated 1,3-diphenylprop-

a
b

c
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2-en-i-ones and rnanganated 1,5-diarylpenta-i,4-dien-3-ones reacting with a&ynes iike

phenylacetylene give pyranylMnCO3 complexes with the addition of the inanganated

C to the triple bond occurring at the alkene C remote from the Ph group Scheme 6. This

orientation result is similar to that obtained by the Liebeskind's group'2 with the

formation ofthe indenols with the orthomanganated substrates.

PhCH

Scheme 6: The addition ofthe rnanganated C to the triple bond occurring at the alkene C remote from

the Ph gro"

The figure below Figure 2 shows the `H NMR and `3C NMR signals for the

pyranylMnCO3 formed 4, Scheme 6 when 1, Scheme 6 was reacted with phenyl

acetylene in an earlier study'°. These NMR. data are used later in this chapter to help

characterize the product formed when 1, Scheme 6 was reacted with methyl propiolate.

The `3C NMR signals are given in italics.

4 3
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81.2 ppm

Figure 2: 1H NMR and 3C NMR signals for the pyranylMnCO3 formed 4, Scheme 6

Attempts were also made to transmetallate the pyranylMnCO3 complexes with

Na[FeCO2Cp] in an effort to replace the MnCO3 unit with FeCp to give a compound

with a sandwich structure analogous to ferrocene5.

This did not happen. Instead the pyranyl ring opened giving a mixture of 1,3,5-

triarylpenta-2,4-dien-1-one isomers Scheme 7. This appeared more like a protonation

by adventitious water rather than a reaction with NaFp.

Ar

- H
Ar

+ Na[FeCO2Cp ArAr0

OC3Mn
Ar

+

Scheme 7: Attempted transmetallation of the pyrany!MnCO3 complexes with Na[FeCO2Cp]

5.06 ppm
82.4 ppm

6.32 ppm

123.8 ppm

5.72 ppm
All Ar-H 7.56- 7.31
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2.2 Aims ofthe present study

2.2.1 Dienones derived from cyclic ketones

It was found that coupling with alkynes of manganated dienones led to two primary

products59 as shown in scheme 4, section 2. 1 . In the current study, this work was to be

extended to dienones derived from cyclic ketones similar to 13 Scheme 8. The aim was

to see if alternative cyclisation occurred giving a new cyclic fulvene precursor 16

Scheme 8 along with the bicyclic pyranyl compound 15 Scheme 8 because of the

inaccessibility of bonding site for cyclisation to the 7-membered ring in 14 Scheme 8.

Ph

/

Ph

17

Scheme 8: Reaction ofa manganated dienone derived from a cyclic ketone with phenyl acetylene

Note that the 7-membered ring in 14 Scheme 8 cannot form because the bonding site

marked * is no longer accessible as it is in 7 Scheme 4. This is because of the

introduction of the ring which bonds to the carbon adjacent to the *C.

13

16
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22.2 Tetraenones of open chain type and analogues of 13

In the current study, the work by Tully was also to be extended to tetraenones of the

type 17 Scheme 9 as well as the tetraenone analogue of 13.

The tetraenone of the open chain type could cyclise according to Scheme 4 but has

alternative options, e.g. as shown in Scheme 9 in which a fulvene is formed.

Ph

CR

MirO
CC

`7

o

-HMnCO4

Scheme 9: The possible cyclisation ofthe manganated open chain type tetraenone

Another goal was to extend this section of work to coupling with alkenes and other

unsaturated molecules like isocyanates'2 in place of alkynes to mimic the chemistry

previously found for other manganated carbonyl compounds
5,10

18
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2.2.3 Reaction of manganated chatcones with methyl propiolate

It was previously found that the reaction of 2-2-acetylphenyltetracarbonylmanganese

with asymmetrical alkynes gave indenols12. With the formation of the indenols, the

alkyne inserts with the bulkier group becoming oriented in the reverse way from normal

as observed for the reactions of alkynes like phenylacetylene with orthomanganated

aryl-compounds, giving rise to indenols with the bulky group next to the ring. Methyl

propiolate is an alkyne with a stronger electron withdrawing -COOMe group on one end

of the molecule when compared to alkynes like phenylacetylene. The goal of the present

study was to determine if methyl propiolate reacted in the same way as other alkynes

with manganated dienones and orthonianganated aryl- compounds to give

pyranylMnCO3 complexes or whether it would insert in the reverse way as it did with

the formation of indenols'2.

2.2.4 Reaction of 3,5-diphenyl-1-1 `-phenylethenyl-l`,2-cyc1openta-pyranyJ-5-

tricarbonylmanganese 2-6 with Na[FeCO2Cp]

Attempted transmetalation of pyranylMnCO3 complex [2 ,4,6-triphenylpyranyl-

iftricarbonylmanganese, 8 Scheme 4 with Na[FeCO2Cp] in an earlier study5 opened

the pyranyl ring giving a mixture of penta-2,4-dien-l-one isomersScheme 7. In the

current study, the goal was too determine if the same applied with the pyranylMnCO3

complex 2-6 obtained from the dienone from cyclic ketones.
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2.3 Results and Discussions

2.3.1. Dienones derived from cyclic ketones

Reaction of 2,5-dibenzylidenecyclopentanone Figure 3 with PhCH2MnCO5 gave [2,5-

dibenzylidenecyclopenta-1 -yI-ic3- 1 -one-KO]tetracarbonylrnanganese Figure 4. Figure 3

and figure 4 are referred to as 2-1 and 2-3 in section 2.4, experimental The manganated

product figure 4, 78.3% showed the usual IR metal carbonyl pattern with signals at

2077, 1994 and 1958 cm1 for MnCO4 complexes as observed by Tully5 for his

manganated chal cones.

Figure 3: 2,5-dibenzylidenecyclopentanone 2-1

Figure 4: [2,5-dibenzy! idenecyclopentan- 1 -yl-i3- I -one-Ko]tetracarbonylnlanganese 2-3

The `H NMR spectrum of the manganated product 2-3 figure 4 showed some

downward shifi of the hydrogen signals for H2', H4', and H6' as well as for HI" when

compared to the'H NMR spectrum of 2-1figure 3 Section 2.4 refer to numbering of

compounds, section 2.4. The `3C NMR spectrum showed the usual MnCO metal

4,

5,

4.
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carbonyl bands at around 210 ppm for 2-3 and there is a large downward shift

observed for Cl when compared to the `3C NMR spectrum of2-1 Section 2.4.

The `HNMR and I3Qn shifts of 2,5-dibenzylidenecyclopentan-1-yl-ic?..I-one-

icO]tetracarbonylmanganese were again consistent with those observed by Tu119 for his

manganat.ed dienones. The structure of 2-3 was further confinned by x-ray crystal

structure analysis discussed in section 2.5.

In this study, a solution of phenylacetylene and 24 Figure 4 was first stirred in CCLI

under nitrogen at ambient temperature for several hours. The reaction was monitored by

Ut and t.1.c. No reaction took place. Tull? also found that no reaction took place at

ambient temperature when manganated dienones in his study were reacted with

phenylacetylene in CCI. The reaction mixture was then refluxed for two hours during

which 2-3 was completely converted to the pyranyflMnCO3 product 3,5-cliphenyl4.

1 `-phenylethenyll`,2-cyclopentapyranyl-Tj5-tricarbonylmanganese 2-6 figure 5. The

pyranyl product was characterized using lit, ESMS, and NMR discussed later in the

chapter. The reaction mixture was then refluxed overnight There were no new products

formed, i.e the pyranyl product remained unchanged. This showed that no alternative

oxocycloheptadienyl product or any flilvene ofthe type suggested in scheme S formed.

Figure 5: 3,5-&pheny111'-phuLy1etheny1-1',2-cyc1opentapyrany14-fricarbony1manganese2-6

The pyranyl product progressing to the oxocycloheptadienyl product or the pyranyl

product reversing to 16 Scheme 8 and then forming the r5-cycloheptadienyl product,
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does not happen when dienones derived from cyclic ketones are involved. Similarly, no

alternative cyclisation occurred to give any novel products as was anticipated. As

discussed earlier, the inaccessibility of a bonding site to give a seven membered ring

similar to 9 Scheme 4 was not possible with 14 Scheme 8. There was however a

possibility of an alternative cyclisation of 14 to give tile intermediate 16 Scheme 8

followed by the loss of the MnCO4 to give tile fuivene 17 Scheme 8. The most likely

reason for no alternative products forming is that the pyranyl product that forms cyclic

ketones remains at higher temperatures and there is no reversible of 15 to 14 as shown in

scheme 8. Even if this reverse reaction i.e. 15 reversing to 14 is taking place, it again

reverts to 15. The possible reason for this happening is discussed in section 2.2.1

Scheme 8.

Despite continued refluxing, the pyranylMnCO3 complex 2-6 obtained in this study

remained unchanged as monitored by IR. This suggested that 2-6 was not getting

converted into any other product. The pyranylMnCO3 complex obtained 2-6, 63%

showed tile characteristic IR pattern for such tricarbonyl complexes5. The 1R signals

appeared at 2011, 1948 and 1930 cm.

A NMR signal for 2-6 appeared at 5.5 ppm for H5 expected between 5.0 and 5.7

ppm5'7, refer to fig. 2 page 23. The 13C NMR signals were present at 80.5 and 80 ppm for

CS and C3 and these were expected between 80 and 90 ppm. The 13C NMR signals For

C2, C4 and C6 appeared at 101.7, 99.0 and 98.6 ppm respectively. These signals

appeared at around 95.0 ppm as expected for i5-pyranyltricarbonylmanganese complexes

prepared from cyclomanganated chalcones and alkynes7. refer to section 2.4 for

numbering of tile structures of the compounds.

If ally 7-membered oxocycloheptadienyl product formed, then the observed JR pattern

would have been 2030, 1967 and 1956 crn1. This was observed by Tully5 for his

cycloheptadienyl-5-1-one MnCO3 complexes.
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The Fl NMR signals1' would appear at around 4.8, 6.6 and 4.0 ppm for H2, H4 and H6

for oxocycloheptadienyl product if present and not between 5.0 and 5.7 ppm as for H3

and H5 for the pyranyl MnCO3 complex.

The `3C NMR spectrum of the oxocycloheptadienyl product would show signals at

around 11 5 ppm for C3 and CS and around 75, 95 and 60 ppm for C2, C4 and C6

respectively. The NMR signals were consistent with those observed in earlier studies
5,10

for similar pyranylMnCO3 compounds. None of these signals was observed in the'FI

NMR and `3C NMR spectra of 2-6 thus confirming that no 7-membered

oxocycloheptadienyl product was formed. The forniation of the kinetically stable product

in this case was simply a proof of wahat was expected.

2.3.2. Tetraenones of open chain type and analogues of 13

Tetraenones, as in scheme 9 and the cyclic analogue of 17 were successfully prepared.

Reactions of the tetraenones with PhCH2MnCO5 in heptane gave manganated products

as seen from their IR spectra. However, the manganated products proved difficult to

isolate in their pure form for full characterization, especially for getting good clean NMR

spectra. Since no stable manganated products could be isolated, it became impossible to

extend work in this area.

Apart from the polyenone systems being unstable and susceptible to random nucleophilic

attack, and possible isomerism, it was also possible that the C-Mn bond, if uncoupled

temporarily from coordination to the ketone C=O could potentially be able to cyclise to

diene centres on the opposite side of the molecule. This could happen during isolation,

thereby possibly giving one or more manganated cyclisation products which themselves

could react further intermolecularly or intramolecularly giving fairly random Mn

containing and non-Mn products. These most likely accounts for the multiple NMR

signals in the isolated product that initially seemed like a reasonable discrete band off the

plate.
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Reactions of the unpurified manganated tetraenones with alkynes and alkenes did not

give any products which could be isolated and characterized fully. The main product of

the reactions was the brown solid forming in the reaction vessel, which pointed to the

decomposition of the starting manganated tetraenone. The solid was dissolved in CH2C12

and plated but nothing moved from the base. 1-Towever, reaction of the manganated

tetraenone with alkynes like phenyl acetylene could also result in multiple products and

this could possibly account for multiple minor bands on the PLC. Some possible products

from such a reaction are shown by the following scheme. Similarly, one-pot reactions of

the tetraenones with PhCH2MnCO5 and alkynes in different solvents did not give any

positive results. All the starting materials broke down instead. This area of work was

therefore abandoned.

Scheme 11: The possible products resulting from the reaction of manganated tetraenones with alkynes
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2.3.3. Reactions ofmanganated chalcone 2-4 and manganated dienone25 with

methyl propiolate

The pyranylMnCO3 is formed as the result of' the manganated C adding to the

unsubstituted alkyne carbon the carbon with H most likely because of steric reasons as

has been observed in the previous study'°. Similarly, when 2-5 was reacted with

trimethylsilylacetylene5, 2-10 was formed in 4 hours at reflux Scheme 12.

Pb%sr::i#_#t%rd#Ph
p

CO4
24

Scheme 12: Reaction of2-5 with triniethylsilylacetylene

The general structure ofthe pyranylMnCO3 complexes is given below. This has been

mentioned elsewhere in this chapter but is given here once again with the general

structure to enable the reader to better follow the NMR signals listed in the tables that

follow.

6'

2"

2'
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The table below lists the `H N14R chemical shifts of the protons around the pyranyl ring

of the pyranylMnC03 complexes studied by Tully5.

1H NMR chemical shifts

ppm

X R, R2 I-Is H3

Ph 3", 4", 5"-

OMe3

4"-Cl 5.56 5.52

Ph 4"- CF3 H 5.63 5.63

Ph H H 5.63 5.63

Ph 4"CF3 4'-Cl 561 561

SiMe3

3

OMe3 4'- Cl 5.32 5.03

Table 1: 1H NMR chemical shifts of the protons around the pyranyl ring5

The following table lists the `3C NMR chemical shifts of the carbons around the pyranyl

ring.

___________________________________

l3
NMIR chemical shifts ppm

X R1 R2 C2 C3 C4 CS C6

Ph 3", 4", 5"- OMe3 4"-Cl 96.0 81.6 92.5 81.3 98.7

Ph 4"- CF3 H 96.4 80.6 94.6 80.6 96.4

Ph H H 95.3 81.0 97.5 81.0 95.3

Ph 4"CF3 4'-Cl 93.9 80.8 94.9 80.4 97.5

SiMe3 3", 4", 5"- OMe3 4'- Cl 101.9 81.5 95.4 92.2 88.8

Table 2: `3C NMIR chemical shifts of the carbons around the pyranyl ring5
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Similarly, Mace'0 synthesized a few pyranyl complexes, the 1HNMR shifts of which are

listed in the table below

`HNMR shift of I-li if

R1= 14

1HNMR

of 1-13

R R, R2 R2=H FT3

Ph H Ph 5,06 5.72

Ph Ph Ph --- 4.93

Ph H SiMe3 4.62 4.85

Table 3: `H NMR chemical shifts of the protons around the pyranyl ring'0

The following table lists the `H NMR shifts around the if-pyranyl ring of the products 2-

7 and 2-8 resulting from the reactions of 2-5 and 2-4 with methyl propiolate in the current

study. The structures of 2-4, 2-5, 2-7 and 2-8 as numbered in section 2.4, the

experimental section, are given as figures 6, 7, 8, and 9 below.

H4
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"
2"

1" H
2'

CO4Mn
6'

Figure 6: Structure ofcompound 2-4

4,'

Figure 7: Structure of compound 2-5

Figure 8: Structure of compound 2-7

PhLii

MeOOC

OC3Mn
H

Figure 9: Structure of compound 2-8

5'

6"
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I ppm

Substrates Comp. H3 H6

2-5, methyl propiolate 2-7 4,53 6.30

2-4, methyl propiolate 2-8 5.31 6.30

Table 4: 1H NMR shifts of the protons around the f- pyranyl ring 2-7 and 2-8.

A trimethylsilyl substituent has the effect of slightly lowering the'H NMR shifts of both

the rj5-pyranyl ring protons when compared to the phenyl substituent. Changing the

substituents has only a minor effect on the chemical shifts of individual carbons. The

pyranylMnCO3 complexes formed again showed almost similar `H NMR and `3C

NMR shifts for the protons and carbons around the 5-pyranyl ring as listed in tables 1, 2

and 3.

While the `H NMR shifts ranged from 4.6 to 5.7 ppm, the `3C NMR shifts ranged from

81.2 to 104.7 ppm lr the pyranylMnCO3 complexes in the study by Tully5.This

shows that changing the substituents around the 5-pyranyl ring did not affect the NMR

chemical shifts of the protons and the carbons around the 5-pyranyl ring.

In the current study, 2-5 as well as 2-4 1,3-diphenylprop-2-en-3-yl-K3-1-one-kO]

tetracarbonyl manganese was reacted with methyl propiolate in CC!4. 2-7 64% and 2-8

74% were obtained respectively and showed the usual JR metal carbonyl bands with

signals at2015, 1956 and 1934cm1.

However, when the `H NMR shifts of the pyranylMnCO3 products 2-7 and 2-8 were

compared with the 1H NMR shifts of the pyranylMnCO3 products formed in the

earlier studies5"°, some of which have already been discussed earlier in this section, it

was noted that a signal appeared at around 6.30 ppm. This signal at 6.30 ppm, for one

proton, was further downfield than those observed for the pyranylMnCO3 products

formed in the study by Tully5 and Wade'°. This value of 6.30 ppm was not within the

range of 5.0 and 5.7 ppm for the two protons at the ct-postions on the `r5-pyranyl ring as
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has been observed earlier. The `H NMR signal at 6.30 ppm is for H6 which is on C6 of

the pyranyl ring. C6 is adjacent to 0 which results in a more downward `H NMR signal

at 6.30 ppm. Based on the `H NMR assignments of 2-7 and 2-8, the following structures

figures 10 and 11 for the two compounds is proposed.

6.35

Figure 10: The proposed structure of the pyranylMnCO3 complex 2-7 based on the 1H NMR shifts

5.3lppm

Ph

PhOI

H 630 ppmMeOOC

inC03
All Ar-H around

7.30 ppm

Figure 1 1 : The proposed structure ofthe pyranylMnCO3 complex 2-8 based on the `H NMR shifts

The following table lists the `3C NMR shifts around the pyranyl ring of the products

2-7 and 2-8 resulting from the reactions of 2-5 and 2-4 with methyl propiolate in the

current study.

3.11 ppm

ppm

Substrates Compound C2 C3 C4 C5 C6

2-5,methylpropiolate 2-7 101.2 79.0 119.8 121.6 87.3

2-4, methyl propiolate 2-8 101.6 77.4 107.5 124.0 87.7

Table 5: `3C NMR shifts ofthe protons around the if-pyranyl ring of2-7 and 2-8.

4.53 ppm

ppm d

3.90 ppm

6.30 ppm s

All Ar-H 7.20-7.70
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From the `3C NMR signals of pyranyl MnCO3 from previous studies
5,10,

it has been

noted that the carbons of the phenyl substituents, if present, have their carbon shifts

starting at around 123 ppm upwards to around 1 50, 1 60 ppm depending on the other

substituents that are present on the 5-pyrany1 ring. The `3C NMR signals for the carbons

on the 5-pyrany1 ring however range between around 8 1 .0 ppm and I 02 ppm.

For the products, 2-7 and 2-8, this was however not observed. A considerable 13C NMR

chemical shift for carbons around the rj- pyranyl ring was observed, mostly a downfield

shift for the carbons. The 13C NMR chemical shifts for 2-7 and 2-8 are assigned as listed

in table 5. Based on the `3C NMR assignments of 2-7 and 2-8, the following structures

figures 1 2 and 1 3 for the two compounds are proposed.

H
/Ph

1O1.2ppm 2

H 1 130.5 ppm

1198pp0p

OH:2ppm

MeOOC H

All Ar C around

1 MnCO1 127- 137 ppm

52.4 ppm
170.3 ppm

around 222,4 ppm

Figure 12: The proposed structure ofthe pyranylMnCO3 complex 2-7 based on the `C NMR shifts

77.4 ppm

I 04.3

52.4 ppm

Figure 13: The proposed structure of the pyranylMnCO3 complex 2-8 based on the `C NMR shifts

All Ar-C around

126- 145 ppm
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In the current study therefore, the NMR data suggests that methyl propiolate inserts in the

reverse way to what was observed for alkynes like phenyl acetylene when reacted with

manganated dienones like 2-5. It is however consistent with the observations made by

Liebeskind's group'2 with the formation of indenols discussed earlier from methyl

propiolate and o-manganated acetophenones.

2.3.4 Reaction of 2-6 with Na[FeCO2Cp]

A product from this reaction was isolated but could not be sufficiently purified to give a

good NMR spectrum. However, the result from this reaction is discussed in the

experimental section.
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2.4 Experimental

2.4.1 Preparation of 2,5-Dibenzylidenecyclopentanone 2-1

Ethanol 10 mL and a solution of sodium hydroxide 2 g in water 15 mL were mixed

in a flask immersed in crushed ice. A solution of cyclopentanone 0.65 mL, 7.4 mmol of

benzaldehyde 15.0 rnL, 14.8 mmol was added while stirring and maintaining the

temperature at 25 °C. After stirring for a further hour, the product which had precipitated

was collected and washed with water until the washings were neutral to litmus. The

crude product was dried under vacuum and recrystallised from ethyl acetate in 80% yield.

M.p 188-190°C

`H NMR5: 300 MiI-Iz, CDC13 ö 7.62 s, 2H, HI, 7.42 m, IOH, Ar-H, 3.14 41-1, s,

Hi"

`3c NM1R5:300 MHz, CDC13 ö 162.4 C3, 137.4 Cl, 135.9 Cl', 133.9C4',

130.8C3', 5', 129.5 C2', C6', 128.8 C2.

2.4.2 Preparation of 1 ,3-diphenylprop-2-en-1-one

A solution of sodium hydroxide 2.2 g in water 20 mL and ethanol 12.5 mL was

stirred in a flask immersed in a bath of crushed ice. The flask was then removed from the

crushed ice and placed on a hot plate. Acetophenone 5210 mg , 43 mmol and

benzaldehyde 4570 mg, 43 mmol were added successively while maintaining the

temperature at 25 °C. After stirring for 4 hours at 25 °C, the mixture was cooled and left

at -8 °C overnight. The crude product was filtered, washed with water until the washings

4

2-1
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were neutral to litmus and then washed with a little ethanol 3x2 mL. A single

recrystallization from ethanol gave l,3-diphenylprop-2-en-1-one 2-2 6.98 g, 78%,

pure by 1H NMR5 and used for manganation without further purification.

4,

`H NIvIR: 300 MHz, CDC13 8.06 d, 2H, J8.OHz, H2', 6', 7.82 d, 1H, J15.5Hz,

1-13 7.55 m, 3H, H3', 4', 5, 7.51 d, 1H, Jl5.5Hz, H2, 7.45 m, 5H, H2", 3", 4", 5",

6"

`3C NIvIIR: 300 MIHz, CDCI3 190.7 Cl, 139.5 C3, 138.3 Cl', 135.0 Cl", 129.5

C2', C6', 129 0 C5', 132 9 C4', 128 6 C2, 128 9 C3', 126 3 C2", C6", 128 5-

128.9 C3", 4", 5".

2.4.3 Cyclomanganation of 2-1

2-1 100 mg, 0.384 rnmol and PhCH2MnCOs 132 mg, 0.464 mmol were transferred

to a Schlenk flask containing heptane 20 mL under nitrogen. The solution was heated

under reflux until such time as the reaction was deemed complete through disappearance

of the 2106 cm' peak due to PhCH2MnCOs. After approximately 60 minutes, the

reaction was stopped and the solvent removed under vacuum. The residue was

chromatographed p.l.c., ethyl acetate: hexane, 1:3 to afford the product, [1 ,5-diphenyl-

2,4-cyclopenta- 1 ,4-dien- 1 -yl-KC1 -3 -one-KO]tetracarbonylrnanganese 2-3, R of 0.8, as

red oil 100 mg, 63 %. The product was recrystallised by diffussion from

dichloromethane and pentane to give red crystals: m.p. 107 °C.

50

2-2
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5 3

2-3

IR hexane 2077m 1994 vs,br 1958 s cm'1

4.

