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Abstract 

Conventional n-gram language models are well-established as powerful yet 
simple mechanisms for characterising language structure when low data com­
plexity is the primary objective. Much of their predictive power can be traced 
to a relatively small number of common word sequences usually comprised 
of grammatical terms, and a large number of infrequent word patterns com­
prised of thematic terms with high mutual information. The drawback for 
conventional approaches is an exceedingly large number of other n-grams 
which waste probability mass without making a reciprocal contribution in 
the formulation of accurate probability estimates. 

This thesis describes a simple modification to then-gram approach which 
attempts to preserve and enhance the most useful characteristics of conven­
tional models while mitigating their weaknesses by eradicating low utility 
contexts. If one divides the vocabulary of a language into two broad classes­
one comprised solely of contents words (nouns, verbs, adjectives, etc) and the 
other of grammatical words ( determiners, prepositions, modal auxiliaries, 
etc. )-then language can be viewed as the interlacing of two lexical streams: 
a content word sequence and a grammatical word sequence. Two words are 
said to be "super-adjacent" if they are next to each other in one of the two 
streams. 

It is shown that an n-gram model of super-adjacent terms is better able 
to exploit the high mutual information of close proximity semantic words 
and the strong syntactic dependencies exhibited in patterns of grammatical 
words, while many low-utility n-grams that include words from both classes 
are eliminated. In addition, by reducing regularly inflected words to their 
base forms and moving inflectional suffixes to the grammatical stream, large 
numbers of low frequency content bigrams are collapsed into many fewer more 
general cases, and morphological agreement is made accessible in abstraction. 
The result is a more compact model that gives better complexity estimates 
than is possible from the conventional approach. 
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Chapter 1 

Language Modeling 

Conventional word-based n-gram models are well-established as powerful and 

simple mechanisms for characterising language structure when low data com­

plexity is the primary objective. However, they are frequently regarded as 

linguistically uninteresting in the sense that they fail to capture any sort 

of grammatical abstraction which might actually form part of a speaker's 

genuine knowledge of language. Critics object that they play on lexical regu­

larities manifest in the surface form of language without offering any insight 

into the cognitive phenomena that provide them. There are, to be sure, more 

complex statistical language models that do attempt to embrace psycholog­

ically plausible aspects of grammar, but they are significantly more difficult 

to formulate and none has yet been proposed that is comprehensive enough 

to work as a practical account of language in general. 

Issues of grammatical per~picuity can be avoided by concentrating solely 

on the problem of obtaining good complexity measures. N-gram models 

work very well on these terms, but are nevertheless still subject to some 

criticism on the grounds that they simply transfer the entropy of language 

into excessive model size. While there is no doubt that grammatical models 

can provide a more terse account of language structure, they face a similar 

counter-objection that language entropy has simply been transferred into the 

excessive cost of model inference. 

This thesis shows how some compromise can be achieved by adapting the 

basic n-gram approach to incorporate more abstract forms of lexical depen­

dency. The idea is to model the sequential characteristics of grammatical 

1 



2 CHAPTER 1. LANGUAGE MODELING 

terms and semantic terms independently. This allows low entropy syntactic 

patterns to be exploited more effectively while high mutual information in 

close proximity content words is made more accessible. Furthermore, by re­

ducing inflected words to semantic base forms and treating their inflectional 

components as free-standing grammatical terms, inflection-agreement depen­

dencies are captured in a more general way. The net result is better entropy 

estimates from a smaller model without having sacrificed the simplicity, speed 

and elegance of the basic n-gram method. 

The guiding principle of the modeling approach outlined in this thesis 

is that it is profitable to distinguish between the fundamentally different 

linguistic functions and relations of open- and closed-class terms. While the 

model itself is not intended as a theory of learning or grammar per se, many 

of its procedures aim to exploit aspects of syntax and semantics which emerge 

through reasoning about the nature of linguistic structure. To that end, it 

is useful to begin constructing the argument from a brief overview of the 

philosophy and mathematics of language structure and acquisition. 

1.1 Competence-based grammars 

Early in the thirteenth century, the Holy Roman Emperor Frederick II of 

Hohenstaufen undertook a linguistic study wherein newborn infants were 

given into the sole care of foster-mothers bidden to 

suckle and bathe and wash the children, but in no wise to prattle 
or speak with them; for he would have learnt whether they would 
speak the Hebrew language (which had been the first), or Greek, 
or Latin, or Arabic, or perchance the tongue of their parents of 
whom they had been born 1 . 

It would seem that Frederick II had in mind that children came into the 

world with some sort of innate capacity to speak in a particular language. 

We may be reasonably sure that, had the experiment been carried through 

(which, thankfully, it was not), the children would not have spontaneously 

1from the Chronicle of Salimbene, thirteenth century Italian Franciscan (translated by 
G. Coulton [34]). 
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started speaking Hebrew or Arabic; though perhaps they would have instinc­

tively started to use some kind of language if we put any stock in anecdotal 

claims that twins occasionally invent a language of their own before em­

bracing the language of their parents [11]. For all intents and purposes, 

however, we regard a specific facility in any one language as something that 

is acquired-that children must hear a language to learn how to speak it. 

Some empirical psychologists of the 1950s adopted a much stronger po­

sition by regarding all attributes of language development as byproducts of 

a behavioural stimulus-response system. The developing child hears a word, 

perceives it to be accompanied with other sensory stimuli and thereafter 

forms an associative meaning based on that experience. Skinner [96], the 

champion of radical behaviouralism at the time, explained the acquisition of 

language as the shaping of a finite single-word grammar through reinforce­

ment by other stimuli. He even went so far as to dispense with the idea 

that words had any underlying meanings at all, preferring to treat verbal 

behaviour as the result of "verbal operant conditioning." That is, when a 

given sequence of words is accompanied by physical reinforcement, as when 

"give me a drink" results in getting one, or social reinforcement, as when 

correctly naming an object results in praise and encouragement, then the 

association is remembered as part of correct grammar. In the absence of 

such positive reinforcement, as when verbal behaviour is not met with the 

expected response, or the presence of negative reinforcement, as when an 

undesirable response accompanies the utterance, then incorrect grammar is 

negatively reinforced and is forgotten or falls into disuse. 

Many linguists at the time had serious misgivings about behavioural mod­

els of language acquisition. While the field as a whole was largely preoccupied 

with developing explicit theories for particular languages, there was a grow­

ing awareness that comprehensive grammars and dictionaries were grossly 

underpowered as a general explanation for the phenomenon of language­

particularly when it came to characterising what was then called "the infinite 

use of finite means." The idea that language was the product of more or less 

specific cognitive processes had been established in the previous century by 

the first neurolinguists-Broca, Bouillaud, Wernicke, and so forth-and the 

highly organised ways in which these mechanisms processed language was 
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abundantly clear, but exactly how finite mind endowed an infinite capacity 

for the production and comprehension of language was only just coming to 

light as the core problem for all of linguistics. 

Part of the problem was that, prior to the mid-1950s, linguists lacked suffi­

cient techniques for providing an accurate account of language, but advances 

in the biological and physical sciences during the first half of the twenti­

eth century provided the necessary formalisms to support revived interest in 

Frederick Il's innateness hypothesis. While other linguists, notably Halliday 

[52] and Montague [81], proposed generative models to account for the un­

bounded yet systematic characteristics of language, it is Chomsky's theory of 

Universal Grammar that has come to form the core assumption underlying 

nearly all of modern linguistics [23]. The theory states that the basic struc­

tures of language are given by innate cognitive mechanisms, and that these 

are the very mechanisms children use to learn a particular language. 

Prior to Chomsky it was widely held that human languages could vary 

without limit [62], and that any theory of grammar would therefore neces­

sarily be language specific. Chomsky's argument was to the contrary; that 

the languages of the world have more properties in common than proper­

ties which differentiate between them, and that the manners in which they 

do differ are largely superficial. But providing an explanation for the many 

similarities observed across the languages of the world was not the key is­

sue in his argument. His ideas were primarily directed against the positive 

reinforcement view of language learning put forth by proponents of empir­

ical psychology. He argued that learning from "primary linguistic data" 

(meaning sample utterances) alone could not explain the rapid acquisition of 

grammatical knowledge and the apparently limitless creativity with which it 

could be applied in everyday language use. He claimed that these feats could 

only be achieved if there was some form of generative grammar, with specific 

characteristics, encased in an inborn biological predisposition. To that end, 

he began development of a series of grammatical formalisms to characterise 

universal attributes of language structure [24, 25]. 

Opponents of universal grammar protested that the innateness hypoth­

esis is fundamentally flawed because it cannot be properly tested, but this 

objection was convincingly put down with a formal proof by Gold [4 7] in 



1.1. COMPETENCE-BASED GRAMMARS 5 

1967-and, as Kirsch puts it, "the field of language acquisition has never 

been quite the same since" [67]. Gold's Theorem proves that it is impossible 

to learn a correct grammar for an infinite language from positive instances 

(i.e. sample utterances) alone. The idea underlying his argument is that a 

learning mechanism can never be certain that the grammar it has inferred will 

not be disproved by some future example, and that an over-general grammar 

can never be disproved. Empiricists have been quick to pick up on Gold's 

observation that the theorem does not apply when the learner has access to 

negative evidence in the form of an informant (e.g. a parent or teacher) who 

can tell the learner whether a given input string is well-formed or not, the 

latter allowing over-general grammars to be eliminated from the hypothesis. 

Chomsky countered that adult speakers do not in fact routinely provide chil­

dren with such grammatical judgments, and that children anyway routinely 

ignore adults who try to correct their speech-claims which are borne out by 

studies of parent-child dialogue [13]. He further argued that parental speech 

is so degenerate, deficient and impoverished in the first place that no learner 

could build an adult language from it, and that if children made assump­

tions based upon everything their parents said their grammar would be very 

screwed up indeed [28]. 

At the heart of the grammar induction problem is the fact that for any 

one language there exists an infinity of grammars that will provide an account 

of it. Some neo-empiricists, such as Quine [88], have interpreted this to mean 

that the problem is one of selection, and have proposed that it can be solved 

simply by choosing any grammar that is correct with respect to the purpose 

at hand. Chomsky responds that this misses the point; that what is at issue 

is not the coverage of the grammar at all but rather its ability to capture 

genuine elements of linguistic knowledge in a way which rightly says what 

can and cannot be part of language [27]. 

As a whole, the school of Chomskyan linguistics might be characterised 

as one dedicated to the formation of competence-based theories of language, 

typically expressed as a formal system of rules and constraints that explain 

language structure and provide insight into its manner of acquisition. Op­

ponents argue that grammatical theories of this type are necessarily under­

determined and therefore cannot be said to explain anything [88]. Chomsky 
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concedes this as true but uninteresting in the sense that all scientific theories 

are likewise underdetermined-that mathematical formulae which describe 

the physics of planetary motion or biological theories which describe the 

evolution of species cannot rightly be thought to explain anything either, 

but are nonetheless useful tools for reasoning about natural phenomena and 

predicting future observations, and that this ought to be true for a theory 

of language. In fact, at times it appears that Chomsky is himself less con­

cerned with complete perspicuity of a grammatical theory than he is with 

the more general notion that it is at least useful to view aspects of grammar 

as amenable to some sort of logical formalism [27]. 

1.2 Performance-based models 

In the absence of a sound grammatical theory, it has been necessary for those 

working on the practical problems of natural language processing to make do 

with whatever techniques they could devise to realise some progress. Areas 

such as speech recognition, optical character recognition, part-of-speech tag­

ging, thesaurus building, key-phrase extraction, and so forth have led to the 

development of a number of statistical techniques able to achieve high levels 

of success without having to underpin their methods in terms of anything 

that might specifically be called linguistic knowledge. Such approaches are 

said to be performance-based, where metrics of success are not determined 

by psychological plausibility of the underlying model, but by its ability to 

make accurate predictions about the surface properties of language. 

By far the most commonly adopted statistical method for achieving good 

probability estimates of language is then-gram model [6, 57], a context-based 

prediction scheme derived from Carnap's proposal for measuring the degree of 

confirmation for a hypothesis when dealing with the problem of extrapolation 

from a long sequence of symbols. Carnap states the problem specifically as: 

given a very long preceding sequence of symbols T constructed from a finite 

alphabet, what is the probability that it will be followed by the subsequence 

a? ([21], page 34) 

Solomonoff [107] argues that all problems in inductive inference can be 

expressed in the form of extrapolation of a long sequence of symbols, in that 
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a sufficiently long T will contain all the information necessary to assign as 

accurate a probability to a as would be possible from scientific laws. He 

concedes, however, that in practice it is not possible to evaluate Carnap's 

probability directly from a mathematical equation, but nevertheless that ap­

proximations are possible which are both "qualitatively and quantitatively 

reasonable." The equation he refers to derives from Bayes' Theorem, and 

the approximation he has in mind is one which assigns probabilities to finite 

length T and a. In the case of word-based n-gram models, a is generally 

restricted to a single vocabulary item, and T is the n - 1 word history imme­

diately preceding a. The approximation formula can be stated more formally 

as 

now commonly referred to as the formula for sequential maximum likelihood 

estimation [19]. Solomonoff makes the very strong claim that a model based 

upon this form of conditional probability estimation can be made "optimum" 

in the sense that it would be at least as good as any other conceivable model 

when it comes to providing an account of a symbolic sequence. 

