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Abstract 
Nowadays, due to the advantages inherent in using renewable energy, renewable 

power generation is becoming established worldwide. Direct current (DC) microgrid 

systems, which have been proposed as alternatives for traditional alternating current 

(AC) networks, enable the introduction of a large amount of solar energy by using 

distributed photovoltaic generation units. Meanwhile, small-scale DC microgrid 

systems designed at the household level are also viable options used to harness 

renewable energy (like solar energy) and have broad development prospects. 

One of the ‘hot topics’ in the field of renewable energies is how to make efficient use 

of this type of energy. In this thesis, a high-efficiency DC microgrid system with 

supercapacitor (SC)-assisted power converter is introduced as a way to harness solar 

energy to run a 12 V, 50 W household lighting system. 

Supercapacitor-assisted low dropout regulator (SCALDO) techniques were used to 

build an SC-assisted converter for a DC microgrid system. Supercapacitors in the DC 

microgrid acted as voltage droppers to convert 24 V solar panel’s output to 11 V – 13 

V. Supercapacitors were also used as energy storage devices, and performed as a 

power source to run the household lighting system for a period of time after a 

sudden mains power outage. 

Real weather condition data, including local Hamilton illuminance values, were 

required to design this system. These data were measured at the University of 

Waikato. They were converted into irradiance data and were used to create similar 

patterns for simulation. Prototype circuit of the complete DC microgrid system, with 

an SC-assisted converter was also developed and shown at the end of the thesis. 
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1.1 Introduction 

Today, mains electrical systems provide alternating current (AC) power to our 

electrical devices. However, with the increasing popularity of renewable 

technologies, such as wind power, fuel cells and solar photovoltaics (PVs), direct 

current (DC) microgrids at a household level could be a more efficient alternative. 

The surplus energy generated by these DC generators could also be fed back to AC 

mains, which could help to reduce electricity costs as well. 

One of the ‘hot topics’ currently being discussed about DC microgrids is how to make 

good use of this unregulated power, which is generated by DC generators. Two types 

of DC-to-DC converter are suitable for a DC microgrid: DC-to-DC converters with 

isolation or without isolation. The non-isolated converter does not use a transformer. 

Without the transformer, the overall size of the converter can be reduced by 

removing this bulky component. Also, a significant amount of energy wastage from 

having a transformer can also be minimised. 

In modern electronics, the following three basic approaches are available for DC-to–

DC conversion [1]: 

 

 linear regulators, 

 switched-mode converters, and 

 charge pumps. 

 

In linear regulators, a power semiconductor device is used as a voltage dropper in 

the series path between the unregulated DC input and the regulated output [1]. It 

has very low noise output, with fast transient response to sudden changes in load 

current. However, the voltage drop on the voltage dropper can be very high, and this 

leads to a very low efficiency (30%–60%) [1]. Switched-mode converters use 

inductors and capacitors as energy storage devices to convert one DC voltage to 

another, with a theoretical 100% efficiency. The switches of this converter operate at 

a high frequency, which causes electrical noise problems if not carefully suppressed. 

Charge pumps have their own problems: they have a low current capability, typically 

limited to few hundred mA only [1]. 

Because of the disadvantages inherent in these three commercially available DC-to-

DC converters, there are still opportunities to develop novel DC-to-DC converters. 

Therefore, my aim in the current dissertation was to design a converter that was not 

only highly efficient but that also had a high current capability and low electrical 

noise. 
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1.2 Objectives 

In this dissertation project, a low electrical noise, high current capability and high 

efficiency DC-to-DC converter was designed and implemented using supercapacitors 

(SCs) and metal-oxide semiconductor field effect transistors (MOSFETs). The SC-

assisted low dropout regulator (SCALDO) was one of the main technologies used to 

design this converter. This design required an SC or an SC array as a voltage dropper. 

A low dropout regulator (LDO) was followed and placed in series with the SC. Since 

the capacitance is large (of the order of farads [F]), the SC can pass current for a 

period of time when it is being charged. Therefore, a switching circuit with MOSFET 

switches was used to discharge the SC to deliver energy to loads via LDO after the SC 

was charged to a certain level. 

As mentioned in detail in Chapter 4, Section 4.1.1, there is a non-negligible amount 

of energy wasted in the loop resistance when charging a capacitor in a simple 

resistor–capacitor (RC) circuit. The efficiency of this RC circuit is just 50 % in case that 

the capacitor is fully discharged before charging, which means half of the total 

energy delivered from a power supply is wasted in the loop. However, if a resistive 

load is connected in series into the loop, this large amount of wasted energy is 

mostly used by the resistive load. By applying this simple principle, it is possible to 

improve system efficiency. 

In a DC microgrid system, solar panels are commonly used as a DC power supply. In 

the present research, the main purpose was to design a converter and a related 

circuit for a DC microgrid that used a solar panel as a power supply and that could be 

used to power a 12 V household light-emitting diode (LED) system (10 LED lamps, 5 

W each). Therefore, how to extract the maximum power from a solar panel was 

another problem that required solving in the current dissertation project, because 

output current increases while output voltage drops.  

Therefore, the overall objectives of the design were as follows. 

 

 Understand a technology to ascertain the maximum power that a solar panel 

can provide. 

 Collect Hamilton region illuminance and irradiance data to create similar 

patterns for a photovoltaic (PV) simulator (with prior knowledge of regional 

illuminance and irradiance patterns, experiments can be performed at any 

time and at any place, and the experiments will not be influenced by outdoor 

weather conditions). 

 Develop a converter with a switching circuit to run a 12 V household lighting 

system powered by 20 V (or higher) solar panels. 

 Estimate the efficiency of this DC microgrid system. 
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1.3 Dissertation Outline 

This dissertation is divided into six chapters. 

Chapter 1 provides a summary of the entire dissertation, including the reasons why I 

chose to undertake this project, the overall objectives of the design and a brief 

description of each of the following five chapters. 

Chapter 2 is a general overview of the components, applications and technologies 

that are a part of a DC microgrid. In this chapter, I aim to provide a general 

understanding of today’s status quo for DC microgrids, DC generators and DC 

appliances. Since AC electrical systems already exist, I also explore the reasons why 

further development of the DC microgrid is important. In this chapter, three types of 

DC-to-DC converters were compared in terms of the technologies used and their 

advantages and disadvantages. Two types are commonly used today, while the third 

one (an SC-assisted converter) is not commonly used but has broad development 

prospects. Finally, the last section provides a brief analysis of LED lamps. Knowing 

LED lamp characteristics helps the inventor build a better DC microgrid system with 

LED loads. 

Chapter 3 is broadly divided into three parts. In the first sections, I explore Waikato 

region weather and explain field measurements of illuminance. The field 

measurements were done at the C block of the University of Waikato (UoW). The 

UoW is located in Hamilton, a city in the middle of the North island of New Zealand. 

Hamilton’s weather changes frequently. By collecting and analysing Hamilton 

weather data over time, users were able to create similar patterns of illuminance for 

testing. These patterns were therefore representative, which helped users to avoid 

bias when testing outdoors and when using solar panels to power the DC microgrid 

system in differing weather conditions. In Chapter 3, there is an explanation on how 

to convert illuminance to irradiance, because irradiance data are useful for a solar 

panel or a PV simulator, while the light meter available in the laboratory is only able 

to measure illuminance, rather than irradiance. Finally, I showcase the laboratory 

equipment (a PV simulator and its associated software) I used for generating 

simulated outputs similar to the real-time outputs of a solar panel. These sections 

begin with a brief introduction of the programmable photovoltaic simulator ETS600X, 

its main specifications and operating modes. In the following sections, I show how to 

create the irradiance profiles and photovoltaic curves (necessary for subsequent DC 

microgrid development) by coding. 

Chapter 4 contains a description of the testing of the main components (SCs and TCP 

brand LED lamps) used in the current research. I did the SC experiments to measure 

the equivalent series resistance of an SC and to ascertain its charging / discharging 
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characteristics. In Chapter 4, I also describe a test to evaluate TCP brand LED lamp 

performance and how I made the lamps work normally. 

Chapter 5 deals with the design and the implementation of the DC-to-DC converter, 

which was based on two SC banks. This chapter is broadly divided into three sections. 

In the first section, the design and operation of a control circuit were described. This 

circuit was further divided into a sample circuit and a driver circuit for MOSFET 

switches. In the second part of the chapter, I explain the design and implementation 

of a switch circuit. This part also shows switching routines and how decisions are 

made by a microcontroller under particular situations. The last section of Chapter 5 

shows my calculations of the needed capacitance for each SC bank. Capacitance 

selection influences how long the system can remain working after a sudden power 

outage. 

Chapter 6 focuses on research results, main findings and a discussion of the findings 

in relation to my research objectives. Some recommendations are given for 

improving system performance and provide a conclusion about how fit-for-purpose 

the DC microgrid actually is. There is also a discussion about the possible future 

developments of this type of DC-to-DC converter in order to adjust the converter to 

power large appliances (loads), such as whiteware. 
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2.1 The DC microgrid 

A DC microgrid (Figure 2.1) is a localised power system. It consists of distributed DC 

generation assets (e.g., wind turbines, solar panels or fuel cells), energy storage 

devices (e.g., batteries, SCs or superconducting magnetic energy storage), loads (e.g., 

appliances, computers or lighting) and smart distribution technologies that 

interoperate through controls and software-based intelligence systems [2]. 

 

 

Figure 2.1: Topology of a DC microgrid [3]. 

 

2.2 DC Generators 

The DC generator is a machine that converts mechanical, solar, wind or other forms 

of energy into electrical energy. This type of generator provides DC power to the 

loads. The most popular DC generators available now are fuel cells, wind turbines 

and solar panels. 

 

2.2.1 Fuel Cells 

Like a battery, a fuel cell generates electricity from an electrochemical reaction. Both 

of them convert chemical energy into electrical energy. This process also generates 

heat as a by-product. However, a battery holds a closed store of energy within it. 

Once the energy is depleted, the battery must be discarded or recharged by using an 
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external power supply to drive the electrochemical reaction in the reverse direction. 

On the other hand, a fuel cell uses an external supply of chemical energy and can run 

as long as it is supplied with enough fuel. 

There are many types of fuel cell, but they are all based on a similar design. A fuel 

cell is made up of many cell units. Each unit consists of a stack, which is composed of 

a number of individual cells. Each cell has two electrodes: the cathode and the anode. 

One is positive and the other is negative. The chemical reactions producing 

electricity take place at the electrodes. Figure 2.2 below illustrates how a typical fuel 

cell (a hydrogen fuel cell) works. Every fuel cell has either a liquid or a solid 

electrolyte as well as a catalyst. The catalyst accelerates the reactions at the 

electrodes, while the electrolyte carries ions from one electrode to the other. The 

electrolyte used must permit only the appropriate ions to pass between the 

electrodes. If free electrons or other substances pass through the electrolyte, they 

may cause negative impacts on chemical reactions and may lower the efficiency of 

the cell. 

 

Figure 2.2: How a hydrogen fuel cell works [4]. 

 

Fuel cells are generally classified according to the type of the electrolyte used. Each 

type of fuel cell requires a particular fuel and materials. Each kind of fuel cell also has 

its own characteristics, offering advantages in particular applications. Figure 2.3 

shows one of the typical fuel cells available today (a solid oxide fuel cell [SOFC]). 
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Figure 2.3: A solid oxide fuel cell (SOFC) [5].  

 

However, fuel cells that use non-renewable fuel (e.g., natural gas) are not clean. To 

make fuel cells cleaner, natural gas can be replaced by biofuels. Unfortunately, 

biofuels are still not a viable technology — they are expensive to produce and store. 

In order to be fully deployable, biofuel sources have to be near customer-rich cities, 

which limits biofuels to places in some countries that have very high population 

density, such as cities in China, Japan and India. In addition, the hydrogen necessary 

for running hydrogen fuel cells is difficult to generate, handle and store; it requires 

heavy and bulky tanks like those used for compressed natural gas. 

 

2.2.2 Wind Turbines 

Wind energy is a source of renewable energy that comes from air currents flowing 

across the Earth's surface. Wind turbines (Figure 2.4) harvest this kinetic energy and 

convert it into usable energy, which can provide electricity. 



  Chapter 2: Background 

12 
 

 

Figure 2.4: Wind turbines [6]. 

 

Wind power is one of the fastest growing sources of energy in the world today. In 

New Zealand, wind power generates a small but rapidly growing proportion of the 

country's electricity. As of 2016, wind power accounted for 690 MW of installed 

capacity and nearly 5 % of electricity generated in the country [7]. 

The electricity produced from wind power is clean because this process does not 

produce any pollution or greenhouse gases. However, wind energy is unpredictable 

and is not constantly available because wind is not always there. Turbine noise can 

also be a problem for those people who live near the wind turbines. Therefore, 

building wind turbines in urban areas should be considered carefully in relation to 

other available options. 

 

2.2.3 Solar Panels 

Solar panels (Figure 2.5) harness the sun's energy in the form of light and convert the 

energy into electricity. The smallest unit of a solar panel is a solar cell, also called a 

PV or photovoltaic cell; it is the individual PV cell that turns sunlight into electricity. 

Individual cells arranged in a group are called a "module" or panel [8]. Each panel 

can gather between 10 W and 300 W. 
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Figure 2.5: Photo of a solar panel array [9]. 

