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ABSTRACT 
The relaxation of a two-dimensional "X-type" neutral point magnetic field disturbed from equilibrium is 

considered. Perturbations are shown to possess well-defined azimuthal modes which allow an exact determi­
nation of the magnetic annihilation rate. Free magnetic energy is dissipated by oscillatory reconnection which 
couples resistive diffusion at the neutral point to global advection of the outer field. The decay of azimuthally 
symmetric (m = 0) modes-the only modes associated with topological reconnection-is limited by the dissi­
pation time scale of the "fundamental" (n = 0) mode with no radial nodes. This mode decays over typically 
100 Alfven times. An analytic treatment shows that the oscillation and decay time scales couple according to 
'osc � 2 lnS and 'decay

� '�
sc/(2n2 ), where S is the Lundquist number (4n/c2 )vA R/r, and the times are in units of 

R/vA, with R the distance from the neutral point to the boundary, vA the Alfven speed at the boundary, and r, 
the resistivity. 
Subject headings: hydromagnetics - stars: flare - stars: magnetic - Sun: activity - Sun: corona -

Sun: flares 

1. INTRODUCTION 

The exotic properties of X-type neutral points have played a 
central role in the development of solar flare theory as well as 
in theories of coronal heating (e.g., Parker 1979). A key issue is 
the rate of magnetic field annihilation in the vicinity of the 
neutral point: can energy be released fast enough to account, 
for example, for the explosive phase of the solar flare? Early 
studies of the merging of antiparallel magnetic fields showed 
that pure resistive diffusion is much too slow (Sweet 1958; 
Parker 1963). However, Petschek (1964), in his celebrated 
paper, argued that magnetic energy can be released at a signifi­
cant fraction of the Alfven speed provided account is taken of 
the "advection region" surrounding the neutral point. The 
semiquantitative Petschek solution has attracted much critical 
debate over the years (e.g., Vasylunias 1975), but the physical 
viability of the underlying mechanism seems secure. To date, most discussions of magnetic merging have fol­
lowed the steady state approach adopted by early workers (see 
Forbes & Priest 1987). Apart from the lack of dynamical com­
pleteness, a central difficulty with this approach is matching 
the large-scale advection of the global field to the highly 
localized-and approximately treated--diffusion region sur­
rounding the neutral point. The purpose of this Letter is to 
present a formally exact analytic solution for the time­
dependent relaxation of a perturbed magnetic field toward an 
X-type potential field. For small departures from equilibrium, 
the problem can be reduced to that of determining the radial 
dependence of a scalar flux function. The construction of a set 
of eigenfunctions of the linearized magnetohydrodynamic 
equations then allows an exact determination of the magnetic 
annihilation rate. We concentrate here on the purely radial 
m = 0 modes which correspond to topological reconnection. 
The "fundamental" mode with no radial nodes (n = 0) decays 
most slowly: to high accuracy, its decay time is given by 
'decay 

� (2/n2 )(ln S)2 in units of the Alfven time scale of the 
L41 

advection region, where S is the Lundquist number determined 
by the magnetic field strength at the boundary. The decay time 
is that associated with fast reconnection-typically about 100 
Alfven times in the solar corona. 

The general problem is formulated in § 2, and solutions are 
presented in § 3. Section 4 provides a summary of our findings. 
A full exposition of the analysis summarized in this Letter will 
be communicated in subsequent publications (e.g., Craig & 
Watson 1991). 

2. ANALYSIS 

2.1. Background and Assumptions 

We consider the relaxation of a magnetic field perturbed 
from an X-point potential field. Our analysis is performed in 
plane cylindrical coordinates, the field lines being coplanar (no 
Bz component) and anchored to a circular radial boundary. 
We neglect gas pressure, ignore viscosity, and assume constant 
resistivity in a uniform density background plasma. 

Figure 1 shows a typical solution of the linearized X-point 
problem. The sequence of images shows field lines undergoing 
oscillatory reconnection, with each row constituting an oscil­
lation cycle. After three cycles, the field has relaxed from its 
initial stressed state to very close to a potential field. 

