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Abstract 

 

Remote sensing has the potential to monitor spatial variation in water quality over 

large areas.  While ocean colour work has developed analytical bio-optical water 

quality retrieval algorithms for medium spatial resolution platforms, remote sensing 

of lake water is often limited to high spatial resolution satellites such as Landsat, 

which have limited spectral resolution.  This thesis presents the results of an 

investigation into satellite monitoring of lake water quality.  The aim of this 

investigation was to ascertain the feasibility of estimating water quality and its spatial 

distribution using Landsat 7 ETM+ imagery combined with in situ data from Rotorua 

and Waikato lakes.  For the comparatively deep Rotorua lakes, r² values of 0.91 

(January 2002) and 0.83 (March 2002) were found between in situ chlorophyll (chl) a 

and the Band1/Band3 ratio.  This technique proved useful for analysing the spatial 

distribution of phytoplankton, especially in lakes Rotoiti and Rotoehu.  For the more 

bio-optically complex shallow lakes of the Waikato, a linear spectral unmixing (LSU) 

approach was investigated where the water surface reflectance spectrum is defined by 

the contribution from pure pixels or endmembers.  The model estimates the 

percentage of the endmember within the pixel, which is then used in a final regression 

with in situ data to map water quality in all pixels.  This approach was used to 

estimate the concentration of chl a (r² = 0.84).  Total suspended solid (TSS) 

concentration was mapped using the traditional Band 3 regression with in situ data, 

which combined atmospherically corrected reflectance for both images into a single 

relationship (r² = 0.98).  The time difference between in situ data collection and 

satellite data capture is a potential source of error.  Other potential sources of error 
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include sample location accuracy, the influence of dissolved organic matter, and 

masking of chl a signatures by high concentrations of TSS.  The results from this 

investigation suggest that remote sensing of water quality provides meaningful and 

useful information with a range of applications and could provide information on 

temporal spatial variability in water quality. 
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1. Introduction 

 

1.1 Remote sensing 

Remote sensing is the science of obtaining information about an object using a device 

that is not in contact with that object.  According to this definition, remote sensing has 

been practiced by the pioneers of astronomy such as Galileo and Copernicus.  Modern 

environmental remote sensing has its roots in the military reconnaissance of World 

War I.  From this point on, remote sensing benefited from technological advances 

emerging from space exploration programs (Bukata et al., 1995).  The present study 

uses images acquired by satellites to investigate water quality by ground-truthing 

electromagnetic information with physical measurements. 

The radiance (L) recorded by a remote sensor includes four components 

(Figure. 1.1), comprising: 

 

La: downwelling solar and sky radiation that does not contact the air-water 

interface, which represents contribution from the atmosphere.  The gases O2, 

CO2, and H2O and aerosols (liquid or solid) present in the atmosphere scatter 

and absorb radiation. 

Ls: reflection from the aquatic surface (air-water interface), often seen as sun 

glints where the data is deteriorated to such an extent that is unusable. 

Lv: downwelling sky and solar radiation that penetrates the air water-interface 

and re-emerges from the water without contacting the bottom of the water 

body. 

Lb: downwelling sky and solar radiation that penetrates the air water-interface, 

reaches the bottom, and re-emerges from the water column (Bukata et al., 

1995). 
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Figure 1.1. The different origins of light received by a remote sensor.  Source: 

Adapted from Kirk (1994). 

  

1.2 Water colour and quality 

This study focuses on optical water quality which can be defined as follows (Kirk 

1988): 

‘The extent to which the suitability of water for its functional role in the 

biosphere or the human environment is determined by its optical properties.’ 

The main aspects that affect the visual appearance of waters are clarity and colour. 

Clarity includes visual clarity and the extent of light penetration into water.  Colour 

can be described in terms of hue (blue, green, yellow, etc.), colour purity (ranging 
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from neutral grays to spectral colours), and brightness related to back scattering 

(Davies-Colley et al., 1993).   

The colour and clarity of water depends on its optical character, relating to the 

bulk optical processes occurring in water of absorption and scattering.  Absorption 

refers to the transfer of light energy into another form and is quantified by the 

absorption coefficient, a, which is the fraction of incident light which is absorbed 

divided by the thickness of the layer.  Scattering is defined as the change in direction 

of light photons (Davies-Colley et al., 1993), and is quantified by the scattering 

coefficient, b, which is the fraction of the incident light which is scattered divided by 

the thickness of the layer (Kirk, 1994).  Total attenuation is given by the beam 

attenuation coefficient: 

 

                                             c =  a + b  equation 1.1, 

 

These are referred to as inherent optical properties (IOPs) as they are 

dependant on optically active substances comprising the aquatic medium.  In contrast 

apparent optical properties (AOPs) are affected by the geometric structure of the light 

field and water constituents (Kirk, 1994).  AOPs include the reflectance recorded by 

remote sensing devices, as it is dependant on the radiance distribution of the light 

regime.  These properties are partly determined by the solar zenith angle and local 

atmospheric conditions (Bukata et al., 1995).  Secchi depth is the most familiar AOP 

(Preisendorfer, 1961). 

Fluorescence is another optical process which involves the absorption of part 

of the energy of a light photon and re-radiation of a lower energy photon in an 

arbitrary direction, which can sometimes influence the colour of natural waters 

(Davies-Colley et al., 1993). 

Optically active substances (OAS) found in water affect the reflected energy 

emitted by water bodies, therefore analysis of this data leads to estimates of 

concentrations of these substances.  The main OAS in lake water are chlorophyll (chl) 

a, suspended minerals, and dissolved organic matter (DOM) (Bukata et al., 1995). 

Clear water contains low concentrations of these optically active substances, 

and consequently the spectral reflectance is low and the spectral shape is similar to 
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that of pure water molecules, where there is an exponential increase in absorption 

towards longer wavelengths, and an increase in scattering at shorter wavelengths of 

the visible near infrared (Figure 1.2) (Rurdorff et al., 2007). 

 

 

 

Figure 1.2. Spectrographic signatures of different water types.  Source: Rurdorff et 

al., (2007). 

 

Algae-laden water exhibits a reflectance peak in the green region (Figure 1.2), 

which represents an aggregate absorption minimum, and another reflectance peak at 

700 nm.  Also absorption troughs can be seen in the blue and red/infrared 

wavelengths (Han, 1997), although the exact location and width of these troughs 

depend on the phytoplankton species and their physiological state (Kirk, 1983).  

Phytoplankton displays fluorescence with a peak centered at 685 nm, meaning 

concentration can be measured using fluorometers (Yentsch and Yentsch, 1979). 

Suspended sediment (SS) includes sand, silt, clay and other inorganic material 

such as atmospheric dust (Koponen, 2006).  The optical properties of inorganic 

sediment are affected by their shape and size distribution, and have a major effect on 

their absorption and scattering properties (Bukata et al., 1995).  Due to the 

complexity of determining concentrations of inorganic sediment it is more common 
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that total suspended solids (TSS) are measured, which includes both organic and 

inorganic sediment.  In clear water, increasing concentrations of SS results in a linear 

increase in reflectance in the infrared, with a coefficient of variation near to one.  In 

this area of the electromagnetic spectrum the effect of chl a is negligible (Han, 1997).  

In algae-laden water, the additive effects of SS on reflectance occur at all 

wavelengths. 

The absorption spectrum of DOM has an exponential function at visible 

wavelengths with increasing absorption at shorter wavelengths and little absorption 

above 700 nm (Bricaud et al., 1981).  As the substances are dissolved the effect of 

scattering can be ignored (Koponen, 2006). 

 

1.3 Problem statement 

Traditional water sampling methods are able to quantify temporal changes in water 

quality at specific points.  However, they are unable to effectively quantify water 

quality across the entire surface area.  In lakes with high spatial variation point 

samples are often not representative of the whole water body, which can produce 

errors.  Also, due the expense of traditional water quality monitoring, often, only 

selected water bodies are monitored.  The advantage of remote sensing is that large 

areas of ground can be covered simultaneously, and water quality can be estimated 

over a much greater area. 
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1.4 Conceptual solution  

In the Rotorua lakes where chl a is often the dominant colour producing agent, it is 

proposed that using traditional remote sensing methods to relate remote sensing 

signals to in situ data using regression analysis should be effective in determining chl 

a and Secchi depth.  In the more optically complex Waikato lakes where a mixture of 

high concentrations of TSS, chl a, and DOM are present, a linear spectral unmixing 

model will be used for the retrieval of chl a concentrations. 

 

1.5 Aim and objectives 

 

The aim of this study was to examine the feasibility of determining water quality 

from Landsat 7 ETM+ imagery.  Its objectives were: 

 

1) To compare chl a and Secchi depth measurements in the Rotorua lakes to 

band intensity using traditional band ratio methods and regression 

methods. 

 

2) To determine suspended solids in the Waikato lakes using Landsat Band 

3. 

 

3) To determine chl a in the Waikato lakes using linear spectral unmixing. 
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1.6 Structure of thesis 

The first chapter introduces remote sensing and the underlying principles of remote 

sensing for water quality.  The research question is defined and the aim and 

objectives were explained.  The second and third chapter form independent studies.  

Chapter 2 presents an investigation of remote sensing for water quality in the Rotorua 

lakes using traditional band ratio methods.  Chapter 3 presents an investigation of 

remote sensing for water quality in the Waikato lakes, using linear spectral unmixing.  

Chapter 4 includes a general conclusion. 
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2. Rotorua lakes 

 

2.1 Introduction 

The aim of remote sensing of lakes is to provide truly synoptic monitoring of water 

quality.  Traditional point sampling using chemical and meter methods can be 

expensive and effectively monitor the heterogeneity of water quality variables 

(Dekker et al., 2002).  Operational remote sensing of the ocean originated from the 

launch of the Coastal Zone Color Scanner in 1978 and the subsequent development of 

empirical blue green band ratio models for the remote estimation of Chlorophyll (chl) 

a.  The data from this satellite provided the first maps of the global distribution of chl 

a (Abbott and Chelton, 1991).  This was followed by the launch of other successful 

ocean colour satellites such as MODIS and SeaWiFS.  Inland remote sensing of small 

lakes requires a higher resolution platform, and of these platforms the most 

commonly used to study water quality is the Landsat series of satellites. 

 

Table 2.1. Landsat 7 ETM+ band specifications (NASA specification table). 

Band number Spectral range (μm) Ground resolution (m)

B1 0.450 to 0.515 30

B2 0.525 to 0.605 30

B3 0.630 to 0.690 30

B4 0.750 to 0.900 30

B5 1.55 to 1.75 30

B6 10.4 to 12.5 60

B7 2.09 to 2.35 30

Panchromatic 0.520 to 0.900 15  
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 Landsat Multispectral Scanner (MSS) imagery is available from 1972-

1981, Landsat 5 Thematic Mapper (TM) was launched in 1984 and is still operating, 

and Landsat 7 Enhanced Thematic Mapper + (ETM+) was launched in 1999 ( Table 

2.1).  The repeat cycle is 16 days, and each scene is 185 km wide and 120 km high 

(Table 2.2). 

Landsat satellites record digital images of lakes and their catchments by 

recording electromagnetic radiation at distinct wavelengths or bands (Table 2.1).  The 

highest correlation between water quality variables and satellite signatures is found in 

the visible (0.4-0.7 µm) and near infra red (0.7-1.5 µm) spectrum which corresponds 

to Landsat bands 1- 4 (Curran 1985).  The main factors that affect water clarity are 

chl a, suspended sediments (SS), and dissolved organic matter (DOM).  These factors 

subsequently affect the water subsurface radiance reflectance measured by satellites 

(Bukata et al., 1995). 

 

Table 2.2. Landsat 7 ETM+ capabilities (NASA specification table). 

Attribute Value

Swath width: 185 km

Repeat coverage interval: 16 days (233 orbits)

Altitude: 705 km

Quantization: Best 8 of 9 bits

On-board data storage: ~375 Gb (solid state)

Inclination: Sun-synchronous, 98.2 degrees

Equatorial crossing: Descending node; 10:00am +/- 15 min.

Launch vehicle: Delta II

Launch date: April 1999  

 

Chl a acts primarily as a differential absorber, causing a decrease in the spectral 

response at the blue end (450-520 nm) of the visible spectrum.  SS are associated 
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with increases in reflected energy at longer red wavelengths (630-690 nm) (Bukata 

et al., 1995). 

The dominant factors that affect water clarity in the Rotorua lakes have been 

found to be algal biomass and SS.  Algal biomass was the dominant influence on 

water clarity in Lake Okaro (accounting for 68% of the variability), whereas Lake 

Rotorua water clarity was more often dominated by SS, although chl a was 

occasionally predominant (Vant and Davies-Colley, 1986). 