 

The advantages of using solar power are worth noting. Obviously, solar panels give 

off no contamination. Therefore, just like wind energy, solar energy is also a clean 

energy source. In other words, once the panels are installed, they are doing almost 

nothing negative to the atmosphere. In addition, solar energy is one of the 

renewable energies. This means we can use it as long as we want while the sun is 

there, unlike fossil energies, which will expire in another few hundred years. 

 

2.2.3.1 Maximum Power Point (MPP) Tracking 

Maximum power point tracking (MPPT) is an algorithm and a method used for 

extracting maximum available power from PV modules. This algorithm is fulfilled by a 

charge controller. This controller, a high-power sampling resistor and a current 

limiter, is integrated into a maximum power point (MPP) tracker. By sampling the 

resistor, it is viable for the controller to ascertain the real-time output power. How 

long it takes to determine the MPP is dependent on how good the proportional–

integral–derivative (PID) algorithm is. The MPP tracker integrated into the AMETEK 

brand programmable PV simulator ETS600X requires 1.08 s to determine the MPP 

for a resistor. It may be longer if the load is a non-linear element. In Figure 2.6, the 

yellow dash shows the MPP under specific conditions. The procedure for tracking 

MPP begins from the time when maximum current limit is applied to the loop. 

Thereafter, this limit diminishes gradually. The process of tracking MPP is illustrated 

in Figure 2.7. 
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Figure 2.6: The maximum power point (MPP) when photovoltaic (PV) modules are exposed 

to irradiance of 1,050 W/m2. 

 

 

Figure 2.7: The process of determining a maximum power point (MPP) for a 5 Ω resistor, as 

per the AMETEK brand programmable photovoltaic (PV) simulator ETS600X. 
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Maximum power varies with solar radiation and solar cell temperature. The AMETEK 

brand PV module in the UoW laboratory produces power with maximum voltage of 

around 30 V (different types of PV module have different output voltage), when it is 

measured at a cell temperature of 25 °C. The output voltage increases while solar 

radiation increases. The voltage may drop to 27 V on a very hot day and may rise to 

around 32 V on a very cold day. Figure 2.8 illustrates irradiance and temperature 

curves on a typical sunny day. 

 

 

Figure 2.8: Irradiance versus (vs.) time and solar panel surface temperature vs. time on a 

typical sunny day. 

 

Figures 2.6–2.8 are screenshot images generated in a laboratory setting by the 

AMETEK brand programmable PV simulator ETS600 internal software [10]. An MMP 

tracker is an integral part of the AMETEK PV simulator. However, not all solar panels 

have MPP trackers. Where solar panels do not have their own MPP trackers, an 

external tracker between the solar panels and the microgrid is required. 
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2.3 DC Power Distribution 

DC power is typically distributed at extra-low voltage power systems of 12 V or 24 V, 

or at the telecommunications standard voltage of 48 V. This type of power 

distribution provides immunity to sensitive electronic equipment from harmonic 

distortions. In addition, replacing AC-to-DC converters attached to individual loads 

with more efficient, centralised inverters can decrease power consumption by 15 %, 

compared with conventional AC configurations [11]. 

DC power distributions in commercial facilities are also evolving as cost-competitive 

options due to the availability of inexpensive, highly efficient LED lamps. In addition, 

DC-powered air-conditioning or washing machine units yield greater efficiency 

compared to their AC counterparts. Modern AC-powered, efficient air-conditioning 

or washing machine units with brushless DC permanent magnet motors are driven 

by variable frequency drives. This type of drive initially converts the AC input into DC 

power, and then applies pulse-width modulation (PWM) to create the desired output 

frequency. Hence, DC-powered variable frequency drives can bypass the losses 

associated with power rectification. Similarly, variable-speed compressors with 

brushless DC motors in air conditioners offer utmost energy savings for refrigerating 

equipment. Thus, DC-powered refrigerating equipment has inherent efficiency 

advantages in the marketplace. 

In fact, the authors of a recent study [12] calculated that there was a 33 % energy 

saving for a typical residential building when conventional AC appliances were 

replaced by more efficient, DC power-driven appliances. DC power distribution is 

especially economical when a facility incorporates distributed renewable energy 

resources, such as solar PV panels, because they can supply power to the DC loads 

directly, without the double conversions involved in AC distribution systems (e.g., 

DC–AC–DC conversions) [11]. 

 

2.3.1 Different Types of DC–DC Converters and 

Techniques 

Another important item available in the DC power distribution systems is the DC–DC 

converter. These converters can be found in any DC appliance. They convert DC 

power from a given voltage to a needed level. Voltage regulator LM7805, available 

from many suppliers, is one of the most popular linear regulator integrated circuits 

(ICs) used to convert high input voltage (abbreviated as Vin, which usually should be 

within the range of 7 V to 25 V) to a 5 V output. The universal serial bus (USB) car 
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charger is another common DC-to-DC converter used to convert a 12 V output from 

an automobile storage battery into 5 V power. 

One or more DC–DC converter techniques are applied to all converters. The most 

commonly used techniques are the linear regulator technique and the switch-mode 

regulator technique. They are discussed in detail in Chapter 3. However, in the 

present research, the SC-assisted low drop-out regulator (SCALDO) technique, a new 

technique developed at the University of Waikato (UoW), was applied to build an SC 

-assisted converter for a DC microgrid system. 

 

2.3.1.1 Linear Regulators and Switch-mode Regulator Techniques 

Linear regulators are a great choice for powering very low-powered devices or 

applications where the difference between the input and output is small. 

Unfortunately, even though they are easy to use, simple to make and are cheap to 

buy, linear regulators are normally inefficient [13]. 

The equation for dissipated power, P, in a linear regulator is: 

 

  loadoutin IVVP         (2.1), 

 

Where Vin is the input voltage, Vout is the output voltage and Iload is the current 

flowing through the load. 

If a linear regulator is used to power devices in which there is a big difference 

between the input and output, the energy dissipating on the voltage dropper (e.g., 

MOSFET, insulated-gate bipolar transistor [IGBT] or a bipolar power transistor) will 

generate a large amount of heat. This leads to a very low efficiency and causes 

components to burn out. 

Compared to linear regulators, switch-mode regulators are highly efficient and have 

a theoretical efficiency of 100 %. Switch-mode regulators are available as modular 

chips, which are compact and reliable. Their disadvantage is that switch-mode power 

supplies are more complicated and can cause electrical noise problems if not 

carefully suppressed. 

The main differences between linear regulators and switch-mode regulators are 

depicted in Table 2.1. 
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Table2.1: Differences between linear regulators and switch-mode regulators. 

 Linear regulator Switch-mode regulator 

Control 

 
 

Design 

flexibility 
Buck Buck, boost, buck–boost 

Efficiency 

Normally low to medium-high for 

low differences between Vin and 

Vout 

High 

Complexity Low Medium to high 

Size 
Small to medium, larger at higher 

power 

Smaller at similar higher power 

(depending on the switching 

frequency) 

Total cost Low 
Medium to high — external 

components 

Ripple/nois

e/EMI 
Low Medium to high 

Vin range 
Narrow (depending on power 

dissipation) 
Wide 

 

2.3.1.2 Supercapacitor-assisted Low Dropout (SCALDO) Regulator 

Techniques 

Supercapacitor-assisted low drop-out regulator designs are not common. This is a 

new research area currently under development at UOW. Therefore, before 

discussing the concepts of SCALDO, some of the following fundamentals are 

reviewed to aid understanding. 
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If a capacitor is charged directly by a power supply, as show in Figure 2.9, the 

terminal voltage of that SC is (assuming that at the outset, there is no energy stored 

in the SC) defined by the following equation: 

 

















rC

t

SC eUU 1       (2.2), 

 

where C is the capacitance of the SC, and UC and US are the terminal voltage of the SC 

and the power source, respectively. 

 

Figure 2.9: Charging an SC directly with a power supply. 

 

The following equations also apply (details are explored in Chapter 4): 
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When time (t) becomes bigger than the 5rC time constant, Ec then equals Er. This 

means that half of the total energy is wasted and dissipates on the resistor, r. 

However, if a resistive load, Rx, is connected in series with capacitor (as in Figure 

2.10a), almost all of this wasted energy is used to power the load instead. This 

significantly increases system efficiency. 

Based on the simple principles elucidated in Equations 2.2–2.5, using a single SC or 

an array of SCs in the series path to store and release energy (as in Figure 2.10), an 

SC-based efficiency improvement technique suitable for linear regulators was 

designed. 

 

Figure 2.10: The basic concept of SC (supercapacitor) energy storage and recovery: (a) 

minimising the series element dissipation, and (b) releasing stored energy. 
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2.3.1.2.1 Basic SCALDO Concepts 

Figure 2.11 illustrates the basic concepts of SCALDO. In Figure 2.11 (a), an SC (CSC) 

with a large capacitance (of the order of farads) is able to pass current for a 

reasonable period of time when it is charged by a power supply (VP). In this phase, SC 

acts as a voltage dropper in the loop. It is used to store energy and to prevent the 

Vin from climbing too high. 

The operation is switched to the next phase (Figure 2.11 b) after the SC is charged to 

a certain voltage level (Vin drops to the minimum allowable voltage min

inV ). Then, the 

SC acts as a power supply, releasing its stored energy to an LDO and RL. This 

discharging process lasts for a reasonable period of time. 

 

 

Figure 2.11: The concept of SC energy storage and recovery: (a) charging SC (b) discharging 

SC [1] 

 

This basic SCALDO concept can be applied in a situation that requires conversion of a 

12 V unregulated power supply (VP) to a 5 V regulated output (Vreg). Figure 2.12 

shows the steady state of operation in a real circuit with controlled switches 

assembled according to Figure 2.11. The load is a constant-current sink (load current 

[IL] = 200 mA).  
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Figure 2.12: Oscilloscope waveforms of 12-to-5 V SCALDO regulator [1] 

 

2.3.1.2.2 General SCALDO Concepts 

 

 

Figure 2.13: The concept of SCALDO for min2 inP VV  : (a) charging n capacitors in series with 

LDO and RL, thus minimising the series element dissipation, and (b) discharging n capacitors 

in parallel and releasing stored energy [1]. 
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As shown in Figure 2.13 (a), min

inV  is the minimum input voltage required for the LDO 

regulator. An array of n ideal series SCs is placed in series with the input of the LDO 

regulator. Each of the SCs has a voltage of VSC/n, also equal to  

 

n

VV inP      (2.6). 

 

As in Figure 2.13 (b), the voltage value of each SC should be larger than Vin. 

Therefore, the following formula can be obtained: 

 

 

in
inP V

n

VV



     (2.7). 

 

By rearranging this inequality, it can be shown that the number of the SCs (n) needed 

should be smaller than the value of 

 

in

inP

V

VV 
     (2.8). 

 

Note that n represents the number of SCs required. Therefore, it should be rounded 

down to an integer. 

 

Things are different in the case where 

 

min2 inP VV  .     (2.9). 

 

Figure 2.14 illustrates the SCALDO regulator concept derived from Equation 2.9. 
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Figure 2.14: The concept of the supercapacitor-assisted low dropout (SCALDO) regulator 

defined by min2 inP VV  : (a) charging an n parallel capacitor array with LDO and RL, thus 

minimising the series element dissipation, and (b) discharging n capacitors in series, 

releasing stored energy [1]. 

 

As in Figure 2.14 (a),  

 

inPSC VVV  .     (2.10). 

 

In Figure 2.14 (b), the following equation also applies:  

 

inSC VVn       (2.11). 

 

By combining these two formulas together, it becomes apparent that the number of 

SCs should be higher than the value of  

 

inP

in

VV

V


     (2.12). 

 

Note that n represents the number of SCs. Therefore, it should be rounded up to an 

integer. 
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2.3.1.2.3 The LDO-removed Scenario 

In this research, an SC-assisted power converter was needed to power a 12 V 

household LED lighting system. The LDO can be removed due to the characteristics 

(mentioned in detail in Chapter 4, Section 4.2) that LED provides light with a constant 

illuminance over a voltage range of 5.3 V to > 17 V. Therefore, removing the LDO has 

little influence on the illuminance of an LED. Meanwhile, energy dissipating on the 

LDO is also minimised. From the above, in designing the SC-assisted power converter 

for the DC microgrid system used in this research, it was better to remove the LDO. 

 

2.4 Energy Storage Devices 

The Ragone plot (Figure 2.15) illustrates the differences in energy density versus (vs.) 

power density of some typical energy storage devices. All energy storage devices 

have their own characteristics and are suitable for particular types of electronic 

equipment. 

 

 

Figure 2.15: The Ragone plot [14]. 
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2.4.1 Batteries 

Just like a fuel cell, a battery also consists of two electrodes: the cathode and the 

anode. They are isolated by a separator and are soaked in electrolyte to accelerate 

chemical reactions. Batteries can be broadly divided into two groups: primary 

batteries (these batteries are designed to be used once and discarded) and 

secondary batteries (rechargeable batteries). As shown in Figure 2.16, all batteries 

(including primary batteries and secondary batteries) can be designed in different 

sizes and shapes and have different characteristics. 

 

 

Figure 2.16: Different kinds of batteries. 