5"

ESMS MeOI-I/NaOMe; CV +20 V m/z 449 70% [M+Naf, 875 65% [2M+Na]

MeOHINaOMe, Cone -20 V m/z 457 100% M+OMef

`H Niv[R 300 MHz, CDC13 7.1 1-7.56 1OH, m, Ar-H, 6.99 1H, s, H5, 3.28 2H, d,

Hi", 2.68 2H, d, H2"

`3C NMIR 300 MHz, CDC13 2i9.4 Ci, 21 1.8-213.9MnC"O, 196.6C3, 123.6-

151.9Ar-Cs, 149.6C5, 31.5C6, 26.7 C9

Elemental analysis calculated for C23H,5MnO5:

Found:

C, 64.78 ;H, 3.55

C, 64.94; H, 3.67
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2.4.4 Manganation of 1,3-diphenylprop-2-en-1-one and E,E-1,5-diarylpenta-1,4-

dien-3-one

l,3-diarylprop-2-en-l-one 200 mg, 0.96 rnmol and PhCH2MnCO5 330 mg, 1.15

mmol were refluxed in nitrogen-saturated heptane for 3 h. The reaction mixture was

cooled and the solvent removed under vacuum, The residue was cliromatograhed PLC.,

1:1 CH2C12/petroleum spirits to afford one red band, Rf 0.8. The red band was eluted and

the solvent removed to provide pure product, 2-4 as red oil, 300 mg, 78.3 %.

51

JR heptane: 2081 m, 1996vs, 1934 s cm'1

ESMS: MeOH/NaOMe; CV +20 V m/z 397 70% [M+Na], 771 65% [2M+Naf

MeOHINaOMe, Cone -20 V m/z 405 100% M+OMe]

1H NMR: 300 MHz, CDC13 7.75 s, 1H, H2, 7.18- 8.07 m, 1OH, Ar-H

`3C NMR: 300 MHz, CDC13 219.0 Cl, 214.0CO, 210.3CO, 210.0 CO, 204.7

Cl, 135 2 C2, 150 4 Cl", 135 2 Cl', 130 8 C2', 6', 130 1 C2", C6", 133 5

C4' 129.4-130.83C, C3", 4", 5", 129.2 C3', 131.4 CS'.

No microanalyses data was obtained for 2-3.

A commercial sample of the dienone for making the cyclomanganated compound 2-5 was

made available from an earlier study5.

The procedure for synthesis of 2-5 was similar to that for 2-3. This compound has been

prepared previously5. The yield of 2-5 in this study was comparable to that reported

earlier5. Consistent NMR data were obtained and are listed here.

2-4
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3,,

4,,

5"

m.p.5 116°C

JR5 2082 m, 1997 vs, br 1942 s cm'

`H NMR5 300 MHz, CDCI3 7.72 d, IH, J 16.1I-Iz, H5, 7.59 m, 2H, H2", 6". 7.45

m, 8H, H2', H6', H3', H5', H4', H3", H5", H4", 7.33 s, 1H, H2, 6.99 d, JH, .J 16.1

Hz, H4.

"c NMIR5 300 MI-Iz, CDCI3 ö 251.2d, 219.5CO, 214.1CO, 210.4CO, 203.9

C3, 150 2C1', 145 4C5, 134 6C1", 133 9 C2, 131 1 C4", 129 1 C3", C5",

128.7 C4', 128.6 C2", C6", 128.4 C3', 5', 125.3 C2', 6', 123.6C4.

Elemental Analysis calculated for C21H,3O5Mn: C, 63.02; H, 3.27

Found: C, 62.95, H, 2.98

6'

6"

2-
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245 Reaction of 1,5-diphenylcyclopenta-1,4-dien4-yIKC`-3-one

KOtetracarbonymanganese 23 with phenylacetylene

23 208 mg, 0.488 mmol and phenylacetylene 1.22 mmol, 0.125 g, 130 jiL were

dissolved in nitrogen-saturated CC14 and the solution was refluxed under nitrogen. A

brick-red colour appeared. The heating was continued until such time as the reaction was

deemed to be complete by the disappearance of the 2080 cm1 IR peak of 2-3 . After

approximately 2 h, the reaction was stopped and the solvent removed under vacuum and

dichioromethane 1 0 mL and deactivated neutral alumina 4 g, activity 2 were added to

the dark red oil. The mixture was stirred while the dichioromethane was removed under

vacuum. The adsorbed product was transferred into a column 2 x 1 2 cm of neutral

alumina activity II. Elution with hexane did not produce any bands but as the polarity of

the solvent was increased with dichloromethane, a large red band started to move. This

was collected and the solvent removed under vacuum to give 3,5-diphenyl-1-1'-

phenylethenyl- 1 ` ,2-cyclopentapyranyl-5-tricarbonylmanganese as a red oil 150 mg, 63

%. This was crystallized by diffusion from dichloromethane/ pentane as red crystals.

JR CC14: 2011 vs, 1948s, 1930 m cm'

ESMS MeOH/NaOMe; cone + 20 V m/z 361 100%, [M-MnCOf
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ESMS: MeOI-IfNaOMe; Cone -20 V mlz 487 100%, [M+ OMefl, 455 17%, EM-Hf

MeOH, Cone +20 V mlz 317 100%, [M-MnCO3I[

`H NMIR: 300 MHz, CDCI3 6 7.87 d, 2H, H2",6", 7.28- 7.58 m, 1OH, All Ar-H,

7.20d, 1H, H2', J= 16 Hz, 6.30 s, 1H, H6, 4.53 s, 1H, H3, 6.35 d, IH, Hi', J 16

Hz, 3.90 s, 3H, Cl-I3.

`3C NMR: 300 MHz, CDC13 6 222.4 Mn-CO, 170.3 CO, 127.9- 136.7 all Ar-C

121.6 CS, 119.8 C4, 130.5 C2', 125.5 Cl', 101.2 C2, 87.2C6, 79.0 C3.

Elemental analysis calculated for C24H17IV1nO6 : C, 63.16; H, 3.75

Found : C, 63.69; H, 4.25

2.4.7 Reaction of 2-4 with methyl propiolate in Cd4

2-4 133 mg, 0.36 mmol and methyl propiolate 126 .tL, 1.45 mmol were refluxed in

nitrogen-saturated carbon tetrachloride for 4 h. The carbon tetrachloride was removed

under vacuum to give a red oil. Dichloromethane 10 mL and deactivated neutral

alumina 4 g, activity II were added to the dark red oil. The mixture was stirred while the

dichioromethane was removed under vacuum. The adsorbed product was transferred onto

a column 2x 12 cm of neutral alumina activity II. Elution with hexane did not produce

any bands but as the polarity was increased with dichloromethane, a large red band

started to move. This was collected to give 2-8 as a red oil 110 mg, 74 %. This was

crystallised by the solvent diffusion method dichloromethane/ pentane as red crystals.
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Table 2.5 Ciystal Data and Structural Refinemement of2-3

Identification code npcp

Empirical formula C23 H15 Mn O

Formula weight 426.29

Temperature -1 102 C

Wavelength 0.7 1073 A

Crystal system, space group Monoclinic, P211n

Unit cell dimensions a = 7.67417 A alpha = 90 deg.

b = 23.7752 A beta = 98.860010 deg.

c = 10.963910 A gamma = 90 deg.

Volume 1976.53 AA3

Z, Calculated density 4, 1.43 3 Mg/mA3

Absorption coefficient 0.699 rnrnA 1

F000 872

Crystal size . 64 x .53 x .41 mm

Theta range for data collection 2.07 to 26.44 deg.

Limiting indices -9<=h<=9, -29<=k<=29, -13<1<13

Reflections collected I unique 24799 / 4059 [Rint 0.0232]

Completeness to theta = 26.44 99.6 %

Absorption correction Empirical

Max. and mm. transmission 1.0000 and 0.80 15

Refinement method Full-matrix least-squares on pA

Data / restraints / parameters 4059 I 0 / 262

Goodness-of-fit on FA2 1.275
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Final R indices [I>2sigmaI] Ri = 0.0519, wR2 0.13 13

R indices all data

Largest diff. peak and hole

Ri = 0.0530, wR2 = 0.1320

0.33 9 and -0.5 06 e.AA3

Crystal data and structure refinement for [1,5-diphenylcyclopenta-1,4- diene-l-yl-KC'-3-

one-KO] tetracarbonylmanganese 2-3.

The orange-red crystals were shown to be monoclinic of space group P2iln with four

molecules in the unit cell. Crystal and structure refinement data are given in the table in

section 2.5. An ORTEP perspective view showing the atom-labeling scheme is given in

figure 14.

Figure 14: ORTEP perspective view showing the atom-labeling of[I ,5-diphenylcyclopenta-1,4- diene-1-

yl-iC' -3-one-KO] tetracarbonylmanganese

51



Cyclomanganated complexes of this type incorporate a five-membered ring which are

essentially planar and constant geometry.

The following figures show the bond lengths of the manganocyclic ring of the

orthomanganated acetophenone5 and of the cyclomanganated [1 ,5-diphenylcyclopentane-

1 ,4- diene-1-yl-KC`-3 -oneKO] tetracarbonylmanganese 2-3.

K'
I I 122.1 / `°* I I

T1.359 .

2.078

M 1.265

CO4Mn.

2.075

Figure 1 5 : Bond lengths ofthe manganocyclic ring ofthe orthomanganated acetophenone5 and ofthe

cyclomanganated [1 , 5-diphenylcyclopentane-1,4- diene-1 -yl-KC `-3 -one-KO] tetracarbonylmanganese

All the bond lengths of the manganocyclic ring in the cyclomanganated enone are longer

than that of the bond lengths of the manganocyclic ring of the orthomanganated

acetophenone except for the CC bond which is 1.359 A. This is shorter than the 1 .46 A

c-c bond ofthe aryl ring.

The phenyl ring C2 1 - C26 attached to C6 is twisted about the C-C bond from the rest of

the molecule at an angle of 46.59° This twisting out of plane of this phenyl ring is most

likely due to steric reasons. The electron rich and bulky MnCO4 pushes away the

phenyl ring away from it thus forcing the phenyl ring out of plane. 01 Mnl C6 angle is

80.600, very similar to those reported for similar angles for compounds like the

dimanganated 1 , 5-diphenyl-3-2-pyridylpentane-1,5-dione5 and for orthomanganated

3.

Listed below are the C-C bond lengths A° between the cyclopentanone ring and the two

phenyl rings of the [1 ,5-diphenylcyclopentane-1,4-diene-1 -yl-i'zC ` -3 -one-KO]

tetracarbonylmanganese 2-3. Also listed are the Mn-C and the C0 bonds.

2.06
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C1-C2 1.4314

C2-C6 1.359 4 C5 -C7 1.348 4

C6-C21 1.480 4 C7-C31 1.468 4

Mnl-C11 1.8623 Mnl-C12 1.8753

Mni-C13 1.849 3 Mnl-C14 1.801 3

Oil- Cli 1.141 4 012- C12 1.136 4

013- C13 1.136 4 014-C14 1.150 4

The C6-C21 bond is the longest amongst the four bonds of interest here. The most likely

reason for this again is because of the steric effects of the MnC04 onto the adjacent

phenyl group. Because of the repulsion between the two groups mentioned above, the

C6-C2 1 bond is lengthened to maximize the distance between the two electron rich bulky

groups systems. The Mn-C and the C0 bonds in the MnCO4 group do not show

significant variations from those reported in earlier studies for similar compounds. The

bond length of C2- C6 is longer than that of C5-C7. This is because the phenyl ring

adjacent to the MnC04 is twisted out of plane at C21 and is no longer in conjugation

with the C2- C6 double bond. Because of resonance, the C2-C6 and C6- C21 bonds

lengths show more of a one and a half bond character.

Similarly, the bond angles C2- C6- C21 and CS- C7- C31 are 122.1° 2 and 130.4° 3

respectively.

The C2- C6- C21 angle is smaller when compared to the C5- C7- C31 angle again

because the MnC04 which is attached to C6 pushes away the adjacent phenyl group

maximizing the distance between the two groups which makes the angle C2- C6- C21

smaller when compared to the angle CS- C7- C31 . In short, it can be said that because

of steric reasons as a result of the presence of the MnC04 and the adjacent phenyl

group, the molecule has the shape it has and also explains why one phenyl group is

twisted out of plane when compared to the rest of the molecule.
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2.5 Conclusions

The current study demonstrates that only the pyranylMnCO3 product is formed when

cyclornanganated dienones, derived from cyclic ketones like 2-3, are reacted with alkynes

like phenylacetylene. Once the pyranylMnCO3 product is formed, it probably opens

under more forcing conditions but is not able to cyclise to form the 7-membered

oxocycloheptadienyl product. The alternative cyclisation to give the fulvene did not take

place as was anticipated. This is because of the inaccessibility of the bonding site for

cyclisation to a 7-membered ring. The current study further endorses the mechanisms

proposed in earlier studies
9,11

as has been discussed in this chapter.

When tetraenones were studied, no viable results were obtained. While some tetraenones

were successfully prepared in the laboratory, manganation of these tetraenones and any

further reactions did not prove productive and these therefore have little synthetic

potential at this stage.

The reaction of the manganated chalcones with alkynes like methyl propiolate provides a

means of producing pyranylMnCO3 complexes with the alkyne inserting in the reverse

maimer to that observed by TulIy5, This area can be developed into producing a new set

of compounds.
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Chapter 3

3.0 Application ofthe Principles of "Cascade" Reactions to

Cyclomanganated Compounds

3.1 Introduction

3.1.1 Definition:

Cascade reactions are multi-step reactions where one ring system forms after another

giving a multiple ring system in the final product. Cascade reactions provide valuable

strategies, especially for the construction of various carbo- and heterocyclic systems with

two or more annealated rings
.

The following reaction
2
Scheme 3. 1 is a simple example of a cascade reaction from an

enediyne X = Cl, Br, I resulting in 3 rings in the final product. The final step in the

reaction scheme involves j3-elimination loss of HPdX to give the 3-membered ring

product.

PdO

-HPdX

Scheme 3.1: The cyclisation of an enediyne X Cl, Br, I giving a tricyclic product2

±}D +PdO
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3.1.2 Different transition metals in cascade reactions

Transition metals have been widely used in a wide range of cyclisation reactions. This

use of transition metals in organic synthesis covers a large area and it is not possible to

discuss all the reactions. However, an effort has been made in this chapter to present

examples of some reactions that have used transition metals to synthesise bicyclic

compounds. The main reason for discussing reactions giving bicyclic products is that in

the current study, effort has been made to synthesise bicyclic compounds using

manganese. The use of methylmanganese carbonyl complex to synthesise

cyclopentanoids via eneyne cycloaddition in an earlier study by Lee et al.3 is discussed

later in the chapter and forms the basis of the current study. Some reactions related to the

current study, not necessarily cascade, have also been mentioned.

3.1.2.1 Palladium cascades

Palladium is amongst the most widely used metal in organic synthesis. Alkenes and

alkynes represent some of the most reactive groups towards palladium. An example of

the cyclic carbopalladation process performed by Zang and Negishi4 giving rise to a

bicyclic product is given by Scheme 3 .2a . The process involved in the reaction is

referred to as the "zipper" mode cascade. The term "zipper" refers to the manner in which

new bonds are formed and the way the cyclisation occurs. Scheme 3.2b shows

diagrammatically how the zipper mode cascade reaction occurs. Later in the chapter,

some similar terms like "spiro" mode cascade have also been used to indicate the manner

in which cyclisations occur to give the final products from their starting materials. The

final step in this reaction as for many cascades also involves 13-elimination, in this case

the loss of HSiMe3.
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3% PdPPh3

Et3N, MeCN

6%yed

Scheme 3.2a: Example of a "zipper" mode cascade resulting in a bicyclic product4

Scheme 3.2b: The diagrammatic representation of the "zipper mode" cascade

These reaction types are applicable to both alkynes and alkenes but reactions involving

alkenes are prone to f3-elimination and other side reactions. Scheme 3.3 gives an example

of the "spiro" mode cascade, readily applicable to only alkenes resulting in a tricyclic

compound
5,6

1% PdOAc2,

Ag2CO3, MeCN

Scheme 3.3: Example of a "Spiro" mode cascade resulting in a tricyclic product5'6

Overman6 and Shibasaki7a developed an asymmetrical cyclic Heck reaction in 1989.

These and other groups7b,7c7dl have since developed the reaction as a useful tool for

85%
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asymmetric synthesis of complex natural products. Scheme 3.4 gives a representative

example7e.

Note: E= CO2Et or CO2Me in this scheme and the other schemes that follow.

Scheme 3.4: Example of asymmetric synthesis of complex natural products

The work that was carried out by Grigg and Sridharan8 involved the heating of aryl iodide

with norbornene in boiling acetonitrile in the presence of 10 mol% palladium acetate, 20

mol% triphenyiphosphine and trimethylamine 2 mol to yield a single cyclopropanated

norbornene stereoisomer in 40% yield.

The work by Shibasaki and his group7 involved the synthesis of the cis-decalin derivative

having a chiral quarternary carbon. Their strategy involved enantiotopic group selective

ring closure of prochiral mono-cyclic compounds catalysed by a palladium catalyst with a

chiral ligand.

An example where the cyclopropylcarbinyl palladium species can undergo f3-

dehydropalladation rather than decarbopalladation to undergo ring expansion giving

cyclopropyl-alkenes4 is shown for the iodo reactant in Scheme 3.5.

x

X -2.5% Pda1IyICI]

S-BINAP, Nar 77-S6%

capnallane
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CaL FdPPh34

67- 78%

Scheme 3.5: Cyclopropylcarbinyl palladium species undergoing dehydropalladation giving cyclopropyl

alkene4

Similarly, Scheme 3.6 shows the formation of cyclopropanes via homoallylpalladium

derivatives9.

Cat. PdFPh34
.ff 4.]

AcO.._
base

70- 80%

Scheme 3.6: An example of the formation of a cyclopropane via a homoallylpalladium derivative9

Benzene derivatives can be synthesized via all-intramolecular processes. In most cases,

these are via cascade cyclisation as shown by the Scheme
372

Condition 2

67- 5% yield under both the conditions

E= CO2EI

Condition 1= 3% PdPPh54, I-JOAn, MoCN

Condition 2 3% PdPPh34, St3N, MeCN

Scheme 3.7: Synthesis of benzene derivatives via all-intramolecular processes2
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3.1.2.2 Iron

The iron-catalysed [4 + 4]ene cyclisation of trienes have been extensively studied as

well'0'
"

For example, the iron [4 + 4lene cyclisation has been successfully applied in the

synthesis of --mitsugashiwalactone and +-isoiridomyrmecin
12

--mitsugashiwalactone +-isoiridomyrrnecin

Scheme 3.8 shows how the reaction occurs from the starting materials.
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H:::::II::I_.. iron catakyst

Reagents: a 2 % 1-Id in aq. aceetone; b NaBH4/ EtOl-!; c 03/ CH3CI2I -78 °C
2. Ph3P; d PCCI CH2CI2 e CH30H,/ cat p-TsOH; f 1. 03/ CH,C12/ -78 °C,

2, NaBH4 g 1. LDAI THF/ -78 °C, 2. Mel! -100°C

Scheme 3.8: Synthesis of--mitsugashiwalactone and +-isoiridornyrmecin via iron [4 + 4] ene

cyclisation12 using a combination of Feacac3 and Et3AI as the catalyst.

d,g

c-d

Ia
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3.1.2.3 Nickel

An example of nickel-promoted cyclisation reaction is the cycloaddition of substituted

diynes with aldehydes'3 which takes place in the presence of nickelO-phosphine

catalysts to afford the corresponding bicyclic a-pyrones. Scheme 3.9 shows the general

equation of the reaction involved and the general mechanism via which the reaction

occurs.

10 mol % [NiCod,/2PCy3

THF,120°C,5h

= R1

=

Z= CH2"PrN

+ R2CHO

R2

NiO [

Scheme 3.9: Cycloaddition of substituted diynes with aldehydes in the presence of nickelO-phosphine

catalysts to afford the corresponding bicyclic c-pyrones'3

+ PrCHO

90% yield
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Montgomery et al.14carried out the nickel-catalysed alkynyl-enone cyclisation to prepare

a variety of heterocyclic ring systems as shown by Scheme 3.10. One of the products is

the same as the one obtained by Lee et al.3 using enynes and MeMnCO5 see scheme

3.17, section 3.1.2.7.

oH 1 BrCH2

HO ``
2Swem

3 Ph3PCH000H3

ZnMe2

NiCOD, 5-lOmol %

50% 57%

Scheme 3.10: An example of the nickel-catalysed alkynyl-enone cyclisation to prepare a variety of

heterocyclic ring systems'4

in scheme 3.10, alkylative cyclisation with NiCOD2 in the absence of

triphenyiphosphine employing dimethyizinc generated in situ from methyllithium and

zinc chloride led to single isomers of trisubstituted exocyclic alkenes with a cis

orientation between the carbonyl and the substituent derived from the organozinc reagent.

Reductive cyclisations with 1:4 NiCOD2: PPh3 employing commercial diethyizinc led

to the exomethylene cycloadduct.

3.1.2.4 Chromium and Molybdenum

Harvey et al.15carried out a range of cyclization reactions of molybdenum and chromium

carbene complexes. The reactions below were used to prepare bicyclic heterocycles using

an ether linkage between the alkyne and the alkene as shown by Schemes 3.11 and 3.12.

NiCQD, 5-10 mol %

PPh3, 20 niol %
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The structures of the molybdenum and chromium complexes a and b used in the

reactions given in the schemes are shown as part of scheme 3.11.

MoCO5

ROMe

a

CrCO5

ROMe

b

R

a orb benzene OMe

sealed vial/100°C

Scheme 3.11: Use of molybdenum and chromium carbene complexes to generate bicyclic heterocycles'5

a, benzene

sealed vial, 100°C

Scheme 3.12: Use of molybdenum and chromium carbene complexes to generate bicyclic heterocycles15

In the same study, the possibility of using an external alcohol rather than ether was also

investigated. Treatment of the alcohol for a little over 3 hours at 60 °C gave the

cyclopropanation product along with bicyclooctene product Scheme 3.13. The

mechanisms as proposed by Harvey et al.15 for the reactions are also given.
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a, benzene

60'C, 3.25 hi-s

MaO I
MoCO4 a-

OH

OMe

_Bu

LOH

Scheme 3.13: Using an alcohol to generate the cyclopropanation product along with bicyclooctene

product
15

3.L2.5 Tin

The work of Parsons et al.
16

demonstrated that aldehydes and a, fE-unsaturated ketones

can undergo radical cyclisation to form tetrahydrofurans, tetrahydopyrans, chromonols,

quinolines and related compounds on reaction with tributyltin hydroxide. An example is

the syntheses of bicyclic compounds as illustrated by the cyclisation of the cyclohexenyl

aldehyde Scheme 3.14 to give octahydrobenzofuran in a 73% yield.

BuSnN, AII3N
a

benzene, heat

HO

0

73% yield

Scheme 3.14: Cyclisation of the cyclohexenyl aldehyde to give octahydrobenzofuran1
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3.1.2.6 Titanium

Titanium complexes have received limited attention as catalysts for carbocyclisations.

One successful Ti-catalysed carbocyclisation using Cp2TiPMe32 is that of the 1,6- and

1,7-enynes in the presence of tert-butyldimethylsilyl cyanide17. The reaction gave

bicyclo[n.3.O] alkenones which serve as useful intermediates in the synthesis of a variety

of cyclopentane natural products.

3.1,2.7 Manganese

Cascade reactions are a little studied area in manganese chemistry although it is well

established in palladium chemistry. However, the treatment of alkyl- and aryl

manganese pentacarbonyl complexes with alkenes reportedly yielded butenolides and

cyclised compounds
IS

Hong et al.'9 synthesized [2,3]-fused bicyclic cyclopentadiene derivatives by the

cycloaddition reaction of diynes with methylmanganese pentacarbonyl. The study

involved the carbonylative MeMnCO5 mediated carbocyclisation of I ,6-diynes giving

[2,3] fused bicyclic cyclopentadiene derivatives as shown by Scheme 3.15.

1. Me3NO
CH3MnCO5

x.
M6

2. H20 x
OH

Scheme 3.15: The carbonylative MeMnCO5 mediated carbocyclisation of 1,6-diynes giving [2,3]-

fused bicyclic cyclopentadiene derivatives'9

The proposed reaction pathway for the cyclisation of the 1,6-diynes'9 is given by the

Scheme 3.16. It shows that treating 2 with Me3NO generates complex 2A which

coordinates to the free triple bond to form 2B. 2B then undergoes intramolecular
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cyclisation to give C , followed by the migration of the manganese carbonyls to afford D.