2.2. Formulation of the Equations 

The equilibrium potential field B
E can be written in cylin­

drical polars as 
B

E = r(sin 2</>r + cos 2¢4>) , (2.1) 

where we have scaled the radius and field strength in units of 
the coronal length R and the magnetic field strength B0 at the 
boundary, r = 1, at which we take the field lines to be held 
fixed. We interpret R as the size of a typical coronal magnetic 
structure. 
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FIG. 1.-Evolution of field lines in the "fundamental" (m = 0, n = 0) mode 

for r, = 10- 3
, obtained by numerical solution of the eigenequation (2.6). The 

number above each plot, wt/2x, gives the phase of the oscillation; three com­
plete cycles are shown, during which the amplitude of the perturbation 
decreases by a factor of around 60. Note that during the oscillation the field 
lines reconnect as they pass through the origin, so resistivity is essential to this 
mode. The initial vertical "current sheet" begins reconnecting, and the inertia 
of the flowing plasma carries the system past the equilibrium configuration, till 
a (weaker) horizontal "current sheet" is formed at phase=!- A much weaker 
vertical "current sheet" returns at the end of the first cycle. After three cycles, 
the system is very close to its equilibrium neutral point configuration. 

The problem is much simplified by working with the vector 
potential, or flux function, lj,(r, <f,), where B = V x (lj,z). The 
equilibrium flux function has the form lj, E = -ir2 cos 2<f,. The 
evolution of lj, is governed by the induction equation 

DI/I = 17V2 ,,, 
Dt "'' (2.2) 

where D/Dt = iJ/iJt + " · V is the Lagrangian time derivative, 
we have scaled time in units of R/vA, VA

= Bo/(4np) 112 is the 
Alfven speed at the boundary, and the dimensionless resistivity 
17 is simply the inverse Lundquist number (loosely, the inverse 
magnetic Reynolds number) at the boundary. 

In the case of zero diffusion, the magnetic potential is 
advected with the flow and the field topology cannot change. 
However, finite resistivity allows field line reconnections that 
induce fundamental changes in the field topology. The diffu­
sion term is typically very small [17 � 0(10- 14) for solar 
coronal conditions], but it always dominates in the region of 
the neutral point. Accordingly, the diffusion region, no matter 
how localized, is central to the evolution of the global 
topology. 

The dynamics of the problem are determined by the momen­
tum equation, which we write in dimensionless form as 

�; = -V21j,Vlj, . (2.3) 
The right-hand side is the Lorentz force j x B, j = - V21j, z 
being the dimensionless current density. 

2.3. The Linearized System 
We linearize equations (2.2) and (2.3) and combine them into 

a single differential equation for lj,. The result is 
ti, - 11V2t/J = I VI/IE 1

2
v

2,J, , (2.4) 
where lj, now denotes a.first-order perturbation on the flux func-

tion lj,E, and we have used dots for time derivatives. To analyze 
equation (2.4) we assume separation of variables and write 

lj,(r, <f,, t) = e'"'f (r)eim <P • 

The eigenequation for f(r) is then 
r(rf')' = [.A.2 /(1 + 17l/r2 ) + m2] f ,  

(2.5) 

(2.6 ) 
where prime means iJ/iJr and we have used the fact that 
I Vlj,E I = I BE I = r. The decomposition in <f, is always valid­
the trigonometric functions are complete-but the r-t separa­
tion can be justified only a posteriori from the properties of the 
eigenmodes. 

On the outer boundary r = 1 we set the perturbation 
lj, = constant which "freezes in" the field, since bB, = 
(1/r)iJlj, /iJ<f, = 0. Furthermore, equation (2.4) then shows that 
V21j, vanishes on the boundary, so thej x B force and therefore 
also the velocity vanishes. Thus we study a closed system, with 
no magnetic flux or plasma entering or leaving the volume. 
Although an arbitrary constant (indeed any curl-free function) 
can be added to lj, in equation (2.4), f(l) = 0 is the only allow­
able boundary condition in equation (2.6). 

3. THE SOLUTION 

3.1. Introduction 
We first discuss the properties of equation (2.4), then point 

out the special character of the m = 0 mode, which we concen­
trate on for the remainder of this Letter. Next we mention the 
general solution for m = 0 and examine its properties for 
several specific cases. Finally, we show how analytic solutions 
for the m = 0 mode can be obtained in the asymptotic limit 
17 -+ 0 and point out that these solutions are in fact valid for all 
17 of practical interest. 

3.2. Properties of the Equation 
Equation (2.4), the most general statement of the linearized 

problem, reveals both a diffusive and a wavelike character. 
First, consider the region close to the origin, that is r � re , 
where re is the usual skin depth 

(3.1) 

and a �  0(1) does not depend strongly on 17. Then equation 
(2.4) reduces to the diffusion equation, t/1 = 17V21j,, whose 
properties are well known and understood: in particular the 
equation possesses azimuthal modes I/Im with a Bessel function 
radial dependence, I/Im = Jm[(-l/17)112r]eim ,p. Diffusion is ulti­
mately responsible for dissipating the magnetic and kinetic 
energy in our system. 