 

Primary batteries, also known as non-rechargeable batteries, play an important role, 

especially when charging is impractical or impossible, such as in military combat, 

rescue missions and forest-fire services [15]. These batteries are usually cheaper 

than rechargeable batteries. Compared with primary batteries, secondary batteries 

offer lower energy density and higher self-discharge rates. However, rechargeable 

batteries certainly help to save a lot of money in the long run, because they can be 

used hundreds or even thousands of times if they are used properly. In addition, 

rechargeable batteries also help to protect the environment as well as conserve 

resources, since fewer batteries need to be manufactured, while they can be used 

over and over again. 

Common rechargeable chemistries are based on variations of lead–acid, nickel-based 

and lithium-based systems mainly, while limited zinc-based systems and 
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rechargeable alkaline batteries are also available [1]. Table 2.2 depicts the basic 

characteristics of the major chemistries used in battery manufacture. 
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Table 2.2: Rechargeable battery chemistry characteristics [1].



  Chapter 2: Background 

29 
 

2.4.2 Superconducting Magnetic Energy Storage 

Superconducting magnetic energy storage (SMES) is a technology that stores 

electricity from the grid within the magnetic field of a coil, composed of 

superconducting wire, with near-zero loss of energy [16]. 

The SMES is a grid-enabling device that stores and discharges large quantities of 

power almost instantaneously. The system is capable of releasing high levels of 

power within a fraction of a cycle to replace a sudden loss or dip in line power [16]. 

Strategic injection of brief bursts of power can play a crucial role in maintaining grid 

reliability, especially with today’s increasingly congested power lines and the high 

penetration of renewable energy sources, such as wind and solar [16]. 

A typical SMES consists of two parts — a cryogenically cooled superconducting coil 

and a power conditioning system — which are motionless, thus providing higher 

reliability than many other power storage devices [16]. Figure 2.17 illustrates a 

typical SMES system. Ideally, once the superconducting coil is charged, the current 

does not decay, and the magnetic energy can be stored indefinitely [16]. 

 

 

(a)       (b) 
Figure 2.17: The typical superconducting magnetic energy storage (SMES) (a) the SMES coil 

blocks inside a mechanical structure, and (b) the magnetic field superimposed over the SMES 
system. 

 

There are many benefits in using an SMES system. First and foremost, it improves 

power quality and provides carryover energy during momentary power outages and 

voltage sags. Second, it improves load levelling between renewable energy sources 

(i.e., solar, geothermal and wind) and the transmission and distribution network. 

 

2.4.3 Supercapacitors (SCs) 

Supercapacitors are a new technology developed for energy storage. They are 

governed by the same fundamental equations as conventional capacitors. They are 



  Chapter 2: Background 

30 
 

also known as ultracapacitors or electric double-layer capacitors. Figure 2.18 shows a 

series of Maxwell SCs. Some of these models were selected as voltage droppers in 

for the current research project. Their main characteristics are discussed in detail in 

Chapter 4.  

 

Figure 2.18: Supercapacitors (SCs). 

 

In contrast to commonly used capacitors, SCs come with very low voltage capability, 

usually in the range of 2 V to <16 V. However, their capacitance values range from 

about 0.1 F to >5,000 F [1]. Supercapacitors usually have very low internal resistance 

(in the form of equivalent series resistance [ESR]) compared to rechargeable 

batteries. In addition, their ESR is relatively constant over its discharge period or the 

calendar life. Even a small SC, such as one with a 0.6 F value, indicates a constant 

internal resistance of less than 100 mΩ, while the AA energiser cell has an internal 

resistance that keeps increasing with the depth of discharge [1]. 

 

2.5 DC Loads 
Electricity is generated in two forms: AC and DC. Each form has its pros and cons in 

the way it is and how it can be used. Its ease of transport over long distances is the 

most important advantage of AC electricity. However, for independent island 

systems (microgrids), this advantage is not important, because the electricity does 

not move very far to get to where it is used. 

Until now, there has been no way to store AC power effectively, although AC 

generators are more efficient. Basically, most electronic components and everything 

running on batteries uses DC, and almost all ultra-low voltage systems use DC as well. 
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With more and more advanced DC technologies applied to appliances, such as the 

brushless DC (BLDC) motor, DC microgrids and DC loads are constantly improving. 

 

2.5.1 Light-emitting Diode (LED) Loads 

Light-emitting diodes are an emerging form of lighting used to replace conventional 

lamps. Previously, LEDs were used as indicator lights only. Nowadays, LEDs can be 

found in televisions, automotive front and tail lighting, household lighting and so on. 

The power levels of 1 W, 4 W and 5 W are very common in LEDs. Higher power levels 

(up to 100 W) are also available. The power conditioning used for LED lighting is 

different from other conventional lighting, such as incandescent lamps, fluorescent 

lamps or high-intensity discharge (HID) lamps, both in terms of control and power 

sources [17]. Modern LED lamps use low voltages from 1.3 V–24 V, and the starting 

voltage is very low, while fluorescent and HID lamps lamp require hundreds of volts 

and HID lamps require tens of thousands volts to start. I selected the TCP brand LED 

lamps (5 W and 12 V white light, Figure 2.19) as the main DC loads in the present 

research. These lamps’ brightness remains constant over a wide voltage range. Lamp 

data and characteristics are discussed in detail in Chapter 4. 

 

 

Figure 2.19: TCP brand light-emitting diode (LED) lamps used as DC loads in the current 
research project. 
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2.5.2 White-ware Loads 

Today, almost all whiteware runs on AC. However, most whiteware appliances can 

be manufactured to run on DC power instead. Some whiteware, such as washing 

machines, dryers, electric fans and air conditioners, which have motors inside, rectify 

AC for internal circuits and components. These appliances can also run on DC power 

directly, because DC motors are already available. This is particularly valid for the 

inverter-driven latest appliances.  

The core components for these appliances are their DC motors. It is said that the 

invention of the AC induction motor was the deciding factor in the 19th Century 

battle between AC and DC [18]. However, researchers have still tried to improve DC 

motors over time. Nowadays, DC motors enjoy many advantages, including good 

speed–torque characteristics and ease of variable-speed control. With the advent of 

power electronics (especially the thyristor) in the late 1960s, the use of squirrel cage 

induction in variable-speed applications starting emerging [18]. This type of motor is 

robust and virtually maintenance free, as compared to its brush counterpart. 

Nowadays, with the further development of BLDC motors, they have again become 

the ideal choice for many applications. Generally speaking, a BLDC motor is 

considered to be a high-performance motor capable of providing large amounts of 

torque over a vast speed range [19]. All BLDC motors are a derivative of the most 

commonly used DC motor, the brushed DC motor, and they share the same torque 

and speed performance curve characteristics [19]. The major difference between the 

two is the use of brushes. The BLDC motor does not have brushes and must be 

electronically commutated. 
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3.1 Introduction 

In the current research, a DC-to-DC converter for a DC microgrid was designed to 

convert electrical input to a DC output of approximate 12 V. The DC power generator 

can be any kind of generator, as described in Chapter 2, Section 2.2 “DC Generators”. 

At the UoW, a suitable solar panel attached to the outside wall (facing north) of the 

C Block laboratories is available. Therefore, this solar panel was selected as a DC 

power supply for the research. A PV simulator is also available in the university 

laboratory, which was used as a replacement for the solar panel, because the panel 

is small and is only able to provide very low output power. Besides, I found that the 

wall-attached solar panel was highly influenced by real-time outdoor conditions, 

while the PV simulator inside the laboratory was not influenced by any 

environmental factors and could simulate all types of daylight conditions. In order to 

use this PV simulator properly, data about local Hamilton weather conditions should 

be collected to create similar and representative weather patterns for the PV 

simulator. It was necessary to obtain baseline illuminance data from the NIWA 

website [20] prior to taking field measurements using the solar panel, because a 

basic understanding of historic Hamilton conditions aided field data collection from 

the solar panel under difficult-to-predict, variable environmental conditions. Figure 

3.1 is a block diagram depicting the process I followed, as described in this chapter. 

 

 

Figure 3.1: A block diagram of equipment and data processing 

 

3.2 Waikato Climate and Weather  
The Waikato region exhibits a wide range of climates due to the variety of 

landscapes in the region. It can be very windy in exposed areas, but low-elevation 
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inland parts of the region are more sheltered. Mountain ranges cause rainfall 

anomalies, which are directly related to elevation [21]. However, rainfall is plentiful 

all year round. In general, rainfall in winter is slightly greater than that in summer. A 

gradient of bright sunshine is observed from the east to the west, with more 

sunshine in the east than the west of the Waikato region. 

 

3.2.1 Wind 

Northerly or westerly air flows are common over most of the Waikato region, 

although as in all areas of New Zealand, the specific prevailing and strong wind 

direction in any locality is determined largely by local topography [21]. Some local 

sites, such as Mt. Te Aroha and Port Taharoa, have a higher percentage of strong 

winds than more sheltered sites, such as Hamilton. 

Spring is generally the windiest season throughout the region. Summer and autumn 

are the seasons in which the greatest number of light wind days are recorded [21]. 

 

3.2.2 Rainfall Distribution 

Rainfall patterns in the Waikato region relate to elevation and exposure to prevailing 

air flows. Areas with high annual rainfall of over 2,000 mm (the Coromandel Ranges, 

the Central Plateau south of Lake Taupo and the hill country west of Te Kuiti) provide 

a stark contrast to areas that receive around 1,100 mm of rain per year, including the 

area east of Hamilton and the Hauraki Plains, as well as sites east of Taupo [21]. 

 

3.2.3 Air Temperature 

In general, the Waikato region is characterised by relatively warm temperatures in 

the summer (20–25 °C mean daily maximum temperature) and relatively cold 

temperatures during the winter (0–8 °C mean daily minimum temperature) [21]. 

Median annual average temperature in the Waikato region varies with elevation and 

latitude. Low-lying areas around the Hauraki Plains and north of Hamilton have a 

mean annual temperature of around 14 °C, whereas the area around Taupo has a 

mean annual temperature of around 11 °C, and higher elevation areas in Tongariro 

National Park and the Kaimanawa Ranges have a mean annual temperature of < 8 °C 

[21]. 

 

3.2.4 Sunshine and Solar Radiation 
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In the Waikato region, a gradient of bright sunshine is observed from the east to the 

west. The Coromandel Ranges and the ranges to the south receive the most 

sunshine hours per year (> 2,100 h) [21]. Sunshine hours are also high for the area 

east of Taupo (around 2,025 h). This declines to 1,950 h near Hamilton and Tokoroa, 

and the lowest bright sunshine hours received in the Waikato region are experienced 

in the hill country around Te Kuiti (around 1,800 h) [21]. 

Solar radiation records for Waikato are available on many websites, but only a few 

websites have records from > 10 years ago. In order to find enough information 

about Hamilton climate and weather (especially sunshine and solar radiation) for the 

current research, some data from the NIWA website was therefore used as a 

reference (Figure 3.2).  

However, more detailed information about illuminance under typical sunlight 

conditions was still needed to progress the research (Figures 3.3–3.6). Therefore, I 

used the UoW solar panel to take initial field measurements of illuminance under 

four conditions: a sunny day, a cloudy day, a day of light rain and a day of heavy rain. 

These data are shown in the following sections. Data were collected using a light 

meter HD450 at the UoW in December, 2016.  

 

 

Figure 3.2: Hamilton cumulative solar energy. 

Source: The NIWA website. Internet: https://solarview.niwa.co.nz/ 

 

Figures 3.3–3.6 show real-time Hamilton illuminance values derived from the UoW 

solar panel first described in Section 3.1, “Introduction”. With these data, Hamilton’s 

irradiance data can be ascertained by converting illuminance to irradiance. From 

these real-time solar panel measurements for a sunny day, a cloudy day and a rainy 

day, some similar patterns of output were created, and these patterns were used to 

simulate different outputs from solar panels in the laboratory, where I used a PV 

simulator under more controlled situations. 

https://solarview.niwa.co.nz/
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3.2.4.1 Sunny Day Illuminance 

On a sunny day, there was sufficient sunlight to provide energy to power loads. 

Starting from around 5 a.m., the illuminance increased gradually, and it reached its 

zenith at noon, at around 25,000 lux. Thereafter, it decreased. The illuminance 

dropped to 0 lux between 8 p.m. and 9 p.m., and no light could be detected after 9 

p.m. until the next morning. The illuminance curve of a sunny day (Figure 3.3) 

therefore looks vaulted. The curve is smooth, illustrating the lack of severe 

fluctuation during the day. 

 

Figure 3.3: Sunny day illuminance at the University of Waikato (UoW) in Hamilton. 
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3.2.3.2 Cloudy Day Illuminance 

During cloudy day measurements, the ground was often hidden from the sun by 

clouds. Illuminance patterns depended on wind speed and how many clouds there 

were in the sky. The maximum illuminance value on a cloudy day was approximately 

equal to the maximum value on a sunny day. However, the illuminance fluctuated 

sharply and quickly during the cloudy day. The total amount of sunlight was less than 

on a sunny day. Yet, the illuminance values were still much higher than illuminance 

values on a rainy day (Figure 3.4). 

 

Figure 3.4: Cloudy day illuminance at the University of Waikato (UoW) in Hamilton. 
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3.2.3.3 Rainy Day Illuminance 

On a rainy day, there was also some illuminance fluctuation in the daytime. However, 

this fluctuation was not as sharp and quick as illuminance fluctuations on a cloudy 

day. The peak illuminance value was approximately 25 % lower than on both sunny 

and cloudy days (Figure 3.5). This value was even lower when it rained heavily 

(Figure 3.6). Clearly, sunlight was deficient on rainy days compared with both sunny 

and cloudy days. 

