

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Algorithmic Mapping of
Software-Defined Networking

Pipelines

A thesis

submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

at

The University of Waikato

by

Christopher Lorier

© 2022 Christopher Lorier

For Min and Hazel. Love the both of you to bits!

Abstract

Networks with a consistent software stack reduce the complexity of monitoring,

testing and automation, and reduce the mental burden on operators. However,

when network software is bundled with the hardware, operators face being

locked into a single vendor’s hardware, when they might otherwise be able to

use cheaper or more suitable hardware from another vendor.

Ostensibly, Software Defined Networking (SDN) gives operators the freedom to

operate hardware from different vendors using the same software stack. How-

ever, producing SDN software that controls hardware from different vendors is

hampered by differences in the packet processing pipelines of the Application-

Specific Integrated Circuits (ASICs) each vendor uses.

This thesis presents the design and evaluation of Shoehorn, a system for im-

proving the portability of SDN control-plane software. Shoehorn finds map-

pings from virtual pipelines (defining the packet processing requirements of

control-plane software), to physical pipelines (defining the packet processing

pipeline of a physical device). Shoehorn improves on current approaches by

ensuring that the mappings are suitable for real-time translation of control-

channel instructions, by ensuring a one-to-one mapping of virtual pipeline table

entries to physical pipeline table entries. This also ensures that the mappings

do not significantly increase the memory usage or power consumption of the

Abstract iv

pipelines.

This thesis evaluates Shoehorn by mapping 25 virtual pipelines, based on real

SDN control-plane software for managing diverse networks, to a variety of

physical pipelines, based on real hardware SDN implementations. The evalu-

ation finds that all but 6 virtual pipelines are supported by multiple physical

pipelines, and that in every case where Shoehorn could not find a mapping, it

was due to a virtual table that no table in the physical pipeline could support.

Acknowledgements

I have been very fortunate to benefit from the experience of Richard Nelson,

Matthew Luckie, and Marinho Barcellos as my supervisors during this PhD.

Thank-you for your guidance and support.

I would also like to thank other members of the WAND research group: Brad

Cowie, Richard Sanger, Dimeji Fayomi, and Florin Zaicu.

I would like to thank the network operators who graciously helped provide

me with data: The Scinet team, REANNZ, NZNoG, Josh Bailey, and Marc

Bruyere.

I also wish to express my gratitude to my parents: Mary and Michel, for their

support, for giving me a place to stay in Hamilton, and with Hazel—but also

more generally, for far more than this page could ever do justice to.

어머님, 멀리 한국에서 오셔서 저희 가족을 잘 보살펴주셔서 감사합니다. 특히,

어머님이다인이를잘보살펴주신덕분에저의논문을무사히잘마칠수있었습

니다.진심으로감사드립니다.그리고아버님,한국에서많은응원을보내주셔서

감사합니다. 두 분 모두 항상 건강하시고, 행복하세요.

And—most importantly—to Min: thank-you so much for your patience and

support. To say “I couldn’t have done it without you” feels like a cliché, but I

honestly can’t think of a truer thing I have ever said.

Acknowledgements vi

This work was partially funded by a University of Waikato doctoral scholar-

ship.

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 3

1.3 Thesis Structure . 4

2 Background 6

2.1 Software-Defined Networking 6

2.1.1 Terminology . 7

2.2 OpenFlow . 8

2.2.1 OpenFlow 1.0 . 8

2.2.2 Multi-table OpenFlow 9

2.2.3 Apply-Actions and Write-Actions 10

2.2.4 Metadata . 11

2.2.5 Group Tables . 11

2.2.6 OpenFlow Table Type Patterns 12

2.2.7 Table-Features Messages 13

2.2.8 Other OpenFlow Features 14

Contents viii

2.3 P4 . 15

2.3.1 P4 Architectures . 16

2.3.2 Control Blocks . 16

2.3.3 Extern Objects . 17

2.3.4 Tables, Actions and Match Kinds 17

2.3.5 Annotations . 18

2.3.6 Portable Switch Architecture 19

2.4 Other SDN Standards . 20

2.4.1 Switch Abstraction Interface 20

2.4.2 P4 Integrated Network Stack 20

2.4.3 FoRCES . 21

2.4.4 Broadcom OpenNSL and SDKLT 21

2.4.5 NPLang . 22

3 Related Work 23

3.1 Alternative Approaches . 23

3.1.1 Standardised Pipelines 23

3.1.2 Programmable Hardware 24

3.1.3 Device Drivers . 25

3.1.4 NOSIX . 25

3.1.5 TableVisor . 26

3.2 Algorithmic Mapping of SDN Pipelines 26

3.2.1 Table Entry Growth 27

3.2.2 FlowAdapter and FlowConvertor 28

3.2.3 Sanger, Luckie and Nelson 29

3.3 Summary . 32

Contents ix

4 Target Hardware 33

4.1 Broadcom . 33

4.1.1 OF-DPA . 34

4.1.2 OpenNSL . 36

4.1.3 Other OpenFlow Implementations on Broadcom ASICs 36

4.2 Nvidia . 38

4.3 Cisco . 39

4.4 Aruba . 39

4.5 SAI . 40

4.6 Other OpenFlow Implementations 41

4.7 Discussion . 41

4.7.1 Features . 41

4.7.2 Common Table Structures 43

5 Target Controllers 45

5.1 Features of Interest . 45

5.2 Production Deployments . 46

5.2.1 Data Collected . 47

5.2.2 Identifying Entry Classes and Match Kinds 48

5.2.3 Identifying Transactions 49

5.2.4 Production Deployments 50

5.2.5 Updates . 51

5.3 Research Projects . 57

5.3.1 Actions . 59

5.3.2 Match Fields . 60

5.3.3 Tables . 61

5.3.4 Table Entries and Updates 63

5.4 Summary . 64

Contents x

6 Shoehorn Overview 66

6.1 Mapping . 68

6.2 Packet Recirculation . 69

6.2.1 Hardware Support . 70

6.2.2 Metadata . 70

6.2.3 Throughput . 71

6.3 Aggregating Components . 72

6.3.1 Cartesian Product Aggregation 72

6.3.2 Aggregating Conditionals 74

6.3.3 Aggregating Mutually Exclusive Tables 76

6.3.4 Concatenating Ternary Tables 76

6.3.5 Aggregation after Recirculation 77

6.4 Table Reordering . 77

6.5 MAC Learning . 79

6.6 Summary . 80

7 Architectures 82

7.1 Packet Paths . 82

7.2 Parser . 84

7.3 Metadata . 85

7.4 Action Modules . 86

7.5 Counters . 88

7.6 Actions . 89

7.7 Conditionals . 90

7.8 Match Kinds . 91

7.9 Annotations . 91

7.10 MAC Learning Externs . 92

Contents xi

8 Shoehorn Mapping Algorithm 93

8.1 Stage 1: Identifying Supporting Components 94

8.2 Stage 2: Finding Mappings . 96

8.2.1 Mapping Pipelines . 96

8.2.2 Mapping Control Blocks 100

8.3 Stage 3: Resolving Goto Actions 109

8.4 Populating Tables . 111

8.5 Discussion . 112

8.5.1 Splitting Physical Control Blocks 112

8.5.2 Wide Mappings . 113

9 Evaluation 114

9.1 Mapping Application . 114

9.2 Physical Pipelines . 115

9.2.1 Aruba . 116

9.2.2 Cisco . 117

9.2.3 OF-DPA . 118

9.2.4 SAI . 118

9.2.5 Nvidia . 119

9.3 Virtual Pipelines . 119

9.3.1 Implementation Details 120

9.3.2 Summary of Controllers 129

9.4 Results . 129

9.4.1 Physical Pipelines . 131

9.4.2 Recirculations . 134

9.4.3 Run Time . 135

9.5 Discussion . 135

9.5.1 Likely Causes for Failure 135

Contents xii

9.5.2 Programming Pipelines 136

9.5.3 Ideal Hardware . 137

9.5.4 Other Algorithmic Mapping Systems 138

10 Conclusion 140

10.1 Summary . 140

10.2 Future Work . 142

References 144

A Controllers 158

B Ethics Approval 165

List of Figures

3.1 Example Software-Defined Networking (SDN) Architecture using

Translation Software . 26

3.2 An Example of Merging Two Virtual Tables Resulting in a Carte-

sian Product of Entries . 27

4.1 The OF-DPA Flow Table Pipeline 34

4.2 Group Tables Used by the OF-DPA 36

5.1 Percentage of Updates to Datapaths by Entry Class 52

5.2 Maximum Number of Entries for Each Entry Class 54

5.3 Percentage of Entry Classes Performing each Action 55

5.4 Number of Controllers using Each Action 58

5.5 Number of Controllers Matching Each Field 61

5.6 Number of Tables used by Controllers 62

5.7 Number of Tables with High Update Rates 63

5.8 Number of High Entry Tables . 64

6.1 Example Shoehorn Architecture 67

6.2 Example Pipelines that Cannot be Aggregated 73

6.3 Key for Table Aggregation Diagrams 73

6.4 Aggregating Drop Tables . 74

6.5 Aggregating Conditionals . 75

List of Figures xiv

6.6 Aggreagting Mutually Exclusive Tables 75

6.7 Concatenating Ternary Tables . 76

6.8 Aggregation after Recirculation . 77

6.9 Example of Tables that Cannot Be Recirculated without Additional

Knowledge . 78

7.1 Example SVA Packet Path . 83

7.2 Example SPA Packet Path . 83

8.1 Table Update Rates . 95

8.2 During Stage 1 Shoehorn Disregards Excess Matches 96

8.3 Example Entry Tree . 102

8.4 Invalid Match Kinds Caused by Incremental Aggregation 106

8.5 Resolving goto Actions . 110

8.6 Demonstration of Translating Table Entries 111

List of Tables

4.1 Support for Pipeline Features in the Target Hardware 42

4.2 Support for Common Table Types in the Target Hardware 43

7.1 Header Fields Set by the Shoehorn Parser 84

7.2 Shoehorn Control Block Input Metadata 85

7.3 Shoehorn Intrinsic Control Block Action Metadata 86

7.4 Shoehorn Primitive Action Externs 89

9.1 Overview of Target Controllers . 129

9.2 Number of Recirculations Required to Support Each Virtual Pipeline 130

List of Algorithms

1 Stage 2 of the Shoehorn Mapping Algorithm 97

2 Map Components from a Virtual Control Block to a Physical Control

Block . 100

Publications

Christopher Lorier, Matthew Luckie, Marinho Barcellos, and Richard Nelson.

“Shoehorn: Towards Portable P4 for Low Cost Hardware”. In: 2022 IFIP Net-

working Conference (IFIP Networking). IEEE. 2022, pp. 1–9

List of Acronyms

ACL Access Control List

AMA Action Module Action

API Application Programming Interface

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

DAG Directed Acyclic Graph

DoS Denial of Service

EAP Extensible Authentication Protocol

ForCES Forwarding and Control Element Separation

gRPC gRPC Remote Procedure Call

HSDN Hierarchical SDN

JSON JavaScript Object Notation

LACP Link Aggregation Control Protocol

LLDP Link Layer Discovery Protocol

MPLS Multiprotocol Label Switching

MPTCP MultiPath TCP

NAT Network Address Translation

NIC Network Interface Card

NPLang Network Programming Language

OCP Open Compute Project

List of Algorithms xix

OF-DPA OpenFlow Data Plane Abstraction

ONL Open Network Linux

ONF Open Networking Foundation

ONOS Open Network Operating System

OpenNSL Open Network Switch Library

PCAP Packet Capture

PINS P4 Integrated Network Stack

PSA Portable Switch Architecture

QoS Quality of Service

REANNZ Research and Education Advanced Network New Zealand

SAI Switch Abstraction Interface

SDKLT Software Development Kit Logical Table

SDMZ Science DMZ

SDN Software-Defined Networking

SPA Shoehorn Physical Architecture

STP Spanning Tree Protocol

SVA Shoehorn Virtual Architecture

SRAM Static Random Access Memory

TCAM Ternary Content-Addressable Memory

TPA Transport Protocol Address

TTP Table Type Pattern

VLAN Virtual LAN

VID VLAN ID

VPN Virtual Private Network

VRF Virtual Routing and Forwarding

WIX Wellington Internet Exchange

Chapter 1

Introduction

1.1 Problem Statement

The promise of SDN is that by decoupling the control plane from the data

plane, network operators will have the freedom to combine the software of

their choice with the hardware of their choice [34]. However, the creation of

SDN control-plane software that is portable across a wide variety of hardware

is hindered by incompatible implementations of SDN standards by different

vendors [18, 25, 43, 62, 70, 75, 93].

To support the packet processing rates required for high speed networking most

low-cost hardware uses fixed-function ASICs. Fixed-function ASICs are cheap

to produce, consume very little power, and can process billions of packets per

second. However, fixed-function ASICs process packets with a fixed pipeline of

logic, look-up tables, and other components—which may not be consistent with

the pipelines used by other ASICs. Software intended for one ASIC is unlikely

to be able to control a different ASIC without modification, even when the two

ASICs support the same SDN standard.

Chapter 1 Introduction 2

OpenFlow [60], the first SDN standard to have widespread industry support,

uses a model that ostensibly allows the creation of an arbitrary pipeline of

tables. In practice, however, most hardware implementations apply heavy re-

strictions to tables, in order to fit their ASIC pipelines. Hardware implemen-

tations specify which matches, masks, and actions can be used in each ta-

ble. The restrictions for each vendor are contradictory, meaning control-plane

software developers must customise their software to different hardware—a

time-consuming, expensive, and error-prone process.

To overcome this, researchers have proposed a translation layer in-between

the control- and data-planes [89, 90, 100, 114]. Control plane software defines

a virtual pipeline to control, and translation software transforms commands

for the virtual pipeline to produce identical behaviour from an otherwise in-

compatible physical pipeline. The translation software can use vendor pro-

vided drivers [114], or an algorithm to find mappings to arbitrary physical

pipelines [89, 100].

However, current algorithms are not suitable for real-time translation of live

control-channel commands in production networks. Sanger, Luckie, and Nel-

son [100], and Pan et al. [89] both present algorithms where, in the worst case,

the rate at which controllers can update table entries reduces exponentially

with the number of tables in a virtual pipeline.

This thesis investigates whether it is possible to algorithmically map from a

virtual to a physical pipeline, in a manner that does not significantly impact

the rate at which controllers can update table entries.

Chapter 1 Introduction 3

1.2 Contributions

The primary contribution of this thesis is Shoehorn, a novel system for find-

ing mappings between virtual and physical pipelines. Shoehorn finds mappings

that are suitable for real-time translation by ensuring they do not negatively

impact the rate at which entries in the virtual pipeline can be updated. Shoe-

horn differs from previous algorithmic approaches by guaranteeing that the

number of table entries required in the physical pipeline is no greater than the

number of entries in the virtual pipeline (unless explicitly permitted), Shoe-

horn is able to map pipelines to physical pipelines with very flexible tables,

and Shoehorn maps P4 pipelines, rather than populated OpenFlow tables.

The components of Shoehorn are:

• The Shoehorn Virtual Architecture (SVA), a P4 architecture to be used

by the developers of control-plane software, to define virtual pipelines for

their software to target,

• The Shoehorn Physical Architecture (SPA), a P4 architecture to be

used by hardware vendors, to define the physical pipelines used by their

ASICs,

• A mapping algorithm, that, when given a virtual and physical pipeline,

defined in the SVA and SPA respectively, can find a mapping between

the two, suitable for use by real-time translation software.

The evaluation of Shoehorn uses a proof-of-concept implementation of the

mapping algorithm, which is publicly available [24].

In addition, this thesis provides an in-depth investigation of the pipelines used

by existing SDN controllers, applications and hardware. This analysis informs

the design of Shoehorn, but also produced a novel dataset containing details

Chapter 1 Introduction 4

of the pipelines used by a number of devices, controllers and controller appli-

cations, released alongside this thesis [23].

1.3 Thesis Structure

Chapter 2 provides relevant background to the work described in this thesis.

It covers the evolution of SDN, explaining relevant technical details of SDN

standards, and how this has impacted the creation of portable control-plane

software.

Chapter 3 describes previous work to improve the portability of control-plane

software, and summarises the limitations of each.

Chapters 4 and 5 investigate the use of existing SDN standards in control-

plane software and hardware respectively. Mapping between pipelines is an

NP-complete problem; these chapters investigate common features in control-

plane software and hardware that Shoehorn can exploit to limit the scale of the

potential solution space. Chapter 4 analyses the published details of various

vendors implementations of SDN standards. It identifies low-cost hardware

suitable for Shoehorn to target, and identifies barriers to portability within

that hardware, as well as common features that may simplify the process of

finding mappings. Chapter 5 analyses production SDN deployments, as well

as control-plane software described in research. Chapter 5 also describes a

technique for identifying transactions in control-channel traffic.

Chapters 6, 7, and 8 describe Shoehorn. Chapter 6 introduces Shoehorn, pro-

viding a high-level overview of the design of Shoehorn. This chapter justifies

design decisions using the analysis performed in chapters 4 and 5. Chapter 7

provides a detailed description of the SVA and the SPA. Chapter 8 describes

Chapter 1 Introduction 5

the algorithm for finding mappings between pipelines.

To evaluate Shoehorn, this thesis created virtual pipelines in the SVA based

on 25 example projects chosen from those analysed in chapter 5, and created

5 physical pipelines based on the target hardware analysed in chapter 4, and

attempted to map each virtual pipeline to each physical pipeline. This is de-

scribed in detail in chapter 9.

Finally, chapter 10 summarises this thesis, and provides an overview of future

work.

Chapter 2

Background

This chapter provides a detailed description of the evolution of SDN and the

most widely used SDN standards. It describes features of the standards that

are difficult to support with fixed-function hardware, and therefore present a

challenge to creating portable SDN control-plane software.

This chapter primarily focusses on OpenFlow (section 2.2) and P4 (section

2.3), the two standards used throughout this thesis. These sections also contain

technical details of the standards that are relevant to this thesis.

2.1 Software-Defined Networking

Traditional networking equipment does not allow operators to modify the soft-

ware that controls the forwarding behaviour of the device. Devices are only able

to run software provided by the vendors, which operators can configure but not

modify. SDN is an approach to networking that separates the control software

from the forwarding hardware, allowing network operators to choose their own

software to control their networks.

Chapter 2 Background 7

In the SDN model, network devices are split into two planes: the data-plane

handles the packet (data) forwarding, and the control-plane runs the protocols

that control the behaviour of the data-plane. The two planes communicate via

an open API allowing the control-plane to be run on commodity hardware

separate from the specialised hardware of the data-plane.

With an open interface to the data-plane, the control-plane software can be

modified or replaced by an operator. This enables the creation of innova-

tive new applications, but the potential benefits go far beyond that. Portable

control-plane software allows operators to control a multi-vendor network with

consistent control-plane software. This reduces complexity, ensures interoper-

ability, simplifies monitoring, and makes troubleshooting easier. When run-

ning a Software-Defined Network, having the ability to introduce hardware

from multiple vendors, without having to modify the control-plane software,

allows operators to choose the ideal hardware for their requirements, ensures

resilience of supply, and can reduce costs.

2.1.1 Terminology

The components of the SDN model are referred to by different names in dif-

ferent standards. The remainder of this thesis uses the names used in the

OpenFlow specification [84]. A datapath is a device that performs data-plane

forwarding, a controller is the control-plane software that controls the be-

haviour of the datapath, and the control channel is the communication chan-

nel between the controller and datapath. In some models, the term controller

refers more specifically to a framework that handles communication with a

datapath, and sits below a controller application which is responsible for deter-

mining the datapath’s behaviour. As this work only requires that the control-

Chapter 2 Background 8

plane software defines a virtual pipeline, and is otherwise agnostic to how the

control-plane software is structured, the remainder of this thesis uses the term

controller to refer to any software that defines a virtual pipeline.

2.2 OpenFlow

OpenFlow [60] is the most widely supported SDN standard. It was first cre-

ated to enable researchers to run experiments on University campus networks.

Devices could run in a hybrid SDN–legacy mode, allowing production traffic to

continue to be controlled by software running on the device, while experimen-

tal traffic could be controlled using OpenFlow. OpenFlow instigated a great

deal of network research, and was quickly used to control production networks

as well [8, 47].

The original OpenFlow version 1.0 standard [79] was designed to be simple for

vendors to implement on legacy hardware, so that it could be added to existing

campus networks without the expense of replacing devices. As a consequence,

OpenFlow version 1.0 is very limited in the functionality it provides. This was

addressed with later versions of OpenFlow [80, 81, 82, 83, 84], but this led to

a protocol that was significantly harder for vendors to implement.

2.2.1 OpenFlow 1.0

In OpenFlow version 1.0, the packet handling behaviour of a device is repre-

sented as a single look-up table. The controller modifies the behaviour of the

datapath by adding and removing entries in this table.

Entries in the table have a set of Matches, a set of Actions, and a Priority.

Matches identify the packets to which entries apply. Matches specify a header

Chapter 2 Background 9

field, such as the IPv4 destination address or the Virtual LAN (VLAN) Iden-

tifier, and a masked value for that field. Packets match the highest priority

entry where every match value is equal to the corresponding masked field in

the header of the packet. An entry’s actions define how the datapath should

process matching packets. Possible actions include dropping the packet, mod-

ifying fields in the packet’s header, sending the packet to the controller for

further processing, or outputting the packet to a port.

As each packet can only ever match one entry, the single table approach scales

poorly when different actions are associated with different fields. For instance,

if a controller wishes to push a VLAN tag to every packet arriving on specific

ports, and determine the egress port by matching the Ethernet destination,

then the table must include an entry for every ingress port and Ethernet des-

tination combination.

This resulted in a common paradigm of reactive controllers [35]. In this paradigm,

traffic arriving at a datapath is forwarded to the controller by default using

a Packet-In message. The controller then determines the correct course of

action for all subsequent packets belonging to that flow, and installs a corre-

sponding flow table entry. However, forwarding all traffic to the controller can

be inefficient [35, 99] and creates a Denial of Service (DoS) attack vector.

2.2.2 Multi-table OpenFlow

OpenFlow 1.1 [80] introduced a series of tables. Datapaths perform a look-up

in the first table for every packet, and entries can send packets to a subsequent

table for additional look-ups with a Goto-Table instruction. Each table is

numbered, and the entries in a table can not specify a lower numbered table

with the Goto-Table instruction, thereby preventing loops.

Chapter 2 Background 10

Having multiple tables greatly improves the ability to support complicated

controllers without needing reactive flow installation. However, this made it

significantly harder to fully support OpenFlow on physical hardware. Fully

supporting multi-table OpenFlow version 1.1 requires supporting a pipeline of

up to 256 tables, that can be re-arranged at runtime, each able to support

masked matches for at least 17 fields, with arbitrary priorities [80]. The only

datapaths to fully support OpenFlow 1.1 relied on software flow tables [3, 91]

or expensive, flexible hardware like NPUs [76].

Most hardware implementations support multi-table OpenFlow by applying

heavy restrictions to tables. They specify which matches, masks, instructions

and actions each table can use, in order to match their ASIC pipelines. The re-

strictions for each vendor are contradictory, meaning control-plane software de-

velopers must customise their software to different hardware—a time-consuming,

expensive, and error-prone process.

2.2.3 Apply-Actions and Write-Actions

A multiple table pipeline raises the issue of where the pipeline should apply

actions. For instance, if a table rewrites a header field, and a subsequent table

matches that header field, should the table match the original value, or the

rewritten value? To address this issue, OpenFlow uses two types of action

instructions:

• The Write-Actions instruction writes an action to an action set, and

the pipeline applies the actions in the action set after it has completed all

flow table lookups for a packet. If a Write-Actions instruction writes

an action that has been written by a previous instruction, the earlier

instruction will be overwritten.

Chapter 2 Background 11

• The Apply-Actions instruction applies actions immediately, before any

subsequent table lookups. If an Apply-Actions instruction sets a header

field, then subsequent table lookups will use the new value. Apply-Actions

can be very difficult for hardware to support as their pipelines often only

allow rewriting packets to occur at the end of the pipeline.

2.2.4 Metadata

Metadata allows pipelines to carry additional information with packets. Table

entries can write metadata with a Write-Metadata instruction, which can be

matched by entries in subsequent tables. OpenFlow has a single 64Bit field,

and the Write-Metadata instruction includes a mask, allowing it to write to

arbitrary bits without overwriting other bits. Very few ASICs support masked

writes, instead most vendors either do not support metadata, or specify a set

of masks that can be used, effectively partitioning the metadata into multiple

fields.

2.2.5 Group Tables

OpenFlow 1.1 also introduced group tables [80]. Group tables are applied at

the end of pipelines, and allow associating groups of actions together allowing

them to be applied in more sophisticated ways. Flow table entries can specify

an entry in the group table with the group action. After the packet has passed

through the flow tables, the pipeline applies the actions specified in the group

table entry, according to the entries group type. The types of group are:

• Indirect groups combine a common set of actions together that multiple

table entries can reference.

Chapter 2 Background 12

• All groups define sets of actions and apply each to copies of the packet.

• Select groups distribute flows between multiple sets of actions for the

same table entry. For instance, select groups can load balance traffic

across multiple interfaces.

• Fast-Failover groups specify backup sets of actions when a liveness

check for the primary set of actions fails.

Groups can reference other groups. For instance, a pipeline could include an

Indirect group for each VLAN interface, indicating whether the packet should

be output with a VLAN tag, and an All group to flood packets. By referencing

the VLAN interface groups, the flood group does not need to be updated when

a VLAN interface is changed from tagged to untagged.

2.2.6 OpenFlow Table Type Patterns

Table Type Patterns (TTPs) [85] were proposed by the Open Networking

Foundation (ONF) as a method of reducing the burden created by incompati-

ble OpenFlow implementations, by enabling the standardisation of OpenFlow

pipelines. TTPs are a framework for defining a set of restrictions for OpenFlow

tables for a device or a controller. TTPs are very detailed, allowing very fine-

grained specification of exactly what entries can be added to each table. TTPs

can specify multiple different entry types within a table, each entry type with

its own set of restrictions. TTPs allow specifying exact values for fields and

masks that entries must match. Alternatively TTPs can specify match types,

including:

• exact, an unmasked match;

• mask, a match with an arbitrary mask;

Chapter 2 Background 13

• prefix, a match with a prefix mask; or

• all_or_exact, a match that either matches an exact value or any value.

TTPs are intended to follow a life-cycle whereby a developer identifies a use

case, and defines a TTP to support it, then vendors can choose to implement

the TTP in their hardware or not. This leads to the obvious problem of having

no guarantee that a vendor will be able to implement a TTP, and even if they

can, whether they will choose to do so in a timely manner. Consequently, TTPs

have not been widely adopted. As of July 2022 the ONF’s TTP repository [78]

was last updated in 2017 and only contains three TTPs (excluding examples

and drafts): a TTP defining the pipeline used by Broadcom’s OpenFlow Data

Plane Abstraction (OF-DPA) [18], and two TTPs defined by the ONF.

2.2.7 Table-Features Messages

Vendors with flexible hardware have used Table-Features messages to limit

the entries that can be added to tables at run-time [25, 43]. The controller

sends a Table-Features message to the datapath, indicating the matches,

masks, actions and next tables that entries in each table can use. The data-

path then configures its tables to support only the entries specified in the

Table-Features message. Table-Features messages are not as detailed as

a TTP, however. For instance, a Table-Features message can only indicate

whether a field is maskable, but not whether the mask will be all_or_exact

or a prefix.

Chapter 2 Background 14

2.2.8 Other OpenFlow Features

This section briefly describes some other features of OpenFlow relevant to this

thesis.

2.2.8.1 Vendor Extensions

Vendor extensions allow vendors to implement arbitrary features that are not

defined in the specification. By definition, vendor extensions are only supported

by a single vendor, and consequently are a barrier to portability.

2.2.8.2 Barrier Messages

Datapaths may apply commands from a controller out of order. Controllers

can use Barrier messages to enforce an order between commands. Datapaths

must process all messages received before the Barrier before attempting to

process any messages received after the Barrier. However, Barrier messages

are poorly supported by hardware [97].

2.2.8.3 Packet-In and Packet-Out Messages

When a controller wants to send a packet, for instance, to reply to an Address

Resolution Protocol (ARP) request, it can use a Packet-Out message, to in-

struct the datapath to generate a packet. Likewise, when the controller wishes

to receive packets from the data-plane, it can instruct the datapath to output

packets to the CONTROLLER port. When a packet is output to the CONTROLLER

port, the datapath will encapsulate the packet in a Packet-In message, and

forward it to the controller.

Chapter 2 Background 15

2.2.8.4 The NORMAL Port

When a datapath is deployed in hybrid mode, packets can be sent to the legacy

pipeline to be processed normally by outputting the packet to the NORMAL port.