Reliable estimates of lake water quality from remote sensing can be achieved 

without employing in situ data, but accuracy of estimates can be improved by using 

reference data for a limited number of lakes (Pulliainen et al., 2001).  Accurate 

estimates of spatial variation in water quality in the Rotorua lakes may be possible 

using only a few in situ samples to calibrate models.  

The Rotorua lakes are of recent volcanic origin (140,000 years old) and were 

mostly formed by explosion craters or as the result of subsidence associated with 

volcanic activity (Lowe and Green, 1986).  There are 12 main lakes in the Rotorua 

area that represent a wide range of lake geomorphology and water quality.  This 

makes it suitable for remote sensing, as regression models cover a wide range of 

water quality (Olmanson et al., 2001). 

The Rotorua lakes fit into four categories based on their mixing regimes and 

trophic status.  These are eutrophic monomictic (Okaro and Rotoiti), mesotrophic 

monomictic (Okareka, Tikitapu, Rotokakahi and Okataina), oligotrophic monomictic 

(Tarawera, Rotoma, and Rotomahana) and meso- and eutrophic polymictic lakes 

(Rotorua, Rotoehu, and Rerewhakaaitu) (Hamilton 2003). 
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Numerous investigations have shown that strong empirical relationships can 

be developed between Landsat Multispectral Scanner (MSS) or Thematic Mapper 

(TM) imagery and in situ measurements of water quality (Table 2.3).  One of the first 

studies of lakes with satellites used MSS images in a reconnaissance analysis of lake 

condition in Minnesota (Brown et al., 1977).  Later, Landsat imagery was used to 

generate a reliable prediction for chl a concentration in the Minnesota lakes, USA 

(Lillesand et al., 1983).  Also determinations of long term Secchi depth trends from 

13 images captured from 1973 to 1998 were also produced, for which limited 

historical data was available in many instances (Kloiber et al., 2002b). 

Baban, (1993a) used a combination of remote sensing and GIS to map chl a (r = 

0.85), suspended solids (r = 0.88) and Secchi depth (r = -0.83) in the Norfolk Broads, 

England.  Mapped suspended solid concentrations were used to analyse water 

circulation patterns, as they can act as natural tracers indicating the direction of water 

movement.  It was suggested that Geographic information systems (GIS) could take 

full advantage of the water quality data provided by remote sensing in terms of 

developing management strategies and testing the individual consequences of any 

implemented management strategy.  Remote sensed information could be combined 

with hydrological information in a GIS database including information on water 

quality, depth and flushing rates, land cover, soil type, and locations of point source 

pollution.  Remote sensing also has the ability to provide information on lake 

catchments such as land use and temporal land use change (Baban, 1999).  The 

thermal Band 6 of Landsat has also been used to study lake thermal regimes.  

Information relating temperature patterns to lake depth is essential (Baban, 1993b). 
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Analytical optical modelling to determine water quality has not been widely 

used using Landsat data due to the low spectral resolution of this sensor.  This 

method is based on sound physical modelling of light through water and its 

constituents, and the atmosphere.  It has previously been used to map suspended solid 

concentrations using Landsat and Spot data (Dekker et al., 2002).  These models can 

be used without in situ data, allowing for multi site, multi temporal and multisensor 

comparisons.  Bio-optical models are based on the in situ inherent optical properties 

discussed in chapter one.  It has been found that bio-optical algorithms for total 

suspended solids (TSS) could produce a more reliable multi-temporal algorithm.  

Also, random point samples for TSS were found to be on average within a mean 

value of plus or minus 20 to 30% of in situ point samples, however in the worst case 

scenario values were out by 4000% (Dekker et al., 2002).  The parameter values of 

the model must be correct otherwise large errors can result in the prediction of water 

quality parameters (Koponen, 2006). 

 

Table 2.3. Summary of recent remote sensing studies of lake waters using Landsat 

imagery. (MSS – Multispectral Scanner, TM – Thematic Mapper, Chl – chlorophyll 

a, Sec – Secchi depth, Tur – turbidity, TSS – total suspended solids, SPM – total 

suspended particulate material). 

Location Sensor Variable Technique Reference

Minnesota TM, MSS, Sec,Chl, Tur B1/B3 (r ²=0.85) Lillesand et al . (1983), Kloiber et 

Norfolk Broads TM Sec,TSS, Chl TM3, TM3/TM1 (r ²=0.85) Baban (1993)

Lake Erken TM SPM, Chl Chromaticity (green: r²=0.93) Oestlund et al . (2001)

Lake Garda TM Chl TM1/TM2, TM1/TM3 (r²=0.72) Zilioli and Brivio (1996)

Frisian Lakes TM & Spot Chl Bio-optical modeling Dekker et al . (2002)

Gulf of Finland TM Chl , TSS, Sec, Empirical neural network Zhang et al . (2002)

Lake Balaton TM Chl Mixture modeling (r²=0.95) Tyler et al . (2006)

Lake Kinneret TM Chl (TM1-TM2)/TM3 Mayo et al . (1995)

 

High spectral resolution sensors are available for water quality mapping of large 

lakes (e.g., MODIS, SeaWiFS and MERIS).  These sensors have narrow bands (10 



 

 

13 

nm) tuned to chl a diagnostic signature areas.  This allows the formulation of 

complex bio-optical algorithms for the determination of all optical water quality 

parameters simultaneously for optically complex inland waters.  Significant advances 

are currently being made in bio-optical modelling of inland waters (e.g., Albert and 

Mobley, 2003). 

When relating point samples to satellite data, areas of interest (AOIs) with 

depths of at least 3 m or twice the Secchi depth are required for open water signature 

acquisition.  The AOI or sampling frame must contain at least 8 pixels in smaller 

lakes and up to 1000 pixels in larger lakes (Kloiber et al., 2001a).  Large AOIs can 

have a higher correlation to reference data due to the smoothing of radiometric noise 

(Lillesand et al., 1983). 

 

2.2 Objectives 

The objectives of my study were to: 

1) Formulate empirical models to predict water quality in all lake pixels using 

Landsat ETM+ satellite imagery combined with ground data. 

2) Apply empirical models to another image for which in situ data was 

unavailable.  
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Figure 2.1. True colour composite image (standard deviation stretch) from 25 January 

2002 of visible bands 1-3 from Landsat 7 ETM+ including sampling stations. 

 

2.3 Study site 

We analysed images that showed the 12 main Rotorua lakes (Table 2.4, Figure 2.1).  

Phosphorus is most often the limiting nutrient to algal growth in freshwater systems, 

however in the Rotorua lakes, nitrogen has also been shown to be a limiting nutrient 

(White et al., 1985). More recent studies, however, suggest that with the 
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predominance of internally regenerated nutrients in Lake Rotorua, phosphorus may 

be the limiting nutrient in that system (Burger et al., 2007). 

 

 Table 2.4. Summary of Rotorua lakes physical characteristics including land cover as 

percentage of catchment area. Source: Scholes and Bloxham (2007). 

Lake name Lake Catchment Pasture Indigenous Exotic forest

area (km²) area (km²) Maximum Mean (%) forest/scrub (%) (%)

Rotorua 80.6 441.4 44.8 11.0 51.8 25.1 14.3

Tarawera 41.3 143.1 87.5 50.0 19.7 62.4 16.0

Rotoiti 34.0 123.7 125.0 60.0 15.9 36.4 46.2

Rotoma 11.1 27.8 83.0 36.9 23.4 46.0 26.7

Okataina 10.8 59.8 78.5 39.4 10.7 84.1 7.8

Rotomahana 9.0 83.3 125.0 60.0 43.2 39.7 16.3

Rotoehu 8.0 49.2 13.5 8.2 34.2 33.4 32.0

Rerewhakaaitu 5.3 37.0 15.8 7.0 75.3 7.2 15.2

Rotokakahi 4.4 19.7 32.0 17.5 26.3 16.6 57.1

Okareka 3.4 18.7 33.5 20.0 37.8 51.6 7.6

Tikitapu 1.5 6.2 6.2 18.0 7.0 74.3 17.9

Okaro 0.3 3.9 18.0 12.1 90.6 2.1 6.3

Depth (m)

 

 

Many of the Rotorua lake catchments have been converted to exotic forest, 

farmland or urban areas, which has lead to an increase in phosphorus and nitrogen 

loading.  Management plans are either currently being developed or are in place and 

are focusing on reducing nutrient inputs through various methods (Scholes and 

Bloxam, 2007).  Internal loading of lakes due to past nutrient inputs and water quality 

deterioration can take decades to recover.  A further problem in addressing 

eutrophication is that the time lags between nutrient inputs entering groundwater and 

subsequently entering lakes is considerable, as the mean residence times of water 

entering Lake Rotorua range from 15-130 years (Morgenstern and Gorden, 2006). 
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2.4 Method 

We used ERDAS Imagine for image processing, following the methods of Kloiber et 

al., (2002a).  ArcInfo was used for the production of water quality maps and 

Statistica or Microsoft Excel for statistical analysis. 

 

2.4.1 In situ sample collection 

Physiochemical data (Secchi depth, chl a, total phosphorus (TP), total nitrogen (TN), 

and turbidity) for the Rotorua lakes was obtained from Environment Bay of Plenty 

(EBOP) (Appendix 1A and 1B).  Sixteen sampling stations were used in the 25 Jan 

2002 regression (including two from Taupo)  Most in situ samples were collected 

within 4 days of image capture.  The exceptions were Rerewhakaaitu which was 

collected on the 9 January 2002 and Rotoiti Te Weta Bay which was collected on the 

17 of January 2002.  Physiochemical data for Lake Taupo was taken from Gibbs 

(2004).  Thirteen sampling stations (including three from Taupo) were used for the 24 

October 2002 regression.  The Rotorua lakes in situ samples were collected within 3 

days of the image capture and Lake Taupo in situ samples were collected on the 9 

October 2002. 

 

2.4.2 Image acquisition 

We examined two images covering a 185 km by 185 km area, taken on 25 January 

2002 and 24 October 2002.  The  25 January 2002 image (NASA Landsat Program, 

2002, Landsat ETM+ scene path 72, row 86, USGS, Sioux Falls, 25 January 2002) 
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was pre-processed by Landcare Research New Zealand (resampled to 15 m pixel 

size, NZMG) for MAF (Ministry of Forest and Agriculture) and subsequently 

obtained by The University of Waikato Department of Geography.  The 24 October 

2002 image (NASA Landsat Program, 2002, Landsat ETM+ path 72, row 87, USGS, 

Sioux Falls, 24 October 2002, Universal Transverse Mercator projection) was 

acquired free of charge though the GLCF (Global Land Cover Facility) website. 

 

2.4.3 Image sampling 

A water-only image was initially created to confine data analysis areas to the lake 

water surface and to create a base for pixel level classification maps of water quality 

parameters.  Image pixels were initially grouped into ten classes using the isocluster 

algorithm in ERDAS Imagine, which produced a new thematic coverage.  This 

classification identified statistical patterns in the data and classified the data into ten 

classes based in the spectral response in bands 1-7 (excluding the thermal Band 6), 

creating a new coverage or map that was then used as a binary mask to remove 

terrestrial areas from the image. 

Unsupervised classification of the water-only image using ten classes was then 

undertaken to highlight areas affected by reflectance from aquatic vegetation, 

shoreline and bottom sediment.  These pixels were easily identified as they had 

elevated brightness in the near infra-red.  

The sampling depth of remote sensing instruments depends on the attenuation 

of light in water.  Electromagnetic radiation in the visible spectrum penetrates further 
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in water with low chl a, SS, and DOM.  This means that in shallow waters, part of 

the reflectance signature may be composed of bottom reflectance. 

 

Table 2.5. Environment Bay of Plenty Rotorua lakes sampling site locations (New 

Zealand Map Grid 1949). 