 

Figure 3.5: Rainy day illuminance (light rain) at the University of Waikato (UoW) in Hamilton. 
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Figure 3.6: Rainy day illuminance (heavy rain) at the University of Waikato in Hamilton. 
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3.3 Illuminance-to-Irradiance Conversion 
In photometry, illuminance is the total luminous flux incident on a surface, per unit 

area. It is a measure of how much the incident light illuminates the surface, 

wavelength-weighted by the luminosity function to correlate with human brightness 

perceptions [22]. In SI units, the illuminance is measured in lx or lux,  

 

( 2 msrcdlux )       (3.1). 

 

Illuminance has often been called “brightness”, but this nomenclature leads to 

confusion with other words such as “luminance”. Therefore, I attempt to avoid using 

the word “brightness” when describing quantitative measurements. 

Solar irradiance is the power per unit area received from the sun in the form of 

electromagnetic radiation in the wavelength range of the measuring instrument [22]. 

Irradiance may be measured in space or at the Earth's surface after atmospheric 

absorption and scattering [22]. It is measured perpendicular to the incoming sunlight. 

Total solar irradiance (TSI), is a measure of the solar power over all wavelengths per 

unit area incident on the Earth's upper atmosphere [22]. 

The unit of illuminance is lux (SI alternative symbology, lx), and lux = lm/m2, while 

irradiance is measured in W/m2. Therefore, converting lux to W/m2 and converting 

lumen to watts are equivalent. 

The power, P in watts (W) is equal to the luminous flux, ΦV in lumens (lm), divided by 

the luminous efficacy, η in lumens per watt (lm/W): 

 


VP


          (3.2). 

 

Luminous efficacy can be calculated by using the following formula: 
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


0
,

0
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η








d

dK

e
e

e
v        (3.3), 

 

Where Φv is the luminous flux, Φe is the radiant flux, Φe,λ is the spectral radiant flux 

and K(λ) is the spectral luminous efficacy.  



 Chapter 3: Hamilton Illuminance Field Measurements and the Use of a PV Simulator and 
Associated Software 

43 
 

On a sunny day, the wavelength of light changes slightly. Therefore, K(λ) can be 

treated as a constant. In this case, the integration of the denominator and 

numerator is a constant and the result is a constant. Therefore, from Equation 3.2,  

 

 PV          (3.4) 

 

Where Luminous flux, ΦV is in proportion to the power, P. Therefore, the illuminance 

is in proportion to the irradiance. 

However, cloudy or rainy conditions affect outcomes. Rapid flow of clouds makes the 

light spectrum change quickly. The spectral luminous efficacy, K(λ), changes slightly 

in a short period but not for a long time. This changes η to a non-constant. However, 

the most important analysis involves elucidating the features of irradiance on cloudy 

and rainy days, rather than creating irradiance curves that are identical with 

illuminance curves. Indeed, having tested Hamilton’s illuminance, the local 

characteristics of these three kinds of weather are known variables. 

 

 During a sunny day, there is sufficient sunlight during the day to power loads. 
The illuminance curve is smooth and it reaches the highest point at noon. 

 On a cloudy day, sunlight is sufficient to power loads sometimes, but 
sometimes it is not; the illuminance curve fluctuates quickly. 
 

During a rainy day, there is also some illuminance fluctuation during the day, but it is 

not so marked as on cloudy days. However, unfortunately, the illuminance is not 

generally sufficient to power loads. 

 

By applying illuminance-to-irradiance conversion formulae to the current research 

project, I created similar patterns of irradiance that represented a typical sunny day 

(Figure 3.7), an average cloudy day (Figure 3.8) and a typical rainy day (Figure 3.9) in 

Hamilton. 
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Figure 3.7: The calculated average sunny day irradiance curve for Hamilton. 

 

 

Figure 3.8: The average calculated cloudy day irradiance curve for Hamilton. 
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Figure 3.9: The average calculated rainy day irradiance curve for Hamilton. 

 
 

3.4 The Photovoltaic (PV) Simulator and 

Associated Software 

3.4.1 Model, Manufacturer and Main Specifications 

The ETS600X is a PV simulator produced by AMETEK Inc. Its open-circuit voltage is 

600 V, its short-circuit current is 8.3 A and its maximum output power at fill factor 

0.85 is 4.25 kW. 

Although this PV simulator has only one output channel, it is good enough as a 

power supply for a DC microgrid running a 12 V household LED lighting system with a 

peak power requirement of approximately 50 W.  

 

3.4.2 Photovoltaic (PV) Simulator Operation 

The PV simulator is controlled by the software TerraSAS™. This programmable PV 

simulator can be treated as a power supply. Just like other DC power supplies, this 

simulator has two connectors on the back chassis for input and ground. 
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3.4.2.1 Demonstration Mode 

The demonstration (demo) mode simulates a TerraSAS™ system with 24 low-voltage 

PV simulators (distributed control system [DCS] 80 V, 15 A) [23]. The software can 

run on any computer (whether an actual PV simulator is connected or not), and this 

mode can be used for training or demonstration purposes. The steps I followed were 

as per manufacturer recommendations. Initiate the PV simulator to work in demo 

mode [23] as depicted in Figure 3.10 below. 

 

 

Figure 3.10: A screenshot of TerraSAS™ in demonstration mode. 

 

Although there are 24 channels in demo mode, they can all run but cannot all be 

demonstrated at the same time. Only one channel can be shown on the screen at a 

time. But for the purposes of my research, one channel was enough. 

For the purposes of my research, one of the most useful functions in demo mode 

was to check the irradiance profiles and PV curves created by users. This function 

enabled me (the user) to create these files without actually running a physical PV 

simulator. In normal mode, if a PV simulator is not detected, the software itself will 

stop running automatically. Therefore, users cannot simulate or work with software 

with the machine in a normal mode. 
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3.4.2.2 Power supply (P/S) mode 

P/S mode allows the disabling of the current–voltage (I–V) curve controller and the 

driving of the power converter directly, with a programmable voltage and current 

reference [23]. Figure 3.11 is a screenshot of the system settings window, which 

allows the user to place one or more channels in P/S mode. The output tile (circled in 

red in Figure 3.12) turns yellow to show the different operating mode. In this 

window, the user can switch the PV simulator between constant voltage mode and 

simulation mode. 

 

 

Figure 3.11: Switching modes on the photovoltaic (PV) simulator. 

 

If an I–V curve is assigned to the yellow tile (shown in the upper right circle of Figure 

3.12), “Isc” (meaning “short circuit current”) sets the current reference, and “Voc” 

(meaning “open circuit voltage”) sets the voltage reference. All other points can be 

ignored. When clicking the [PGM] (meaning “program”) button (shown in the lower 

right circle of Figure 3.12), the dialogue allows the users to program both voltage 

and current [23]. The blue lines in the middle circuit is the I-V characteristics of this 

power supply. 
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Figure 3.12: The open-circuit voltage reference and short-circuit reference settings. 

 

3.4.2.3 Simulation Mode 

After loading irradiance profiles and photovoltaic curves, users can start simulating 

as per the sample simulation show in Figure 3.13. This feature enables users to get 

different outputs that are similar to the real outputs given by solar panels.  

 

Figure 3.13: A screenshot of a sunny day simulation. 
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3.4.3 Creating Irradiance Profiles by Coding 

The window shown in Figure 3.14 is a table used to create irradiance profiles for 

simulation (via Profile > Create). The sample table shown (Figure 3.14) was used in 

this research to create irradiance profiles for irradiance testing (Figure 3.15). 

 

 

Figure 3.14: A screenshot of an irradiance profile sample table used to create an irradiance 
profile. 
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Figure 3.15: A sample of irradiance profile testing. 

 

As shown in the Figure 3.15 sample irradiance profile test, there are two curves (a 

purple line and a yellow pattern), which represent irradiance and temperature, 

respectively. In the “Create Profile Window” on line 2, the ramp time was 70 s, the 

ramp-to-irradiance was 1,000 lm, the dwell time was 10 s and dwell irradiance was 

1,000 lm. These times indicated that 70 s was required for irradiance to rise from 0 

to 1,000 lm and that irradiance was maintained at 1,000 lm for 10 s. I found that 

every single line required one line of code. The temperature could be set in the same 

way.  

Based on the sample code creations, I then created the following Hamilton 

irradiance profiles (discussed in Sections 3.4.3.1–3.4.3.4). I collected the data used 

for creating these patterns by light meter, summarised them and then converted 

them from illuminance to irradiance, using methods described earlier in this chapter. 

 

3.4.3.1 A Simulated Sunny Day in Hamilton 

The following Figures (Figures 3.16–3.18) are the irradiance profiles I created for 

Hamilton. They simulate a sunny day, a cloudy day and a rainy day, respectively. 

Table 3.1 shows the code I used to create a sunny day’s irradiance profile. The codes 

for Hamilton’s cloudy and rainy day irradiance profiles are shown in Appendix [F]. 
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Figure 3.16: A simulated sunny day irradiance profile I created for Hamilton. 

 

Table 3.1: A table used to create the Hamilton sunny day irradiance profile. 

Line 

numbe

r 

Ramp 

time 

Ramp-

to-

irradia

nce 

Ramp-

to-

tempe

rature 

Dwell 

time 

Dwell 

irradia

nce 

Dwell 

tempe

rature 

Go to 

line 

Repeat 

cycles 

1 0 0 25 3600 0 25 0 0 

2 0 0 25 3600 0 25 0 0 

3 0 0 25 3600 0 25 0 0 

4 0 0 25 3600 0 25 0 0 

5 3590 25 25 10 25 25 0 0 

6 3590 79 25 10 79 25 0 0 

7 3590 301 25 10 301 25 0 0 

8 3590 539 25 10 539 25 0 0 

9 3590 756 25 10 756 25 0 0 

10 3590 925 25 10 925 25 0 0 

11 3590 1026 25 10 1026 25 0 0 
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Line 

numbe

r 

Ramp 

time 

Ramp-

to-

irradia

nce 

Ramp-

to-

tempe

rature 

Dwell 

time 

Dwell 

irradia

nce 

Dwell 

tempe

rature 

Go to 

line 

Repeat 

cycles 

12 3590 1048 25 10 1048 25 0 0 

13 3590 990 25 10 990 25 0 0 

14 3590 856 25 10 856 25 0 0 

15 3590 663 25 10 663 25 0 0 

16 3590 433 25 10 433 25 0 0 

17 3590 197 25 10 197 25 0 0 

18 3590 35 25 10 35 25 0 0 

19 3590 6 25 10 6 25 0 0 

20 3590 0 25 10 0 25 0 0 

21 0 0 25 3600 0 25 0 0 

22 0 0 25 3600 0 25 0 0 

23 0 0 25 3600 0 25 0 0 
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3.4.3.2 A Simulated Cloudy Day in Hamilton  

 

 

Figure 3.17: A simulated cloudy day irradiance profile I created for Hamilton.  



 Chapter 3: Hamilton Illuminance Field Measurements and the Use of a PV Simulator and 
Associated Software 

54 
 

3.4.3.3 A Simulated Rainy Day in Hamilton  

 

 

Figure 3.18: A simulated rainy day irradiance profile I created for Hamilton. 

 

3.4.4 Photovoltaic (PV) Curve Creation 

The TarraSAS™ software enables users to load PV curves generated by different 

types of solar panels manufactured by different manufacturers. These curves can be 

created by users as well. In the ‘real world’, one solar panel can be connected in 

series or in parallel with others. The TarraSAS™ software can also simulate both of 

these situations. However, due to the limitation that one channel can simulate only 

one solar panel and that there is just one output channel on the back chassis of the 

ETS600X PV simulator, users must calculate the Voc and Isc values, and how many 

watts can be gathered for one panel, to create an ‘equivalent’ solar panel (if more 

than one solar panel is needed). These solar panel specifications can be entered in 

the “Settings” window of the TarraSAS™ software program (Figure 3.19). The 

behaviour of this virtual solar panel can also be demonstrated (Figure 3.20). 
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Figure 3.19: A screenshot of the window for setting the specifications of a virtual solar panel. 

 

 

Figure 3.20: A PV curve with an open-circuit voltage of 24 V and a short-circuit current of 8.3 
A. 
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4.1 Supercapacitor (SC) Characteristics  

Supercapacitors are very similar to conventional capacitors in terms of their 

electrical characteristics. Both of them share the same formulae used to calculate 

their electric charge, stored energy, terminal voltage and other parameters. 

Compared with conventional capacitors, the biggest advantage inherent in an SC is 

its capacitance. Capacitance of an SC can be 1 F, 100 F, 6,500 F or even larger. 

 

4.1.1 SC Charging Characteristics 

 

Figure 4.1: Charging a supercapacitor (SC) from a voltage source. 

 

The above circuit diagram (Figure 4.1) shows a typical SC’s charging circuit. A 

constant DC power supply with Vin output voltage is used to charge the SC. The 

resistance of R is equal to the value of the loop resistance, plus the internal 

resistance of the SC and the DC power supply. By solving Kirchhoff's voltage law 

(Equation 4.1),  

 

   tVRtiV Cin         (4.1), 

 

Where 

 

 
 

dt

tdV
Cti C        (4.2), 
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The following equation is obtained: 

 

  RC

t

inC keVtV


        (4.3). 