Demetaflation ofD via hydrolysis gives 3.

CHMnCO, M;HO

XKMn]

HO

X<H

Scheme 3.16: The proposed reaction pathway for the cyclisation of the 1,6-diynes'9 to give bicyclic

cyci opentadiene derivatives

Lee et al.3 attempted to use manganese compounds to search for a manganese-mediated

cyclisation of enynes. They carried out the transformation of enynes to cyclopropanated

bicyclic compounds and cyclopentanes bearing an exocyclic double bond general

scheme 3.17, where X 0, NTs, NBn.

CHMnCQ5

Et20 x

3A

+

Scheme 3.17: Manganese mediated transformation of enynes to cyclopropanated bicyclic compounds

and cyclopentanes bearing an exocycic double bond3

The MnC04 complex, 2 scheme 3.17, was prepared as a potential cascade precursor

by reacting the enynes 1 and CH3MnC05 in diethyl ether at room temperature for a

period of 3 days. Compound 2 scheme 3.17 was then dissolved in diethyl ether and the

2
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solution irradiated with a medium pressure mercury lamp UV for 1.5 hours in an effort

to initiate cyclisation of the manganated enone. This was then repeated in acetonitrile.

The solutions in both cases were then exposed in air. 3A was predominantly obtained

from the diethyl ether reaction and 3B predominantly from the acetonitrile reaction after

purification using PLC.

The most likely sequence involved to give the two products as proposed by Lee et cii. is

the loss of CO to give a 16-electron species, followed by coordination of the double bond

as an
2

ligand, subsequent intramolecular cyclisation and metal replacement to give A or

B as shown in the Scheme 3.18.

diethyl ether

2
-Co

HD

x

2 [
HD

Scheme 3.18: Proposed mechanism3 for the manganese-mediated transformation of enynes to

cyclopropanated bicyclic compounds and cyclopentanes bearing an exocyclic double bond13

]
H,O

0,0

0,
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The pathway to 3A may involve an intramolecular cyclisation followed by the formation

of 3-alkylmanganese hydride, the subsequent migration of the hydride and finally

demetallation to give A whereas the pathway to 3B may involve an intramolecular

cyclisation, cyclopropanation and finally demetallation to give B.

Table 1 shows the stereochemistry of the products 3A and 3B as deduced from the NMR

spectra.

When 3 -jrop-2-ynyloxyprop-1 -enylbenzene, 4 X=O, Scheme 3.19 was reacted with

CH3MnCO5, 5 X=O was obtained Scheme 3.19. Irradiation of 5 Scheme 3.19, in

diethyl ether gave predominantly 3A and 3B but in acetonitrile, decomposition products

as a result of bond cleavage at X 0 in this case of the starting enyne 1 were obtained

Scheme 3.19.

CH,MnCO5 XcO4

Ph

X=O

Scheme 3.19: Products obtained as result of reacting 3-prop-2-ynyloxyprop-1-enylbenzene with

CH3MnCO5 and subsequent U.V. irradiation in diethyl ether13
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Table I also shows the results obtained by Lee et al.3 using the two enynes which were to

be considered in the current study.

Table 1: Results obtained by Lee et al.3 for the enynes considered in the current study
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3.2 Aims of the present study

3,2.1 Mechanistic understanding in relation to solvent effects

One of the objectives of this section of work was to extend the earlier work by Lee and

his group and the work done at Waikato by Nicholson, B.K.'8 and his group. It was

anticipated that better mechanistic understanding of the cascade reactions presented

would be achieved and that further synthetic applications of the Lee et aL3 work could

also be worked out.

3,2.2 Methods of Activation

There has been no other reported method of activation apart from U.V. irradiation by Lae

et al.3 to initiate cyclisation of a cyclomanganated compounds involving an

intramolecular alkene. In the current study, the aim was to use heating, CH33N0 and

Li2PdC14 as methods of activation as previously used for other types of alkene coupling21.

In organometallic chemistry, CH33N0 is employed as a decarboxylation agent

according to the following stoichiometry.

MCO + CH33N0 + L MCO1L± CI-133N + CO2

The manganated enones were to be reacted with an alkene methyl acrylate and an

alkyne phenylacetylene to see if normal coupling products of the types previously

obtained21'22 were formed and if any intervention coupling, insertion and cylisation of

the alkene present in the manganated enone occurred to give some novel products.
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3.3 Results and Discussion

3.3.1 Reaction of 4-oxa-6-heptyn-1-ene with PhCH2MnCO5 in ether

Reaction of the 4-oxahept-1-en-6yne, 3-1 Scheme 3.20 with PhCH2MnCOs gave two

products. The first product was identified as the MnCO4 product, [5-propenyl-3-oxy-

1 -phenylpent-3-en-4y1-Kd-2-one-KOItetracarbonylmanganese 3-2, Scheme 3.20 and

3.22.

This MnCO4 product 3-2, scheme 3.20 and 3.22 was similar to the methyl analogue

2, scheme 3.17 of Lee et al.3 which they prepared using CH3MnCO5 and is similar to

the Hong et al. MnCO4 compound19 Scheme 3.15. The preparation of the

cyclomanganated compounds in the current study involved stirring the starting enyne

with PhCH2MnCO5 in ether, at room temperature and in dark, for 6 days. Similar

pentacarbonyl molybdenum and chromium complexes have also been prepared by

Harvey et al.15 .The second product isolated as a brownish yellow oil was identified as

the pyranylMnCO3 product 3-3, Scheme 3.20

+ PhCH,MdCO5

Diethyl ether RT in dark

6 days

o

Ph H2

OChMnr

Scheme 3.20: Reaction of 4-oxa-6-heptyn-1-ene with PhCH2MnCO5 in ether
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The products were characterized by IR, ESMS, HRMS and NIvJIR by comparison to

structurally similar compounds found in literature. Where possible, the structures of the

reference compounds are also given in the experimental section 3.5.

The pyranylMnCO3 product 3-3 was the alkyne-coupling product of the type

obtained in earlier studies
22,23

from the coupling of manganated chalcones with alkynes.

As the MnCO4 complex, 3-2 was formed in the reaction of 3-1 with PhCH2MnCO5, 3-

2 coupled with the starting alkyne 3-1 to give 3-3 Scheme 3.20.

The previously proposed mechanism23 Scheme 3.21 for the formation of the

pyranylMnCO3 complex analogous to 3-3 involves the initial insertion of the alkyne

3-1 into the Mn-C bond giving the intermediate i. Cyclisation by formation of a C-O

bond between the oxygen and the alkyne carbon next to the manganese comes about by

rearrangement of the it-electrons giving the cyclic intermediate ii. Coordination of the

full it system to Mn together with the loss of a carbonyl group results in the formation of

the pyranylMnCO3 complex iii.

t 6 dnys

-Co

iii

Scheme 3.21: The proposed mechanism23 for the formation of the pyranylMnCO3 complex 3-3

`i
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The IR spectrum of the MnCO3 complex in the u CO region showed the expected

three band pattern of lower frequency than that of the MnCO4 group. This was observed

for the pyranylMnCO3 complex at 2011 cm' vs and two overlapping bands at 1946

cni's, br. For the MnCO4 complex 3-2, the JR bands were observed at 2081 m,

1995 vs, and 1942 cm s. These observed JR bands for the yranylMnCO3

complex and for the MnCO4 complex were similar to those observed by TullylSa for

manganated chalcones and for the yranylMnCO3 complexes resulting from the

reactions of the manganated chalcones with alkynes like pheny! acetylene.

The `H NMIR and 13C NMR assignments used to characterize the MnCO4 3-2 and the

pyranylMnCO3 3-3 complexes are listed in section 3.5. The chemical shifts are

consistent with those observed by Tully'
8a

for the MnCO4 complexes manganated

chalcones and for the pyrany!MnCO3 complexes resulting from the reaction of

manganated chalcones with alkynes.

The 1H NMR and `3C NMR spectra of 3-2 are given after the NMR signal assignments in

section 3.5 to show the purity of 3-2 that was used for further reactions. When comparing

the `H NMR of the starting material 3-1 with the manganated product 3-2, there is a large

observed downward shift for the Hi in 3-1 which is H3 in 3-2 refer to numbering of the

structures in section 3.5. This is consistent with the `H NMR shifts observed by TullylSa

with the cyclomanganted chalcones. As for the `3C NMR spectrum, the MnC=O metal

carbonyl bands appear around 220 ppm for 3-2 typical for cyclomanganated

compounds22. The `H NMIR and the `3C NMIR spectra of pyranylMnCO3 complexes

are discussed later in the chapter.

3.3.2 Solvent effects

Irradiation of 3-2 with a medium pressure lamp U.V. in diethyl ether gave

predominantly 3-4 26.5% versus 51% Scheme 3.22. When 3-2 was irradiated with a

medium pressure mercury lamp in acetonitrile, predominantly 3-5 27% versus 54%
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Scheme 3.22 was obtained. Yields were lower then those reported by Lee et al.3 for the

MeMnCO5 alternative reaction.

_

Ph

PhCH2MnCO
Ph

ether. 6 d. d&k

Scheme 3.22: Reaction of the 4-oxa-6-heptyn-1-ene with PhCH2MnCO5 and subsequent irradiation of

3-2 with U.V. in diethyl ether and acetonitrile

The solvent effect is the reverse of that observed by Lee et al.3 using the methyl analogue

2, Scheme 3.17 of 3-2 derived from MeMnCO5. Only the diethyl ether product was

the cascade product and the product obtained in acetonitrile was because of a single

cyclisation. A possible route to two products alternative to the one proposed by Lee et

al.3 Scheme 3.18 is given in section 3.3.3 Scheme 3.24. Since no constructive data is

available to propose a definite mechanism, the proposed mechanism Scheme 3.24

seems like a viable alternative. The characterization of the two products involved the use

of IR, NMR, GC-MS, MicrOTOF and ESMS data.

The methyl analogues of these two products resulting from the photolysis experiments in

this study have been prepared by Lee et al.3 as discussed earlier in the chapter. They also

proposed the likely mechanism for the formation of their methyl analogues. While it is

likely that similar sequence of steps led to the formation of the products obtained in the

current study, it is unclear why the cascade product was obtained in diethyl ether while

the product because of a single cyclisation was obtained in acetonitrile, the reverse

solvent effect of that observed by Lee et al.3.

How exactly solvents determine the types of products formed has not been cited in

literature on similar sorts of study. However, both the solvents used in the current study

were aprotic with the acetonitrile being the more polar. The polar acetonitrile, for some

Et20

3-2
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reason appears not to allow the second cyclisation to give a bicyclic product as obtained

in diethyl ether. Acetonitrile is known to coordinate to metal centres like Mn and this

could replace a CO thus affecting the coupling chemistry at the metal centre24.

Acetonitrile has the potential to coordinate to the metal centres via nitrogen or via the

triple bond p1 electrons24. On the other hand, diethyl ether could also weakly coordinate

to Mn via the oxygen atom as well thus affecting its coordination chemistry in some other

way25. Irrespective of the solvent ligand effects, it is not clear at all why changing diethyl

ether for acetonitrile should reverse the preferred product for the benzyl vs methyl case.

For both the products 3-4 and 3-5 to form, a proton source is required after

demetallation, refer to mechanisms if the mechanisms proposed in this study, and as

proposed by Lee et at. are to be believed.

It was originally suggested by Woodgate et al.26, and later by Cooney2' that excess

alkene could be a source of proton in similar coupling reactions involving

cyclornanganated compounds with methyl acrylate. This followed the observation26

through the use of deutero-acetonitrile solvent, that solvent is not the source of proton.

The manganated enones considered in the current study do have an alkene present, so

these could be the source of proton intermolecularly in the final stages of the reactions. In

the same study Cooney21 also demonstrated in alkene coupling studies that acetonitrile

could insert into the carbon-manganese bond to form the imine which could hydrolyse to

give the ketone during work-up. Although no such acetonitrile insertion products were

observed here, this indicates the potential for effective coordination of acetonitrile to the

Mn centre which could have affected the product type observed in the solvent.

On the other hand, Lee et at. suggested that the protons are most likely coming from

water during work-up. This was confirmed by carrying out the demetalation in the

presence of D2O and finding deuterium at the a-methylene position to the ketone

Scheme 3.18, section 3.1.2.7. The two suggestions however need further investigation.
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3.3.2.1 ESMS and EI-GCMS studies of the compounds 3-4 and 3-5

The ESMS spectra of the two compounds, 3-4 and 3-5 Scheme 3.22 were identical as

shown by figures 1. Both the compounds showed [M+ Na] + and [2M+Na] + ions figure

1. This information was of little use in the characterization of the products. Similarly, the

EI-GCMS spectra figure 2 of the two compounds 3-4 and 3-5, scheme 3.22 gave a

strong signal at ni/z 91 and the parent ion at 216 figure 2. The rnlz peak at 125 was due

to the fragment resulting from the splitting EM- C7H902]. The signal for the fragment

C7H902 showing at 125 and the peak at 91 for C7H7. Similarly the signals at m!z 97 for

C6H90 and 118 for C9H100 are due to the fragmentation [M-C9H100]. Refer to the

fragmentation patterns shown in Scheme 3.23. These results are of little help in

distinguishing between the two compounds. However, there is a signal at 83 in one of the

EI-GCMS spectra as shown in figure 2. This signal could result from the products 3-4

and 3-5 fragmenting in the following alternative ways.

-PhCOCH2

Ph

If 3-5 fragmented to give the cyclic carbocation, not shown by experiment, it will not be

planar at C+ because of the fused 5-membered ring. This carbocation will be unstable so

may not be seen until it formed the second product with the double bond thus forming a

stable allyl cation.

The fragmentation of 3-4 is accompanied by a hydride transfer in which the 3-membered

ring opens with release of ring strain to form an allylic cation. For 3-4, fragmentation

3-4
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more likely to be present and seen in the EI-GCMS spectra of 3-4, the first spectra. The

possible EI-GCMS fragmentations of 3-4 and 3-5 are shown in Scheme 3.23.

Ph

3-4

m/z 216

mlz 125

m/z 97

+

[]
m/z 83

nih 125

+

[]
rn/z97

+

[]
m/z 83

1

+ PhCH2

mlz 91

+ PhCHCO

rn/zl 19

0

± PhCl-12C-CH2

mhz 133

± PhCH2

mlz 91

mJzl 19

+ PhCH2C-CH

rn/z 133

Scheme 3.23: The EI-GCMS fragmentation patterns of 3-4 and 3-5

3-5

rn1z216
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Figure 1 - ESMS of 3-4/3-5 at cone voltage +20 V in MeOH/NaOMe

,
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Figure 2- EI-GCMS of 3-4 and 3-5

3.3.2.2 I1 NM1 and `3C NMR spectra

The products were characterized using 1H NMR and `3C NIMR spectra Section 3.5. A

characteristic difference in the `H NMR of the two products was the missing alkene

signals between 5.0 ppm and 6.0 ppm in the product out of diethyl ether figure 3. These

signals were still present in the spectrum of the acetonitrile product at around 4.90 ppm

figure 5. Similarly, the `3C NMR signals for the alkene were present only in the

acetonitrile product 3-5 at 104.4 and 151.4 ppm figure 6 and not in the diethyl ether

product 3-4 figure 4.
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Figure 3- 1HNMR spectrum of 3-4 300 MHz, CDCI3
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Figure 4- 3C NMR spectrum of 3-4 300 MHz, CDCI3
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Figure 5- 1}j spectrum of 3-5 300 MHz, CDCI3

Figure 6- 13C NMR spectrum of 3-5 300 MHz, CDCI3

3-5

J
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3.3.3 Different methods of activation of the coupling reactions of intramolecular

alkene and the tetracarbonylmanganese complex 3-2

In six different experiments, 3-2 was stirred at ambient temperature in diethyl ether and

acetonitrile, heated in diethyl ether and acetonitrile, as well as stirred in the presence of

Li2PdC14 in both diethyl ether and acetonitrile at ambient temperature. All these

experiments were carried out in the dark. In another two separate experiments, 3-2 was

irradiated in tetrahydrofuran and dichioromethane.

No reaction occurred when 3-2 was heated in diethyl ether and acetonitrile in two

separate experiments. Similarly no reactions occurred when 3-2 was stirred in diethyl

ether and acetonitrile at room temperature in the presence of CH33N0 in another two

experiments. Trimethylamine oxide has the ability to oxidize metal-coordinated CO to

C02, releasing a metal coordination site for alkene or other 7t-donors'9.

1-lowever, stirring 3-2 in diethyl ether and acetonitrile in the presence of CI-133N0

followed by heating gave results similar to the U.V. irradiation experiments, i.e. 3-4 was

obtained in diethyl ether and 3-5 was obtained in acetonitrile. Several minor bands were

observed during PLC to separate the products and these bands were ignored and no

attempts were made to extract these. This was obvious from the very low yields obtained

for the main products. It was noted that most of the material put onto the base of the plate

PLC did not move and remained at the base. The use of CH33N0 therefore did not

promote any reactions until the reaction mixture was heated.

This probably means the MnCO3 complex similar to that suggested in an earlier study3

was only generated when the reaction mixture was irradiated with U.V. and heated in the

presence of CH33N0. Once the MnCO3 complex was generated, this coordinatively

unsaturated manganese complex could coordinate with the free double bond, followed by

cyclisations to give the two products. However, none of the intermediates has been

isolated and characterized to confirm the proposed mechanism.
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In diethyl ether, a second cyclisation occurs followed by protonation to give the final

cascade product 3-4. In acetonitrile, an intramolecular hydride migration is involved

followed by protonation to give the final product 3-5. Possible routes to the two

products can be proposed Scheme 3.24. This mechanism is simpler to that of Lee et au.

However, for the formation of 3-5, a Mn-H intermediate is involved for the transfer of

hydrogen in the mechanism proposed by Lee et al.3 where as in our proposed

mechanism, it is a 1,2-hydride shift to an electrophilic carbon is involved reaction

labeled ii for acetonitrile solvent. There is nothing in either mechanism to explain the

solvent effect.
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Scheme 3.24: The proposed mechanism for the formation of 3-4 and 3-5

Stirring 3-2 in diethyl ether and acetonitrile in the presence of Li2PdC14 gave products

that could not be isolated in the pure form and fully characterized. TLC showed multiple

spots and muItipe bands were seen on the PLC. Extracting some of these bands gave

very minor amounts and insufficient for further characterization. No reactions were

3-5

3-2

orhv

1-

3-4
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observed when 3-2 was irradiated in tetrahydrofuran and dichioromethane in two separate

experiments..

3.3.4 Attempted coupling reactions of the MnCO4 complex 3-2 with external

alkenes and alkynes

3-2 was reacted with phenylacetylene in nitrogen-saturated carbon tetrachioride and

benzene. The reaction in refluxing CC14 did not afford any dominant products. TLC of

the reaction mixture showed multiple spots so the reaction was abandoned.

The reaction of 3-2 in refluxing benzene afforded one major product. Light orange

crystals obtained by recrystallisation from dichlorornethane and pentane by vapour

diffusion were analysed by IR, NMR and elemental analysis. The product was identified

as the pyranylMnCO3 complex 3-6 as shown below and in section 3.5, similar to

those obtained by Tully22 in his reactions of manganated chalcones with phenylacetylene.

PhFH2 i
102

Ph

OC3

The pyranylMnC03 was easily distinguished from that of from tetracarbonyl 3-2 by

having distinct JR bands at around 2010 vs, metal carbonyl as observed by Tu11y22.

Similarly both these compounds 3-3 shown below, i.e. the tricarbonyl product formed

from the reaction of 3-2 and the starting enyne 3-1 and 3-6 had 1H NMR signals between

5.0 and 5.7 ppm for H3 and H5 refer to numbering of the structures in section 3.5. The

`3c NMR signals were present at between 80 and 90 ppm for C3 and CS at around 95

ppm for C2, C4, and C6 again refer to compound numbering in section 3.5. These NMR
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signals are consistent with those observed by Tull?2 for pyranylMriCO3 complexes

obtained by the reactions of manganated chalcones with phenyl acetylene. This suggests

that the alkyne inserted in the same way as it did for Tu11y22 compounds, i.e., the bulkier

Ph group going closer to the 0 in the pyranyl ring. This also suggested that the alkene

present within 3-2 does not take part in any intramolecular reaction when an external

alkyne was present in the reaction mixture.

4"

2"
PhH2

1 o--.J

6N2 110

5r
OC3Mn35

3-3

Reaction of 3-2 with methyl acrylate in refluxing carbon tetrachioride gave one main

product in a very small amount. The ESMS spectrum figure 7 of this main fraction

suggested that 3-7, the arylalkane analogue from an earlier study21 was formed. The 1H

NMR spectrum also supported that 3-7 was the most likely compound that was formed. A

reasonable 1H NMR was obtained but a clean `3C NIMIR spectra could not be obtained

with the quantity available. The product therefore could not be fully characterized.

However, the intramolecular alkene appeared not to have been involved in any coupling

reaction at the Mn centre. Various other minor bands on the plate were ignored.

0CM3

3-7
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Figure 7: ESMS Spectrum of 3.7 in MeOH/NaOMe, CV +20 Volts

3.4 Reactions of the second enyrie 3-prop-2-ynyloxyprop-1-enylbenzene with

PhCH2MnCO5 and the subsequent irradiation of the product formed

Reaction of 3-prop-2-ynyloxyprop-1-enylbenzene 1, Scheme 3.25 with

PhCH2MnCO5 in the same way as 4-oxa-6-heptyn-1-ene gave the manganated product

2 Scheme 3.25. The rnanganated precursor, 2, Scheme 3.25 was isolated in very low

yields and could not be fully purified even after repeated plating. When the unpurified

manganated enone 2 was irradiated in diethyl ether and acetonitrile and the reaction

mixture worked up as before, no cascade products were isolated.

However, one major product was isolated. `H NMR studies of the product showed that

the demetallated 3 Scheme 3.25 had formed. This reaction was abandoned as no

cascade products were isolated.

PhCH2MnCO,
OCO

liv

Ph

ethetr,, 6 days

Fh

ether oH,CN

Scheme 3.25: Reaction of 3-prop-2-ynyloxyprop-1-enylbenzene with PhCH2MiiCO5 and subsequent

irradiation with U.V.

89



Attempts were also made to manganate propargyl acrylate in the same way as the

manganation of 3-1. A reasonably pure sample of the rnanganated product 3-8 was

obtained as was seen from its `H NMR and `3C NIvIR spectra refer to section 3.5.

However, attempts to carry out further reactions with the manganated product, including

UN. irradiation experiments in diethyl ether and acetontrile were not successful. This

section of work was therefore abandoned as well.

Harvey et al.15 successfully prepared bicyclic heterocycles from esters of this type in

yields of around 24%. The reactions involved treating esters like the propargyl acrylate

with a molybdenum complex in benzene at 100 °C in a sealed vial for 15 hours refer to

Scheme 3.11. The success of the propargyl acrylate reaction in this study would have

given an alternative method of preparing compounds similar to those prepared by Harvey

et al.
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3.5 Experimental

Note: The 1H NM1R and `3C NMR spectral assignments of the compounds in this section

were made by comparisons with available literature data of closely related compounds.

References are noted with each set ofNMR data listed for the individual compounds and

the literature values are given in italics, next to current assignements. Wherever possible,

the structures of compounds used from literature to assign NMIR signals of compounds in

this study are also depicted with signals annotated for clarity. This has only been done for

compounds that required only one literature compound to fully assign the NMR signals.

3.5.1 Preparation of 4-oxahept-1 -en-6-yne 3-1

To 3-bromo-1-propene ally! bromide 400 mg, 0.033 mol, 2.90 rnL was added prop-2-

yn-1-ol propargyl alcohol 236 ing, 0.0420 mol, 2.48 mL, and the mixture was cooled

in ice-bath. The mixture was removed from the ice-bath and KOH 10.4 mL, 4 mol L'

was added slowly over a period of about 15 minutes. During this time, the mixture was

heated slowly. It was then heated for 4 hours at 70 °C. The mixture was then cooled, the

oily layer decanted and washed with water twice. The oily layer was then dried over

MgSO4to give almost pure 3-1 as seen from NMR spectra.