2.3 P4

P4 (Programming Protocol-Independent Packet Processors) [13] is a program-

ming language for specifying the packet-processing behaviour of a switch. It

allows developers to define the behaviour of:

1. the parser, which extracts header fields from packets;

2. the deparser, which controls how packets are emitted;

3. the control flow, including logic and look-up tables;

as well as other aspects of a datapath with much more detail than OpenFlow.

When compiled, a P4 program produces a device-specific configuration for the

datapath, and the Application Programming Interface (API) by which the

datapath can be controlled. The communication protocol is unspecified—P4

only defines the interface. Commonly used communication protocols include

the OpenFlow protocol, or P4 Runtime [87], a control protocol designed specif-

ically for P4 datapaths based on gRPC.

Having control of the parser and deparser means that P4 programs are not

tied to any existing protocols or header fields. The look-up tables expose func-

tionality similar to OpenFlow but defining the control flow allows these to be

designed much more efficiently. For instance, P4 programs can determine the

IP version of a packet with a switch statement rather than a table look-up.

Chapter 2 Background 16

There are two versions of the P4 standard, P414 [106], and P416 [13], which is

the version used in this thesis.

2.3.1 P4 Architectures

P4 programs specify the behaviour of programmable blocks in a datapath’s

pipeline, but this leaves the question of what programmable blocks are avail-

able, how they fit together, and their interfaces to the datapath itself. Such

information is defined in a P4 architecture.

P4 architectures include definitions of P4 package objects, the object repre-

senting a programmable datapath. P4 programmes consist of an instantiation

of a package object, which takes as arguments the parsers, programmeable

control blocks, and any externs representing the behaviour of the datapath.

Code written for a P4 architecture should be portable across all hardware

that supports that architecture. The Portable Switch Architecture (PSA) [88]

is an example architecture that is designed to be portable across a variety

of switches. The PSA contains few restrictions on the code that can be used

within a control block, and is, consequently, impossible to support with fixed-

function hardware.

2.3.2 Control Blocks

Control blocks define how the datapath processes packets, once the headers

have been extracted by the parser. Control blocks contain control flow defini-

tions, and can invoke tables and extern objects.

Control blocks take structs of metadata and packet headers as arguments.

Each argument must have a direction: in, out, or inout, indicating whether

Chapter 2 Background 17

the metadata is input, output or both.

2.3.3 Extern Objects

In P4, control of queues and stateful functions (such as registers or counters)

are supported using extern objects. Externs allow support of any component

or function of a device without it having to be supported natively in P4.

Architectures define the interface to externs, and typically provide a written

description of their expected behaviour—the implementation details are left

unspecified. Datapaths must support all extern objects faithfully in order to

support the Architecture. Externs can be instantiated as part of a package, or

can be invoked from within control blocks.

2.3.4 Tables, Actions and Match Kinds

In P4, table definitions include specifications of the matches and actions that

the table can use. The actions are defined separately, and are themselves pro-

grammable. Actions can include logic, and typically write metadata or invoke

extern objects to direct the behaviour of the device. Tables include a list of

actions that entries in that table can apply. The matches a table can use are

specified in a dictionary of header field to match kind mappings.

Match kinds indicate the type of look-up required for each field in a table. The

core P4 library defines three match kinds:

1. exact, for fields that must match an exact value with no mask;

2. lpm, for longest prefix matches; and

3. ternary, for fields with arbitrary masks.

Chapter 2 Background 18

Different match kinds use different types of memory, and have different up-

date rates and power consumption. exact matches are typically the fastest

to update and use the least power, as they can be implemented with a hash

table in Static Random Access Memory (SRAM). lpm and ternary tables are

typically implemented with Ternary Content-Addressable Memory (TCAM).

TCAM returns the matching entry with the lowest index, meaning that adding

new entries may require moving existing entries [101, 112], thereby slowing

down the update rate. TCAM also reads the entire table in parallel for ev-

ery look-up, meaning TCAM look-ups consume considerably more power than

SRAM look-ups.

P4 programs invoke tables by calling their apply method. The apply method

performs a table look-up, applies the resulting actions, and returns a struct

containing a hit field, indicating whether the packet matched an entry in the

table, and a list of the actions that the table applied.

2.3.5 Annotations

Annotations allow architectures to extend the P4 language. P4 annotations

provide additional information to the compiler without modifying the P4 gram-

mar. There are 5 standard annotations in the P4 specification, and include the

@tableonly and @defaultonly annotations that, when added to actions in a

table’s action list, indicate that an action cannot be used as the default action,

or that an action can only be used as the default action, respectively.

Chapter 2 Background 19

2.3.6 Portable Switch Architecture

The Portable Switch Architecture (PSA) is a P4 Architecture for a generic

programmable switch created by the P4.org Architecture Working Group [88].

As the name suggests, it is intended to be portable across a variety of P4 switch

hardware. However, the PSA allows developers to define an arbitrary pipeline,

and therefore cannot be supported by fixed-function devices.

The PSA defines a variety of new externs, those relevant to this work are

described below.

2.3.6.1 ActionProfiles

ActionProfiles are analogous to the indirect group table in OpenFlow.

Table entries can specify a reference to a ActionProfile rather than specifying

the actions directly, allowing updating multiple entries with the same actions

more efficiently.

2.3.6.2 ActionSelectors

ActionSelectors implement behaviour similar to OpenFlow select groups.

They are similar to ActionProfiles, but allow referencing multiple actions.

The ActionSelector takes an algorithm definition as an argument, which is

used to determine which action the ActionSelector applies.

2.3.6.3 DirectCounters

DirectCounters are how the PSA implements table counters. DirectCounters

associate with one table, and can only be updated by actions called by that ta-

ble. Actions update counters by invoking the DirectCounter’s count method.

Chapter 2 Background 20

DirectCounters have a counter associated with each entry in the associated

table. When an action invokes the count method, the counter associated with

the matched entry is increased.

2.4 Other SDN Standards

This section provides a summary of other SDN standards, and how each ap-

proaches the issue of portability.

2.4.1 Switch Abstraction Interface

SAI is a C-like API to a generic switch, created by the Open Compute Project

(OCP), based on a fixed pipeline of tables [77]. Switch Abstraction Interface

(SAI) is widely supported by a variety of hardware from different vendors

and a number of Network Operating Systems, such as SONiC [113] and Open

Network Linux (ONL) [11].

SAI performs basic router functions, such as switching, spanning tree, Access

Control Lists (ACLs), and routing, and has many proposed features such as

Network Address Translation (NAT) or in-band telemetry. SAI exposes a small

subset of the functionality of most of the target hardware, but still includes

features that are not universally supported.

2.4.2 P4 Integrated Network Stack

P4 Integrated Network Stack (PINS) is a project to augment the SAI using

P4 [86]. PINS enables control of the SAI pipeline using P4 runtime and intro-

duces new programmable blocks within the pipeline. Control of SAI using P4

Chapter 2 Background 21

runtime requires a P4 definition of the SAI pipeline, but this definition remains

a work in progress and currently omits many important features, most notably

layer 2 switching.

2.4.3 FoRCES

Forwarding and Control Element Separation (ForCES) is a precursor to Open-

Flow that proposed a separation of the data- and control-planes of network de-

vices [28]. It also provides the protocol for communication between controllers

and datapaths (called forwarding elements and control elements in the ForCES

model). Unlike OpenFlow, ForCES does not strictly define the expected be-

haviour of a datapath, meaning it is possible that two datapaths controlled in

exactly the same manner may process the same packet in a different way.

2.4.4 Broadcom OpenNSL and SDKLT

Broadcom offer a number of different ways to program their switches [17, 18,

19, 20]. They provided OpenFlow support with the OF-DPA, but because they

could not offer the full feature set of their switch chips, they have created new

specifications.

Open Network Switch Library (OpenNSL) [19] is a library that exposes the

full functionality of Broadcom’s switches. OpenNSL uses the abstraction of

interconnected internal components they refer to as devices. Devices can be

attached to ports allowing control of the packets arriving on that port.

Software Development Kit Logical Table (SDKLT) [20] is a table based ab-

straction that sits above the OpenNSL. There are two table types in SDKLT

modeled tables are controlled by the controller and interactive tables are con-

Chapter 2 Background 22

trolled by the device itself. Interactive tables expose information from the

switch to the controller such as link state.

As Broadcom produces ASICs with different capabilities, code written using

OpenNSL or SDKLT may not be portable.

2.4.5 NPLang

Network Programming Language (NPLang) [17] is a language for programmable

network hardware created by Broadcom. It is similar to P4, but is more closely

modeled to the design of physical hardware. The NPLang architecture involves

multiple stages, each reading from, and writing to, a logical bus.

NPLang allows programs to create functions to build keys for table look-ups.

This allows tables to match similar fields from different headers (eg. IPv4

Source and ARP Transport Protocol Address (TPA)), or hashes of multiple

different sets of fields. It also allows a table to perform multiple look-ups with

the same packet (eg. to look-up the packet’s Ethernet Source and its Ethernet

Destination).

NPLang performs table look-ups in parallel. To resolve scenarios where mul-

tiple tables write to the same bus entries, NPLang uses a strength_resolve

construct. The different table look-up results have associated strength values,

and the look-up with the highest strength value writes its values to the bus

entry.

Chapter 3

Related Work

This chapter describes previous work on enabling portable SDN controllers.

This chapter describes a variety of different approaches, and compares these to

algorithmic mapping. Then it describes previous work on algorithmic mapping

approaches in detail, and discusses the limitations of each.

3.1 Alternative Approaches

This thesis investigates using algorithmic mapping to improve the portability

of SDN controllers, but alternative approaches have been proposed. This sec-

tion describes the limitations of these other approaches, when compared with

algorithmic mapping.

3.1.1 Standardised Pipelines

Creating standard pipelines that only expose functionality that can be uni-

versally supported by the target hardware ensures that all software will be

portable [77, 85]. However, by not exposing the full functionality of the hard-

Chapter 3 Related Work 24

ware, this approach unnecessarily restricts the controllers it can support.

Furthermore, this approach may detrimentally impact performance, when com-

pared with algorithmically mapping pipelines. If the standardised pipeline dif-

fers from the pipeline used by the underlying hardware, the hardware may

make performance concessions to support the standardised pipeline. Likewise,

the controller may have to make performance concessions to enable support

from the standardised pipeline. Consequently, controllers that might be di-

rectly mappable to the physical pipeline, instead incur an unnecessary penalty

to performance.

3.1.2 Programmable Hardware

Researchers have proposed creating flexible hardware, capable of adapting its

pipeline to the needs of diverse control-plane software [12, 50, 105] and this

has been adopted by hardware vendors [2, 16].

Programmable hardware primarily targets high throughput data centre net-

works, however, and would be prohibitively expensive for many enterprise net-

works. Many enterprise networks are likely to use hardware with fixed-function

ASICs for the foreseeable future.

Programmable hardware does not necessarily eliminate all challenges to porta-

bility. P4 Transformer [42] identified three barriers to portability with pro-

grammable hardware, and presented techniques for supporting controllers with

diverse hardware in spite of these barriers. Hyper4 [40] proposed a P4 program

that can be used as a target for other P4 programs, thereby guaranteeing porta-

bility, and improving composability, for all hardware that can support Hyper4.

Chapter 3 Related Work 25

3.1.3 Device Drivers

Another approach is to create drivers for individual devices that provide a

standard higher-level interface to control-plane software [10, 114]. Like stan-

dardised pipelines, these do not expose the full functionality of the device.

Open Network Operating System (ONOS) [10], a network operating system

created by the ONF, circumvents this problem by including a high-level driver

interface, as well as exposing the hardware pipeline directly. This allows con-

trollers to choose between portability and having access to the full functionality

of the hardware, but offering this choice does not resolve the underlying issue:

the controller must either limit its functionality, or it cannot be portable.

3.1.4 NOSIX

Defining a virtual pipeline that is subsequently mapped to the physical pipelines

of a device was first proposed by Yu, Wundsam, and Raju, presenting their

lightweight SDN portability layer NOSIX [114]. NOSIX allows controllers to

define annotated virtual pipelines, which would be mapped to hardware using

vendor provided drivers. The annotations allowed controllers to indicate their

expectations of each table, such as the maximum number of entries, the rate

entries are updated, or the traffic volumes the table is expected to support.

The drivers can then make decisions on how best to support each table, includ-

ing possibly supporting low traffic tables in software. NOSIX does not include

a mapping algorithm, it leaves it to vendors to produce drivers, able to map

from the virtual pipelines to their hardware.

Chapter 3 Related Work 26

Translation Software

Controller

Datapath

Figure 3.1: An example SDN architecture using translation software. The controller
defines a hardware-agnostic virtual pipeline. The translation software sits
in between the controller and datapath, rewriting the control plane mes-
sages to create equivalent behaviour from the physical pipeline used by
the datapath.

3.1.5 TableVisor

Geissler et al. proposed TableVisor [36], a system for overcoming hardware

limitations by aggregating multiple physical devices to act as a single logical

datapath. However, their approach does not consider the internal structure of

pipelines, instead it assumes that tables will always be reachable by packets

delivered from another device. It also requires the use of multiple devices to

achieve what might otherwise be achievable with a single device.

3.2 Algorithmic Mapping of SDN Pipelines

An algorithmic mapping approach allows control-plane software to define a

hardware-agnostic virtual pipeline indicating the desired behaviour of datap-

aths. The algorithm finds a mapping from the virtual pipeline to the pipeline

used by the physical datapath that causes packets to be processed as though

Chapter 3 Related Work 27

Virtual Table 1
VLAN ID: Ethernet Destination: Actions:

111 00:00:00:00:01:11 goto_table 2
222 00:00:00:00:02:22 goto_table 2

Virtual Table 2
IPv6 Destination: Actions:
2001:db8:1::/48 next_hop 1
2001:db8:2::/48 next_hop 2
2001:db8:3::/48 next_hop 3

Merged Table
VLAN ID: Ethernet Destination: IPv6 Destination: Actions:

111 00:00:00:00:01:11 2001:db8:1::/48 next_hop 1
222 00:00:00:00:02:22 2001:db8:1::/48 next_hop 1
111 00:00:00:00:01:11 2001:db8:2::/48 next_hop 2
222 00:00:00:00:02:22 2001:db8:2::/48 next_hop 2
111 00:00:00:00:01:11 2001:db8:3::/48 next_hop 3
222 00:00:00:00:02:22 2001:db8:3::/48 next_hop 3

Figure 3.2: An example of merging two virtual tables resulting in a Cartesian product
of entries in the physical table. The merged table requires an entry for
every combination of entries in the two virtual tables. Removing one
entry in Virtual Table 1 requires removing 3 entries in the merged table,
one for each entry in Virtual Table 2.

they were processed by the virtual pipeline. Then translation software can be

used to rewrite the control plane messages between the controller and data-

path. The controller behaves as though the datapath uses the virtual pipeline,

and the translation software modifies the controllers commands to ensure the

physical datapath will process packets in an equivalent manner. Figure 3.1

illustrates a potential architecture using this method.

3.2.1 Table Entry Growth

Previous work on algorithmic mapping converts virtual pipelines into a graph

and then maps from the graph to the physical pipeline [89, 90, 100]. These

approaches result in equivalent behaviour, but can increase the number of

table entries used in the physical pipeline. This increases the memory usage,

and slows the rate that tables can be updated, as updating a single entry in

the virtual pipeline requires updating every associated entry in the physical

pipeline. In the worst case scenario, merging two tables can result in a physical

table with an entry for every combination of entries in the two virtual tables.

This is illustrated in figure 3.2. Updating a single entry in one of the virtual

Chapter 3 Related Work 28

tables would require updating as many entries in the merged table as there

are in the other virtual table. With non-trivial table sizes, this would result

in an impractical reduction in performance when translating table updates in

real-time.

3.2.2 FlowAdapter and FlowConvertor

Pan et al. [90] proposed FlowAdapter, a tool for translating control plane mes-

sages for a virtual OpenFlow pipeline to a physical pipeline in real time. This

work was then augmented by Pan et al. with the publishing of FlowConver-

tor [89], an improved mapping algorithm for use by FlowAdapter. FlowConver-

tor works by mapping flow table entries—it does not require prior knowledge

of any constraints to the virtual pipeline. Controllers can add arbitrary entries,

with any matches or actions, and FlowConvertor will find a mapping for that

entry (if possible).

FlowConvertor converts the virtual OpenFlow pipeline into a Directed Acyclic

Graph (DAG) structure, and then maps that structure to a constrained phys-

ical pipeline. Each node in the DAG represents a flow table entry, and each

node has an edge to every entry in the subsequent table that could be matched

by the same packet. The DAG structure allows efficient incremental updates,

which is necessary to support real time updates. Adding a flow table entry to

the virtual pipeline only requires adding a single entry in the DAG, with edges

for every entry in the previous table, and every entry in the subsequent table.

In the worst case scenario, updating the DAG scales linearly in the number of

table entries.

FlowConvertor maps from the DAG to the physical pipeline incrementally.

When a node is added to the DAG, FlowConvertor finds every path from

Chapter 3 Related Work 29

a root node to a leaf node that passes through that node. For each path,

FlowConvertor iterates through the tables in the target physical pipeline, and

assigns values for every match field that the path matches, until all fields are

assigned. FlowConvertor then uses metadata to ensure that packets adhere

to the paths used in the virtual pipeline, and (with a few exceptions) assigns

actions in the final table. This method is unsuitable for some hardware, as

metadata is difficult to support in physical hardware, and actions may not be

available in all tables.

Furthermore, while updating the DAG scales linearly with the number of table

entries, the number of paths through the tree scales exponentially with the

number of tables in the pipeline, as the paths through the tree branch for

every link to a subsequent node.

In their evaluation, Pan et al. mapped four synthetic virtual pipelines to three

physical pipelines, and found that the mapping resulted in only 1.5ms of over-

head to table updates. However, the longest virtual pipeline had only four

tables, and they did not indicate the number of table entries they used. It is

inevitable that with longer pipelines, or with larger table sizes, FlowConvertor

could not sustain real-time translation.

3.2.3 Sanger, Luckie and Nelson

Sanger, Luckie, and Nelson [100] proposed an alternative algorithm for map-

ping from a virtual pipeline to a physical pipeline. Like FlowConvertor, their

algorithm works on a populated flow table pipeline, mapping flow table entries

rather than a constrained virtual pipeline. Unlike FlowConvertor, they do not

consider their algorithm suitable for finding a mapping in real time. Instead,

they propose using an example populated flow table pipeline to find a mapping

Chapter 3 Related Work 30

offline, which effectively constrains the controller to only adding entries similar

to those in the example.

Sanger, Luckie, and Nelson use the following steps in their algorithm:

1. Convert the full flow table pipeline into a compressed single table.

2. Find every practical mapping to the physical pipeline for each entry in

the single table.

3. Use a Boolean Satisfiability (SAT) solver to find a combination of map-

pings that maps every entry in a manner that does not interfere with the

mapping of other entries.

Converting the full pipeline into a single table involves taking the Cartesian

product of all the tables in the pipeline. The algorithm then compresses that ta-

ble by eliminating all entries that differ only in the value of the fields matched.

In other words, all sets of entries that match the same fields, with the same

masks, the same priority, and apply the same actions are considered similar

enough that they will almost certainly be mapped in the same tables. Conse-

quently, the algorithm only needs to map one representative entry. The algo-

rithm ensures that it preserves dependencies between sets of entries. So that

if one set of entries may match the same packets as another set of entries,

the representative entry of the higher priority set will correctly overlap the

representative entry of the lower priority set. The authors evaluated their flow

table compression algorithm against real world data sets and found that they

achieved a greater than 80% reduction in the number of flow table entries in

every case. Converting the original pipeline to a single table eliminates any

knowledge of how entries can be updated. Consequently, it is impossible for

this approach to preserve the update rate of the original pipeline.

For step 2, the algorithm can either map an entry directly, or can map the entry

Chapter 3 Related Work 31

to multiple tables that are linked together with Goto-Table instructions. The

authors refer to this as a split transformation. In some cases, when a split

transformation maps part of an entry to a table, it may be possible to map

multiple fields to that table. In such a case the algorithm always maps the

maximum number of fields, reducing the number of potential mappings to

search, and minimising the risk of an entry mapping conflicting with another

mapping. This approach is significantly more flexible than the approach used

by FlowConvertor, as it does not require the use of metadata to find potential

mappings.

Step 3 creates a SAT expression representing a successful mapping, consist-

ing of criteria that a successful mapping must meet. For instance, a successful

mapping must include one mapping for every entry, and must not allow over-

lapping entries with the same priority in the same table. The algorithm uses

a SAT solver to find a successful mapping based on these criteria.

Sanger, Luckie, and Nelson evaluated their system by converting between a two

table pipeline and a five table pipeline using synthetic data. Although they were

able to map from the five table pipeline (with 20 total table entries) to the two

table pipeline in less than 150ms, they considered their algorithm impractical

for real-time translation. The authors noted that with real world pipelines,

mapping can be prevented by complications such as whether untagged packets

are assigned a default VLAN tag within a pipeline. They also noted that their

approach does not work with flexible pipelines, as the number of potential

mappings is too great.

Chapter 3 Related Work 32

3.3 Summary

This chapter has identified a variety of approaches to creating portable SDN

controllers. The most promising of these is algorithmically mapping from a vir-

tual pipeline to a physical pipeline, as other approaches either place arbitrary

limitations on what the hardware can do, or cannot be achieved with existing

enterprise hardware.

While previous work to algorithmically map SDN pipelines has shown po-

tential, it remains impractical for use in production. Most notably, real-time

translation is severely impeded by the mappings potentially increasing the to-

tal number of entries the pipeline uses. This is exacerbated by the fact that

these solutions map pipelines on an entry by entry basis. It would be consider-

ably easier for controllers to define a set of constraints their tables will follow,

and then map tables directly, rather than table entries. This fits well with the

P4 model, where controllers write a program to define the pipeline for their

target datapaths.

Chapter 4

Target Hardware

Creating a system that balances the goal of achieving portability without un-

duly limiting what software can achieve requires a clear understanding of what

the target hardware can and cannot support. This chapter investigates the ca-

pabilities of a variety of SDN implementations, and identifies 5 targets, suitable

for a mapping algorithm.

The investigation focuses primarily on OpenFlow implementations, as they are

common and clearly define the behaviour of the device, but also covers other

relevant SDN implementations.

4.1 Broadcom

Broadcom is the world’s largest producer of merchant silicon networking chips.

Their chips are used by a variety of networking hardware vendors, including

those that also produce their own ASICs, such as Cisco. Broadcom ASICs

support a variety of SDN standards, either natively [17, 18, 19, 20], or through

operating systems created by other vendors [3, 4, 93].

Chapter 4 Target Hardware 34

Ingress Port

VLAN

VLAN 1

Termination MAC

MPLS 0

MPLS 1

MPLS 2

Unicast RoutingMulticast RoutingBridging

Policy ACLMaintenance Point

MPLS L2 Port Color-Based Actions

Figure 4.1: The OF-DPA flow table pipeline. Arrows indicate the potential targets
of Goto-Table instructions.

4.1.1 OF-DPA

The OF-DPA is an interface to Broadcom ASICs that can be used by vendors

to produce an OpenFlow implementation that closely models the underlying

ASIC pipelines [18].

The OF-DPA can support multiple different pipelines. Most are non contra-

dictory and can be used in parallel, with a few minor scenarios where that is

not possible. An OF-DPA pipeline using all possible tables is shown in figure

4.1. Each table has a set of entry types, and each entry type has its own set of

matches and actions that can be used. This results in tables that do not make

Chapter 4 Target Hardware 35

sense when translated directly to P4—for instance, the unicast routing table

contains both IPv4 and IPv6 routes.

The entry types used in OF-DPA are very strictly defined. For instance, the

Untagged Packet Port VLAN Assignment entry type in the VLAN table has

the following constraints:

• entries must Match Ingress Port,

• entries must match a VLAN VID of 0,

• entries must assign a VLAN VID to matching packets,

• entries must direct packets to the Termination MAC table, and

• entries may, optionally, set VRF metadata.

There are 9 different entry types in the VLAN table, and each has similar

constraints to the Untagged Packet Port VLAN Assignment type.

The bridging table uses a vendor extension to perform MAC learning. Every

time the bridging or routing tables are applied to a packet, the OF-DPA per-

forms a look-up of the packet’s Ethernet Source address against the entries in

the bridging table, comparing the ingress port of the packet with the associated

port in the bridging table. If the two do not match, or the Ethernet Source

address is not in the bridging table, then the datapath will either notify the

controller, or automatically update the entry in the bridging table, depending

on configuration.

Most tables, by default, forward packets to the next stage in the pipeline. This

is advantageous when reordering tables or recirculating packets, as it means

packets can easily reach the intended next table without needing to match

entries in the intervening tables.

Chapter 4 Target Hardware 36

L3 ECMP (select) L3 Multicast (all) L2 Rewrite (indirect) L2 Multicast (all) L2 Flood (all)

L3 Interface (indirect)L3 Unicast (indirect)

L2 Interface (indirect)

Figure 4.2: The group tables used by the OF-DPA for bridging and routing, and
their group types. Arrows indicate groups that reference other groups.

The OF-DPA makes extensive use of group tables (§2.2.5). Figure 4.2 shows

the groups the OF-DPA uses for bridging and routing. Groups are also used

by the Multiprotocol Label Switching (MPLS) pipeline, including fast-failover

groups for protected circuits.

The only writeable metadata used in the OF-DPA is a 16-bit non-maskable

Virtual Routing and Forwarding (VRF) field, limiting how a mapping algo-

rithm can use metadata to control the flow of packets through the pipeline.

4.1.2 OpenNSL

Broadcom ASICs also support other standards, including OpenNSL [19]. OpenNSL

provides a very detailed, low-level interface to program Broadcom ASICs, and

includes some features not included in OF-DPA. For instance, the OpenNSL

field processor has the ability to mirror packets, both at ingress and egress.

This thesis uses such features to infer the capabilities of Broadcom hardware.

4.1.3 Other OpenFlow Implementations on Broadcom ASICs

Broadcom does not create operating systems for its ASICs, it sells ASICs to

vendors who produce their own operating systems. As such, an OpenFlow

implementation using the OF-DPA is not supported by all hardware using

Broadcom ASICs, the operating system has to include support for OpenFlow.

Chapter 4 Target Hardware 37

Some vendors that support OpenFlow on Broadcom ASICs do so without using

the OF-DPA.

Allied-Telesis AlliedWare Plus provides support OpenFlow version 1.3 on a

variety of Enterprise devices that use Broadcom ASICs [3]. Allied-Telesis sup-

port OpenFlow by running Open vSwitch on the chips, with a cache of flows

in hardware. Packets are processed by a software implementation of Open

vSwitch by default, and for every new flow the software processes, it installs a

rule in hardware applying the same actions to all subsequent traffic belonging

to that flow.

The number of hardware flows is limited, from 117 on the IE210L series

switches to 8183 on the x950 series switches. Traffic processed by software

is orders of magnitude slower than hardware, so this gives an upper limit on

the amount of devices that can be active on the device at a time, depending

on how many flows each device creates. Because IPv6 addresses are so long,

matching IPv6 addresses requires two entries per flow, effectively halving the

number of available hardware flows.

Some features are not able to be supported in hardware, depending on the

device. For instance, the x530 series (Enterprise switches with 20–40 1Gb ports

and 4 10Gb ports) support the hardware flows using an ACL system, and

therefore cannot match MPLS headers, or modify MAC addresses for multicast

traffic in hardware. These flows are handled in software instead (suffering a

significant reduction in performance).

Arista EOS supports OpenFlow version 1.0, and allows for the use of a routing

recirculation-interface to process packets multiple times. This sets a port into

MAC loopback mode, meaning all packets output to the port will immediately

be redirected to the switch. This does not require a transceiver to be present,

Chapter 4 Target Hardware 38

and can recirculate packets at the maximum bandwidth for the port.

4.2 Nvidia

Nvidia supports OpenFlow with the Onyx Operating system [62] on Spectrum

ASICs. The Nvidia pipeline consists of 250 flexible ACL tables, able to support

a variety of matches and actions, followed by two fixed function tables: FDB,

for performing layer 2 switching, and Router, for performing prefix matching

on IP destination addresses. The matches used in the ACL tables must be

manually defined in the device configuration on a per table basis, but this

does not allow configuration of masks, meaning all matches are ternary.

The Nvidia implementation always runs in hybrid mode, and determines what

packets are controlled by OpenFlow by VLAN. This means that the devices ap-

ply VLAN filtering before the OpenFlow pipeline starts, and after the pipeline

ends.

The FDB table entries match VLAN and Ethernet Destination, and can either

drop, output, or direct packets to a select group, to load balance across multiple

ports. On a table miss, packets are sent to the NORMAL pipeline (§2.2.8.4) to be

flooded according to the packets’ VLAN tag.