Other models may devise mechanical explanations of the sequence 
in terms of the known laws of science, or they may devise empir­
ical mechanisms that optimumly [sic] approximate the behaviour 
and observations of the man within certain limits. Most of the 
models that we use to explain the universe around us are based 
upon laws and informal stochastic relations that are the result of 
induction using much data that we or others have observed. The 
induction methods [based on Carnap's probability] are meant to 
bypass the explicit formulation of scientific laws, and use the data 
of the past directly to make inductive inferences about specific fu­
ture events. ( [107], page 16) 

With respect to natural language, one might interpret Solomonoff's claim 

to mean that while it is true that language has statistically significant char­

acteristics manifest in its surface form, it is by no means the same thing as 

saying that its underlying mechanisms are themselves probabilistic in nature 

because any systematic rule-based generative grammar would be expected to 
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produce highly regular output. But we should nevertheless not allow weak 

intuitive feelings to dissuade us from having confidence in a Bayesian sequen­

tial model that is consistent with the evidence and capable of giving accurate 

predictions about future observations. 

This viewpoint is entirely unsatisfactory from a linguistic point of view, 

but not just because of its blatant dismissal of the requirement for explicit 

formulations of psychologically plausible elements. There is a very strong 

argument against the fundamental modeling power of stochastic techniques 

which arises in light of the principle of insufficient reason. The problem re­

lates to exactly how probabilities are estimated when measuring the degree 

of confirmation. At any point in time when the model is called upon to assign 

a probability to a subsequence, a distribution over the possible subsequences 

must be calculated. In principle, Solomonoff maintains that this distribution 

should be based upon the number of times each distinct a has been seen to 

follow T in a string R, where R is sufficiently long that it can be expected to 

contain a large number of instances of T, and that this distribution becomes 

increasingly accurate as R approaches infinity. For finite R, it is occasionally 

necessary to assign probabilities to strings without having seen them, and 

Solomonoff argues that one should consider all such strings as equiprobable 

because there is no a priori reason to prefer one over any other. Chomsky 

argues that this is a significant flaw in all statistical accounts of language 

in that it inevitably leads to situations where the same degree of likelihood 

must be assigned to unseen ungrammatical expressions as would be assigned 

to unseen grammatical ones, and that this is not consistent with the appar­

ent capacity for a mature adult speaker to make accurate grammaticality 

judgments about novel sentences [23]. 

Some linguists [85, 49, 74] have argued that this so-called "zero-frequency 

problem" only undermines the plausibility of statistical language inference 

with respect to a strictly lexicalist account-meaning that the infinitely plas­

tic combinatorics of words cannot be the actual stuff of grammar formation. 

But if the generalisation procedures which lead to the construction of a work­

ing grammar are directed to appropriate kinds of linguistic abstraction (lex­

ical categories, thematic relations, and so forth), it is at least conceivable 

that a relatively small characteristic set of expressions would be all that is 
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necessary for fairly rapid formation of bootstrapping rules. The conjecture 

still assumes some level of innate linguistic knowledge to get started, but 

such knowledge need only be a quite modest assumption that semantic and 

syntactic categories are related in some way. For example, Pinker suggests 

that a child could infer from context that a word which designates a per­

son, place or thing is a noun, or that a word which designates an action 

is a verb, or that a word expressing the agent of an action is the subject, 

and so forth-and that such observations would provide sufficient basis for 

creating a rudimentary set of simple phrase trees [86]. Once an initial set 

is learned then more abstract linguistic patterns could be learned through 

distributional analyses of their appearance in already learned structures. 

It seems clear any system that used semantic contexts in such a manner 

would have to include a rich account of world knowledge, belief systems 

and the social behaviours required to assign meaning to language. It is 

equally clear that such accounts are, at least for the time being, completely 

impossible. If the model cannot detect coincidence of words and meanings­

say, for example, by deducing an association between an audible cue and 

other sensory stimuli-then some other grounds must be given for it to make 

assumptions about which linguistic phenomena are syntactic and which are 

semantic. As it happens, there are statistical properties of language which 

can, to a limited extent, provide such a distinction, and it is these properties 

that form the basis for the model described in this thesis. 

1.3 Towards a unified model 

The aim of this thesis is to determine just how a distinction between semantic 

and syntactic categories might be incorporated into an n-gram based model 

of language. There are several reasons why this is a worthwhile objective. 

First, conventional n-gram models have proven to be extraordinarily pow­

erful mechanisms for obtaining low-complexity estimates of language. This 

is not surprising in light of the fact that typical samples of language do ex­

hibit a great deal of local syntactic regularity in the form of lexical patterns 

(regardless of whether the underlying generative mechanism corresponds on­

tologically) and this is exactly the kind of regularity n-gram models excel at 
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exploiting. Second, n-gram models are extremely simple to build and apply in 

practical language processing tasks, and their properties are easily analysed. 

Third, it is difficult to formulate an alternative model that better satisfies 

the second term of the minimum description length sum: the number of bits 

required to encode data using the model [89]. This formula is widely used as 

an immediate measure of the economy of a model, and derives directly from 

Carnap's probability. 

There is one particular aspect of n-gram models that gives them a dis­

tinct advantage over other accounts of language (such as phrase structure 

grammars) and that is the fact that they provide comprehensive coverage­

meaning they are not restricted to some subset of sentences with limited 

syntactic features, but can deal with the infinite variety of real language. Cer­

tainly their inability to assign probabilities to unseen contexts is problematic, 

but other language models suffer from the same problem. The difference is 

that an n-gram model can recover from an unforseen circumstance simply by 

adding a new context to its inventory of n-grams, whereas a more abstract 

structural account may have to be entirely reformulated when confronted 

with a single novel event. 

Despite their strengths, conventional n-gram models do have some serious 

shortcomings. First, the underlying formalism leads to an exceedingly large 

model; one which is exponential with respect to the size of the vocabulary 

and the maximum length context (i.e. the value of n ). Because lexical distri­

butions are inherently hyperbolic, so too are the distributions over derivative 

n-grams, creating a situation where the vast majority of n-grams tend to have 

very little general utility. For example, Jelinek [57] trained a trigram model 

on a one and a half million word corpus and then applied it to a second text 

one fifth as large, only to discover that 25% of the trigrams in the latter had 

not appeared in the training text. One can deduce from this that, had the 

roles of the two texts been reversed, 25% of the trigrams in the model would 

not be able to make a useful contribution to the final complexity estimate 

for what is presumably a much more representative sample of the language. 

The implication is that a sizeable portion of the n-gram model inherently 

corresponds to little more than useless observations. 

Second, because n-gram generalisations are restricted to account for ex-
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plicit patterns of words, they cannot take direct advantage of higher levels 

of linguistic abstraction-relationships that reflect more general constraints 

on how a sequence of words may extend. For example, there is a very real 

categorial relationship between determiners and nouns to the extent that oc­

currence of the former signals imminent occurrence of the latter. N-gram 

models cannot take advantage of this except by gradually collecting a set of 

exemplars-a set further limited to include only those nounphrases whose 

length does not exceed n. 

Third, there are agreement constraints which give rise to syntactic regu­

larities that are not typically restricted to adjacent words, and thus are not 

accessible to then-gram approach. For example, the subject noun and main 

predicate of a sentence frequently have to agree with respect to grammatical 

features such as number, person and case. As with categorial dependen­

cies, systematic collation of examples will never allow the model to exploit 

the underlying linguistic principle, particularly because there is no implicit 

assumption which could limit the length of context necessary to guarantee 

inclusion of the two terms involved in the dependency. 

There have been attempts to develop language models based on stronger 

and more general structural formalisms than then-gram-models capable of 

assigning probabilities to category-based dependencies [17], recursive struc­

tures [22] and feature agreement phenomena [41, 16]. In fact, during the 

course of research on this thesis several more sophisticated linguistic models 

were investigated [98-106]. Automatic inference of lexical categories, induc­

tion of class-based regular grammars and context-free constituency models, 

and evaluation of the complexity estimates they provide all realise some de­

gree of success, but are ultimately unsatisfactory because they cannot take 

advantage of regularities attributable to feature agreement, and they render 

the problem of model construction at least NP-hard. Automatic acquisi­

tion of feature-value grammars and methods by which probabilistic versions 

could be formulated, trained, and used to assign complexity estimates to 

language have also been explored, but the construction of such formalisms is 

at least NP-hard, and anyway the grammars tend to degenerate into lexical 

mutual information models in a way which negates the very property being 

generalised-agreement. 
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Throughout these studies, it has become increasingly apparent that there 

is another simpler and more fundamental kind of linguistic abstraction avail­

able that could be used as the basis for a more robust sequential model of 

language-a model that unifies lexical, categorial and inflectional regularities. 

The idea is to distinguish between words whose role is primarily syntactic­

the so-called functional categories or "closed-class" words of a language-and 

those whose role is primarily to provide meaning-the thematic categories or 

"open-class" words-and model each class separately. The justification for 

such an approach can be found in a fundamental shift in theoretical ideas 

about how syntactic structures are formed. 

Traditional structuralist accounts of language regard thematic terms as 
' the basic building blocks of syntax. Nouns and verbs (and, in many accounts, 

adjectives) belonging to the open class are the lexical heads of constituent 

phrases, and more complex syntactic representations are projections from 

these terms in accordance with their subcategorisation features [110, 12]. 

Garrett [45] argued for a complement view of syntax, where the closed-class 

words-which include determiners, auxiliaries, complementizers, inflectional 

affixes, and so forth-establish the syntactic framework in accordance with 

cognitive propositional structures, and thematic categories play a passive role 

in completing syntactic forms. (Note that prepositions have the unique dis­

tinction of being simultaneously closed-class terms and lexical heads in both 

accounts.) Abney [2] expanded Garrett's ideas into an entire grammatical 

theory, and since then it has become increasingly common to view the syntax 

of the world's languages in terms of a characterisation of the inventory and 

properties of their functional categories [44, 109, 65]. 

In addition to an increased importance for functional categories in charac­

terisations of syntax, modern theories of language have also shown signs of a 

general trend away from rigid structuralism towards more relaxed constraint­

based accounts. Optimality Theory [4], for example, describes grammar­

indeed, even universal grammar-in terms of ranked, violable constraints 

instead of rules. These constraints regulate structure, making sure every­

thing is present that needs to be in a wellformed utterance, yet allow syn­

tactic exceptions to be handled easily and directly. Similarly, Chomsky's 

Minimalist Program [30, 70] views grammar as the application of local con-
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straints such that derivations are optimised with respect to how well they 

satisfy constraints of a given item proposed for integration into the struc­

ture at each point. The notion that syntax can be described in terms of the 

optimisation of locally applied constraints suggests increasing compatibility 

of competence-based and performance-based objectives in modern linguistic 

theory. 

The idea explored in this thesis is whether separate sequential charac­

terisations of functional terms and thematic terms can be parlayed into a 

smaller, more effective n-gram model than is possible from the conventional 

n-gram approach. It is important to reiterate that it is not a goal of this 

thesis to develop a theory of grammar or its acquisition. However, insofar 

as grammars are thought to be responsible for the regularities in language, a 

stochastic model that aims to maximise its predictive capacity should ben­

efit from trying to incorporate elements of linguistic theory. This thesis 

argues that conditional probabilities reflecting lexical, categorial and agree­

ment dependencies can be included within the n-gram paradigm simply by 

maintaining separate statistics for open-class and closed-class contexts. 

1.4 Thesis summary 

This thesis describes a super-adjacency model of language: a slightly un­

conventional word-based n-gram approach that provides better complexity 

estimates of language from a significantly more compact model than is possi­

ble from standard n-gram techniques. The distinguishing feature of a super­

adjacency model is that it treats the problem of generalising syntactic phe­

nomena as distinct from the problem of capitalising on semantic relationships. 

If one divides the vocabulary of a language into two broad classes-one 

set comprising contents words (nouns, verbs and adjectives) and the other 

grammatical words ( determiners, prepositions, auxiliary verbs, etc. )-then 

language can be viewed as the interlacing of two sequences, a content word 

sequence and a grammatical word sequence. Two words are said to be "super­

adj acent" if they are next to each other in one of the two sequences. A super­

adjacency model collects separate n-gram statistics for each stream. One set 

of n-grams capitalises on the syntactic regularities exemplified by patterns 
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of functional terms while the other set attempts to maximise the mutual 

information of pairs of content words in close proximity to each other. In 

addition, inflected content words are lemmatised to base forms, allowing in­

creased cooccurrence of semantically related content words in a considerably 

smailer model. Inflectional suffixes are moved into the functional stream, 

allowing slightly deeper contexts to capture agreement relations without en­

tailing a significant penalty in increased model size. 