Where k can be any constant. 

 

If the initial voltage of the capacitor  0tVC  is zero, 

 

RC
in keV

0

0


         (4.4), 

 

The following equation also applies: 

 

inVk          (4.5). 

 

Therefore, the following equation is finally obtained: 

 

  















RC

t

inC eVtV 1        (4.6), 

 

It then follows: 

 

 
 

RC

t

inCin e
R

V

R

tVV
ti






       (4.7). 

 

The energy stored in an SC is governed by the following equation: 

 

   tCVtE CC

2

2

1
        (4.8). 
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By solving Equations 4.6 and 4.8, it is also clear that 

 

 
2

2 1
2

1
















RC

t

inC eCVtE       (4.9). 

 

The total energy delivered by the power supply, ES, and the energy dissipated on the 

resistor, ER, can be calculated by applying Equations 4.10 and 4.11, respectively: 

 

 
t

inS dtVtiE
0

       (4.10), 

 

And 

 

 
t

R RdttiE
0

2        (4.11). 

 

By combining results from equations 4.2, 4.10 and 4.11, we obtain the following two 

equations: 

 

















RC

t

inS eCVE 12        (4.12),  

 

And 

 

















RC

t

inR eCVE

2

2 1
2

1
      (4.13). 

 

If an SC is charged (Figure 4.2) for a long time, which means t is larger than the 5RC 

time constant, the value of the energy stored in the SC will be approximately equal 

to that of the energy dissipation on the resistor. This means that approximately half 

of the total energy is wasted. Figure 4.3 illustrates this charging process. 
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Figure 4.2: Charging curve of a 2.5 F supercapacitor (SC). Note that Vin is 15 V. A small 
resistor is connected in series in the loop to make sure that the loop current will not exceed 

the maximum current limit of the power supply. 

 

In Figure 4.2, it is obvious that the terminal voltage of the SC rises exponentially from 

0 to the value that approximately equals the source voltage. The loop current also 

drops exponentially from 
R

Vin  to 0 at around t = 5RC. Figure 4.3 depicts the energy 

distribution over time in a SC charging process. 



  Chapter 4: Components Testing 

63 
 

 

Figure 4.3: The energy distribution over time in a supercapacitor (SC) charging process 
(constant Vin). 

 

The energy dissipation, ER, occurs on the resistor R in Figure 4.1; is the total energy 

delivered from the power source is shown as Es, and Ec is the energy stored in the SC. 

The scenario depicted in Figure 4.1 and related discussion only apply to the case of a 

capacitor having a zero charge from the beginning of the process. 

 

4.1.1.2 Charging Efficiency Improvement 

As discussed in the previous section, it is clear that a non-negligible amount of 

energy will dissipate on the loop resistor when an SC is charged by a power source 

directly. However, if a resistive load (i.e., an LED lamp; Figure 4.4) is connected in 

series into the loop, most of the wasted energy can be used to power this load 

instead, and this redirection of energy improves the efficiency of the system 

significantly.  

 

 

Figure 4.4: Charging a supercapacitor (SC) by using a constant voltage source and with a 
resistive load (a light-emitting diode [LED]) connected. 
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Efficiency is described by Equation 4.14: 

 

%100*
S

CLED

E

EE
Eff


       (4.14). 

 

As shown in figure 4.5, because an LED is a nonlinear component, capacitor voltage, 

VC, does not work exponentially any more. Figure 4.6 illustrates the energy 

distribution over time as this process takes place. Thus, useful energy (ELED [LED 

energy] and EC [capacitor energy]) accounts for a major proportion of the total 

energy (ES). This addition of an LED greatly increases efficiency. 

 

 

Figure 4.5: Time versus (vs.) terminal voltage of the supercapacitor (SC) when it is charging 
and discharging, with a light-emitting diode (LED) load connected. 
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Figure 4.6: Energy distribution over time as charging progresses. 
 

Figure 4.4 shows the energy dissipation, ER, on the resistor, R; the total energy 

delivered from the power source is denoted by Es, and Ec is the energy stored in the 

SC. The energy dissipation in the LED is denoted as ELED. Note, Figure 4.4 only applies 

in the situation where the capacitor has a zero charge at the beginning of the 

process. 

 

4.1.2 SC Discharging Characteristics 

Figure 4.7 shows a typical circuit used to measure the discharging characteristics of 

an SC. 

 

Figure 4.7: Discharging a supercapacitor (SC). 
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Assume that the SC has been fully charged to its rated voltage before being 

discharged. The total resistance of this circuit is R. A volt-meter is connected in 

parallel with a 1 Ω resistor. The value shown on its screen is also the value of the 

loop current. Another volt-meter yields the real-time reading of the SC’s terminal 

voltage. From Kirchhoff’s voltage law, it is clear that the following equation then 

applies: 

 

   RtitVC           (4.15) 

 

By solving Equations 4.12 and 4.15, it becomes apparent that further SC discharging 

characteristics can be elucidated: 
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          (4.16), 
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And 
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  Chapter 4: Components Testing 

67 
 

 

Figure 4.8: The energy distribution over time during a supercapacitor (SC) discharging 
process. 

 

Figure 4.7 shows the energy dissipation, ER, on the resistor, R, and Ec is the energy 

stored in the SC. Figure 4.7 only applies when a capacitor has a zero charge at the 

beginning of the process. 

 

A typical RC circuit and an oscilloscope (V) used to measure the terminal voltage of 

capacitor, C, is shown in Figure 4.9. Figure 4.10 is an example measurement of a 

typical RC circuit as it discharges. The terminal voltage of the SC decreases 

exponentially, just as described by Equation 4.16. 

 

Figure 4.9: A circuit diagram of a typical discharging resistor–capacitor (RC) circuit.  
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Figure 4.10: The discharge curve of a 2.5 F supercapacitor (SC).  

 

4.1.3 Equivalent Series Resistance Measurements 

The equivalent circuit of a normal SC is depicted in Figure 4.11. Such an SC consists 

of an equivalent series resistance (ESR), a leakage resistance (Rleakage) and 

capacitance (C). Due to technological developments, ESR can now be minimised to 

around 10 mΩ. Because the leakage resistance (Rleakage) is very large, SC can be 

considered an open circuit over a short period of time. Figure 4.12 shows a 

commonly accepted way to measure ESR.  

 

 

Figure 4.11: The equivalent circuit of a supercapacitor (SC). 
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Figure 4.12: A circuit diagram of ESR measurement. 

 

An SC is powered by a constant-current source. The terminal voltage of the SC 

consists of ESR voltage (VESR) and capacitor voltage (Vc): 

 

CESR VVV 1         (4.20). 

 

If the current source is disconnected suddenly, the volt-meter measures the SC’s VOC. 

Thus, VOC equals Vc in these circumstances: 

 

CVV 2         (4.21). 

 

Therefore, there will be a voltage drop after disconnecting the SC from the current 

source. This phenomenon can be monitored by an oscilloscope (Figure 4.13).  
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Figure 4.13: A voltage drop occurs after removing the current source suddenly. 

 

The voltage drop is in these circumstances can be described by the following 

equation: 

 

ESRVVVV  21        (4.22). 

 

It then follows that: 

 

I

VV

I

V
ESR ESR 21         (4.23), 

 

Where I is the current provided by the current source. 
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4.2 Light-emitting Diode (LED) Lamp Testing 
Light-emitting diode lamp arrays are used as resistive loads in DC microgrid systems. 

The I–V curve of a TCP brand LED lamp and its luminous properties are shown in 

Figure 4.14. This LED lamp is non-polar and can be powered by bi-directional current. 

 

Figure 4.14: A line graph showing the performance of a single TCP brand LED. (the 
discontinuity was resulted in an unstable working condition for LED over a input voltage 

range from 4.2 V to 5.3 V) 

 

An input of > 5.3 V should be provided to LED lamps to guarantee they provide light 

with a constant illuminance. However, an LED lights up with an input voltage of > 2V. 

It becomes brighter with higher-input voltages. The LED lamp flashes and does not 

work properly between 4.2 V and 5.3 V. illuminance remains unchanged at an input 

voltage ranging from 5.3 V to > 17 V. If this voltage input range is exceeded, LED 

lamps still work but may burn out quickly. 

To light up an LED (TCP brand LED MR16, 5 W, 12 V), a large initial current is needed. 

The testing circuit required is shown in Figure 4.15, and the test results from the 

current research are shown in Figures 4.16 and 4.17. 
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Figure 4.15: A circuit diagram of a light-emitting diode (LED) performance test. 

 

  

(a)      (b) 

Figure 4.16: A diagram showing the moment a TCP brand LED is turned on (MR16; 5 W, Vs = 
12 V): (a) voltage measurement; and (b) time measurement. 

 

  

(a)      (b) 

Figure 4.17: A diagram showing the moment when a TCP brand LED is turned on (MR16; 5 W, 
Vs = 18 V): (a) voltage measurement; and (b) time measurement. 
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Figure 4.16 (a) & (b) and Figure 4.17 (a) & (b) are screenshots of the exact moment 

when a TCP brand MR16, 5 W, 12 V LED lamp was turned on. These figures illustrate 

that the initial current required for lighting up an LED was quite large. However, the 

LED required a smaller initial current if it was powered by a higher input voltage. In 

other words, the TCP brand 5 W MR16 LED lamp required a high initial input power 

to light up. The time period for lighting up was very short and lasted no longer than 

10 ms.  

As described in Chapter 2 (Figure 2.7), due to the delay inherent in the PID algorithm, 

the PV simulator used in the current research was unable to output the needed 

power within 10 ms. However, adding a capacitor in parallel with the power supply 

solved this problem, because the capacitor was able to provide an instant large 

current to the LED. 
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Chapter 5 
Circuit Design and System 

Implementation 
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5.1 Introduction 

The complete SC-assisted power converter for a DC microgrid system consists of a 

control circuit and a switch circuit. The control circuit can be further divided into two 

parts: a voltage sampling circuit and a driver circuit for MOSFET switches.  

Figure 5.1 is a simplified circuit diagram of the complete DC microgrid system with 

SC-assisted power converter designed for this project. Table 5.1 provides a brief 

description of the switches’ operation. In Figure 5.1, P-channel MOSFETs are used as 

switches S11 and S21, while N-channel MOSFETs are used as switches S12 and S22. The 

main aim of this switch circuitry is to achieve the symmetrical working of two system 

portions, or halves. However, if both halves (left and right) are charging or 

discharging at the same time, the power supply (the PV or solar panels) works 

discontinuously. Indeed, when both SC banks are being charged, the power supply 

always outputs approximately twice the power needed for each load, while if both 

SC banks are discharging, no energy comes from the PV, which results in a waste of 

solar energy if sunlight is available. Therefore, a good switch circuit routine should 

be able to keep both halves of the system operating at the same time but in different 

stages (one half charging and the other half discharging). In other words, if the left 

portion of the system is powered by the PV or solar panels and SC bank 1 is being 

charged, the right portion of the system should disconnect from the PV and run by 

discharging SC bank 2, and vice versa. 

The whole system was set up, as shown in Figure 5.2, to evaluate the performance of 

the experimental solar-powered DC microgrid, and Figure 5.3 illustrates the final 

implementation if this DC microgrid system. 

 

 

Figure 5.1: Circuit diagram of the complete DC microgrid system. 



 Chapter 6: Results, Conclusions and Future Developments 

78 
 

Table 5.3 Switch operation. 

 C1C2 C1D2 D1C2 D1D2 

Switch 11 on on off off 

Switch 12 off off on on 

Switch 21 on off on off 

Switch 22 off on off on 

In this table, C = charge; D = discharge;  

 

 

Figure 5.2: A block diagram of a DC microgrid system. 
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Figure 5.3: Photo of the complete DC microgrid System with 12V LED loads. 

 

5.2 Control Circuit Design and 

Implementation 

5.2.1 Sampling circuit 

There are three analogue-to-digital converters (ADCs) integrated into the 

microcontroller PIC16F684 (manufactured by Microchip Technology Inc.). they can 

be used to measure the real-time source voltage and terminal voltages of two SC 

banks. The ADC converts an analogue input signal into a 10-bit binary digital 

representation of that signal via successive approximation. Then, this result is stored 

in the ADC result low (ADRESL) and ADC result high (ADRESH) registers of the 

microcontroller. The ADC voltage reference is software-selectable to either VDD 

(Voltage Drain Drain) or a voltage applied to the external reference pins [24]. In my 

code, a 5 V VDD was selected as a voltage reference. Therefore, the resolution of each 

10-bit ADC was: 

 

mVV 88.4
1024

1
5          (5.1) 
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Figure 5.4: The diagram for the sampling circuit. 

 

Figure 5.4 shows sampling circuit structure for the DC microgrid system. This type of 

circuit is used to sample the source voltage or terminal voltage of each SC bank. The 

source voltage (PV simulator output) can be up to 25 V. The Vx in Figure 5.4 should 

not be bigger than 5 V when Vin is 25 V. Therefore: 

 

5

5

2

1
5

21

2 



 in

inX

V

R

R

RR

R
VV    (5.2). 

The voltage divider in Figure 5.4 consists of R1 and R2. The voltage signal, Vx, is fed to 

the ADC via an operational amplifier (OP-AMP), which acts as a voltage follower in 

this circuit. Vx should not be fed to the ADC directly. An equivalent circuit with the 

OP-AMP removed is shown in Figure 5.5. 