The Router table has a longest prefix match on IPv4 or IPv6 destination,

and can either drop the packet; or set the Ethernet destination, decrement

the TTL, and either output the packet directly or send it to a select group.

Notably, the router table cannot set the Ethernet Source address or rewrite

a VLAN, two actions usually associated with Layer 3 routing. Rewriting the

source MAC address before packets reach the routing table is practical, but this

is dissimilar from other hardware routing tables in a way that makes mapping

Chapter 4 Target Hardware 39

difficult. However, not being able to rewrite VLANs makes the routing table

very difficult to use, as the new VLAN depends on the matched route, so the

table effectively would need to be recreated in the ACL tables with VLAN

actions.

The Nvidia OpenFlow implementation has a single 12-bit metadata field, and

can recirculate packets by setting an interface to recirculation mode.

4.3 Cisco

The OpenFlow implementation in Cisco IOS for Catalyst devices consists

of a pipeline of up to 16 flexible tables [25]. The tables are configured with

Table-Features messages, to define the match fields, masks, actions and next

tables each table can use. As such the Cisco cannot use lpm matches.

The Cisco OpenFlow implementation can only set the VLAN VID, and Ether-

net Source and Destination fields. It only supports indirect and all groups,

and does not support metadata. Cisco Catalyst devices support recirculation

natively—they can buffer packets and reprocess the headers from the start of

the pipeline.

4.4 Aruba

HPe ArubaOS supports OpenFlow on a variety of switches (2920, 2930F,

2930M, 3810, and 5400R zl2 series switches) [43]. Aruba uses a pipeline of

up to 12 flexible tables, configured with Table-Features messages. Like the

Cisco, the Aruba pipeline can only use exact or ternary matches.

The Aruba allows setting any field, however it cannot set the Ethernet source

Chapter 4 Target Hardware 40

address, or Layer 4 fields for IPv6 packets. The Aruba also cannot decrement

TTL fields. The Aruba does not allow setting metadata and cannot perform

recirculation.

4.5 SAI

The SAI is supported by a variety of vendors with a variety of ASICs, including

Broadcom, Nvidia and Intel [77]. The SAI pipeline therefore is a valid target

for a mapping algorithm. This analysis is based on the Behavioural Model (a

P4 architecture for a software switch) implementation, as it is clearly specified

in P4 [94].

The Behavioural Model implementation of SAI has 34 tables, but does not

include ACL tables. This thesis assumes that all implementations of SAI can

support a simplified ACL table based on the cross section of capabilities from

the Nvidia and Broadcom ACL tables, that can be applied wherever an ACL

table can be bound.

The SAI pipeline makes extensive use of metadata, and many tables simply

set metadata fields. For instance, the table Ingress LAG simply matches the

ingress port and sets two metadata fields: the ingress_metadata.is_lag flag

and the ingress_metadata.l2_if field, indicating whether the packet arrived

on a LAG port and the L2 logical interface, respectively. Other metadata fields

include the VRF and Spanning Tree Protocol (STP) ID.

The pipeline is strictly defined, but there are multiple paths through the

pipeline that packets can take. For instance, routed packets can be output

to a port directly, or forwarded to the VLAN bridge section of pipeline, to

perform Ethernet switching.

Chapter 4 Target Hardware 41

4.6 Other OpenFlow Implementations

Noviflow supports OpenFlow with NoviWare, an operating system for whitebox

switches using Intel Tofino and Nvidia NP5 ASICs [76]. The programmability

of these devices allows Noviware to offer close to a complete implementation

of OpenFlow, however these devices are targeted to high-speed data centre

networks, and would be unsuitable for most enterprise use cases.

Corsa created high throughput hardware that supports OpenFlow, however

the details of their support was not published publicly. These devices were also

large and expensive and therefore unsuitable for most enterprise use cases.

A number of other vendors provide single table OpenFlow support, including

Nokia [75], and Pica8 [93]. Extreme [30] support a multiple table pipeline, but

only one table can match fields other than MPLS label. H3C [70] use a 4 table

pipeline that provides a subset of the functionality of the OF-DPA pipeline.

4.7 Discussion

Based on this analysis, this thesis targets Aruba, Broadcom, Cisco, and Nvidia

hardware, as well as any hardware implementing the SAI. The alternative

hardware is either too large and expensive for use in enterprise networks, or is

too limited in its functionality.

4.7.1 Features

Table 4.1 shows how the target hardware supports various features that are

valuable when mapping pipelines.

All of the hardware can use recirculation, with the exception of the Aruba. Port

Chapter 4 Target Hardware 42

Vendor Configurable Tables Recirculation Metadata
Aruba 12 No No

Broadcom No Port-Based VRF
Cisco 9 Native No
Nvidia 250 Port-Based 12 bits
SAI No N/A Various fields

Table 4.1: Support for various pipeline features in the target hardware. Flexible Ta-
bles refers to devices with tables that can be configured to support dif-
ferent matches and actions. Recirculation indicates how the hardware can
recirculate packets. Metadata indicates what metadata fields are available.

based recirculation means that the bandwidth on recirculated packets will be

limited to the bandwidth of the port. However, this could be mitigated by

using multiple ports to recirculate packets. The impact of packet recirculation

is discussed further in Section 6.2.

Metadata was poorly supported by the target hardware. This may be in part

due to the difficulty of implementing it exactly as defined in the OpenFlow

specification. As it is not practical to support metadata exactly as defined,

vendors must come up with a compromise solution, but without a specification

defining what that should be, it is possible that some vendors chose not to

commit to a solution that might not suit users’ needs [44].

The pipelines of the target hardware fits into two categories:

Configurable Pipelines: The Aruba, Cisco and Mellanox pipelines have tables

that can be configured to match any field and use any actions. In all three

cases the tables are identical and can be arranged using Goto-Table

instructions. This greatly simplifies mapping, as, provided the hardware

can support every table in the virtual pipeline, the mapping will always

be possible.

Fixed Pipelines: The SAI and Broadcom pipelines have tables designed for

specific functions that define exactly what matches and actions can be

Chapter 4 Target Hardware 43

Vendor Ethernet Switching Routing 5-Tuple
Aruba Two-Table No exact

Broadcom One-Table Yes ternary
Cisco Two-Table No exact
Nvidia No* No* ternary
SAI Two-Table Yes ternary

Table 4.2: Support for different common table types in the target hardware. *The
Nvidia hardware also supports SAI, and is therefore capable of supporting
these tables, but the OpenFlow implementations are inadequate.

used. Occasionally these tables have optional matches or actions, but

usually no more than one or two per table.

The Nvidia pipeline also features two fixed-function tables, but neither is

practical for its intended purpose. Importantly, both come at the end of the

pipeline, so do not interfere with how the configurable tables are used.

4.7.2 Common Table Structures

Table 4.2 shows the support for common table structures by the various pipelines.

All the pipelines support some form of Ethernet switching, with the Broadcom

using a single table implementation, and the other hardware having multiple

tables.

Routing is not well supported by the OpenFlow implementations:

• the Aruba cannot decrement TTL fields, or configure lpm matches;

• the Nvidia cannot update VLAN IDs or Ethernet source addresses; and

• the Cisco cannot configure lpm matches.

However, all of this hardware does support legacy routing, so it is likely this

is a limitation of the OpenFlow implementations, rather than the devices.

5-tuple matching is a common use case in SDN, however, most devices are only

Chapter 4 Target Hardware 44

able to support it with ternary matches. This is possibly a matter of how the

OpenFlow pipelines are defined rather than a limitation of the devices.

Chapter 5

Target Controllers

This chapter investigates existing SDN controllers, to inform the design of the

mapping algorithm. Mapping pipelines requires potentially searching a com-

binatorial space, and no previous demonstration of a mapping algorithm has

mapped a pipeline with more than five tables. This chapter identifies common

features of controllers that may simplify the process of mapping pipelines, and

enable an algorithm to scale to support real world production pipelines. To do

this, this chapter examines data collected from 6 SDN production networks,

and investigates 50 projects from SDN research literature.

5.1 Features of Interest

The investigation in this chapter focusses on the following features:

Actions: This chapter looks at how frequently controllers use each type of

action and action instruction, how often they use groups, and how often

actions or instructions affect how an algorithm can re-order tables.

Matches: This chapter looks at how frequently controllers match each field,

Chapter 5 Target Controllers 46

and with what kinds of matches. If controllers frequently use matches

that cannot be supported by the target hardware, that suggests that

either those controllers should be out of scope for this work, or that the

target hardware is inadequate for the purposes of this work.

Common Table Structures: This chapter identifies commonly used table struc-

tures. When the same table is used by many controllers, that could sim-

plify a mapping algorithm, by enabling shortcuts for such tables.

Table Size and Update Rates: Arbitrarily merging tables multiplies the num-

ber of entries, harming update rates and memory usage. When tables

have few, mostly static entries, merging them may not have a significant

impact. This chapter identifies how frequently controllers use such tables.

Table Order: This chapter identifies scenarios where tables cannot be reordered.

Aside from the scenarios relating to the actions used (mentioned above),

tables generally cannot be re-ordered when one table determines what

packets are applied to a subsequent table.

Common Transactions: Finally, this chapter examines common transactions

in production networks, and whether these indicate inefficiencies in the

standards these networks use.

5.2 Production Deployments

Analysing production deployments provides functionality that is both useful

to operators, and supportable by current hardware. It also provides a real-time

view of how the controller and the datapath interact.

This chapter analyses data collected from 5 Faucet deployments [8], and from

the Cardigan deployment between the Research and Education Advanced Net-

Chapter 5 Target Controllers 47

work New Zealand (REANNZ) office and the Wellington Internet Exchange

(WIX) [103]. While this is a small sample, lacking in diversity, unfortunately

obtaining data from production deployments is difficult due to security and

privacy concerns.

5.2.1 Data Collected

The data collected consists of:

1. periodic snapshots of datapath state (as JavaScript Object Notation

(JSON) representations of OpenFlow Flow Stats messages), demonstrat-

ing the packet processing behaviour of the datapath;

2. the OpenFlow control channel (in Packet Capture (PCAP) format),

showing the interaction between controllers and datapaths, and how the

state changes over time.

From the raw data, we identified classes of entries that are suitable to be

supported by a single P4 match–action table or conditional statement, and

recorded the following details for each:

Table id: the OpenFlow table id

Priority offset: the lowest priority value

Priority range: the range of priority values

Match fields: the fields matched

Action sets: the combinations of actions used

Timeout: whether entries of this class timeout

Immutability: whether the entries are ever updated

Chapter 5 Target Controllers 48

Match kind: the match kinds used

Max entries: the maximum number of entries

Total updates: the total number of times entries of this class are added, mod-

ified or deleted

Max update rate: the maximum number of updates in a one second period

Related classes: other entry classes that are frequently updated in the same

transaction

5.2.2 Identifying Entry Classes and Match Kinds

An entry class is a set of OpenFlow table entries that can be supported with

a single P4 component (a conditional or a table). OpenFlow controllers of-

ten combine multiple, unrelated tasks into a single table, to work around the

restrictions placed on tables by hardware implementations. Mapping entry

classes is more flexible than mapping OpenFlow tables directly, and provides

similar benefits to the table compression used by Sanger, Luckie, and Nelson

(§3.2.3).

This analysis classifies entries based on the fields matched and priorities. En-

tries in the same table with the same match fields, or with overlapping priority

ranges, are considered the same entry class.

Exact match entry classes are the simplest entry classes to identify. When a

table has multiple unmasked entries matching the same fields, with the same

priority, then those entries can be supported in a P4 table with exact match

kinds.

lpm matches all match the same fields, and only one field is masked. The mask

Chapter 5 Target Controllers 49

is always a prefix, and for any pair of entries that match an overlapping set of

packets, the one with the longer prefix must have a higher priority. It is not

necessarily the case that lpm entries with a longer prefix must always have a

higher priority than entries with shorter prefixes, provided the entries do not

overlap.

Tables with ternary matches can be divided into individual tables in a variety

of ways. For the purpose of identifying entry classes, we consider any entries

in the same table matching the same fields to be the same entry class, and any

entry classes with overlapping priorities with another entry class are considered

the same entry class.

5.2.3 Identifying Transactions

When a controller updates the state of a datapath, it often requires sending

multiple messages between to accomplish a single logical goal. For instance,

when a datapath notifies the controller that a port has gone down, the con-

troller may need to update multiple tunnels to direct traffic to a different port.

When a single transaction requires updating a lot of entries, that may be an

indicator that the design of OpenFlow or its implementation is forcing the

controller to use an inefficient table structure.

The algorithm for identifying transactions reads a PCAP file of the control

channel, and uses heuristics to award points to sequences of messages that

make up potential transactions. The messages that make up a transaction

must be contiguous, and must not be separated by significant delays. When

a transaction is clearly identifiable, the algorithm finalises it, removes those

messages from the pool of unconfirmed messages, and then repeats.

The heuristics include:

Chapter 5 Target Controllers 50

• whether messages reference similar field values;

• whether multiple potential transactions consist of the same messages;

• whether a transaction is similar to a previously confirmed transaction;

• whether the transaction contains redundant messages;

• whether a transaction consists of a batch of deletes followed by a batch

of adds, or vice versa;

• when Barrier messages are used (§2.2.8.2); and

• whether messages are already favoured for a different transaction that

has not been finalised yet.

5.2.4 Production Deployments

The production deployments this chapter investigated were:

Redcables: The WAND Redcables network is a Faucet deployment at the Uni-

versity of Waikato, providing Internet connectivity to the labs and offices

used by the WAND research group. It consists of 18 datapaths in total,

5 Allied Telesis tq4600 wireless access points; 4 Allied Telesis x230 and

4 Allied Telesis x510 switches providing access; an Aruba 2930, a Cisco

9300 and two Allied Telesis x930 switches for aggregation; and a server

running Open vSwitch providing routing. The datapaths are controlled

by two instances of Faucet, one controlling layer 2 and one controlling

layer 3. The PCAPs and flow table dumps cover a 15 hour period in

November 2017.

REANNZ Office: The REANNZ office deployment consists of a single Allied

Telesis x930 controlled by Faucet. It provides layer 2 connectivity to the

Chapter 5 Target Controllers 51

REANNZ main office in Wellington. The data covers a week in October

2017.

eResearch and NZNOG: The conference networks for eResearch 2018 and NZNOG

2018 and 2019 used Faucet controlled datapaths to provide layer 2 con-

nectivity. eResearch and NZNOG 2018 used an Allied Telesis x930 and

two Aruba 2930 switches, NZNOG 2019 used an Allied Telesis x930 and

a server running Open vSwitch. eResearch ran for 3 days, the NZNOG

conferences ran for 5 days.

Scinet: The network for the 2018 Supercomputing conference included a Faucet

deployment providing Internet access to exhibition booths. The deploy-

ment consisted of a Noviflow 32x100 switch with a Tofino ASIC per-

forming routing; and two Cisco 9500 switches, an Allied Telesis x950, an

Allied Telesis x908, and a Noviflow 2122 for aggregation. The data covers

8 days including set-up and testing as well as the main conference.

Cardigan: Cardigan was a deployment of Routeflow, an OpenFlow based router,

connecting the REANNZ office to the WIX in 2014. Cardigan consisted

of a Pronto 3290 and a Pronto 3780 deployed at the REANNZ office and

at the WIX, providing layer 3 connectivity between the two sites. Open-

flow channel data was not available from this deployment, this analysis

only uses flow table data.

5.2.5 Updates

How frequently controllers update table entries affects how the tables can be

mapped to hardware. If a table is updated infrequently, then it is less important

to ensure the update rate is not affected by the mapping. For instance, entries

could be split so that fields are matched across multiple tables, or they could

Chapter 5 Target Controllers 52

Datapath

P
er

ce
nt

ag
e

U
pd

at
es

0%

25%

50%

75%

100%

Red
ca

ble
s a

rub
a-2

93
0

Red
ca

ble
s a

t-tq
46

00
-1

Red
ca

ble
s a

t-tq
46

00
-2

Red
ca

ble
s a

t-tq
46

00
-3

Red
ca

ble
s a

t-x
51

0-1

Red
ca

ble
s a

t-x
51

0-2

Red
ca

ble
s a

t-x
51

0-3

Red
ca

ble
s a

t-x
51

0-4

Red
ca

ble
s a

t-x
93

0-1

Red
ca

ble
s a

t-x
93

0-2

Red
ca

ble
s o

vs

eR
es

ea
rch

 ar
ub

a-1
g

eR
es

ea
rch

 ar
ub

a-p
oe

eR
es

ea
rch

 at
1

Scin
et

20
18

 dn
oc

10
34

Scin
et

20
18

 dn
oc

23
16

Scin
et

20
18

 dn
oc

26
44

Scin
et

20
18

 dn
oc

40
26

Scin
et

no
c

NZNOG 20
18

 ar
ub

a-1
g

NZNOG 20
18

 ar
ub

a-

NZNOG 20
18

 at
1

REANNZ O
ffic

e

Other Updates Port Updates Route Updates MAC Updates

Figure 5.1: The percentage of updates to datapaths for each type of entry class.

be mapped to tables that use slower match kinds.

Figure 5.1 shows the percentage of updates relating to each type of entry

class. The overwhelming majority of updates occur in entry classes relating

to Ethernet switching, routing, or ports and VLANs. Many datapaths only

received updates relating to Ethernet switching. There were only a handful

of other entry classes that received more than 1% of the total updates. The

Scinet deployment included a deployment of Poseidon [45], a network security

application that could automatically install ACLs in response to anomalies it

detects in the network. ACL updates accounted for up to 4.1% of updates to

Scinet datapaths.

Port and VLAN updates accounted for up to 18.25% of updates, with the

exception of two outliers: one of the Scinet aggregation datapaths, dnoc1034,

had 85.6% of its updates for port state changes, and the REANNZ office net-

Chapter 5 Target Controllers 53

work had 90.9% of its updates for port state changes. Scinet dnoc1034 had

the fewest connected hosts of any of the Scinet devices, and those hosts were

stable servers where the MAC addresses did not need to be relearned often.

Most of the port state changes are from the set up and testing stage rather

than the conference itself.

The high rate of messages relating to port state changes in the REANNZ of-

fice was caused by inefficient handling of VLAN flooding, to accommodate

incorrect OpenFlow hardware implementations. The OpenFlow specification

requires that a device should not forward packets to the packet’s ingress port,

unless the action specifies virtual port IN_PORT as the egress. Due to hard-

ware implementations that did not correctly implement this behaviour, Faucet

created separate flooding rules for each VLAN on each port. When a port

changed state, Faucet would update every rule associated with every VLAN

on that port. The REANNZ office had many VLANs, and provides wired con-

nections to staff laptops, which were frequently connected to, and disconnected

from the network. This resulted in a peak rate of 295 messages relating to port

updates in a second. Faucet has since been modified to handle VLAN flooding

more efficiently.

5.2.5.1 Table Size

The size of tables impacts table mappings in a number of ways. First and

foremost, physical tables must be large enough to hold as many entries as the

virtual table requires. The size also impacts how practical it is for tables to be

aggregated with other tables, aggregating large tables may exhaust the number

of entries, and small tables may be small enough to be combined with entries

from another table, provided the update rate is also low.

Chapter 5 Target Controllers 54

Entry Class

M
ax

im
um

 E
nt

rie
s

0

100

200

300

400

500

Port
ACLs

VLA
N as

sig
nm

en
t

Filte
r B

og
on

s

MAC Le
arn

ing

Term
ina

tio
n M

AC

IP
v4

 R
ou

tin
g

IP
v6

 R
ou

tin
g

Con
tro

l P
lan

e W
hit

eli
st

Ethe
rne

t S
witc

hin
g

Floo
din

g

Figure 5.2: The maximum number of entries for each entry class in the Redcables
OVS datapath

The entry classes with the most entries, for the most part, were those that were

updated the most frequently. The exception was ACL entry classes, which could

be moderately large, but received few updates. Figure 5.2 shows the maximum

number of entries for each entry class in the Redcables OVS datapath, which

is typical of all datapaths.

As the smaller tables often had single-digit numbers of entries and were rarely

updated, mapping software could easily aggregate them into other tables, and

physical hardware could support them with a flexible table such as an ACL

table.

Chapter 5 Target Controllers 55

datapath

P
er

ce
nt

ag
e

E
nt

ry
 C

la
ss

es
 P

er
fo

rm
in

g
A

ct
io

n

0.00%

25.00%

50.00%

75.00%

100.00%

Red
ca

ble
s a

t-tq
46

00
-1

Red
ca

ble
s a

t-tq
46

00
-2

Red
ca

ble
s a

t-tq
46

00
-3

Red
ca

ble
s a

t-x
51

0-1

Red
ca

ble
s a

t-x
51

0-2

Red
ca

ble
s a

t-x
51

0-3

Red
ca

ble
s a

t-x
51

0-4

Red
ca

ble
s a

t-x
93

0-1

Red
ca

ble
s a

t-x
93

0-2

Red
ca

ble
s o

vs
-re

dc
ab

les

eR
es

ea
rch

 ar
ub

a-1
g

eR
es

ea
rch

 ar
ub

a-p
oe

eR
es

ea
rch

 at
1

Scin
et

dn
oc

10
34

Scin
et

dn
oc

23
16

Scin
et

dn
oc

26
44

Scin
et

dn
oc

40
26

Scin
et

no
c

NZNOG ar
ub

a-1
g

NZNOG ar
ub

a-p
oe

NZNOG at
1

Card
iga

n

REANNZ of
fic

e

drop actions output and controller actions vlan actions set actions goto actions

Figure 5.3: The percentage of entry classes that perform a particular action. Note
that entry classes may have multiple possible action sets and that sets
may include multiple types of actions.

5.2.5.2 Actions

Actions can affect how the tables in a pipeline can be re-ordered. Certain

actions may need to be applied to packets in a specific order, for instance,

if two tables set the same field the second table must supersede the first.

Furthermore, actions can affect what entries are applied in subsequent tables.

Figure 5.3 shows the percentage of entry types that perform each action. The

most common action for an entry class to apply to a packet is to drop it. This

is beneficial when mapping a virtual pipeline to a physical pipeline as, for the

most part, it does not matter where in the pipeline a packet is dropped. The

Chapter 5 Target Controllers 56

only actions that are impacted by a drop being applied later in the pipeline is

a clone action, a count action, or an action that modifies the packet so that it

will no longer match the drop entry class.

Modifying a packet and then subsequently matching on the modified field is

a difficult operation for hardware to support. All of the Faucet datapaths set

VLAN ID fields and then match those fields in later tables. Only Scinet noc

and Redcables ovs do this with another field: both datapaths set the Ethernet

destination field when routing packets, then matched that field to determine

the correct output port for the next hop.

5.2.5.3 Transactions

We identified three main types of transaction that require multiple table up-

dates. The first, and by far the most frequent—making up 100% of all messages

to some datapaths—were Ethernet switching updates. In the OpenFlow model,

Ethernet switching is typically handled in two tables; the first table is respon-

sible for learning the port association for each MAC address, and the second

is responsible for forwarding packets based on their Ethernet source address.

The second transaction updated flooding rules, as described in Subsection

5.2.5.

The third transaction, and the least common, is when a controller resolves a

next-hop. Typically this results in multiple routes and the Ethernet switching

table being updated. It is possible to efficiently update next-hops in OpenFlow

with Metadata or with Group tables. Faucet does not do this, however, because

of inconsistent hardware support.

Overall, this analysis suggests that the OpenFlow protocol is reasonably effi-

cient at updating tables, with the only obvious area where improvement could

Chapter 5 Target Controllers 57

be made is with layer 2 switching and flooding.

5.3 Research Projects

Research projects provide insight into potential uses of the P4 architectures.

Research projects are not necessarily limited by support from current hard-

ware, they are often evaluated on software switches that have no limitations in

terms of supported features. Investigating research projects also allows cover-

ing a much larger number of applications, as the details are publicly available,

unlike production deployments, where details are very difficult to obtain. How-

ever, research projects focus on novel concepts, and therefore can overlook basic

networking functions that are vital for production deployments.

Research projects are proposals that may not be fully developed, or may ulti-

mately be impractical for production deployment. However, even if a project

is ostensibly of low value to network operators, enabling support for it in our

system allows researchers to experiment with physical hardware, improving

their ability to find ways to make the project more useful.

Research projects often are focussed on a specific feature, rather than a com-

plete networking solution, and their design often reflects that. For instance,

many research projects use reactive forwarding [29, 33, 38, 46, 61, 64, 65, 68,

72, 73, 95, 98, 107], where every flow that arrives on the datapath is initially

forwarded to the controller, which then installs rules on the datapath to han-

dle how that flow should be handled. This is often suitable to demonstrate a

concept, but would not be practical in many production networks [35].

To mitigate these issues it is important to look at a large number of research

projects, that cover a variety of network types and applications. As OpenFlow

Chapter 5 Target Controllers 58

Action

Fr
eq

ue
nc

y

0

10

20

30

40

50

ou
tpu

t

no
tify

 co
ntr

oll
er

se
t E

the
rne

t
dro

p
co

un
t

de
cre

men
t T

TL
clo

ne
se

t IP

pu
sh

/po
p M

PLS

se
t V

LA
N ID

mete
r

mult
ica

st

no
rm

al
oth

er

se
lec

t

se
t M

PLS

co
py

 TTL

pu
sh

/po
p V

LA
N an

y

se
t q

ue
ue

fas
t fa

ilo
ve

r

en
ca

ps
ula

te

co
py

 IP

co
py

 E
the

rne
t

Figure 5.4: The number of controllers using each type of action

is supported by all the target hardware, and the target hardware cannot sup-

port arbitrary parsers, this analysis targets controllers that only match against

header fields defined in OpenFlow. The projects must also provide enough de-

tail about its packet handling requirements that this analysis can create a

reasonable estimate of a virtual pipeline. The chosen research projects are

listed in Appendix A.

Often research projects only explain the details that directly relate to the

specific feature they are experimenting with. Consequently, this analysis infers

certain aspects of the pipeline. For instance, many layer 3 projects omit any

mention of layer 2 termination. In such cases, this analysis assumes that the

controller runs ARP and/or IPv6 Neighbour Discovery, and has a termination

MAC table to control access to the layer 3 tables.

Chapter 5 Target Controllers 59

5.3.1 Actions

Figure 5.4 shows the number of controllers that used each action. Output

was by far the most frequent, but some controllers did not output packets.

For instance, the OpenFlow discovery protocol [7] was only used to find links

between datapaths, and, while in practice, it would be used alongside other

controllers that would forward dataplane traffic, by itself it does not need to.

Many actions are likely to be much more common in production networks

rather than in research. For instance, VLAN actions are often unnecessary in

a testbed, but might be necessary to partition a live network that carries traffic

for multiple purposes.

Different vendors support different types of set fields. Only one controller mod-

ified Transport layer fields [1], and otherwise no controller modified fields other

than source and destination addresses in Ethernet and IP headers, MPLS La-

bels, or VLAN VLAN ID (VID)s. Two controllers used copy actions:

• Afek, Bremler-Barr, and Shafir [1] reversed the IP and TCP source and

destination, and set the sequence and acknowledgement numbers, to force

remote hosts to resend TCP syn packets; and

• Bruyere et al. [21] used a shift operation of Ethernet addresses, to pop

labels encoded in the address fields.

Copy actions were introduced in OpenFlow version 1.5 [84] and are not sup-

ported by any of the target hardware.

Faucet [8] was the only controller to use Apply-Actions to set fields and

output packets mid-pipeline. Consequently, it was the only controller where

table order was relevant for packet outputs. Faucet was also the only controller

to have multiple tables rewrite the same field, and no controller required using

Chapter 5 Target Controllers 60

Write-Actions.

OpenFlow keeps counts of matching packets for every rule, however only 13

controllers explicitly required this [8, 14, 32, 38, 39, 51, 58, 61, 65, 72, 98,

108, 111]. Removing this requirement simplifies hardware support, but can

also enable re-ordering of tables. For instance, an OpenFlow pipeline that has

multiple tables that drop packets must apply those tables in the specified order,

to ensure the packet counts are updated correctly. If these tables do not need

to count packets, then the table ordering is irrelevant.

Controllers used Group tables infrequently. Only three applications used select

groups [31, 96, 107] and one used fast-failover [7]. It is likely that for many of

these controllers, group tables would be valuable in a production deployment to

allow controllers to update actions more efficiently, but they were not directly

relevant to the published work.

5.3.2 Match Fields

Figure 5.5 shows how many controllers use tables matching each field, omitting

fields that determine protocols, such as Ethernet Type or IP Protocol, as these

are compulsory matches when matching higher layer protocol fields.

16 of the controllers we investigated used some form of flow matching. Some

specified matching all possible fields, some specified matching 5-tuples, and

others did not specify the fields used to match flows. For all cases, this thesis

assumes that 5-tuple matching is suitable, unless there is a specific reason to

match other fields. Fayazbakhsh et al. [33], for instance, match the flow and the

IPv6 Flow Label, where they encode data about the packets progress through

the network.