NZMG NZMG

easting northing

Rotoma 65 m basin BOP130007 2824950 6343360

Okataina 65 m basin BOP130009 2810600 6337500

Rotoiti Site 3 BOP130005 2804940 6346190

Rotoiti Site 4 BOP130059 2810780 6345030

Rotoiti Okawa Bay BOP130047 2802780 6345060

Rotoehu Central main basin BOP130029 2820440 6347060

Rotorua Site 2 BOP130002 2798000 6339500

Rotorua Site 5 BOP130027 2798200 6343200

Tarawera Site 5 (80 m depth) BOP130030 2810000 6328000

Okareka Site 1 (32 m basin) BOP130013 2804400 6331800

Tikitapu 25 m basin BOP130012 2801800 6328800

Rotomahana Site 2 BOP130060 2811080 6320840

Rerewhakaaitu Main lake BOP130014 2816290 6317980

Okaro 18 m basin BOP130017 2806900 6317100

Lake name Site EBOP reference

 

 

2.4.4 Signature acquisition and regression models 

The mean brightness for each AOI location (Table 2.5) was exported to Excel for 

regression model formulation (10 by 10 cell AOI).  A Pearson correlation matrix 

between in situ water quality variables, and average band brightness values and 

various band ratios was used to indicate which bands are most suitable for creating 

regression models. Residual analysis was undertaken for chl a regression models to 

check that residuals were independent and normally distributed.  Pixel-level water 

quality maps were then produced for chl a by applying the formulated regression 

models to each pixel.  
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2.5 Results 

2.5.1 Correlation of Landsat data to water quality parameters 

There were strong relationships between chl a measured in µg l
-1

 and Band 

1/Band 3 (B1/B3) ratio for the summer (January) and spring (October) 2002 images 

(Table 2.6).  In both images band ratios usually had the highest correlation to water 

quality variables.  The exception was turbidity, which showed the highest correlation 

to B3 on 24 October 2002, as has been found in other studies (Lindell et al., 1999).  

Chl a showed the highest correlation to B1/B3 on the 25 January 2002, although on 

24 October 2002 chl a showed the highest correlation to the three band ratio ((B1-

B3)/B2).  The natural log of Secchi depth, chl a, and turbidity showed a higher 

correlation to band ratios than untransformed data, as might be expected (Kloiber et 

al., 2002a). 

 

Table 2.6. Rotorua lakes correlation matrix between satellite data and in situ data for 

the 25 Jan 2002 image (all correlations were considered significant where p < 0.05). 

Water Quality Parameter 25/01/2002 24/10/2002

Band : Corr Band : Corr

Total Phosphorus (mg l
-1

) B1/B3 : -0.833 B4 : 0.807

Total Nitrogen (mg l-1) B1/B3 : -0.915 B1/B3 : -0.754

Chl a ( µg l
- 1

) B1/B3 : -0.772 B4 : 0.830

Secchi depth (m) (B1-B3)/B2 : 0.826 B1/B3 : 0.869

Turbidity (NTU) B2 : 0.868 B3 : 0.915

Ln Secchi (B1-B3)/B2 : 0.939 B1/B3 : 0.949

Ln chl a (B1-B3)/B2 : -0.954 B1/B3 : -0.940

Ln Turbidity (B1-B3)/B2 : -0.931 B3 : 0.913

Image date
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2.5.2 Regression analysis 

For the summer image (25 January 2002), the regression equation was,  

Ln chl a = 14.141-5.0568 (B1/B3)  equation 2.1, 

for which r² = 0.91, N = 16, and P<0.001 (Figure 2.2). 

 

 

Figure 2.2. Rotorua lakes regression of chlorophyll a concentration in µg l-1 against 

Band 1/Band 3 from ground data and a Landsat 7 ETM+ image from 25 Jan 2002 

corresponding to equation 2.1. 

 

 Lake Taupo showed the highest B1/B3 ratio (Figure 2.2), and had the lowest 

in situ chl a.  Okawa Bay and Lake Rotoiti had the lowest B1/B3 ratio and highest in 

situ chl a.  Lake Rotoehu had the largest residual (Figure 2.3) in the January image.  

This could  have been caused by the uncertainty of using one point sample to measure 

the highly heterogeneous chl a. The intense algal bloom observed near the sampling 
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station may mean that chl a concentration could undergo rapid temporal 

fluctuations.  Lake Rotoiti site 4 also had high residual values (Figure 2.3). 
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Figure 2.3. Raw residuals vs. predicted values from regression in Figure 4 (equation 

2.1). 

 

For the spring image (24 October 2002), the regression equation was,  

 

Ln chl a = 24.251 – 9.2806 (B1/B3) equation 2.2, 

 

for which r² = 0.83, N = 13, and P<0.001 (Fig. 4).  Lake Okaro had the largest 

residual (Figure 2.5).  The in situ chl a was 89.1 µg l
-1

 here, but the B1/B3 ratio is 

much lower than expected. 

R
aw

 r
es

id
u
al

 

Ln chl a (µg l
-1

) 



 

 

22 

 

 

Figure 2.4. Rotorua lakes regression of chl a concentration in µg l
-1

 against Band 

1/Band 3 from ground data and a Landsat 7 ETM+ image from 24 Oct 2002 

corresponding to equation 2.2.  

 

The slopes of the regressions from the 25 January and  24 October 2002 images 

were significantly different (ANCOVA P < 0.001).  The two relationships shared the 

same centroid but had different slopes and intercepts.  The difference between the 

two relationships could have been caused by a number of factors including different 

processing and resampling levels in the two images, different species of 

phytoplankton, and atmospheric effects. 
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Figure 2.5. Raw residuals vs. predicted values from regression in Figure 2.4 (equation 

2.2). 

 

 

Secchi depth showed a strong relationship with B1/B3 intensity image from 

the 25 Jan 2002 of the Rotorua lakes (Figure 2.6).  Okawa Bay in Lake Rotoiti 

(western end) had a Secchi depth of 0.78 m whereas in the eastern end Secchi depth 

was 4.29 m.  The regression equation was, 

Ln SD = -5.2163 + 2.7753*(B1/B3)  equation 2.3, 

for which r² = 0.82, N = 14, and P<0.001.  The 2002 mean Trophic Lake Index (TLI ) 

taken from Gibbons-Davies (2003) also showed a strong relationship to the B1/B3  

ratio (Figure 2.7), with the regression equation, 

TLI = 11.2467 - 3.0985*(B1/B3) equation 2.4, 

for which r² = 0.83, N = 10, and P = 0.0002. 
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Figure 2.6. Figure 2.6. Regression of Secchi depth in m against Band 1/Band 3 of a 

Landsat 7 ETM+ image from 25 Jan 2002 of the Rotorua lakes corresponding to 

equation 2.3. 

 

 

 

Figure 2.7. Regression between mean 2002 Trophic Lake Index against Band 1/Band 

3 from a Landsat 7 ETM+ image from Jan 25 2002 corresponding to equation 2.4. 
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We also investigated a three band model for the 25 January 2002 Landsat 7 

ETM+ image. The regression between measured chl a concentration in µg l
-1

 and 

bands 1, 2, and 3 (B1, B2, B3) was, 

 

Ln chl a = -7.8004*((B1-B3)/B2) + 9.0704  equation 2.5, 

 

for which r
2
 = 0.91, N = 16, and P < 0.001.  This three-band model had a slightly 

higher r² value than the two-band model (equation 2.1). 

 

2.5.3 Chl a concentration maps 

The thematic chl a concentration maps produced from regression analysis show 

significant spatial variation within and between lakes (Figures 2.8-2.18).  The highest 

water quality can be seen in the deep clear lakes of Taupo, Rotoma, Tarawera and 

Okareka (shown in dark blue).  In both images, the effect of reflection from the lake 

bed near the margins of Lake Rotorua can be seen as elevated erroneous chl a 

predictions, especially on 24 October 2002.  On 25 January 2002, chl a ranged from 6 

µg l
-1 

in the eastern end of Lake Rotoiti (shown in blue) to 136 µg l
-1

 in Okawa Bay 

(shown in orange/red) (Figure 2.8). This image was captured in late summer, when 

algal blooms were clearly visible in Okawa Bay, Lake Rotoehu, and Lake Okaro.  In 

the 25 January 2002 image of Okawa Bay it appears that the bloom event was 

significantly affecting water quality in the western bay area of Lake Rotoiti. 

In October, chl a was higher in the southern end of Lake Taupo as indicated by 

the lighter colour (Figure 2.9 and 2.10).  Lake Taupo often exhibits a winter surface 
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chl a maximum.  Lake Rotorua also showed a relatively high chl a concentration 

(23 µg l
-1

) for winter (Fig. 2.10).  A close-up of Figure 2.9 shows the chl a 

distribution in the Rotorua lakes (Figure 2.10).  

Using equation 1.1, we predicted chl a distribution in an earlier image from 

summer (5 January 2001; Figures 2.11 and 2.12).  Lake Rotoehu and Okawa Bay, 

Lake Rotoiti, again show high chl a concentrations (Figure 2.12).  On the 6 January 

2001 image, high concentrations of chl a occurred in the central west of Lake 

Rotoehu, in contrast to spatial variability in 2002 (Figure 2.12).  Light westerly winds 

(5.5 km h
-1

) were recorded near the time of this image capture, but do not seem to 

have had a visible effect on the concentration patterns. 
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Figure 2.8. Chl a concentrations in µg l
-1

 in the Rotorua lakes and Lake Taupo on 25 

January 2002 predicted from equation 2.1. 
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Figure 2.9. Chl a concentrations in µg l
-1

 in the Rotorua lakes and Lake Taupo on 24 

October 2002 predicted from equation 2.2. 
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Figure 2.10. Chl a concentrations in the Rotorua lakes on 24 October 2002 predicted 

from equation 2.2. 

 

 

Figure 2.11. Chl a concentrations in the Rotorua lakes on 6 January 2001 predicted 

from equation 2.1.  
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Figure 2.12. Chl a concentrations in lakes Rotoehu (left) and Rotoiti (right) on 6 

January 2001 predicted from equation 2.1. 

 

2.6 Discussion 

This work has demonstrated that remote sensing for water quality using traditional 

band ratio methods is possible for the Rotorua lakes.  The accuracy of the chl a and 

Secchi depth retrieval models are comparable with previous studies (see Table 2.3).  

The chl a concentration maps produced from the regression provided insights into the 

spatial dynamics of phytoplankton blooms.  The high correlation found in the semi-

log regression relationships between water quality parameters and B1/B3 ratios 

confirms the results found in previous investigations that band ratios provide useful 

relationships (e.g., Lilliesand and Johnson, 1983; Mayo et al., 1995; Zilioli and 

Brivio; 1996, Kloiber et al., 2002b). 

 The empirical band ratio method is the most commonly used method for 

retrieving water quality using remote sensing and it has been shown to be effective in 

the retrieval of many water quality parameters (see table 2.3).  It has been found that 

the ratio of two bands reduces the effects of factors such as measurement geometry 

(µg l-1) 

(µg l-1) 
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and atmosphere on the retrieval of water quality (Koponen, 2006).  A semi-log 

regression has also been used in most other inland water quality band ratios.  This 

model has been found to meet the basic assumptions of the technique in respect to 

residuals having constant variance, independence and being normally distributed 

(Kloiber et al., 2002a). 

 When comparing the results obtained from two and three band ratios, the 

B1/B3 ratio usually provided the highest correlation (Table 2.6).  The three band ratio 

was also used by Mayo et al. (1995) (r²=0.80).  Since the two band ratio showed more 

consistent correlation to in situ measurements, and has been more widely used, it was 

decided to use this ratio to predict water quality. 

Generally, the resulting regression equation coefficients have atmospheric and 

specific lake scene factors imbedded (Kloiber, et al., 2002a).  This means that these 

equations are specific to this scene and the prediction of the 5 January 2001 image 

should only be interpreted as a general guide to the bloom distributions at this time.  

Despite uncertainties involved in quantitative analysis of water quality with satellite 

imagery, the results still provide a valuable snapshot of spatial variation in 

phytoplankton blooms in lakes Rotoehu and Rotoiti. 

Although the spectral bands Landsat ETM are broad enough to encompass a 

mixture of spectrally opposing absorption and scattering features (Dekker et al., 

1992), we were still able to develop relationships between Landsat bands and water 

quality variables.  Band 3 encompasses the chl a absorption minimum as well as a 

significant part of the scattering peaks on either side of this minimum.  Although 

these are contradictory features the net effect is that as water clarity decreases 

brightness in bands 2-4 increases (Kloiber et al., 2002a).  The underlying physical 



 

 

32 

basis for this result has been studied by several investigators (eg. Han, 1997; 

Bukata et al., 1995). 

Algal blooms often consist of rapid rises in cell numbers followed by a 

collapse as nutrients and light become limiting.  In addition, buoyancy variations, 

compounded with diurnal stratification, can cause rapid changes in chl a 

concentrations (e.g., Oliver and Ganf 2000).  In Lake Rotorua, for instance, many 

blooms are transient and are not necessarily followed by a collapse.  Often they are 

simply an interaction of large cyanobacterial biomass combined with diurnal 

stratification of the surface mixed layer, allowing the positively buoyant cells to 

congregate at the water surface; this is often disrupted on a daily basis, e.g., by an 

afternoon wind.  These time scales mean that the timing of image collection should be 

carefully recorded and assessed with regard to potential for this surface aggregation 

process (D. P. Hamilton, pers. comm.).  Time difference between in situ sample 

collection and satellite image acquisition is a potential source of error in this study. 