,7
HO/%

7O2 h i

Br
3-1

1H NMR15: 300 MHz, CDCI3 ö2.42, 2.42 1H, t, J=2.2Hz, Hi, 4.04, 4.06 2H, d, =

5.7Hz, I-IS, 4.13, 4.14 2H, d, J=2.2Hz, H3, 5.21, 5,21 11-I, d, J= 10.3Hz, H7, 5.31,

5.30 1H, d, J 17.1, H7, 5.88, 5.89 lH, m, H6

13C NJv1R1: 300 MHz, CDC13 ö57.8, 57.0 C3, 71.0, 70.5 CS, 73.6, 74.3 Cl, 78.8,

79.6C2, 117.4,117.9 C6, 133.9, 133.8C5

91



3,5.2 Manganation of 4-oxahept-1-.en-6-yne 3-1

4-oxahept-1-en-6-yne 100 mg, 1.04 rnmol and PhCH2MnCOs 358 mg, 1.25 mmol

were added to a 100 mL Schienk flask under nitrogen. The mixture was then dissolved in

diethyl ether and stirred under nitrogen in dark over a period of 5 days. During this time,

the reaction mixture turned yellow and a brown solid precipitated. The reaction mixture

was filtered to remove the solid. The ether was then removed under vacuum rotary

evaporator and the residue, a yellow oil 150 mg, chrornatographed PLC, 1:1

dichloromethane:ether to yield two major bands at Rf 0.8 and 0.2 . The bands were

removed, extracted with dichloromethane and the solvent was removed under vacuum.

The first fraction at Rf 0.8, obtained as a yellow oil, was identified as the manganated [5-

propenyl-3 -oxy- 1 -phenylpent-3-en-4y1-icd-2-one-KO tetracarbonylmanganese 3-2, 40

mg, 10.1 %. The `H NMR and `3C NMR spectra of 3-2 are also reproduced after the list

ofNMR signal assignments below.

Ph II2

JR22 ether 2081, 2082m, 1995, 1997vs, 1942, 1942 crn1 s Note: The IR values for

metal carbonyl bands differ slightly for MnCO4 complexes like manganated enones but

are normally always close to the listed values here.

ESMS: MeOHINaOMe, cone + 20 V mlz 405 100%, [M+Na], 382.6 50%., [M]
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`H NMIR'6'22: 300 MHz, CDCI3 3.88, 4.09 2H, s, H5, 4.12, 4.14 2H, d, H7, 4.96,

2.30 CH3 2H, s, Hi, 5.23, 536 2H, dd, H9, 5.96, 5.80 1H, m, H8, 7.33 6H, m, all

Ar-H, H3

`3C NMR'6'2: 300 MIHz, CDC13 213.0-219.0, 213.0-219.0 4MnC=O, 210.0,

204.0C2,j34.8, 134.8C3, 131.0, 130.1 C8, 127.0-129.0 all Ar-C, 117.6, 117.5

C9, 79.8, 71. 7 C5, 72.0, 68.6 C7, 47.0 -COQPh, 27.2- CH3 Cl.

Ci ii 0 tt* in - in at in Cu 0 at = at N. a, . N. n.J 0 Cu N. -. `.1 to .-. Cu if CC 0 N- In F-u a, Cit F'i Cu C a, Cu fl.i if in N. .. Cu 10CU 0 Cu CC .-. ii a Ci n.j 0 N. to aj .-. to r- - I-. OF iCu Cu = = CC ru -IT a, 0 CC 0 CC Cu 0 CII CCI 0 Tn C CCI n.j to U-, NJ C F- iF- N. toC Cu 0 Ui Tn to CC to F-i 0 0 . NJ 01 - Cu F-U 0 Cu N iF- 0 F- N. Cu 0 10 Cu to C Cu Cu 0 Tn Ci fl Cu - to C NJ Cu In - 10 . CC
Cu Cu n.J 0 0 0 10 If 01 Ci C n.J 0 01 0 01 iF- NJ in Ui In Cli . 0 If UI flu CU in 10 CU .- Cu Cu CO PD F-ti PU -. . Cu in to CU n.JTnTnrruC,j.-, 0001 CnrCCncCIrlmciiCtiCUT'uoa,Ci -`-.- CCCCNJ

N-N-NJ N.r-F..NJF-L N. N. N. tO 10 ID i itt if In In In If UF In In Il In in in Ill In If In Cu Cu IT Cu Cu Cu Cu Cu Cu Cu Cu Cu CCI PD rFi in

/

I

I

1/

I

___ __--L

.

CIrn

-.t---n-- IrcC

6,. tiE

1H NMR spectrum of 3-2
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Br*PrODGIL Ic IRrodu_t after Second CIftfnCj to COCIS

l3
NMIR spectrum of 3-2

The second fraction at Rf 0.2, obtained as a light brownish-yellow oil, was identified as

3-3 50 mg, 10.6%.

PhçH2
i

602 11

5[Jr
OC3MnJ3

5

3-3

JR ether 201 1vs, 1946s cm', MnCO.

ESMS: MeOHINaOMe, cone + 20 V, m/z 473.0 100%, [M+Naf, 921.7 50%,

[2M±Na]; MeOHINaOMe, cone - 20V, m/z 449.0 100%, [M-H]

0

..

-I,-
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1H NMR'6'
22.

300 MHz, CDCI3 5 4.03, 4.00- 4.09 4H, m, 113', 3" 4.17, 4.14- 4.22

4H, s, Hi', Hi", 4.74, 2.31CH3 2H, s, HI", 5.87, 5.63211, s, 113, H5, 5.34, 5.19-

5.36 2x2H, m, H5', 5", 6.10,5.8-6.0 2x 1H, m, 114', H4", 7.29-7.39, m, all Ar-H

3C NMR16'22: 300 MHz,CDC13 535.9,27.2 CH3 Ci", 70.9, 69.4, 68.6 Cl', CI",

71.8, 72.1, 71.7 C3', C3", 80.6, 80.6C3, 81.2, 80.6 CS, 91.8, 94.6 C4, 94.4, 94.6

C2, C6, 117.5, 1]7.5C5', C5", 134.4, 134.0C4', C4", 125.0-129.0 all Ar-C, 222.0,

221.9 MnCO3.

HRMS for C23H23O6Mnt'Ja Calculated: 473.0753

Found: 473.0716

3.5.3 Irradiation of [5-Propenyl-3-oxy-1-phenylpent-3-en-4y1-Kd-2-one-,cO]

tetracarbonylmanganese 3-2 in Ether

3-2 87 mg, 0.23 mrnol was dissolved in diethyl ether 30 mL and the solution was

irradiated with medium pressure mercury lamp for 1.5 h. The reaction mixture was then

exposed to air. The solution turned brown and a brown precipitate formed. After filtration

of the brown precipitate, the diethyl ether was removed under vacuum rotary evaporator

and the residue, a colourless oil, was chromatographed PLC, hexane: ether, 1:1 to give

one major band at Rf 0.7. Removal and extraction of the band with dichloromethane

followed by solvent removal under vacuum gave 3-4 as colourless oil 13 mg, 26.5%.

Similarly 3-2 125 rng, 0.33 mrnol was dissolved in diethyl ether. Trimethylamine oxide

24 mg, 0.33 nrniol was added to the reaction mixture which was stirred for 2 h. The

reaction was monitored by JR and TLC. No obvious reaction occurred during this time

but the colour of the reaction mixture turned orange. The reaction mixture was then

heated slowly and then heated to reflux for about 1.5 h. The reaction mixture was then

exposed to air. The solution turned brown and a brown precipitate formed. After filtration

of the brown precipitate, the diethyl ether was removed under vacuum and the residue, a

colourless oil, was chromatographed PLC, hexane: ether, 1:1 to give one major band at
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Rf 0.7. Removal and extraction of the band with dichioromethane followed by solvent

removal under vacuum gave 3-4 as a colourless oil 16 mg, 25.5%. It is noted here that a

substantial amount of material remained immobile at the base of the plate.

1

I
_l4 ö

2 3

3-4

Note: The diagram below is the reference compound15 for 1H NMR and `3C N1vIR

assignments for compound 3-4.

2.63, 2.76

/442

CH3 216

1' 50.3

0.53. 0.69

13.0

207.2

IR CH2C12: 1718 cm CO

ESMS: MeOI-I/NaOMe, cone +20V mlz 239.1 100%, [M+Nafl, 455.3

[2M+Naf'

3'

3.51 22,8

72.5

50%,
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`H NIVIR'5: 300 MHz, CDC13 50.53, 0.69, 0.59, 0.69 2H, dd, H4, 1.36, 1.37 IH, m,

H3, 2.63, 2.59 1H, d, J 17Hz, Hi' 2.76,2.76111, d, J= 17Hz, Hi', 3.51, 3.52111, d,

.J8.OHz, H2 3.77, 2.16-Cf!3 2H, s, 113' 3.79, 3.78 2H, s, 116 3.90, 3.89 1H, d, J

8.0Hz, H2, 7.19-7.38 5H, m, all Ar-H.

13C NMIR5: 300 MHz, CDCI3 813.0, 13.0 C4, 22.8, 22.8 C3, 24.7, 24.7 C5, 44.2,

46.11', 50.3, 50.3 C3', 69.6, 69.5 C6, 72.5, 72.5 C2, 127.2-133.9 all Ar-C, 206.7,

207.2C2'

HRMS for C14H16O2Na Calculated: 239.1043

Found: 239.1045

3.5.4 Irradiation of [5-Propenyl-3-oxy-1-phenylpent-3-en-4y1-,cd-2-one-KO]

tetracarbonylmanganese 3-2 in Acetonitrile

3-2 66 mg, 0.17 mmol was dissolved in acetonitrile 30 mL and the solution was

irradiated with medium pressure mercury lamp for 1.5 h. The solution was then exposed

to air. The solution turned brown and a precipitate formed when the solution was exposed

to air. After filtration of the precipitate, the acetonitrile was removed under vacuum and

the residue, a colourless oil was chromatographed PLC, hexane: ether, 1:1 to give one

major band at Rf 0.8. Removal and extraction of the band with dichioromethane followed

by solvent removal under vacuum gave 3-5 as a colourless oil 10mg, 27.0%.

Similarly 3-2 100 mg, 0.26 mmol was dissolved in acetonitrile. Trimethylamine oxide

19.6 mg, 0.26 mmol was added to the reaction mixture and stirred for 2 h. The reaction

was monitored by IR and TLC. No reaction occurred during this time but reaction

mixture turned slightly orange. The reaction mixture was then heated slowly and then

heated to reflux for about 1.5 h. The reaction mixture was then exposed to air. The

solution turned brown and a precipitate formed when the solution was exposed to air.

After filtration of the precipitate, the diethyl ether was removed under vacuum and the
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residue, a colourless oil was chromatographed PLC, hexane: ether, 1:1 to give one

major band at R10.8. Removal and extraction of the band with dichioromethane followed

by solvent removal under vacuum gave 3-5 as a colourless oil 13 mg, 23.2%. It is noted

here that a substantial amount of material remained immobile at the base of the plate.

Note: The diagram below is the reference compound14 for `H NMR and 13C NMR

assignments for compound 3-5.

2.55

1

2.16

50.3

207, I

IR CH2CI2: 1718 cm1 GO

ESMS: MeOH/NaOMe, cone + 20 V mlz 239.1 100%, [M+NaJ", 455.3 50%,

[2M+Naf

4,29 3,OS

2
4.11

71.2

I"
4.89. 4,90

104.0
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`H NMR14: 300 MHz, CDCI3 82.58,2.55 1H, dd, 1=17Hz, 9Hz, Hi', 2.77, 2.73 1H,

dd, J 18Hz, 6Hz, Hi', 3.08, 3.08 IH, in, H4, 3.70 2H, s, H3' 4.27, 4.29 2H, m,

H5, 4.11, 4.11 2H, d, H2, 4.85, 4.89 1H, dd, 1=2.1Hz, Hi", 4.92, 4.90 III, q,

J2.lHz, Hi" 7.19-7.36 m, all Ar-H.

13C NMR'4: 300 MHz, CDC13 639.2, 38.8C4, 45.4, 46.7 Cl', 50.7 C3', 74.3, 74.0

CS, 71.5, 71.2 C2, 127.0-134.0 all Ar-C, 104.4, 104.0 Cl" 151.4, 151.1 C3,

207.0, 2071 C2',

HRJVIS for C14H16O2Na1 Calculated: 239.1043

Found: 239.1056

3.5.4 Reaction of I5-Propeny1-3-oxy-1-phenyIpent-3-en-4yI-,cd-2-one-'cO

tetracarbonylmanganese 3-2 with Phenylacetylene in Benzene

3-2 110 nig, 0.29 mrnol and phenylacetylene 90 mg, 0.88 mmol were dissolved in

nitrogen-saturated benzene and the solution was refluxed for 4 h. Benzene was removed

under vacuum and the residue, a yellow-orange oil was chromatographed PLC,

ether:hexane, 1:2 to give one major yellow-orange band at Rf 0.8. Removal and

extraction of the band with dichloromethane followed by solvent removal under vacuum

gave a yellow-orange oil. The oil was erystallised by solvent diffusion dichloromethane,

pentane to give 3-6 as yellow-orange crystals 40 mg, 30.8%

I',
Phd-I2
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JR benzene 2008 MnCO, 1816 C-O-C cm'4

ESMS MeOHJNaOMe, cone + 20 V m/z 479 100%, [M+Na]"; MeOH/NaOMe, cone

- 20V rn/i 455 100%, [M-Hf

`HNMR'6'22: 300 MHz,CDC13 S 4.29, 4,14-4.22 2H, m, 113', 4.18, 4.14-4.22 2H, s,

Hi', 4.74, 2.30 CH3 2H, s, Hi", 5.09, 5.00-5.60 2H, s, H3, 5, 5.37, 5.19- 5.36

2H,m, ES', 6.02, 5.8 6.0 m, 1H, H4', 7.28 7.35 IOH, rn, all Ar H.

`3CNMR'22: 300 MHz, CDCI3 840.2,27.2 C113 Cl", 71.2, 68.6Ci', 72.7, 71.7

C3', 81.4, 80.8 C3, 82.7, 80.8 CS, 94.0, 94.9 C6, 95.2, 95.1 C2, 104.2, 98.0C4,

130.0, 130.1 C4'118.O, 117.5 CS", 123-136.0 all Ar-C, 222.0, 221.9 MnCO3

Elemental analysis: Calculated for C24H21O5Mn C, 65.94%; H, 4.42%

Found C, 65.52% H, 4.90%

3.5.5 Reaction of L5-PropenyI-3-oxy-1-phcny1pent-3-en-4yl-,cC'-2-one-,cO

tetracarbonylmanganese 3-2 with methyl acrybte in acetonitrile

3-2 95 mg, 0.25 mmol and methyl acrylate 84 jil, 0.75 mmol were dissolved in

nitrogen-saturated acetonitriie and the solution was refluxed for I h. Acetonitrile was

removed under vacuum and the residue, a colourless oil was chromatographed PLC,

ether:petroleum spirits, 1:1, bp 60-80 °C to give one major colourless band at R 0.7.

Several other minor bands were ignored. Removal and extraction of the band with

dichloromethane followed by solvent removal under vacuum gave a colourless oil

tentatively assigned by `H NMR as 3-7 10 mg, 13%.
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dichioroniethane followed by solvent removal under vacuum gave a colourless oil

tentatively assigned by `H NMR as 3-7 10mg, 13%.

JR acetonitrile 1712 CO, 1737 cm1 COOMe

ESMS MeOHINaOMe, cone + 20 V m/z 325.0 J00%, [M-I-Na}.

`H NTVIR'5'21 300 MHz,CDCI3 5 7.20- 7.40 51-T, all Ar-H, 6.8 1H, s, H3, 5.82 IH, s,

H7, 5.26 2H, m, H8, 3.92 s, 211, 115, 3.72 2H, d, 116, 3.71 311, s, OCH3, 3.44 2H,

t, H2', 3.38 t, 21-1,113', 2.80 2H, s, Hi.

13C NMR'6' 21300 MHz, CDCI3 A strong and clean enough `3CNMIR spectrum could

not be obtained. While impurity signals made assignments difficult, carbon signals were

not strong enough.

3.5.6 Manganation of propargyl acrylate

Propargyl acrylate 100 mg, 0.91 mmol and PhCH2MnCOj 312 rng,1.09 mrnol were

added to a lOOm! schienk flask under nitrogen. The mixture was then dissolved in diethyl

ether and stirred under nitrogen in dark over a period of 5 days. During this time, the

reaction mixture turned yellow. It was filtered to remove the brown solid that had formed.

The ether was then removed under vacuum rotary evaporator and the residue, a yellow

oil 70 mg chromatographed PLC, 1:1 dichloromethane:ether to yield one major band

at Rf 0.8 . The band was then removed, extracted with dichloromethane and the solvent

2

3 S

7

6

3.7
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was removed under vacuum. The main fraction at R1 0.8, obtained as a yellow oil, was

identified as the mariganated species 3-8 0.04 1 g, 11.4% by NMR spectroscopy.

P HZ

`H NMR'6'
22
300 MIFIz, Cod3 6 5.60, 4.09 2H, s, H5, 3.87, 2.30 CH3 2H, s, Hi,

5.88, 5.36 2H, dd, H9,6.19, 5.36 1H, m, H9, 6.45, 5.80 IH, m, H8, 7.01- 7.53 6H,

m, all Ar-H, H3

`3C NIvIR'6'
22

300 MHz, CDCI3 6 212.7-219.1, 213.0-219.0 MnCO, 209.5,

204.0C2, 165.4 C7, 134.2, 134C3, 132.4, 130.1 C8, 128.0-132.0 all Ar-C, 127.4,

117.5 C9, 76.6, 77.7 C5, 72.0, 68.6C7, 46.7, 27.2- Cl!3 Cl.
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3.7 Conclusions

The current study demonstrated that enynes can be used to prepare cyclopropanated

bicyclic compounds and cyclopentanes bearing an exocyclic double bond using

benzylmanganese pentacarbonyl mediated transformations. This is similar to what was

observed by Lee et al.3 using MeMnCO5. The study however did not give yields of

products comparable to those observed by Lee et al.3. Our yields were much lower and

the products were reversed, i.e. the Lee methyl analogue in ether was obtained in

acetonitrile and the acetonitrile analogue was obtained in ether.

When compared to our yields, much better yields of similar products were obtained by

Harvey et al.'5, Montgomery et a!4 and by Parson'6 and his team. They used different

methods to synthesize products similar to Lees3 and to those synthesized in this study.

It is difficult at this stage to say how good the manganese method is for the synthesis of

the types of compounds considered in the current study, as not much comparable data is

available apart from the ones already discussed. The yields in the current study were low

and the reagents used for synthesis were expensive

In the current study, the major loss of products came via the large amounts of the brown

material that formed. The plating of the crude product to isolate our products was

certainly contributing to the loss of the desired products as noted by the large difference

in the masses of the crude product and the isolated product.

The study of the cyclomanganated complex 3-2 with phenylacetylene

gave the pyranylMnCO3 as observed in an earlier study by Tu11y12. The study showed

that the external alkyne preferentially reacts with the manganated 3-2 over the

intramolecular alkene. Similarly, the reaction of 3-2 with methyl acrylate gave the aryl

alkane analogue of Cooney's2' compound even though in only low yields. Again, the

intramolecular alkene was not involved in any cyclisation reactions.
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It seems likely that the generally expected efficiency of the intramolecular reaction did

not offset the intermolecular reaction possibly because of the constraints of achieving the

required transition state geometry for the intramolecular reaction.

Failure to repeat the Lee et al.3 work using MeMnCOs and the failure to generate any

results with the additional enynes tried in the current study puts a limit onto what

generalizations can confidently be made here. There is however scope for lot more work

in this area to establish the effects solvents have on product types, to determine accurate

reaction paths and to establish if the manganese method is of some real synthetic value.
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Chapter 4

4.0 Study aimed at di-inanganation and subsequent coupling

chemistry and new coupling substrates to provide bicyclic systems

ofthe non-fused-aromatic type.

4.1 Introduction

Considerable work has been done at Waikato on manganated arylcarbonyl compounds

that couple to form open chain and bicyclic derivatives of aryl ketones. This work was

extended to manganated non-aryl carbonyl compounds chalcones and dienones by

Tully'. The previous work done at Waikato, including that by Tully' has already been

discussed in some detail in Chapters one and two in this thesis. This work and the work

discussed below forms the basis of the studies in this chapter.

Robinson2 did some work on dimanganation involving manganation at aryl carbon only.

Discussed below in is some of the work done by Robinson2. The reaction of 1,3-

diacetylbenzene with PhCI-I2MriCOs gave the mono-manganated 1 and the

dimanganated 2.

2

Similarly, the reaction of I ,4-diacetylbenzene with PhCH2MnCO5 gave the mono

manganated 3 and the dimanganated 4 in a 2:1 ratio.
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CO4

As in the case of the 1 ,3-diacetylbenzene, only the less sterically crowded di-manganated

isomer was formed. The two reactions suggested that the acetyl groups were acting

independently of each other. In an earlier study, Bruce3 and his team studied the mono-

and dimanganation of azobenzene, which gave compounds 5 and 6.

MnCO4

They also demonstrated that 6 reacted with azobenzene to give 5 in high yield. This

demonstrated that there was an intermolecular transfer of the MnCO4 group. Robinson2

attempted to see if the same process occurred with the acetyl benzene. 2 was refluxed

with 1,3-diacetylbenzene in heptane. It was found that after 2.5 hours, 31% of 2

remained, 35% of I was present and 33% of the free ligand was consumed. This was

consistent with some MnCO4 transfer hut partial demetallation of 2 could not be ruled

out because of the low yields of the products. In the study by Robinson2 however, no

coupling reactions of the di-manganated products were reported.

H,

3
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In the study by Tully',when a 2:1 molar excess of PhCH2MnCO5 was used with 1,5-

diphenyl-3-2-pyridyflpentane-I ,5-dione, [1 ,5-dipehnyl-icC2 `-`cC2 -3-2-pyridylpentane-

1,5-dione-,c01- `cO']bistetracarbonylmanganese, 7 was formed in 15% yield.

9cct_9

MrgcO.

7

When the mole ratio of PhCI-I2MnCO5 was increased to 3:1, a third Inanganation

occurred giving 8, a trimanganated complex as well.

It appears likely that once the C2 carbon becomes manganated an orientation is reached

allowing a second manganese group to also become coordinated to the remaining oxygen.

Once the second manganation has occurred, 8 is produced when there is excess

PhCH2MnCO5 present.

Tully' also prepared similar compounds by replacing the phenyt groups with thienyl

groups. When 3-2-pyridyl- I ,5-di-3-thienylpentane- 1 ,5-dione was manganated,

compounds 9, 10 and 11 were formed.
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11

Tully1 however did not attempt any coupling reactions of the di-manganated and the tn

manganated products in his study.
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4.2 Aims ofthe current study

4.2.1 Study aimed at di-manganation and subsequent coupling chemistry

Di-manganated products with metals at remote sites are known but there has been

little systematic study of substrates designed to encourage manganation at closely

neighbouring centres apart from the work of Robinson2 at Waikato involving

manganation at aryl carbon only. In the current study, some possible new substrates were

to be tried for the di-manganation and the work extended to subsequent coupling

chemistry in an effort to produce some novel compounds.

4.2.2 New coupling substrates to provide bicyclic systems of the non-fused aromatic

type

Considerable work has been done at Waikato on manganated arylcarbonyl compounds

that couple to form open chain and bicyclic derivatives of aryl ketones. Tully' extended

the work to manganated non-aryl compounds chalcones and dienones: However a host

of structurally different compounds of the non-aryl type remain unstudied and have

considerable potential for organic synthesis by coupling. Some new substrates of the non

aryl type were to be considered for manganation and for subsequent coupling reactions

with alkynes arid alkenes in this study. It was anticipated that this would provide an

understanding of the reactivity differences of these sorts of compounds in their coupling

chemistry with alkynes and alkenes. It was also anticipated that if this area turned out to

be as productive as it has been in the aromatic area, it would lead to valuable new

synthetic methodology.
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4.3 Results and Discussion

4.3.1 Diinanganation and subsequent coupling chemistry

4.3.1.1 Manganation of dibenzoykyclopropane

When trans-dibenzoylcyclopropane and PhCH2MnCO5 1:3 were refluxed in hexane

for 8 hours, two products were isolated when the residue was plated. The first fraction

having R1 value of 0.8 was identified as the di-manganated product 4-2 21.7 % and the

second fraction at R of 0.6 was identified as the mono-manganated product 4-3 11.5

%. The figure below shows the structures of 4-2 and 4-3.