Chapter 5 Target Controllers 61

0

10

20

30

Ing
res

s P
ort

Ethe
rne

t S
ou

rce

Ethe
rne

t

VLA
N V

ID

IP
 S

ou
rce

IP
 D

es
tin

ati
on

Othe
r IP

 Fiel
ds

TP S
ou

rce

TP D
es

tin
ati

on

Othe
r T

P Fiel
ds

MPLS
 La

be
l

Othe
r M

PLS
 Fiel

ds

ARP Fiel
ds

Figure 5.5: The number of controllers that use rules matching each field.

No controllers we looked at used metadata. However, metadata can be used to

support features used in legacy networks, such as VRF.

46 controllers used exact match kinds, 18 used ternary match kinds, and only

4 used lpm match kinds.

5.3.3 Tables

The most significant factor impacting how easily an algorithm can map pipelines

is how many tables they use, and how they are arranged.

Most controllers required only one or two tables. Figure 5.6 shows how many

controllers used each number of tables. Only 9 applications used more than

2 tables. It is likely that when these projects are deployed in production the

number of tables required will increase, to handle diverse real-world traffic.

Faucet [8], a controller designed for production deployment, used the most

tables by far, with 14.

Chapter 5 Target Controllers 62

Number of tables

Fr
eq

ue
nc

y

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5.6: The number of controllers using the specified number of tables.

The logic to determine whether a table applies to a packet was extremely

simple. Very few tables required more than a single conditional to ensure a

table was applied to packets of a specific protocol (eg. all IPv6 traffic). Tables

used to control access to another table belonged to three categories:

1. a filtering table, where specific traffic was dropped to prevent it being

handled by another table;

2. a cache, where packets belonging to known flows are handled directly,

and unknown packets continue through the pipeline;

3. a termination MAC table, matching Ethernet destination, controlling

access to tables performing layer 3 functions.

Germann et al. was the only controller to require more than one table to

govern access to a subsequent table, it used a two layer cache, before packets

would pass through the pipeline. The only other controller with notable logic

was Faucet [8], which had a single termination MAC table controlling access to

Chapter 5 Target Controllers 63

Table Type

Fr
eq

ue
nc

y

0

5

10

15

5-tuple Other 3-tuple Bridging Routing MAC learning MPLS

Figure 5.7: The number of tables with high update rates, by table type.

both the routing tables and a table that filters traffic destined for the controller.

5.3.4 Table Entries and Updates

Tables with frequent updates and large numbers of entries are the most difficult

to map, as they cannot be aggregated, and must be supported with equivalent

match kinds.

Figure 5.7 shows the number of tables that are frequently updated, for each

type of table. By far the most common type of table that receives frequent

updates are 5-tuple matching tables. The tables classified as other were either:

• other forms of flow matching—Van Adrichem, Doerr, and Kuipers used

12-tuple matches [108], and Fayazbakhsh et al. matched IPv6 5-tuples as

well as the IPv6 Flow Label, to encode the progress through the network;

or

• tables for DDoS mitigation [1, 37] (Germann et al. used multiple tables

Chapter 5 Target Controllers 64

Table Type

Fr
eq

ue
nc

y

0

5

10

15

5-tuple Other MPLS 3-tuple Bridging Routing MAC learning

Figure 5.8: The number of tables with high numbers of entries, by table type.

with high update rates).

Tables with large numbers of entries were more diverse, as shown in figure 5.8.

However, over two thirds (68%) of these tables were either matching flows or

performing standard networking functions.

5.4 Summary

This chapter investigated a variety of SDN controllers from research and pro-

duction deployments, and found that the design of controllers is promising

for the design of a system for algorithmically mapping pipelines in a manner

suitable for real-time translation.

Scenarios that would prevent tables being re-ordered or require recirculation

were very rare. The access control for tables was very simple, only one table

required more than one other table in its path to determine whether that table

Chapter 5 Target Controllers 65

should be applied. Likewise, actions were generally not used in ways that force

a specific ordering of tables.

The tables that received the most updates generally also used the most entries.

For the most part, these tables either matched common legacy networking

functions such as layer 2 switching or layer 3 routing, or were used for flow

matching. Most other tables had few updates, suggesting they could easily be

merged or split without affecting performance.

The main source of inefficiency with existing standards is requiring layer 2

switching to be split into two separate tables.

Chapter 6

Shoehorn Overview

Shoehorn is a proof-of-concept system that demonstrates the practicality of

mapping a virtual SDN pipeline to the physical pipeline of a switch in a manner

that is suitable for translating control channel messages in real time. Shoehorn

consists of:

Shoehorn Physical Architecture (SPA): A P4 Architecture for describing pipelines

used by physical devices.

Shoehorn Virtual Architecture (SVA): A P4 Architecture for describing vir-

tual pipelines used by controllers.

Shoehorn Mapping Algorithm: An algorithm for finding mappings between a

virtual pipeline defined in the SVA and a physical pipeline defined in the

SPA.

Figure 6.1 illustrates the interaction between the components of Shoehorn, and

between Shoehorn and the components of the architecture shown in Figure 3.1.

This chapter gives a high-level description of the design of Shoehorn, and de-

scribes the motivation behind key Shoehorn features. First, section 6.1 gives

Chapter 6 Shoehorn Overview 67

Translation Software

Controller

Hardware

Shoehorn

virtual_pipeline.p4

physical_pipeline.p4

mapping

Figure 6.1: An illustration of how Shoehorn interacts with the components of the
architecture shown in Figure 3.1. Shoehorn receives definitions of the
pipelines from the control-plane software and the datapath, and uses
those to find a mapping that the translation software can use. Shoehorn
does not perform the translation, as that requires knowledge of the com-
munication protocol, to which Shoehorn is completely agnostic.

a high-level description of the approach Shoehorn uses to map tables. Then

section 6.2 describes packet recirculation, discusses the implications of using

recirculation, in terms of performance and features, and argues that recircu-

lation is practical for Enterprise networks. Section 6.3 describes in detail the

implications of different scenarios where Shoehorn will aggregate multiple vir-

tual tables into a single physical table. Section 6.4 describes how the Shoehorn

architectures enable Shoehorn to change the order of virtual tables. Section 6.5

provides a brief explanation of how Shoehorn supports MAC learning. Finally,

Section 6.6 provides a brief summary of this chapter.

The P4 architectures are described in greater detail in chapter 7, and the

mapping algorithm is described in chapter 8.

Chapter 6 Shoehorn Overview 68

6.1 Mapping

A practical mapping from a virtual pipeline to a physical pipeline must meet

the following criteria:

• for every action the virtual pipeline applies, the physical pipeline must

apply an equivalent action to the same set of packets;

• the physical pipeline must apply actions in an equivalent order to the

virtual pipeline;

• when a controller updates a table in the virtual pipeline, the physical

pipeline must be able to complete the update in an equivalent amount

of time.

The simplest method to create a mapping that meets these criteria is to map

every possible virtual table entry directly to a table in the physical pipeline.

This method may exclude potential solutions, but the analysis of SDN con-

trollers and hardware implementations in chapters 4 and 5 found few cases

where virtual tables could not be easily rearranged to fit physical pipelines.

Furthermore, the lack of metadata support by the physical pipelines limits the

potential for splitting virtual table entries into multiple physical tables. Con-

sequently, Shoehorn only attempts to find mappings where virtual tables are

mapped directly to physical tables.

Shoehorn may re-order tables and other components, such as conditional state-

ments, provided doing so does not affect the matches or actions of other tables.

Shoehorn may also aggregate multiple virtual components together so that

they are supported by a single physical component, provided this does not

impact the rate at which entries can be updated. It would also be possible for

Shoehorn to split entries from small, rarely updated virtual tables, so that the

Chapter 6 Shoehorn Overview 69

match fields are divided across multiple physical tables. However, this greatly

increases the complexity of finding mappings for little benefit, so Shoehorn

does not use this approach.

This thesis considers this approach justified because factors that prevent tables

from being re-ordered are rare. In the investigated controllers:

• the logic determining whether to apply a table to a given packet is uni-

versally straightforward (§5.3.3);

• only a single controller uses Apply-Actions instructions to set fields and

output packets, or set the same field in multiple tables, and no controller

requires the use of Write-Actions instructions; and

• only one controller modified fields with Apply-Actions instructions and

then matched the modified fields in later tables.

Support for common table structures by the target hardware is mixed, but

this has little bearing on whether Shoehorn will find suitable mappings. For

instance, the fact that the Aruba hardware is unable to decrement a TTL field

makes it unable to support routing no matter how tables are mapped.

6.2 Packet Recirculation

Packet recirculation enables Shoehorn to find mappings that apply physical

tables in an order other than the order they appear in the physical pipeline.

This allows Shoehorn to enforce priority between actions, and enables virtual

pipelines to modify packets mid-pipeline, without excluding physical hardware

that can only rewrite packets at the end of the pipeline.

Chapter 6 Shoehorn Overview 70

6.2.1 Hardware Support

Packet recirculation is widely supported by the target hardware—the only ven-

dor unable to support recirculation is Aruba. The Aruba has a configurable

pipeline, and can perform Apply-Actions instructions at any table, and there-

fore is unlikely to need to use recirculation.

Native recirculation, where a packet is buffered, and the parsed headers and

metadata is recirculated to be processed again, is only supported by Cisco

hardware. The Nvidia and Broadcom hardware use port-based recirculation,

where packets output to a specific port are redirected to arrive back at the

ASIC from that port. Other devices that do not support this behaviour directly

could recreate it using a loop-back transceiver, or a similar method.

6.2.2 Metadata

A limitation of using port-based recirculation is retaining metadata when the

packet is recirculated. There are two pieces of metadata that devices must

ensure are carried with packets when they are recirculated: the original ingress

port, to prevent loops; and how many times the packet has been recirculated,

to keep track of where in the pipeline the packet has reached.

Carrying this metadata with the packet may be practical with a single field, as

both metadata fields have low cardinality, particularly the recirculation count.

However, this requires that the information can be carried in a way that can

be extracted by either the parser or a table. For instance, in the OF-DPA,

packets can be output to a data centre overlay tunnel. These packets could be

recirculated via the tunnel, and the tunnel-id could represent the recirculation

and original ingress port. However, data centre overlay tunnels must be sent to

Chapter 6 Shoehorn Overview 71

the bridging table. In order to direct packets to a routing table, the datapath

would need to use a layer 3 tunnel. The Broadcom chips support layer 3 tunnels,

and the OF-DPA supports decapsulating packets from layer 3 tunnels, but not

encapsulating packets1. OpenNSL does support layer 3 tunnels.

Because of these challenges, the SVA does not support user-defined metadata.

6.2.3 Throughput

Having to process packets multiple times reduces the overall throughput of

the device. This thesis argues that this a reasonable trade off for low cost

hardware, as many enterprise networks are constrained by factors other than

device throughput, such as uplink bandwidth or firewall throughput. As an

example, a Broadcom Wolfhound BCM5334x series chip provides 64GB/s of

packet switching with minimum sized Ethernet frames (64B) [15]. If the bot-

tleneck for a network using such a switch is incoming traffic on a 10GB/s

uplink, then recirculating 3 times (meaning each packet is processed 4 times)

requires 40GB/s of device throughput, leaving capacity to support 6GB/s of

other traffic. Further, Internet traffic is usually considerably larger than the

minimum size for Ethernet Frames [66].

Viegas et al. investigated the impact of recirculation on a P4 capable Netronome

SmartNIC [109]. They found that one recirculation had no impact on the num-

ber of packets per second the Network Interface Card (NIC) could process, and

4 recirculations had no impact on throughput with packets of 256B or larger.

Port-based recirculation is limited by the throughput of the port, but this can

be scaled up by dedicating more ports to recirculation.

1The OF-DPA specification references MPLS L3 VPN Label groups, but does not define
these groups. It is unclear whether or not they can be used within the OF-DPA.

Chapter 6 Shoehorn Overview 72

6.3 Aggregating Components

When multiple components in the virtual pipeline can be supported by a single

table in the physical pipeline, Shoehorn may be able to aggregate these compo-

nents together. However, it is important that when aggregating components,

Shoehorn does not reduce the update rate of the virtual tables. Controllers

often use tables that have static entries, and do not require real-time updates.

Shoehorn allows virtual pipelines to flag such tables, indicating to Shoehorn

that it can map them in a way that will reduce the update rate.

To be aggregated together without affecting the update rate, virtual tables

must use the same types of matches. For instance, if one virtual table uses

exactmatches, and another uses ternary tables, then the physical table would

need to use ternary tables to support the second table, reducing the update

rate of the first table. The overall update rate of a table is dependant on the

slowest match kind, so if a table uses ternary and exact match kinds, then

aggregating it with a table that only uses ternary matches does not affect the

update rate.

The remainder of this section describes scenarios where Shoehorn may aggre-

gate components, and discusses the impact of each on the overall number of

table entries.

6.3.1 Cartesian Product Aggregation

When tables are aggregated, a packet may only match one entry in the ag-

gregated table each recirculation. Therefore, a mapping that aggregates two

tables that could both be matched by the same packet requires an entry in the

physical table for every combination of entries in the virtual tables. There are

Chapter 6 Shoehorn Overview 73

Example 1. Example 2.

Matches:
eth.src: ternary
Actions: [count]

Matches:
eth.dst: ternary
Actions: [output]

Matches:
eth.src: ternary
Actions: [count]

Matches:
eth.dst: ternary
Actions: [output, drop]

hit

Figure 6.2: Two examples of sections of pipelines that cannot be aggregated without
requiring a Cartesian product of table entries in the physical table. The
key for this and other diagrams in this chapter is shown in Figure 6.3.

Table
Conditional
Action Module

Indicates a transformation applied to a section of the vir-
tual pipeline by Shoehorn to allow them to be mapped
to a physical pipeline.

Figure 6.3: The key for the diagrams used in this chapter and in chapter 8. Ar-
rows between components indicate the components applied following the
associated evaluation of the conditional or the hit field of the table’s
apply result (§2.3.4). Branching arrows indicate that the pipeline applies
multiple components following the associated result.

two scenarios where this may occur:

1. When a pipeline applies multiple tables to an overlapping set of packets,

shown in Figure 6.2, Example 1.

2. When a pipeline applies one table to a subset of packets that match

another table, shown in Figure 6.2, Example 2.

These situations only apply if the tables use ternary matches, or if the tables

use different matches. For instance, taking the Cartesian product of entries

from two tables that both only perform exact matching on Ethernet desti-

nation, results in a physical table that matches the total number of Ethernet

destinations matched in the two virtual tables. However, aggregating a table

that has a lpm match on IPv4 destination and an exact match on IPv4 source,

Chapter 6 Shoehorn Overview 74

Matches:
eth.src: ternary
Actions: [drop]

Matches:
eth.dst: ternary
Actions: [output]

Matches:
eth.src: ternary
eth.dst: ternary
Actions: [drop, output]

Figure 6.4: A mapping can aggregate a table that drops every packet it matches with
other tables without increasing the total number of table entries, even if
a packet can match entries in both tables.

with a table that has a lpm match on IPv4 source and an exact match on IPv4

destination, can still result in a Cartesian product of the two tables.

One other relevant exception to this is when a virtual pipeline has two tables

applied to overlapping sets of packets, and one of the tables only drops packets.

If the other table only uses actions that are no-ops when applied to packets that

are subsequently dropped (for instance, setting an output port or modifying a

header field), then the mapping can aggregate the two tables without increasing

the total number of entries. The mapping must prioritise entries from the drop

table over those from the other table, and as all actions in the other table are

no-ops when combined with a drop, the mapping does not need to combine

entries. An example of this kind of aggregation is shown in Figure 6.4.

6.3.2 Aggregating Conditionals

Mappings can aggregate conditionals with other components without increas-

ing the number of table entries in the following cases:

• mappings can always aggregate a conditional with another conditional;

• mappings can always aggregate a conditional with a table that uses

Chapter 6 Shoehorn Overview 75

IPv6

Matches:
ipv6.dst: lpm
Actions: [output]

Default: None

true

Matches:
eth.type: exact
ipv6.dst: lpm
Actions: [output]

Default: None

Figure 6.5: A mapping can aggregate a conditional with a table without increasing
the number of table entries required in the physical pipeline.

IPv6

Matches:
ipv6.dst: ternary
Actions: [output]

Matches:
ipv4.dst: ternary
Actions: [output]

true

false

Matches:
ethernet.type: all_or_exact

ipv4.dst: ternary
ipv6.dst: ternary

Actions: [output]

Figure 6.6: Mappings can aggregate mutually exclusive tables without increasing the
overall number of table entries.

ternary match kinds; and

• mappings can aggregate a conditional with a table using lpm or exact

match kinds, provided the conditional fields are unmasked, the table is

applied when the packet matches the conditional fields, and the table

has no default action.

An illustration of aggregating a conditional into a table is shown in Figure 6.5.

Chapter 6 Shoehorn Overview 76

Matches:
ipv6.dst: ternary
Actions: [output, drop]

Matches:
ipv6.src: ternary
Actions: [output, drop]

miss

Matches:
ipv6.src: ternary
ipv6.dst: ternary
Actions: [output, drop]

Figure 6.7: Mappings can concatenate ternary tables when the second table is ac-
cessed on a miss in the first table without increasing the overall number
of table entries.

6.3.3 Aggregating Mutually Exclusive Tables

Mappings can straightforwardly aggregate tables where packets cannot match

both tables without increasing the number of entries. Figure 6.6 demonstrates

merging two components when the sets of packets to which they are applied

are mutually exclusive.

6.3.4 Concatenating Ternary Tables

When a ternary table is applied following a miss on another ternary table, a

mapping can aggregate these tables by concatenating the two tables, without

increasing the overall number of entries. The entries from the first table are

given higher priorities and the entries from the second table must apply the

default action from the first table as well as their usual actions. This is shown

in Figure 6.7.

Chapter 6 Shoehorn Overview 77

Matches:
ipv6.dst: ternary
Actions: [output, drop]

Action Module

Matches:
ipv6.src: ternary
Actions: [output, drop]

Matches:
meta.recirculation: ternary

ipv6.dst: ternary
ipv6.src: ternary

Actions: [output, drop, recirculate]

Action Module

recirculate

Figure 6.8: Tables separated by a recirculation can always be aggregated without
increasing the overall number of table entries.

6.3.5 Aggregation after Recirculation

Figure 6.8 shows an example of aggregating tables after a recirculation. Map-

pings can aggregate tables after a recirculation, without increasing the overall

number of table entries, provided the physical table is able to match recircu-

lation metadata.

6.4 Table Reordering

OpenFlow requires controllers to strictly define the order of tables, but for

many controllers, this ordering is arbitrary. However, it is possible that there

is no way to define a strict order of OpenFlow tables without creating scenarios

that prevent Shoehorn from reordering tables, even when the order between

two tables is irrelevant.

For instance, Figure 6.9 shows two tables from a virtual pipeline. The first table

Chapter 6 Shoehorn Overview 78

Matches:
eth.dst: exact
IPv6.dst: exact
Actions: [output, set_eth_dst]

Matches:
eth.dst exact
vlan.vid exact
IPv6.dst lpm
Actions: [output, set_eth_dst, set_eth_src]

Figure 6.9: An example of two tables that cannot be easily reordered without prior
knowledge that the two tables do not match overlapping packets.

directs packets to certain services, provided by hosts directly connected to the

datapath. The second table provides general routing. The services are only

reachable from hosts in the local LAN, so the controller places a no-op route

for the services’ subnet in the routing table. As no packet will ever meaningfully

match both tables, the ordering between the two tables is irrelevant. Shoehorn,

however, does not know that both tables do not apply to the same packets,

but knows that matching in one table affects whether a packet can match the

second table. Therefore, if the tables are given an explicit order, Shoehorn

cannot reorder them.

To mitigate this, Shoehorn includes an extern called an Action Module, that

allows controllers and hardware to define where the pipeline applies actions.

Shoehorn does not include an equivalent to the OpenFlow Apply-Actions in-

struction, and when two tables write contradictory actions for the same Action

Module, the outcome is explicitly undefined. Controller developers can choose

to have two tables write the same actions for a single Action Module when

they know that the actions will not be contradictory for the same packets. If a

controller requires an explicit ordering, the developer can separate the tables

with an Action Module.

As a consequence of this design, the order of tables in the virtual pipeline is

only relevant to Shoehorn when one table provides access control for another

table, or when the tables are separated by Action Modules.

Chapter 6 Shoehorn Overview 79

6.5 MAC Learning

MAC learning tables are difficult to support in OpenFlow, and this is reflected

by poor support for such tables amongst the target hardware. Supporting an

exact-match MAC learning table effectively in OpenFlow requires three tables:

1. a table with an exact match on VLAN VID, Ethernet source address,

and ingress port, that notifies the controller whenever a new Ethernet

source address is seen on a VLAN and port combination;

2. a table with an exact match on Ethernet destination and VLAN VID,

that outputs matching packets to the correct port; and

3. a table matching VLAN VID, that floods packets to every port associated

with that VLAN (but not the ingress port).

The separate table for VLAN VID is needed as an exact match table cannot

differentiate by VLAN following a miss in OpenFlow.

This three table system creates a synchronisation problem for controllers, as

they must ensure that the first two tables have consistent entries. This also

requires redundant messages, as the controller has to update two tables in-

stead of one. The OF-DPA bridging table avoids this issue, but, as it is a

bespoke vendor extension, it is a barrier to portability. Shoehorn provides a

generic adaptation of the OF-DPA bridging table, that can be supported by

all the target hardware, except Nvidia. Shoehorn includes two new externs,

EthernetLearning and EthernetSwitching. These are two tables that have

synchronised entries: the EthernetLearning learns MAC address–port associ-

ations, and the EthernetSwitching table forwards packets to the associated

port. The implementation details of these tables is described in more detail in

Section 7.10.

Chapter 6 Shoehorn Overview 80

6.6 Summary

Shoehorn is a system for finding mappings from virtual pipelines to physical

pipelines that are practical for real-time translation. Shoehorn features two P4

architectures, one for virtual pipelines and one for physical pipelines.

Shoehorn ensures that the mappings are practical for real-time translation by

finding the mappings offline, and ensuring that updating a table entry in the

virtual pipeline requires only modifying a single entry in the physical pipeline

(except when explicitly directed otherwise).

Shoehorn maps tables directly, each virtual table is supported by a single

physical table. Physical tables can support multiple virtual tables, but only

when this does not impact the rate that entries can be updated. While this

reduces the likelihood of finding a mapping in the general case, the analysis

of hardware and controllers in chapters 4 and 5 suggests that this should have

little impact in practice.

The Shoehorn architectures are designed to minimise scenarios where tables

must be applied in a specific order. The architectures use an extern called an

Action Module to indicate where actions take place, so actions will not affect

the result of a look-up in another table in between Action Modules; and when

two tables write contradictory actions, the result is explicitly undefined, so the

order actions are written is not relevant. The only scenario where table order

is relevant between Action Modules is when the result of a look-up in one table

determines access to another.

Where these features are insufficient to find a valid mapping, Shoehorn uses

packet recirculation, processing packets an additional time. This enables vir-

tual pipelines to modify packets, before matching the modified fields in subse-

Chapter 6 Shoehorn Overview 81

quent tables.

Chapter 7

Architectures

This chapter describes the Shoehorn Virtual Architecture (SVA) and the Shoe-

horn Physical Architecture (SPA). The SVA is used by controller developers

to define the pipeline that their software requires, while the SPA is used by

hardware vendors to define the pipeline used by their hardware.

The architectures are as similar as possible, only differing when a concept

is intrinsic to a physical or virtual pipeline. For instance, configurable tables

are only supported in the SPA, as pipelines in the SVA are reconfigured by

replacing the P4 definition of the pipeline.

7.1 Packet Paths

The Shoehorn architectures both specify multiple packages (§2.3.1) to accom-

modate packet processing paths of various lengths. The packet processing paths

both start with a fixed parser, which is followed by 1 to 16 pairs of pro-

grammable control blocks followed by an Action Module, and then finally a

target dependant Buffer Queueing Engine, based on the extern used in the

Chapter 7 Architectures 83

Parser Ingress 1 Action
Module

Ingress 2 Action
Module

Buffer

Figure 7.1: An example SVA packet path with two action modules. Square com-
ponents are programmable control blocks, circular components are not
programmable.

Parser Ingress 1 Action
Module

Ingress 2 Action
Module

Buffer

Figure 7.2: An example SPA packet path with two action modules.

PSA [88]. The number of control blocks is limited to 16, as this is the number

of tables in the Cisco pipeline, the second highest number of tables from the

target hardware. The Nvidia pipeline ostensibly supports 256 stages, but, as

Shoehorn aims for portability, it limits the stages to 16. Figures 7.1 and 7.2

illustrate packet paths with two Action Modules in the virtual and physical

architectures respectively.

The SPA supports packet recirculation, as discussed in chapter 6.1, but this

is not supported in the SVA. When Shoehorn maps a virtual pipeline to the

physical pipeline, it will automatically recirculate packets as needed, so it is

unnecessary for the SVA to support recirculation directly.

The Shoehorn architectures do not include an egress pipeline. Investigating

how the target hardware can support an egress pipeline remains future work.

Chapter 7 Architectures 84

However, no controllers investigated in chapter 5 used an egress pipeline.

7.2 Parser

The Shoehorn architectures do not allow controllers to define a parser. Fixed-

function ASICs are not capable of supporting arbitrary parsers. When a con-

troller requires bespoke headers, more flexible hardware should be used. The

parser is modelled on the OpenFlow specification version 1.3 [82] as it is the

most widely supported OpenFlow version among the target hardware.

Table 7.1: Header fields set by the Shoehorn parser
Ethernet Destination Ethernet Source Ethernet Type

VLAN VID VLAN PCP MPLS Label
MPLS BOS IPv4 DSCP IPv4 ECN
IPv4 Protocol IPv4 Source IPv4 Destination
IPv6 DSCP IPv6 ECN IPv6 Next Header
IPv6 Source IPv6 Destination IPv6 Flow Label
TCP Source TCP Destination UDP Source

UDP Destination ARP Operation ARP SPA
ARP TPA ARP SHA ARP THA

The parser extracts the header fields shown in Table 7.1 and sets the input

metadata described below in section 7.3. The header fields are those used by

controllers in chapter 5. Datapaths do not need to be able to set all of these

fields to support Shoehorn, as Shoehorn does not guarantee that it will find

mappings. For instance, the OF-DPA is the only target capable of matching

MPLS fields, but cannot match ARP SPA. When a controller requires the

parser to extract a field that the datapath cannot match, the Shoehorn map-

ping algorithm will fail, because the datapath is unsuitable for the controller.

Chapter 7 Architectures 85

7.3 Metadata

Table 7.2: Shoehorn control block input metadata
Field SVA/SPA Notes

ingress_port Both The physical port where the packet arrived
is_tagged Both Indicates the presence of a VLAN tag

l3_remote_address Both A union of the IPv4 Destination and the
ARP TPA fields

l3_local_address Both A union of the IPv4 Source and the ARP
SPA fields

l4_protocol Both A union of the IPv4 Protocol and the IPv6
Next Header fields

l4_source Both A union of the TCP Source and UDP Source
fields

l4_destination Both A union of the TCP Destination and UDP
Destination fields

recirculation SPA only The number of times the packet has been re-
circulated

The input metadata for Shoehorn control blocks are shown in Table 7.2. All

fields are initialised by the Parser. ingress_port and is_tagged are frequently

used fields, and recirculation is needed in the SPA to direct the packet to

the correct tables. The union fields enable tables to match the same values from

different headers. For instance, exact five-tuple matching cannot otherwise be

supported in a single table for both TCP and UDP packets.

Table 7.3 shows the intrinsic action metadata for Shoehorn control blocks. The

direction of the metadata is out in the SVA, but is inout in the SPA. This

is to support configurable pipelines having greater flexibility over when they

apply actions, whereas in the SVA, using inout metadata would require the

metadata to be carried with packets when they recirculate.

Pipelines initialise all fields to 0, and they cannot be set directly—instead,

they can only be set by action primitive externs. Requiring the use of action

primitive externs ensures that the fields are set in a consistent manner, sim-

Chapter 7 Architectures 86

Table 7.3: Shoehorn intrinsic control block action metadata
Field SVA/SPA Notes
drop Both Instructs the Action Module to drop

the packet
pop_vlan Both Instructs the Action Module to pop a

VLAN tag
push_vlan Both Instructs the Action Module to push a

VLAN tag
pop_mpls Both Instructs the Action Module to pop a

MPLS tag
push_mpls Both Instructs the Action Module to push a

MPLS tag
decrement_ttl Both Instructs the Action Module to decre-

ment the IP or MPLS TTL
notify Both Instructs the Action Module to notify

the controller
clone_spec Both Instructs the Action Module to clone

the packet, and how the clone should
be output

egress_spec Both Instructs the Action Module how to
output the packet, including multicast

set_<FIELD>_spec Both A series of metadata fields, one for each
writeable header field, that instruct the
Action Module how to rewrite each field

recirculate SPA Only Instructs the Action Module to recircu-
late the packet

goto SPA Only The next table

plifying the process of determining whether updates to metadata fields in a

virtual pipeline are equivalent to those in a physical pipeline. The writeable

fields are Ethernet source and destination, VLAN VID, MPLS Label, and IPv4

Source and Destination.