In the advection region (r � re ), equation (2.4) reduces to the 
wave equation, if, = r2V21j,. The rate of propagation of infor­
mation is governed by the wave speed vA oc I BE I oc r which 
makes the signal travel time logarithmic in r. Thus a dis­
turbance on the outer boundary propagates into the diffusion 
region r < re in a time & � I ln re I � t I ln 17 I. This fundamental 
dependence determines the time scale for the oscillatory relax­
ation we find to be a universal feature of the solution. 

3.3. Reconnection and the m = 0 Modes 
It is important to understand that m = 0 perturbations are 

the only modes which allow topological reconnection. Field line 
reconnection is synonymous with dissipation of current at 
the neutral point. Close to the neutral point (r � re ), the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1991ApJ...371L..41C


1
9
9
1
A
p
J
.
.
.
3
7
1
L
.
.
4
1
C

No. 1, 1991 DYNAMIC MAGNETIC RECONNECTION L43 

radial dependence of the current jz = -V2t/l is given by 
Jm[(-l/11)1 '2 r]. The only Bessel function which is nonzero at 
the origin is J0(x) so them = 0 modes alone can reconnect field 
lines. The higher m modes are nontopological in that they 
dissipate current in the outer field but not at the origin. More 
generally, in contradistinction to the m = 0 modes, higher m 
disturbances can decay by nonresistive means, such as 
damping of fluid motions by finite viscosity. 

In view of their special significance, we henceforth consider 
only the m = 0 modes. On physical grounds we expect the 
m = 0 decay rate to be limited by the disturbance of longest 
radial wavelength, i. e., the "fundamental" (n = 0) mode with 
zero nodes in the radial direction. 

3. 4. The General Solution for m = 0 
Although equation (2. 6) must be integrated numerically in 

general, for m = 0 it reduces to a hypergeometric equation 
(Hassam 1990). This formally confirms the existence and 
uniqueness of the m = 0 solution and provides an independent 
check on the computed reconnective modes. 

Figure 2 shows the first few radial eigenfunctions and eigen­
values for m = 0 and '1 = 10- 3, a relatively large resistivity 
chosen to render certain features of the solution more appar­
ent. The wavelike character of the solution in the advection 
region is evident; these waves propagate into the diffusion 
region where they are absorbed. As expected, the interface 
between the diffusion and advection regions (the point at 
which t/1 begins dropping from its central plateau) occurs at 
re :::::: '1 1 /2 = 10-1.s. 

For the m = 0 mode, there is no perturbation on the radial 
component of the field. The perturbation on the azimuthal field 
is given by bB,; = -iJtfJ/iJr. The effect of superposing this per­
turbation on the equilibrium field is illustrated in Figure 1, 
discussed earlier. 

3. 5. Time Scales and Their Dependence on S 
A key issue is the reconnection rate and its dependence on 

resistivity. Figure 3 shows the oscillation period and decay 
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FIG. 3.-Plot of the decay time 1/Re {J.) and oscillation period 21t/Im {J.) 
against Jog10 S {on a log-log plot) where S = 1/r, is the Lundquist number. The 
points indicate results from numerical solutions of eq. {2.6), while the lines 
represent the analytic results {3.6) and {3.8). For Lundquist numbers of less 
than 1()" {r, > 10-4), the perturbation decays in Jess than one oscillation. For 
S � 1014 {a plausible coronal value), the oscillation period is around 60 Alfven 
times, and the perturbation decays in about three oscillations. 

time for the slowest decaying m = 0 mode as a function of the 
Lundquist number S . Points indicate numerical solutions, 
while the straight lines denote the analytic solutions derived 
below. The oscillation period grows nearly linearly with log S , 
while the decay time is approximately quadratic in log S . For 
S � 104 , the decay time is shorter than the oscillation period, 
so the oscillation is heavily damped. 