The thesis is organised into seven chapters, each representing a more or 

less complete treatment of a distinct aspect of n-grams and language. The 

conclusions drawn from any one chapter form the basis for the argument 

laid out in the next. This chapter provides a sketch of some of the philo­

sophical and linguistic ideas which establish the motivation for this research. 

Chapter 2 outlines the formal properties of n-gram models, and provides a 

detailed analysis of the strengths and weaknesses of conventional word-based 

n-grams in light of results obtained through experimentation with large sam­

ples of English. It shows that while they are good at capturing syntactic 

structures involving closed-class words, n-grams are unsuitable for utilising 

lexical adjacencies that involve semantic words. 

Chapter 3 describes various lexicalist models that specifically target the 

high mutual information available in pairs of open-class words regardless of 

whether they are adjacent or not. It argues that while such lexical attrac­

tion models can give good complexity estimates, they are excessive in both 

model size and processing time, and (like conventional n-grams) the kinds 

of regularity they uncover are too specific to be useful for general processing 

tasks. 

Chapter 4 details sequential models which focus on exploiting the more 

general syntactic dependencies that exist between lexical categories. One 

significant problem for category-based models is their need for accurate part­

of-speech tagging prior to training, implying that a linguistic model must 

already exist before another can be inferred. However, experimentation with 

the tagging scheme of an unbounded class-based context model shows that 

conventional part-of-speech labels may be unnecessarily detailed, and that a 

simple distinction between open- and closed-class words is largely sufficient 

for preserving many of the categorial relationships that contribute to good 
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probability estimates. 

Chapter 5 introduces the super-adjacency model. Words are assessed as 

being either open- or closed-class, and each open-class word is replaced by a 

superclass symbol in the stream of closed-class words. N-gram statistics are 

garnered from this stream, allowing frequent patterns of grammatical terms, 

which are of most use in conventional n-gram models, to be preserved, while 

the plethora of n-grams that involve semantic terms are simplified to more 

general patterns involving the superclass symbol. A separate n-gram model 

is constructed for the stream of content words, increasing the incidence of 

adjacency for pairs of words with high mutual information without a signif­

icant loss of category-based prediction offered by the missing grammatical 

terms. 

Chapter 6 argues that most of the utility of mutual information in any 

strictly word-based account will be watered down in a sea of inflections, 

where fundamental semantic relationships between base forms of content 

words are obscured by the diversity of inflectional affixes. A simple technique 

for detaching inflectional suffixes is described, and experimental results are 

provided that confirm increased availability of lexical attraction, yet from a 

significantly smaller model. In addition, by including inflectional suffixes in 

the set of functional terms, agreement relations can be exploited through the 

use of deeper closed-class contexts without a significant increase in model 

size. 

Chapter 7 summarises key points from each of the preceding chapters, and 

consolidates the thesis by highlighting its accomplishments, its significance, 

and its application to practical language processing tasks. A venues for future 

work are also discussed. 
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Chapter 2 

Lexical Markov Models 

The fundamental task for a stochastic language model is to predict the next 

word in a lexical sequence. The major difficulty is that the probability distri­

bution over the set of all possible next words is unknown and must therefore 

be approximated, typically by garnering statistics from a large training sam­

ple. Before this can be done, however, it is incumbent on the designer of the 

model to decide what information is relevant when estimating a probability. 

Lexical Markov models, more commonly referred to as n-grams, assume 

that the probability of a word is dependent solely on its lexical history-the 

sequence of words immediately preceding the one being predicted. While 

the assumption is almost certainly wrong, in the sense that many other more 

abstract forms of linguistic dependency influence language structure, n-grams 

do surprisingly well at the basic job of predicting the next word. 

In this chapter, we provide an overview of word-based n-gram models. 

We show that, while n-grams are quite suitable for capturing grammatical 

patterns expressed as sequences of functional terms, they are much less useful 

for characterising semantic relationships presumed to exist between content 

words because the incidence of adjacency for specific content word pairs is 

generally too infrequent. It is argued that semantic relationships are bet­

ter modeled using techniques that can exploit long distance dependencies, 

such as the lexical attraction model outlined in Chapter 3 and the super­

adjacency model introduced in Chapter 5. In addition, it is claimed that 

dependencies between function words and content words are not lexical at 

all, but instead reflect syntactic relationships between their corresponding 

17 
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the .3 

ate .1 

Figure 2.1: A probabilistic single-state automaton for generating words. 

grammatical categories-an idea which is explored more fully in Chapter 4. 

2.1 Markov models 

One can view language as the product of an abstract stochastic process, 

where words are independent events generated according to some underlying 

probability distribution. Given such a view, it is possible to model language 

with a probabilistic finite-state automaton. Consider, as an example, the 

single-state automaton shown in Figure 2.1 which generates the language 

{ a, the, dog, cat, ate, slept}* (i.e. arbitrarily long sequences of any combina­

tion of these six words). Given this automaton, we can assign a probability 

to a lexical sequence simply by calculating the product of the probabilities 

for each word. For instance, the probability of the sequence "the dog slept" 

18 

Pr["the dog slept"] = Pr["the"] 
Pr["dog"] 
Pr["slept"] 

(0.3) 
(0.1) 
(0.2) 

X 

X 

= 0.006 

In this formulation, the automaton assigns probabilities to all sequences 

of a given length such that their sum is equal to one. For natural language 

models it is often desirable to estimate a distribution such that the sum of 

the probabilities for all possible expressions is equal to one-a property that 

is essential for the model to be appropriately generative. A simple way to do 

this is to introduce a special end of sequence symbol into the vocabulary and 
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a .3 dog .6 ate .5 

the .1 cat .4 slept .5 

Figure 2.2: A Markov chain for a subset of English sentences. 

assign it an appropriate portion of the lexical probability mass. A unique 

final state is added to the automaton and the transition to it is labeled with 

the special symbol. 

2.1.1 Markov chains 

The automaton of Figure 2.1 treats words as independent random events. 

But words are not generally independent, in the sense that there are pre­

sumed to be syntactic and semantic constraints that influence how a linear 

sequence of words can play out. Thus it is beneficial to introduce structure to 

the automaton in a way that limits how words can be combined. Consider, 

for example, the probabilistic finite-state automaton shown in Figure 2.2 

which provides an account of just eight English sentences. As before, we can 

use the automaton to assign probabilities to expressions in the corresponding 

language by calculating the product of the probabilities for each word, such 

that the probability of "the dog slept" is now 

Pr["the dog slept"] = Pr["the"] 
Pr["dog"] 
Pr["slept"] 

(0.7) 
(0.6) 
(0.5) 

X 

X 

= 0.021 

Automata of this type are known as Markov chains, named in honour of 

Alexei Markov who first used them to characterise the statistical properties 

of Russian texts [77]. 

Probabilities for words in a Markov chain are not entirely independent, 

but are conditional on the current state. Exactly what information is encoded 

in the state is given by the automaton's structure and is characterised in 

terms of the path ( or paths) through the Markov chain leading to the state. 
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For example, the probability for "dog" in the automaton of Figure 2.2 is 

dependent ( at least) on the immediately preceding word being either "a" or 

"the". In this respect, state information effectively divides a vocabulary into 

equivalence classes, where each class is defined as a set of words sharing a 

common lexical history. 

2.1.2 Markov approximations 

It is not feasible to construct Markov chains with states that correspond 

to every discrete lexical history. In fact, it is not desirable because almost 

every sentence in even a very large language sample is unique, suggesting 

that corresponding equivalence classes are unlikely ever to be called upon to 

predict a future event. 

More generally, lexical dependencies tend not to extend over great dis­

tances. It is, for example, unlikely that the first word of this thesis exerts 

much influence on the first word of this sentence. Syntactic constraints tend 

to be sentence bound, and are often restricted just to the current constituent 

phrase-as when a determiner predicts the noun within the same noun phrase, 

but says nothing about nouns in any other phrase. And, while semantic con­

straints may carry on over a long sequence of language dealing with a specific 

topic, recent semantic terms alone are likely to be sufficient for maintaining 

the relevant dependency. Therefore, we might tacitly assume that any dis­

tant dependency is sufficiently weak that ignoring it will not affect our ability 

to predict the next word. A reasonable model of language is thus one that 

treats words as conditionally independent of past linguistic events given the 

local context. 

It is practical to make a Markov assumption that only a finite amount 

of the immediate lexical history is needed to make reasonably accurate pre­

dictions about what word will occur next. Specifically, a k-th order Markov 

approximation assumes the probability of the next word is dependent solely 

on the previous k words. More formally, 

where Pr[Wi = wi] is the probability of the word Wi in the equivalence class 

wi [76]. 
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cat .4 ate .5 

Figure 2.3: An order-I context model for a subset of English sentences. 

2.1.3 N-gram models 

It is relatively straightforward to design probabilistic finite-state automata 

based on Markov approximations. The model in Figure 2.3, for example, 

corresponds to a first-order Markov approximation for the same language 

covered by the automaton in Figure 2.2. But, whereas the previous model 

must assign the same probability to "dog" regardless of whether "a" or "the" 

came immediately before it, the new model encodes the previous word exactly 

and can therefore assign different conditional probabilities to "dog" for its 

two possible single-word contexts. (Note that the model in Figure 2.1 can 

be said to model a zero-order Markov approximation because no preceding 

word influences the probability assigned to the next.) 

A model in which every state defines an equivalence class for all words 

whose histories are exactly the same n - I words is called an n-gram model­

also referred to in statistical literature as an "(n-1)-th order Markov model" 

or an "order-(n-1) context model". Such models are highly effective at ex­

ploiting regular local syntactic constructs in language, and can provide rea­

sonably accurate lexical predictions from even quite limited prior context. 

For example, the word "the" occurs in the Brown Corpus with probability 

0.062 under a zero-order Markov approximation, but with probability 0.27 

given a first-order Markov approximation when the word "of" occurs imme­

diately prior to it, and with probability 0.58 following the words "one of" 
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from a second-order Markov approximation. 

2.1.4 Data sparseness 

There is, in principle, no limit to the amount of context that can be used 

when predicting the next word, and in general one expects longer contexts 

to provide more accurate estimates of the lexical distribution. But the cost 

for greater context is an increase in model size that is exponential with the 

order of the model, such that a comprehensive k-th order Markov model for a 

language with vocabulary size V has Vk equivalence classes. Given a typical 

English vocabulary with, say, twenty thousand words, a third-order Markov 

model would have to maintain statistics for almost 1013 separate n-grams. 

In practice, Markov model states are constructed only for contexts actu­

ally observed in a training sample of the language. Even quite large samples 

tend not to contain all possible k word patterns and, as a consequence, mod­

els are usually quite a bit smaller than their potential worst case because 

unseen contexts can be treated uniformly as one equivalence class (i.e. an 

unused state). As the order of the model increases, the proportion of possi­

ble n-grams that are actually observed diminishes quickly, to the point where 

the absolute number of n-grams in the model eventually starts to decrease. 

Consider the extreme case where an k-th order Markov model for a language 

sample of length k + 1 has just one n-gram. 

Recall, however, that the whole point of using a Markov approximation 

is to avoid having too many equivalence classes that never predict a future 

event. Patterns of more than four or five words are quite rare even in very 

large language samples, meaning only a few of the possible n-grams in an 

order-five Markov model would ever be observed. More importantly, because 

lexical distributions are inherently hyperbolic, so are corresponding n-gram 

distributions, thus higher-order Markov approximations tend to produce very 

few equivalence classes that are useful for predicting words. 

Accurate predictions only become possible when a model has seen a suffi­

ciently large language sample to garner reliable statistics. As the order of the 

model increases linearly, the amount of training data required for it to sup­

port useful and accurate predictions increases exponentially. To avoid this 

problem of data sparseness, most practical models are limited to first-order 
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or second-order Markov approximations-commonly called bigrams and tri­

grams respectively [57]. 

Despite using very little lexical history, low-order context models are still 

able to deliver exceptionally good probability estimates in comparison to just 

about any other stochastic language model. And precisely how and where 

their predictive gains are made is of specific interest for this thesis. 

2.1.5 Typical language 

Before exploring the performance characteristics of various conventional n­

gram models, it is expedient to describe the language sample used for all 

experiments in this thesis. 

The Brown Corpus was compiled in the late 1960s in an attempt to cre­

ate a single, large, representative sample of American English for language 

research [68]. We chose to use this sample for studying the behaviour of vari­

ous statistical language models, not so much because it is "typical"-a claim 

we do not wish to defend at all-but because it is probably the most widely 

used corpus available, and its characteristics are well known. These features 

allow for the results and analyses outlined in this thesis to be challenged 

or confirmed more easily than if we had used corpora that are less readily 

available. 