 

Figure 5.5: Equivalent circuit with the OP-AMP removed. 
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The value of RADC ranges from 10 kΩ to 56 kΩ [24]. Take a 25 kΩ RADC as an example. 

If a 10 kΩ R1 and a 1.8 kΩ R2 are selected as voltage dividers for sampling 24 V 

source voltage, Vx’ in Figure 5.5 becomes: 

 

V
RRR

RR
VV

ADC

ADC
CCX 594.3

//

//

21

2' 


       (5.3). 

 

However, Vx in figure 5.4 should be: 

V
RR

R
VV CCX 661.3

21

2 


        (5.4). 

 

The error is calculated thus: 

mVVVVV XXE 67067.0'        (5.5). 

 

The error, VE, is approximately 14 times that of the 4.88 mV resolution. If larger 

values for R1 and R2 are selected, this error becomes even larger (by applying 

function [24]). However, if the resistances, of R1 and R2, are too small, the steady-

state current from source to ground via R1 and R2 can be large. This leads to a low-

efficiency system. Therefore, because of its advantageous characteristics, the 

operational amplifier (OP-AMP) was selected as a voltage follower connected 

between the voltage divider (R1 and R2) and the analogue-to-digital converter (ADC). 

The OP-AMP’s advantages are that it has an infinite input resistance and a zero 

output resistance (ideally). Therefore, it was used to increase input resistance and to 

reduce output resistance. The voltage divider and the ADC were isolated by the OP-

AMP (Figure 5.6). 
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Figure 5.6: Equivalent circuit after adding an OP-AMP 

 

In this design, the resistance values of R1 and R2 selected for sampling source voltage 

(Vcc) or SC terminal voltages (Vsc; up to 15 V) were obtained by using inequality 5.2. 

Table 5.1 shows the chosen values of R1 and R2 after performing the necessary 

calculations. 

 

Table 5.1: Resistance selection for sampling source and terminal voltages. 

 For sampling Vcc For sampling Vsc 

R1 10k Ω 10k Ω 

R2 1.8k Ω 4.7k Ω 

   
 

Figure 5.7 shows the input and output waveform of the sampling circuit. The yellow 

curve represents the input signal and the blue curve represents the response of the 

input signal. This response can be measured by ADCs. 
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Figure 5.7: Response of the sampling circuit. 

 

5.2.2 The Metal-Oxide Semiconductor Field Effect 

Transistor (MOSFET) Driver Circuit 

The DC microgrid application designed in the current project contained an SC-

assisted, high-efficiency converter. This converter was a switch circuit controlled by a 

microcontroller and driven by MOSFET drivers. Figure 5.8 illustrates one part of the 

switch circuit I used. The circuit was powered by a PV when switch 1 (S1) was on and 

switch 2 (S2) was off. By disconnecting S1 and connecting S2, the SC discharged. One 

of the optional components for both switches (Figure 5.8) was a power MOSFET 

transistor. I was able to use the P-channel power MOSFET as S1, while the N-channel 

power MOSFET operated as S2. 
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Figure 5.8: A schematic drawing of a switch circuit with a load and a supercapacitor (SC).  

 

5.2.2.1 The Metal-Oxide Semiconductor Field Effect Transistor 

(MOSFET) 

A MOSFET is a semiconductor device that is often used as an electric switch in a 

circuit. The major advantage of the MOSFET transistor is that it uses low power for 

switching on or off, and the dissipation of power in terms of loss is therefore very 

small. 

There are two types of MOSFET: the N-channel MOSFET and the P-channel MOSFET. 

They have three terminals, namely the source, the gate and the drain. In an N-

channel MOSFET, the channel is made of an N-type semiconductor, so the charges 

are free to move along the channel and are negatively charged (electrons). In a P-

channel device, the free charges that move from end-to-end are positively charged 

(holes) [25]. When the MOSFET is used as a switch, its basic function is to control the 

drain current via the gate voltage. 

An equivalent circuit model of a typical N-Channel MOSFET (Figure 5.9) is often used 

for the analysis of MOSFET switching performance. The performance of a MOSFET is 

determined by the time required to establish voltage changes across capacitances. In 

Figure 5.9, the distributed resistance of the gate is denoted by RG, and LD and LS 

denote drain and source lead inductances, respectively. Both LD and LS are a few tens 

of nanohenries (nH) each. 

 

Figure 5.9: A metal-oxide semiconductor field effect transistor (MOSFET) equivalent circuit. 
 

Typical values of input capacitance (Ciss), output capacitance (Coss) and reverse 

transfer (Crss) capacitance are usually provided in datasheets. The datasheet 

capacitances are defined as 
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GDGSiss CCC  ,       (5.6), 

 

CDS shorted, 

 

GDrss CC          (5.7), 

 

And 

 

GDDSoss CCC         (5.8). 

 

The nonlinear function of voltage, CGD, is the most important parameter because it 

provides a feedback loop between the circuit output and input. CGD is also known as 

the Miller capacitance; it causes the total dynamic input capacitance to become 

greater than the sum of the static capacitances [26]. 

Turn-on delay is the time taken to charge the input capacitance of the device before 

drain current conduction can start. Similarly, turn-off delay is the time taken to 

discharge the capacitance after the device is switched off. 

As shown in Figure 5.10, when the gate is connected to the supply voltage, VGS starts 

to increase until it reaches the threshold, VTH, at which point CGS begins to charge, 

and the drain current starts to flow. From time t1 to time t2, CGS keeps charging, gate 

voltage continues to rise and drain current rises proportionally. At time t2, CGS is 

completely charged, and the drain current reaches the predetermined current, ID, 

which then remains constant while the drain voltage starts to fall [26]. With 

reference to the equivalent circuit model of the MOSFET shown in Figure 5.9, it can 

be seen that with CGS fully charged at time t2, VGS becomes constant and the drive 

current starts to charge the Miller capacitance, CDG [26]. This continues until time t3 

[26]. Charge time for the Miller capacitance, CDG, is larger than that for the gate-to-

source capacitance, CGS, due to the rapidly changing drain voltage between time t2 

and time t3 (current = C*dv/dt). Once both CGS and CGD are fully charged, gate voltage 

(VGS) starts increasing again until it reaches the supply voltage at time t4 [26]. The 

gate charge (QGS+QGD) corresponding to time t3 is the bare minimum charge required 

to switch the device on [26]. 
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Figure 5.10: Resulting gate and drain waveforms during a gate-charge test. 

 

The advantage of using gate charge in the current project was that I could easily 

calculate the amount of current required from the drive circuit to switch the device 

on in a desired length of time, because 

 

dt

dV
C

dt

dQ
ICVQ        (5.9). 

 

For example, a device with a gate charge of 20 nC can be turned on in 20 ms if 1 mA 

is supplied to the gate, or it can be turned on in 20 ns if the gate current is increased 

to 1 A [26]. 

 

5.2.2.2 Gate Drivers 

Figure 5.11 and 5.12 represent the circuit schematics of a P-Channel MOSFET (S1 in 

figure 5.8) gate driver and an N-Channel MOSFET (S2 in figure 5.8) gate driver. When 
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the circuit is working, either S1 or S2 will conduct, and a large current (1.5 A–2 A) will 

flow via these power MOSFET switches. Therefore, I used a totem-pole circuit, 

including transistors Q1 and Q2, to provide an instant large current to the grid of S1/S2, 

which guaranteed that the power MOSFET was turned on / off as quickly as possible. 

 

 

Figure 5.11: A schematic drawing of a P-channel power MOSFET switch 1 (S1) gate driver. 

 

 

Figure 5.12: A schematic drawing of an N-channel power MOSFET switch 2 (S2) gate driver. 
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In Figure 5.11, the difference of the voltage reference is 10 V; this parameter is 5 V in 

Figure 5.12. I checked the input capacitance, Ciss, of both S1 and S2 by reviewing their 

respective datasheets. These capacitances are shown in Table 5.2. By using Equation 

5.9, the values of IG and Rg (Rg = △VGrid/IG), can be obtained. Figure 5.13 shows the 

response of the MOSFET SPP80P06P H under the condition that ID = 1.5 A and VGS = 

10 V. 

 

Table 5.2: the values of IG and Rg for P-Channel [27] and N-Channel [28] metal-oxide 
semiconductor field effect transistor (MOSFET) drivers. 

 P-channel (SPP80P06P H) N-channel (PSMN80R5-100PS) 

Ciss 4500 pF 9500 pF 

△VGrid 10 V 5 V 

IG 450 mA 475 mA 

Rg 22 Ω 10 Ω 

Delay △t ≤ 100ns 

 

 

Figure 5.13: The metal-oxide semiconductor field effect transistor (MOSFET) response to a 
10 V pulse-width modulation (PWM) input signal via the MOSFET driver. 

 

A small resistor, Rg, connected to the gate helps to eliminate swings, but this 

addition causes a delay when turning on the MOSFET. Figures 5.14 and 5.15 show 

the delay difference when turning on an N-channel MOSFET SPP80P06P H (ID = 1.5 A; 
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VGS = 10 V) without and with the small resistor, respectively. Times of 59 ns and 881 

ns were required to conduct electricity with a Rg of 1.5 Ω and 10 Ω, respectively. 

 

Figure 5.14: The delay (59 ns) in turning on the metal-oxide semiconductor field effect 
transistor (MOSFET) SPP80P06P H without the small resistor (ID = 1.5 A; VGS = 10 V; Rg = 1.5 

Ω). 

 

 

Figure 5.15: The delay (881 ns) in turning on the metal-oxide semiconductor field effect 
transistor (MOSFET) SPP80P06P H with the small resistor (ID = 1.5 A; VGS = 10 V; Rg = 10 Ω). 
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As illustrated in Figures 5.14 and 5.15, it takes < 100 ns to turn on the MOSFET when 

a smaller Rg is selected. In addition, less heat is generated during the off-to-on 

period. This guarantees that the MOSFET does not burn out quickly. 

 

5.3 Switch Circuit Design and 

Implementation 
As mentioned in Section 5.1, the main aim in designing this type of switch circuit 

(Figure 5.1) was to achieve the symmetrical working of the system’s two parts. 

Figure 5.16 depicts the ideal case of both system parts in terms of the SC banks’ 

terminal voltages. In Figure 5.16, ideally, if the left half (part 1) and the right half 

(part 2) of the system are identical, when SC bank 1 is charged to 12 V from time t0 

to time t1 (the blue line), Vc2 should also reach 12 V (the red line) at time t1. Then, 

the system starts running at a steady state. From time t1, SC bank 1 charges to 13 V 

at time t2, which is 1 V higher than half-Vs (0.5 * 24 = 12 V). On the other hand, SC2 

discharges to 11 V at time t2, which is also 1 V but lower than half-Vs. After time t2, 

both parts change their phase: SC bank 1 is discharged while SC bank 2 is charged. 

Subsequently, they ‘meet’ again at time t3 at 12 V. This process maintains until a 

sudden outage of power supply (reasons may include sunset, a sudden breakdown of 

the solar panels, a failure in an electronic circuit or similar problem) at time t6. Both 

banks release their stored energy to maintain system running for a period of time.  

 

Figure 5.1: Circuit diagram of the complete DC microgrid system. 

 



 Chapter 6: Results, Conclusions and Future Developments 

91 
 

 

Figure 5.16: The ideal running situation for the DC microgrid.  

 

As shown in Figure 5.16, the voltage drop on an LED array is: 

 

CSLED VVV 1        (5.10) 

 

When the SC is charged, and: 

 

CLED VV 2         (5.11) 

 

When the SC is discharged. 

 

The blue and red lines in Figure 5.16 (Vc1 and Vc2) always ‘meet’ at 12 V when the DC 

microgrid system is running at a steady state between time t1 and time t6, and both 

SC banks are always running within a voltage range of 

 









1

2

1
SV          (5.12), 

 

To  
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







1

2

1
SV         (5.13). 

 

By solving equations 5.10 and 5.11, it can be seen that the voltage drop on LED 

arrays ranges from 

 









1

2

1
SV          (5.14) 

 

Volts, to  









1

2

1
SV         (5.15)  

 

Volts. 

As mentioned in the last section of Chapter 4 “Light-emitting Diode (LED) Lamp 

Testing”, LEDs normally emit light with a constant brightness within a voltage range 

of 5.3 V to 17 V. Therefore, the DC microgrid system, with just a 2 V output 

fluctuation, is theoretically good and stable enough to convert a 24 V power source 

to an 11 V–13 V output to run LED arrays. 

However, the ideal situation never exists in the ‘real world’. Figure 5.17 is a snapshot 

of an oscilloscope reading when ran the switch circuit in real time. As can be seen, 

VSC1 (the SC bank 1 voltage) sometimes dropped more quickly than VSC2 (the SC bank 

2 voltage) rose, and vice versa. At times t3 and t5, the two SC banks rarely achieved 

the desired equilibrium voltage level. There was even a short period from time ta to 

time tb in which both SC banks were charging at the same time. This non-ideal 

phenomenon occurred repeatedly because: 

 

1. The components used to construct the two halves of the system were not 

identical; and/or 

2. Sunlight irradiance fluctuations led to variance in source voltage. This variance 

significantly influenced the two SC banks’ charging speed. 