3.6. Analytic Solutions 
We now show that the form of the eigenfunctions and the 

essential time scales can be derived by simple analytic argu­
ments which both reinforce and describe the numerical results 
obtained above. To do this we assume that the diffusion region 
can be represented as a boundary layer of thickness r0 as 
defined in equation (3. 1) with the scaling parameter a of order 
unity. 
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FIG. 2.-Real (solid line) and imaginary (dashed line) parts of the eigenfunctions for r, = 10- 3
, m = 0, and n = 0, 1, 2, 3, where m and n are the number of azimuthal 

and radial nodes respectively. 
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Written expl icitl y in terms of real and imaginary parts, with 

A. = - IX + iw ; f (r) = fir) + iti(r) , (3. 2) 

equation (2.4) becomes 

[[(w2 - IX2 ) + (r2 - '71X)V2 ] 
+ w[21X + 17V2 ] 

For m =  0, appropriate boundary conditions arefiO) = 1 and 
fi{O) = fil} = fr{l} = 0. 

Now, if 17 is reduced, the diffusion region contracts and the 
wave domain extends inward toward the origin. For smal l 
enough 17, the probl em becomes advection-dominated, and we 
are l ed to seek standing wave solutions with imaginary eigen­
values but real eigenfunctions. Thus, as a zeroth order approx­
imation we attempt a solution with IX = ti = 0. Then in the 
wave domain 

(w2 
+ r2 V2 }fR = 0 => fR = sin (w In r) r � re . (3. 4) 

This solution may be matched at re to the simpl est boundary 
layer solution that satisfies the inner boundary condition, i. e. , 
fR = 1, to yiel d 

!wl n17 � -(n + !)n, (3.5) 
where n is the number of radial nodes and we have assumed 
17 � a. Therefore the oscil l ation frequency of the fundamental 
mode, n = 0, is given by w � n/ I In '71, or 

t
080 

� 2 l nS . (3. 6) 

To determine the damping rate cl earl y requires an inner 
approximation that maintains more structure, and finite 
current, in the boundary l ayer. Retaining smal l but finite IX and 

ti in the above equations l eaves the outer solution unchanged 
but gives 

(IX + 17V2)JR � 0 => JR = J 0[(1X/'7) 112r] r ::5 re (3.7) 

as a better boundary l ayer approximation. This sol ution al l ows 
us to match the currents in the inner and outer regions at 
r = re , with the result IX = (w/a)2 • The fact that this rel ationship 
agrees wel l with the numerical resul ts of Figure 3 confirms that 
the matching radius re scales as expected. Apparently, the 

numerical resul ts are wel l described by the retrospective choice 
a = 2112 , or re = (217)112 . This gives 

2 
2 

tdecay � 2 (l nS ) , 
7t 

in excel l ent agreement with the numerical resul ts as 17 -+ 0. 

4. CONCLUSIONS 

(3. 8) 

We have shown that the rel axation of a perturbed X-type 
neutral point magnetic fiel d can be reduced to an eigenval ue 
problem in which the advection and diffusion regions are 
treated exactl y. It is al so possibl e to construct approximate 
analytic sol utions by matching inner and outer sol utions at the 
interface between the diffusion and advection regions. These 
sol utions are asymptotical l y  exact for smal l 17 but remain quite 
accurate for 17 as large as 0(10-3), and so suffice for the 
decription of virtual l y  every pl asma of astrophysical interest. 

We have emphasized that onl y the m =  0 azimuthal modes 
correspond to topological reconnection; all other modes are 
current-free in the vicinity of the neutral point. The reconnec­
tion process is oscillatory: inertial overshoot of the plasma 
carries more flux through the neutral point than is required for 
static equil ibrium. 

The reconnection rate scal es as (l n17}2 , so the reconnection is 
"fast," as opposed to the "slow" reconnection which depends 
on a power of 17. Thus "fast" relaxation need not be contin­
uousl y "driven" as in steady state model s but occurs naturall y 
as a result of diffusive-advective coupl ing even for smal l dis­
turbances. The free magnetic energy is dissipated in typicall y 
100 Al fven times, based on the Alfven speed at the boundary, 
during which time the pl asma undergoes several oscil l ations 
through the neutral point. By virtue of our cl osed outer bound­
ary which reflects waves, al l the free energy is converted into 
heat. 

For typical sol ar parameters, the dissipation time scal e is of 
order several minutes to an hour. This is sufficiently rapid to 
account for thermal energy rel ease in the gradual phase of a 
flare but coul d be too slow to explain the impul sive phase time 
scale. However, the time scal e is short enough to ensure that 
long-lived current sheets cannot exist in the corona; therefore, 
the corona shoul d be substantial ly force-free. 
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