Because this research focuses specifically on stochastic characterisations 

of dependencies between words, however, it was deemed useful to make a 

few small changes to the Brown Corpus to remove irrelevant format details 

that might obscure fundamental lexical properties. Prior to training, the 

corpus was downcased (i.e. upper case letters changed to lower case), and all 

sentence-internal punctuation was removed (i.e. commas, colons, quotation 

marks, etc.) except apostrophes. End of sentence punctuation marks (i.e. 

periods, question marks and exclamation points) were retained as sentence 

boundary markers, and as such are incorporated into the relevant statistics 

as individual vocabulary items. The result of preprocessing is a corpus of 

51,279 sentences comprised of 1,065,795 tokens with a vocabulary size of 

44,519 different words. 
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2.1.6 Information and uncertainty 

Lexical probabilities are typically quite small and, given that a stochastic 

sequence model calculates the probability of a sentence as the product of 

the probabilities of its words, the resulting value is often so small that it is 

cumbersome to express as a real number, and comparison of the probabili­

ties of two sentences can be difficult to appreciate. It has become common 

practice to express expectations about a random linguistic event in terms of 

the number of bits required to specify the outcome given a particular model 

[89]. 

The idea originates from communications theory, where the information 

content of a message is measured directly from its probability given the ex­

pectations of the recipient [95]. When the recipient knows with perfect cer­

tainty what a message will be, then the information content of the message 

is effectively zero and it need not be sent. If, however, the expectations of 

the recipient lead to some uncertainty about specific aspects of the message, 

some information must be included to help disambiguate what is intended by 

the sender from all possible meanings the recipient might reasonably assume. 

In this respect the quantity of meaning in a message is in a very real 

sense exactly the same as the amount of disambiguation information it re­

quires. One can view the situation as a kind of twenty questions game, where 

the uncertain recipient seeks clarification by asking "do you mean this?" 

and the sender responds with "yes" or "no". Relatively transparent mean­

ings generally require fewer questions than more obscure interpretations, and 

communications theory uses this idea to assign a precise value to the amount 

of ambiguity (i.e. meaning) in a message. More plainly, the number of ques­

tions that must be asked in order to assign the correct meaning to a message 

is a direct measure of its uncertainty. 

How many questions must be asked, however, depends a lot on the ex­

pectations of the recipient. Some questions are better than others and will 

lead the recipient to the correct interpretation more quickly than less prudent 

ones. But good questions will only be asked if the recipient makes valid as­

sumptions about what information is most relevant for rapid disambiguation. 

Shannon [94] shows that the number of questions needed is directly related 

to the probability assigned to the message according to the expectations of 
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the recipient, such that it is equal to the negative base-2 logarithm of that 

probability. Formally, given a message with probability p, its uncertainty 

(i.e. information content) is equal to - log2 p. 

It is perhaps easier to understand the relationship between probability 

and uncertainty with the standard example of a coin toss. Given a fair coin, 

the probability that the outcome of a single toss is "heads" is equal to one­

half. The uncertainty of the outcome is thus equal to - log2 1/2 = 1, and this 

corresponds to the number of questions one would have to ask to determine 

whether the concealed outcome of a toss was actually heads. 

2 .1. 7 Complexity and entropy 

Complexity-based induction theory has a more general way of talking about 

uncertainty [108]. Given a theory T that explains some examples E, the 

minimum number of bits required to encode E using T is the complexity of 

E with respect to T [33]. Complexity of examples given a theory is exactly 

the same thing as uncertainty of a message given expectations, but the former 

is perhaps a more natural way of looking at the performance of a stochastic 

language model. A good theory will encode examples more efficiently than 

a bad theory; thus complexity is a useful way of comparing the relative 

soundness of two competing theories. Similarly, a good language model will 

assign probabilities to words more accurately than a poor model, thus we 

can compare the performance of two models by calculating the complexity 

of the same language sample with respect to each model. 

Another important metric for evaluating a model's characteristic be­

haviour is the average uncertainty it entails about the outcome of a random 

linguistic event-a measure more commonly referred to as the entropy of a 

random variable. Shannon [94] proposed that the entropy of an event with 

probability p can be calculated as -p log2 p, and this formula is now often 

taken to be the accepted definition of entropy. 

Entropy is an important analytical measure of how good a model is at 

predicting future events. Consider the coin toss example again. This time, 

instead of asking whether the outcome of the toss is heads, we simply assume 

that it is heads and rely on the person who tossed the coin to correct us when 

we are wrong. On average, we expect to be corrected only half the time, thus 
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the amount of disambiguation information we are likely to receive over the 

long haul is just half of what we need when we do not make asumptions 

about the outcome. 

The terms entropy, complexity, uncertainty and information content are 

used throughout this thesis, and most often they are meant to be references 

to more or less the same thing: the negative log likelihood of a random event. 

If the reader prefers a less mathematical connotation, we recommend they 

keep just one general principle in mind: high probabilities, low complexity 

and low entropy estimates are all desirable when seeking a good model of 

language. 

2.2 Unigram models 

A unigram model is a zero-order Markov model that predicts the next word 

in isolation based on the global distribution for the entire vocabulary as ob­

served in a finite sample of language. That is, the probability of a word 

is proportionate to its frequency with respect to the total number of words 

observed. Despite their simplicity, unigrams allow a number of useful obser­

vations. 

Figure 2.4 plots the unigram complexity estimates for a random sentence 

taken from the Brown Corpus. Insofar as the sentence is 'typical', the graph 

implies that most of the complexity of the expression originates from the 

highly semantic terms (like nouns and adjectives), while terms whose role is 

predominantly grammatical (like determiners and prepositions) are substan­

tially easier to predict. A straightforward explanation for this is simply that 

most grammatical terms occur much more frequently than most semantic 

terms; a property that unigram models specifically aim to capitalise upon. 

But exactly why grammatical terms occur so much more frequently is bet­

ter understood through an account of their role and behaviour in terms of 

linguistic and communications theories. 

2.2.1 Complexity of semantic categories 

Entropy estimates given by unigram models conform with basic intuitions 

about the distribution of meaning within the words of English expressions-
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Figure 2.4: Unigram complexity estimates for a typical Brown Corpus sen­
tence. 

at least with respect to a strictly lexical account. That is, given that the bulk 

of meaning for an expression is carried by its semantic terms, we expect higher 

complexity estimates to be associated with them than we do for grammatical 

terms. Indeed, Table 2.1 lists fifty of the 17,879 unique instance words in 

the Brown Corpus, and the fact that these are all semantic terms with a 

probability less than one in a million is consistent with the expectation that 

meaning in language entails high uncertainty for the words. 

Certainly grammatical terms carry some meaning, but such meaning is 

rather more abstract than it is for semantic terms. For example, in the 

expression "the lion killed the tiger", virtually all of the meaning is embodied 

in the nouns and verb: "lion", "killed" and "tiger". But, by themselves, 

these semantic terms fail to make more subtle aspects of the intention clear. 

Consider, for comparison, the expression "the lion was killed by the tiger". 

It has the same semantic terms in the same order, but the intended thematic 

roles are reversed such that the subject of the sentence, previously serving 

as the agent of the action, is now the patient. This reversal of thematic roles 
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acclaims acoustics operationally turnaround wetlands 
accommodated acquiesced opportunism twirled wiggle 
accompanist acrobats preceeded typographic womanhood 
accompanists hydraulics presupposition unacknowledged worksheet 
accountable icicle robustness unthinking wretchedness 
accountants lunchroom striptease uprooted wronged 
acculturated milestones subsistent vocalization yearn 
ackerly mountaineering summarization voiceless yellowish 
acorns moustache sundials warmongering zealot 
acoustic mustering transferral weeded zombie 

Table 2.1: Fifty single instance words from the Brown Corpus. 

is signaled by additional syntactic cues given by the grammatical words. As 

rich in meaning as nouns and verbs are, they cannot (at least in English) 

embody subtly important aspects of nuance. 

2.2.2 Complexity of grammatical categories 

The relatively specific semantics of nouns, verbs and adjectives are inti­

mately related to topic, world knowledge, environment, and other aspects 

of discourse, thus any particular content word is generally infrequent in large 

representative samples of language. Conversely, grammatical terms provide 

additional linguistic information needed to clarify the intended meaning of 

the content words. Determiners, for example, supply quantification and spec­

ification of referent for nouns; auxiliaries add mood and tense to verbs; and 

prepositions carry time and space juxtapositions ( among other things) for 

subjects and objects. Such subtle characteristics of meaning are among the 

general requirements of all speech acts, and thus the words that provide them 

are necessarily quite frequent in just about any language sample. 

Table 2.2 lists the fifty most frequent terms in the Brown Corpus, along 

with their counts, and all are grammatical words ( end-of-sentence markers 

excepted) from the closed class-a set so-called because its membership is 

not open to the introduction of new terms. Closed-class words are also called 

"function words" because their function in language is to signal certain forms 

of syntactic structure (such as relative clauses, verbal complements and ques­

tions) and to introduce subtle semantic notions ( such as anaphora, possessive 
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69935 the 9542 he 5240 I 3618 they 2670 their 
48427 9481 for 5143 this 3560 which 2643 we 
36389 of 8757 it 5131 had 3410 one 2619 him 
28854 and 7285 with 4612 not 3285 you 2472 been 
26138 to 7248 as 4387 are 3284 were 2438 has 
23421 a 6996 his 4380 but 3050 all 2330 when 
21337 in 6755 on 4367 from 3037 her 2250 who 
10588 that 6375 be 4207 or 2859 she 2243 will 
10096 is 5378 at 3938 have 2724 there 2231 ? 
9815 was 5321 by 3738 an 2720 would 2216 no 

Table 2.2: Fifty most frequent words from the Brown Corpus. 

and future tense). There are approximately 500 function words in English 

[20], and they have a number of significant linguistic properties-the most 

salient of which ( when language is viewed as a statistical process) is that most 

function words are extremely frequent. In fact, if Table 2.2 was extended to 

include the next fifty most frequent wo~ds from the Brown Corpus, only four 

("said", "man", "time" and "years") would not be function words. This sta­

tistical attribute proves particularly useful when it is necessary to determine 

which words are likely from the closed class and which are not-a determi­

nation required by several models outlined later in this thesis. 

In the absence of grammatical terms, English expressions have a kind 

of default assignment for thematic roles. Given an expression like "lions kill 

tigers" it is clear that the subject of the sentence is also the agent of the main 

verb because that is the convention of the language. Thus it is that word 

order does make some contribution to clarifying subtle semantic differences. 

In addition, the mere presence of grammatical terms does not necessarily 

elicit a distinction in semantic nuance because they must be properly juxta­

posed with the semantic terms they are meant to complement. A determiner 

precedes the noun it qualifies, a modal auxiliary precedes the verb whose 

mood is to be altered, and a preposition precedes the adjunct nounphrase to 

which it applies. In addition, only adjectives (generally speaking) may stand 

between a determiner and its referent noun, only certain adverbs may stand 

between a modal and its associated verb, and nothing may stand between a 

preposition and its associated nounphrase. So it is said that English is right-
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ward selecting in that functional categories exhibit selectional properties that 

project rightward over the immediately following complement structure [83]. 

Determiners appear exclusively in nounphrases, and whenever a deter­

miner appears it marks the onset of a nounphrase [1 ]-meaning that the 

occurrence of a determiner makes the imminent appearance of a noun a 

virtual certainty. This suggests a genuine linguistic relationship between 

determiners and nouns-and similar relationships can be supposed between 

modals and verbs, and other lexical pairs. Such causative associations imply 

the availability of lexical presentiments which can be exploited for predictive 

purposes. More plainly, where a unigram model assigns a probability to, say, 

a particular noun based on that noun's frequency with respect to the total 

number of words observed in a language sample, a higher-order model which 

has access to the prior context of a determiner can improve its estimate by 

distorting the distribution for possible next words in favour of nouns. 

2.3 Bigrams and higher-order models 

A bigram model is a first-order Markov model that establishes a distribution 

over the set of possible next words based on the context of the previous word. 

The probability of a word is therefore proportionate to the frequency with 

which it has been seen to occur immediately following the previous word, 

with respect to the total number of times the previous word has been seen. 

Figure 2.5 graphs a comparison between the unigram ( top line) and bi­

gram (bottom line) complexity estimates for the Brown Corpus sample sen­

tence given in the previous section. As expected, the graph shows a general 

and substantial improvement in the predictive power of a bigram lexical 

model over that of the unigram model, and the gap between the two lines 

refects the savings in the complexity estimates. Just how the overall savings 

are distributed over the sentence offers some clues about which aspects of 

language are being exploited by the bigram technique. 

2.3.1 Spurious semantic savings 

Table 2.3 itemises the complexity estimates pictured in Figure 2.5, listing 

bigrams in descending order according to the bit savings each offers over a 
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Figure 2.5: Unigram and bigram complexity estimates for a sample sentence. 

unigram model when it comes to predicting the next word. For example, the 

second row of the table indicates that the word "heater" occurs 14 times in 

isolation and 3 times immediately following "electric". The complexity of 

"heater" in a unigram model of the Brown Corpus is - log2 14/1, 065, 795 ~ 

16.22, but is only - log2 3/70 ~ 4.54 following "electric" in a bigram model, 

giving a net savings of about 16.22 - 4.54 = 11.68 bits. Note that the last 

row of the table shows the probability of "a" following a fullstop is actually 

a bit lower than its independent probability, thus its complexity estimate is 

slightly higher in the bigram model. 