 TLI is an index composed of chl a, Secchi depth, TP concentration, and TN 

concentration, so it is not surprising that a strong relationship exists between it and 

the B1/B3 ratio as all of these factors have the potential to affect water colour and 

clarity and are interrelated (Burns et al., 1999). 

The main reasons for the increase in incidence of severe algal blooms in Okawa 

Bay are the shallow sheltered nature of the bay and possibly the input of nutrients 

through the lake bed or from septic tank leakage.  Quantitative information on water 

quality in Okawa Bay was not available before 1997 (Ray et al., 2002).  Remote 

sensing may be able to address this lack of data through retrospective analysis of past 

Landsat images. 
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Spatial variation in lakes with high productivity can be large, meaning 

traditional point sampling methods can misrepresent the general lake condition 

(Dekker et al., 2002).  Using a single monitoring station can over or underestimate 

chl a by 29 – 34% (Kallio et al., 2003).  The areas of higher concentration (red 

colour) provide possible insights into the hydrodynamics of Lake Rotoehu as this area 

corresponds to a change in bathymetry to deeper areas to the west.  Strong northwest 

winds (about 30 km h
-1

) were recorded on the day of image capture which may be 

responsible for the higher concentration in the southeast of Lake Rotoehu. 

Analysis of Landsat imagery has the advantage of having the longest 

continuous high resolution satellite data set, with the first Landsat MSS images taken 

in 1972.  Temporal analysis of water quality trends could provide information on long 

term water quality trends, in spatial context.  The Landsat Data Continuity Mission 

(LDCM) satellite is expected to be launched in 2011 ensuring the continuation of this 

long running data set.  

Limitations to monitoring water quality with Landsat data include, the low 

temporal resolution which limits the utility in studies of dynamic processes.  Clear 

weather is needed on satellite overpass dates, which can mean some data is not 

suitable for use due to cloud cover.  With the launch of numerous other satellites with 

comparable features to Landsat (such as ALOS and ASTER), the temporal resolution 

of image capture will be increased. 

Lakes characterized by high suspended sediment can often pose a problem as 

TSS can dominate spectral reflectance.  Sub-pixel analysis may provide a solution to 

these problems, as the signatures of chl a and SS could be unmixed. 
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If unprocessed images are purchased, digital numbers can be converted to 

at-satellite reflectance (which accounts for voltage bias and gain of the sensor, 

varying sun angle, and variation in Earth Sun distance).  Subsequently, more 

confidence can be placed in atmospheric correction or image to image normalisation.  

A scene shift could be applied to these images which would encompass all of the 

Rotorua lakes and all of Lake Taupo in one image. 

Two recent Landsat 5 images from summer 2005 and spring 2006 exist with in 

situ Biofish data (taken within 2 days of image capture).  The Biofish provides a 

lateral ‘snapshot’ (depth and transect distance) of chl a, which would enable analysis 

of water quality in 3 dimensions.  If all images are processed from raw data using 

standard reflectance conversion and atmospheric correction techniques, a more direct 

comparison between images from Landsat 5 TM and Landsat 7 ETM+ will be 

possible. 

 

2.7 Conclusions 

Remote sensing provides synoptic predictions of water quality, which can aid our 

understanding of the patterns in spatial variation of water quality and its causes.  

When high within lake variation of chl a occurs, remote sensing can increase the 

accuracy of synoptic monitoring when combined with ground observations, by 

providing information on spatial variation. 

The high correlation between B1/B3 and in situ chl a found in both January and 

October 2002 means that chl a can be mapped when image and in situ data are 

present.  Improvements in satellite data quality (processing level) and atmospheric 
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correction could increase the temporal stability of the relationship meaning that it 

may be possible to create a standard model which can be applied to predict chl a 

concentration in images that do not have corresponding ground data. 

High correlation between B1/B3 and Secchi depth means that pixel level water 

quality maps can also be created for this parameter.  TLI also shows a strong 

relationship to B1/B3.  TLI is based on the water quality parameters TN, TP, Secchi 

and chl a therefore it is not surprising that this relationship occurs.  Pixel level maps 

of TLI may provide lake managers with a useful guide to pinpoint problem areas 

within individual lakes, such as Okawa Bay in Lake Rotoiti.  

Chl a pixel-by-pixel concentration maps provide insight into spatial variability 

and can lead to an increase in the accuracy of monitoring in lakes with high spatial 

variation such as Rotoehu and Rotoiti.  Monitoring of these lakes may need to include 

mean chl a in the monitoring regime. On 25 January 2002, intense algal blooms 

occurred and complex spatial variation in phytoplankton density can be seen in lakes 

Rotoiti and Rotoehu.  The 6 January 2001 image also showed large spatial variation 

in water quality in these lakes but with a different pattern occurring in Lake Rotoehu, 

where higher concentrations of chl a are seen in the central west area of the lake 

rather than in the southeast. 
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3. Waikato lakes 

 

3.1 Introduction  

Monitoring of lakes using traditional point sampling methods is expensive while 

often not effectively monitoring spatial variation of water quality variables (Dekker et 

al., 2002).  While high-spectral resolution ocean colour monitoring platforms have 

been designed to effectively monitor water quality, their coarse spatial resolution 

limits their application to the largest lakes.  Therefore, the choice of platforms for 

smaller lakes is limited to higher spatial resolution platforms such as Landsat, which 

usually have lower spectral resolution (Tyler et al., 2006). 

In deep lakes, relationships between chl a and remote sensing reflectance are 

relatively simple due to the low concentrations of suspended sediment (SS), and can 

be derived from traditional band ratio methods as chlorophyll (chl) a is the primary 

colour producing agent (e.g., Lilliesand and Johnson, 1983, Zilioli and Brivio, 1996).  

However when high and heterogeneous concentrations of SS are present, chl a 

concentrations are more difficult to derive from coarse spectral resolution satellites 

(Lindell et al., 1999). 

Linear spectral unmixing to determine water quality is still a relatively new 

technique.  Svab et al., (2005) used controlled tank experiments and in situ 

spectroradiometry of simulated Landsat reflectance to variations in SS and chl a.  

Principal components analysis (PCA) of the simulated reflectance showed that turbid 

lake water possesses spectrally unique endmembers. 
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Tyler et al. (2006) applied the spectral mixture modelling approach to Lake 

Balaton, which is Europe’s largest freshwater lake by surface area.  Lake Balaton has 

a mean depth of 3 m, and is characterised by heterogeneous distributions of TSS (3 – 

300 mg l
-1

) and chl a maximums of 240 µg l
-1

.  High correspondence  between in situ 

measurements of chl a and modeled image derived chl a was achieved, while yielding 

considerable detail of lake phytoplankton distribution (r² = 0.95).  This calibration 

was the successfully applied in retrospective analysis of a 1994 image, validated with 

chl a data coincidentally collected within two days of image capture.  This calibration 

was demonstrated to be robust and have temporal stability.  

Thiemann and Kaufmann (2000) used Indian Remote Sensing Satellite (IRS-

1C) imagery to investigate a linear spectral unmixing model to estimate chl a in lakes 

in Mecklenburg, Germany (r² = 0.85).  In contrast to other studies, only two 

endmembers, chl a and clear water were used to unmix the data, as SS and dissolved 

organic matter (DOM) levels were low enough to be neglected.  This method was 

found to be more accurate when compared estimates of chl a obtained from Band 3, 

and Band 4/Band 3 ratios.  

Rudorff et al. (2006) investigated linear spectral unmixing of Hyperion 

hyperspectral data of Amazon floodplains, Brazil, using four endmembers, including 

phytoplankton, SS, DOM and clear water.  These authors concluded that nonlinear 

mixing of optically active components can result in a fraction image of 0 % or 100 %, 

which can indicate negative estimates or over 100 % estimates of the endmember.  A 

low positive correlation was found (r = 0.52) between the unmixed chl a abundance 

image and in situ data.  Suspended mineral concentration showed a non-linear 
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relationship to the SS endmember abundance image (r = 0.75).  No significant 

correlation to DOM was found. 

Due to the persistent nature of cloud cover in the Waikato region and time/ 

financial limitations, it was decided that retrospective analysis of past satellite images 

would be a good option to test the feasibility of linear spectral unmixing in the 

Waikato region.  This investigation used a mixture modelling approach using two 

freely available Landsat 7 ETM+ images with in situ samples coincidentally taken 

within three days of image capture. 

 

3.2 Study site 

This study covers lakes of the northern Waikato region which includes more than 40 

lakes ranging from 0.01 km² to 34.4 km² in area (Figure 3.1).  There are 31 

dystrophic (peat) lakes in the Waikato region, which are a remnant of the formerly 

extensive peat bogs of Komakorau, Rukuhia and Moanatuatua, forming the largest 

peat habitat in New Zealand.  Peat lakes have classically been described as having 

low productivity, however, recent more detailed investigations have shown that chl a 

is significantly higher in coloured lakes than clear lakes.  Also, annual integral 

productivity of epilimnetic bacterioplankton has also been found to be much higher in 

peat lakes than in clear water lakes (Nurinberg and Shaw, 1998).  An Anoxic 

hypolimnia is common in peat lakes due to decomposition of organic carbon (Wetzel, 

2001).  Peat lakes are typically brownish due to high levels of DOM leached from 

surrounding peat lands, and are generally mildly acidic (pH 5.5 – 6.5).  In this study, 
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in situ data was collected for peat lakes Serpentine North, Rotomanuka North and 

South, Ngaroto, Maratoto and Rotokauri. 

 

 

Figure 3.1. Waikato study site map including lakes and sampling stations (open 

circles).  Lakes are a true colour composite of  Landsat bands 1-3 from 28 August 

2002 (with a standard deviation colour stretch). 
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The larger riverine lakes sampled in this study include lakes Waikare and 

Waahi, which were formed when alluvial deposits diverted the original path of the 

Waikato River, damming valleys and tributaries. 

Lake Waikare is a large shallow hyper-eutrophic lake characterized by 

extremely high levels of inorganic suspended sediment.  This sediment can be 

attributed to erosion from the Matahuru catchment and from resuspension from the 

lake bed by wave action.  The high SS concentrations found here are thought to be the 

principal factor controlling productivity in the lake, limiting light penetration and 

hence phytoplankton growth (Barnes , 2002).  The SS in Lake Waikare consists 

mainly of clay particles which are easily resuspended, keeping the lake in a constant 

turbid state even during periods of stable weather (Reeves et al.; 2002, Stephens et 

al., 2003). 

Lake Whangape is the second largest lake in the Waikato region.  It is a 

shallow hyper-eutrophic lake with an average depth of 1.5 m.  During summer the 

lake has weak thermal stratification with oxygen depletion in deeper waters (Boswell 

et. al., 1985).  The lake catchment is consisted of mainly agricultural land, but in the 

past the lake has received inputs from mining activities (Barnes, 2002).  This lake 

suffered a Egeria densa macropyte collapse in 1987 (Champion et al., 1993).  This 

has been attributed to a number of factors including phytoplankton blooms, grazing 

from pest fish, cultural eutrophication, and increase in inorganic sediment levels 

(Wells et al., 1988).  Vant (1987) attributed the macropyte collapse to discharge of 

inorganic sediment in mining waste water. 

Lake Waahi is a relatively shallow super-eutrophic lake dominated by high 

turbidity and high algal biomass.  Current monitoring programs indicate that the lakes 
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water quality has stabilized since the macrophyte collapse in the late 1970s, which 

was attributed to low lake levels, high nutrient concentrations, and continued 

sediment input from mining (Dell et al., 1998).  

Lake Rotomanuka North is a small eutrophic peat lake remnant of the once 

larger Lake Rotomanuka, the past lake bed forming the surrounding wetland (10 ha) 

that connects to Lake Gin (Rotomanuka South).  The catchment is comprised of 

intensive dairy and pastoral farming.  Analysis of water quality samples collected 

between October 1995 and December 2001 shows a probable degradation of water 

quality over time, with a percent annual change of 6.5 ± 3.5 %.yr 1  (p = 0 0.15).  The 

decrease in water clarity, increase in total nitrogen and total phosphorus could be 

attributed to the collapse of macrophyte beds that occurred in 1996/1997, where the 

input of detritus and following microbial decomposition nutrients released organic 

nitrogen and phosphorus, which for some reason remains unavailable (Barnes, 2002).  