Figure 4-1: Structures of compounds 4-2 and 4-3.

The products were characterized by IR, ESMS, and NMR. The crystal structure of 4-2

was also determined. The JR of the di-manganated and the niono-inanganated products 4-

2 and 4-3 showed the usual' metal carbonyl pattern with signals at around 2080 in, 1 990

s, 1930 s cm4 as shown by the figure 4-2.

4-2
4-3
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Figure 4-2: Infrared spectrum showing the metal carbonyl region of 4-2 and 4-3

The `H NMR and the `3C NMR data also supported the structures of 4-2 and 4-3 in

particular with the usual metal carbonyl signals at around 220 ppm. The crystal structure

of 4-2 is discussed in detail in section 4.5.

Initially, when a 2:1 molar excess of PhCH2MnCO5 was used, the di-manganated and

the niono-manganated products formed in the ratios as already stated. When the molar

ratio of PhCH2MnCO5 to trans-i ,2-dibenzoylcyclopropane was increased to as much as

4:1, the ratios of the products did not change much. This was done in an attempt to get

more of the di-manganated product to form. Instead, lots of the PhCH2MnCO5

remained and the products formed started to decompose when the reaction times were

increased.
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4.3.1.2 Further reactions of the di-manganated 4-2 and the mono-manganateci 4-

3 products

The di-manganated product 4-2 and the mono-manganated product 4-3 were reacted

with alkynes like phenylacetylene and diphenylacetylene"4, alkenes like methyl acrylate4,

as well as dimethylacetylene dicarboxylate DMAD5, HgCI24, SO26, Id7 and 4-oxa-6-

heptyn-1 -ene amongst others. These reactions were carried out in an effort to see if the

usual products obtained in earlier studies at Waikato or some other novel products were

obtained. Decomposition of the starting mateials was noted in most of these reactions.

The reaction of both, 4-2 and 4-3 with 4-oxa-6-heptyn-1-ene was carried out to see if the

presence of both, an alkyne and an alkene in the same molecule influenced the types of

products formed as well as on the ratio of the products that formed. Most of the reactions

in this section of work were repeated several times and different solvents were tried. This

was done in an effort to confirm the preliminary results obtained in the reactions, many of

which looked promising. The difficulty however was with the isolation of the products in

their pure form. Once the products appeared reasonably pure, attempts to crystallize them

led to their decomposition. Apart from getting lots of reasonable JR and ESMS data, no

further data like NMR and elemental analysis could be obtained.

However, when the mono-manganated product 4-3 was reacted with DMAD in CH3CN,

the indenol product 4-4, section 4,4 was obtained. The product was similar to those

obtained by Depree5 with reactions of DMAD with manganated compounds like 2-2-

benzoylphenyl-tetracarbonylmanganese.

This product 4-4 was characterized by IR, NMR, ESMS and HRMS. No elemental

analysis data was obtained. The IR, NMR, ESMS and the HRMS data are listed in section

4-4. The proposed general mechanism5 for the formation of indenols is given below

Scheme 4.1. The steps involved are firstly, the coordination of the alkyne to the Mn to

give A followed by a regiospecific migration of the aryl carbon to the nearest alkyne

carbon to form a seven-mernbered ring B. The indenol is presumably formed via the
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carbon to form a seven-membered ring B. The indenol is presumably formed via the

collapse of the seven-membered ring to generate a manganese alkoxide species C

followed by demetallation to give the final product.

MncO4
heat or

CH,1N0

Ht

MnCOb

RCCR

Scheme 4-1: The proposed genera! mechanism5 for the formation of indenols

I

B

C
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4.3.1.3 Cyclomanganation reactions of 5-methyl-3-hexen-2-one and 1-

acetylcycJohexene.

This section of work was intended to extend the work done earlier at Wailcato on

manganated aryl compounds and on non-arylcarbonyl compounds like chalcones and

dienones'. The intent was to work on more of the non-aryl carbonyl compounds

structurally different to those that have already been tried. For example, the 5-methyl-3-

hexen-2-one would be one of the methyl analogues of the chalcones that Tully' worked

on. It was hoped that a host of new compounds would be formed and would be of great

potential for organic synthesis using manganese.

5-methyl-3-hexen-2-one was reacted with PhCI-I2MnCO5 in both hexane and heptane in

an attempt to cycloinanganate it. While the IR spectrum showed that the

cyclomanganated 5-methyl-3-hexen-2-one was foned, it broke down as the reaction

proceeded. Attempts to chromatograph the residue gave one band. Removing the band

and extracting it with CH2CI2 gave a yellowish-grey oil. The oil was collected and NMR

was done of the oil both `H NMR and `3C NMR. A reasonable NMR spectrum of the

product could not be obtained. Attempts to crystallize the product by solvent diffusion

using different solvent combinations failed.

"One-pot" reactions of 5-methyl-3-hexen-2-one with PhCI-l2MnCO5 and alkynes and

alkenes were also attempted. This was attempted in an effort to use up the manganated

product as it formed and to see if the usual alkyne and alkene insertion products, as

observed in earlier studies'5 formed or some novel products fanned instead.

Reaction of 5-methyl-3-hexen-2-one and PhCH2MnCO5 in the presence of

phenylacetylene was carried out in Cd4. As the reaction proceeded at reflux, the metal

earbonyl JR bands for the PhCH2MnCO5 disappeared slowly and the metal carbonyl

bands for the pyranylMnCO3 appeared at 2012, 1947 and 1932 cm* These metal

carbonyl bands were consistent with those observed by Tully' for the pyranylMnCO3

complexes formed when manganated chalcones and dienones were reacted with a variety

of alkynes.
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The NMR data also supported this with 1}1 NMR signals at 5.02 ppm, a singlet for H5,

and at 4.30 ppm, a singlet for H3 refer to structure 4-5, section 4.4. The `3C NI!vllR

spectra showed the Mn-CO signal at around 223 ppm and at 81.4 ppm for CS and at 79.8

ppm for C3. These signals were again consistent with those observed by Tully'. The

ESMS data was also convincing.

Attempts were also made to cyclomanganate I -acetylcyclohexene. Cabral8 has already

done this successifilly in a yield of 61 %. The solvents used were hexane and heptane,

and reaction was attempted at ambient temperature followed by increasing the

temperature to reflux. This was to establish the best conditions for the manganation of the

1 -acetylcyclohexene and to maximize the yield of the rnanganated product. After

repeated attempts, the best yield of the manganated product, yellow oil, was 65 %.

However, this oil would not give reasonable NMR spectra. Attempts to crystallize the oil

by solvent diffusion also failed. However, the `H NMR data of the cleanest spectrum are

listed in the experimental section Section 4.4. No `3C NMR data was obtained. Since no

crystals formed, no elemental analysis data was obtained. Similarly, attempts to generate

sensible ESMS and HRMS data failed.

Efforts were made to carry out several "one pot reactions" of I -acetylcyclohexene with

PhCH2MnCO5 and with alkynes and alicenes with no success. Finally, this section of

work had to be abandoned.
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4.4 Experimental

4.4.1 Preparation of trans.-1,2-dibenzoylcyclopropane

While a commercial sample of trans-1,2-dibenzoylcyclopropane was available initially,

more of it had to be prepared later for use in the current study. The method used for the

preparation of trans-i ,2-dibenzoyl cyclopropane was as follows:

To a three-necked round bottom flask equipped with a magnetic stirrer and a dropping

funnel was added 1.96 g 777 mrnol of 1 ,3-dibenzoylpropane with a solution of sodium

hydroxide in methanol 0.64 g in 23 mL of methanol. The mixture was warmed to 45 °C

with stirring to dissolve the diketone 1,3-dibenzoylpropane. The reaction mixture was

then cooled to 40 °C and a solution of iodine 2 g in ii .5 mL of methanol -was then

added slowly with rigorous stirring. The iodine was added at a rate to allow the colour to

be immediately discharged. After the addition of the iodine was completed, the reaction

mixture was stirred for 1.5 h while a solid formed. The white solid was filtered, washed

with four portions of 10 mL of water and dried under high vacuum to give 1.0719 g 55%

yield of trans-I ,2-dibenzoylcyclopropane. The filtrate was placed in a round-bottom

flask, dried under vacuum and was treated with 10% sodium bisulfite. The solid was then

recrystallised to give a further 0.10 g of the product.

The purity of the product trans-I ,2-dibenzoylcyclopropane 4-1 was determined by

NMR. The following equation 4-1 summarizes the reaction for the formation of trans-1,2-

dibenzoylcyclopropane from 1 ,3-dibenzoylpropane.

..JL_J[TIJ]
+ t 2NOH `

Equation 1-4: Reaction for the fonnation oftrans-1,2-dibenzoylcyc!opropane from 1,3-

dibenzoylpropane.
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4-I

`HNMR: CDCJ3, 300 MHz ö7.28- 8.09 1OH, m, all Ar-H, 3.44 21-I, m, H2, J= 16Hz

1.84 2H, dd, H3, J 16Hz

`3C NIMIR: CDCI3, 300 MHz 197.6 Cl, 128.3- 137.0 all Ar-C, 28.5C2, 20.4

C3.

HRIvIS for C17H14O2Na Calculated: 273.0897

Found: 273.0864

4.4.2 Manganation of trans-1,2-dibcnzoyl cyclopropane

trans-l,2-Dibenzoyl cyclopropane, 4-1, 200 mg, 0.80 mmol and PhCH2MnCOs 458

mg, 1.60 mmol were refluxed for 13 h in nitrogen-saturated heptane. The reaction

mixture was concentrated in vacuo and the residue was plated PLC, dichioromethane:

petroleum spirits, 1:1 to gave 2 bands at R 0.90 and R 0.8. The band at Rf 0.90 was

recrystalised from CH2CI2/ pentane to give yellowish-orange crystals and was identified

as the dimanganated product 4-2 100 mg, 213%. The second band at Rf 0.8 was also
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recrystalised from CH2CI2/ pentane to give yellowish-orange crystals and was identified

as the dirnanganated product 4-2 100 mg, 21.7%. The second band at Rf 0.8 was also

recrystalised from CH2C12/ pentane to give yellowish-orange crystals as well and was

identified as the mono-manganated product 4-3 40 mg, 11.5%.

1R heptane: 2080 m, 1994 s, 1933 s, 1734 s, br Co.

`HNMR: CDC13, 300MHz 37.18- 8.21 SH, m, all Ar-H, 1.87 -2.12 2H, dd, H3,

3.43-3.60- 2H, m, H2

`3C NMR CDCI3, 300 MHz 3220 MnCO, 194.7 Cl, 131.7 -144.8 all Ar-C, 28.4

C2, 22.1 C3.

Elemental analysis: Calculated for C251112Mn2O13:

Found:

C, 51.57%; H, 2.08%

C, 51.76%; H, 2.04%

4-2
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4-3

IRheptane: 2080 m, 1994 s, 1933 s cal1, 1734 s, br CO.

ESMS: MeOH/MaOMe Cone +40 V mlz 388.0 25% [M-COf, 331.9 50%, [M

3CO]439.3 40%, [M+Naf, 855.5100% [2M+Na].

Cone -40 V m/z 391.1 [M + OMe - 2COf, 419.4 [M + OMe- CO]-, 335.4 [M + OMe

4C0].

`H NMR: CDCI3, 300 MHz 67.20- 8.14 9H, m, all Ar-H, 3.43 2H, m, H2, 1.84

2H,dd, 1-13.

13C NMR: CDC13, 300 MHz 6221.3 C4, 214.2, 213.1, 211.6, 211.3 MnCOs, 196.6,

193.7 2C=O, 29.6 C2, 27.6 C2, 21.4 C3.

Elemental Analysis, Calculated for C21H,3MnO6 : C, 60.61 %; H, 3.15 %

Found : C. 60.60 %; H, 3.48 %

2

121



4.4.3 Reaction of 4-3 with DMAD

4-3 65 mg, 0.16 rnmol and DMAD 33 rng, 0.24 mmol were dissolved in nitrogen-

saturated CC14 and the solution was refluxed for 2 h. During this time, the 1R metal

carbonyl bands for the MnCO4 disappeared. The CCI4 was then removed under vacuum

and the residue, a yellowish brown oil was chromatographed PLC, CH2CI2: hexane, 1:2

to give one major band purple under U.V. lamp at R10.2. Removal and extraction of the

band with CH2CI2 followed by solvent removal under vacuum gave a whitish yellow oil

21.6 trig, 35.3% which did not crystallize. Spectral data were consistent with the

following structure.

`1-1 NMR: CDC13, 300 MHz 87.50

3.87 31-I, s, OCR3, 3.72 I-I,s, OH,

9H, m, all Ar-H, 4.60 OH, 3.96 3H, s, OCH3,

2.87 2H, s, H3, 1.98 2H, dd, H2.

`3C NMR: CDCI3, 300 MHz 8199.2 C0, 164.8 C0, 164.3 CO, 132.0- 147.0

All Ar-C, 85.01 C-OH, 35.40 C2, 31.33 C2., 31.07 C3,

[M+Na]

[M + NaI

HRMS Calculated for C23H20NaO6

Found

415.1152

415.1174

4-4
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4.4.4 Reaction of 5-methyl-3-hexen-2-one with PhCH2MnCO5 and phenylacetylene

in Cd4

5-Methyl-3-hexen-2-orie 200 mg, 1.79 mmol, PhCH2MnCOs 610 mg, 214 rnmol and

phenylacetylene 210 mg, 2.14 nimol were refluxed in nitrogen-saturated CCI4 for 3 Ii.

During this time the metal carbonyl bands for PhCH2MriCO5 disappeared as see by J.R.

and the reaction mixture turned yellowish red in colour. The CCI4 was then removed

under vacuum and the residue, a yellowish-red oil was chromatographed PLC, C1-12C12:

petroleum spirits, 1:1 to give one red band at Rf 0.8. The band was then removed,

extracted with CH2CI2 and the solvent removed under vacuum to give a red oil which was

identified as 4-5 100 mg, 16%. Attempts to crystallize the product by solvent diffusion

failed.

4-5

TB. benzene: 2012 vs, 1947 s, 1932 m cm

OH,

ESMS: MeOHJNaOMe Cone -10 V mlz 351 100% [M-H], 38220% [M+OMef;

Cone -20v mlz 382 80% [M + OMef.
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MeOH/NaOMe Cone +20 V m/z 374 20% [M- COf, 298 60% [M-2CO], 267

90% [M-2CO-2H]

`H NMR: CDCI3, 300 MHz 87.25 5H, m, all Ar-H, 5.02 1 H, s, H5, 4.30 iii, s, F13,

3.24 in, m, Hi' 2.00 3Ff, s, Cl-I3, 1.50 6H, m, H2'.

`3C NMR: CDCI3, 300 MHz 8223.1 MnCO, 136.5 Cl", 122.6- 128.5 All Ar- C,

107.0 C4, 101.6 C6, 90.0 C2, 81.4 CS, 79.8 C3, 32.1 Cl `, 24.6 C', 24.4

C2'.

4.4.5 Manganation of 1-acetyl-1-cyclohexene

1-Acetyl-l-cyciohexene 100 rng, 0.81 mmol and and PhCH2MnCO5 270 mg, 0.97

mmol were refluxed in nitrogen-saturated hexane 20 mL for 5 h. During this time, the

metal carbonyl bands for PhCH2MnCOs disappeared and the reaction mixture turned

yellow. A lot of brown solid also formed during this time. The brown solid was filtered

and ignored. The hexane was removed under vacuum and the residue, a yellow oil was

chromatographed PLC, ethylacetate: X4, 1:6 to yield one band at Rç 0.8. The band was

removed, extracted with CJ-12Cl2 and the solvent removed under vacuum. The yellow oil

was identified as 4-6 150 mg, 65%. Attempts to crystallize the product 4-6 by solvent

diffusion failed. While a reasonable `H NMR spectmm was obtained, attempts to get a

reasonable `3C NMR spectrum failed.

N
CO4

H

4-6
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IRheptane: 2080 m, 1994 s, 1933 s cm

`HNMR: CDC13, 300 MHz 63.96 3H, s, CH3, 1.98- 2.87 8H, cylohexene Us.
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4.5 Crystal structure of4-2

Crystal data and structure refinementfor np3c.

Identification code np3c

Empirical formula C25 IIj2 Mn2 0o

Formula weight 582.23

Temperature 1 132 K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, P2/n

Unit cell dimensions a = 13.867 A alpha = 9Q0

b = 5.853 A beta = 95.45°9.

c I4.167A gamma90°

Volume l1431OA3

Z, Calculated density 2, 1.692 Mg/rn3

Absorption coefficient 1.166 mm4

F000 584

Crystal size 0.61 x 0.20 x 0.11 mm

Theta range for data collection 2.89 to 26.91 deg.

Limiting indices -17<=hc= 17, -6<=kc=7, -1 7<=lc=1 7

Reflections collected! unique 6634 / 2350 [Rint = 0.034

Completeness to theta = 26.9 1° 94.6%

Absorption correction Empirical

Max. and mm. transmission 0.8825 and 0.5366

Refinement method Full-matrix least-squares on P2

Data / restraints / parameters 2350 / 0 / 176

Goodness-of-fit on FA2 1.031

Final R indices [I>2sigmaI} RI = 0.0342, wR2 = 0.0949

R indices all data Ri = 0.0411, wR2 = 0.0990

Largest diff. peak and hole 0.475 and -0.509 e.A3



4.5 X-ray crystal structure 4-2

The orange crystals needles were shown to be monoclinic of space group P2,,1 with 2

molecules in the unit cell. Crystal and structure refinement data are given in the table in

section 4.5. An ORTEP perspective view showing the atom-labeling scheme is given in

figure 5-5.

The structure was solved by direct methods and routinely refined. The H-atoms were in

fixed positions except for the Hs on the cyclopropyl ring were located and refined. The

molecule was found to lie on a 2-fold rotation axis. Cyclomanganated complexes of this

type incorporate a five membered ring, which are essentially pianar and constant

geometry.

Figure 4-3: An ORTEP perspective view showing the atom-labeling scheme of 4-2
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The following figures show the bond lengths of the manganocyclic ring of the

dimanganated product 4-2, orthomanganated acetophenone5 and of the cyclomanganated

[1,5 -diphenylcyclopentane- I ,4-diene-1 -yl-icc' -3-one-icO]tetracarbonylmanganese' for

comparison purposes.

Figure 4-4: The bond lengths of the manganocyclic ring of the dimanganated product 4-2,

orthomanganated acetophenone5 and of the cyclonianganated [1,5-diphenylcyclopentarie-1,4- diene-I-yl

KC'-3-one-1cOl tetracarbonylnianganes&

The bond lengths of the manganocyclic ring in the dimanganated product 4-2 are very

similar to the bond lengths of the manganocyclic ring of the orthomanganated

acetophenone. However, the bond lengths of the manganocycTic ring of the manganated

dienone where it does not involve ring manganation, are slightly longer then the bond

lengths of the manganocyclic rings of the dimanganated product 4-2 and of the

orthomanganated acetophenone. The most likely reason for this would be the shift of the

2011

2.061

206

2075
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electron cloud around the benzene ring towards the ring thus pulling the atoms bonded to

the ring towards the ring.

The table below lists the bond lengths between Mn and the donor atoms of ii2, 124,6

diacetylbenzene- 1,3 -bistetracarbonylmanganese2 4-7, [1 ,5-diphenyl-KC2-3-2-pyridyl-

KN-pentan-2-yl icC5 -1 , -dione-icO'icO'-tetracarbonyltricarbony1manganese9 4-8 and 4-

2. Figure 4.5 gives the crystal structure diagrams of the two compounds respectively for

comparison purposes. The bond lengths between Mn and the C aryl are also listed.

4-7

I

4-8

Figure 4-5: Crystal structure diagrams of of i2, i12-4,6-diacetylbenzen e- 1,3-

bistetracarbonylnianganese2and [1,5diphenylicC23_2_pyridy1_KN_pefltafl2-yl C5-1,5-dione-
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Compound Bond lengths

4-7 Mn1- 09 2.0472

Mn2- 07 2.0622

Mn- C aryl 2.0422

4-8 Mn2- 01 2.042

Mnj-N1 2.063

Mii1- 05 2.052

Mn-Caryl 2.193

4-2 Mn1-O1 2.0618

Mn- C aryl 2.0 177

All three donor- atom to metal bond lengths are similar. This indicates that there is little

effect of changing the donor atom or increasing the ring size on the donor atom to metal

bond lengths.

The Mn-C aryl bond lengths, i.e the bond lengths between the carbon on the benzene ring

and Mn are almost similar in compounds 4-7 and 4-2 but is slightly longer in compound

4-8. This difference is most likely due to the minimum interaction between the two Mn

croups in 4-7 and 4-2. However, the interaction between the two Mn groups in 4-8

appears to be greater thus giving a larger Caryl-Mn bond length.

The octahedral geometry around the manganese atoms in compounds 4-8 and 4-2 are

distorted in both cases. The larger deviation from 90° for the C66-Mn2-O1 bond

angle 79.10 in 10 and the Cl-Mn1-O1 bond angle 78.6° in 4-2 are due to the

unsaturation in the five-membered ring imposing geometric constraints and compares

closely with that found4 for orthomanganated acetophenone 79.4°. Overall then the

cyclopropyl unit provides a useful bridge between the two orthomanganated rings, but

has no effect on the bond parameters involving the manganese centres.
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4.6 Conclusions

Reaction of trans-I ,2-dibenzoylcyclopropane with PhCH2MnCO5 in heptarie gave the

desired dimanganated product 4-2 and the mono-manganated 4-3. The maiganation

occurred on the two benzene rings therefore having the two MnCO4 groups close

together. Attempted coupling reactions of the dirnanganated 4-2 and 4-3 did not give the

desired results of producing some novel compounds. While many reactions initially

looked promising, the products could not be isolated pure for final characterization. The

products formed appeared highly unstable and to break down when attempting

crystallization.

Extension of the work done by Tully' on manganated chalcones and dienones to other

compounds of non-aryl type like 5-methyl-3-hexene-l-one and l-acetyl-I-cyclohexene

also did not prove too fruitful. The manganation of 5-methyl-3-hexene-2-one appeared to

progress well as seen by the IR spectra as the reaction progressed. However, the

manganated product could not be isolated and characterized. When phenylacetylene was

present with the 5-methyl-3-hexene-1-one and PhCH2MnCO5 in the same reaction, the

pyranylMnCO3 complex did however form as was observed by Tully1 for the reaction

of the manganated chalcones and dienones with alkynes. Similarly, not much could be

achieved when attempts were made to manganatel-acetyl-l -cyclohexene and to carry out

one pot reactions of l-acetyl-l-cyclohexene with PhCH2MnCO5 and alkynes or alkenes.

The limited success with the manganation of the compounds of the non-aryl type

considered in this study and with their subsequent coupling reactions needs further

investigation. It appears however that electronic factors come into play when electron-

rich phenyl rings are not present in the compounds to be manganated. It is likely that

when phenyl rings are present, they provide potential sites for manganation and also

provide stability to the manganated compounds.
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Chapter 5: Ferrocenyl Pyryliuin Ions

5.1 Introduction

5.1.1 Pyrylium Ions- Definition and Uses

A pyrylium salt is a salt formed by a conjugated six-membered carbon ring system with

one carbon atom replaced by positively charged oxygen and a negatively charged counter

ion Figure 1. `

Figure 1: A pyrylium salt is a salt formed by a conjugated six-membered carbon ring system with one

carbon atom replaced by positively charged oxygen and a negatively charged counter ion Figure 1. t1

The replacement of a CH in benzene by 0 modifies the electron distribution much more

than any other heteroatom or any other substituent R in CR or NR. The resonance

energy in pyrylium is smaller than in benzene or pyridine. Unlike benzene or pyridine,

the pyrylium ring can be opened under drastic conditions such as high temperature or

high p1-I.

Pyrylium salts can function as intermediates for a variety of syntheses. The key role of

pyrylium salts depends on the high formation tendency of the pyrylium salts and their

high reactivity towards nucleophiles. The organic compounds that can be synthesized

from pyrylium intermediates include nitrobenzenes, pyridines, thiopyryliums, phospho

benzenes and 2,4-pentadienones'. Despite the widespread interest in purely organic

pyrylium salts, organometallic pyrylium salts are rare compounds and their chemistry has

been little developed. Pyrylium salts are widely used in organic synthesis and have
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regular applications in dyes, laser dyes, photosensitizers and corrosion-inhibiting

additives in paint.
1

Pyrylium ions have rich oxidation- reduction chemistry and form

stable radicals or pyran compounds on reduction, depending on steric factors and on the

reducing agent.