The table shows that the most significant savings occur when one se­

mantic term is able to predict another. Statistically speaking, this result is 

actually due to the relative infrequency of the semantic word providing the 

context. If a particular symbol does not occur very often then the set of 

possible next symbols must be quite small. However, if this was all there 

was to it then one might not expect to see quite such substantial savings. 

For example, 49 different words occur immediately following "electric" in the 

Brown Corpus. If the distribution over these 49 words were uniform then the 
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freq. freq. -log2 -log2 bit 
Wi Wi Wi-1 Wi-1 Wi Pr[wi] Pr[wilwi-1] savings 
climates 1 cold 1 20.02 7.44 12.58 
heater 14 electric 3 16.22 4.54 11.68 
electric 70 portable 2 13.89 2.70 11.19 
for 9481 advisable 1 6.81 0 6.81 
advisable 1 is 1 20.02 13.30 6.72 
portable 13 a 7 16.32 11.71 4.61 

48428 climates 1 4.46 0 4.46 
shelters 25 for 2 15.38 12.21 3.17 
is 10096 heater 1 6.72 3.81 2.91 
in 21337 shelters 2 5.64 3.64 2.00 
cold 174 in 4 12.58 12.38 0.20 
a 23421 999 5.51 5.60 -0.09 

Table 2.3: Log likelihood gains for bigram model over unigram model. 

contextual frequency of each word in a bigram model would be 70/49 ~ 1.4, 

and the negative log likelihood of each word would be -log 1.4/70 ~ 5.6. In 

actual fact, just 14 of the words occurring after "electric" account for half 

of the observations, and "heater" is the third most frequent with a bigram 

complexity of only 4.5. 

The word "heater" occurs three times after "electric" in the Brown Cor­

pus. Given that the unigram probability for "heater" in the Brown Corpus 

is just 14/1, 065, 795, the probability that any word of such frequency would 

be chosen at least three times in 70 independent selections is exceedingly 

small. More to the point, given that Pr["heater"] ~ Pr["heater" I "electric"], 

we can be virtually certain that the independence assumption is false, and 

that the likelihood of "heater" is positively influenced by the prior occurrence 

of "electric". 

Table 2.4 lists thirty of the best predicting bigrams from the Brown Cor­

pus, and it is consistent with the proposal that bigrams comprised of two 

semantic terms buy the greatest savings in complexity estimates. In fact, all 

of the bigrams listed reduce the negative log likelihood of the second word 

by over twenty bits. But the table is misleading in that all of these bigrams 

occur just once in the corpus. In fact, more than two thirds of the vocabulary 

of bigrams in the corpus is comprised of single-instance word pairs, thus the 
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loosest possible 
lustful stares 
viva voce 
jolting tackles 
burglar alarms 

acrid stench 
highschool dramatics 
gnarled talons 
plantain lilies 
prayerful forepaws 

ambitiously coveting 
unfunnily sarcastic 
uneducated newlywed 
hypodermic needle 
transistor oscillator 

pestilent seducer 
budding womanhood 
stoutly replying 
lunchroom suppers 
yellowed prayerbooks 

halfhearted acclamation 
transatlantic jetliners 
thrombosed hemorrhoids 
breezy clotheslines 
horselike balkiness 

scurrilous under handedness 
forefingers darting 
petulant admonition 
raindrops pattered 
scathingly condemnatory 
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Table 2.4: Thirty of the best predicting bigrams from the Brown Corpus. 

contribution each makes (in isolation) to net savings for the entire corpus is 

virtually nothing. 

This distortion of bigram utility arises in part because we are using post 
hoc probabilities derived from sparse data. The tremendous savings obtained 

by predicting "possible" based on the previous word "loosest", for example, 

is achieved because the independent probability of "possible" in the training 

sample is just 373/1, 065, 795 ~ 0.0003 but is 1/1 = 1 using a first-order 

Markov approximation, given this particular context. While it is true that 

the word "possible" always follows the word "loosest" in the Brown Corpus, 

it is not true for English in general. Had the training set been bigger it may 

have been a little more representative of English, and complexity estimates 

from some of these rare bigrams might better reflect their general utility for 

predicting future events. We discuss the problem of using posterior proba­

bilities for model evaluation in the next section, but we can still get a better 

idea of the true utility of an n-gram from such raw figures by considering its 

average expected savings-its entropy. 

2.3.2 Bigram utility 

To gain a better understanding about those properties of bigram models 

which are more generally useful for language modeling, the expected savings 

attributable to a given bigram must be moderated in terms of its likelihood. 

A bigram that offers tremendous savings but hardly ever occurs is generally 
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savings bigram savings bigram 
0.019454 of the 0.0125541 in the 
0.0060538 on the 0.00602654 it is 
0.00585149 to be 0.00513457 it was 
0.00450018 had been 0.00405244 united states 
0.00395765 have been 0.00389343 he was 
0.00382503 he had 0.00369977 has been 
0.00364831 at the 0.00352614 to the 
0.00321004 from the 0.00319525 will be 
0.00313095 would be 0.00287923 for the 
0.00287317 did not 0.00279006 can be 
0.00275826 more than 0.00274467 new york 
0.00260659 may be 0.00260316 by the 
0.0025805 as a 0.00255915 with the 
0.00254367 there was 0.00239885 there is 
0.00235523 the same 0.00227233 with a 

Table 2.5: The thirty most useful bigrams in the Brown Corpus. 

less useful than a very frequent bigram that provides relatively small instan­

taneous savings. A better estimate of the general utility of a bigram can be 

obtained using the general entropy formula -p x log p, where the average 

savings given by a word pair Wi-l Wi is calculated as the difference between 

the complexity of Wi in a unigram model and its complexity in a bigram 

model times the probability of the bigram, or 

Table 2.5 lists the thirty most useful bigrams from the Brown Corpus, 

along with their expected entropy savings. In stark contrast to the prelim­

inary findings presented in Table 2.4, where pairs of semantic terms offered 

the most savings, Table 2.5 indicates that the best savings are actually asso­

ciated with pairs of grammatical terms. This is not universally true, however, 

as "united states" and "new york" are clearly semantic bigrams. It may be 

tempting then simply to attribute the low entropy estimates to the relative 

high frequency of the bigrams, but this does not hold in all cases. For ex­

ample, the bigram "with the" appears over 1500 times in the Brown Corpus, 

while "new york" occurs fewer than 300 times, yet the latter gives better en­

tropy savings. Moreover, there are over a hundred bigrams that occur more 
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frequently than "new york" which do not offer more accurate predictions. 

One explanation for the results may be that there are two kinds of lexical 

relationship providing useful bigram complexity estimates. The first is a 

purely syntactic regularity wrought from basic grammatical requirements. 

Bigrams such as "in the", "on the", "at the", "from the", "by the", "with 

the", "with a", "of the", "for the" and "to the" typically introduce adjunct 

phrases ( though the statistics will include instances where prepositions are 

being used as verb particles), which are common syntactic constructs in any 

sample of English. Further, "had been", "have been", "has been", "will 

be", "would be", "can be", "may be", "to be" and "did not" are auxiliary 

and modal verb combinations required for perfect tenses and the tensing 

of defective verbs. Both of these are also highly utilised grammatical forms. 

Thus it appears that the bigram model actually captures regularities relating 

to bona fide grammatical requirements, rather than any sort of intrinsic 

relationship stemming from pure lexical semantics. 

The second kind of lexical relationship captured in low entropy bigrams 

is one that relates to complex noun structures. Almost all of the most use­

ful bigrams in the Brown Corpus not comprised of two grammatical terms 

are pairs of semantic terms tightly coupled due to a convention in English 

nomenclature. For example, following on down a more comprehensive list 

of low-complexity bigrams, after "new york" one will find "rhode island", 

"peace corps", "per cent", "los angeles", "high school", "white house", "fis­

cal year", "nineteenth century", "world war", "united nations", "general 

motors", "president kennedy", and so on. To say that the low entropy of 

these word pairs is due to their strong semantic relationships is somewhat of 

an overstatement, as they are perhaps more rightly viewed as single terms 

that are epiphenomenally bigrams. 

2.3.3 Characterising bigram utility 

Close examination of entropy savings available from bigram models indicates 

that the vast majority of bigrams offer little better general predictive ac­

curacy than what is available from a unigram model. Figure 2.6 plots the 

expected bit savings of the 1000 most useful bigrams found in the Brown 

Corpus. The evidence indicates that, beyond the first few hundred bigrams, 
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Figure 2.6: Expected savings for the 1000 most useful Brown Corpus bigrams. 

contributions made by individual bigrams to reducing the overall complexity 

estimate for the corpus are largely insignificant. In fact, if the x-axis was 

extended to incorporate the remaining 430,705 bigrams in the corpus, the 

savings offered by the best bigrams would become obfuscated and the overall 

graph would appear to be a flat line at zero. 

Despite this ostensively poor result, and despite the significant entropy 

savings made possible by the top few hundred bigrams, most of the overall 

savings offered by bigram models can still be traced to this extraordinar­

ily large number of rare word pairs. For example, single-instance bigrams 

account for 84.5% of the total bit-savings for the Brown Corpus, bigrams 

occurring once or twice provide 92.5% of the savings, and those observed 

five times or less account for almost 97.5% of the total savings. But these 

low-utility bigrams are by no means uniform. When one examines the instan­

taneous savings of infrequent bigrams, noticeable trends emerge which high­

light a significant weakness of the modeling paradigm. While some Brown 

Corpus bigrams can save as many as twenty bits over a unigram model when 

encoding a word, there are very many others that save nothing at all or, 
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the administrator the execution the placement 
the apprentice the explanations the policemen 
the bankers the expressions the protestants 
the bees the federation the refusal 
the blast the fox the rolls 
the bottles the memories the selections 
the businessmen the misery the stature 
the celebration the onion the texture 
the creature the optimism the vapor 
the divisions the picnic the writings 

Table 2.6: Thirty bigrams that save just one bit over unigrams. 

worse still, produce even less economical encodings for words than the uni­

gram model-a situation which arises when the frequency with which a given 

word is observed following a particular context is less than its frequency with 

respect to the entire corpus. 

Bigrams that give large instantaneous savings are almost always pairs of 

content terms-an observation one could reasonably attribute to a semantic 

relationship shared between them. Bigrams that give very low or negative 

savings, however, are characteristically ones that pair one content word with 

one grammatical word. Why these pairings lead to such poor joint probabil­

ities is explained by the nature of the relationship between adjacent content 

and grammatical terms-a relationship that is far more syntactic than it is 

semantic. 

When a determiner is observed, the onset of a nounphrase is signaled and 

the probability of a noun appearing soon should increase. But the context 

afforded by the determiner does not provide much selectional power beyond 

this. Given that nouns typically constitute nearly half of all vocabulary 

items, knowing that a noun is imminent can only save about one bit when it 

comes to encoding any particular noun. Table 2.6, for example, lists thirty 

bigrams where the context provided by "the" saves just one bit over the un­

igram complexity estimate for the following noun. Certainly the determiner 

may include additional feature constraints, as when indefinite articles select 

singular form countable nouns, but such constraints can only halve or quarter 

the set of nouns and thus will only save another bit or two over a unigram 
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code. The bulk of the encoding cost for a noun is directly attributable to 

its rarity (i.e. its information content) and any savings that arise from the 

context of a preceding determiner are negligible given how many different 

nouns occur following determiners. 

Similarly, once a noun has appeared there is considerable justification for 

decreasing the probability of another noun occurring 'immediately following, 

thus about one bit may be saved. When the next word is another content 

term ( usually a verb) it is highly likely to exhibit a strong semantic associ­

ation with the preceding noun and considerable savings result. That is, the 

semantics of a noun often create strong selectional constraints over the next 

semantic term, and this translates into large savings when encoding that 

term. If, however, the next word is a grammatical term then the semantic 

relationship is often too weak to distort the distribution very much in favour 

of any particular function word. Given that function words constitute about 

50% of the tokens in a typical language sample, knowing that a function word 

is imminent does not produce much more than about one bit of savings over 

a unigram based encoding. 

It appears then that the majority of entropy gains for bigram models 

result from their ability to capture grammatical structures embodied in a 

small number of patterns comprised exclusively of functional terms, along 

with the combined effect of large instantaneous savings from copious infre­

quent content word pairs, but that vast numbers of other bigrams are all but 

useless for reducing estimates of language complexity. This tendency towards 

underutilisation of specific lexical patterns implies that bigrams are not an 

effective mechanism for capturing language structure in general-that much 

of the model's time and space is needlessly wasted keeping track of an over­

whelmingly large number of uninteresting observations of negligible value. 