 

In fact, the period from time ta to time tb could be shortened but could not be 

eliminated. 
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Figure 5.17: ‘Real life’ oscilloscope reading obtained when running the DC microgrid switch 
circuit. 
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In Table 5.4, four stages (stages 6, 7, 10 and 11) are marked by grey shadows 

because conditions were not good enough for the microcontroller to make decisions. 

Therefore, more calculations are needed to deal with these non-ideal situations. 

Figure 5.18 illustrates how the microcontroller ‘made decisions’ when conditions 

were not good enough. 

Table 5.4: Logic table. 

Vc 0 V–11 V 11 V–12 V 12 V–13 V 13 V–24 V SC1 SC2 

① SC1, SC2    C C 

② SC1 SC2   C X 

③ SC1  SC2  C D 

④ SC1   SC2 C D 

⑤ SC2 SC1   X C 

⑥  SC1, SC2     

⑦  SC1 SC2    

⑧  SC1  SC2 C D 

⑨ SC2  SC1  D C 

⑩  SC2 SC1    

⑪   SC1, SC2    

⑫   SC1 SC2 X D 

⑬ SC2   SC1 D C 

⑭  SC2  SC1 D C 

⑮   SC2 SC1 D X 

⑯    SC1, SC2 D D 

C = charge; D = discharge; X = running state unchanged 
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Figure 5.18: A flow chart showing how the microcontroller ‘makes decisions’ in directing DC 
microgrid operations. 

 
 



 Chapter 6: Results, Conclusions and Future Developments 

96 
 

5.3 Selection of SC Bank Size 
In the current research project, I designed a DC microgrid to run 50 W loads (10 LEDs 

total, with each half or part of the system running 5 x 5 W LEDs) for a period of time 

when a sudden power outage occurs. 

Assuming that the efficiency of my microgrid is 90% (these data were measured and 

are shown in Chapter 6), if the LED array is required to emit light for a certain period 

of time (t) after a sudden power failure, the total energy needed for each LED array 

is 5 x 5 W x t = 25 tW. 

All of this energy can be extracted from the SC. Therefore, the energy stored in the 

SC should be at least 

 

Ec * 90 % ≥ 25 tW       (5.16). 

 

In addition, 

 

2

2

1
CVEC 

        (5.17). 

 

Meanwhile, LED lamps work properly between 5.3 V and 17 V. However, it would be 

better to set a lower voltage range of operation for the VLED between 11 V and 13 V 

for safety of the LED lamps. In addition, it would be better to provide at least 6 V to 

the LED at the time of the power failure. Assume that the power supply is removed 

when the terminal voltage of the SC is 12 V. Therefore: 

 

6.48

25
25%9054546

2

1
12

2

1 22 t
CtWCCCCEc 

 (5.18) 

 

To address these issues, I prepared Table 5.5, an estimation
 
of approximate 

capacitance if LED arrays were required to glow for 3 min, 10 min, 30 min or 1 h. 

 

Table 5.5: Capacitance selection for LEDs.  
T 3 min 10 min 30 min 1 h 

C 100 F 300 F 1,000 F 1,800 F 
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6.1 Results 
DC microgrid system with SC-assisted converter was tested to determine the 

following behaviours: 

 

 How the output efficiency changed in response to a change in the irradiance 
at different capacitance conditions. 

 How long this system emitted light after a mains power outage. 
 

6.1.1 Efficiency of the DC microgrid system 

The efficiency tests were carried out on the completed SC-assisted converter system. 

Figure 6.1 is an oscillograph showing when the system was running at a steady state. 

The yellow trace and the blue trace show the terminal voltage of SC bank 1 and SC 

band 2, respectively (Figure 6.2). Taking the blue trace as an example, during the first 

stage (Figure 6.2; times t1–t2), the SC bank 2 was charged from V1 (at time t1) to V2 

(at time t2). The total energy provided by the power source was partly consumed by 

the LED lamps and loop resistance; part of the energy was stored in the SC bank 2. 

During stage two (Figure 6.3; times t2–t3), the power source was disconnected from 

the right-hand half (SC bank 2) of the system. At this time, the SC bank 2 released its 

stored energy to the loop to keep the LED lamps 2 glowing until the terminal voltage 

of the SC bank 2 dropped back to V1 (at time t3).  
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Figure 6.1: The terminal voltage of one of the supercapacitor (SC) banks (blue trace), when 
the system was running at a steady state. 

 

 

Figure 6.2: Stage 1, t1–t2, as the SC bank 2 (blue) charged.  
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Figure 6.3: Stage 2, t2–t3, when the right-hand SC bank 2 was disconnected from its power 
source and released its stored energy to power the LED array 2. 

 

During this time t1–t2–t3 period, the efficiency of the system can be calculated by 

using following formula (Equation 6.1): 
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The efficiency of each of either half of the DC microgrid system, SC bank 1 or SC bank 

2, can be calculated by using the same formula (Equation 6.1). The integration in the 

denominator and numerator can be replaced by using an accumulation with an 

interval of 1 s (Equation 6.2 below). This significantly simplifies the calculation: 
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The value t can be assigned to a value from t = t1 to t = t1 + 1, t1 + 2, ……, t2, t2 + 1, t2 + 

2, t2 + 3, ……to t3. 
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Figures 6.4–6.6 show system efficiency measured on a sunny day, a cloudy day and a 

rainy day, respectively. As can be seen, higher irradiance yields higher efficiency. This 

relationship is illustrated in Figure 6.7. 

 

Figure 6.4: Irradiance vs. DC microgrid system efficiency on a sunny day. 

 

Figure 6.5: Irradiance vs. DC microgrid system efficiency on a cloudy day. 
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Figure 6.6: Irradiance vs. DC microgrid system efficiency on a rainy day. 

 

 

Figure 6.7: Efficiency vs. line voltage at various capacitances. 
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6.1.2 Light Emission Times After a Mains Power Outage  

The theoretical light emission time (Tt) after a mains power outage can be obtained 

by using Equation 5.18 (described in Chapter 5, Section 5.3, “Selection of SC Bank 

Size”). Actual data were obtained by suddenly removing the power supply and 

recording the time from time t6 (SC terminal voltage [Vc], 12 V [VS/2]) to 6 V 

 

Table 6.1: System running time during simulated mains power outage. 

SC Capacitance 130 F 260 F 1500 F 

Tt (theoretical) 249 s 499 s 2880 s 

Tm (measured) 192 s 389 s 2416 s 

 

6.2 Discussion and Conclusions 
An SC-assisted converter for a DC microgrid system is workable. Under the control of 

the SC-assisted converter, the total efficiency of the DC microgrid system I designed 

in the current study was between 90% and 94%. Capacitance differentials have only 

a minor influence on system efficiency. In fact, efficiency is mainly influenced by 

irradiance, and a higher irradiance therefore leads to a higher efficiency. 

By comparing the theoretical (Tt) and actual light emission (Tm) times displayed in 

Table 6.1, it is easy to see that the measured value is less than the theoretical value. 

This discrepancy can be explained by the following reasons: 

The power of the LED lamp array I used was constant (5 W). If the terminal 

voltage of an LED array (ULED) drops, its dynamic resistance drops in proportion to 

the square of its terminal voltage: 

 

 
 

P

tU
tR LED

LED

2

         (6.3) 

 

If an LED array is powered by a low-voltage power source, its dynamic resistance is 

lower. Lower dynamic resistance leads to a higher loop current. In the meantime, a 

lower dynamic resistance brings about a larger proportion of voltage drop on the 

loop resistance. Taken together, these interactions cause higher power consumption 

on the loop resistance. Thus, lower VLED gives rise to lower efficiency. 

When the power supply is removed, LED array is powered by SC bank instead. The 

terminal voltage of SC bank, Vc, drops along with its discharging and the efficiency is 

getting lower and lower. This results in a shorter Tm. Therefore, in order to run the 
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DC microgrid system with a relatively high efficiency, the SC’s terminal voltage 

should be maintained within a range with a relatively high lower-limit value. 

However, solar cells are influenced by many factors. Air temperature is one of the 

key factors affecting a solar cell’s terminal output. Therefore, conclusions I have 

reached in the current research are based on conditions in which there is no air 

temperature fluctuation affecting solar panels. 

 

6.3 Recommended Future Developments 
Several improvements to my DC microgrid can be implemented in the future. For a 

start, the temperature factor can be taken into consideration. 

The prototype SC assisted converter for DC microgrid for the current project was 

meant to power a 12 V LED household lighting system (ten LED lamps, 5 W each). 

Because of inherent LED characteristics, the LED array can be powered in two 

directions. This system can therefore be simplified and designed to yield a positive 

+11 V to +13 V or a negative –13 V to –11V output to light up LED lamps. However, 

this design is not suitable for other DC appliances, such as whiteware with BLDC 

motors. To improve the design, more switches should be added to retain constant 

positive output. A LDO regulator is also required, because DC motors are sensitive to 

voltage fluctuations, even when the fluctuation range is small, as it is in my novel DC 

microgrid configuration. 
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Appendix A: Prototype Circuit (SC Assisted Power Converter) 

 

Figure 7.1: Prototype Circuit of the SC Assisted Power Converter 
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Appendix B: Prototype PCB (SC 
Assisted Power Converter) 

 

Figure 7.2: Prototype PCB of the SC Assisted Power Converter 
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Appendix C: Prototype Circuit (LED 
loads) 

 

Figure 7.3: Prototype Circuit of the LED loads 
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Appendix D: Prototype PCB (LED loads) 

 

Figure 7.4: Prototype PCB of the LED loads 
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Appendix E: Microcontroller Code for 
Switch Circuit 

#include<pic.h> 

//#define VS RA0 

 

__CONFIG(0x3184); 

 

unsigned char X, Y, Z=0, old, now, state = 1, T, S = 0; 

float VS, VC1, VC2, A, B, M, AVE; 

 

 

void interrupt ISR(void) 

{ 

 TMR1L = 0b00110000; 

 TMR1H = 0b00001100;//TMR1=3120, T=0.5s 

 TMR1IF = 0; 

 

 if(T == 0b00010010 && X == 0b00000011) 

 { 

  S = 0; 

 } 

 

 Z++; 

 if(Z==8) 

 { 

  Z=0; 

 

  switch (X) 

  { 
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  case 0b00000000://discharge in parallel 

   T = 0b00010010; 

   break; 

  case 0b00000001://discharge sc1 and charge sc2 

   T = 0b00010001; 

   state = 0; 

   break; 

  case 0b00000010://charge sc1 and discharge sc2 

   T = 0b00100010; 

   state = 0; 

   break; 

  case 0b00000011://charge in parallel 

   if(S==1) 

   { 

    T = 0b00100001; 

   } 

   else 

   { 

    T = T | 0b00100000; 

    T = T & 0b00101111; 

    S = 1; 

   } 

   break; 

  default: 

   break; 

  } 

 

  PORTC = T; 
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 } 

} 

 

 

 

void main() 

{ 

 OPTION_REG = 0b00000000;//P12 

 INTCON = 0b11000000;//P13 

 PIE1 = 0b00000001;//P14 enable the timer1 overflow interrupt 

 PIR1 = 0b00000000;//P15 

 OSCCON = 0b01110111;//P20 Oscillator Control 

 TRISA = 0b00010111;//P31 RAs configured as input 

 PORTA = 0b00000000;//P31 

 TRISC = 0b00000000;//P40 

 PORTC = 0b00000000;//P40 

 T1CON = 0b00110001;//P50 <0>turn on the timer 1 

 T2CON = 0b00000000;//P54 

 ANSEL = 0b00001111;//P32 RA0-RA2, RA4 configured as analog input 

 ADCON1 = 0b00000000;//P70 

 ADCON0 = 0b10000001; 

 

 

 Y=1;RC2=Y; 

 _delay(3000000); 

 Y=0;RC2=Y; 

  

 

 while (1) 
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 { 

   

 

  ADCON0 = 0b10000001;//P70 <7>right justified; <6>Vdd as reference 

voltage; <4:2>initially select RA1 as analog channel 

  asm("NOP;"); 

  asm("NOP;"); 

  asm("NOP;"); 

  GO_DONE = 1;//start ADC 

  while (GO_DONE); 

  VS = ADRESH * 256 + ADRESL;//get wanted voltage value from RA0 

  VS = VS / 27.5; 

 

 

  M = VS / 2; 

  A = M - 1.5; 

  B = M + 1.5; 

 

  ADCON0 = 0b10001101;//P70 

  asm("NOP;"); 

  asm("NOP;"); 

  asm("NOP;"); 

  GO_DONE = 1;//start ADC 

  while (GO_DONE); 

  VC1 = ADRESH * 256 + ADRESL; 

  VC1 = VC1 / 44; 

 

  ADCON0 = 0b10000101;//P70 

  asm("NOP;"); 

  asm("NOP;"); 
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  asm("NOP;"); 

  GO_DONE = 1;//start ADC 

  while (GO_DONE); 

  VC2 = ADRESH * 256 + ADRESL; 

  VC2 = VC2 / 44; 

 

  AVE = (VC1 + VC2) / 2; 

 

  old = now; 

   

  if (AVE < M) { now = 0; } 

  else { now = 1; } 

   

  if (old != now) 

  { 

   state = 1; 

  } 

 

  if(VS<=18)//discharge in parallel 

  { 

   PORTC = 0b00010010; 