5.1.2 General synthetic methods of Pyrylium Ions

Pyrylium salts can be synthesized via various methods. Balaban et al.1 have discussed a

wide range of organic synthetic methods for pyrylium salts using commonly available

starting materials under three main headings: one-component synthesis, two-component

synthesis and three-component synthesis. Their methods did not involve the use of any

metals. Figure 2 summarises the main routes to the pyrylium cation synthesis. An

example each of one-component synthesis, two-component synthesis and three-

component synthesis are discussed there after.

oj

t I3O O `L

JOE xx
I I I

H

/1

/f N
`-b tOR CC

2oo

Figure 2: Synthetic main routes to the pyrylium cation the inner field contains one-component synthesis,

followed by two- and three component synthesis.

Reference: Balaban, A.T.; Dinculescu, A.; Dorofeenko, G.N.; Fischer, G.W.; Koblik,

A.V.; Mezheritskii, V.V.; Schroch, W. Pyrylium Salts: Syntheses, Reactions and Physical

Properties: Advances in Heterocyclic Chemistry: Supplement 2: Academic Press: New

York, 1982.
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An example of a one-component method is a convenient route to 4-aminopyrylium salts

as suggested by Van Allan et al.2 This involves the reaction between 4-pyrones or

flavones with activated isocyanates, RCNO R= COCCi3, SO2C1, SO2C6H4CH3, COPh

followed by treatment of the primarily formed pyroneimines with mineral acid Scheme

N1-ll

Ph

RNCO
a-

PAPh

Scheme 1: An example of a one-component method is a convenient route to 4-aminopyrylium salts

An example of a two component synthesis of pyrylium salts is the synthesis of 2,6-diaryl

pyrylium salts from phenol ethers and glutaric acid in the presence of polyphosphoric

acid PPA The reaction probably also involves oxidative dehydrogenation of the 4H-

pyran intermediate as shown in Scheme 2.

1.
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COOH

2 Ar-H + CH23

COOH

PPA

ArAr

Scheme 2: An example of a two component synthesis of pyrylium salts is the synthesis of 2,6-diaryl

pyrylium salts from phenol ethers and glutaric acid in the presence of polyphosphoric acid PPA
.

An example of a three-component synthesis is the reaction of ethyl orthoformate with

two moles of an arylmethylene ketone in the presence of HC!04 or BF3Et2O which

directly gives 2,6-diarylpyryliurn salts unsubstituted at the `y-position Scheme 3
5,6,8

R
CHOEt3 R

HCIO4

OAr ArO

Scheme 3: An example of a three-component synthesis
5,6,8

5.1.3 Organomanganese pyrylium ion preparations

Tully14 reported the preparation of if-pyrany!carbonylmanganese complexes and

pyrylium triiodide salts from cyclomanganated chalcones and alkynes. f3-Manganated

chalcones were prepared by reacting the chalcones with PhCH2MnCO5 1, Scheme 4.

Reaction of the f3-manganated chalcones with alkynes gave the f

pyranyltricarbonylmanganese derivative 2, Scheme 4. The pyranyl complex 2 was a

ready source of pyrylium salts 3, Scheme 4 by reaction with iodine. Table 1 gives the
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structures and yields of some pyranyltricarbonylmanganese complexes and pyryliurn

triiodide salts prepared by Tully'2"4.

R1C CR2

cc'4

- I

Scheme 4: The preparation of5-pyranylcarbony1manganese complexes and pyryliurn triiodide salts

from cyclomanganated chalcones and alkynes.

2

13

3
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Table 1:Substitution patterns and yields of pyranyltricarbonylmanganese complexes and pyrylium

triiodide salts

3-Manganated chalcone1 Alkyne

R1,

Pyranyl c

R2

oinplex H Pyry

Yield %

hum salt III

R" R' Yield %

3",4",5".-OMe3

4"-CF3

H

4"-CF3

3",4",5"-OMe3

4"-OMe

4"-CF3

4"-CF3

4"-Cl

H

H

4'-Cl

4'-Cl

3', 4', 5'OMe3

4'-Cl

H

H,

H,

H,

H,

H,

Me,

Pr,

Ph,

Ph,

Ph

Ph

Ph

Ph

SiMe3

Pr

Me

Ph

Ph

62%

72%

72%

52%

48%

39%

5%

46%

61%

92%

82%

72%

79%

85%

87%

87%

64%

84%

Ref. Tully, W.; Main, L.; Nicholson, B.K. J. Organoinetallic Chcn?., 503 1995, 75-92

5.1.4 Synthesis of ferrocenyl-substituted pyrylium cations

Ferrocenyl-substituted pyryliurn cations have been successfully prepared befor&3'23.

However, their detailed studies have not been reported in the literature so far. Ferrocenyl

substituted pyrylium ions have two redox centres thus making them interesting

compounds to study for their redox and electrochernical properties.

Dorofeenko and Krasnikov
13 obtained 4-ferrocenyl-2,6-dimethylpyrylium perchiorate

V when ferrocenyllithiurn was reacted with 2,6-dimethyl-'y-pyrone with the subsequent

treatment of the carbinolate IV with perchioric acid Scheme 5.
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Li

o +

CH3

OHFe

_________________

C
CH

VI

CH3

Scheme 5: The formation of 4-ferrocenyl-2,6-dimethy!pyrylium perchiorate V when ferrocenyllithium

was reacted with 2,6-dimethy1-y-pyrone with the subsequent treatment of the carbinolate IV with

perchioric acid
13

In an alternative approach, acetylferrocene was reacted with orthoformic ester in the

presence of 70% perchioric acid. 2,6-diferrocenylpyrylium perchiorate 5-1 was

obtained as green crystals.

In another reaction, Krasnikov23 and his team synthesized the neutral red coloured 2-

ferrocenyl-4,6-diphenylpyran III, Scheme 6 . In the same study the treatment of the 2-

ferrocenyl-4,6-diphenylpyran with perchloric acid gave green coloured 2- ferrocenyl-4,6-

diphenyiphenylpyrylium perchlorate IV, Scheme 6 which was converted to yellow

coloured 2-ferrocenyl-4,6-diphenylpyryridine V, Scheme 6 when treated with 25%

ammonia solution.

IV

uc104

5-1
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/
Pb

COOH
do4-

C10H10Fe

N}13

- HCIO4

PhC00

-H

-Co2

Ph

Scheme 6: The preparation of 2-ferrocenyl-4,6-diphenylpyran, 2- ferrocenyl-4,6-diphenylphenylpyrylium

perchiorate and 2-ferrocenyl-4,6-diphenylpyryridine23.

Ill

red

Iv

green

V
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5.1.5 Reactions of ferrocenyl-substituted pyrylium ions

5.1.5.1 Preparation of the pyran and the pyridine derivatives of pyrylium salts

Dorofeenko and Krasnikov
13

also synthesized pyridine derivatives from ferrocenyl

pyrylium salts. When the pyrylium salt V, Scheme 5 was treated with 25% ammonia

solution, 4-ferrocenyl-2,6-dimethylpyridine, a yellow solid VI, Scheme 5, was obtained.

Similarly, yellow 2,6-diferrocenylpyridine 5-2 was obtained when 2,6-

diferrocenylpyryliurn perchlorate 5-1 was boiled with ammonium acetate in glacial

acetic acid.

6

From the study by Dorofeenko and Krasnikov
13,

it was found that pyrylium salts of

ferrocene with methyl groups present at carbons 2 and 4 of the pyrylium ring were

coloured blue and the pyridine derivatives of the pyrylium salts with ferrocene were

coloured yellow. Krasnikov23 and his team found that the phenyl substituted pyrylium

salts of ferrocene at carbons 4 and 6 were coloured green and their pyran derivatives

were coloured red.
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5.1,5.2 Oxidation and reduction reactions of pyrylium salts

Oxidation-reduction of pyryliurn salts usually destroys the pyrylium ring. However in

some instances, the destruction is useful for structural determinations. An example of

such oxidation is that of the trinitration product obtained from 2,4,6-triphenylpyryliurn

perchlorate that afforded a mixture of m- and p-benzoic acids in a ratio consistent with p

nitration of the 4-phenyl group and the rn-nitration of 2- and 6-phenyl groups
9,10*

In the electrochernical reduction of 2,4,6-trirnethylpyrylium salts perchiorate,

tetrachloroferrate and iodide no proton is involved and the product of the reaction was

isolated and shown to be identical to the hexasubstituted 4,4"-bi-4H-pyran C, scheme 7.

This can also be prepared with zinc dust in water-ether or in ethanol'.

+ e

RR

A

BNR

Scheme 7: Electrochemical reduction of 2,4,6.trimethylpyrylium salts perchiorate, tetrachioroferrate

and iodide.

In the reaction, a free radical is involved which is stable if R = Ph. The reversibility of the

bipyran formation can be demonstrated by chemical oxidation of C to A, with chromium

trioxide, perchloric acid or by electro-oxidation on a rotating platinum electrode in

C

142



acetonitrile with potassium perchiorate as electrolyte. The clean 4, 4'-dimerisation

without any detectable 2,2'- or 2,4' dimers indicates the high spin density on the 4-

position of the free radical B.

In another similar study20, it was found that the pyrylium cations similar to A with a

variety of R groups were electrochernically reduced in well shaped waves between B112 =

-0.22 V and -0.63 V. The two waves correspond to the cathodic reduction of the pyryliurn

ion. The first reduction is responsible for the formation of the radical B which may

dimerise to C and the second reduction would give the anion D. The solvent used in the

study was acetonitrile at 25°C.

According to Beddoes2 and his team, unsubstituted triphenylpyrylium salts in

acetonitrile get first electrochemically reduced to the radical at -0.31 V and then to the

anion at -1.45 V. The radical formed by the first reduction can undergo dimerisation to

give the bipyran as in scheme 7. Pyranyl radicals in which the substituents are small

such as I-I, Me, or Et undergo irreversible dimerisation while radicals with large

substituents such as But and Ph are in dynamic equilibrium with the bipyran". The

pyranyl radicals are very sensitive to oxygen. The oxygen oxidizes the pyranyl radicals to

the parent pyrylium ions.
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12 Aims ofthe current research

The objective of the present section of work was to make use of the Tully'4 method with

cyclornanganated chalcones and ferrocenylethyne to prepare compounds similar to those

prepared by Dorofeenko and Krasnikov'3 and Krasnikov23 and his team for full physical

analysis. Tully's work involved the synthesis of pyrylium ions using cyclomanganated

chalcones and alkynes but not with ferrocenylethyne.

The current study intends to prepare ferrocenyl pyrylium ions with two redox centres,

similar to those prepared by Dorofeenko and Krasnikov
13

and to study their UV-visible

and electrochemical properties. It was also intended to see if introducing other

substituents like methoxy groups on the benzene ring at carbons labeled 3", 4" and 5" at

the
4th

carbon on the pyranyl ring 5-1 1 influenced the UV- Visible spectroscopy and the

electrochemistry of the ferrocenyl pyryli urn ions.

Dorofeenko and Krasnikov's
13

study also involved the preparation of the pyridine

derivative of the pyrylium ions whereas Krasnikov23 and his team prepared both the

pyran and the pyridine derivatives of a phenyl substituted pyrylium ion.

However, all these were only preliminary studies and no detailed studies were carried

out.

Chalcone 1, 1,3-diphenyl-prop-2-en-l-one and chalcone 2, 1-phenyl-3-3,4,5-

trimethoxyphenyl-prop-2-en-1-one were chosen for the study.

1
2
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Cooney15, followed by Tully'4 studied the influence of different solvents on the yields

and types of products formed when alkynes and alkenes were coupled with

orthomanaganated aryl compounds and manganated enones. It was therefore of interest in

the present study to see if a change of solvent would affect the type ofproducts formed or

the yields of the products formed.

Carbon tetrachioride, benzene and acetonitrile were the solvents chosen for the coupling

reactions in the study. These solvents have been used routinely and successfully in

coupling reactions of alkynes with cyclornanganated compounds and have had a

considerable influence on the product types and their yields.
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5.3 Results and Discussion

Chalcone 1, section 5.2, 1,3-diphenylprop-2-en-1-one and chalcone 2, section 5.2, 1-

phenyl-3 -3,4,5 trimethoxyphenylprop-2-en-1 -one were reacted with PhCH2MnCOs in

heptane to give the cyclomanganated chalcones 5-4, Scheme 8. Most further reactions

were carried out with the manganated chalcone 5-4, Scheme 8, i.e. with [1,3-

d iphenylprop-2-en-3-yl -KG3- 1 -one-KO}tetracarbonylnlanganese, and in some cases with

the manganated chalcone 2, section 5.2, i.e. with [1-phenyl-3-3,4,5-trimethoxyphenyl-

prop-2-en-3-yl-icC3- 1 -one-icO]tetracarbonyl-manganese for comparison purposes.

Scheme 8 summarizes the reactions that were carried out in the current study and

reference is made to it in the discussions that follow.
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PhCH2MnCO5

heptane/reflux

Fec1-I

irtoitrfle

/

co4
5.-4

FcCH

CCI4/reflux

l-1

.-MnCO3

[FeCl4r

5-5a

5-5b- trirnethoxy analogue

5-8

6
5-7

25% NH3

5-9

Scheme 8: Reactions done in the current study

The reactions in the scheme were essentially the same for 1-phenyl-3 -3,4,5 trimethoxyphenylprop-2-en-1-

one 5-10, pg 180 as the starting material instead of5-3.
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5.3.1 The effect of different solvents ou product types

The cyclomanganated chalcone, 5-4, Scheme 8, was reacted with ferrocenylethyne in

carbon tetrachioride, benzene and acetonitrile. The time taken for all these reactions in

the different solvents was about three hours at reflux and the reactions were monitored by

I.R. and t.l.c.

Reaction of the cyclomanganated chalcone, 5-4, Scheme 8, with ferrocenylethyne in

carbon tetrachioride afforded a green powdery product. The green colour of the product

obtained in this study was similar to the green coloured 2-ferrocenyl-4,6-

diphenylpyrylium perchiorate and 2,4-diferrocenylpyrylium perchiorate obtained by

Krasnikov23 and his team. This suggested that the green coloured product obtained in this

study was most likely a 2-ferrocenyl-4,6-diphenylpyrylium salt. This is the expected

stereochemistry of the product based on the products obtained by Tully12 which involved

reacting cyclomanganated chalcones with alkynes. An example of Tully's reaction is the

reaction of [1 4-chlorophenyl-3-3,4,5 -trimethoxyphenylprop-2-en-3yl-KC3- 1-

KUJtetracarbonylmangnese with phenylacetylene to give [6-4-chlorophenyl-2-phenyl

43,4,5-trimethoxyphenylpyranyI-i5]tricarbony1manganese, i.e the phenyl group from

the alkyne ending at position 2 on the pyrany! ring as shown by Scheme 9.

OMc

McoX.._1.,,,O/CI

MO

COd

*f- PhccI-I

I-

Scheme 9: Reaction of [1 4-chlorophenyl-3-3,4,5-trimethoxyphenylprop-2-en-3y1-icC3-1-

icO]tetracarbonylmangnese with phenylacetylene to give [6-4-chlorophenyl-2-phenyl-43,4,5-

trimethoxypheny1pyrany1T5]tricarbony1mangafleSe, i.e the phenyl group from the alkyne ending at

position 2 on the pyranyl ring.
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ESMS studies of this green product in the positive ion mode section 5.3.2 further

suggested that the product was a salt of the 2-ferrocenyl-4,6-diphenyl pyrylium ion 5-5,

Scheme 8 as it gave a very strong signal corresponding to the pyryliurn ion Figure 1,

Section 5.3.2. A strong signal seen in the negative ion mode was for that of the [FeCl4f

complex. This suggested that the counter anion formed in the reaction was [FeCl4]. The

chlorine in the [FeCI4T was most likely coming from CC14 and the Fe from the

breakdown of ferrocene. Good NMR of the green product could not be obtained. This

was not unexpected because Fe3 ion is a d5 high spin ion and is paramagnetic and would

not allow good NMR.

The elemental analysis of the green product, C27H21Fe2OC14, which had a yield of 67.1%

was also performed for carbon and hydrogen. The values for carbon and hydrogen were

51.34% and 3.93% respectively. These values were close to the calculated values for the

green product of 52.73 % for carbon and 3.44 % for hydrogen and hydrogen respectively.

This clearly showed that the sample was reasonably pure.

Attempts were made to crystallize the product using Na[BPh4] and Na[PF5], It was

anticipated that the addition of the anions [BPh4] and [PF6I would form either the 2-

ferrocenyl-4,6-diphenylpyrylium tetraphenylborate or the 2-ferrocenyl-4,6-diphenyl

pyrylium hexafluorophosphate, and would crystallize. 1-lowever, no crystals formed.

In contrast, the reaction of the cyclomanganated chalcone, 5-4, Scheme 8 with

ferrocenylethyne in benzene or acetonitrile gave a red coloured reaction mixture. The red

colour of the reaction mixture suggested that it could contain either the red coloured 2-

ferrocenyl-4,6-diphenyl pyran, as obtained in an earlier study23, or [2-ferrocenyl-4,6-

diphenyl-if-tricarbonylmanganese] similar to the red coloured pyranylMnCO3

complexes obtained by Tully
12,14

Chromatographing the residue p.l.c., dichloromethane: hexane, 1:1 gave two major

bands. A red band at Rf of 0.8 was obtained as a red oil and was recrystallised from
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ether/pentane by diffusion to give red needle-like crystals. This was identified by IR

having similar metal carbonyl bands for similar compounds in an earlier study
12,14

as the

pyranylMnCO3 complex, i.e the [2-ferroceny1-4,6-diphenyl-5-

pyranyltricarbonylmanganese] 5-6, Scheme 8 the identity confirmed by NIVIR section

5.3.2 and section 5.4. The crystal structure of 5-6 was also determined section 5.3.5.

It was noted however that this band at Rf of 0.8 left behind a streak of green product over

the plate as it moved up. This suggested that the red [2-ferrocenyl-4,6-diphenylpyranyl-

5]tricarbony1manganese] was getting oxidized to the green 2-ferrocenyl-4,6-

diphenylpyryliurn ion as it moved up the plate. This most likely was the result of the

exposure of [2-ferrocenyl-4,6-diphenylpyranyl-i5]tricarbonylmanganese to air and

oxygen was most probably the oxidizing agent in this case.

The other red band at Rç of about 0.2 was identified as the 2-ferrocenyl-4,6-

diphenylpyran 5-8, Scheme 8 using 1R, NIVIIR and elemental analysis section 5.3.2 and

section 5.4. A possible route to the formation of the 2-ferrocenyl-4, 6-diphenylpyran

could be the protonation of 5-6 followed by its demetallation as shown in scheme 8.

Alternatively, 5-8 could also be formed by the oxidation of the [2-ferrocenyl-4, 6-

diphenylpyranyl-5]tricarbonylmanganese 5-6, Scheme 8 to give the 2-ferrocenyl-4, 6-

diphenylpyryliurn ion which then gets reduced in the reaction mixture to give the red

coloured 2-ferrocenyl-4,6-diphenylpyran 5-8, Scheme 8. This also possibly explains

why no green 2-ferrocenyl-4,6-diphenylpyryliurn salt 5-5, Scheme 8 was isolated from

the reaction mixture of [1 ,3-diphenyl-prop-2-ene-3-yl-KC3-1 -one-KG]

tetracarbonylmanganese with ferrocenylethyne in benzene or acetonitrile. The oxidizing

and the reducing agents involved in the reactions could possibly be coming from the

breakdown of the rnanganated starting material 5-3 but this has not been confirmed.

Three other minor bands were ignored and this probably explains why the yield of the

pyranylMnCO3 complex, i.e. of the [2-ferrocenyl-4,6-diphenyl-'r5-
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pyranyltricarbonylmanganese] obtained in this study was lower to the yields obtained by

Tully
12,14

The reactions of I -pheny! -3 -3,4,5 trimethoxyphenylprop-2-en-1-one 2, section 5.2

with PhCI-I2MnCO5 followed by its reaction with ferrocenylethyne in carbon

tetrachloride, benzene and acetonitrile gave results similar to the reactions of chalcone

1, the I ,3-diphenyl-prop-2-en-1-one.

53.2 Spectroscopic and mass spectrometric characterization of

the products

5.3.2.1 IR, NMR and MS stildies

The red band at R of 0.8 obtained from the reaction of cyclomanganated chalcone 5-4

with ferrocenylethyne in benzene showed three metal carbonyl bands at 2012, 1951 and

1931 crn1 . The JR bands are characteristic of the pyranylMnCO3 complexes as seen

in the study by Tully'2' The IR data suggested that the product was most likely the [2-

ferrocenyl-4,6-diphenylpyranyl-i5]tricarbony1manganese 5-6, Scheme 8.

The `H NMR signals at about 5.71 ppm, two singlets for two protons arise from the two

protons directly bonded to the pyranyl ring. This was consistent with the `H NMR signals

of the two protons bonded to the pyranyl ring of pyranylMnCO3 complexes studied

by Tully
12, 14

The ferrocene 1H NMR signals were observed and were consistent with

those observed in the earlier study'3. The `H NMR evidence suggested that the product

was the [2-ferrocenyl-4, 6-diphenylpyranyl-i5]tricarbonylmanganese 5-6, Scheme 8.

Elemental analysis also supported the LR. and the `H NMR evidence. The ESMS

spectrum of 5-6 in the positive ion mode showed a strong signal for the oxidized

pyrylium cation discussed later suggesting that 5-6 was getting oxidized in the

instrument.
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[2-ferrocenyl-4, 6-diphenylpyranyl-i5]tricarbonylmanganese was reacted with iodine in

carbon tetrachloride to give the 2-ferrocenyl-4, 6-diphenylpyrylium triiodide identified

by its ESMS data. The green 2-ferrocenyl-4, 6-diphenylpyrylium salt, C27H21Fe2OC14,

from the carbon tetrachloride reaction was also reacted with ammonia to give the 2-

ferrocenyl-4,6-diphenylpyrydine. 1-lowever the product isolated from the reaction of these

with zinc in ether could not be fully characterized. All the products were characterized

using IR, NMR, electrospray mass spectroscopy and elemental analysis thus further

confirming the structure of the [2-ferrocenyl-4,6-diphenylpyranyl-

5]tricarbonylmanganese and the other compounds discussed here sections 5.3.3 and

5.4. The structure of the [2-ferrocenyl-4, 6-dipheny1-r5-pyranyl]tricarbonylmanganese

5-6, Scheme 8 was finally confirmed by its crystal structure section 5.3.5.

The second band at R =0.2 obtained from the reaction of [1, 3-diphenyl-prop-2-ene-3-yl-

icc3- I -one-KO]tetracarbonylmanganese with ferrocenylethyne in benzene did not have

any IR metal carbonyl signals. The elemental analysis of this product section 5.4

confirmed its formula and was consistent with the formula of 2-ferrocenyl-4,6-

diphenylpyran 5-8, Scheme 8. The `H NMR signals at around S 5.71 ppm two singlets

for two protons resulting from the two protons bonded directly to the pyranyl ring of [2-

ferrocenyl-4, 6-di phenyl-5-tricarbonylmanganese] 5-6, Scheme 8 now disappeared.

However, three 1P1 NMR signals21, two doublets and a singlet for three protons appeared

at around 7.86, 6.78 and 6.20 section 5.4. These signals were due to the lone proton

C2 bonded to the carbon to which the ferrocene was bonded and to the other two

protons on the same ring i.e. C3 and CS.