2.3.4 Up from bigrams 

Increasing the order of an n-gram model increases the amount of context 

available for predicting the next symbol and probability estimates generally 

improve accordingly. As noted earlier, however, the cost for such improve­

ment is very many more parameters in every distribution. Leaving aside the 

problem of model size for the moment, it is useful to analyse some of the 
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brightly colored lithographs 
discovered ancient yoga 
entitles conscientious objectors 
face shouted senselessly 
fourteen glamorous schoolgirls 
glorious silver punchbowl 
graduate students abstractors 
great intellectual coherence 
hate minute polemics 
helping attract fairgoers 
hoarse old mastiff 
hundred hidden malevolencies 
illegal gambling dens 
independent states balkanizing 
installed red blinkers 

intellectual sterility spruced 
jet fighters strafing 
jubilantly reunited bunkmates 
looked grotesquely unshaven 
loose indian insurrections 
lower motor neuron 
mouth grinning trustfully 
naked hair queued 
numerous times rebuked 
occasionally introduced smel 
overdeveloped lower jawbone 
payment vouchers certifying 
political restraint subdues 
remained largely unexamined 
remarkably complete compendium 
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Table 2. 7: Thirty of the best predicting trigrams from the Brown Corpus. 

characteristics of higher-order n-grams in terms of their ability to capture 

linguistic regularities. 

There are well over half a million distinct trigrams in the 1,065,795 word 

Brown Corpus, and finding terse descriptions of their general characteristics is 

a considerable challenge. But there are three classes of trigrams of particular 

interest when it comes to understanding how trigram models respond to 

both regularity and diversity in large samples of language, and each class 

exhibits specific characteristics in terms of their ability to capitalise on lexical 

relationships. 

The first interesting class of trigrams is the set made up of those with the 

highest instantaneous savings over the unigram model. There are about five 

thousand trigrams in the Brown Corpus that each save as much as twenty 

bits when encoding the last word, and thirty of these are listed in Table 2. 7. 

One dominant characteristic of these trigrams is that, like the best bigrams, 

they are comprised entirely of content words. While this observation does 

not hold for the entire set, it is a dominant feature, and those trigrams 

that do involve a function word are almost always compound or complex 

nounphrases. But, again like the best unigram predictors, a more significant 

characteristic is that these trigrams are all single instance sequences, thus 
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their savings might more readily be attributed to the problem of using post 

hoc probabilities derived from sparse data (see Section 2.4.1) than to any 

intrinsically useful linguistic property they might embody. 

In comparison, Table 2.8 lists the thirty most useful trigrams from the 

Brown Corpus, where utility is given as the product of the probability of the 

trigram and its instantaneous savings over the unigram model. Once again, 

like the bigram model, it appears from this set of trigrams that those which 

provide the most benefit for lowering complexity estimates for language in 

general tend to be comprised exclusively of function words. 

The third interesting class is that consisting of trigrams with little utility, 

due to some combined effect of low frequency and poor instantaneous savings. 

There are over 130,000 trigram types in the Brown Corpus ( approximately 

15%) which give savings less than five bits over the unigram model, almost 

2500 of which actually entail negative savings. Table 2.9 lists thirty of the 

least useful trigrams, along with their average expected cost in complexity. 

Just as was the case with poorly performing bigrams, these trigrams are 

almost entirely ones which combine content words with function words-the 

vast majority being single semantic terms combined with two grammatical 

terms. 

These results are consistent with the conclusions suggested by the bigram 

study. First, while n-gram models are able to make substantial gains by cap­

turing semantic relationships between content words, specific instances of 

these relationships are too infrequent to be useful in general. N-gram mod­

els are much better at capturing common grammatical structures manifest 

as sequences of functions words, provided content words do not get in the 

way. More to the point, the strengths of the n-gram technique are severely 

undermined by vast numbers of nearly useless lexical sequences which arise 

when open-class words are combined with closed-class words. This suggests 

the possibility that a model that ignored mixed-class n-grams might obtain 

similar final complexity estimates from a substantially smaller model. 

Whether these trends hold as the order of the model increases is very 

difficult to determine because the problem of data sparseness prevents reliable 

extrapolation of characteristic behaviours. As the order of the model goes 

up, the number of possible n-grams increases exponentially, and the amount 
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savings 
trigram instantaneous expected 
as well as 6.83285 0.002519 
one of the 3.13477 0.002035 
he did not 7.09588 0.001132 
at the same 6.59481 0.001052 
in new york 11.13862 0.001035 
it would be 6.05251 0.000994 
in order to 5.01812 0.000933 
it is not 4.41524 0.000930 
a number of 4.79243 0.000913 
mr and mrs 10.96017 0.000815 
as a result 8.13856 0.000807 
he had been 5.42531 0.000756 
i don't know 8.98740 0.000738 
on the other 4.66028 0.000722 
as long as 7.08824 0.000681 
in front of 4.68981 0.000647 
out of the 2.28260 0.000615 
a couple of 4.72606 0.000549 
be able to 5.24272 0.000528 
in terms of 4.83164 0.000524 
it should be 6.87072 0.000522 
more or less 11.18184 0.000520 
it was a 2.32467 0.000516 
is to be 5.27511 0.000515 
most of the 2.90468 0.000513 
at the time 4.77769 0.000511 
it may be 6.45780 0.000510 
had to be 5.11939 0.000499 
it has been 6.88634 0.000480 
it had been 7.13391 0.000475 

Table 2.8: The thirty most useful trigrams from the Brown Corpus. 
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trigram cost trigram cost 
degree of the -1.714 a letter the -0.392 
a cross of -1.712 ssociation of the -0.392 
a single and -1.422 action and the -0.318 
a week the -1.355 and walked the -0.318 
an hour the -1.157 carried out the -0.240 
a hundred the -0.928 a major and -0.219 
a world the -0.928 a head in -0.215 
children and the -0.825 a life the -0.157 
deal of the -0.825 and south the -0.157 
an area the -0.714 contrary to the -0.157 
an individual the -0.714 a strong and -0.114 
at night the -0.714 act of the -0.114 
church and the -0.714 an arnerican and -0.078 
a car the -0.655 at present the -0.070 
a state the -0.593 average of the -0.070 
a war the -0.593 burden of the -0.070 
bed and the -0.462 cold and the -0.070 
college and the -0.462 color and the -0.070 
a child of -0.449 death and the -0.070 
a group the -0.392 a rise of -0.034 

Table 2.9: Thirty trigrams with negative savings. 

of data required to garner reliable statistics for them (in practice) quickly 

runs out of reach. For example, just 40% of all distinct unigrams in the 

Brown Corpus occur only once, but 76% of all bigram types in the Brown 

Corpus are single instance ones, 92% of the trigrams occur once, 97.5% of the 

4-grams (i.e. order-3 contexts) are single instance, and over 99% of five-word 

contexts occur only once. Thus statements about best and worst n-grarns 

in even modestly high-order models become meaningless because all n-grams 

become equally good or bad. Certainly the likelihood of finding long word 

sequences that do not include any closed-class words is greatly diminished 

and, since this is the lexical distinction of interest within this thesis, further 

discussion of n-grams is restricted to bigrams and trigrams. 
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2.4 Model measures 

Probability estimates, particularly conditional ones, depend on assumptions 

about what is or is not relevant to the calculation. All of the statistics cited 

thus far in the thesis, for example, are based on the assumption that obser­

vations made of the Brown Corpus are representative of the true underlying 

distributions. Such an assumption is quite optimistic, and can easily lead to 

erroneous conclusions. Imagine if our estimates about the outcome of toss­

ing a fair coin were based on just a few observations. If we happen to see 

an equal number of heads and tails then a subsequent assertion that they 

are equiprobable events will be correct, but any other observed distribution 

would lead to an invalid conclusion. In the worst case, we might not see 

any heads at all during training and conclude that the probability of such an 

outcome is zero! Clearly if any event is possible then its likelihood cannot be 

zero. 

Given that complexity estimates are relied upon extensively in this the­

sis when evaluating various language models, we discuss in this section the 

problems associated with using posterior probabilities. In addition, because 

the size of a model has a significant effect on estimated distributions, we 

describe how model compactness and n-gram utilisation can be factored into 

the analysis. 

2.4.1 Over-fitting the data 

It is true that bigram and trigram complexity estimates in practical language 

modeling tasks are typically very difficult to match [18]. This makes them 

attractive under Occam's principle: that a good theory, or model, is one 

that provides accurate predictions about the data. However, this has not 

actually been substantiated in the examples described earlier in this chapter 

because the entropy estimates have been based on posterior probabilities. 

Occam's principle is intended to apply to the model's ability to predict future 

observations. The models outlined in this chapter are in many instances 

incapable of doing this. 

Figure 2. 7 plots the number of bigrams gleaned relative to the amount 

of training corpus processed. While some tapering off is evident, the rate of 
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Figure 2.7: Number of bigrams with respect to number of words observed. 

growth for the bigram model remains more or less constant. As more and 

more text is observed the rate of growth diminishes, but the speed with which 

it diminishes is extraordinarily slow due to the unending occurrence of novel 

word pairs in the ever growing sample corpus. Assuming that novel n-grams 

continue to present themselves ( at least until sufficient observations have 

occurred to produce a comprehensive model) there will always be possible 

future events to which the model is unable to assign a probability. 

Unfortunately, there is no rational way to estimate what probability ought 

to be assigned to an unseen event. Practical language processing tasks deal 

with this so-called zero-frequency problem by smoothing, a heuristic process 

that prevents any probability from reaching zero while simultaneously at­

tempting to produce a more accurate distribution over observed phenomena. 

In text compression, for example, the solution is to withhold a small por­

tion of the probability mass from the observed phenomena and assign it to 

an escape procedure for dealing with novel events. How large or small a 

probability one should assign to unseen events can be adjusted based upon 

expectations about how often such events might take place and this has been 
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studied extensively [8, 22]. There is, however, some justification for just 

ignoring the zero-frequency problem in this study. 

2.4.2 Bootstrap assumptions 

One might be tempted to argue that ( unlike practical language problems) lan­

guage modeling, as an instance of grammatical inference, can ignore unseen 

n-grams all together. Grammatical inference is generally viewed as a boot­

strapping problem such that the learning mechanism must simultaneously 

acquire a characterisation of lexical relationships and assign probabilities to 

them [43). If a particular word sequence has not been observed (under the 

n-gram paradigm) then the learner has no motivation to include it in the 

model and thus no probability need be assigned to it. That is, there is no 

such thing as an unseen sequence as far as the learner is concerned. When a 

novel event does occur, the learner simply adds it to the model and assigns 

some appropriate non-zero probability to it based on its relative frequency. 

There are other reasons why it is not unthinkable to ignore the zero­

frequency problem. For a sufficiently high-order model, there may be some 

lexical combinations which, perhaps due to some fundamental linguistic con­

straint, can never occur, thus assigning probabilities to them would violate 

the principle of a stochastic generative model: that the sum of all sentence 

probabilities is one. Further, some combinations may indeed occur in speech, 

but not because they are part of the language per se. For example, a stutter­

ing speaker may start a sentence with "the the", creating a situation where 

the learner must decide whether to include this as a viable bigram or dis­

miss it out of hand as a production error that does not reflect an underlying 

linguistic principle that must be learned. This is somewhat analogous to 

Quine's parable about the person who does not believe in UFO's but is then 

confronted with what appears to be an extra-terrestrial alien. The observer 

may change his model of belief to admit the existence of such aliens, or 

dismiss the experience out of hand and carry on with his original mental 

precepts. 
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2.4.3 Assumption of generality 

There are equally cogent reasons why ignoring the zero-frequency problem 

is untenable. First, if the model does not have to account for unseen events 

then there is presumably nothing to stop it from assuming a single, very long 

context when estimating the conditional probability for a word. That is, after 

observing k words, the model maximises its estimate of input complexity by 

assuming a ( k - I )-order model and thereby maintains a perpetual capacity 

for perfect prediction from a linearly growing model. 

Second, without the ability to accommodate unseen n-grams the model 

is not adequately generative and thus must be implicitly overlooking some 

kind of generalisation that could lead to better predictions. More plainly, 

without a comprehensive set of n-grams there are likely to be some word 

sequences that form part of the language but which cannot be produced by 

the model, thus the model has failed to capture some fundamental abstrac­

tion that accounts for language regularities and, presumably, could therefore 

be exploited for improved prediction. One of Pinker's students, for exam­

ple, presented him with the most unusual sentence "buffalo buffalo buffalo 

buffalo buffalo buffalo buffalo buffalo buffalo buffalo buffalo" along with an 

adequate explanation as to why it is wellformed [85]. The explanation relates 

to acceptable complex relative clause embeddings and (obviously) polysemy 

and, if nothing else, shows that n-gram models miss a great deal of linguistic 

regularity in their superficial treatment of word combinatorics.1 

2.4.4 Maximum likelihood estimation 

Despite these objections, there is still sufficient reason why it is acceptable in 

this study to overlook the zero-frequency problem when calculating complex­

ity estimates from n-gram models. The goal of this thesis is not to propose a 

solution to the language modeling problem, but to observe how the assump­

tion of independent sequential dependencies for function words and content 

1The buffalo sentence parses because there is a city in the U.S. called Buffalo, and 
buffalo that come from there might be called Buffalo buffalo. Further, there is a verb 
"buffalo" which means to intimidate. Thus the sentence might be rewritten as "Buffalo 
that come from Buffalo that are known to buffalo other buffalo that come from Buffalo 
are also known to buffalo other buffalo from Buffalo that are themselves known to buffalo 
some buffalo from Buffalo." 
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words affects a model's ability to predict the next word. More generally, 

we want to compare models to see how changes to the underlying formalism 

influence their performance, assuming a stationary source. It is desirable 

to make such comparisons under the most favourable conditions possible-­

specifically, using parameter values that give the highest probability to the 

training data without wasting any of the probability mass. The estimate 

that does this is the maximum likelihood estimate [76], a likelihood function 

that assigns probabilities based solely on relative frequency. 