7.4 Action Modules

In the SVA and SPA, pipelines apply actions to packets in a new extern called

an Action Module. Whenever control blocks are instantiated, they are followed

Chapter 7 Architectures 87

by an Action Module. Action Modules recreate, in P4, the different ways to

apply actions in OpenFlow: Write-Actions instructions, Apply-Actions in-

structions, and group tables.

Action Modules process packets based on the Shoehorn control block action

metadata. Controllers configure Action Modules to associate control block

metadata with Action Module Actions (AMAs), in a similar manner to an

OpenFlow group table. AMAs functions similarly to the equivalent OpenFlow

action, when applied to a packet.

Controllers configure Action Modules similarly to OpenFlow group tables.

There are separate tables for cloning, egress, and for each writeable header

field. Action Modules look up each table with the associated metadata spec-

ification field, and apply the AMAs found in the table. The egress actions

include unicast actions, multicast actions and flooding, and can include mod-

ifying header fields in the packet, to allow actions such as popping VLANs

when flooding to access ports, for instance. Action Modules apply AMAs in

the following order, based on the order used by OpenFlow (the order differs to

accommodate differences in the actions used by Shoehorn and OpenFlow):

1. packets are cloned, and the cloned packet is output to a port associated

with the metadata value;

2. packets are dropped;

3. the TTL field is copied inwards;

4. MPLS tags are popped;

5. VLAN tags are popped;

6. MPLS tags are pushed;

7. VLAN tags are pushed;

Chapter 7 Architectures 88

8. the TTL field is decremented;

9. header fields are written, to values associated with the metadata value;

10. the controller is notified;

11. egress AMAs are applied; and

12. packets are recirculated (SPA only).

Datapaths do not need to be able to support all AMAs to support Shoehorn,

as Shoehorn does not guarantee that it will successfully find mappings.

Dropping and outputting packets (with an egress specification) are terminating

actions: the packet does not continue through the pipeline to the next control

block. Output packets, instead, are sent to the Buffer Queueing Engine imme-

diately.

In the SPA, action metadata can be passed through to the next control block.

This is because the configurable pipelines have a single table in each control

block. Allowing actions to pass through the Action Module means that config-

urable pipelines can wait for packets to reach the virtual Action Module before

applying actions. Pipelines define which actions each Action Modules applies,

and which actions are passed through to the following control block. When-

ever an Action Module applies an action, it sets the corresponding metadata

specification field to 0. In the SVA, however, Action Modules must apply all

actions.

7.5 Counters

Shoehorn implements table counters using DirectCounter externs (§2.3.6.3),

taken from the PSA.

Chapter 7 Architectures 89

The SVA does not guarantee that counters will be consistent when a controller

is run on diverse hardware. When Shoehorn reorders tables, it may result in ta-

bles not applying to packets that are dropped in other tables. Consequently, the

update counts may be inconsistent depending on how Shoehorn reorders the

tables. A potential solution for controllers that require accurate counters is to

have two types of counters—the DirectCounter, and a StrictDirectCounter

which always produces consistent packet counts. However, this remains future

work. Counters are always consistent in the SPA, as Shoehorn cannot alter the

order that physical tables are applied.

7.6 Actions

Table 7.4: Shoehorn primitive action externs
notify clone drop dec_ttl

copy_ttl_in push_vlan pop_vlan push_mpls
pop_mpls set_eth_src set_eth_dst set_vid

set_mpls_label set_ipv4_src set_ipv4_dst output
multicast goto recirculate

Actions in the SPA and SVA may not use logical statements. Instead, they

must only call primitive action externs (shown in Table 7.4) and, optionally,

the count method of a DirectCounter. By preventing logic in actions, Shoe-

horn ensures that it can identify equivalent actions in the virtual and physical

pipelines when mapping. The Shoehorn architectures could allow for more ef-

ficient code re-use by allowing actions to call other actions, but this remains

future work.

With the exception of count, the action primitives simply write to the corre-

sponding field in the control block output metadata. Writing to a field that has

already been written either fails, or overwrites the existing value, but which

Chapter 7 Architectures 90

occurs is explicitly undefined. This gives Shoehorn flexibility when re-ordering

tables, as there is no explicit order the metadata needs to be written. For in-

stance, if a controller developer knows that no packet will ever match entries

in two tables, even if that is not explicitly prevented in the P4 code, they can

define both tables in the same control block without having to explicitly define

the order they are applied. If the controller developer requires tables to write

to the same field with explicit priority, then they should define the tables in

separate control blocks.

7.7 Conditionals

The Shoehorn architectures require that conditional statements must only be

used in the following ways:

• to compare header or input metadata fields with constant values, or

• to evaluate the hit field of a table apply result (§2.3.4).

The only operators that can be used in conditional statements are: equality

(==), inequality (!=), boolean and (&&), boolean or (||), and mask (&&&). Lim-

iting conditionals to comparisons between fields and constant values, using

only these operations, ensures that the conditional statements can be sup-

ported using an OpenFlow table, and also simplifies mapping between virtual

and physical pipelines. goto metadata can only be used with the equality

operator.

Chapter 7 Architectures 91

7.8 Match Kinds

The SVA and SPA both use the match kinds defined in the P4 core library [13]:

exact, lpm, and ternary, as well as an all_or_exact match kind, taken

from the OpenFlow Table-Type Patterns Specification [85]. The all_or_exact

match kind is included as it is supported by the OF-DPA.

The configurable tables used by the Cisco and Aruba pipelines are able to

match any field with exactmatch kinds, and either all_or_exact, or ternary

match kinds, depending on the field. To support such tables, the SPA uses

configured match kinds: for each of the match kinds mentioned above, the

SPA adds a configured counterpart, as well as a configured_any match kind.

The configured match kinds indicate that the table can be configured to match

those fields with the associated match kind, or the fields can be omitted. The

configured_any match kind indicates that a field can use any match kind.

The Cisco and Aruba OpenFlow implementations do not support lpm match

kinds. Both vendors support legacy routing with the target hardware, so this

thesis assumes that lpm matching IP destination is supportable in the config-

urable tables. Consequently, the configured_any match kind indicates that

physical tables can support lpm match kinds with IPv4 and IPv6 destination

fields.

7.9 Annotations

There are two annotations in the SVA that can be added to tables to indicate

the tables are able to be mapped in a manner that may reduce the update rate:

flexible_match_kinds and flexible_mapping. flexible_match_kinds in-

dicates that Shoehorn can map virtual tables with exact and lpm matches

Chapter 7 Architectures 92

to physical tables with ternary matches. flexible_mapping indicates that

Shoehorn may merge two tables with this annotation, even if doing so will

result in an increase in the overall number of table entries.

7.10 MAC Learning Externs

The Shoehorn architectures include two externs to implement MAC learning

more efficiently than OpenFlow or P4 tables (§6.5). The EthernetLearning

extern and the EthernetSwitching extern can be used to perform Ethernet

learning and switching. Both externs are instantiated and applied like tables.

The EthernetSwitching extern takes two types of entries. The first matches

VLAN VID and Ethernet Destination, and sets the egress specification (indi-

cating unicast to a layer 2 interface) and updates an associated DirectCounter.

The second entry type has a lower priority, matches VLAN VID, and sets the

egress spec (indicating multicast to all layer 2 interfaces associated with the

VLAN) and updates an associated DirectCounter. The controller can add

entries to the EthernetSwitching table in a similar manner to a table.

Entries in the EthernetLearning extern are automatically populated when en-

tries are added to the EthernetSwitching extern. EthernetLearning entries

match Ethernet Source, VLAN VID, and Ingress Port. The fields are drawn

from the Ethernet Destination and VLAN VID of the EthernetSwitching

entry, and the AMA associated with the egress spec the entry sets.

These externs can be supported either with multiple look-ups in a single table,

or with multiple tables, depending on the nature of the underlying ASIC.

Chapter 8

Shoehorn Mapping Algorithm

This chapter describes the Shoehorn Mapping Algorithm in detail.

Shoehorn finds mappings from a virtual to a physical pipeline that maintain

the update rate of the virtual pipeline. Shoehorn ensures that updating a

single entry in the virtual pipeline requires only updating a single entry in

the physical pipeline, except when explicitly directed by a flexible_mapping

annotation.

Shoehorn’s mapping algorithm takes a compiled representation of the physical

and virtual pipelines. This consists of a list of control blocks, each containing

a list of component trees. The Shoehorn architectures ensure that the order

that pipelines apply tables in different component trees is irrelevant. Shoe-

horn maintains the order of tables within component trees, however, because

components in the tree control access to their descendant components.

Tables in the physical pipeline can support multiple virtual components (tables

and conditional statements), provided doing so does not impact the update

rate of the virtual tables. Shoehorn will only map virtual tables (without the

flexible_mapping annotation) to a single physical table.

Chapter 8 Shoehorn Mapping Algorithm 94

Conditionals cannot be updated and never require more than a single table en-

try to support, so mapping a conditional to multiple physical components will

never affect the update rate, and will have only a trivial impact on the memory

usage. Consequently, Shoehorn allows mappings where virtual conditionals are

mapped to multiple physical components.

The procedure for finding mappings occurs in three stages:

1. Shoehorn identifies all potential component mappings for each compo-

nent in the virtual pipeline without consideration of the layout of the

pipelines. This is described in Section 8.1.

2. Shoehorn finds mappings that ensure that each table is applied to the

correct set of packets. This is described in Section 8.2.

3. Shoehorn rearranges tables in configurable pipelines to ensure that com-

ponents from multiple component trees are not interleaved. This is de-

scribed in Section 8.3.

Section 8.4 describes how translation software can use mappings found by Shoe-

horn to populate tables in the physical pipeline. Finally, this chapter concludes

with a brief discussion of the limitations of the Shoehorn mapping algorithm.

8.1 Stage 1: Identifying Supporting Components

In stage 1, Shoehorn identifies every component in the physical pipeline that

could be used to support each component in the virtual pipeline. At this stage,

Shoehorn ignores the layout of the pipeline, and only looks at whether the

physical component can support the same entries as the virtual component.

To support a virtual table, a physical table needs to support all the actions

Chapter 8 Shoehorn Mapping Algorithm 95

Matches:
eth.dst: exact
IPv6.src: ternary
Actions: [output]

Matches:
eth.dst: ternary

IPv6.source: ternary
Actions: [output]

Figure 8.1: The update rate of tables is limited by the slowest match kind used in that
table. Because the virtual table uses a ternary match for IPv6 source,
then it can be supported by a physical table that uses ternary match
kinds for Ethernet destination, despite the virtual table using an exact
match. The key for this and other diagrams in this chapter is shown in
Figure 6.3.

and matches used by the virtual table. Virtual tables have multiple entries that

are updated at run-time, and so cannot be supported by physical conditionals,

but virtual conditionals can be supported by either physical conditionals or

tables. To support a virtual conditional, a physical conditional must apply the

same operators, to the same fields and constant values. A physical table can

support a virtual conditional if it can match the same field with an equivalent

mask.

Shoehorn ensures that the match kinds used by virtual matches are supported

by physical matches with equivalent match kinds. In P4, tables define match

kinds on a field by field basis. However, the speed at which a controller can

update entries in the table is limited by the slowest match kind the table

uses. Therefore, if a virtual table uses any ternary matches, then Shoehorn

will allow other exact or lpm matches used by that table to be supported by

physical matches with ternary match kinds. This is illustrated in Figure 8.1.

At this stage, Shoehorn accepts physical tables as supporting virtual tables

even if the physical table requires match fields that are not matched by the

virtual table. It is possible that Shoehorn will be able to fill that field with

Chapter 8 Shoehorn Mapping Algorithm 96

IPv6

Matches:
IPv6.dst: lpm
Actions: [output]

true

Matches:
eth.type: exact
IPv6.dst: lpm
Actions: [output]

Figure 8.2: During stage 1 Shoehorn disregards excess matches in the physical table.
By accepting this physical table as potential mapping for the virtual
table, Shoehorn will be able to aggregate the virtual conditional and
table together in stage 2.

a value from another component by aggregating components together. For

instance, the physical table in Figure 8.2 requires an exact match on Ethernet

type, but Shoehorn considers that this table is able to support the virtual

table. This will allow Shoehorn to successfully map this table by aggregating

the conditional with the virtual table in stage 2.

8.2 Stage 2: Finding Mappings

In stage 2, Shoehorn finds a combination of virtual to physical component map-

pings that ensures that the aggregation of virtual components is valid and that

the mapped pipeline applies each packet to an equivalent set of components

to the virtual pipeline.

8.2.1 Mapping Pipelines

Algorithm 1 shows map_pipelines, the method Shoehorn uses to map a virtual

pipeline to a physical pipeline. map_pipelines iterates through the virtual

Chapter 8 Shoehorn Mapping Algorithm 97

Algorithm 1 Stage 2 of the Shoehorn mapping algorithm.
1: function map_pipelines(vcb_list, pcb_list, config) . §8.2.1.1

. vcb_list: virtual control blocks
. pcb_list: physical control blocks

. config: configuration data
2: recirculations ⇐ 0;
3: candidates_list ⇐ ∅;
4: unmapped_pcb_list ⇐ copy(pcb_list);
5: for each control block vcb in vcb_list do
6: complete_list ⇐ ∅;
7: while recirculations <= config.max_recirculations do
8: while unmapped_pcb_list is not ∅ and complete_list is ∅ do
9: pcb ⇐ unmapped_pcb_list.pop();
10: candidates_list = map_cb(candidates_list, vcb, pcb, config); . §8.2.2
11: complete_list ⇐ get_complete(vcb, candidates_list) . §8.2.1.2
12: if complete_list is not ∅ then
13: break;
14: else . §8.2.1.3
15: remove_not_updated(candidates_list);
16: if candidates_list is ∅ then
17: break;
18: unmapped_pcb_list ⇐ copy(pcb_list);
19: recirculations++;
20: candidates_list ⇐ complete_list; . §8.2.1.4
21: if candidates_list is ∅ then break;

return candidates_list;

control blocks, mapping components to each physical control block in turn. If

map_pipelines reaches the end of the physical pipeline without mapping all

components from a virtual control block, it recirculates and continues mapping

from the first physical control block. This process continues until:

• all components in the virtual control block are mapped, in which case

map_pipelines moves onto the next virtual control block;

• the number of recirculations exceeds the maximum, in which case the

mapping fails; or

• a complete recirculation fails to map any components, in which case the

mapping fails.

The steps of map_pipelines are described in detail below.

Chapter 8 Shoehorn Mapping Algorithm 98

8.2.1.1 Initialisation and Main Loop (Algorithm 1. L1–9)

map_pipelines takes as arguments:

• vcb_list, a list of the control blocks used in the virtual pipeline;

• pcb_list, a list of the control blocks used in the physical pipeline; and

• config, a struct holding the configuration;

and initialises the following fields:

• recirculations, a count of the times the pipeline recirculates;

• candidates_list, an initially empty list of partially complete candidate

mappings; and

• unmapped_pcb_list, a copy of pcb_list, to allow map_pipelines to

track its progress through the physical pipeline by popping control blocks

as they are mapped.

map_pipelines then iterates through the virtual control blocks. When it reaches

a new virtual control block (vcb) it initialises a list, complete_list, that holds

any candidates that map all components in vcb. When complete_list is not

empty, map_pipelines stops mapping vcb, and continues with the next virtual

control block.

To map vcb (provided the maximum number of recirculations has not been

exceeded), map_pipelines pops the next physical control block (pcb) from

unmapped_pcb_list, and attempts to map vcb to it. map_cb is detailed in

subsection 8.2.2.

Each virtual action module applies all actions before any tables in subsequent

control blocks can be applied, so each physical control block is only able to sup-

port components from one virtual control block each recirculation. However,

Chapter 8 Shoehorn Mapping Algorithm 99

provided the actions are not contradictory, multiple physical control blocks

can be used to support a single virtual control block. There is a potential

scenario where a physical control block could support actions from multiple

virtual control blocks in the same recirculation, described in Subsection 8.5.1.

This remains future work, however, and is not supported by Shoehorn.

8.2.1.2 get_complete (Algorithm 1. L11–13)

get_complete returns all candidate mappings that have successfully mapped

all components in the virtual control block, or an empty list if no complete can-

didates are found. Once it finds a complete candidate mapping, map_pipelines

stops iterating through the physical control blocks, but does not reset the

unmapped_pcb_list. This allows map_pipelines to begin mapping the next

virtual control block from the next control block in the physical pipeline.

8.2.1.3 Recirculating (Algorithm 1. L14–19)

If map_pipelines reaches the end of the physical pipeline without having suc-

cessfully mapped every component in a virtual control block, then it will recir-

culate. First, map_pipelines eliminates any candidate from candidates_list

that has not been updated since the last recirculation. If there are no candi-

dates remaining, then the mapping has failed. Otherwise, unmapped_pcb_list

is reset, recirculations is incremented, and map_pipelines continues map-

ping the components of the virtual control block, starting from the first physical

component in unmapped_pcb_list.

Chapter 8 Shoehorn Mapping Algorithm 100

Algorithm 2 Map components from a virtual control block to a physical
control block
1: function map_cb(candidates_list, vcb, pcb, config) . §8.2.2.1

. candidates_list: partially complete candidate mappings
. vcb: virtual control block

. pcb: physical control block
. config: a configuration object

2: for each component pc in pcb do . §8.2.2.2
3: for each component vc in pc.supports() do
4: for each candidate in candidates_list do
5: if vc.type is Table and is_mapped(candidate, vc) then
6: continue;
7: new ⇐ candidate.clone();
8: map_component(new, vc, pc); . §8.2.2.3
9: check_access_set(new) . §8.2.2.4
10: if new is valid then
11: candidates_list.add(new);
12: remove_unreachable_children(candidates_list, pc) . §8.2.2.5
13: remove_invalid_match_kinds(candidates_list, pc); . §8.2.2.6
14: prune_strictly_outclassed(candidates_list); . §8.2.2.7
15: remove_incomplete_trees(candidates_list); . §8.2.2.8
16: prune_partially_outclassed(candidates_list); . §8.2.2.9
17: prune(candidates_list, config.limit); . §8.2.2.10

return candidates_list;

8.2.1.4 Updating Candidates List and Returning (Algorithm 1. L20–21)

After map_pipelines finds a complete mapping for a virtual control block,

it replaces candidates_list with complete_list, and repeats the process

for the next virtual control block. unmapped_pcb_list is not updated at this

point, so the mapping will continue with the next physical control block.

Once map_pipelines finds a successful mapping for all virtual control blocks,

it returns the successful candidates. If map_pipelines is unable to find a

successful mapping for a virtual control block, it returns an empty list.

8.2.2 Mapping Control Blocks

Algorithm 2 shows map_cb, the function used by Shoehorn to map the com-

ponents of a virtual control block to a physical control block.

Chapter 8 Shoehorn Mapping Algorithm 101

The algorithm iterates through the components in the physical control block,

and for each physical component, finds all combinations of virtual components

that can be mapped to the physical component. For each new combination that

it finds, and each pre-existing candidate mapping, it generates a new candidate

mapping by combining the two. The algorithm validates the new candidates

and then uses heuristics to discard all but the most promising candidates. The

steps of the algorithm are described in detail below.

8.2.2.1 Method Call (Algorithm 2, L1)

map_cb takes as arguments:

• candidates_list, a list of partially complete candidate mappings;

• vcb, an object representing the virtual control block;

• pcb, an object representing the physical control block; and

• config, a configuration object.

The control block objects contain a list of the component trees in that control

block, and the configuration object contains the maximum size of the list of

candidates.

8.2.2.2 Loop (Algorithm 2, L2–7)

map_cb iterates through each component in the physical control block (pc), and

finds every virtual component, vc, that pc can support. For each pair of com-

ponents, it iterates through every candidate mapping (candidate) and clones

it, to create a new candidate, new, to attempt to map the two components.

Chapter 8 Shoehorn Mapping Algorithm 102

HTTPS

Conditional 1

Table 1
Matches:

ipv6.source: ternary
Actions: [set_eth_dst]

Default: notify

HTTP

Conditional 2

Table 2
Matches:

ipv6.source: ternary
Actions: [drop]
Default: no-op

Table 3
Matches:

ipv6.destination: ternary
ipv6.source: ternary
Actions: [set_eth_dst]

Default: notify

true

false

true

Conditional 1

Conditional 2

Table 1

Table 2 Table 3

true

false

true false

Figure 8.3: A section of a virtual pipeline that is aggregated into a single physical
table, and the corresponding entry tree. Nodes in the entry tree can
only have one child on a true (or false) evaluation. However, as Table 2
drops all packets it matches, it can still be merged with Table 3. Table 2
becomes the immediate child of Conditional 2, and Table 3 becomes the
child of Table 2.

8.2.2.3 map_component (Algorithm 2, L8)

To ensure mappings aggregate tables in a manner that does not negatively

affect the rate entries can be updated, mappings add the virtual components

mapped to each physical component in a tree, referred to as an entry tree. Entry

trees have rules that ensure that the number of entries in the physical table is no

greater than the sum of entries in the aggregated virtual tables, unless explicitly

allowed. Each node in a valid entry tree represents a virtual component and

can have up to two child nodes, representing the virtual components applied

Chapter 8 Shoehorn Mapping Algorithm 103

following a true or false evaluation of the parent (for tables the evaluation

represents the hit field of the apply result).

Virtual pipelines can have multiple components accessed following a true or

false evaluation of a single component, but aggregating them together results

in a physical table with a Cartesian product of the tables entries. While the

flexible_mapping annotation can indicate that Shoehorn can aggregate such

tables, how best to support that remains future work. Shoehorn only allows

aggregating these tables when one of the tables always drops packets on a

match, and the other table does not clone or count packets, which does not

increase the number of table entries in the physical pipeline. In such cases,

map_component inserts the table that drops packets as the immediate child of

the parent, and the other table is added as its child on a false evaluation.

If a node representing a table has a child for a true evaluation, then the physical

table will contain a Cartesian product of the entries of the two tables. In such

cases, the entry tree is only valid if both tables have the flexible_mapping

annotation.

Figure 8.3 shows a section of a virtual pipeline, and the entry tree stored in

the candidate mapping when that section of pipeline is mapped to a single

physical component.

map_component adds vc to the entry tree associated with pc in new. If the entry

tree associated with pc is invalid, then map_component sets new as invalid.

8.2.2.4 check_access_set (Algorithm 2, L9–12)

Once map_modules finds a potential mapping for a table, it verifies the map-

ping applies all the virtual components to the correct set of packets, with the

function check_access_set.

Chapter 8 Shoehorn Mapping Algorithm 104

The set of packets to which a component in the SVA is controlled in two ways:

1. by conditionals comparing a masked header value with a specified con-

stant value, or

2. by the hit value of a table’s apply result (§2.3.4).

Therefore, the set of packets to which components apply is defined by a set

of masked field values the packet must match, a set of masked field values

the packet must not match, a set of tables the packet must match, and a

set of tables the packet must not match. Collectively, these sets make up the

access set for a given component. Access sets are only relevant for actions,

and therefore conditionals do not require correct access sets, except when that

affects the access set of a table.

If the packets to which pc is applied is determined by goto metadata, then

check_access_set only needs to verify that new has successfully mapped all

components in the access set set for vc. As all hardware that uses goto meta-

data uses goto metadata for every table, and the components in the physical

pipeline are mapped in order, then the components in the access set can always

be connected with goto action primitives.

If the hardware has a fixed pipeline, then check_access_set finds the physical

components in the access set of pc. Then check_access_set iterates through

the entry trees mapped to those physical components, and finds all virtual

components that must be matched, and not matched, to reach pc. If that set

of components is equivalent to the access set of vc, then the access set is

correct.

If the entry tree is valid and the access set is correct, map_cb adds new to

candidates_list, and continues with the next virtual component.

Chapter 8 Shoehorn Mapping Algorithm 105

8.2.2.5 remove_unreachable_children (Algorithm 2, L13)

Once map_cb has found all candidate mappings for pc, it calls the function

remove_unreachable_children, to eliminate mappings with unmapped vir-

tual tables that cannot be mapped with a correct access set.

If pc does not support goto actions, then any physical tables reached by the

result of a look-up in pc will be accessed depending on whether any virtual

component mapped to pc is hit. Consequently, any unmapped child of a virtual

component mapped to pc will have an incorrect access set if another virtual

component mapped to pc can be hit by packets that do not also hit the first

virtual component.

If pc does not support goto actions, remove_unreachable_children iterates

through each candidate in candidates_list, checking whether any of the

virtual components mapped to pc control access to an unmapped table. If so,

then the candidate is invalid if any ancestor of the virtual component in the

entry tree has a child on a false evaluation.

remove_unreachable_children will attempt to correct this by removing nodes

representing virtual conditionals from pc’s entry tree, but any node represent-

ing a virtual table cannot be removed. map_cb waits until after all components

have been mapped to the physical table to perform this check, as an invalid

aggregation may be resolved by aggregating the child table into pc.

If pc supports goto action primitives, remove_unreachable_children returns

candidates_list unmodified.

Chapter 8 Shoehorn Mapping Algorithm 106

HTTPS

Conditional 1

Table 1
Matches:

ipv6.src: exact
Actions: [count]
Default: No-op

HTTP

Conditional 2

Table 2
Matches:

ipv6.src: exact
Actions: [count]
Default: No-op

true

false

true

Partially Aggregated Table
IPv6 Source: TCP Destination Actions:
2001:db8::1 443 count
2001:db8::2 443 count

::/0 80 goto Table 2

Fully Aggregated Table
IPv6 Source: TCP Destination Actions:
2001:db8::1 443 count
2001:db8::2 443 count
2001:db8::1 80 count
2001:db8::2 80 count

Figure 8.4: A section of pipeline where the components can be aggregated into a sin-
gle table, but adding components incrementally results in invalid match
kinds until the final component is added. The partially aggregated table
has to use an all_or_exact match kind on IPv6 Source, whereas the
fully aggregated table can use exact.

8.2.2.6 remove_invalid_match_kinds (Algorithm 2, L10)

map_cb then checks that the match kinds for each virtual component that

is aggregated into pc do not conflict with one another, using the function

remove_invalid_match_kinds. For instance, if a table with ternary match

kinds is aggregated with a table with only exactmatch kinds, then the physical

table will need to use ternary match kinds, reducing the update rate of the

second table. If the second table does not have the flexible_match_kinds

annotation, then this would be an invalid mapping.

map_cb only does this after all virtual components have been mapped to the

Chapter 8 Shoehorn Mapping Algorithm 107

physical table, as it is possible that a conflicting match kind can be resolved

by aggregating a new component. For example, the pipeline segment shown

in Figure 8.4 monitors the HTTP and HTTPS traffic from target hosts. Be-

cause the tables require exact match kinds, they cannot be merged with both

conditionals without the presence of the other table. For instance, aggregating

Table 1 with the two conditionals, but not Table 2, requires an entry for a

true evaluation of Conditional 2, matching Ethernet Type and masking IPv6

source, that uses a goto action to direct packets to Table 2. Because this entry

must match all IPv6 source addresses, the table must use an all_or_exact

match for IPv6 source, conflicting with the exact match on IPv6 source used

by Table 1. Once Table 2 is aggregated with the other components then all

entries match Ethernet Type and IPv6 source and no masking is required in

the physical table.

remove_invalid_match_kinds iterates through candidates_list and removes

any candidates where multiple virtual components with conflicting match kinds

are mapped to pc.

8.2.2.7 prune_strictly_outclassed_candidates (Algorithm 2, L14)

Before moving on to the next component in the physical control block, map_cb

does a first pass of pruning the number of candidate mappings. map_cb finds

every valid combination of mappings for each physical table; pruning candi-

dates prevents the scale from becoming unmanageable.

prune_strictly_outclassed_candidates removes from the candidates list

all candidates that:

1. map a subset of the virtual components of another candidate, and

2. map every virtual component that is used to control access to an un-

Chapter 8 Shoehorn Mapping Algorithm 108

mapped virtual table to the same physical components as that other

candidate.

As pc is fully mapped at this point, any virtual table mapped to it will not

affect how any non-descendant virtual table is mapped. So if a candidate maps

a subset of the virtual components of a second candidate, and the components

mapped in the second candidate do not control access to unmapped tables,

then any complete mapping found from the first candidate will map all re-

maining tables in a manner that is also compatible with the second candidate.