The ESMS of the green products 5-5 and 5-11 in MeOll gave very strong signals in the

positive ion mode. These signals figure 1 and 2 corresponded to the respective pyrylium

cations. Similar results were obtained for the triodide salts of the two pyrylium ions and

of the pyranylMnCO3 complexes [2-ferrocenyl-4, 6-diphenylpyranyl-

5]tricarbonylmanganese and 2-ferrocenyl-4-3,4 , 5- trimethoxyphenyl-6-phenylpyranyl-

5]tricarbonylmanganese]. The ESMS results for the two pyranylMnCO3 complexes
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suggested that these were getting oxidized in the instrument. Figures 3a and 4 show the

ESMS of the pyrylium ions in MeOH at cone voltage +20 volts. Figures 3b and 3 c

are the micrOTOF HRMS spectra of the 2-ferrocenyl-4,6-dipheny]. pyrylium ion 5-5

and of the [FeCI4I counter anion. Figure 3b1 shows the observed MicrOTOF

spectrum and the simulated isotope pattern of the 2-ferrocenyl-4,6-cliphenyl pyryliuni ion

5-5 and Figure 3b2 shows the observed isotope pattern of the 2-ferrocenyl-4,6-

diphenyl pyrylium ion 5-5. The simulated isotope pattern is the same to the observed

isotope pattern further confirming the structure of the 2-ferrocenyl-4,6-diphenyl pyryliuin

ion.

100.
417.0

4.24e6

150.8

182.7 214.1

,,. Dale

Figure 3a: ESMS spectrum of the green 2-ferrocenyl-4, 6-diphenyl pyrylium salt showing the intense

peak for the pyrylium cation
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Acquisition Parameter - --

Source Type ESI Ion Polarity Ponitixe Set Corrector Fill 50 V

Scan Range n/a Capillary Exit 80.0 V Sal Pulsar Putt 400 V
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Figure 3b 1: The MicrOTOF HRMS ±ve ion spectrum ofthe green 2-ferrocenYl-4, 6-diphenyl

pyrylium salt showing the intense peak for the pyryliurn cation and th simulated isotope pattern
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Figure 3b 2: The MicrOTOF HRMS +ve ion spectrum of the green 2-ferrocenyl-4, 6-diphenyl

pyrylium salt showing the intense peak for the pyrylium cation and the observed characteristic isotope

pattern
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Acquisition Paranleter Set Corrector Fill 50 V
Source Type ESI Ion Polarity Negative Set Pulsar Pull 400 V
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Figure 4: The MicrOTOF HRMS -ye ion spectrum of the green 2-ferrocenyl-4, 6-diphenyl pyrylium

salt showing the intense peak for the [FeCI4] counter anion
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5.3.2.2 UV-Visible studies of the products

The UV-visible bands listed in the table below are weak and broad bands. These are the

low intensity, charge transfer bands similar to those observed in earlier studies
22,24

The

UV- visible bands for the two pyrylium salts show obvious solvent shifts. However, both

the pyryliurn salts show almost similar absorption bands. The other bands observed were

for the phenyl and the trimethoxy phenyl groups, i.e. around 350.- 450 nm22 and for

ferrocene around 200 to 350 nm, assigned with comparison with the UV-visible spectrum

of ferrocene Figures 5 to 9, section 5.3.2. The intervalence charge transfer bands listed

in the Table 2 are missing from the UV-visible spectra of [2-ferrocenyl-4,6-diphenyl-5-

tricarbonylmanganese], 2 -ferrocenyl-4,6-diphenylpyran and ferrocene UV-vi sible

spectra. Figures 5, 6 and 7.

Table 2: UV-visible absorption maxima of ferrocenyl pyrylium ions in different solvents showing the

intervalence charge transfer bands

Compound Dichlorornethane

Solvent

Acetone Benzene

X 695 665 682

Y 691 655 685

Compound X: 2-ferrocenyl-4,6-diphenylpyryliurn ion

Compound Y: 2-ferrocenyl-4-3, 4, 5-trimethoxyphenyl-6-phenyl pyrylium ion.

The UV-Visible bands listed in the table as seen for the two-ferrocenyl pyrylium ions are

most likely due to the electron transfer that is taking place between the two-redox centres

that are present in the pyrylium ions. These bands are most probably due to the electron

transition occurring between the neutral Fe and the cation. These electron transfer bands

also show solvent effects22. In the neutral pyran and the pyridines, these bands are

missing because of the absence of the two redox centres.
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Figure 5: UVVisib1e spectrum of 2-ferrocenyl-4,6-dipheny pyrylium ion in CH2CI2
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Figure 6: TJV-Visible spectrum of 2-ferrocenyl-4-3, 4, 5 trimethoxyphenyl-6-pheriylpyryliuni ion in

CH2C12
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Figure 7: TJV-Visible spectrum of [2-ferrocenyl-4, 6dipheny1pyrany13]tricarbony1maflgafleSe in
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Figure 8: UV-Visible spectrum of 2-ferrocenyl-4, 6-diphenylpyran in CH2CI2
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Figure 9: UV-Visible spectrum of ferrocene in CH2C12

5.3.3 Reactions of the manganated chalcones, pyranylMnCO3 complex and the

pyrylium ions

The red [2-ferrocenyl-4, 6-diphenylpyranyI-r5-tricarbony1manganese] 5-6, Scheme 8

was obtained by reacting [1,3 -diphenyl-prop-2-en-3-yl-icC3- 1 -one-KO]

tetracarbonylmanagnese with ferrocenylethyne in benzene or acetonitrile. A possible

route to the formation of 5-6, from the 3-manganated 5-4 can be proposed Scheme 10 as

suggested by Booth and Hargreaves'8 and later adapted by Tully'2"4. It involves the

insertion of the alkyne ferrocenylethyne, rearrangement of the n system as the enone

oxygen bonds across the seven-membered ring to the manganated carbon, followed by

coordination of the remaining two 7t bonds to the metal with expulsion of CO. The

bulkier group, in this case the ferrocene finishing on the carbon bonded to the pyranyl 0-

atom.
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Scheme 10: A possible route to the formation of 5-6, from the -manganated 5-4.

The red [2-ferrocenyl-4,6-diphenylpyranyl-'q5-tricarbonylmanganese] 5-6, Scheme 8,

was reacted with iodine in CCL, at room temperature. This reaction gave the intense green

2-ferrocenyl-4, 6-diphenylpyrylium triiodide 5-7, Scheme 8. The product was identified

by its intense green colour'3 It also gave a very strong ESMS signal in the positive ion

mode which corresponded to the 2-ferrocenyl-4,6-diphenylpyrylium ion section 5.3.2.

Clean NMR data for this product could not be obtained as this product failed to

crystallize.

Reaction of the 2-ferrocenyl-4,6-diphenylpyrylium triiodide 5-7, Scheme 8 and of the

2-ferrocenyl-4,6-diphenylpyrylium salt 5-5, Scheme 8 with 25% aqueous ammonia

gave the yellow
13 2-ferrocenyl-4,6-diphenylpyridine 5-9, Scheme 8. The yellow colour

was used to identify the product. Full characterization involved HRMS, NMR aiid

elemental analysis section 5.4. The `H NMR signal, a singlet at 6.91 ppm expected as

two singlets for two protons bonded directly the pyridine ring was observed and was

consistent with that observed for 4-ferrocenyl-2,6-dimethylpyridine'3.

The green 2-ferrocenyl-4, 6-diphenylpyrylium salt 5-5, Scheme 8 was also reacted with

zinc in ether at room temperature. This reaction gave a product that could not be fully

CO3
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characterized. It was expected that the green 2-ferrocenyl-4,6-diphenylpyrylium salt

would get reduced to 2-ferrocenyl-4,6-diphenylpyran. However, ESMS studies section

5.4 did not support this and a good NMR of the product could not be obtained.

The reactions of 2-ferrocenyl-4-3,4,5 -trimethoxyphenyl-6-phenylpyranyl-

5]tricarbonylmanganese in the same way as for [2-ferrocenyl-4,6-diphenylpyranyl-

5]tricarbonylmanganese produced identical results in terms of the types of products that

were obtained.

5.3.4 The Electrochemistry of the Pyrylium Ions

Electrochemistry of triarylpyrylium salts have been well studied and generally show two

cathodic processes associated with reduction firstly to the radical P then the anion P

20,21,26,27,28
For the unsubstituted triphenylpyryliurn these occure at -0.31 and -1 .45 V vs

SCE/MeCN. The radical formed from the first reduction can undergo dimerisation

reaction, the bipyrane product generating an anodic fearture -0.7 V on the reverse

scan20.

Cations 5-5a and 5-Sb show evidence of similar behaviour to their tripyrylium

counterparts as shown in figures 10 and 11. The ferrocenyl group is a much better

electron donor than phenyl thus we expect it to help stabilize the pyrylium cation making

the first reduction process more difficult. For 5-5a figure 10a and 10b this is borne

out in results with the first reduction occurring at -0.38 V. A laIc of 0.7 for this process

and a new feature occurring at about 0.7 V on the anodic sweep is consistent with a

chemical reaction that may be dimerisation of 5.5a. The ferrocenyl redox couple occurs

at 0.96 V consistent with the attachment of a strongly electron withdrawing group. The

effect on redox potentials of the trin-iethoxybenzene group in 5-5b is minor figure 11. It

would appear however that this group stabilizes the radical species 2b with respect to the

chemical reaction that generates the feature at 0.7 V, presumably dimerisation to the

bipyrane. The process occurring at about 0.1 V is associated with the non- innocent

counterion [FeCl4f.
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Figure 10a: CV of Fc-phenyl2pyry1ium salt A. MeCN/TEAP/PtIl00 mVs1

Figure 10b: CV of Fc-phenyl2-pyrylium salt A. CH2C12/TBAPF6/Pt/100 mVs'1
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3

Figure 11: CV of Fc-phenyl-trimethoxybenzene-pyrylium salt B.

CI-T2C12/TBAPF6/Pt/100 & 500 rn1
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5.3.5 Crystal Data and Structural Refinement Table

5.3.5.1 Crystal data and structure refinement for {2-ferrocenyl-4,6-diphenylpyranyl-

5]tricarbony1manganese

Empirical formula C30H21FeMnO4

Formula weight 556.26

Temperature 932 K

Wavelength 0.7 1073 A

Crystal system Monoclinic

Space group P2 i/c

Unit cell dimensions a= 7.4172 A

b= 14.7 164 A 13= 94.39615°

c= 21.7506 A

Cell volume 2366.812 A

Z 4

Density 1.561g cm3

Absorption coefficient 1.183 mm

F000 1136

Theta range for data collection 2.75 to 27.50°

Index ranges -9<h<14, .-19<k<19,

-28<=l<=28

Size 1.08 x 0.32 x 0.20 needle

Reflections collected 34245

Independent reflections 5435 R1 0.029
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Observed reflections I>2cI

Completeness to theta 27.5°

4871

99.9%

Tmin/Tmax

Refinement method

Data/restraints/parameters

0.671 and 1.000

Full-matrix least-square on F2

5435/0/325

Goodness-of-fit on F2 1.069

Final R indices [J>2signiaIJ

R indices all data

Largest diff. peak and hole

R1 0.0254, wR2 0.0695

R1 0.0305, wR2 =0.0653

±0.38e k3

5.3.5.2 Tables of selected bond lengths and bond angles of[2-ferrocenyl-4,6-diphenyl-

rib] -pyranyltricarbonylmanganese

Table 3.3.5.2a Table of selected bond lengths A of [2-ferrocenyl-4,6-diphenyl-5-

pyranyltricarbonylmanganese]

Mnl -Cl 2.274716

Mnl -C2 2.124316

Mnl -C3 2094916

Mnl -C4 2.098216

Mnl -Cs 2.189516

Mnl -C6 1.766917

Mnl- C7 1.784317

Mnl- C8 1.815218

01 -Cl 1.397418

01 -C5 1.410518

06 -C6 1.1222

07-C7 1.1372

08-C8 1.1412

Cl -C2 1.3652

C2-C3 1.4102

C3 -C4 1.4112

C4-C5 1.3812

Cl-Cu 1.4302
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Table 3.3.5.2b: Table of selected bond angles of [2-ferrocenyl-4,6-diphenyl-5]-

pyranyltricarbonylmanganes e

C3-Mnl-C4 39.336

C3-Mnl-C5 68.416

C3-Mn 1-Cl 66.426

C5-Mnl-Cl 59.896

C3-Mnl-C2 39.046

C4-Mnl-C5 66,646

C4-Mnl-C1 75.476

C1-O1.05 105.1411

C4-Mnl-C2 68.546

C2-Mnl-C5 76.836

C2-Mnl-C1 35.965

C2-C1-02 119.9313

5.3.5.3 X-ray crystal structure of [2-ferrocenyl-4,6-diphenypyrany-

if] tricarbonylmanganese]

The dark red crystals were shown to be monoclinic of space group P21/c with four

molecules in the unit cell. Crystal and structure refinement data are given in the table in

section 5.3.5.1. An ORTEP perspective view showing the atom labeling scheme is given

in figure 12.

Figure 12: An ORTEP perspective view showing the atom labeling scheme of [2-ferrocenyl-4,6-

diphenylpyranyl.i5]tricarbony1manganese

06

08
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The structure shown in figure 13 illustrates the structure `of [2-methyl-4,6-

diphenylpyranyl- q5]ltricarbonylmanganese determined by Tu11y15 and is an example of a

structurally characterized `rj5-pyranyl complex14 for comparison purposes.

Figure 13: Structure `of [2-methyl-4,6-dipbenylpyranyl- 5]1tricarbony1manganese determined by

TulIy'5

The molecules consist of a MnCO3 fragment bonded in if fashion to the five carbon

atoms in the pyranyl ring. The MnCO3 group is tilted so that the plane defined by the

three carbonyl-carbon atoms is at an angle of 9.10 to the plane defined by the C1

C5 atoms. This compares closely with the angle of 10.00 for [2-methyl-4,6-

diphenylpyranyl- i-j5]tricarbonylmanganese.

The individual Mn-C bond length distances to the pyranyl ring vary from 2.094916 [to

C3] and 2.274716 A [to C1 so the coordination is unsymmetrical. For [2-methyl-

4,6-diphenylpyranyl- 5]tricarbonyl-managnese the Mn-C bond lengths are slightly

longer, i.e. 2.1579 to C2 and 2.2809 A to C5 figure 9. The ring oxygen atom is

displaced from the pyranyl ring, away from the Mn atom so that the plane defined by

Cl-Ol-C5 atoms make an angle of 44.54° to that of the rest of the ring. This angle

was 47.0° for [2-methyl-4,6-diphenylpyranyl- ifJtricarbonylmanganese.
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The bond lengths around the pyranyl ring system are not equal with C3-C4 being the

largest and C1-C2 being the shortest as shown in figure 14.

C4
1.3812k

C5

1411A.4105A

C3 p01

1.410A,J"1.3974A

C2 Cl
1.365A

Figure 14:

This diagram figure 15 corresponds to the resonance form shown in figure 14.

Figure 15

The phenyl groups are also twisted out of the plane of the pyranyl ring. The angle made

by the phenyl ring formed by C31 to C36 with the pyranyl ring is 22.500 whereas this

angle is 24.75° for the phenyl ring formed by C41 to C46.The Fe1-C bond lengths vary

between 1.9912 A to C22 and 2.039318 A to C24. The average Fe-C bond length

for Fe- C 11-15 is 2.028 A and for Fe-C 2 1-25 the average bond length is 2.020 A.

This compares well with the average Fe-C bond lengths for ferrocene22 which ranges

from 2.014 A to 2.0552 A for Fe-C 11-15 and from 2.02611 A to 2.0566 for Fe

C 2 1-25 for a range of compounds. The C 1-11 bond length is 1.4302 A, slightly

shorter to those reported in an earlier study25 for similar compounds and the feroccene is

bonded at an angle of 10.32° 2to the pyrylium ring.
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5.4 Experimental

Note: `H NMR and `3C NIN'[R spectral assignments of the compounds in this section were

made by comparisons with available literature data for closely related compounds.

References are noted with each set ofNMIR data listed for individual compounds.

Spectral and Instrumental methods used in this section are discussed separately in chapter

6.

5.4.! Example of Preparation of 1,3-diphenylprop-2-en-1-one'3.

A solution of sodium hydroxide 2.2 g in water 20 ml and ethanol 12.5 ml was stirred

in a flask immersed in a bath of crushed ice. The flask was then removed from the

crushed ice and placed on a hot plate. Acetophenone 4.98 ml, 5.21 g, 43 mmol and

benzaldehyde 4.40 mls, 4.57 g, 43 mmol were added successively while maintaining the

temperature at 25°C. After stirring for 4 hours at 25°C, the mixture was cooled and left at

-8°C overnight. The crude product was filtered, washed with water until the washings

were neutral to litmus and then washed with a little ethanol 3x2 ml. A single

recrystallizaion from ethanol gave l,3-diphenylprop-2-en-1-one 5-3 6.98 g, 78%, pure

by hIJ NIvIR and used for manganation without further purification.

4

M.p. 55°C

`H NIVIR'4: 300 MHz, CDC13 8.06 d, 21-I, J8.0 Hz, H2', 6', 7.82 d, 1H, J=15.5 Hz,

H3 7.55 m, 3H, H3', 4', 5', 7.51d, 1H, J15.5 Hz, H2, 7.45m, 5H, H2", 3", 4", 5",

6"

2
3

2
4

5-3
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13C NIVlR': 300 MHz, CDCI3, 190.7 Cl, 139.5 C3, 138.3 Cl', 135.0 Cl",

129.5 C2', C6', 129.0 C5', 132.9 C4', 128.6 C2, 128.9 C3', 126.3 C2", C6",

128.5- 128.9 3C, C3", 4", 5".

5.4.2 Manganation of 1,3-diphenylprop-2-en-1-one12

1,3-diphenylprop-2-en-1-one 200 mg, 0.96 mmol and PhCH2MnCO5 330 mg, L15

mmol were refluxed in nitrogen- saturated heptane for 3 hours. The reaction mixture was

cooled and the solvent removed under high vacuum. The residue was chromatograhed

p.l.c., 1:1 dichloromethane/petroleum spirits to afford one red band, Rf 0.8. The red

band was eluted and the solvent removed to provide pure product, 5-4 as red oil, 304

mg, 84.6 %

M.p. 145°C

4"

5"

3"

IR'4: heptane 2081 m, 1996vs, 1934 s cm1.

4

ESMS: MeOH/NaOMe, Positive ion m/z 397 70% [M+Naf, 771 65% [2M+Na]

Negative ion m/z 405 100% [M+OMef

`H NMR14: 300 MHz, CDC13 6 7.75 s, 1H, H2, 7.18-8.07 m, 1OH, Ar-H

5-4
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l3
NMR'4: 300 MBz, CDCI3 ö 219.0 CO, 214.0 CO, 210.3 CO, 210.0 CO,

204.7 C1,150.4 Cl", 135.3 C2, 135.2 Cl', 133.5 C4', 131.8 C3', CS', 131.4

C2', 6', 130.8 2C, C3", 4", 129.4 CT', C6", 129.2 5".

5.4.3 Reaction of 5-4 with ferrocenylethyne in carbon tetrachioride

[1,3 -diphenylprop-2-en-3-yl-KC3- 1 -one-KOltetracarbonylmanganese 5-4 106 mg, 0.28

mmol and ferrocenylethyne 119 mg, 0.56 mmol were refiuxed in nitrogen- saturated

carbon tetrachioride 3Omls for 1 hour. During this time, the colour of the reaction

mixture changed from yellow to green and I.R. showed that all starting 5-4 had

completely reacted. On cooling the reaction mixture, the product precipitated. This green

precipitate was filtered to give the product as a green powder 82 rng, 47.6%. Clean

NMR spectra of the product were not obtained. However, the intense green colour of the

product suggested that it was a salt of the 2-ferrocenyl-2,6-diphenyl pyrylium ion 5-5.

Similar green coloured ferrocenyl pyrylium salts have been synthesized in an earlier

study23. This was confirmed by the intense ESMS peak in the positive ion mode in

methanol corresponding to the 2-ferrocenyl-4,6-diphenylpyrylium ion figure 11, section

5.3.2. In the negative ion mode, peaks corresponding to [FeCl4f and [FeC13] were

observed. This suggested that the counter anion formed in the reaction was [FeCl4f. The

high resolution mass of the 2-ferrocenyl-4,6-diphenylpyrylium ion and the [FeCl4f was

also determined.

eCI4]

3"
2'

5' 6'

4,

5.,

3,,,

2"

3,,"

5-5
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HRMS

Calculated for [C27H21OFef: 417.0937 [M]

Found: 417.0956 [MV

HRMS

Calculated for [FeC14T 195.8098 [Mf

Found: 195.8069 [Mf

HRMS

Calculated for [FeCI3T 160.84 10 [Mf

Found: 160.84 19 [Mf

Elemental Analysis:

Calculated for C271-121Fe2OCl4: C 52.73%, H 3.44%

Found: C 51.34% H 3.93%

5.4.4 Reaction of 5-4 with ferrocenylethyne in benzene

[1 ,3-diphenylprop-2-en-3-yl-KC3- 1 -one-icO]tetracarbonylmanganese 5-4 106 mg, 0.28

rnrnol and ferrocenylethyne 119 mg, 0.32 mmol were refluxed in nitrogen-saturated

benzene for 21/2 hours. During this time the colour of the reaction mixture had changed

from yellow to red and I.R. spectra showed that all the starting 5-4 had reacted since the

metal carbonyl bands for 5-4 had disappeared. The reaction mixture was cooled and

solvent removed under vacuum. The residue, red oil, was chromatograhed [p.l.c.,

dichloromethane/hexane 1:1 vlv] to afford two major bands, a red band at Rf 0.8 and an

orange band at Rf 0.2. Removal of the bands and extraction with dichioromethane

followed by solvent removal under vacuum gave 5-6, [2-ferrocenyl-4,6-diphenylpyranyl-

5]tricarbony1manganese from red band at Rf 0.8 as a red oil, 47.0 mg, 29.8 % and

product 5-8, 2-ferrocenyl-4,6-diphenylpyran from the band at Rf 0.2 as an orange oil
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10.0 mg, 8.4 %. Both products 5-6 and 5-8 were recrystallised by diffusion

ether/pentane to give red and orange crystals respectively.

M.p. 182°C

IR: benzene 2012 vs, 1951 m, 193 1m cm'.

h1I NMR5"4: 300 M1-Iz, CDC13 7.50 d, 2H, Jr= 8.6 Hz, H2", H6", 7.28- 7.58 m, 8H,

Ar-H, 5.72 s, 1H, H3, 5.71,s, 1H, H5, 4.80,dd, J=1.6Hz, 2H, H2",HS" , 4.43 dd,

J=1.61-Iz, 2H, H3",4", 4.19 s, 5H, C5H5

13C NMR5'14: 300 MHz, CDCI3 137.4 Cl', 137.0, Cl", 129.2, C3', 5', 128.7,

C3", CS", 128.5, C4', 128.5, C4", 127.5, C2', C6', 122.7, C2", 6", 111.1 C2,

96.8,C4, 93.4, C6, 85.0C3, 80.6, CS, 78.3 Cl", 69.9 C5H5, 67.4 C5H4 C2",

5''', 64.7 C5H, C3''', C4'''.

Elemental Analysis:

Calculated for C30H21FeMnO4: C 64.78%,

Found : C 64.80%

ESMS: MeOH, positive ion mlz 417 100%, [M-MnCO3f

H 3.81%

H 3.81%

F.

4,,

5"

5-6

4""
3'*"
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3'
2'

4,

4,'

5.,

ESMS: MeOH, positive ion m/z 418.0 100%, [M+Hf

`H NMR 51224: 300 M1-Iz, CDC13 7.86 d, 1H, H3, J21.0 Hz, ö 7.32 m, 1014, all Ar-

H, 6.78 s, 1H, H5, 6.20 d, 114, 142, J= 21.0 Hz, 4.75 dd, 2x 1H, H2", H5", 4.71

dd, 2x 1H, H3''', H4'', 4.11 s, 5x 1H, C5H5,

13C NMIR 5,1224: 300 JVIII-Iz, CDC13, ö 151.3 C6, 148.3 Cl', 142.3 C4, 123.6 C3

120.5 CS, 77.0 C2, 120.0-128.0 all Ar-C, 69.6 C5H5, 69.2 C5H4, 66.7 C5H4,

66.9 C5H4.

Elemental Analysis

Calculated for C27H22OFe: C 77.52%

Found : C 76.83%

HRIVIS

Calculated for C27H22OFe: 418.1220 [M]

Found: 418.1253 fM]

H 5.30%

H 5.32%

5' 6'
1" I

3'

3,"

4',,,

2"

3,,,'

5-8
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5.4.5 Preparation of 2-ferrocenyl-4,6-diphenylpyrylium triiodide

[2-Ferrocenyl-4,6-diphenylpyranyl-5]tricarbony1manganese 5-6 50 mg, 0.090 mmol

and iodine 46 mg, 0.36 mmol were stirred in nitrogen-saturated carbon tetrachioride for

1 hour. The colour of the reaction mixture changed from yellow to green and I.R. spectra

showed that all 5-6 had reacted disappearance of the metal carbonyl bands. The carbon

tetrachioride was removed from the reaction mixture under vacuum to leave green solid

40 mg, 55.8 %. Attempts were made to crystallize the product by the solvent diffusion

method using acetonitrile and ether. However, no crystals formed. Clean NIvIR of the

product could not be obtained. The identity of the product was determined by its ESMS

signal in the positive ion mode and cone voltage +20V corresponding to the 2-ferrocenyl-

4,6-dipheny! pyrylium ion figure 1. In the same way as for compound 5-5, the pyridine

derivative of 5-7 was prepared and characterized to confirm its identity.