2.4.5 Minimum description length 

One danger from the maximum likelihood assumption is that it entails an 

implicit bias in favour of models that use very long contexts to predict the 

next word. High-order models end up giving extremely good entropy esti­

mates because so many of their n-grams predict the next word with near or 

absolute certainty. The penalty for this is overly large models whose deep 

contexts are observed too infrequently to capture generally useful linguistic 

patterns. 

Solomonoff's theory of inductive inference views learning as the problem 

of "finding a shorter description of the observed data" [107], thus it is de­

sirable to factor the size and complexity of a model into the measure of its 

effectiveness. A general formula for estimating the quality of a model in 

terms of both its predictive capacity and its size is given by the minimum 

description length principle [89], which states that the best theory to explain 

a set of data is one that minimizes the sum of 1) the length, in bits, of the 

description of the theory, and 2) the length, in bits, of the data encoded with 

respect to the theory [51]. 

For language modeling, the number of bits needed_ to encode a language 

sample given a model is the sum of the entropy estimates derived from lexical 

probabilities. Measuring model size, however, is not quite so straightforward, 

and depends a lot on the chosen representation. Certainly the number of n­

grams is of interest, but there are more efficient ways of encoding a set of 

n-grams than simply enumerating them. If we represent bigrams as a sorted 

list, for example, we need only itemize the first term whenever it is not the 

same as the first term of the preceding bigram. If the bigrams are not sorted 
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then a list of the same format would likely have very many more terms and 

might require many more bits to encode, thus the former method seems 

preferable. But it could be that a sorted list of bigrams with their terms 

reversed would require even fewer bits to encode. 

Other more principled methods have been proposed. The Russian mathe­

matician, A. N. Kolmogorov, suggested that the complexity of a model could 

be measured in terms of the number of bits required to express it as a com­

puter program [72], and Muggleton et al. [82] measured it in terms of the 

number of bits needed to disambiguate choice points in a corresponding proof 

tree. But, just as it is not possible to assign correct probabilities to unseen 

events, neither is it possible to compute the exact complexity of a model. 

2.4.6 Performance metrics 

In this thesis, four simple measures are used for making comments about the 

relative merits of a model. First is its ability to assign low complexity esti­

mates to language samples. Second, its absolute size in terms of the number 

of n-grams actually observed in the training sample. Third, its compactness 

with respect to a comprehensive model of the same form. And fourth, the 

spread of utilisation over the observed n-grams-giving particular consider­

ation to the number of single instance n-grams. In addition to these four 

physical metrics, informal linguistic intuitions are applied in an analysis of 

how well models capture bona fide attributes of language structure. 

2.5 Discussion 

N-gram models characterise lexical relationships directly by modifying es­

timates of the distribution over the vocabulary based upon the context of 

the words given in the prior context. But n-gram models are undermined in 

situations where the context does not contain the best evidence for forming 

an accurate prediction. It is not always the case that immediately preceding 

words offer the best clue as to what word will appear next in an expression. 

For example, in the sentence 

The result is either overheating of the manifold or failure of the valve. 
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we observe that the occurrence of the word "or" is rather more related to 

the prior occurrence of "either" than it is to any other preceding word. To 

some extent, this relationship might be exploited in a finite context model by 

increasing the length of the context so as to include "either", but this is an 

unsatisfactory solution as it leads to an exceedingly large model. Moreover, 

it would not help anyway when there are, say, six or seven words between 

"either" and "or". 

There is no doubt that n-gram models provide good complexity estimates 

for language, and they are straightforward to construct and easily applied 

to many practical language processing problems. But, as far as their ability 

to exploit real linguistic regularity is concerned, they are severely limited in 

what they can achieve. Aside from their inherent inability to capture certain 

kinds of recursive structure, such as centre-embedding, they overlook many 

aspects of lexical dependency which can in principle be expressed within a 

regular grammar formalism-specifically, categorial dependencies and some 

forms of agreement. 

This chapter shows that n-grams are very good at taking advantage of 

strong lexical relationships between adjacent content words-relationships 

that presumably arise because of an underlying semantic association. Un­

fortunately, such n-grams are also extremely rare, making them largely un­

helpful for delivering low complexity estimates for language in general. This 

situation could be moderated if the incidence of such adjacencies could be in­

creased. The next chapter outlines an alternative lexical model that achieves 

the same effect by exploiting joint probabilities for non-adjacent words. 

N-grams are also good at capitalising on frequent patterns of functional 

terms-patterns that arise in response to syntactic requirements given by 

the language. One limitation to the model's ability to take better advan­

tage of these high-frequency terms is that intervening content words create 

tremendously diverse n-grams, and this obscures the underlying regularity: 

the categorial relationship between function words and content words. If con­

tent words could be replaced with an appropriate category symbol, then the 

diversity of these n-grams would diminish and the fundamental relationship 

would become more salient. This proposal is explored in Chapter 4. 
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Chapter 3 

Lexical Attraction Models 

The n-gram studies outlined in the previous chapter indicate that uninter­

rupted patterns of grammatical terms are well utilised under such a paradigm, 

but contiguous sequences of content words are not. While strong seman­

tic relationships between content words have potential for translation into 

low complexity estimates, their relative infrequency undermines their gen­

eral utility. Furthermore, though local semantics tend to give rise to close 

proximity for related content words, the adjacency required by n-gram mod­

els is seldom satisfied. It is hypothesised that both of these effects might be 

moderated if intervening function words could be ignored in the conditioning 

contexts for content words, and that substantial improvements in probability 

estimates from a more compact model would result. 

This chapter describes the lexical attraction model-a technique that 

allows joint probabilities for nonadjacent terms to be incorporated into the 

predictive mechanism and thus exploits long distance lexical dependencies 

in estimates of language complexity. An overview of precursive grammatical 

formalisms and statistical effects in language that suggest lexical attraction 

is given, followed by descriptions of the algorithms required to identify lexical 

links. 

Results from the application of lexical attraction to practical language 

processing tasks show that while such models are good at identifying long 

distance dependencies, the overhead required to specify the dependencies 

negates the potential savings they afford. Observations about the charac­

teristic behaviour of the lexical attraction model, however, indicate that its 

51 
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fundamental strengths can be preserved within the much simpler formulation 

of n-grams, eliminating the need to specify lexical links altogether. This idea 

forms the basis for the super-adjacency models outlined in Chapters 5 and 

6. 

3.1 Lexicalist grammars 

The traditional structuralist view of syntax, begun in the 1950's, regards 

grammar as a kind of mechanical specification for the proper construction of 

sentences. The predominant formalisms define a production relation charac­

terising the manner by which words can be combined to produce well-formed 

expressions. The production relation describes syntactic derivations obtain­

able through substitution rules expressing increasingly refined subcatego­

rization properties for lexical heads-nouns, verbs, and so forth-and their 

complement structures [26]. 

In the late 1970's, some linguists were developing misgivings about purely 

structuralist accounts because of their inability to support strong statements 

about universal grammar-something even generative-transformational gram­

mars could not satisfactorily accomplish [78]. Johnson and Postal [61] re­

sponded by developing an approach to syntax in which rules could be for­

mulated directly in terms of grammatical relations between terms ( such as 

between subject and object) instead of relying on purely structural associ­

ations. While this so-called relational grammar gained many adherents, it 

lost momentum for two reasons. First, it lacked publication of a clear state­

ment about many of its details, instead finding its supporters chiefly by word 

of mouth. Second, the development of lexical-functional grammar (LFG) 

by Bresnan [14] superseded relational grammar with an extreme lexicalist 

account of language that reduced structural rules to a subordinate role. 

3.1.1 Limitations for structural models 

Significant weaknesses for n-gram models arise because of their fundamental 

restriction to the class of regular languages. This means they are unable to 

exploit some kinds of recursive structure ( such as center-embedding) or long 

distance dependencies (such as agreement constraints) which could be useful 
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when making predictions about language. The first of these can be overcome 

by adopting a stronger structural formalism, such as a context-free grammar, 

which treats sentence structures as a hierarchy of embedded substructures, or 

constituents. But context-free grammars are unable to capture long distance 

dependencies without facing an exponential increase in size. For example, 

consider the following simple context-free grammar for a small subset of 

English: 

G1 
s -+ NP VP 
NP -+ Det N 
VP -+ V NP 
Det -+ a 
Det -+ the 
N -+ dog 
N -+ cat 
V -+ chases 
V -+ likes 

The language of this grammar has 32 sentences, such as "the dog chases a 

cat" and "the cat likes the dog". The language can be extended quite simply 

by increasing the terminal vocabulary-for example, by adding the new noun 

rule 

N -+ mouse 

Addition of this rule increases the number of nounphrases from 4 to 6, more 

than doubling the size of the language as a consequence. So it is that rules 

may be continually added to introduce new nouns, verbs and determiners 

into the vocabulary, with each new rule yielding a multiplicative increase in 

the size of the language. However, when a terminal is added that embodies a 

new inflectional form, the grammar itself may have to be modified to ensure 

agreement, and this can give rise to a multiplicative increase in the size of 

the grammar for the sake of adding one new word. For example, to add the 

plural rioun "dogs" to the language of G 1 we must modify the grammar to 

preserve number agreement between the determiner and noun, and between 

the noun and main verb, as with 
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G2 
s -+ NPs VPs Det -+ a 
s -+ NPp VPp Det -+ the 
NPs -+ Det Ns Ns -+ dog 
NPp -+ the Np Ns -+ cat 
NP -+ NPs Np -+ dogs 
NP -+ NPp Vs -+ chases 
VPs -+ Vs NP Vs -+ likes 
VPp -+ Vp NP Vp -+ chase 

Vp -+ like 

In this instance the grammar nearly doubles in size just to accommodate 

the new plural noun-though admittedly ancillary verb forms have had to 

be introduced as well. Once the new inflectional form has been allowed, of 

course, new terms similarly inflected can be added with impunity. But the 

number of possible agreement constraints can be quite large-encompassing 

all noun and verb subcategorizations, case, and defective verb requirements, 

to name but a few-and if semantic agreement is also supported then the 

size of the rule set can become exceedingly large. Bresnan summarises the 

situation as follows: 

The fundamental problem for a theory of syntax is to characterise 
the mapping between semantic predicate-argument relationships 
and surface word and phrase configurations by which they are 
expressed. This mapping is sufficiently complex that it cannot 
be characterised in a simple, unadorned phrase structure formal­
ism: a single set of predicate-argument relations can be realised 
in many different phrase structures ( e.g. active and passive con­
structions), and a single phrase structure can express several dif­
ferent semantic relations, as in cases of ambiguity. 
([15], page 174) 

Bresnan 's lexical constraint grammar avoids this problem by transferring 

the responsibility of agreement conditions ( and much more) to the words 

themselves. 

3.1.2 Lexical-functional grammar 

LFG represents a marked departure from structuralist grammars in that the 

tasks of enforcing proper word order and satisfying agreement constraints are 
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c-structure 

/-structure 

s 

~ 
NP VP 

/\ ~ 
DET N V NP 

a girl 

SUBJ 

TENSE 
PRED 

OBJ 

/\ 
DET N 

I 
kissed the baby 

NUM SG [ 
SPEC A l 
PRED 'GIRL' 

PAST 
'KISS((SUBJ)(OBJ))' 

[ 
SPEC THE l 
NUM SG 
PRED 'BABY' 

Figure 3.1: A sample lexical predicate argument structure. 
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almost entirely given to the lexicon. Mapping predicate argument structures 

to surface forms is lexically encoded using universal grammatical functions, 

with phrase structure computations playing a superficial role [15]. One direct 

consequence of this so-called principle of direct syntactic encoding is that 

each inflection for a particular root word form must have its own lexical 

entry because they imply different grammatical relations. But by moving 

details of grammatical function to the lexicon, syntactic characterisations 

are greatly simplified. 

LFG assigns two levels of syntactic description to every sentence. First, 

a constituent structure (or c-structure) is used to indicate the superficial 

arrangement of words and phrases within a conventional phrase structure 
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tree. Second, surface grammatical functions are represented using a func­

tional structure ( or !-structure) which provides a precise characterisation of 

syntactic relations, such as subject, direct object, complement, adjunct, and 

so forth. Whereas c-structures are defined in terms of syntactic categories, 

capturing dominance and precedence relationships, f-structures are defined 

using grammatical function labels, semantic forms and feature values ( and 

subsidiary f-structures). 