   T = 0b00010010; 

   X = 0b00000000; 

  } 

  else if (VC1 <= A && VC2 <= A) 

  { 

   X = 0b00000011;//charge in parallel 

  } 

  else if (AVE <= B) 
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  { 

 

   if ((T == 0b00010010 || T == 0b00100001) && state == 1) 

   { 

    if (VC1 <= VC2) { X = 0b00000010;}//charge sc1 and 

discharge sc2 

    else { X = 0b00000001; }//discharge sc1 and charge sc2 

   } 

   else if (VC2 - VC1 >= 3 && VC2 >= M) { X = 

0b00000010; }//charge sc1 and discharge sc2 

   else if (VC1 - VC2 >= 3 && VC1 >= M) { X = 

0b00000001; }//discharge sc1 and charge sc2 

  } 

  else 

  { 

   X = 0b00000000;//discharge in parallel 

  } 

 

 

 

 } 

} 

 

 

 

//MOSFET driver testing program 

/* 

void interrupt ISR(void) 

{ 

 TMR1L = 0b00110000; 
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 TMR1H = 0b00001100; 

 TMR1IF = 0;//TMR1=3120, T=0.5s 

 

 Z++; 

 if(Z==8) 

 { 

  Z=0; 

 

 switch (X) 

 { 

 case 0b00100000://discharge 

  T = 0b00100000; 

  break; 

 case 0b00000001://charge 

  Y=1;RA5=Y; 

  for(long int i=0;i<32760;i++){;} 

  for(long int i=0;i<32760;i++){;} 

  Y=0;RA5=Y; 

  T = 0b00000001; 

  break; 

 case 0b00000000://discharge 

  T = 0b00000000; 

  break; 

 default: 

  break; 

 } 

// PORTC = T; 

Y=!Y;RC4=Y; 
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 } 

} 

*/ 

 

//ADC calibration program 

/* 

void main() 

{ 

 OPTION_REG = 0b00000000;//P12 

 INTCON = 0b11000000;//P13 

 PIE1 = 0b00000001;//P14 enable the timer1 overflow interrupt 

 PIR1 = 0b00000000;//P15 

 OSCCON = 0b01110111;//P20 Oscillator Control 

 TRISA = 0b00010111;//P31 RAs configured as input 

 PORTA = 0b00000000;//P31 

 TRISC = 0b00000000;//P40 

 PORTC = 0b00000000;//P40 

 T1CON = 0b00110001;//P50 <0>turn on the timer 1 

 T2CON = 0b00000000;//P54 

 ANSEL = 0b00001111;//P32 RA0-RA2, RA4 configured as analog input 

 ADCON1 = 0b00000000;//P70 

 ADCON0 = 0b10000001; 

 

 

 Y=1;RC2=Y; 

 _delay(3000000); 

 Y=0;RC2=Y; 
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 while (1) 

 { 

   

 

 

  ADCON0 = 0b10000001;//P70 <7>right justified; <6>Vdd as reference 

voltage; <4:2>initially select RA1 as analog channel 

  asm("NOP;"); 

  asm("NOP;"); 

  asm("NOP;"); 

  GO_DONE = 1;//start ADC 

  while (GO_DONE); 

  VS = ADRESH * 256 + ADRESL;//get wanted voltage value from RA0 

  VS = VS / 27.5; 

 

 

  M = VS / 2; 

  A = VS / 2 - 1; 

  B = VS / 2 + 1; 

 

  ADCON0 = 0b10001101;//P70 

  asm("NOP;"); 

  asm("NOP;"); 

  asm("NOP;"); 

  GO_DONE = 1;//start ADC 

  while (GO_DONE); 

  VC2 = ADRESH * 256 + ADRESL;//get current Vout from RA4 

  VC2 = VC2 / 44; 

 

  if(VS<=18)//discharge in parallel 
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  { 

   if(VC2<6){X=0b00000000;} 

   else{X = 0b00100000;} 

  } 

  else if (VC2 < A) 

  { 

   X = 0b00000001;//charge in parallel 

  } 

  else if (VC2 > B) 

  { 

 

   X = 0b00100000; 

  } 

 

 

//if(VC2>16){PORTC=0b00000100;} 

//else{PORTC=0b00000000;} 

 

 } 

} 

*/ 
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Appendix F: PV Simulator Codes for Creating Irradiance Profiles of a Cloudy Day 
and a Rainy Day 

 

 

Table 7.1: a table used to create Hamilton Cloudy Day Irradiance Profile. 

Line 
Numb

er 

Ramp 
Time 

Ramp 
to 

Irradia
nce 

Ramp 
to 

Tempe
rature 

Dwell 
Time 

Dwell 
Irradia

-nce 

Dwell 
Tempe
rature 

Go to 
Line 

Repea
t 

Cycles 

1 0 0 25 5000 0 25 1 3 

2 0 0 25 4800 0 25 0 0 

3 590 1 25 10 1 25 0 0 

4 590 3 25 10 3 25 0 0 

5 590 9 25 10 9 25 0 0 

6 590 17 25 10 17 25 0 0 

7 590 30 25 10 30 25 0 0 

8 590 47 25 10 47 25 0 0 

9 590 70 25 10 70 25 0 0 

10 590 103 25 10 103 25 0 0 

11 590 159 25 10 159 25 0 0 

12 590 199 25 10 199 25 0 0 

13 590 175 25 10 175 25 0 0 

14 590 204 25 10 204 25 0 0 

15 590 269 25 10 269 25 0 0 

16 590 392 25 10 392 25 0 0 

17 590 361 25 10 361 25 0 0 

18 590 452 25 10 452 25 0 0 

19 590 269 25 10 269 25 0 0 

20 590 265 25 10 265 25 0 0 

21 590 288 25 10 288 25 0 0 

22 590 408 25 10 408 25 0 0 

23 590 444 25 10 444 25 0 0 

24 590 379 25 10 379 25 0 0 

25 590 546 25 10 546 25 0 0 

26 590 460 25 10 460 25 0 0 

27 590 548 25 10 548 25 0 0 

28 590 725 25 10 725 25 0 0 

29 590 684 25 10 684 25 0 0 

30 590 590 25 10 590 25 0 0 

31 590 721 25 10 721 25 0 0 

32 590 668 25 10 668 25 0 0 
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33 590 753 25 10 753 25 0 0 

34 590 597 25 10 597 25 0 0 

35 590 621 25 10 621 25 0 0 

36 590 827 25 10 827 25 0 0 

37 590 853 25 10 853 25 0 0 

38 590 783 25 10 783 25 0 0 

39 590 968 25 10 968 25 0 0 

40 590 1205 25 10 1205 25 0 0 

41 590 865 25 10 865 25 0 0 

42 590 944 25 10 944 25 0 0 

43 590 921 25 10 921 25 0 0 

44 590 734 25 10 734 25 0 0 

45 590 1112 25 10 1112 25 0 0 

46 590 1082 25 10 1082 25 0 0 

47 590 1270 25 10 1270 25 0 0 

48 590 1241 25 10 1241 25 0 0 

49 590 863 25 10 863 25 0 0 

50 590 672 25 10 672 25 0 0 

51 590 708 25 10 708 25 0 0 

52 590 973 25 10 973 25 0 0 

53 590 1078 25 10 1078 25 0 0 

54 590 1102 25 10 1102 25 0 0 

55 590 569 25 10 569 25 0 0 

56 590 543 25 10 543 25 0 0 

57 590 779 25 10 779 25 0 0 

58 590 706 25 10 706 25 0 0 

59 590 719 25 10 719 25 0 0 

60 590 610 25 10 610 25 0 0 

61 590 655 25 10 655 25 0 0 

62 590 704 25 10 704 25 0 0 

63 590 629 25 10 629 25 0 0 

64 590 556 25 10 556 25 0 0 

65 590 620 25 10 620 25 0 0 

66 590 613 25 10 613 25 0 0 

67 590 719 25 10 719 25 0 0 

68 590 772 25 10 772 25 0 0 

69 590 635 25 10 635 25 0 0 

70 590 605 25 10 605 25 0 0 

71 590 642 25 10 642 25 0 0 

72 590 564 25 10 564 25 0 0 

73 590 640 25 10 640 25 0 0 

74 590 555 25 10 555 25 0 0 
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Table 7.2: a table used to create Hamilton Rainy Day Irradiance Profile. 

75 590 550 25 10 550 25 0 0 

76 590 449 25 10 449 25 0 0 

77 590 311 25 10 311 25 0 0 

78 590 299 25 10 299 25 0 0 

79 590 185 25 10 185 25 0 0 

80 590 148 25 10 148 25 0 0 

81 590 91 25 10 91 25 0 0 

82 590 95 25 10 95 25 0 0 

83 590 305 25 10 305 25 0 0 

84 590 40 25 10 40 25 0 0 

85 590 18 25 10 18 25 0 0 

86 590 5 25 10 5 25 0 0 

87 0 0 25 5000 0 25 87 3 

88 0 0 25 1200 0 25 0 0 

Line 
Numb

er 

Ramp 
Time 

Ramp 
to 

Irradia
nce 

Ramp 
to 

Tempe
rature 

Dwell 
Time 

Dwell 
Irradia

-nce 

Dwell 
Tempe
rature 

Go to 
Line 

Repea
t 

Cycles 

1 0 0 25 5000 0 25 1 3 

2 0 0 25 4800 0 25 0 0 

3 590 9 25 10 9 25 0 0 

4 590 18 25 10 18 25 0 0 

5 590 35 25 10 35 25 0 0 

6 590 64 25 10 64 25 0 0 

7 590 82 25 10 82 25 0 0 

8 590 72 25 10 72 25 0 0 

9 590 89 25 10 89 25 0 0 

10 590 103 25 10 103 25 0 0 

11 590 159 25 10 159 25 0 0 

12 590 187 25 10 187 25 0 0 

13 590 175 25 10 175 25 0 0 

14 590 204 25 10 204 25 0 0 

15 590 269 25 10 269 25 0 0 

16 590 344 25 10 344 25 0 0 

17 590 361 25 10 361 25 0 0 

18 590 350 25 10 350 25 0 0 

19 590 299 25 10 299 25 0 0 
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20 590 312 25 10 312 25 0 0 

21 590 356 25 10 356 25 0 0 

22 590 408 25 10 408 25 0 0 

23 590 456 25 10 456 25 0 0 

24 590 487 25 10 487 25 0 0 

25 590 546 25 10 546 25 0 0 

26 590 460 25 10 460 25 0 0 

27 590 548 25 10 548 25 0 0 

28 590 606 25 10 606 25 0 0 

29 590 532 25 10 532 25 0 0 

30 590 590 25 10 590 25 0 0 

31 590 521 25 10 521 25 0 0 

32 590 568 25 10 568 25 0 0 

33 590 534 25 10 534 25 0 0 

34 590 497 25 10 497 25 0 0 

35 590 521 25 10 521 25 0 0 

36 590 527 25 10 527 25 0 0 

37 590 553 25 10 553 25 0 0 

38 590 570 25 10 570 25 0 0 

39 590 568 25 10 568 25 0 0 

40 590 596 25 10 596 25 0 0 

41 590 555 25 10 555 25 0 0 

42 590 544 25 10 544 25 0 0 

43 590 602 25 10 602 25 0 0 

44 590 634 25 10 634 25 0 0 

45 590 612 25 10 612 25 0 0 

46 590 582 25 10 582 25 0 0 

47 590 570 25 10 570 25 0 0 

48 590 642 25 10 642 25 0 0 

49 590 663 25 10 663 25 0 0 

50 590 632 25 10 632 25 0 0 

51 590 608 25 10 608 25 0 0 

52 590 573 25 10 573 25 0 0 

53 590 588 25 10 588 25 0 0 

54 590 602 25 10 602 25 0 0 

55 590 589 25 10 589 25 0 0 

56 590 564 25 10 564 25 0 0 

57 590 555 25 10 555 25 0 0 

58 590 506 25 10 506 25 0 0 

59 590 519 25 10 519 25 0 0 

60 590 510 25 10 510 25 0 0 

61 590 489 25 10 489 25 0 0 
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62 590 504 25 10 504 25 0 0 

63 590 429 25 10 429 25 0 0 

64 590 422 25 10 422 25 0 0 

65 590 420 25 10 420 25 0 0 

66 590 413 25 10 413 25 0 0 

67 590 455 25 10 455 25 0 0 

68 590 478 25 10 478 25 0 0 

69 590 442 25 10 442 25 0 0 

70 590 401 25 10 401 25 0 0 

71 590 432 25 10 432 25 0 0 

72 590 390 25 10 390 25 0 0 

73 590 358 25 10 358 25 0 0 

74 590 364 25 10 364 25 0 0 

75 590 298 25 10 298 25 0 0 

76 590 303 25 10 303 25 0 0 

77 590 258 25 10 258 25 0 0 

78 590 232 25 10 232 25 0 0 

79 590 191 25 10 191 25 0 0 

80 590 150 25 10 150 25 0 0 

81 590 143 25 10 143 25 0 0 

82 590 102 25 10 102 25 0 0 

83 590 87 25 10 87 25 0 0 

84 590 53 25 10 53 25 0 0 

85 590 16 25 10 16 25 0 0 

86 590 3 25 10 3 25 0 0 

87 0 0 25 5000 0 25 87 3 

88 0 0 25 1200 0 25 0 0 