5-7

`3-

ESMS: MeOH, positive ion mlz 417.0 100%, [M]

ESMS: MeOH, negative ion mlz 380.2 100% 13

3,
2

5 6

4

4"

5"

3"

2'

4"
3"
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5.4.6 Reaction of the pyrylium salt, C27H21Fe2OC14, 5-5 with zinc in ether

2-Ferrocenyl-4,6-diphenylpyrylium salt, C27H21Fe2OC14 5-5 50 mg, 0.06 mmol and

zinc 4.1 mg, 0.06 mmol were stirred in nitrogen-saturated diethyl ether overnight.

During this time the reaction mixture turned from green to red. The solid that had formed

was filtered and the ether removed under vacuum to give red oil. The residual red oil was

chrornatographed p.l.c., dichloromethane/hexane, 1:1 to give one major red band at Rf

0.2. Removal of the band and extraction with dichiorornethane gave red oil. This product

however did not form any crystals and a clean NMIR of the product could not be obtained.

1-lowever, The FIRMS values for the product are listed below. The values show that the

product has one additional oxygen atom when compared to 2-ferrocenyl-4,6-

diphenylpyranylpyran 5-8. Note that the anion used here and in section 5.4.7 is FeCI4.

HRMS

Calculated for C27H22O2Fe1Na1: 457.0861 [M+Naf

Found: 457.0819 [M+Naf

5.4.7 Reaction of 2-Ferrocenyl-4,6-diphenylpyrylium salt, C27H21Fe2OC14, 5-5 with

ammonia

2-Ferrocenyl-4,6-diphenylpyrylium salt, C27H21Fe2OC14, 5-5 40 mg, 0.05 mmol was

treated with a few drops of 30% ammonia23 in a small round-bottom flask for 1 hour. Note

that the ammonia was added directly to the salt and no solvent was used for the reaction.

The resulting residue was chromatographed p.l.c, 1:2 ethyl acetate/hexane to afford one

major yellow band at Rf 0.8. Removal of the band and extraction with dichloromethane

gave 5-9 as yellow oil 12 mg, 44 %. Attempts to recrystallise the yellow oil did not

produce any crystals.
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4,

2

ESMS: MeOH, positive ion mlz 416.5 100%, [M+H]

1H NMR5'14: 300 MHz, CDCJ3 6 7.28- 8.21 m, IOH, all Ar-H, 6.91 s, 2H, H3, H5,

5.10 dd, 2H, J=2.4 Hz, H2", H5", 4.45 dd, 2H, J=2.4 Hz, H3", H4", 4.11 s, 5H,

C5H5. Note that the resonances for H3 and H5 were not confirmed.

`3C NMR 5.14: 300 MHz, CDCI3 6 127.0-130.0 bC, all Ar-C, 159.5 C6, 149.2 C4,

139.8 Cl', 139.3 C2, 139.1 CI", 116.5 C3, 115.6 CS, 84.0 Cl", 69.9 C2",

CS", 69.7 C5H5, 67.1 C3", C4".

H.R.M.S

Calculated for C27H21NFe:

Found

Calculated for C27H22NFe:

Found

Calculated for C27H21NFeNa:

Found

415.1018 [M]

415.1047 [M]

416.1104 [M+Hf

416.1096 [M+Hj'

438.0916 [M+Naf'

438.0953 [M+Naj

5' 6
1"

5',

3,.

5-9

3,,,,
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Note: 1-phenyl-3-3, 4, S-trimethoxyphenylprop-2-en-1one was made available for use

from an earlier study14. The purity was determined by NIvIR before it was used for further

reactions.

OMe

5-14

M.p. 68°C

1H NMR14: 300 MHz, CDC!3 6 8.06 d, 2H, J=8.0 Hz, H2', 6', 8.03 d, 1H, J=15.5 Hz,

H3 7.55 rn, 3H, H3', 4', 5,, 7.61d, 1H, J15.5 Hz, H2, 7.76 s, 21-I, H2", 6", 3.91 s,

3H, OMe, 3.92s, 6H, 2 x OMe

`3C NMR1: 300 MHz, CDC13 6 190.6 Cl, 145.0 C3, 138.3 Cl', 132.7 Cl",

1304 C2', C6', 1304 CS', 140 5 C4', 128 6 C2, 128 9 C3', 126 3 C2", C6",

128.5- 128.9 3C, C3", 4", 5".

5.4.8 Manganation of 1-phenyl-3-3,4,5-trimethoxyphenylprop-2-ene-1-one

1 -Phenyl -3 -3,4,5-trirnethoxyphenylprop-2-en-1-one 5-14 200 mg, 0.96 mmol and

PhCH2MnCO5 200 mg, 0.67 mmol were refluxed in nitrogen-saturated heptane for 3

hours. The reaction mixture was cooled and the solvent removed under vacuum. The

residue was chrornatograhed p.l.c., 1:1 dichloromethane/petroleum spirits to afford one

red band, Rf 0.8. The band was eluted and the solvent removed to provide pure product

as seen by NIMR, 5-10 as red oil, 113 mg, 36%
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5'

M.p. 195°C

LR. heptane 2081 m, 1996vs, 1934 s cni1

ESMS: MeOl-I!NaOMe, CV +20V mlz 487 70% [M+Na], 951 65% [2M+Naf

MeOH/NaOMe, Cone -20V mlz 495 M+OMef

1H NMRsl4: 300 MHz, CDCI3 7.75 s, 1H, H2, 7.18- 8.07 m, 7H, Ar-H, 4.00 s,

3H, OMe, 3.97 s, 6H, 2 x OMe

`3C NMR": 300 MIJz, CDCI3 ö214.0 CU, 210.3 CO, 210.0 CO, 204.6 Cl,

152 9 Cl", 141 9-145 6 3C, C3", 4", 5",135 3 C2, 133 5 Cl', 131 4 C5', 130 9

C2', 6', 129.3 C2", C6", 128.8 C3', 128.3 C4' 56.3 OMe, 61.0 2x OMe.

5.4.0 Reaction of 5-10 with ferrocenyethyne in carbon tetrachioride

5-10 106 rng, 0.28 mmol and ferrocenylethyne 119 mg, 0.57 rnmol were refluxed in

nitrogen-saturated carbon tetrachioride for 1 hour. During this time, the colour of the

reaction mixture changed from yellow to green and I.R. monitoring showed that all the

starting 5-10 had reacted. On cooling the reaction mixture, the product precipitated as a

green powder. This was filtered to give the product as a green powder 0.087g, 51.3 %.

The purity of the product could not be determined as clean NMR spectra of the product

5-10
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were not obtained. The product was identified as 2-ferrocenyl-4-3,4,5-

trimethoxypbenyl-6-phenylpyrylium ion 5-11 in the same way as the 2-ferrocenyl-4,6-

diphenylpyrylium ion. The pyridine derivative of this pyrylium salt were also prepared

and characterized to confirm the identity of 5-1 1. In the negative ion mode, a peak

corresponding to [FeC!4] was observed, This suggested that the counter anion formed in

the reaction was [FeC14].

HRMS

Calculated for [C30H27O4Fef: 507.1254 [M

Found: 507.1289[M]

HRMS

Calculated for [FeCI4T 195.8098

Found: 195.8131

[MT

[MT

FIRMS

Calculated for [FeCl3f 160.84 10 [MT

Found: 160.8411 [M]

[FeCII4'
r 1

511

4
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5.4.11 Reaction of 5-10 with ferrocenylethyne in benzene

5-10 120 rng, 0.23 mmol and ferrocenylethyne 65 mg, 0.31 mmol were refluxed in

nitrogen-saturated benzene for 21/2 hours. During this time the colour of the reaction

mixture had changed from yellow to red and I.R. monitoring showed that all the starting

MnCO4 had reacted. The reaction mixture was cooled and solvent removed under

vacuum. The residue was chromatographed p.l.c., 1:1 CH2CI2/hexane to afford two

major bands, a red band at Rf 0.8 and an orange band at R1 0.2. Removal of the bands

and extraction with dichioromethane followed by solvent removal under vacuum gave 5-

12 as red oil 56 mg, 39.8 % and product 5-13 as orange oil 31 mg, 28 %. Both

products 5-12 and 5-13 were recrystallised by diffusion ether/pentane to give red and

orange crystals respectively.

IR: benzene 2012 vs, 1951 m, 193 1m cm1.

2111

`H NMR5"2'16: 300 MHz, CDCI3 7.50 d, 2x 1H, J 8.6 Hz, H2", H6", 7.28- 7.58

m, 5H, Ar-H, 7.13 s, 2H, H2', 6', 5.63 s, 1H, H3, 5.32 s, 1H, H5, 4.80, dd, J

3l

2

51
61

4

3111

5-12

3*
II
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1.6Hz, 2H, H2", H5", 4.43 dd, J= 1.6Hz, 2H, C3",4", 4.19 s, 5H, C5H5, 4.03 s,

3H, 4'OMe, 3.97 s, 6H, 3', 5' OMe

13C NMR5"2"6 300 M1Hz, CDC13 6 142 3 Cl', 137 0 Cl", 131 3 C3', 5', 128 9

C3", C5", 128.6 C4', 127.5 C2', 126.5 C2', C6', 123.0 C2", 6", 110.7C2, 96.8

C4, 93.4 C6, 85.0 C3,80.9 CS, 78.2 Cl", 69.9 C5H5, 97.8 Cl", 67.4

C5H4, 64.7 C5H4, 56.5 OMe, 60.4 2x OMe.

ESMS: MeOH, positive ion mlz 507 100%, [M-MnCO3f

Elemental Analysis

Calculated for C33H27O7Fe,Mn, C 60.39 H 4.15%

Found : C 60.41 H 4.20%

ESMS: MeOH, positive ion m/z 509.6 100%, [M+H]

`H NMRSl2l6: 300 MIHz, CDC13 6 7.32 m, 5H, Ar-H, 7.12 d, IH, H3, J 21.0Hz,

6.74 s, 1H, H5, 6.68 s, 2H, H2", 6", 6.10 d, 1H, H2, J21.0 Hz, 4.80 dd, 2x 1H,

4'

5"

3"

5-13

4,,'
3,,,,
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H2", H5", 4.45 dd, 2x 1H. H3", 144", 4.27 s, 5x 1H, C5H5, 3.94 s, 3H, OMe,

3.85 s, 6H, 2 x OMe

`3C NMR5"2'16: 300 MHz, CDCI3, 153.7 C6, 151.3 Ci', 148.4 C4, 123.6 C3,

120.6 CS, 77.4 C2, 120.0-128.0 all Ar-C, 69.6, C5H5, 66.2 C5H4 66.7 C5H4,

66.9 Cs1-14, 56.2 OMe, 60.9 2x OMe.

Elemental Analysis

Calculated for C30H28O4Fe1: C 70.88% H 5.55%

Found : C 70.29% 1-I 6.81%

HRMS

Calculated for C20H28O5Fe1: 508.1332 [Mf

Found: 508.1368 [MJ

5.4.12 Preparation of 2-ferrocenyl-4-3,4,5-trimethoxyphenyl-6-phenylpyrylium

triiodide

[2-Ferrocenyl-3-3 ,4,5 trimethoxyphenyl-6-phenylpyranyl-rj] tricarbonyl-manganese 5-

12 50 mg, 0.90 rnmol and iodine 46 mg, 0.36 mmol were stirred in nitrogen-

saturated carbon tetrachioride for 1 hour. The colour of the reaction mixture changed

green and the J.R. showed that all starting MnCO3 had reacted. The carbon tetrachioride

was removed from the reaction mixture under vacuum to leave a green solid 38 mg, 55.4

%. Attempts were made to recrystallize the product by the solvent diffusion method

using acetonitrile and ether. However, no crystals formed. Clean NMR of the product

could not be obtained. The identity of the product was determined by the intense ESMS

signal in the positive ion mode and cone voltage +20V corresponding to 2-ferrocenyl-4-

3,4,5-trimethoxyphenyl-6-phenylpyrylium ion figure 5-14. The pyridine and the pyran

derivatives of the triiodide were also prepared and characterized to confirm the identity of

5-14.
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ESMS: MeOH, positive ion rnlz 507.0 100%, [Mf

ESMS: MeOl-I, negative ion rn/z 380.2 100% 13

5.4.13 Reaction of the pyrylium salt, C30H27OFe2C14, 5-11 with ammonia

2-Ferrocenyl-4-3,4,5 trirnethoxyphenyl-6-phenylpyrylium salt, C 30H27OFe2C14, 5-11

50 mg, 0.06 mmol was treated with a few drops of 30% ammonia in a small round

bottom flask. Note that the ammonia was added directly to the salt and no solvent was

used for the reaction. The resulting residue was chromatographed p.1.c, 1:2 ethylacetatel

hexane to afford one major yellow band at R 0.8. Removal of the band and extraction

with dichloromethane gave 5-15, yellow oil 19 mg, 49.7 %. The yellow oil was

recrystallised by diffusion dichloromethane/pentane to give yellow crystals.

4

L 2

3

5-14
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ESMS: MeOH, positive ion mlz 506.6 100%, [M+Hf

1H NMR 5.126: 300 MFIz, CDC13 5 7.28- 8.21 m, 1OH, all Ar-H, 6.91 s, 2x 1H, H3,

H5, 5.10 dd, 2x IH, J= 2.4 Hz, H2", H5", 4.45 dd, 2x 1H, J 2.4 Hz, H3", H4",

4.11 s, Sx 1H, C51-15, 4.00 s, 3H, OMe, 3.97 s, 6H, 2 x OMe.

`3C NMR
5,12,16: 300 MHz, CDC13 S 127.0- 130.0 bC, Ar-C, 157.0 , C6, 153.8

C4, 139.8 Cl', 139.6 C2, 139.1 Cl", 116.5 C3, 115.6 C5, 84.0 Cl", 69.9

C2", CS", 69.7 C5H5, 67.1 C3", C4", 56.5 OMe, 60.4 2x OMe.

Elemental Analysis

Calculated for C30H27NFeO3

Found

Calculated for C30H27NFeO3:

Found

C71.30% H5.38% N2.77%

C 70.79% H 5.71% N 2.77%

506.1445 [M+H]

506.1413 [M+H]

1" I
5"

3,,.

2

4""
3"

5-15
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5.5 Conclusion

A new synthesis of ferrocenyl-substituted pyrylium salts has been established, which

shows more ready variation of substituents than the previous routes [3]. It also avoids the

strongly acid conditions used in the usual syntheses [1] which may be an advantage for

some substituents. By varying the solvent, intermediate species can be isolated. The

ferrocenyl-pyrylium cations incorporate both the reducuble and the oxidisable centre and

both redox processes are clearly seen in electrochemical measurements. The UV-visible

spectra shows a broad band at ca 680 nm which arises from an internal charge transfer

from the ferrocenyl moiety to the pyrylium ring.
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Chapter 6. General Experimental Procedures and Preparation of

Precursors

6.1 General Experimental Techniques

Most reactions in the current study were carried out under inert atmosphere of oxygen

free nitrogen. This was essential as most compounds, especially the cycimanganated ones

and most coupling products were moisture and oxygen sensitive. Standard Schienk line

techniques were used for the handling and reaction of such compounds1.

Silicon and petroleum oil baths were used for most reactions requiring constant heating.

Melting point determinations were carried out on a Reichert Thermovar apparatus.

All elemental analysis of the compounds in the current study was performed at the

rnicroanalytical laboratory based at the University of Otago, Dunedin.

6.1.1 Chromatography

Preparative layer chromatography PLC plates were prepared by mixing silica gel

Merck Kieselgel 60PF254 with twice its weight of distilled water. The resulting slurry

was spread onto 20 x 20 cm glass plates to a depth of 1- 1.5 mm and allowed to air dry

prior to activation at 100°C. The mixture to be separated was applied as a CH2CI2

solution by pipette as a thin line near the base of the plate. The plates were developed in

tanks containing the required solvent mixture. Coloureless bands were identified using

UV light. Bands to be collected were removed from the plates and the products eluted

from silica with CH2CI2 or Et20 or both used one after the other.

Column chromatography was used for some separations, for example, when alumina was

required. Packing material BDH alumina oxide Brockman Grade, activity Ii was slowly

poured into a column with the required solvent. The column was previously fitted with a

cotton wool plug below a 5 mm layer of acid washed sand. Mixtures to be separated were

added as solutions, and allowed to run into the column before developing. Where

190



mixtures were insoluble in the chromatography solvent, they were dissolved in CH2CI2

and adsorbed onto 2-4 g of alumina. CH2C12 was removed under vacuum, with the

adsorbed material transferred to the column and developed. Bands were collected

according to colour.

6.1.2 Chemicals

Unless mentioned below, chemicals were used as received.

Solvents were generally purified prior to use to remove oxygen and water, by distillation

over a drying agent under nitrogen atmosphere Table 6-1.

Table 6-1 Purification of general solvents

Solvent Purification in nitrogen atmosphere

Acetonitrile Distilled from Cal-Il2

Benzene Distilled from sodium

Carbon tetrachloride

Diethylether Distilled from sodiumlbenzophenone

Dichloromethane Distilled from CaH2

Heptane Distilled from CaH2

Hexane Distilled from Cal-I2

Petroleum Spirits 6O800 fraction Distilled from CaH2

Tetrahydrofuran Distilled from sodium/benzophenone

Note: In the later stages of the research, diethylether, dichloromethane, THF and hexane

were purified by the solvent purification system purchased the Chemistry department

towards the middle of 2007.
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6.2. Instrumental Techniques

6.2.1 Infrared spectroscopy

Infrared spectroscopy was carried out on a Bio-Rad Digilab Division FTS-40 FTIR, using

Bio-Rad Win-IR Ver. 4.4 software.

Solution spectra were obtained using a solution cell 0.1 mm path length and KBr

windows.

Observations were made of the metal carbonyl region 1 800-. 2400 cm4. Chemical

information was obtained from the number, pattern, intensity and position of the peaks in

the region.

In the instances where organic products were prepared, observations were made between

1800-1600 crn1, the region where the C=O stretch would be expected.

6.2.2 Nuclear magnetic resonance NMR spectroscopy

NMR spectroscopy was performed using either a brucker Avance DRX 300 and Avance

DRX 400 spectrometer XWIN-NMR software V. 3.0 or V. 3.1 respectively. This

software was later changed to Topspin.

Deuterated chloroform was used as the solvent with `H IvlIR and 13CNMR spectra

referenced to TMS Me4Si.
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6.2.3 Mass spectroscopy

6.2.3.1 ESMS

Electrospray mass spectra was obtained on a Fisons Instruments VG Platform II using

MassLynx V. 2.0 software. Analyses were conducted over a range of cone voltages in

both positive and negative modes.

Methanol was used as the mobile phase. Approximately 1 mg of the compound was

dissolved in 0.5 ml of methanol the mobile phase, then immediately injected in the

machine. For most samples, a few drops of a methanol solution of NaOMe was added to

the sample, as an ionization aid2.

Volatile, thermally stable compounds, especially for the cascade products in Chapter 3,

were also analysed by coupled gas chromatography/mass spectroscopy EI-GCMS.

Electron impact mass spectra were collected on a I-Iewlett- Packard 5970 mass selective

detector coupled to a HP 5890A gas chromatograph. Spectra were processed and

analysed using HP enhanced Chemstation 61701 AA V. A. 03.00 software.

Compounds were dissolved in CH2C12 for direct injection analysis by GC/MS.

6.2.3.2 High resolution Mass Spectroscopy MicrOTOF

The MicroTOF required calibration every time it was to be used. Sodium formate was

used for calibration. The calibration range was dependant on the expected masses of the

products in the samples.

The rate of flow of the mobile phase was set at 180 L/ h. The pump however could be

fast-forwarded to speed up the sample initially to the detector.

In almost all the cases, methanol was used as the mobile phase for the analysis of the

samples in this study. Samples were prepared by dissolving as little as about 1 mg of the
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product in about 1.0 mL of methanol. Unlike sample preparation for ESMS, samples for

MicroTOF analysis had to be very dilute.

The following steps were followed for running a sample for data analysis.

1. The sample details were entered into the sample information window.

2. When sample spectra had stabilized on the screen, the spectraldata acquisition

was started by clicking on the green acquire arrow

3. Acquisition was done for about 0.5 m

4. The acquisition was then stopped followed by stopping the syringe pump

For data analysis, the following steps were involved

1. The data analysis window was opened

2. Individual users opened their own files

3. A trace appeared and a right drag was made through the trace

4. Right clicked in the MS window and coped to compound mass spectra.

6.2.4 X-ray crystallography

Preliminary investigations were undertaken by precession photography using Nickel-

filtered Cu- Ka X-ray radiation. This gave an indication of crystal quality, and allowed

the determination of space group and unit cell dimensions.

For full crystal structure determination, intensity data sets were collected by University of

Canterbury or University of Auckland. Both the Universities are equipped with a

Siemens SMART CCD diffractometer. Structure solution and refinement was carried out

using the SHELX program3, running under the WINGX4 suite of program.
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Complete tables of bond lengths, bond angles, final postion parameters and thermal

parameters are presented on CD inside back cover in the form of the CIF files. The

program Mercury5 can be used to view the structures.

6.3 Preparation of Reaction Precursors

Most of the preparations in the study were found in the literature. In general, the

published methods were altered for reasons of convenience or scale.

Those preparations that are not referenced are syntheses based on similar preparations in

the literature. The purity of all compounds was confirmed using NIvIR.

6.3.1 Preparation of benzymanganesepentacarbonyI6

An amalgam of mercury 5 rnL and sodium 0.7 g was prepared in a Schienk flask 100

mL under nitrogen. To the Schienk flask was added THF 60 rnL followed by

Mn2CO10 2 g, 5.1 mmol, and the solution was stirred vigorously for 2 hours. The pale

grey/green solution was decanted under nitrogen into a second Shienk flask containing

benzy! bromide 1.1 mL. the solution was stirred for a further 10 minutes, then run

through a short silica column, and washed through with THF 2x 10 mL. The solvent

was removed from the pale yellow solution under reduced pressure. The resulting yellow

oil was sublimed using a cold finger 0.5 mm Hg, 50 °C, affording pale yellow crystals

of PhCH2MnCOs 2.3 g, 78%, vCO dichioromethane 2108m, 2011vs, br, 1990s,

br crn1.

Alternatively, after stirring the solution for a further 10 minutes, the solution was

transferred to a 500 mL round bottom flask and the solvent removed under vacuum

rotary evaporator. The residue was then extracted with hexane three times and the

solution transferred to a second 500 mL round bottom flask. The hexane was then

removed under vacuum and the resulting yellow oil was sublimed as above to give pale

yellow crystals in equally good yields.
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6.3.2 Preparation of cyclomanganateci precursors

A ratio of 1:1.2 of the compound to be cyclomanganated and PhCN214nCO5 was

transferred to a Shienk flask containing the reaction solvent heptane or hexane unless

stated and refluxed under nitrogen. The ratio was changed to 1:2 or more where two or

more possible manganation sites were possible on the compound to be cyclomanganated.

The progress of the reaction was monitored by observation of the carbonyl region of the

infrared spectrum, and the reaction was deemed complete with the disappearance of the

2108 ciii1 peak of PhCH2MnCO5.

The hot reaction mixture was transferred to a 100 mL round bottom flask and the solvent

removed under vacuum rotary evaporator. The residue was plated PLC to isolate the

major products. Attempts were made to crystallize the products, however, when this

failed as was the case in most instances, the oil was characterized and used for further

reactions.

The IR spectra of compounds prepared in the current study were compared to the IR

values of similar compounds found in literature. Purity was confirmed by NMR

spectroscopy.
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