Furthermore, little seasonality was observed in water quality parameters (Barnes, 

2002) although stratification and bottom anoxia has been recorded in summer months 

(Boswell et al., 1985). 

 

3.3 Methods 

3.3.1 In situ sample collection 

Seven in situ samples were taken by EW (Environment Waikato), over six lakes (six 

chl a samples and seven turbidity and TSS samples) on the 28 and 29 March 2000, 

which coincided with a Landsat ETM+ overpass on the 31 March 2000.  Also, seven 

in situ samples were taken by EW, over five lakes (six chl a samples and seven 



 

 

42 

turbidity and TSS samples) on the 27 and 28 August 2002, which coincided with a 

Landsat ETM+ overpass on the 28 August 2002.  EW sampling locations were 

converted from NZMG (New Zealand Map Grid) coordinates to the UTM (Universal 

transverse Mercator) map projection zone 61S. 

 Specific details regarding EW water quality sampling and laboratory analysis 

can be found in Appendix 4.  Surface water chl a and nutrient of a known volume 

were filtered, and chl a measured using acetone extraction and spectroscopy.  

Suspended solids were sampled directly and dried at 104ºC.  Volatile suspended 

solids were filtered using pre-combusted glass fiber filters (Whatman GF\C) and 

ashed at 550ºC. 

 

3.3.2 Image data 

This study used two freely available Global Landcover Facility (GLCF) Landsat 

ETM+ images captured on the 28th August 2002 and the 31 March 2000.  The 

metadata for these images states that the processing level is L1G, indicating that the 

data has been radiometrically corrected and orthorectified (UTM zone 61S).  All 

subsequent image processing for mixture modelling was carried out on non 

atmospherically corrected data, but the TSS regression used reflectance values.  

Furthermore, it should be noted that these images may have been modified by 

spectral feathering and radiometric adjustments used to generate GLCF mosaics. 

In larger lakes, satellite data was sampled by taking the mean reflectance from 

a 5 by 5 pixel window (142.5 m by 142.5 m) in order to decrease radiometric noise 

and account for uncertainties in the location of in situ data collection.  In the small 
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lakes Maratoto and Serpentine North, a 3 by 3 pixel window (85.5 m by 85.5 m) 

was used. 

 

3.3.3 Conversion to reflectance and atmospheric correction for TSS 

regression 

Traditional methods used to derive TSS concentration maps used reflectance values 

calculated incorporating dark object subtraction atmospheric correction (Chavez, 

1996).  This method has been found to provide a reasonable atmospheric correction 

for cloud-free scenes (Hadjimitsis et al., 2004).  Conversion from Landsat L1G 

scaled radiance to 32-bit radiance (watts per square meter per steradian per 

micrometer) is the first step and is given by 

 

Lλ = ((LMAXλ - LMINλ)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMINλ  Equation 3.1, 

where:  Lλ = Spectral Radiance at the sensor aperture in W m
-2

 sr
-1

 µm
-1

 

  QCAL = the quantized calibrated pixel value in digital number 

  

LMINλ = the spectral radiance that is scaled to QCALMIN in  

W m
-2

 sr
-1

 µm
-1

 

  

LMAXλ = the spectral radiance that is scaled to QCALMAX in  

W m
-2

 sr
-1

 µm
-1

 

  

QCALMIN = the minimum quantized calibrated pixel value 

(corresponding to LMINλ) in digital number  
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= 1 (LPGS Products) 

= 0 (NLAPS Products) 

  

QCALMAX = the maximum quantized calibrated pixel value 

(corresponding to LMAXλ) in DN  

= 255 

 

Dark object subtraction assumes that somewhere in the image there should be 

a target with a true value of zero having zero reflection.  When the image histogram is 

analysed, the minimum value is taken as an estimate of path radiance, and therefore 

subtraction of this value from the at-satellite radiance gives an approximation of 

water leaving radiance.  Atmospheric correction procedures are sometimes 

problematic when working on inland waters with high spatial resolution and low 

spectral resolution platforms such as Landsat.  This can contribute to uncertainties 

when undertaking a comparison of images taken at different time periods (Hadjimitsis 

et al., 2004).  Reflectance is then calculated using the following equation, 

 

s

2

p
cosESUN

dL
P








    equation 3.2, 

 

Where:  

pP  = Unitless planetary reflectance 

L  = Spectral radiance at the sensor's aperture 

d = Earth-Sun distance in astronomical units (taken from appendix _) 
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ESUN  = Mean solar exoatmospheric irradiance (taken from appendix ) 

s  = Solar zenith angle in degrees (calculated from image metadata (90º-      

solar elevation angle)) 

 

3.3.4 Image analysis 

3.4.4.1 Linear Spectral Unmixing (LSU) 

Spectral unmixing (Smith et al., 1985) is an inversion technique that aims at 

estimating the mixture components responsible for the mixed spectral signature of a 

pixel, defined as a linear-matrix equation: 

 

iik

n

nk

ki RfR 


   equation 3.3, 

 

where iR  is the reflectance of the mixed pixel for each band i, including one or more 

endmembers; kf  is the fraction of each endmember k within the pixel, ikR  is the 

reflectance of the endmember k within the pixel on band i, and i  is the error for 

band i (or the difference between the measured and modeled DN in each band). 

To solve these equations, the endmembers must be independent from each 

other, the number of endmembers should be less than or equal to the number of 

spectral bands used, and the spectral bands used should not be highly correlated. 
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The water surface reflection received by satellites is a mixed spectrum as it 

is affected by chl a, SS, DOM concentrations, as well as other factors.  LSU attempts 

to unmix this signature, deriving proportion estimates of the mixture components.  

These mixture components are referred to as endmembers, which are idealized pure 

signatures.  In this study, an image based endmember selection process was used 

where bands are plotted in feature space, and endmembers identified manually using 

a similar approach to Tyler et al., (2006).  Spectrally pure endmembers are found at 

the vertices of the polygon bounding the data cloud in feature space (Smith et al., 

1985).  ERDAS Imagine was used to geo-link feature space plots so the pixel within 

the image can be located in feature space.  All LSU was carried out on raw data and 

principal components transformed data. 

3.4.4.2  Principal Components Analysis  

PCA is performed on six Landsat bands (excluding thermal and panchromatic bands) 

using ERDAS Imagine.  Adjacent bands in multispectral imagery are generally 

correlated (Mather 2005), which can cause problems when try to unmix the spectral 

signatures of water quality variables.  Only spectrally unique endmembers can be 

properly evaluated in the unmixing process, as correlation between endmembers can 

result in negative abundance estimates (Van der Meer and De Jong, 2000).  PCA 

analysis is also used to determine the spectral dimensionality of the data set, with the 

number of coherent PCA bands representing the number of coherent dimensions.  

This provides an estimate of the number of spectral endmembers that can be unmixed 

(Tyler et al., 2006).  Global analysis of the Landsat ETM+ mixing space has shown 

that >98% of image spectral variance can be encompassed within a three dimensional 

mixing space (Small, 2004). 
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3.3.5 Calibration 

Finally, the unmixed fraction images produced by unmixing are regressed against in 

situ water quality samples.  The final regression model is then applied to abundance 

estimates to create thematic water quality maps of TSS and chl a concentration.  

3.4 Results  

3.4.1 Correlation between Landsat ETM+ reflectance and in situ 

samples 

 Consistent high correlation was found between TSS and reflectance in bands 3 and 4 

(Table 3.1), although a subsequent regression analysis was performed on Band 3, as 

this is the most common band used to map TSS.  Chl a showed a high correlation to 

Band 3 in the 2002 image, although there is high covariance between chl a and TSS 

(r = 0.99).  However no significant correlation for chl a was found in the March 2000 

image.  TP showed the highest correlation of the nutrient parameters, and also 

showed very high covariance with TSS (r = 1.0). 

Table 3.1. Landsat reflectance data correlation with the most significant relationships 

for each water quality variable (results in the format of band: correlation: P-value, 

with significant correlations in bold). 

Water quality variable 28/08/2002 31/03/2000 Combined Data

Chl a (µg l
-1

) B3: 0.978: 0.001 B5: 0.501: 0.252 B3: 0.858: 0.000

Volatile suspended solids (VSS) (mg l
-1

) B4: 0.984: 0.000 B4: 0.820: 0.024 B4: 0.813: 0.001

Total suspended solids (TSS) (mg l
-1

) B4: 0.987: 0.000 B4: 0.998: 0.000 B3: 0.980: 0.000

Turbidity (NTU) B4: 0.991: 0.000 B4: 0.997: 0.000 B3: 0.982: 0.000

Dissolved reactive Phosphorus (mg l
-1

) B5: -0.325: 0.529 B4: -0.374: 0.409 B4: -0.356: 0.232

Total Phosphorus (TP) (mg l
-1

) B4: 0.993: 0.000 B4: 0.915: 0.004 B4: 0.876: 0.000

Nitrate + Nitrite (NNN) (mg l
-1

) B4: -0.684: 0.134 B4: -.0455: 0.306 B4: -0.390: 0.188

Total Kjeildal Nitrogen (TKN) (mg l
-1

) B4: 0.967: 0.002 B5: 0.340: 0.456 B4: 0.274: 0.365

Ammoniacal Nirtogen (mg l
-1

) B7: -0.682: 0.136 B7: 0.798: 0.031 B4: -0.340: 0.256

Image date
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3.4.2 Regression analysis for SS 

Reflectance in Band 3 was used in the final regression equation to predict TSS 

(Figure 3.2).  This relationship was used to create TSS concentration maps.  The 

combined regression equation from both images was 

TSS = 0.0388 + 0.0008 (B3)  equation 3.4, 

for which r² = 0.98, N = 15 and p = < 0.001. 
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Figure 3.2. TSS vs. Band 3, combined data from 31 March 2000 and  28 August 2002 

corresponding to equation 3.4. 

 

T
o
ta

l 
su

sp
en

d
ed

 s
o
li

d
s 

(m
g
 l

-1
) 

Band 3 reflectance 



 

 

49 

High spatial variation was observed in both images, especially in the large 

riverine lakes Waikare and Whangape (Figures 3.3 and 3.4).  On 28 August, Lake 

Waikare had an in situ chl a concentration of 150 µg l
-1

 combined with very high TSS 

concentrations (250 mg l
-1

).  Higher TSS concentrations can be seen in the northeast 

near to the outlet, with relatively clearer water entering from an inlet in the northwest 

(Figure 3.3).  The predicted TSS map for Lake Whangape also shows high spatial 

variation, with higher TSS concentrations in the main arm of the lake.  However on 

31 March 2000 higher concentrations of TSS were present in the southern and 

northwest arms of the lake.  

On 31 March 2000 (Figure 3.4), there was less spatial variation of TSS Lake 

Waikare, combined with relatively low chl a concentrations (<20 µg l
-1

).  An area of 

relatively high TSS can be observed were a stream enters the lake in the west. 
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Figure 3.3. TSS on 28 August 2002 predicted from equation 3.4. 

(mg l
-1

) 
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Figure 3.4. TSS concentration on 31 March 2000 predicted from equation 3.4. 

 

(mg l
-1

) 
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3.4.3 Linear mixture modelling of raw data 

Landsat bands 1, 2, and 3 were used as input into the mixture model.  High 

correlation already existed between in situ samples of chl a and in situ samples of 

TSS.  The location of endmembers in feature space is shown in Figure 3.5.  The final 

regression equation used to produce the chl a concentration map in Figure 3.7 was 

 

Chl a = 5.7298 + 2.527 * (Chl endmember percentage)  equation 3.5, 

 

where chl a is measured in µg l
-1

, r² = 0.842, N = 6, and p =  0.001 (see Figure 3.6 for 

data). 

 

 

 

Figure 3.5. Feature space plots and endmember selection using raw data for 24 

August 2002, Band 1 vs. Band 2, Band 1 vs. Band 3, and Band 2 vs. Band 3. 
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Figure 3.6. Regression of 28 August 2002 chl a percentage abundance image and in 

situ chl a. for shallow Waikato lakes corresponding to equation 3.5. 

 

This regression produced a chl a concentration map that showed different 

patterns of spatial variation than the TSS concentration maps.  This revealed patterns 

of spatial variation of chl a in Lake Waikare where the highest concentrations were 

found in the southern and north-western areas of the lake. 