Therefore, the first candidate mapping is redundant, and can be removed.

8.2.2.8 remove_incomplete_trees (Algorithm 2, L15)

map_cb continues mapping components in this manner, until it has mapped

the last component in the physical control block. At that point, any candidate

that maps a virtual table with unmapped children is invalid, unless the vir-

tual table uses goto actions or has the flexible_mapping annotation. This

is because any unmapped components will be mapped to subsequent physi-

cal control blocks. As access sets cannot include components from multiple

control blocks (except with goto actions), the children will be unreachable.

remove_incomplete_trees removes these candidates from candidates_list.

Tables with the flexible_mapping annotation can be mapped twice, so the

fact that they have been mapped does not prevent them from being mapped

a second time, to provide access to their children.

remove_incomplete_trees also checks that the actions applied by the mapped

virtual tables will not modify fields matched in unmapped virtual components.

If the mapped virtual tables apply such actions, then the candidate is invalid,

and remove_incomplete_trees removes it from candidates_list.

Chapter 8 Shoehorn Mapping Algorithm 109

8.2.2.9 prune_partially_outclassed_candidates (Algorithm 2, L16)

Valid mappings of a virtual component to a component in one physical con-

trol block cannot prevent virtual components from being mapped to subse-

quent control blocks. Therefore, once the physical control block is completely

mapped, any remaining candidate that maps a subset of the virtual tables of

another candidate is redundant.

prune_partially_outclassed_candidates removes any such candidate from

candidates_list.

8.2.2.10 Final Pruning (Algorithm 2, L17)

At this point, fixed-function pipelines typically have very few remaining candi-

date mappings. However, configurable pipelines provide much more flexibility

in how components are mapped, and may still have a large number of map-

pings. In order to keep the scale of the workload to a manageable level, prune

reduces the candidates list to a set of configurable size, by selecting randomly

from the candidates that map the largest number of components. Because the

configurable pipelines consist of identical tables, this is very unlikely to impact

the likelihood of finding a correct result, unless the limit is small enough to

discard candidates from fixed-function pipelines.

Finally, map_cb returns the remaining candidates in candidates_list.

8.3 Stage 3: Resolving Goto Actions

Once Shoehorn has found a valid mapping for every virtual component, it re-

moves any redundant conditionals. Because virtual conditionals can be mapped

Chapter 8 Shoehorn Mapping Algorithm 110

Virtual Pipeline

Table 1

Table 2

Table 3
hit

Provisional Mapping
Table 1 Table 2 Table 3

Finalised Mapping with goto Actions Resolved

Table 1 Table 3 Table 2
hit

miss

hit or miss

Figure 8.5: Resolving goto actions when multiple components have equivalent access
sets

multiple times, and Shoehorn uses a greedy approach to mapping components,

Shoehorn will often map conditionals to physical components where they are

unneeded to reach any table. Shoehorn removes any virtual conditional map-

ping that is not part of the path to a table.

Then Shoehorn rearranges tables accessed by goto actions. When components

have equivalent access sets, the provisional mapping will arrange them in an

arbitrary order. This can result in impossible mappings when those tables are

used to control access to child tables. Shoehorn rearranges tables so that when

two tables have equivalent access sets, all descendants of the first table are

moved before the second table. The tables can always be rearranged because

all tables that use goto actions are identical. This process is shown in Figure

8.5.

Finally, Shoehorn resolves the goto action primitives to target the correct

components. When Shoehorn maps two virtual tables that have equivalent

access sets to different physical components, it must ensure that those physical

Chapter 8 Shoehorn Mapping Algorithm 111

Table 1
IP Source: Actions: Priority:

2001:db8:1::/48 set_eth_dst 100
2001:db8:2::/48 set_eth_dst 100

::/0 notify 0

Table 2
IP Source: Actions: Priority:

2001:db8:1::2 drop 100
::/0 no-op 0

Table 3
IP Source: IP Destination: Actions: Priority:

2001:db8:1::/48 2001:db8:3::1 set_eth_dst 100
::/0 ::/0 notify 0

Mapped Table
IP Source: IP Destination: Port: Actions: Priority:

2001:db8:1::/48 ::/0 443 set_eth_dst 500
2001:db8:2::/48 ::/0 443 set_eth_dst 500

::/0 ::/0 443 notify 400
2001:db8:1::2 ::/0 80 drop 300

2001:db8:1::/48 2001:db8:3::1 80 set_eth_dst 200
::/0 ::/0 80 notify 100
::/0 ::/0 ANY no-op 0

Figure 8.6: A demonstration of translating table entries. This shows hypothetical
table entries for the section of virtual pipeline shown in Figure 8.3 and
the corresponding entries for the mapped table. Entry priority in the
mapped table is determined by the path through the entry tree. The
highest priority entries belong to Table 1, followed by the Table 1 default
entry. The next highest priority entries are from Table 2, followed by its
default (in this case a no-op) combined with the entries from Table 3,
and finally a no-op entry for packets that return False when applied to
Conditional 2.

components are both applied to the same set of packets. For all descendants

of the first physical table, Shoehorn adds a goto action primitive (directing

packets to the second table) to all actions that do not already apply a goto

action primitive.

8.4 Populating Tables

Shoehorn finds mappings—it is not responsible for the translation of entries.

However, the translation software must ensure the entries in aggregated tables

Chapter 8 Shoehorn Mapping Algorithm 112

are translated correctly.

Every virtual table in an entry tree without two children corresponds to an

entry type in the aggregated table. Entries match the combined fields of all

virtual components that evaluate true in the path to the node from the root of

the tree. When a table with the flexible_mapping annotation has a child on

a true evaluation, this creates a Cartesian product of its entries with its child.

Entries must also apply all the actions of the virtual tables from the path from

the root, for virtual tables without the flexible_mapping annotation this is

the default actions for each virtual table in the path.

The priority offset for entries is determined by the path through the tree: all

entries from nodes descending from a true evaluation of given node have higher

priorities than all entries from nodes descending from a false evaluation.

An example of translating table entries is shown in Figure 8.6.

8.5 Discussion

8.5.1 Splitting Physical Control Blocks

Shoehorn does not allow two virtual control blocks to be combined with a

single physical control block. The rationale for this is that every table (A) in

the second control block, must come after the actions of some table in the

previous control block (B) are applied. However, if the first control block is

mapped to two physical control blocks, then it is possible that table B could

have been mapped to the first physical control block, meaning table A could

be mapped to the same physical control block as the remaining tables in the

first virtual control block. Shoehorn does not support this currently, but, to

Chapter 8 Shoehorn Mapping Algorithm 113

do so it would need to be able to identify the tables in different control blocks

that could, or could not, be mapped to the same physical control block.

8.5.2 Wide Mappings

Shoehorn maps tables greedily, and prunes candidate mappings according to

how many tables are mapped, meaning that physical tables tend to support as

many virtual tables as possible. This can result in physical tables having to map

a large number of fields. In practice, it is unlikely that the hardware can support

so many fields in a single table. Shoehorn could include a maximum_width

annotation, to indicate how many fields each table can match, but this remains

future work at this stage.

Chapter 9

Evaluation

This chapter demonstrates the practicality of supporting SDN controllers with

diverse, low-cost hardware, by using Shoehorn to find mappings from vir-

tual pipelines to physical pipelines. The evaluation maps a variety of virtual

pipelines, based on real world SDN controllers, to diverse physical pipelines,

based on the target hardware chosen in chapter 4. This chapter describes the

implementation of the mapping algorithm, and gives detailed descriptions of

the physical and virtual pipelines, before discussing the results.

9.1 Mapping Application

The evaluation uses an implementation of the Shoehorn mapping algorithm,

created for this evaluation. The mapping application takes a YAML repre-

sentation of the virtual and physical pipelines and finds a mapping between

them.

The mapping application has a few minor limitations that should be noted. The

implementation of annotations is faulty, and would not change how tables were

Chapter 9 Evaluation 115

mapped. Instead, when a virtual table had the flexible_match_kinds anno-

tation, the evaluation ran the mapping application multiple times, with exact

and all_or_exact match kinds for each match in the table. The evaluation

supported the flexible_mapping annotation, when necessary, by aggregating

tables by hand.

The mapping application does not determine whether conditionals are equiv-

alent, instead it requires that the conditionals in the access set for a virtual

table are all mapped to components controlling access to the physical table.

This is most relevant with tables that apply to specific protocols. For instance,

if a virtual table has an access set with conditionals that first check whether

a packet is an IPv4 packet, and if not, check whether the packet is an IPv6

packet, then the physical pipeline must also verify that the packet is not an

IPv4 packet, even if the pipeline has already established that the packet is

IPv6, otherwise the mapping application considers this an incorrect access set.

The evaluation resolved this by always defining pipelines with conditionals for

protocols applied in the same order.

The mapping application also does not perform Stage 3 of the mapping algo-

rithm. Stage 3 does not affect the success or failure of Shoehorn, so was not

necessary for the evaluation.

The mapping application is available under a BSD license [24].

9.2 Physical Pipelines

The evaluation uses physical pipelines based on the target hardware identified

in chapter 4. The pipelines recreate the functionality of the hardware’s support

for SDN standards in the SPA as faithfully as possible. However, without ac-

Chapter 9 Evaluation 116

cess to the full specification of each vendor’s ASIC, the evaluation must make

assumptions about how best to define the SPA pipeline. While these assump-

tions mean that this is not a perfect demonstration of Shoehorn’s suitability for

mapping to real world hardware, the physical pipelines do represent a diverse

range of configurable and fixed-function pipelines.

Most significantly, this evaluation assumes that hardware is capable of recircu-

lating packets, while retaining the ingress port metadata, and keeping track of

the number of times the packet has been recirculated. Recirculation can always

be achieved through the use of loop-back transceivers or similar methods, but

retaining the metadata may be more challenging. This evaluation assumes any

table that matches ingress port or tunnel ID is capable of inferring the recircu-

lation metadata, and that if such a table can set a metadata field (for instance

the VRF field in the OF-DPA), then any subsequent table that matches that

metadata field can also infer the recirculated metadata.

This section describes each physical implementation, and notes any assump-

tions that the evaluation made.

9.2.1 Aruba

The Aruba uses a configurable pipeline, and consequently is very easy to define

in the SPA. There are two major assumptions that this evaluation has made

about the Aruba pipelines.

The first is that the pipeline is capable of performing lpm matches on IP

source and destination fields. Both the Cisco and the Aruba use OpenFlow

Table-Features messages to configure their pipelines, but Table-Features

messages cannot indicate a lpm match. This evaluation assumes that this hard-

ware can support these matches as lpm matches are a fundamental feature of

Chapter 9 Evaluation 117

Layer 3 switches. This assumption had little impact on the outcome of the eval-

uation for the Aruba pipeline, however, as it does not support decrementing

TTL fields, which every virtual pipeline that used lpm matches also required.

The second assumption, is that actions can be deferred arbitrarily throughout

the pipeline. The Aruba OpenFlow implementation supports both Apply-Actions

and Write-Actions instructions, but in the Shoehorn architecture actions are

applied by Action Modules at arbitrary points throughout the pipeline. An

OpenFlow implementation could support this by writing to metadata and then,

in a subsequent table, match the metadata, and apply the appropriate actions,

but the Aruba OpenFlow implementation does not support metadata. This

evaluation assumes that the Aruba pipeline can achieve this result using a

similar method.

The Aruba OpenFlow implementation is unable to recirculate packets. It has

a flexible pipeline, however, so it did not require recirculation to map any of

the virtual pipelines in this evaluation.

9.2.2 Cisco

The Cisco OpenFlow implementation uses Table-Features messages to con-

figure its pipeline, similar to the Aruba implementation. Consequently this

evaluation makes the same assumptions as with the Aruba pipeline. Unlike

the Aruba pipeline, the Cisco pipeline can decrement TTL fields, so assuming

that it can perform lpm matches is more impactful.

Discussion with engineers at Cisco has indicated that the Cisco ASIC is capable

of supporting metadata in the OpenFlow pipeline, although the OpenFlow

implementation does not currently support this [44]. Therefore, the method

proposed above to support Action Modules is possible with the Cisco ASIC.

Chapter 9 Evaluation 118

Furthermore, the Cisco ASIC can recirculate packets natively, and therefore

could achieve the same result using packet recirculation.

9.2.3 OF-DPA

The OF-DPA pipeline is well specified, and requires few modifications to be

expressed in the SPA. The OF-DPA has a Policy ACL table, which performs

ternary matches on a variety of fields, and can drop packets or send them to

group tables. The OF-DPA applies the Policy ACL table near the end of the

pipeline, to allow its actions to overwrite the actions of previous tables, such as

the Routing table. In the Shoehorn architectures, however, overwriting actions

is not possible. Instead, our evaluation places the Policy ACL table in a control

block before the Routing table, so that if the Policy ACL table applies actions

to a packet, it will not reach the subsequent tables. This ensures the packet

handling is correct, but may cause inaccurate counters in some tables.

9.2.4 SAI

The SAI has an existing P4 definition for the behavioural model architecture,

making translation into Shoehorn simple. The P4 definition does not support

ACL tables, however. This evaluation assumes that the ACL tables can support

any entry supportable by both the Nvidia and OF-DPA pipelines.

The SAI pipeline makes extensive use of metadata, which is largely unutilised

by Shoehorn. Consequently, the evaluation implementation does not expose

the full functionality of the SAI pipeline, such as STP tables.

Chapter 9 Evaluation 119

9.2.5 Nvidia

The Nvidia OpenFlow pipeline frequently redirects traffic to the legacy pipeline

for additional processing. As the legacy pipeline is not clearly defined, this

evaluation omits that functionality. The only other assumption the evaluation

implementation required was that the pipeline is capable of applying actions

throughout the pipeline, in a similar manner to the Cisco and Aruba. The

Nvidia OpenFlow implementation does include metadata, so the only assump-

tion is that the metadata can be written to combine actions accurately.

9.3 Virtual Pipelines

This evaluation used virtual pipelines based on 25 controllers chosen from those

described in chapter 5. The virtual pipelines were defined in the SVA, and were

a best-effort interpretation based on the published details.

This evaluation selected controllers representing a variety of applications and

network types, favouring those that have been used in production deployments,

and those with multi-table pipelines. The evaluation eliminated controllers that

use features not supported in OpenFlow version 1.3.

When controllers use the NORMAL port to redirect packets to the legacy pipeline

of the device, this evaluation replaced the legacy pipeline with the pipeline used

by Faucet [8], as Faucet is an OpenFlow implementation of legacy switching

and routing.

Chapter 9 Evaluation 120

9.3.1 Implementation Details

The controllers used in this evaluation, and the details of their implementations

are described below.

9.3.1.1 AuthFlow

AuthFlow is a host authentication mechanism for enterprise networks [59]. The

evaluation implementation uses three tables and two control blocks. The first

control block has two tables, sending Link Layer Discovery Protocol (LLDP)

and Extensible Authentication Protocol (EAP) packets to the controller. The

second control block has an authorisation table, matching ingress port, Ether-

net source and Ethernet type, allowing authorised traffic to pass through the

pipeline, and dropping all other traffic. AuthFlow does not define a mechanism

for how the pipeline should handle packets once they are authorised, so our

evaluation implementation does not include this functionality.

This design highlights a weakness of the Shoehorn mapping algorithm. All the

tables could trivially be merged into a single table, but, because Shoehorn

does not merge tables in different control blocks this is impossible. Defining

the tables in a single control block, however, could result in the authorisation

table dropping protocol traffic that needs to be sent to the controller. Defining

the first three virtual tables as a single table, on the other hand, means that

physical pipelines are unable to use different tables to support each virtual

table.

Chapter 9 Evaluation 121

9.3.1.2 Castor

Castor is a SDN Internet exchange interconnect controller that provides teleme-

try and ARP hygiene [51]. The implementation for this evaluation uses two

control blocks, the first has three tables, two tables for defining intents (one for

IPv6 and one for IPv4), that let IX members control how packets are forwarded

to them, and one table to unicast ARP packets to the correct IX member. The

second control block has a switching table that forwards general traffic. As the

MAC addresses on the IX are static, Castor does not require a table for MAC

learning.

9.3.1.3 Faucet

Faucet is a widely deployed production enterprise controller for basic switching

and routing [8]. This evaluation uses an implementation with 4 control blocks

and 20 tables. This is more tables than are used in the OpenFlow implemen-

tation of Faucet, but this is the result of the OpenFlow implementation being

forced to combine multiple functions into some tables. Shoehorn eliminates

this need, as it can aggregate tables as needed.

The first control block applies the following tables:

• tables filtering unwanted packets such as unwanted protocols, packets

with illegal headers (eg. a broadcast Ethernet Source address), packets

with incorrect VLAN tags, and packets arriving on disabled ports;

• tables adding VLAN tags to packets arriving on access ports;

• tables that send Link Aggregation Control Protocol (LACP) packets to

the controller; and

• Port ACL tables.

Chapter 9 Evaluation 122

The second control block applies VLAN ACL tables.

The third control block has the following tables:

• an EthernetLearning extern;

• routing tables, accessed by packets that match a termination MAC table;

and

• tables filtering traffic directed to the control plane.

The control-plane filtering tables differ from those used by Faucet, as the

flexible_mapping extern was unusable in this test. The control-plane fil-

tering tables were aggregated by hand with the termination MAC table, as

this is supportable by more of the target hardware.

Finally, the fourth control block has an EthernetSwitching extern.

9.3.1.4 Hierarchical SDN

Hierarchical SDN (HSDN) [31] is an architecture for data centre networks for

scalable TE. The implementation used in this evaluation has two control blocks

and two tables. The table in the first control block matches ingress port and

MPLS label, and on a miss, forwards packets to a switch above the current

switch in the network hierarchy (including rewriting Ethernet headers and

decrementing TTL). On a hit, the table pops the MPLS label, and allows it

to pass to the next control block.

The second control block contains one table, matching MPLS label, and for-

wards the packet to a device lower in the network hierarchy than the current

switch.

Chapter 9 Evaluation 123

9.3.1.5 In-Packet Bloom Filters

In-Packet Bloom Filters [57] is an architecture for data centres using bloom

filters encoded in Ethernet addresses to load-balance traffic. The evaluation

implementation uses three tables in one control block. Two tables encode bloom

filters for IPv4 and IPv6 packets, and forward the packet, the other table is

for packets that already have filters encoded, and forwards according to the

Ethernet Source and Destination.

9.3.1.6 iTelescope

iTelescope [38] is a bump-in-the-wire system for identifying video traffic and

providing telemetry. The evaluation implementation has one control block with

three tables. There are two levels of cache, the first matches 5-tuples of elephant

flows, the second clones all TCP and UDP traffic to an inspection device, and

the final table forwards all remaining traffic to the correct egress port.

9.3.1.7 Magneto

Magneto [48] is a system for providing fine-grained path control in a hybrid

legacy–OpenFlow enterprise network, by using Packet-Out messages to ma-

nipulate MAC learning on the legacy devices. The evaluation implementation

has one control block with three tables. Two tables have lpm matches on IPv4

and IPv6 destination, and rewrite Ethernet Destination addresses to direct

packets through the predefined paths. The final table is used to handle STP

BPDUs.

Chapter 9 Evaluation 124

9.3.1.8 NetPaxos

NetPaxos [27] is a system for accelerating consensus Paxos protocols in data

centres by creating a canonical ordering of messages within the network. The

evaluation implementation uses a single table, matching ingress port and IPv6

destination, and multicasts packets (now in a canonical ordering) to the other

switches in the network.

9.3.1.9 NFShunt

NFShunt [65] is a system for accelerating Netfilter with network hardware for

use in a Science DMZ. The evaluation implementation has one control block

with two tables, with 5-tuple matches for flows that have been accepted by

Netfilter, and a default rule forwarding all other traffic to the Netfilter host.

9.3.1.10 OF-Like PBR

OF-Like PBR [64] is a system for applying policy in a hybrid legacy–OpenFlow

network. It uses OpenFlow switches to rewrite IP addresses to control how the

legacy devices forward traffic. The evaluation implementation uses a single

table, that matches ingress port and 5-tuple, and rewrites IPv4 source and

destination before forwarding the packet.

9.3.1.11 OFLoad

OFLoad [107] is a load balancing system for data centres that generates tun-

nels for elephant flows. The evaluation implementation uses two tables in two

control blocks. The first has 5-tuple matches for elephant flows, and the second

matches IPv6 destination for mice flows.

Chapter 9 Evaluation 125

9.3.1.12 OFTDP

OFTDP [7] is a topology discovery technique for SDN. OFTDP merely learns

the topology of a network, so would need to be used with a system for for-

warding host traffic, but the evaluation implementation just implements the

topology discovery. It consists of one table, matching LLDP packets.

9.3.1.13 OLiMPS

OLiMPS [71] is a system for load balancing across point-to-point VLANs in

research networks. The evaluation implementation consists of one table, for-

warding packets according to their ingress port and VLAN VID.

9.3.1.14 OpenNetMon

OpenNetMon [108] is loss monitoring system in reactive OpenFlow networks.

The evaluation implementation consists of a single table, matching flows with

10 fields.

9.3.1.15 Precision Medicine

Precision Medicine [92] is a Science DMZ for campus networks for medical

applications. The evaluation implementation uses two tables in one control

block: one handling ARP, and another doing 5-tuple based forwarding.

9.3.1.16 Random Host Mutation

Random Host Mutation [46] is a security system for enterprise networks that

randomly rewrites IP addresses. The evaluation implementation has one table,

Chapter 9 Evaluation 126

matching 5-tuple, that sets IPv4 source and destination, and outputs packets.

9.3.1.17 RouteFlow

RouteFlow [69] is a SDN router for OpenFlow v1.0, that has been deployed

in production [103]. The evaluation implementation uses lpm match kinds to

improve scalability, rather than the original single table design. It consists of

two control blocks, the first has a table filtering control plane traffic, the second

has a termination MAC table and IPv4 and IPv6 routing tables.

9.3.1.18 SciPass

SciPass [9] is a Science DMZ for campus networks. The evaluation implemen-

tation uses one control block with two tables. The first table directly outputs

pre-configured flows based on 5-tuple matching, and the remaining traffic is

forwarded to a second table which matches ingress port and clones packets to

an IDS as well as forwarding them.

9.3.1.19 SDProber

SDProber [96] is a system for monitoring link latency in SDNs. The evalua-

tion implementation uses a single table matching Ethernet Destination, either

forwarding probes back to the source, or cloning the packet back to its source,

as well as forwarding it on through the network.

9.3.1.20 SIMPLE

SIMPLE [95] is a system for enforcing middle box policies in enterprise net-

works by tunnelling packets through the network using their Ethernet ad-

Chapter 9 Evaluation 127

dresses and VLAN VIDs. The evaluation implementation consists of two tables,

in two control blocks. The table in the first control block matches tunnelled

packets, forwarding them through the network. The table in the second control

block matches 5-tuples, and sets the Ethernet Destination and VLAN VID to

add packets to tunnels.

9.3.1.21 Tennison

Tennison [32] is a SDN framework for security monitoring and attack mit-

igation. Tennison monitors traffic, either in the data plane or by mirroring

traffic to DPI servers, and allows applying mitigations to malicious flows once

identified. The evaluation implementation consists of three control blocks. The

first two control blocks contain one table each, for forwarding tunnelled traffic

to DPI servers, and for decapsulating tunnelled traffic, respectively. The third

control block performs attack mitigation and IPFIX monitoring, using two sets

of two tables, for IPv4 traffic and IPv6 traffic. Tennison can mitigate attacks

by dropping flows, or by rate-limiting flows. How to support rate-limiting with

Shoehorn remains future work at this point, so the evaluation implementation

of Tennison only drops packets.

9.3.1.22 TouSIX

TouSIX [52] is a production deployment at an Internet exchange in Toulouse.

The TouSIX deployment provides layer 2 security and fine-grained monitor-

ing. The evaluation implementation has one control block, with two tables,

one handling ARP traffic, and one handling switching. Like Castor, TouSIX

preconfigures the paths to all devices on the network, so does not need to learn

MAC addresses.

Chapter 9 Evaluation 128

9.3.1.23 VIP Lanes

VIP Lanes [39] is an architecture for campus networks that allows creation of

on-demand Science DMZs. VIP Lanes uses the NORMAL port, so the implemen-

tation replaces the Faucet VLAN ACL table, with a table performing 5-tuple

matching with the flexible_match_kinds annotation for DMZ traffic.

9.3.1.24 VPNs

VPNs [55] is a system for simplifying the configuration of VPNs in SDN data

centres. The paper describes two different types of devices, a P node and a PE

node.

The implementation of the P node has two tables in one control block, a ter-

mination MAC table and a table matching MPLS label, that forwards packets,

and pops MPLS label when the switch is the penultimate hop.

The PE node implementation has 3 tables in two control blocks. The first con-

trol block handles MPLS packets egressing the network, and has a termination

MAC table, and a table matching MPLS labels. The MPLS table pops MPLS

labels, and outputs the packets to the customer network. The second control

block handles traffic arriving from the customer network, matching ingress

port, and source and destination IP subnets. Entries either output the packet

to another customer site, or encapsulates the packet in MPLS and forwards

it through the network. The PE node pipeline simulates flexible_mapping

by combining a termination MAC table with the routing table in the second

control block. The routing table may have a large number of entries, but as

the routing table already matches the IP source subnet, and termination MAC

addresses have a one to one mapping with subnets, this would not result in an

increase in the overall number of entries.

Chapter 9 Evaluation 129

Table 9.1: Overview of the target controllers.
Controller Network Type Control Blocks Tables
AuthFlow Enterprise 2 3
Castor Internet Exchange 2 4
Faucet Enterprise 4 20
HSDN Data Centre 2 2

In-Packet Bloom Filters Data Centre 1 3
iTelescope Campus 1 3
Magneto Hybrid 1 3
NetPaxos Data Centre 1 1
NFShunt Science DMZ 1 2

OF-Like PBR Hybrid 1 1
OFLoad Data Centre 1 2
OFTDP Any 1 1
OLiMPS Campus 1 1

OpenNetMon Any 1 1
Precision Medicine Science DMZ 1 2

Random Host Mutation Hybrid 1 1
RouteFlow Any 2 4
SciPass Science DMZ 1 2

SDProber Any 1 1
SIMPLE Enterprise 2 2
Tennison Enterprise 3 6
TouSIX Internet Exchange 1 2

VIP Lanes Campus 4 20
VPNs-P ISP 1 2
VPNs-PE ISP 2 3

9.3.2 Summary of Controllers

The evaluation uses a diverse set of controllers, for a variety of applications and

network types. Table 9.1 summarises the controllers used in this evaluation,

showing the network type, and how many control blocks and tables each uses.

9.4 Results

Table 9.2 shows the results of mapping each virtual pipeline to each physical

pipeline. All but 6 virtual pipelines were supported by hardware from multiple

Chapter 9 Evaluation 130

Table 9.2: The number of recirculations required for each physical pipeline to support
each of the 25 controllers’ virtual pipelines. A dash indicates Shoehorn was
unable to find a mapping.

Controller

A
ru
b
a

C
is
co

N
vi
d
ia

O
F
-D

P
A

S
A
I

AuthFlow 0 0 - 2 2
Castor 0 0 - - -
Faucet - 0 - 3 3
HSDN - - - 1 -

In-Packet Bloom Filters 0 0 - 1 1
iTelescope 0 0 - 0 0
Magneto - 0 - 0 0
NetPaxos 0 0 0 0 0
NFShunt 0 0 - - -

OF-Like PBR 0 - - - -
OFLoad 0 - - - -
OFTDP 0 0 0 0 0
OLiMPS 0 0 0 0 0

OpenNetMon - - 0 0 0
Precision Medicine 0 0 0 1 1

Random Host Mutation 0 - - - -
RouteFlow - 0 - 0 0
SciPass 0 0 0 0 0

SDProber - 0 - 0 0
SIMPLE 0 0 - 1 1
Tennison 0 0 - 2 2
TouSIX 0 0 - - -

VIP Lanes - 0 - 3 3
VPNs-P - - - 0 -
VPNs-PE - - - 0 -

Total Controllers Supported 16 18 6 19 16

vendors. The layout of the pipelines was never a cause for failure, in every

case where there was a failure, it was due to a table in the virtual pipeline

that could not be supported by any table in the physical pipeline. While, in

some cases, it might be possible for a mapping algorithm to find mappings

where virtual tables are supported by a combination of tables in the physical

pipeline, doing so negatively impacts the update rate.

Chapter 9 Evaluation 131

9.4.1 Physical Pipelines

This section provides further details on the results for each hardware pipeline.

9.4.1.1 Aruba

The physical pipeline based on the Aruba supported 64% of the virtual pipelines

overall. As the Aruba has a configurable pipeline, it did not require recircula-

tion for any controller.