The correlation between in situ data and water quality parameters is shown in 

Table 3.2.  The high TSS endmember showed a high correlation to all water quality 

parameters except Secchi depth, which had a higher correlation to the high chl 

endmember. 
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Figure 3.7. Waikato lakes chl a concentration (µg l
-1

) on the 28 August 2002 

predicted from equation 3.5. 
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Table 3.2. Most significant correlations of in situ data with raw data unmixing 

endmember fraction images for 28 Aug 2002 (significant correlations in bold, refer to 

Table 3.1 for abbreviations and units).  

Mixture fraction Chl a Secchi TSS TKN TP Turbidity VSS

Clear water -0.970 0.776 -0.975 -0.798 -0.945 -0.970 -0.962

p<0.001 p=0.068 p<0.001 p=0.057 p=0.005 p<0.001 p=0.002

High chl 0.916 -0.851 0.926 0.698 0.878 0.916 0.904

p=.010 p=0.032 p=0.003 p=0.123 p=0.021 p=0.004 p=0.013

High TSS 0.994 -0.692 0.995 0.873 0.983 0.993 0.993

p<0.001 p=0.128 p<0.001 p=0.023 p<0.001 p<0.001 p<0.001  

 

3.4.4 Linear Mixture Modelling of PCA transformed data 

TSS fraction maps when calibrated with ground data also produced high correlation 

with in situ samples.  However, appropriate endmembers for chl a have thus far been 

difficult to define (Figure 3.8).  The resulting chl a fraction image does not recognise 

Lake Waikare as having the highest fraction of the endmember, as Lake Waahi has 

higher percentage of chl a in the fraction image.  However, in situ chl a shows a high 

correlation to the SS unmixing fraction image (Table 3.2) due to the high covariance 

of in situ chl a and TSS.   

 

 

Figure 3.8. Feature space plots and endmember selection using PCA data for 28 

August 2002, PC1 vs. PC2, PC1 vs. PC3, PC 2 vs. PC3. 
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Using the same endmembers as were used to unmix the raw images results 

in chl a fraction images with a value of zero for lakes with low chl a concentration 

(negative abundance estimate).  However, the unmixed fraction images also show 

high spatial variation of chl a and TSS in Lake Waikare showing a similar pattern to 

the raw unmixed chl a abundance image. 

 

Table 3.3. Most significant correlations of in situ data with PCA unmixing 

endmember fraction images for 28 August 2002 (significant correlations in bold, refer 

to Table 3.1 for abbreviations and units). 

Mixture fraction Chl a Secchi TSS TKN TP Turbidity VSS

Clear water -0.752 0.912 -0.716 -0.436 -0.681 -0.699 -0.724

p=.084 p=0.011 p=0.110 p=0.388 p=0.137 p=0.122 p=0.104

High chl 0.194 -0.739 0.132 -0.205 0.084 0.108 0.144

p=0.713 p=0.094 p=0.803 p=0.696 p=0.875 p=0.838 p=0.786

High TSS 0.986 -0.611 0.999 0.941 0.999 1.000 0.998

p<0.001 p=0.198 p<0.001 p=0.005 p<0.001 p<0.001 p<0.001  

 

3.5 Discussion 

The high correlation achieved between Band 3 and in situ reflectance in both images 

confirms that TSS is readily mapped from Landsat data, and that the results presented 

here are comparable to other studies (eg. Tyler et al., 2006).  The range of TSS 

concentrations covered in this study is larger than in any other previously published 

work this author could find.  The high TSS concentrations in Lake Waikare may be 

masking the signature of chl a to some extent, although patterns of spatial variation of 

chl a were identified in the 28 August 2002 image.  The high TSS levels may be 

responsible for lower chl a levels near the outlet due to the lack of light penetration 

(Barnes, 2002). 
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On March  31 2000, TSS concentrations in Lake Waikare were higher and 

less spatial variation of TSS was observed.  Chl a concentration was < 20 µg l
-1, while 

blooms were observed in surrounding lakes.  Again, light limitation caused by high 

suspended sediment concentrations may have been responsible for low chl a at this 

time. 

The final chl a regression model has only six in situ sample data points and is 

heavily influenced by Lake Waikare.  Also, the high covariance between in situ chl a 

and TSS complicates the interpretation of results.  However, the resulting chl a 

concentration prediction map shows a pattern of spatial variation different to that of 

TSS. 

 Due to the large range in chl a and TSS, a non-linear mixture model may be 

more appropriate where the endmembers selected correspond to different ranges of 

water quality parameter concentration (Igamberdiev and Lennartz, 2007).  In the 

Waikato lakes this may mean different endmembers are needed for peat lakes and 

riverine lakes.  Riverine lakes in this study had the highest TSS levels combined with 

relatively high chl a, whereas peat lakes had relatively lower levels of TSS, but still 

high levels of chl a.  

To investigate a non-linear mixture model, the sample size will have to be 

larger, and accommodate a wider range of samples from both peat and riverine lakes.  

I suggest that Lake Whangape should be included in future in situ data collection, as 

the consistent high spatial variation of water quality between the arms and body of 

the lake would enable a large range of water quality concentration to be sampled in a 

small time frame and area.  Also, sampling of peat lakes needs to be concentrated on 

larger lakes to lessen the effect of data noise that can be found in the 3 by 3 image 
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area of interest sample windows that were used (Kloiber, 2002).  In March, the 

negative chl a abundance estimates for low chl a lakes may also be avoided using a 

non-linear model, as endmembers will be closer geometrically to data point clusters. 

In this study, there was difficulty finding appropriate endmembers due to a 

number of factors.  The ERDAS Imagine software used could identify where a 

selected pixel on the image lies in feature space plots but not vice versa.  This means 

that the location of endmember pixels (at apexes of the data cloud) was sometimes 

difficult to determine.  In future studies it is recommended that ENVI image analysis 

should be used, which would enable spatial data reduction using the pixel purity 

index, and endmember selection using a n-Dimensional Visualizer (Kruse et al., 

1993).  

DOM was not measured and will have to be taken into account in future 

studies. Its influence on remote sensing reflectance from water is greatest in waters 

containing high chl a and low suspended minerals as is the case in the Waikato peat 

lakes (Bukata et al., 1995).  This may contribute to error in retrieval of chl a 

concentrations in these lakes. 

Future research should include more in situ samples, improved endmember 

selection techniques using the pixel purity index, and N-dimensional viewer.  

Furthermore, images should be converted to reflection so endmembers can be applied 

to images on different dates and endmembers from spectral libraries tested.  Also 

DOM concentrations are yet to be investigated, and may have a significant effect on 

accuracy of chl a retrieval in the Waikato peat lakes.  

Using reflectance instead of raw data as an input would mean images from 

different dates would be radiometrically comparable, and endmembers from spectral 
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reflectance libraries could be trialed.  If adequate atmospheric correction is applied, 

the same calibration could possibly be applied to other images to predict water quality 

parameters without in situ data.  

The application of this approach using platforms with better spectral 

resolution enabling the diagnostic investigation of the chl a signature may produce 

more accurate results and enable a lower minimum detection limit for chl a. 

 

3.6 Conclusion 

SS was readily mapped using B3, confirming the results of other studies.  Chl a also 

showed high correlation to reflectance in the visible and near infrared bands, but high 

covariance with SS was present.  A linear mixture modelling approach was used to 

map chl a concentration (r² = 0.85). 

 This approach has been shown to be a cost-effective technique of monitoring 

spatial variation of water quality, especially in lakes Waikare, Whangape and Waahi.  

In Whangape and Waikare a different pattern of spatial variation was observed in 

March 2000 and August 2002.  High and heterogeneous concentrations of chl a and 

TSS were observed in both images, with clear patterns of trophic status variation 

within and between lakes. 
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  4. Synthesis 

 

4.1 Conclusions 

The first objective of this study was to determine empirical models between Landsat 

imagery and lake water quality variables of the Rotorua lakes.  This enabled water 

quality variables to be synoptically quantified.  Analysis was carried out on two 

Landsat 7 Enhanced Thematic Mapper (ETM+) satellite images of the Rotorua lakes 

and Lake Taupo, for which most in situ observations were taken within 4 days of 

image capture.  Regression equations were developed between the Band 1/Band 3 

from Landsat images from summer (25 January 2002) and spring (24 October 2002) 

and water quality variables measured in the lakes by Environment Bay of Plenty.  

High correlation was found between ratios and in situ data and the maps produced 

proved useful for analysing spatial distribution of phytoplankton, especially in lakes 

Rotoiti and Rotoehu.  

Application of linear spectral unmixing to the Rotorua lakes may improve the 

accuracy of chlorophyll (chl) a retrieval as the influence of suspended sediments (SS) 

in shallow lakes may be quantified.  For example in shallow lakes such as Lake 

Rotorua suspended sediment can be a major colour producing agent.  Linear spectral 

unmixing may improve the accuracy of chl a retrieval in these lakes by unmixing the 

signature of chl a and SS. 

 The second objective of this study was to predict total suspended solid (TSS) 

concentrations in the Waikato lakes using a Band 3 regression model.  The high 

correlation between the atmospherically corrected reflection in Band 3 and in situ 
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TSS concentrations meant this objective was also achieved.  This relationship 

showed temporal stability over the two images, indicating that it may be able to 

predict TSS with no in situ data. 

The third objective of this study was to investigate linear mixture modelling to 

investigate the more optically complex lakes of the Waikato.  This technique was 

successful in unmixing the signatures of clear water, chl a and TSS.  The resulting 

maps of chl a and TSS showed significant detail on the distribution of phytoplankton 

and suspended solids.  More work is still needed in the area of endmember selection 

but the results of this study suggest that this method is applicable to the Waikato 

lakes. 

Since remote sensing cannot provide data on all water quality parameters in 

situ monitoring will be necessary in the future.  However when in situ monitoring 

combined with remote sensing more lakes can be monitored and monitoring accuracy 

can be increased in lakes with high spatial variation of water quality.  This work has 

possible applications in lake management.  The thematic water quality can be used to 

pinpoint problem areas.  For example areas of elevated turbidity can indicate erosion 

problems.  This method could be applied to previously unmonitored lakes to assess 

changes in water quality due to landuse changes and introductions of pest fish.  These 

models are applicable to other areas, however models still need to be calibrated with 

ground data. 
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Appendix1. EBOP unpublished water quality data and satellite data from Landsat 7 ETM+ image. 

1A.  25 January 2002 image and data. 

 

Site Date Chl a  (μg/L) Secchi depth 

(m)

Turbidity 

(NTU)

B1 B2 B3 B1/B3 (B1-B3)/B2

Taupo site C 22-Jan-02 0.8 15.5 61.6 34.3 22.5 2.74 1.14

Taupo site A 22-Jan-02 0.9 15.0 61.9 34.7 22.1 2.80 1.15

Okareka site 1 23-Jan-02 1.4 10.2 0.57 57.9 33.9 22.1 2.62 1.06

Tarawera site 5 23-Jan-02 2.1 9.4 0.42 62.1 35.8 22.9 2.72 1.10

Rerewhakaaitu site 1 9-Jan-02 2.4 5.5 0.70 57.8 35.0 22.5 2.57 1.01

Okataina site 1 22-Jan-02 3.1 9.8 0.54 59.5 35.2 23.6 2.52 1.02

Rotokakahi site 10 23-Jan-02 3.3 0.69 59.3 35.2 23.4 2.53 1.02

Tikitapu site 1 23-Jan-02 4.4 4.2 0.85 62.2 39.9 23.8 2.62 0.96

Rotoiti site 4 22-Jan-02 6.0 4.3 0.95 61.2 37.3 23.6 2.59 1.01

Rotoiti Te Weta site 17-Jan-02 10.4 2.60 60.6 39.6 26.4 2.30 0.86

Rotoiti site 3 22-Jan-02 11.5 3.5 1.90 62.2 42.1 26.9 2.32 0.84

Rotorua site 2 23-Jan-02 16.5 4.5 2.20 59.6 38.2 26.3 2.27 0.87

Rotorua site 5 23-Jan-02 17.6 2.3 2.60 60.3 38.3 26.1 2.31 0.89

Rotoiti western basin site 24-Jan-02 19.4 2.7 3.30 62.6 42.9 27.7 2.26 0.81

Rotoehu site 3 22-Jan-02 25.0 2.0 2.60 62.8 49.0 31.3 2.01 0.64

Rotoiti Okawa Bay site 24-Jan-02 136.0 0.8 15.00 65.3 57.1 34.6 1.89 0.54  
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1B.  24 October 2002 image and data. 