The causes for failure for controllers when mapping to the Aruba pipeline were:

• the Aruba pipeline cannot support decrementing TTL fields, this pre-

vented it from supporting controllers that perform layer 3 routing—

Faucet, Magneto, RouteFlow, and SDProber;

• the Aruba pipeline cannot perform MPLS matches and actions, prevent-

ing it from supporting either VPNs controller or HSDN; and

• the Aruba pipeline cannot match IP ECN bits, and therefore could not

support OpenNetMon.

9.4.1.2 Cisco

The Cisco pipeline was the second most successful physical pipeline, supporting

72% of the virtual pipelines. Like the Aruba, the Cisco has a configurable

pipeline and does not require recirculation to support any virtual pipeline.

The reasons Shoehorn failed to find mappings for the Cisco pipeline were:

• the Cisco pipeline cannot performMPLS matches and actions, preventing

it from supporting the VPNs controllers, and HSDN;

• the Cisco pipeline cannot support virtual pipelines that rewrite IP source

Chapter 9 Evaluation 132

and Destination fields—Random Host Mutation, and OF-Like PBR; and

• the Cisco pipeline could not support the IPv4 DSCP and ECN match

fields used by OFLoad and OpenNetMon.

9.4.1.3 Nvidia

The Nvidia pipeline only supported 5 controllers. This is primarily due to

the Nvidia OpenFlow pipeline using entirely ternary match kinds—any vir-

tual pipeline that requires exact match kinds could not be supported by

the Nvidia pipeline. By using configured_any match kinds in the place of

ternary match kinds, Shoehorn was able to map 18 of the virtual pipelines

to the Nvidia pipeline. Shoehorn failed to find mappings for virtual pipelines

based on MPLS controllers, controllers that rewrite IP source or destination

fields, and controllers that match ARP TPA.

The Nvidia hardware does support the SAI, however, so, in practice, the hard-

ware could support more of these controllers by using its SAI pipeline.

9.4.1.4 OF-DPA

The OF-DPA pipeline supported 76% of the virtual pipelines, the most of any

pipeline. The OF-DPA is the only controller to support MPLS matches and

actions, and is therefore the only controller to support HSDN, or either Virtual

Private Networks (VPNs) pipeline.

The most common reason Shoehorn failed to find a mapping for the OF-DPA

is because it cannot support tables that require exact 5-tuple matches. The

OF-DPA can only match 5-tuple fields in the Policy ACL table, but that uses

ternary match kinds. This affected iTelescope, NFShunt, and OFLoad. Some

Chapter 9 Evaluation 133

other controllers used 5-tuple matches, but when these targeted preconfigured

flows, the evaluation used the flexible_match_kinds annotation, as the up-

date rate is not as relevant for preconfigured flows.

The other reasons that the OF-DPA pipeline was unable to support virtual

controllers were:

• Castor and TouSIX unicast ARP packets by matching ARP target pro-

tocol address fields, which the OF-DPA pipeline does not support; and

• The OF-DPA pipeline cannot write IP source and destination fields, pre-

venting it from supporting OF-Like PBR or Random Host Mutation.

9.4.1.5 SAI

The SAI pipeline supported 64% of the virtual pipelines.

The reasons the SAI pipeline failed to support pipelines were:

• the SAI pipeline cannot support iTelescope, NFShunt or OFLoad as it

cannot perform exact 5-tuple matches;

• the SAI pipeline cannot support ARP target protocol matches, prevent-

ing it from supporting Castor and TouSIX;

• the SAI pipeline cannot perform MPLS matches and actions, which are

required by VPNs-P, VPNs-PE, or HSDN; and

• the SAI pipeline cannot rewrite IP source and destination fields, meaning

it cannot support OF-Like PBR or Random Host Mutation.

Chapter 9 Evaluation 134

9.4.2 Recirculations

No mapping required more than three recirculations, which is the threshold

identified in section 6.2.3. This section describes the reasons that recirculation

was required for each controller.

The evaluation implementation of AuthFlow has two control blocks, the first

handles protocol traffic, used to negotiate access, and the second control block

drops all traffic from unauthorised hosts. Shoehorn used 2 recirculations to

map the AuthFlow pipeline to the SAI and OF-DPA pipelines. The first recir-

culation is needed because the two tables in the first control block both need to

be supported by the physical pipelines’ ACL tables, this would not have been

necessary with the flexible_mapping annotation. The second recirculation is

necessary because the table in the second control block must only be applied

to packets that do not match either table in the first control block.

Supporting the Faucet pipeline with the OF-DPA or SAI pipelines requires 3

recirculations. This is caused by tables in the Faucet pipeline that modify fields

that are matched by subsequent tables. The first two cases are the Port and

VLAN ACL tables, and finally the routing table sets the Ethernet Destination,

which is matched by the EthernetSwitching extern in the final control block.

VIP Lanes also requires 3 recirculations, as it uses the NORMAL action, and

therefore the implementation for this evaluation was integrated with the Faucet

pipeline.

The In-Packet Bloom Filters pipeline requires recirculation when mapped to

the OF-DPA or SAI pipelines as the forwarding table in the second control

block is applied to packets that are not matched by either table in the first

control block. Shoehorn maps all these tables to the ACL tables of the two

pipelines.

Chapter 9 Evaluation 135

SIMPLE requires recirculation with the OF-DPA and SAI pipelines, as it re-

uses the ACL tables.

The OF-DPA and SAI pipelines require a recirculation to support the Precision

Medicine pipeline, as the two tables used by Precision Medicine are applied to

overlapping packets, but both need to be supported by the physical pipelines’

ACL tables. This could easily be resolved by redesigning the virtual pipeline, as

the two tables apply to mutually exclusive sets of packets. A design where the

ARP table is only applied to ARP packets, and the forwarding table applies

to other packets, would allow the tables to be merged.

The OF-DPA and SAI require two recirculations to support Tennison. All

of the tables used by Tennison are supported using the pipelines’ ACL tables,

and therefore Shoehorn recirculates after each control block, to access the ACL

table multiple times.

9.4.3 Run Time

The mappings were performed on a standard PC (Intel Core i3-2120 CPU

with 4GB RAM). In all cases the mapping was found, or Shoehorn failed, in

less than 5 minutes. As Shoehorn runs at compile time, this is a satisfactory

outcome for use in production.

9.5 Discussion

9.5.1 Likely Causes for Failure

This evaluation found that in every case where Shoehorn was unable to find

a mapping, it was due to a virtual table that could not be supported by any

Chapter 9 Evaluation 136

table in the physical pipeline. For the flexible pipelines—the Aruba, the Nvidia,

and the Cisco—this is likely to always be true, as the tables can be arranged

in any order. Provided they can support all of the virtual tables, and have

enough tables available, these pipelines can simply recreate the virtual pipeline

directly.

The fixed-function pipelines, however, might fail due to unsupportable access

sets. The fixed-function pipelines rely heavily on their ACL tables to support a

variety of virtual tables, and the ACL tables apply to all packets. Any virtual

table that is accessed following a hit in another table cannot be mapped to

the ACL table, unless it uses the flexible_mapping annotation. Virtual tables

that are accessed following a miss in another table can more easily be supported

by the ACL table, as ternary tables can be concatenated (§6.3.4).

9.5.2 Programming Pipelines

To ensure that Shoehorn has the best possible chance of finding a mapping,

it is important when programming virtual pipelines to ensure that tables are

not being restricted arbitrarily. Most importantly, programmers should use

the flexible_match_kinds annotation whenever the update rate for a table

is low. The fixed-function physical pipelines, SAI and OF-DPA both relied

heavily on ACL tables to support virtual tables, often aggregating tables to-

gether to be supported by the ACL table, then recirculating to allow tables in

the next control block to be mapped to the ACL table as well.

The flexible_mapping annotation was only simulated to merge tables with

termination MAC tables—with the VIP table in the Faucet pipeline, and with

the ingress routing table in the VPNs PE pipeline. The flexible_mapping

annotation not only reduces the update rate, but also increases the memory

Chapter 9 Evaluation 137

usage, so it is only practical for very small tables, or when the controller

developer knows that two tables can be combined without increasing the overall

number of entries.

In some cases the definition of the physical pipeline can reduce the complexity

of finding mappings. For instance, the OF-DPA always carries internal VLAN

tags, this is not included in the pipeline definition however, as a pipeline where

all packets arrive and exit the datapath untagged, and internally only carry

the default VLAN tag, is—from the perspective of Shoehorn—identical to one

with no VLAN tags.

9.5.3 Ideal Hardware

From these results, it is easy to propose a hardware pipeline that supports all

the controllers in this evaluation. Simply by adding a table that does exact

5-tuple matching, as well as adding ARP TPA matches and set IPv4 address

actions to the Polcy ACL table, the OF-DPA pipeline would support all the

controllers.

Changing the Policy ACL table to use configured_anymatches does not allow

Shoehorn to find mappings to the OF-DPA for all pipelines that use exact 5-

tuple matches. A table using configure_anymatches, cannot support multiple

tables when one of them uses exact matches, unless all the tables use the

same matches. Instead, a new table that can perform exact 5-tuple matches is

required. An exact match table that matches arbitrary combinations of fields

would also allow supporting other controllers such as FlowTags [33].

Two controllers aggregated tables to simulate the flexible_mapping annota-

tion, and the OF-DPA supported both in the Policy-ACL table. This would

not have been necessary with a two stage Policy-ACL table, where the second

Chapter 9 Evaluation 138

table is optionally accessed after a hit in the first.

This approach, of including a small number of flexible tables in a fixed-function

pipeline, is similar to that proposed by PINS [86].

9.5.4 Other Algorithmic Mapping Systems

This evaluation does not compare Shoehorn directly to FlowConvertor [89]

or the system proposed by Sanger, Luckie, and Nelson [100], as these pre-

vious system map populated OpenFlow flow tables, whereas Shoehorn maps

pipelines defined in P4. This evaluation demonstrated mapping complicated

real-world controllers to real physical pipelines, which neither previous algo-

rithm achieved.

Unlike the previous algorithms, Shoehorn ensures that real-time translation

is practical, FlowConvertor demonstrated their system is practical for real-

time translation with simple pipelines, but do not guarantee the update rate

will be preserved, and likely cannot achieve real-time translation with larger

pipelines. Sanger, Luckie, and Nelson found their algorithm is not suitable

for real-time translation. Likewise, by preserving the match kinds used by

each table, Shoehorn ensures the power consumption of the pipeline is not

negatively impacted.

FlowConvertor relies heavily on metadata to control the path of packets through

the pipeline. Metadata is poorly supported by the target hardware, however.

Shoehorn does not have this requirement.

FlowConvertor has not been demonstrated to work with flexible hardware.

Sanger, Luckie, and Nelson found that their solution was unable to scale to

work with flexible hardware. Shoehorn is able to support flexible hardware as

Chapter 9 Evaluation 139

well as fixed-function pipelines.

Chapter 10

Conclusion

10.1 Summary

This thesis investigated the practicality of improving portability in SDN con-

trollers for low cost hardware, by algorithmically mapping from a virtual

pipeline to a constrained physical pipeline, in a manner suitable for real-time

control channel translation. This thesis finds that such an approach is practi-

cal, provided the hardware is capable of efficiently recirculating packets, while

retaining metadata identifying the ingress port, and recirculation count.

To demonstrate the practicality of this approach, this thesis presented Shoe-

horn, a new system for finding mappings from virtual to physical pipelines.

This thesis used Shoehorn to map 25 virtual pipelines, based on real SDN con-

trollers, to 5 physical pipelines, based on different vendors implementations of

SDN standards. Provided the physical pipeline included tables capable of sup-

porting the matches and actions of each table in the virtual pipeline, Shoehorn

was always able to find a successful mapping. Overall, every virtual pipeline

was supported by at least one physical pipeline, and all but 6 virtual pipelines

Chapter 10 Conclusion 141

were supported by multiple physical pipelines.

This thesis described the mapping algorithm used by Shoehorn. The algorithm

ensures that mappings are suitable for real-time control channel translation by

mapping virtual tables directly to physical tables, so that the number of table

entries in the physical table is never greater than the number of table entries

in the virtual table (unless explicitly instructed otherwise). Consequently, up-

dating a single entry in the virtual pipeline only requires updating a single

entry in the physical pipeline.

Shoehorn augments this approach by using packet recirculation. Packet re-

circulation allows Shoehorn to resolve incompatible table ordering between

pipelines. No mapping produced as part of the evaluation required more than

3 recirculations, which is below the threshold where recirculation has a signif-

icant impact on overall throughput.

This thesis presented the design of two new P4 architectures, for defining the

virtual and physical pipelines for Shoehorn to map. P4 can describe the capabil-

ities of pipelines precisely, including specifying the control flow more efficiently

than OpenFlow. The architectures use an extern called an Action Module to

specify where pipelines apply actions. This eliminates many situations where,

in OpenFlow, tables are forced into an explicit ordering that is not relevant to

the behaviour of the datapath.

The design of Shoehorn was informed by a detailed analysis of a variety of SDN

controllers and SDN implementations in hardware. The analysis of controllers

included analysis of 6 deployments of SDN in production, as well as the pub-

lished details of 50 controllers from research projects. This analysis produced

a dataset containing details of the pipelines used by these controllers, which

this thesis has made publicly available for use with future research into the use

Chapter 10 Conclusion 142

of SDN.

10.2 Future Work

Shoehorn is capable of mapping virtual pipelines to diverse physical pipelines,

but relies on hardware recirculating packets efficiently, while retaining meta-

data. As hardware vendors do not make the specifications of their hardware

publicly available, this thesis has made assumptions about how hardware can

achieve this. With better knowledge of the capabilities of physical devices, it is

possible that Shoehorn could provide better support for metadata in the SVA.

Likewise, Shoehorn assumes that physical hardware will use what metadata is

available to it to ensure that Shoehorn’s intrinsic metadata functions correctly.

Shoehorn could use that metadata to improve its ability to find mappings for

virtual tables.

Shoehorn uses two annotations to indicate how virtual tables can be mapped.

A richer set of annotations, similar to those used in NOSIX [114], could enable

Shoehorn to find suitable mappings more often. For instance, an annotation

indicating the maximum number of entries a table can have, and another in-

dicating a maximum scale factor (indicating the maximum number of physical

table entries that can be updated when a single virtual table entry is updated),

would allow Shoehorn to aggregate small tables together with a Cartesian prod-

uct of entries, provided the maximum number of entries was less than the scale

factor of the other table. A scale factor annotation would also allow Shoehorn

to use split mappings, as proposed by Sanger, Luckie, and Nelson [100].

Shoehorn maps virtual tables greedily, so the mappings often require physical

tables to match a large number of fields, which hardware may find difficult to

Chapter 10 Conclusion 143

support. The inclusion of a maximum_width annotation could allow Shoehorn

to avoid mappings with more fields than hardware can support.

Shoehorn requires that P4 actions do not use any control logic, to simplify the

process of identifying equivalent actions in different pipelines. Further research

could investigate practical methods for mapping more sophisticated actions.

References

[1] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. “Network anti-spoofing

with SDN data plane”. In: IEEE INFOCOM 2017-IEEE conference on

computer communications. IEEE. 2017, pp. 1–9.

[2] Anurag Agrawal and Changhoon Kim. “Intel Tofino2-A 12.9 Tbps P4-

Programmable Ethernet Switch”. In: Hot Chips Symposium. 2020, pp. 1–

32.

[3] Allied Telesis, Inc. The OpenFlow™Protocol Feature Overview and Con-

figuration Guide. Allied Telesis, Inc. 2019.

[4] Arista Networks. EOS 4.27.0F User Manual. Arista Networks. 2021.

[5] Alon Atary and Anat Bremler-Barr. “Efficient round-trip time mon-

itoring in OpenFlow networks”. In: IEEE INFOCOM 2016-The 35th

Annual IEEE International Conference on Computer Communications.

IEEE. 2016, pp. 1–9.

[6] Mounir Azizi, Redouane Benaini, and Mouad Ben Mamoun. “Delay

measurement in OpenFlow-enabled MPLS-TP network”. In: Modern

Applied Science 9.3 (2015), p. 90.

[7] Abdelhadi Azzouni, Nguyen Thi Mai Trang, Raouf Boutaba, and Guy

Pujolle. “Limitations of OpenFlow topology discovery protocol”. In:

References 145

2017 16th annual mediterranean Ad hoc networking workshop (Med-

Hoc-Net). IEEE. 2017, pp. 1–3.

[8] Josh Bailey and Stephen Stuart. “Faucet: Deploying SDN in the enter-

prise”. In: Communications of the ACM 60.1 (2016), pp. 45–49.

[9] Edward Balas and A Ragusa. “SciPass: a 100Gbps capable secure Sci-

ence DMZ using OpenFlow and Bro”. In: Supercomputing 2014 con-

ference (SC14). Supercomputing 2014 conference (SC14) New Orleans,

Louisiana. 2014.

[10] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”.

In: Proceedings of the third workshop on Hot topics in software defined

networking. 2014, pp. 1–6.

[11] Big Switch Networks. Open Network Linux. https://opennetlinux.

org/. Accessed: 2022-08-19. 2019.

[12] Pat Bosshart et al. “Forwarding metamorphosis: Fast programmable

match-action processing in hardware for SDN”. In: ACM SIGCOMM

Computer Communication Review 43.4 (2013), pp. 99–110.

[13] Pat Bosshart et al. “P4: Programming protocol-independent packet pro-

cessors”. In: ACM SIGCOMM Computer Communication Review 44.3

(2014), pp. 87–95.

[14] Rodrigo Braga, Edjard Mota, and Alexandre Passito. “Lightweight DDoS

flooding attack detection using NOX/OpenFlow”. In: IEEE Local Com-

puter Network Conference. IEEE. 2010, pp. 408–415.

[15] Broadcom. BCM53346 64 Gb/s Multilayer Switch Product Brief. Prod-

uct Brief. 2020.

[16] Broadcom. BCM56370 560 Gb/s Programmable Multilayer Switch. Prod-

uct Brief. 2020.

https://opennetlinux.org/
https://opennetlinux.org/

References 146

[17] Broadcom. NPL - Network Programming Language Specification v1.3.

Specification. 2019.

[18] Broadcom. OpenFlow™-Data Plane Abstraction (OF-DPA): Abstract

Switch Specification. 2014.

[19] Broadcom. OpenNSL 2.0—Library of Open Networking APIs. Product

Brief. 2015.

[20] Broadcom. SDKLT: Logical Table-Based Switch Development Kit. Prod-

uct Brief. 2018.

[21] Marc Bruyere et al. “Rethinking IXPs’ architecture in the age of SDN”.

In: IEEE Journal on Selected Areas in Communications 36.12 (2018),

pp. 2667–2674.

[22] Yanghee Choi. “Implementation of content-oriented networking archi-

tecture (CONA): a focus on DDoS countermeasure”. In: Proceedings of

European NetFPGA developers workshop. Citeseer. 2010.

[23] Christopher Lorier. SDN Pipelines. https://github.com/wandsdn/

shoehorn-sdn-pipelines.

[24] Christopher Lorier. Shoehorn. https://github.com/wandsdn/shoehorn.

[25] Cisco Systems, Inc. Programmability Configuration Guide, Cisco IOS

XE Gibraltar 16.11.x. Cisco Systems, Inc. 2021.

[26] Michael Dalton et al. “Andromeda: Performance, isolation, and veloc-

ity at scale in cloud network virtualization”. In: 15th USENIX sym-

posium on networked systems design and implementation (NSDI 18).

2018, pp. 373–387.

[27] Huynh Tu Dang et al. “NetPaxos: Consensus at network speed”. In: Pro-

ceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research. 2015, pp. 1–7.

https://github.com/wandsdn/shoehorn-sdn-pipelines
https://github.com/wandsdn/shoehorn-sdn-pipelines
https://github.com/wandsdn/shoehorn

References 147

[28] Avri Doria et al. Forwarding and control element separation (ForCES)

protocol specification. RFC 5810. RFC Editor, Mar. 2010, pp. 1–124.

url: http://www.rfc-editor.org/rfc/rfc5810.txt.

[29] Hilmi E Egilmez, S Tahsin Dane, K Tolga Bagci, and A Murat Tekalp.

“OpenQoS: An OpenFlow controller design for multimedia delivery with

end-to-end Quality of Service over Software-Defined Networks”. In: Pro-

ceedings of the 2012 Asia Pacific signal and information processing as-

sociation annual summit and conference. IEEE. 2012, pp. 1–8.

[30] Extreme Networks, Inc. ExtremeXOS OpenFlow User Guide. Extreme

Networks, Inc. 2015.

[31] Luyuan Fang et al. “Hierarchical SDN for the hyper-scale, hyper-elastic

data center and cloud”. In: Proceedings of the 1st ACM SIGCOMM

Symposium on Software Defined Networking Research. 2015, pp. 1–13.

[32] Lyndon Fawcett et al. “Tennison: A distributed SDN framework for

scalable network security”. In: IEEE Journal on Selected Areas in Com-

munications 36.12 (2018), pp. 2805–2818.

[33] Seyed Kaveh Fayazbakhsh et al. “Enforcing Network-Wide Policies in

the Presence of Dynamic Middlebox Actions using FlowTags”. In: 11th

USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 14). 2014, pp. 543–546.

[34] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road to SDN:

an intellectual history of programmable networks”. In: ACM SIGCOMM

Computer Communication Review 44.2 (2014), pp. 87–98.

[35] Marcial P Fernandez. “Comparing OpenFlow controller paradigms scal-

ability: Reactive and proactive”. In: 2013 IEEE 27th International Con-

http://www.rfc-editor.org/rfc/rfc5810.txt

References 148

ference on Advanced Information Networking and Applications (AINA).

IEEE. 2013, pp. 1009–1016.

[36] Stefan Geissler et al. “The Power of Composition: Abstracting a Multi-

Device SDN Data Path Through a Single API”. In: IEEE Transactions

on Network and Service Management 17.2 (2020), pp. 722–735. doi:

10.1109/TNSM.2019.2951834.

[37] Bastian Germann, Mark Schmidt, Andreas Stockmayer, and Michael

Menth. “OFFWall: A static OpenFlow-based firewall bypass”. In: 11.

DFN-Forum Kommunikationstechnologien. Gesellschaft für Informatik

eV. 2018.

[38] Hassan Habibi Gharakheili et al. “iTeleScope: Intelligent Video Teleme-

try and Classification in Real-Time using Software Defined Networking”.

In: arXiv preprint arXiv:1804.09914 (2018).

[39] James Griffioen et al. “VIP Lanes: High-speed custom communication

paths for authorized flows”. In: 2017 26th International Conference on

Computer Communication and Networks (ICCCN). IEEE. 2017, pp. 1–

9.

[40] David Hancock and Jacobus Van der Merwe. “Hyper4: Using p4 to

virtualize the programmable data plane”. In: Proceedings of the 12th

International on Conference on emerging Networking EXperiments and

Technologies. 2016, pp. 35–49.

[41] Nikhil Handigol et al. “Plug-n-Serve: Load-balancing web traffic using

OpenFlow”. In: ACM Sigcomm Demo 4.5 (2009), p. 6.

[42] Zijun Hang, Yongjie Wang, and Shuguang Huang. “P4 Transformer:

Towards Unified Programming for the Data Plane of Software Defined

https://doi.org/10.1109/TNSM.2019.2951834

References 149

Network”. In: 2021 IEEE 45th Annual Computers, Software, and Ap-

plications Conference (COMPSAC). IEEE. 2021, pp. 544–551.

[43] Hewlett Packard Enterprise Development LP. Aruba OpenFlow 1.3 Ad-

ministrator Guide for ArubaOS-Switch 16.07. Hewlett Packard Enter-

prise. 2018.

[44] Atri Indiresan. Private communication. 2019.

[45] IQTLabs. Poseidon. https://github.com/IQTLabs/poseidon. Ac-

cessed: 2022-07-24.

[46] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. “OpenFlow ran-

dom host mutation: transparent moving target defense using software

defined networking”. In: Proceedings of the first workshop on Hot topics

in software defined networks. 2012, pp. 127–132.

[47] Sushant Jain et al. “B4: Experience with a globally-deployed software

definedWAN”. In: ACM SIGCOMM Computer Communication Review.

Vol. 43. 4. ACM. 2013, pp. 3–14. url: http://dx.doi.org/10.1145/

2486001.2486019.

[48] Cheng Jin et al. “Magneto: Unified fine-grained path control in legacy

and OpenFlow hybrid networks”. In: Proceedings of the Symposium on

SDN Research. 2017, pp. 75–87.

[49] Nattapong Kitsuwan, David B Payne, and Marco Ruffini. “A novel pro-

tection design for OpenFlow-based networks”. In: 2014 16th Interna-

tional Conference on Transparent Optical Networks (ICTON). IEEE.

2014, pp. 1–5.

[50] Christos Kozanitis, John Huber, Sushil Singh, and George Varghese.

“Leaping multiple headers in a single bound: Wire-speed parsing using

https://github.com/IQTLabs/poseidon
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1145/2486001.2486019

References 150

the Kangaroo system”. In: 2010 Proceedings IEEE INFOCOM. IEEE.

2010, pp. 1–9.

[51] Himal Kumar, Craig Russell, Vijay Sivaraman, and Sujata Banerjee.

“A software-defined flexible inter-domain interconnect using ONOS”. In:

2016 Fifth European Workshop on Software-Defined Networks (EWSDN).

IEEE. 2016, pp. 43–48.

[52] Rémy Lapeyrade, Marc Bruyère, and Philippe Owezarski. “OpenFlow-

based Migration and Management of the TouIX IXP”. In: NOMS 2016-

2016 IEEE/IFIP Network Operations and Management Symposium.

IEEE. 2016, pp. 1131–1136.

[53] Dan Levin, Marco Canini, Stefan Schmid, and Anja Feldmann. “Panop-

ticon: Reaping the benefits of partial sdn deployment in enterprise net-

works”. In: (2013).

[54] Christopher Lorier, Matthew Luckie, Marinho Barcellos, and Richard

Nelson. “Shoehorn: Towards Portable P4 for Low Cost Hardware”. In:

2022 IFIP Networking Conference (IFIP Networking). IEEE. 2022, pp. 1–

9.

[55] Gabriele Lospoto, Massimo Rimondini, Benedetto Gabriele Vignoli,

and Giuseppe Di Battista. “Rethinking virtual private networks in the

software-defined era”. In: 2015 IFIP/IEEE International Symposium on

Integrated Network Management (IM). IEEE. 2015, pp. 379–387.

[56] Thomas Lukaseder et al. “An sdn-based approach for defending against

reflective ddos attacks”. In: 2018 IEEE 43rd Conference on Local Com-

puter Networks (LCN). IEEE. 2018, pp. 299–302.

[57] Carlos AB Macapuna, Christian Esteve Rothenberg, and Magalhães

F Maurício. “In-packet bloom filter based data center networking with

References 151

distributed OpenFlow controllers”. In: 2010 IEEE Globecom Workshops.

IEEE. 2010, pp. 584–588.

[58] Sharat Chandra Madanapalli et al. “Real-time detection, isolation and

monitoring of elephant flows using commodity SDN system”. In: NOMS

2018-2018 IEEE/IFIP Network Operations and Management Sympo-

sium. IEEE. 2018, pp. 1–5.

[59] Diogo Menezes Ferrazani Mattos and Otto Carlos Muniz Bandeira Duarte.

“AuthFlow: authentication and access control mechanism for software

defined networking”. In: annals of telecommunications 71.11 (2016),

pp. 607–615.

[60] Nick McKeown et al. “OpenFlow: enabling innovation in campus net-

works”. In: ACM SIGCOMM computer communication review 38.2 (2008),

pp. 69–74.

[61] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. “Revisiting

traffic anomaly detection using software defined networking”. In: Inter-

national workshop on recent advances in intrusion detection. Springer.

2011, pp. 161–180.

[62] Mellanox Technologies. Mellanox Onyx User Manual. 5.7. Mellanox

Technologies. 2019.

[63] Michael Menth et al. “Resilient integration of distributed high-performance

zones into the BelWue network using OpenFlow”. In: IEEE Communi-

cations Magazine 55.4 (2017), pp. 94–99.

[64] Anshuman Mishra, Deven Bansod, and Kotakula Haribabu. “A Frame-

work for OpenFlow-like Policy-based Routing in Hybrid Software De-

fined Networks.” In: INC. 2016, pp. 97–102.

References 152

[65] Simeon Miteff and Scott Hazelhurst. “NFShunt: A Linux firewall with

OpenFlow-enabled hardware bypass”. In: 2015 IEEE Conference on

Network Function Virtualization and Software Defined Network (NFV-

SDN). IEEE. 2015, pp. 100–106.

[66] David Murray and Terry Koziniec. “The state of enterprise network

traffic in 2012”. In: In Communications (APCC), 2012 18th Asia-Pacific

Conference on. IEEE, 2012, pp. 179–184.