 

Site Date Chl a  (μg/L) Secchi depth 

(m)

Turbidity 

(NTU)

B1 B2 B3 B1/B3 (B1-B3)/B2

Okareka site 1 24/10/2002 2.5 8.1 1.00 55.6 32.9 22.3 1.01 2.50

Okataina site 1 23/10/2002 2.9 7.5 0.67 56.0 31.8 21.8 1.08 2.57

Rotokakahi site 10 24/10/2002 2.4 0.68 57.1 34.5 22.5 1.00 2.53

Rotorua site 2 24/10/2002 23.8 1.9 3.50 58.4 38.1 25.8 0.86 2.27

Rotorua site 5 24/10/2002 23.6 1.9 4.60 58.1 38.3 26.3 0.83 2.21

Tikitapu site 1 24/10/2002 2.0 4.0 0.82 60.5 38.5 23.1 0.97 2.62

Okaro site 1 22/10/2002 89.1 1.3 4.50 56.5 39.4 24.9 0.80 2.27

Rerewhakaaitu site 1 22/10/2002 1.2 10.2 56.4 33.9 22.5 1.00 2.51

Rotomahana site 1 22/10/2002 5.9 2.9 1.30 57.1 35.4 23.6 0.95 2.42

Tarawera site 5 24/10/2002 0.5 8.4 1.40 59.8 34.4 22.3 1.09 2.68

Taupo site A 9/10/2002 0.6 15.5 58.2 32.2 21.4 1.14 2.71

Taupo site B 9/10/2002 0.5 15.0 58.3 33.1 22.9 1.07 2.54

Taupo site C 9/10/2002 0.4 19.0 58.6 32.4 21.8 1.13 2.69  
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Appendix 2- Atmospheric correction parameters 

2A.  Landsat ETM+ Solar Spectral Irradiances. Source: Landsat 

(2002). 

Landsat band watts/(meter squared * μm) 

1 1969.0 

2 1840.0 

3 1551.0 

4 1044.0 

5 225.7 

7 82.07 

8 1368.0 

 

2B.  Earth Sun distance in astronomical units (AU). Source: Landsat 

(2002). 

Julian 

Day Distance 

Julian 

Day Distance 

Julian 

Day Distance 

Julian 

Day Distance 

Julian 

Day Distance 

1 0.9832 74 0.9945 152 1.014 227 1.0128 305 0.9925 

15 0.9836 91 0.9993 166 1.0158 242 1.0092 319 0.9892 

32 0.9853 106 1.0033 182 1.0167 258 1.0057 335 0.986 

46 0.9878 121 1.0076 196 1.0165 274 1.0011 349 0.9843 

60 0.9909 135 1.0109 213 1.0149 288 0.9972 365 0.9833 
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 Appendix 3- Image metadata 

3A.  Metadata for 31 March 2000 

GROUP = METADATA_FILE 

 PRODUCT_CREATION_TIME = 2004-02-12T18:15:23Z 

 PRODUCT_FILE_SIZE = 665.9 

 STATION_ID = "EDC" 

 GROUND_STATION = "EDC" 

 GROUP = ORTHO_PRODUCT_METADATA  

  SPACECRAFT_ID = "Landsat7"  

  SENSOR_ID = "ETM+"  

  ACQUISITION_DATE = 2000-03-30 

  WRS_PATH = 073 

  WRS_ROW = 086 

  SCENE_CENTER_LAT = -37.4702354  

  SCENE_CENTER_LON = +175.2517648   

  SCENE_UL_CORNER_LAT = -36.5140039  

  SCENE_UL_CORNER_LON = +174.4650560  

  SCENE_UR_CORNER_LAT = -36.8118067   

  SCENE_UR_CORNER_LON = +176.5194807 

  SCENE_LL_CORNER_LAT = -38.1139424 

  SCENE_LL_CORNER_LON = +173.9625137 

  SCENE_LR_CORNER_LAT = -38.4217119  

  SCENE_LR_CORNER_LON = +176.0581327 

  SCENE_UL_CORNER_MAPX = 273001.500 

  SCENE_UL_CORNER_MAPY = -4043950.500 

  SCENE_UR_CORNER_MAPX = 457140.000  

  SCENE_UR_CORNER_MAPY = -4074103.500 

  SCENE_LL_CORNER_MAPX = 233700.000 

  SCENE_LL_CORNER_MAPY = -4222816.500 

  SCENE_LR_CORNER_MAPX = 417781.500 

  SCENE_LR_CORNER_MAPY = -4253026.500 

  BAND1_FILE_NAME = "p073r086_7t20000330_z60_nn10.tif" 

  BAND2_FILE_NAME = "p073r086_7t20000330_z60_nn20.tif" 

  BAND3_FILE_NAME = "p073r086_7t20000330_z60_nn30.tif" 

  BAND4_FILE_NAME = "p073r086_7t20000330_z60_nn40.tif" 

  BAND5_FILE_NAME = "p073r086_7t20000330_z60_nn50.tif" 

  BAND61_FILE_NAME = "p073r086_7k20000330_z60_nn61.tif" 

  BAND62_FILE_NAME = "p073r086_7k20000330_z60_nn62.tif" 

  BAND7_FILE_NAME = "p073r086_7t20000330_z60_nn70.tif" 

  BAND8_FILE_NAME = "p073r086_7p20000330_z60_nn80.tif" 

  GROUP = PROJECTION_PARAMETERS  

   REFERENCE_DATUM = "WGS84"  

   REFERENCE_ELLIPSOID = "WGS84"  

   GRID_CELL_ORIGIN = "Center" 

   UL_GRID_LINE_NUMBER = 1 

   UL_GRID_SAMPLE_NUMBER = 1 

   GRID_INCREMENT_UNIT = "Meters" 

   GRID_CELL_SIZE_PAN = 14.250            

   GRID_CELL_SIZE_THM = 57.000            

   GRID_CELL_SIZE_REF = 28.500      

   FALSE_NORTHING = 0       

   ORIENTATION = "NUP" 

   RESAMPLING_OPTION = "NN" 

   MAP_PROJECTION = "UTM" 

  END_GROUP = PROJECTION_PARAMETERS  

  GROUP = UTM_PARAMETERS  

   ZONE_NUMBER = +60 
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  END_GROUP = UTM_PARAMETERS  

  SUN_AZIMUTH = 47.0881386 

  SUN_ELEVATION = 36.4946285 

  QA_PERCENT_MISSING_DATA = 66 

  CLOUD_COVER = 0 

  PRODUCT_SAMPLES_PAN = 17360 

  PRODUCT_LINES_PAN = 15310 

  PRODUCT_SAMPLES_REF = 8680 

  PRODUCT_LINES_REF = 7655 

  PRODUCT_SAMPLES_THM = 4340 

  PRODUCT_LINES_THM = 3828 

  OUTPUT_FORMAT = "GEOTIFF" 

 END_GROUP = ORTHO_PRODUCT_METADATA 

 GROUP = L1G_PRODUCT_METADATA 

  BAND_COMBINATION = "123456678" 

  CPF_FILE_NAME = "L7CPF20000101_20000331_12" 

  GROUP = MIN_MAX_RADIANCE  

   LMAX_BAND1 = 191.600            

   LMIN_BAND1 = -6.200           

   LMAX_BAND2 = 196.500           

   LMIN_BAND2 = -6.400            

   LMAX_BAND3 = 152.900           

   LMIN_BAND3 = -5.000           

   LMAX_BAND4 = 157.400           

   LMIN_BAND4 = -5.100           

   LMAX_BAND5 = 31.060            

   LMIN_BAND5 = -1.000          

   LMAX_BAND61 = 17.040            

   LMIN_BAND61 = 0.000            

   LMAX_BAND62 = 12.650            

   LMIN_BAND62 = 3.200            

   LMAX_BAND7 = 10.800            

   LMIN_BAND7 = -0.350          

   LMAX_BAND8 = 243.100          

   LMIN_BAND8 = -4.700           

  END_GROUP = MIN_MAX_RADIANCE  

  GROUP = MIN_MAX_PIXEL_VALUE  

   QCALMAX_BAND1 = 255.0             

   QCALMIN_BAND1 = 1.0              

   QCALMAX_BAND2 = 255.0             

   QCALMIN_BAND2 = 1.0                

   QCALMAX_BAND3 = 255.0               

   QCALMIN_BAND3 = 1.0             

   QCALMAX_BAND4 = 255.0               

   QCALMIN_BAND4 = 1.0            

   QCALMAX_BAND5 = 255.0              

   QCALMIN_BAND5 = 1.0            

   QCALMAX_BAND61 = 255.0              

   QCALMIN_BAND61 = 1.0             

   QCALMAX_BAND62 = 255.0               

   QCALMIN_BAND62 = 1.0             

   QCALMAX_BAND7 = 255.0              

   QCALMIN_BAND7 = 1.0            

   QCALMAX_BAND8 = 255.0              

   QCALMIN_BAND8 = 1.0             

  END_GROUP = MIN_MAX_PIXEL_VALUE  

  GROUP = PRODUCT_PARAMETERS  

   CORRECTION_METHOD_GAIN_BAND1 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND2 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND3 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND4 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND5 = "CPF" 
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   CORRECTION_METHOD_GAIN_BAND61 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND62 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND7 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND8 = "CPF" 

   CORRECTION_METHOD_BIAS = "IC" 

   BAND1_GAIN = "H" 

   BAND2_GAIN = "H" 

   BAND3_GAIN = "H" 

   BAND4_GAIN = "H" 

   BAND5_GAIN = "H" 

   BAND6_GAIN1 = "L" 

   BAND6_GAIN2 = "H" 

   BAND7_GAIN = "H" 

   BAND8_GAIN = "L" 

   BAND1_GAIN_CHANGE = "0" 

   BAND2_GAIN_CHANGE = "0" 

   BAND3_GAIN_CHANGE = "0" 

   BAND4_GAIN_CHANGE = "0" 

   BAND5_GAIN_CHANGE = "0" 

   BAND6_GAIN_CHANGE1 = "0" 

   BAND6_GAIN_CHANGE2 = "0" 

   BAND7_GAIN_CHANGE = "0" 

   BAND8_GAIN_CHANGE = "0" 

   BAND1_SL_GAIN_CHANGE = "0" 

   BAND2_SL_GAIN_CHANGE = "0" 

   BAND3_SL_GAIN_CHANGE = "0" 

   BAND4_SL_GAIN_CHANGE = "0" 

   BAND5_SL_GAIN_CHANGE = "0" 

   BAND6_SL_GAIN_CHANGE1 = "0" 

   BAND6_SL_GAIN_CHANGE2 = "0" 

   BAND7_SL_GAIN_CHANGE = "0" 

   BAND8_SL_GAIN_CHANGE = "0" 

  END_GROUP = PRODUCT_PARAMETERS  

  GROUP = CORRECTIONS_APPLIED  

   STRIPING_BAND1 = "NONE" 

   STRIPING_BAND2 = "NONE" 

   STRIPING_BAND3 = "NONE" 

   STRIPING_BAND4 = "NONE" 

   STRIPING_BAND5 = "NONE" 

   STRIPING_BAND61 = "NONE" 

   STRIPING_BAND62 = "NONE" 

   STRIPING_BAND7 = "NONE" 

   STRIPING_BAND8 = "NONE" 

   BANDING = "N" 

   COHERENT_NOISE = "N" 

   MEMORY_EFFECT = "N" 

   SCAN_CORRELATED_SHIFT = "N" 

   INOPERABLE_DETECTORS = "N" 

   DROPPED_LINES = Y 

  END_GROUP = CORRECTIONS_APPLIED  

 END_GROUP = L1G_PRODUCT_METADATA  

END_GROUP = METADATA_FILE 

END 

 

3B.  Metadata for 28 August 2002  

GROUP = METADATA_FILE 

 PRODUCT_CREATION_TIME = 2004-02-12T18:15:34Z 

 PRODUCT_FILE_SIZE = 676.0 

 STATION_ID = "EDC" 
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 GROUND_STATION = "EDC" 

 GROUP = ORTHO_PRODUCT_METADATA  

  SPACECRAFT_ID = "Landsat7"  

  SENSOR_ID = "ETM+"  