[67] Yukihiro Nakagawa, Kazuki Hyoudou, and Takeshi Shimizu. “A man-

agement method of IP multicast in overlay networks using OpenFlow”.

In: Proceedings of the first workshop on Hot topics in software defined

networks. 2012, pp. 91–96.

[68] Chawanat Nakasan, Kohei Ichikawa, Hajimu Iida, and Putchong Uthay-

opas. “A simple multipath OpenFlow controller using topology-based al-

gorithm for multipath TCP”. In: Concurrency and Computation: Prac-

tice and Experience 29.13 (2017), e4134.

[69] Marcelo R Nascimento et al. “Virtual routers as a service: the route-

flow approach leveraging software-defined networks”. In: Proceedings of

the 6th International Conference on Future Internet Technologies. 2011,

pp. 34–37.

[70] New H3C Technologies Co., Ltd. OpenFlow Configuration Guide. New

H3C Technologies Co., Ltd. 2019.

[71] Harvey B Newman, Artur Barczyk, and Michael Bredel.OLiMPS. open-

flow link-layer multipath switching. Tech. rep. California Institute of

Technology (CalTech), Pasadena, CA (United States), 2014.

[72] Bryan Ng, Matthew Hayes, and Winston KG Seah. “Developing a traffic

classification platform for enterprise networks with SDN: Experiences

References 153

& lessons learned”. In: 2015 IFIP Networking Conference (IFIP Net-

working). IEEE. 2015, pp. 1–9.

[73] Mehdi Nobakht, Vijay Sivaraman, and Roksana Boreli. “A host-based

intrusion detection and mitigation framework for smart home IoT us-

ing OpenFlow”. In: 2016 11th International conference on availability,

reliability and security (ARES). IEEE. 2016, pp. 147–156.

[74] Mehdi Nobakht, Vijay Sivaraman, and Roksana Boreli. “A host-based

intrusion detection and mitigation framework for smart home IoT us-

ing OpenFlow”. In: 2016 11th International conference on availability,

reliability and security (ARES). IEEE. 2016, pp. 147–156.

[75] Nokia Corporation. Router Configuration Guide R15.0.R1. Nokia Cor-

poration. 2017.

[76] NoviFlow, Inc. NoviSwitch™2128 High Performance OpenFlow Switch.

Product Datasheet. 2018.

[77] Open Compute Project. Switch Abstraction Interface (SAI). Tech. rep.

Open Compute Project, 2015.

[78] Open Networking Foundation.Open Networking Foundation TTP repos-

itory. https://github.com/OpenNetworkingFoundation/TTP_Repository.

Accessed: 2022-24-07.

[79] Open Networking Foundation. OpenFlow Switch Specification Version

1.0. (Wire Protocol 0x01). Specification. 2009.

[80] Open Networking Foundation. OpenFlow Switch Specification Version

1.1. (Wire Protocol 0x02). Specification. 2011.

[81] Open Networking Foundation. OpenFlow Switch Specification Version

1.2. (Wire Protocol 0x03). Specification. 2011.

https://github.com/OpenNetworkingFoundation/TTP_Repository

References 154

[82] Open Networking Foundation. OpenFlow Switch Specification Version

1.3. (Wire Protocol 0x04). Specification. 2012.

[83] Open Networking Foundation. OpenFlow Switch Specification Version

1.4. (Wire Protocol 0x05). Specification. 2013.

[84] Open Networking Foundation. OpenFlow Switch Specification Version

1.5. (Wire Protocol 0x06). Specification. 2014.

[85] Open Networking Foundation. OpenFlow Table Type Patterns. Tech.

rep. Open Networking Foundation, 2014.

[86] Open Networking Foundation. P4 Integrated Network Stack (PINS).

https://opennetworking.org/pins/. Accessed: 2022-02-10.

[87] P4.org API Working Group. P4Runtime Specification. https://p4.

org/p4- spec/p4runtime/main/P4Runtime- Spec.html. Accessed:

2021-07-24. 2021.

[88] P4.org Architecture Working Group. P416 Portable Switch Architecture

(PSA). https://p4.org/p4-spec/docs/PSA.html. Accessed: 2021-

11-04. 2021.

[89] Heng Pan et al. “FlowConvertor: Enabling portability of SDN applica-

tions”. In: IEEE INFOCOM 2017-IEEE Conference on Computer Com-

munications. IEEE. 2017, pp. 1–9.

[90] Heng Pan et al. “The FlowAdapter: Enable flexible multi-table process-

ing on legacy hardware”. In: Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking. 2013, pp. 85–90.

[91] Ben Pfaff et al. “The Design and Implementation of Open vSwitch”. In:

12th USENIX symposium on networked systems design and implemen-

tation (NSDI 15). 2015, pp. 117–130.

https://opennetworking.org/pins/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/docs/PSA.html

References 155

[92] Nam Pho et al. “Data transfer in a science DMZ using SDN with ap-

plications for precision medicine in cloud and high-performance com-

puting”. In: Proc. Int. Conf. High Perform. Comput. Netw. Storage

Anal.(SC15). 2015, pp. 1–4.

[93] Pica8 Inc. PICOS 4.3.0 Configuration Guide. Pica8 Inc. 2022.

[94] pipeline_v6.pdf. https://github.com/opencomputeproject/SAI/

blob / master / doc / behavioral % 20model / pipeline _ v6 . pdf. Ac-

cessed: 2022-08-08.

[95] Zafar Ayyub Qazi et al. “SIMPLE-fying middlebox policy enforcement

using SDN”. In: Proceedings of the ACM SIGCOMM 2013 conference

on SIGCOMM. 2013, pp. 27–38.

[96] Sivaramakrishnan Ramanathan, Yaron Kanza, and Balachander Krish-

namurthy. “SDProber: A software defined prober for SDN”. In: Proceed-

ings of the Symposium on SDN Research. 2018, pp. 1–7.

[97] Charalampos Rotsos et al. “OFLOPS: An open framework for Open-

Flow switch evaluation”. In: Passive and Active Measurement. Springer.

2012, pp. 85–95.

[98] Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, and Hervé Debar.

“ArOMA: An SDN based autonomic DDoS mitigation framework”. In:

computers & security 70 (2017), pp. 482–499.

[99] Richard Sanger, Brad Cowie, Matthew Luckie, and Richard Nelson.

“Characterising the limits of the OpenFlow slow-path”. In: 2018 IEEE

Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN). IEEE. 2018, pp. 1–7.

https://github.com/opencomputeproject/SAI/blob/master/doc/behavioral%20model/pipeline_v6.pdf
https://github.com/opencomputeproject/SAI/blob/master/doc/behavioral%20model/pipeline_v6.pdf

References 156

[100] Richard Sanger, Matthew Luckie, and Richard Nelson. “Towards Trans-

forming OpenFlow Rulesets to Fit Fixed-Function Pipelines”. In: Pro-

ceedings of the Symposium on SDN Research. 2020, pp. 123–134.

[101] Devavrat Shah and Pankaj Gupta. “Fast updating algorithms for TCAM”.

In: IEEE Micro 21.1 (2001), pp. 36–47.

[102] Sachin Sharma et al. “In-band control, queuing, and failure recovery

functionalities for OpenFlow”. In: IEEE Network 30.1 (2016), pp. 106–

112.

[103] Jonathan Stringer et al. “Cardigan: SDN distributed routing fabric go-

ing live at an Internet exchange”. In: 2014 IEEE Symposium on Com-

puters and Communications (ISCC). IEEE. 2014, pp. 1–7.

[104] Mitsuhiro Suenaga, Makoto Otani, Hisaharu Tanaka, and Kenzi Watan-

abe. “Opengate on OpenFlow: system outline”. In: 2012 Fourth Interna-

tional Conference on Intelligent Networking and Collaborative Systems.

IEEE. 2012, pp. 491–492.

[105] Xiaoye Sun, TS Eugene Ng, and Guohui Wang. “Software-defined flow

table pipeline”. In: 2015 IEEE International Conference on Cloud En-

gineering. IEEE. 2015, pp. 335–340.

[106] The P4 Language Consortium. The P4 Language Specification, Version

1.0.5. https://p4.org/p4- spec/p4- 14/v1.0.5/tex/p4.pdf.

Accessed: 2021-07-24. 2018.

[107] Ramona Trestian, Kostas Katrinis, and Gabriel-Miro Muntean. “OFLoad:

An OpenFlow-based dynamic load balancing strategy for datacenter

networks”. In: IEEE Transactions on Network and Service Management

14.4 (2017), pp. 792–803.

https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf

References 157

[108] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers.

“OpenNetMon: Network monitoring in OpenFlow software-defined net-

works”. In: 2014 IEEE Network Operations and Management Sympo-

sium (NOMS). IEEE. 2014, pp. 1–8.

[109] Pablo B Viegas et al. “The actual cost of programmable smartnics: Div-

ing into the existing limits”. In: International Conference on Advanced

Information Networking and Applications. Springer. 2021, pp. 181–194.

[110] Guohui Wang, TS Eugene Ng, and Anees Shaikh. “Programming your

network at run-time for big data applications”. In: Proceedings of the

first workshop on Hot topics in software defined networks. 2012, pp. 103–

108.

[111] Richard Wang, Dana Butnariu, and Jennifer Rexford. “{OpenFlow-

Based} Server Load Balancing Gone Wild”. In:Workshop on Hot Topics

in Management of Internet, Cloud, and Enterprise Networks and Ser-

vices (Hot-ICE 11). 2011.

[112] Xitao Wen et al. “RuleTris: Minimizing rule update latency for TCAM-

based SDN switches”. In: 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS). IEEE. 2016, pp. 179–188.

[113] SONiC wiki. SONiC. https://github.com/sonic-net/SONiC/wiki.

Accessed: 2022-07-24. 2022.

[114] Minlan Yu, Andreas Wundsam, and Muruganantham Raju. “NOSIX:

A lightweight portability layer for the SDN OS”. In: ACM SIGCOMM

Computer Communication Review 44.2 (2014), pp. 28–35.

https://github.com/sonic-net/SONiC/wiki

Appendix A

Controllers

This appendix lists the controllers studied in chapter 9.1.

Appendix A Controllers 159

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

D
al
to
n
et

al
.[
26

]
D
at
a
ce
nt
re

A
n
O
pe

nF
lo
w

co
nt
ro
lle
d
ca
ch
in
g
sy
st
em

fo
r
so
ft
w
ar
e
sw

it
ch
in
g
be

-

tw
ee
n
vi
rt
ua

lh
os
ts

in
G
oo

gl
e
da

ta
ce
nt
re
s.

M
eh
di
,

K
ha

lid
,

an
d

K
ha

ya
m

[6
1]

E
nt
er
pr
is
e

Im
pl
em

en
ta
ti
on

s
of

4
an

om
al
y
de
te
ct
io
n

al
go

ri
th
m
s
us
in
g
O
pe

n-

F
lo
w

A
fe
k,

B
re
m
le
r-
B
ar
r,

an
d
Sh

afi
r
[1
]

IS
P

A
SD

N
an

ti
-s
po

ofi
ng

sc
ru
bb

er
fo
r
m
it
ig
at
in
g
D
D
oS

at
ta
ck
s

M
at
to
s

an
d

D
ua

rt
e
[5
9]

IS
P

A
au

th
en
ti
ca
ti
on

fr
am

ew
or
k
fo
r
SD

N
s

Sa
ha

y
et

al
.[
98

]
IS
P

A
fr
am

ew
or
k
fo
r
m
it
ig
at
in
g
D
D
oS

in
SD

N
s

M
en
th

et
al
.[
63

]
N
R
E
N

A
n
O
pe

nF
lo
w

co
nt
ro
lle
d
m
ul
ti
-c
am

pu
s
Sc
ie
nc
e
D
M
Z
(S
D
M
Z)

W
an

g,
N
g,

an
d

Sh
ai
kh

[1
10

]

D
at
a
ce
nt
re

Im
pl
em

en
ta
ti
on

s
of

fo
rw

ar
di
ng

al
go

ri
th
m
s
fo
r
ha

nd
lin

g
H
ad

oo
p
ag

-

gr
eg
at
io
n
tr
affi

c
us
in
g
O
pe

nF
lo
w
.

M
ac
ap

un
a,

R
ot
he
nb

er
g,

an
d

M
au

rí
ci
o
[5
7]

D
at
a
ce
nt
re

A
lo
ad

-b
al
an

ci
ng

sy
st
em

ba
se
d

on
en
co
di
ng

bl
oo

m
fil
te
rs

in
to

pa
ck
et

he
ad

er
s

Appendix A Controllers 160

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

K
um

ar
et

al
.[
51

]
IX

A
SD

N
IX

co
nt
ro
lle
r
th
at

co
nt
ro
ls

br
oa

dc
as
t,

im
pr
ov
es

te
le
m
et
ry
,

an
d
se
cu
ri
ty

N
g,

H
ay
es
,

an
d

Se
ah

[7
2]

E
nt
er
pr
is
e

A
SD

N
tr
affi

c
cl
as
si
fic

at
io
n
pl
at
fo
rm

fo
r
E
nt
er
pr
is
e
ne
tw

or
ks

C
ho

i[
22

]
IS
P

A
n
im

pl
em

en
ta
ti
on

of
an

IS
P

le
ve
lc

on
te
nt

ca
ch
e
w
it
h
D
D
oS

m
it
i-

ga
ti
on

B
ra
ga

,M
ot
a,

an
d
P
as
-

si
to

[1
4]

U
nk

no
w
n

A
D
D
oS

de
te
ct
io
n
sy
st
em

im
pl
em

en
te
d
in

O
pe

nF
lo
w

A
zi
zi
,

B
en
ai
ni
,

an
d

M
am

ou
n
[6
]

IS
P

A
sy
st
em

fo
r
m
on

it
or
in
g
de
la
y
in

O
pe

nF
lo
w

M
P
LS

-T
P

ne
tw

or
ks

M
ad

an
ap

al
li
et

al
.[
58

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
de
te
ct
in
g
an

d
m
on

it
or
in
g
el
ep
ha

nt
flo

w
s
in

SD
N

en
-

te
rp
ri
se

ne
tw

or
ks

B
ai
le
y
an

d
St
ua

rt
[8
]

E
nt
er
pr
is
e

A
n
en
te
rp
ri
se

SD
N

co
nt
ro
lle
r

Fa
ya

zb
ak

hs
h
et

al
.[
33

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
co
nt
ro
lli
ng

ho
w

m
id
dl
e
bo

xe
s
ar
e
ap

pl
ie
d
to

pa
ck
et
s

in
O
pe

nF
lo
w

ne
tw

or
ks

Appendix A Controllers 161

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

A
ta
ry

an
d

B
re
m
le
r-

B
ar
r
[5
]

N
/A

A
sy
st
em

fo
r
m
on

it
or
in
g
SD

N
lin

k
la
te
nc
y

N
ob

ak
ht
,

Si
va
ra
m
an

,

an
d
B
or
el
i[
74

]

H
om

e
A
sy
st
em

fo
rm

on
it
or
in
g
tr
affi

c
to

Io
T
de
vi
ce
st

o
de
te
ct

an
d
m
it
ig
at
e

m
al
ic
io
us

in
tr
us
io
ns

Fa
ng

et
al
.[
31

]
D
at
a
ce
nt
re

A
n
SD

N
da

ta
ce
nt
re

ar
ch
it
ec
tu
re

Sh
ar
m
a
et

al
.[
10

2]
N
/A

A
sy
st
em

fo
r
es
ta
bl
is
hi
ng

an
d
m
ai
nt
ai
ni
ng

in
-b
an

d
co
nt
ro
lo

fO
pe

n-

F
lo
w

ne
tw

or
ks

G
ha

ra
kh

ei
li
et

al
.[
38

]
E
nt
er
pr
is
e

A
tr
affi

c
cl
as
si
fic
at
io
n
an

d
te
le
m
et
ry

sy
st
em

W
an

g,
B
ut
na

ri
u,

an
d

R
ex
fo
rd

[1
11

]

D
at
a
ce
nt
re

A
sy
st
em

fo
r
lo
ad

ba
la
nc
in
g
w
it
h
O
pe

nF
lo
w

v1
.0
.L

at
er

ve
rs
io
ns

of

O
pe

nF
lo
w

ha
ve

m
ad

e
th
is

sy
st
em

ob
so
le
te

Ji
n
et

al
.[
48

]
H
yb

ri
d

A
n
ar
ch
it
ec
tu
re

fo
r
hy

br
id

SD
N
–l
eg
ac
y
ne
tw

or
ks

P
ho

et
al
.[
92

]
SD

M
Z

A
sy
st
em

fo
r
cr
ea
ti
ng

pr
ot
ec
te
d
pa

th
s
fo
r
pr
ec
is
io
n
m
ed
ic
in
e
flo

w
s

N
ak
as
an

et
al
.[
68

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
en
su
ri
ng

M
ul
ti
P
at
h
T
C
P

(M
P
T
C
P
)
flo

w
s
fo
llo

w
di
-

ve
rs
e
pa

th
s
in

en
te
rp
ri
se

ne
tw

or
ks

us
in
g
O
pe

nF
lo
w

Appendix A Controllers 162

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

N
ak
ag
aw

a,
H
yo
ud

ou
,

an
d
Sh

im
iz
u
[6
7]

D
at
a
ce
nt
re

A
sy
st
em

fo
r
co
nt
ro
lli
ng

m
ul
ti
ca
st

fo
rw

ar
di
ng

in
da

ta
ce
nt
re
s

D
an

g
et

al
.[
27

]
D
at
a
ce
nt
re

A
te
ch
ni
qu

e
fo
r
ac
ce
le
ra
ti
ng

pa
xo

s
pr
ot
oc
ol
s
in

th
e
ne
tw

or
k

M
it
eff

an
d

H
az
el
-

hu
rs
t
[6
5]

C
am

pu
s

A
co
nt
ro
lle
r
fo
r
ha

rd
w
ar
e
ac
ce
lle
ra
ti
on

of
N
et
F
ilt
er

fir
ew

al
ls

A
zz
ou

ni
et

al
.[
7]

N
/A

A
se
cu
re

ap
pr
oa

ch
fo
r
to
po

lo
gy

di
sc
ov
er
y
in

SD
N
s

E
gi
lm

ez
et

al
.[
29

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
pr
ov

id
in
g
Q
oS

by
co
nt
ro
lli
ng

th
e
fo
rw

ar
di
ng

of
tr
affi

c

cl
as
se
s
in

O
pe

nF
lo
w

ne
tw

or
ks

G
er
m
an

n
et

al
.[
37

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
m
it
ig
at
in
g
T
C
P

sy
n
flo

od
at
ta
ck
s

Tr
es
ti
an

,
K
at
ri
ni
s,

an
d
M
un

te
an

[1
07
]

D
at
a
ce
nt
re

A
sy
st
em

fo
r
lo
ad

ba
la
nc
in
g
tr
affi

c
in

da
ta

ce
nt
re
s

Ja
fa
ri
an

,
A
l-S

ha
er
,

an
d
D
ua

n
[4
6]

E
nt
er
pr
is
e

A
co
nt
ro
lle
r
th
at

pr
ov

id
es

se
cu
ri
ty

by
ra
nd

om
ly

re
w
ri
ti
ng

th
e
ip

ad
dr
es
se
s
of

ho
st
s
w
it
hi
n
th
e
ne
tw

or
k

N
ew

m
an

,
B
ar
cz
yk

,

an
d
B
re
de
l[
71

]

IS
P

A
co
nt
ro
lle
r
th
at

cr
ea
te
s
po

in
t
to

po
in
t
tu
nn

el
s
us
in
g
V
LA

N
s

Appendix A Controllers 163

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

Su
en
ag

a
et

al
.[
10

4]
C
am

pu
s

A
n
au

th
en
ti
ca
ti
on

sy
st
em

fo
r
ca
m
pu

s
ne
tw

or
ks

V
an

A
dr
ic
he
m
,D

oe
rr
,

an
d
K
ui
pe

rs
[1
08

]

C
am

pu
s

A
ne
tw

or
k
m
on

it
or
in
g
ap

pl
ic
at
io
n

E
gi
lm

ez
et

al
.[
29

]
E
nt
er
pr
is
e

A
co
nt
ro
lle
r
fo
r
pr
ov
id
in
g
Q
ua

lit
y
of

Se
rv
ic
e
(Q

oS
)
w
it
h
O
pe

nF
lo
w

Le
vi
n
et

al
.[
53

]
H
yb

ri
d

A
n
ar
ch
it
ec
tu
re

fo
r
hy

br
id

SD
N
–l
eg
ac
y
ne
tw

or
ks

M
is
hr
a,

B
an

so
d,

an
d

H
ar
ib
ab

u
[6
4]

H
yb

ri
d

A
n
ar
ch
it
ec
tu
re

fo
r
pr
ov

id
in
g
po

lic
y-
ba

se
d
ro
ut
in
g
in

hy
br
id

SD
N
–

le
ga

cy
ne
tw

or
ks

H
an

di
go

le
t
al
.[
41

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
pr
ov

id
in
g
H
T
T
P

lo
ad

ba
la
nc
er
s
in

O
pe

nF
lo
w

co
n-

tr
ol
le
r
en
te
rp
ri
se

ne
tw

or
ks

K
it
su
w
an

,
P
ay

ne
,
an

d

R
uffi

ni
[4
9]

IS
P

A
te
ch
ni
qu

e
fo
r
cr
ea
ti
ng

pr
ot
ec
te
d
M
P
LS

ci
rc
ui
ts

Lu
ka
se
de
r
et

al
.[
56

]
IS
P

A
sy
st
em

fo
r
de
fe
nd

in
g
ag

ai
ns
t
re
fle
ct
iv
e
D
D
oS

at
ta
ck
s

B
al
as

an
d
R
ag

us
a
[9
]

C
am

pu
s

A
se
cu
re

SD
M
Z
co
nt
ro
lle
r

Appendix A Controllers 164

P
u
b
li
ca
ti
on

N
et
w
or
k
T
yp

e
D
es
cr
ip
ti
on

R
am

an
at
ha

n,

K
an

za
,

an
d

K
r-

is
hn

am
ur
th
y
[9
6]

N
/A

A
m
ec
ha

ni
sm

fo
r
m
ea
su
ri
ng

lin
k
la
te
nc
y
in

so
ft
w
ar
e-
de
fin

ed
ne
t-

w
or
ks

Q
az
ie

t
al
.[
95

]
E
nt
er
pr
is
e

A
n
en
te
rp
ri
se

co
nt
ro
lle
r
th
at

tu
nn

el
s
pa

ck
et
s
th
ro
ug

h
m
id
dl
eb

ox
es

Fa
w
ce
tt

et
al
.[
32

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r

ne
tw

or
k

in
tr
us
io
n

de
te
ct
io
n

an
d

m
it
ig
at
io
n

in

O
N
O
S
[1
0]

La
pe

yr
ad

e,
B
ru
yè
re
,

an
d
O
w
ez
ar
sk
i[
52

]

IX
A
n
IX

co
nt
ro
lle
r
th
at

re
du

ce
s
br
oa

dc
as
t
tr
affi

c

B
ru
ye
re

et
al
.[
21

]
IX

A
n
IX

co
nt
ro
lle
r
th
at

en
co
de
s
sw

it
ch
in
g
la
be

ls
in
to

E
th
er
ne
t
he
ad

-

er
s

G
ri
ffi
oe
n
et

al
.[
39

]
E
nt
er
pr
is
e

A
sy
st
em

fo
r
cr
ea
ti
ng

pr
ot
ec
te
d
pa

th
s
fo
r
au

th
or
is
ed

flo
w
s

Lo
sp
ot
o
et

al
.[
55

]
IS
P

A
n
ar
ch
it
ec
tu
re

fo
r
si
m
pl
ify

in
g
th
e
co
nfi

gu
ra
ti
on

of
l3

V
P
N
s

Appendix B

Ethics Approval

This appendix contains the ethics approval letter to collect data from produc-

tion SDN deployments.

Appendix B Ethics Approval 166

Department of Computer Science
Faculty of Computing and Mathematical Sciences
Rorohiko me ngā Pūtaiao Pāngarau
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone +64 7 838 4021
www.waikato.ac.nz

23 May, 2018

Christopher Lorier,
Department of Computer Science.

Dear Christopher,

As we have recently discussed, your proposed PhD research is covered by our newly formulated
requirements for data security and privacy. We indicated that you needed to provide responses to
the following four points:

1 A statement from the provider of the data about the conditions under which they have
acquired the data, and the conditions under which they have passed it on, or allowed
access by you. The details of such a statement will vary from situation to situation, so you
would need to craft it appropriately. For example, an ISP providing access to the data
might suggest that the terms and conditions which their customers sign up to
acknowledges that the ISP may monitor traffic, but would not release any personal
information other than to appropriate authorities, and that they are releasing it, or providing
access, to you on the understanding that it will be securely stored, and that you will not
divulge details to anyone else.

2 A statement from you relating to the security of the data. It might be accessed remotely
from the client’s server, or it might be downloaded onto a University computer. What steps
will be taken to ensure that only those directly involved with the research will be able to
gain access? What will happen to the data or the access path once the research is
completed?

3 A non-disclosure agreement signed by each of the researchers who will have access to
the data, stating that they will not divulge, and treat as strictly confidential, any personal or
identifying information that they may see, discover, or uncover, while accessing and/or
analysing this data. This would appear to also cover "de-identified" data, where there is a
possibility that by matching with some other source, individuals could be identified.

4 A statement that steps would be taken to ensure that in any publication or report arising
from the research, no personal or identifying information will appear.

Given that you have now provided us with appropriate responses, I am happy to confirm that
there are no ethical issues raised by your planned research programme, although you may still
need to apply to the FCMS Committee for approval for individual studies studies in due course.

I can confirm that in general terms, you are free to continue with the research.

Yours sincerely,

Mark Apperley
Professor of Computer Science
Convenor, FCMS Ethics Committee

	Front Matter
	Abstract

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Introduction
	Problem Statement
	Contributions
	Thesis Structure

	Background
	Software-Defined Networking
	Terminology

	OpenFlow
	OpenFlow 1.0
	Multi-table OpenFlow
	Apply-Actions and Write-Actions
	Metadata
	Group Tables
	OpenFlow Table Type Patterns
	Table-Features Messages
	Other OpenFlow Features

	P4
	P4 Architectures
	Control Blocks
	Extern Objects
	Tables, Actions and Match Kinds
	Annotations
	Portable Switch Architecture

	Other SDN Standards
	Switch Abstraction Interface
	P4 Integrated Network Stack
	FoRCES
	Broadcom OpenNSL and SDKLT
	NPLang

	Related Work
	Alternative Approaches
	Standardised Pipelines
	Programmable Hardware
	Device Drivers
	NOSIX
	TableVisor

	Algorithmic Mapping of SDN Pipelines
	Table Entry Growth
	FlowAdapter and FlowConvertor
	Sanger, Luckie and Nelson

	Summary

	Target Hardware
	Broadcom
	OF-DPA
	OpenNSL
	Other OpenFlow Implementations on Broadcom ASICs

	Nvidia
	Cisco
	Aruba
	SAI
	Other OpenFlow Implementations
	Discussion
	Features
	Common Table Structures

	Target Controllers
	Features of Interest
	Production Deployments
	Data Collected
	Identifying Entry Classes and Match Kinds
	Identifying Transactions
	Production Deployments
	Updates

	Research Projects
	Actions
	Match Fields
	Tables
	Table Entries and Updates

	Summary

	Shoehorn Overview
	Mapping
	Packet Recirculation
	Hardware Support
	Metadata
	Throughput

	Aggregating Components
	Cartesian Product Aggregation
	Aggregating Conditionals
	Aggregating Mutually Exclusive Tables
	Concatenating Ternary Tables
	Aggregation after Recirculation

	Table Reordering
	MAC Learning
	Summary

	Architectures
	Packet Paths
	Parser
	Metadata
	Action Modules
	Counters
	Actions
	Conditionals
	Match Kinds
	Annotations
	MAC Learning Externs

	Shoehorn Mapping Algorithm
	Stage 1: Identifying Supporting Components
	Stage 2: Finding Mappings
	Mapping Pipelines
	Mapping Control Blocks

	Stage 3: Resolving Goto Actions
	Populating Tables
	Discussion
	Splitting Physical Control Blocks
	Wide Mappings

	Evaluation
	Mapping Application
	Physical Pipelines
	Aruba
	Cisco
	OF-DPA
	SAI
	Nvidia

	Virtual Pipelines
	Implementation Details
	Summary of Controllers

	Results
	Physical Pipelines
	Recirculations
	Run Time

	Discussion
	Likely Causes for Failure
	Programming Pipelines
	Ideal Hardware
	Other Algorithmic Mapping Systems

	Conclusion
	Summary
	Future Work

	References
	Controllers
	Ethics Approval