  ACQUISITION_DATE = 2002-08-27 

  WRS_PATH = 073 

  WRS_ROW = 086 

  SCENE_CENTER_LAT = -37.4731075  

  SCENE_CENTER_LON = +175.2592714   

  SCENE_UL_CORNER_LAT = -36.5134161  

  SCENE_UL_CORNER_LON = +174.4736667  

  SCENE_UR_CORNER_LAT = -36.8110680   

  SCENE_UR_CORNER_LON = +176.5274733 

  SCENE_LL_CORNER_LAT = -38.1205396 

  SCENE_LL_CORNER_LON = +173.9693910 

  SCENE_LR_CORNER_LAT = -38.4279278  

  SCENE_LR_CORNER_LON = +176.0645821 

  SCENE_UL_CORNER_MAPX = 273771.000 

  SCENE_UL_CORNER_MAPY = -4043865.000 

  SCENE_UR_CORNER_MAPX = 457852.500  

  SCENE_UR_CORNER_MAPY = -4074018.000 

  SCENE_LL_CORNER_MAPX = 234327.000 

  SCENE_LL_CORNER_MAPY = -4223529.000 

  SCENE_LR_CORNER_MAPX = 418351.500 

  SCENE_LR_CORNER_MAPY = -4253710.500 

  BAND1_FILE_NAME = "p073r086_7t20020827_z60_nn10.tif" 

  BAND2_FILE_NAME = "p073r086_7t20020827_z60_nn20.tif" 

  BAND3_FILE_NAME = "p073r086_7t20020827_z60_nn30.tif" 

  BAND4_FILE_NAME = "p073r086_7t20020827_z60_nn40.tif" 

  BAND5_FILE_NAME = "p073r086_7t20020827_z60_nn50.tif" 

  BAND61_FILE_NAME = "p073r086_7k20020827_z60_nn61.tif" 

  BAND62_FILE_NAME = "p073r086_7k20020827_z60_nn62.tif" 

  BAND7_FILE_NAME = "p073r086_7t20020827_z60_nn70.tif" 

  BAND8_FILE_NAME = "p073r086_7p20020827_z60_nn80.tif" 

  GROUP = PROJECTION_PARAMETERS  

   REFERENCE_DATUM = "WGS84"  

   REFERENCE_ELLIPSOID = "WGS84"  

   GRID_CELL_ORIGIN = "Center" 

   UL_GRID_LINE_NUMBER = 1 

   UL_GRID_SAMPLE_NUMBER = 1 

   GRID_INCREMENT_UNIT = "Meters" 

   GRID_CELL_SIZE_PAN = 14.250            

   GRID_CELL_SIZE_THM = 57.000            

   GRID_CELL_SIZE_REF = 28.500      

   FALSE_NORTHING = 0       

   ORIENTATION = "NUP" 

   RESAMPLING_OPTION = "NN" 

   MAP_PROJECTION = "UTM" 

  END_GROUP = PROJECTION_PARAMETERS  

  GROUP = UTM_PARAMETERS  

   ZONE_NUMBER = +60 

  END_GROUP = UTM_PARAMETERS  

  SUN_AZIMUTH = 43.5917631 

  SUN_ELEVATION = 31.5468078 

  QA_PERCENT_MISSING_DATA = 0 

  CLOUD_COVER = 0 

  PRODUCT_SAMPLES_PAN = 17490 

  PRODUCT_LINES_PAN = 15426 

  PRODUCT_SAMPLES_REF = 8745 

  PRODUCT_LINES_REF = 7713 

  PRODUCT_SAMPLES_THM = 4373 

  PRODUCT_LINES_THM = 3857 
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  OUTPUT_FORMAT = "GEOTIFF" 

 END_GROUP = ORTHO_PRODUCT_METADATA 

 GROUP = L1G_PRODUCT_METADATA 

  BAND_COMBINATION = "123456678" 

  CPF_FILE_NAME = "L7CPF20020701_20020930_04" 

  GROUP = MIN_MAX_RADIANCE  

   LMAX_BAND1 = 191.600            

   LMIN_BAND1 = -6.200           

   LMAX_BAND2 = 196.500           

   LMIN_BAND2 = -6.400            

   LMAX_BAND3 = 152.900           

   LMIN_BAND3 = -5.000           

   LMAX_BAND4 = 157.400           

   LMIN_BAND4 = -5.100           

   LMAX_BAND5 = 31.060            

   LMIN_BAND5 = -1.000          

   LMAX_BAND61 = 17.040            

   LMIN_BAND61 = 0.000            

   LMAX_BAND62 = 12.650            

   LMIN_BAND62 = 3.200            

   LMAX_BAND7 = 10.800            

   LMIN_BAND7 = -0.350          

   LMAX_BAND8 = 243.100          

   LMIN_BAND8 = -4.700           

  END_GROUP = MIN_MAX_RADIANCE  

  GROUP = MIN_MAX_PIXEL_VALUE  

   QCALMAX_BAND1 = 255.0             

   QCALMIN_BAND1 = 1.0              

   QCALMAX_BAND2 = 255.0             

   QCALMIN_BAND2 = 1.0                

   QCALMAX_BAND3 = 255.0               

   QCALMIN_BAND3 = 1.0             

   QCALMAX_BAND4 = 255.0               

   QCALMIN_BAND4 = 1.0            

   QCALMAX_BAND5 = 255.0              

   QCALMIN_BAND5 = 1.0            

   QCALMAX_BAND61 = 255.0              

   QCALMIN_BAND61 = 1.0             

   QCALMAX_BAND62 = 255.0               

   QCALMIN_BAND62 = 1.0             

   QCALMAX_BAND7 = 255.0              

   QCALMIN_BAND7 = 1.0            

   QCALMAX_BAND8 = 255.0              

   QCALMIN_BAND8 = 1.0             

  END_GROUP = MIN_MAX_PIXEL_VALUE  

  GROUP = PRODUCT_PARAMETERS  

   CORRECTION_METHOD_GAIN_BAND1 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND2 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND3 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND4 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND5 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND61 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND62 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND7 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND8 = "CPF" 

   CORRECTION_METHOD_BIAS = "IC" 

   BAND1_GAIN = "H" 

   BAND2_GAIN = "H" 

   BAND3_GAIN = "H" 

   BAND4_GAIN = "H" 

   BAND5_GAIN = "H" 

   BAND6_GAIN1 = "L" 
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   BAND6_GAIN2 = "H" 

   BAND7_GAIN = "H" 

   BAND8_GAIN = "L" 

   BAND1_GAIN_CHANGE = "0" 

   BAND2_GAIN_CHANGE = "0" 

   BAND3_GAIN_CHANGE = "0" 

   BAND4_GAIN_CHANGE = "0" 

   BAND5_GAIN_CHANGE = "0" 

   BAND6_GAIN_CHANGE1 = "0" 

   BAND6_GAIN_CHANGE2 = "0" 

   BAND7_GAIN_CHANGE = "0" 

   BAND8_GAIN_CHANGE = "0" 

   BAND1_SL_GAIN_CHANGE = "0" 

   BAND2_SL_GAIN_CHANGE = "0" 

   BAND3_SL_GAIN_CHANGE = "0" 

   BAND4_SL_GAIN_CHANGE = "0" 

   BAND5_SL_GAIN_CHANGE = "0" 

   BAND6_SL_GAIN_CHANGE1 = "0" 

   BAND6_SL_GAIN_CHANGE2 = "0" 

   BAND7_SL_GAIN_CHANGE = "0" 

   BAND8_SL_GAIN_CHANGE = "0" 

  END_GROUP = PRODUCT_PARAMETERS  

  GROUP = CORRECTIONS_APPLIED  

   STRIPING_BAND1 = "NONE" 

   STRIPING_BAND2 = "NONE" 

   STRIPING_BAND3 = "NONE" 

   STRIPING_BAND4 = "NONE" 

   STRIPING_BAND5 = "NONE" 

   STRIPING_BAND61 = "NONE" 

   STRIPING_BAND62 = "NONE" 

   STRIPING_BAND7 = "NONE" 

   STRIPING_BAND8 = "NONE" 

   BANDING = "N" 

   COHERENT_NOISE = "N" 

   MEMORY_EFFECT = "N" 

   SCAN_CORRELATED_SHIFT = "N" 

   INOPERABLE_DETECTORS = "N" 

   DROPPED_LINES = N 

  END_GROUP = CORRECTIONS_APPLIED  

 END_GROUP = L1G_PRODUCT_METADATA  

END_GROUP = METADATA_FILE 

END
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Appendix 4 - Environment Waikato sample analysis methods 

and data 

 

 

Code Name Units Description 

CHLA Chlorophyll A g/m³ 
Acetone extraction. Spectroscopy. APHA 
10200 H. 

Cond     Conductivity - Lab Meter 
mS/m 
@25"C 

Measured in lab by meter @ 25"C. APHA 
Method 2510B 

Depth Depth - From Water Surface m 
Distance from water surface to 
measurement or sampling point 

DRP      Dissolved Reactive Phosphorus g/m³-P 

Filtered sample. Molybdenum blue 
colorimetry. Discrete analyser. APHA 4500-
P E (modified for manual analysis). 

NH4      Ammoniacal Nitrogen g/m³-N 

Filtered Sample. Colorimetry, 
Phenolhypochlorite. Discrete Analyser. 
APHA Method 4500-NH3 F (modified from 
manual analysis) (NH4-N = NH4-N + NH3-
N). 

NNN      Nitrate+Nitrite Nitrogen FIA g/m³-N 

Total Oxidised Nitrogen. Automated 
cadmium reduction, flow injection analyser. 
APHA 4500 NO3 I (proposed). NO2 plus 
NO3. 

pH       pH - Lab Meter pH 
Measured in lab by meter. APHA Method 
4500-H+ B. 

SchiDisk Secchi Disk m 
Visibility of standard disc 

SSDirect Suspended Solids - direct samp g/m³ 
Sampled directly, dried at 104c APHA 
Method 2540D 

TKN      Total Kjeldahl Nitrogen g/m³-N 

Sulphuric Acid digestion with copper 
sulphate catalyst, phenol/hypochlorite 
colorimetry  (discrete analyser). APHA 
4500-Norg C (modified), 4500-NH3 F. 

TotDepth Depth - Total Water Depth m 
Total depth of water body 

TP       Total Phosphorus g/m³-P 

Acid Persulphate digestion, ascorbic acid 
colorimetry.  Discrete analyser. APHA 
4500-P E (modified from manual analysis). 

Turb-N Turbidity - HACH 2100N NTU 
Nephelometry. Hach 2100N meter. APHA 
Method 2130B 

VSS Volatile Suspended Solids g/m³ 
GF/C filtration, ashed @ 550"C. APHA 
2540 G. 
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 Full Name Date Chl a Cond DRP NH4 NNN pH TSS TKN TP Turb-N VSS Secchi  

Lake Ngaroto 28/03/2000 13:55 0.106 19.4 0.006 0.02 0.004 8.1 21 1.80 0.109 20.0 9  

Lake Rotokauri 28/03/2000 15:50 0.224 14.7 < 0.004 0.02 0.004 9.4 30 3.08 0.152 54.3 23  

Lake Rotomanuka 28/03/2000 10:40 0.009 18.0 0.005 < 0.01 < 0.002 7.5 2 0.73 0.037 2.93 3  

Rotomanuka Lake Gin 28/03/2000 12:00 0.431 22.3 0.010 < 0.01 0.006 7.3 33 2.93 0.210 24.6 29  

Lake Waahi 29/03/2000 10:50 0.008 41.6 < 0.004 0.01 < 0.002 8.1 13 0.68 0.039 9.70 5  

Lake Waahi Weavers Basin 29/03/2000 11:10 0.013 41.4 < 0.004 < 0.01 < 0.002 8.2 11 0.67 0.023 7.73 6  

Lake Waikare 29/03/2000 13:10 < 0.02 18.3 0.011 0.01 0.004 7.6 309 1.60 0.396 362 41  

Lake Waikare Flood Control Gates 29/03/2000 12:20       344   399   

Lake Serpentine North 27/08/2002 15:35 0.021 15.8 0.005 0.01 0.018 7.1 2 0.98 0.026 1.77 2 1.60 

Lake Maratoto Center 27/08/2002 11:05 0.008 15.2 0.005 0.12 0.274 5.1 2 1.18 0.031 1.64 2 0.95 

Lake Rotomanuka 27/08/2002 13:50 0.023 17.0 0.004 0.10 0.211 7.4 6 0.86 0.026 2.91 3 1.63 

Lake Waahi Weavers Basin 28/08/2002 11:15 0.034 24.8 < 0.004 0.01 0.196 7.6 15 0.67 0.041 8.29 6 0.50 

Lake Waahi 28/08/2002 10:30 0.026 26.3 0.004 < 0.01 0.221 7.8 17 0.72 0.034 11.7 5 0.38 

Lake Waikare 28/08/2002 15:50 0.133 14.4 0.004 0.03 0.007 7.5 219 2.29 0.475 198.0 48 0.10 

Lake Waikare Flood Control Gates 28/08/2002 15:15       227   217.0   