Figure 3.1 provides an example of the LFG syntactic description for the 

sentence "A girl kissed the baby". The c-structure is given by a context­

free grammar characterising all possible surface structures for the language 

(without transformations). However, unlike conventional rewriting systems, 

righthand sides of grammatical rules give a functional specification for an 

expression, not an explicit derivation process for combining words into sen­

tences. 

Functional specifications consist of statement schemata which are, roughly 

speaking, precedence rules annotated with metavariables for capturing f­

structure information. For example, consider the following schemata for the 

statement in Figure 3.1 which express the standard phrase structure con­

stituent order: a sentence consists of a nounphrase followed by a verbphrase. 

S -+ NP 
(j SUBJ)=! 

NP -+ DET 

VP -+ V 

VP 
i=! 

N 

NP 
(i OBJ=!) 

The metavariable assignment (j SUBJ) =! in the S schema indicates that the 

subject {-structure comes from the NP immediately dominated by S. More 

plainly, the ! metavariable refers to the node's own f-structure (i.e. that of 

the subject NP), and the j says that the same f-structure is a subsidiary 

within the parent node's SUBJ f-structure (i.e. for S itself). Put another 

way, arrows that point to each other across one line in the corresponding 

parse tree are instantiated with the same {-structure value. 

The metavariables become instantiated with actual variables when a rule 

is applied. The actual variables capture specific syntactic and semantic fea-
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tures, and ultimately become grounded by terminal symbol schemata in the 

lexical entries. Lexical schemata include part-of-speech information and in­

flectional features for each word of the language. For example, the lexical 

entries for the sentence of Figure 3.1 are 

a: DET, (j SPEC) = A 
(j NUM) = SG 

the: DET, (j SPEC) = THE 

girl: N, (j NUM) = SG 

baby: N, 

kissed: V, 

(j PRED) = 'GIRL' 

(j NUM) = SG 
(j PRED) = 'BABY' 
(i TENSE)= PAST 
(j PRED) = 'KISS((SUBJ)(OBJ))' 

Note that lexical schemata are of the same form as the grammatical schemata 

of c-structure rules allowing uniform treatment during instantiation. All 

metavariables for words are of course j ones because lexical items are always 

nondominating (i.e. terminal symbols). 

Variable instantiation occurs in three phases. First, grammatical schemata 

are attached to appropriate c-structure nodes as given by the rules, and 

the lexical schema for each word is attached to its immediately dominat­

ing preterminal node. Second, initial £-structure forms are created for each 

metavariable and instantiated with any details specified by the schemata. 

Finally, each L-variable is instantiated within the £-structure at that node 

by merging with the j-variables of all the nodes it immediately dominates. 

Provided there is no contradiction in merging the details of £-structures at 

adjacent levels, the £-structure for the root node gives a complete functional 

description for the sentence. That is, a successful merge requires that all 

immediately dominated nodes agree as to the specific value of each syntactic 

feature within the £-structure of their common parent. 

Merging of £-structure details is recognizably the process of unification, 

which was just making its way into computational linguistics at the time LFG 

was first introduced. Colmerauer [32] had only recently shown how to sup­

port unification within logic programs, and Kay [63] had demonstrated how it 
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could be used to maintain and pass grammatical information during a parse. 

The feature schemata of LFG proved a perfect match to the parameter vec­

tors of logic programming, demonstrating the viability of unification-based 

grammatical formalisms within a computational framework [78]. 

3.1.3 Limitations of feature-values 

One of the most important aspects of LFG is its potential to eliminate the 

exponential growth inherent to conventional phrase structure grammars when 

attempting to address the problem of agreement. Instead of incorporating 

large numbers of special purpose rules to deal with each form of inflection, as 

demonstrated earlier in this chapter by grammar G 2 , a substantially smaller 

set of general purpose rules can be annotated with feature parameters. Thus, 

for example, G2 can be expressed more tersely with the following unification 

grammar: 

G3 
s -+ NP(X) VP(X) 
NP(X) -+ Det(X) N(X) 
VP(X) -+ V(X) NP(Y) 
Det(sing) -+ a 
Det(_) -+ the 
N(sing) -+ dog 
N(sing) -+ cat 
N(plur) -+ dogs 
V(sing) -+ chases 
V(sing) -+ chases 
V(plur) -+ chase 
V(plur) -+ like 

The grammatical structure of a sentence and its constituents is characterised 

through more general rules by transferring agreement details to feature pa­

rameters. Actual feature values are given by lexical rules, and percolate up 

through the parse tree by way of unification. The feature parameters thus 

permit conveyance of dependency constraints between distant constituents, 

such as the required number agreement between the subject nounphrase and 

main verb in G3 . 

The array of syntactic and semantic agreement constraints can grow with­

out limit by extension to the parameter vector at any node. Thus if it is 
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desirable, say, to prevent "colourless green ideas" from "sleeping furiously" 

one could introduce a feature which validates the capacity for "sleep" for 

just those nouns to which it seems appropriate. Such a feature may extend 

to the concept of, say, "waking" as well, allowing more general application 

of a particular feature value. However, the ability to increase the number of 

sustainable agreement constraints highlights two important shortcomings of 

feature-value formalisms. First, the savings in grammar size are somewhat 

misleading in that, while the size of the syntactic description for constituent 

structure is indeed reduced, it comes at an increased cost in the size of the 

lexicon. Second, and more importantly, the decreased complexity with re­

spect to grammar size is simply transposed into increased complexity in the 

execution of the unification process. The grammar may be smaller but its 

application in generative procedures is substantially more complex. 

3.1.4 Link grammar 

The idea of feature agreement is of interest for language modeling in that the 

existence of lexically-p.riven constraints must influence probability estimates 

for the occurrence of one word given another. That is, if the feature matrix of 

one word imposes agreement restrictions on others then this can be exploited 

for predictive purposes. But to establish lexical relations through a hierar­

chical structure, as LFG does, is an unnecessary overhead. Notions about 

constituents and phrasal categories can be ignored if lexical dependencies can 

be established directly. 

Sleator and Temperley [97] devised the link grammar as an unconven­

tional formalism for capturing agreement constraints as direct links between 

words. A link grammar connects pairs of words in a sentence using undi­

rected labelled arcs. A valid parse exists if the grammar defines at least one 

linkage for the entire sentence which results in a connected planar graph. For 

example, Figure 3.2 shows a link parse for a sample sentence of English. 

In Sleator and Temperley's original system, labelled links correspond to 

grammatical relations between words. The labels shown in Figure 3.2, for 

example, are interpreted as follows: S connects a noun to its verb, EV connects 

a verb to its modifying prepositional phrase, 0 connects a verb to its object, D 

connects a determiner to its noun, and J connects a preposition to its object. 
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EV 

J 

s 

he ate the banana with a spoon 

Figure 3.2: A sample link grammar parse. 

Their vocabulary of labels captures 107 different grammatical relations­

roughly the same size as a conventional set of part-of-speech labels that 

might be found in a standard phrase structure grammar. 

Matching rules are specified in the dictionary as a sequence of connector 

specifications which define linking requirements for individual words. The 

connectors specify kinds of links a word may be involved in, and each con­

nector is followed by either + or - to indicate whether the word attaches 

respectively at the left or right end of the proposed link. A match occurs 

when two words can be found which satisfy the connector at opposite ends 

of the link. 

To that end, each entry in the dictionary consists of a set of words asso­

ciated with a common matching rule defining how such words may be linked 

to others. A rule is expressed in a disjunctive form wherein connectors are 

combined using the binary associative operators & and or. All lefthand con­

nectors in the rule must be satisfied, along with any righthand connectors 

which follow. For example, the following entries define link requirments for 

a handful of nounphrases. 

a: 
big black ugly: 
dog cat stick: 

Os+ 
A+ or (AI- & {©EV+}) 
{©A-} & Os- & {©M+ or (C+ & Bs+)} 
& (J- or 0- or ({C- or CL-} & Ss+) or Sis-) 

The partial linkage these rules give for the nounphrase "a big black dog" is 

shown in Figure 3.3. The Os+ requirement for "a" indicates it must connect 
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Ds 

or 
(@M+ 
(C+ Bs+ 

a big black dog 

Figure 3.3: A partial linkage for a simple nounphrase. 

rightward with a Ds-. This is satisfied by the connector matching rule for 

the noun "dog", but the noun's rule also allows zero or more leftward links 

with a A+, as specified by its connector ©A-, where the© means any number 

of These links are achieved with the two adjectives "big" and "black". The 

noun's matching rule further indicates that it has an outstanding linkage 

requirement of type ©M+ or C+ ct Bs+, which must extend rightward. The 

remainder of the noun matching rule is ignored because any other interpre­

tation would require different leftward links than are possible (such as a prior 

J+ ). (Note that lowercase letters of connector labels are conventionally sub­

scripts for allowing more general link requirements, such that Ds+ can link 

with Ds- or just D-, but not with Dp-.) 

Unlike phrase structure formalisms, including LFG, words that are associ­

ated syntactically and/or semantically within a sentence are directly linked to 

each other after parsing, instead of having their relationships established by 

a hierarchical constituent structure. This high degree of lexicality suggests 

that a probabilistic form of the grammar might perform well for language 

modeling. 

3.1.5 Stochastic link grammar 

The basic operation of phrase structure grammars is the application of rewrite 

rules. Parsing with phrase structure systems can be made more efficient 

when rules are annotated with probabilities-as with stochastic context-free 

grammars [22]-by allowing more likely productions to be explored first when 
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seeking a derivation. Analogously, the basic operation of link grammars is 

linking. So it is that the process of finding a linkage ( or the best linkage) can 

be improved by choosing links according to a probability distribution. 

A link depends upon two things: the direction of the link, and the choice 

of word in that direction to link to. These in turn depend upon choosing 

an appropriate disjunct for the words of the sentence. Given that links are 

a symmetric binary relation, parsing sentences left-to-right eliminates the 

direction problem by reducing the search to rightward links only. Thus as­

signing a probability to a linkage involves assigning a probability to a disjunct 

and to the resolutions for its rightward links. This is similar to bottom-up 

parsing with probabilistic context-free grammars, and Lafferty et al. (69] 

outline a dynamic programming algorithm, analogous to the inside-outside 

algorithm (59] for PCFGs, which calculates maximum-likelihood estimates 

from probabilistic link grammars. 

What is important about probabilistic link grammars is not so much 

the details of their parsing algorithms, but the observation that they are a 

constrained context-free formalism. This means they subsume probabilistic 

context-free grammars and, consequently, n-gram models; but are stronger 

in that they are able to capture long distance dependencies. However, while 

they are released from the demands of the unification process required by 

LFG, link grammars must still satisfy predefined grammatical relations, and 

this incurs heavy penalties in the form of parsing complexity and the need for 

a substantial amount of prior grammatical knowledge. Given that language 

modeling seeks to exploit only the predictive aspects of language structure, it 

would be useful to find a way to preserve syntactic associations between words 

without the baggage of subcategorization features or abstract grammatical 

relations. 

3.2 Stochastic lexical relations 

LFG and link grammar each couch lexical relationships in terms of higher 

level abstractions-syntactic associations which require satisfaction of either 

feature agreement or connector constraints respectively. But language mod­

eling need not be concerned with labeling a lexical relationship. It is sufficient 



3.2. STOCHASTIC LEXICAL RELATIONS 63 

to establish that some relationship exists, and even then only if such knowl­

edge increases a model's ability to predict the next word in an expression. 

Further, it is not even necessary to establish whether the relationship is lin­

guistically genuine (however one might wish to define such a notion), though 

one might suspect that actual relationships manifest stronger statistical de­

pendencies. 

The challenge for the language modeler is to find a way to capitalise on 

the statistics of direct lexical associations. Finite context models can avail 

themselves of relationships between adjacent words, but once the distance 

between two related words exceeds the size of the context, conventional n­

gram techniques begin to break down. Moreover, a context may include 

words which do not participate in the relevant relationship and thus they 

create unnecessary overhead by increasing the size of the model dramatically 

without providing a reciprocal improvement in its ability to predict words. To 

liberate the statistical language model from the constraints of fixed preceding 

context it is necessary to allow the search for lexical dependencies to extend 

as far back from the current word as is practical and useful, and for it to be 

able to drop from the conditioning context any words which do not contribute 

to an improved joint probability. More plainly, the objective is to develop 

a systematic yet tractable method for compilation and search of relevant 

cooccurrence statistics for non-adjacent terms. 

3.2.1 Semantic latency 

Beeferman et al. [7] note that language, when viewed as a stochastic process, 

is highly nonstationary. As a discourse unfolds, the topic at hand changes 

and the vocabulary along with it. The local distribution over the vocabulary 

is thus distorted over time in favour of words with meaning related to the 

current semantics. 

One particular nonstationary property observable in local distributions is 

that occurrence of a word tends to increase its likelihood of appearing again 

quite soon-an effect called locality of reference, or more specifically semantic 

latency [38]. As an example, the word "madrigal" appears five times in the 

million-word Brown Corpus, and the last time it is used is only 193 words 

after its first appearance. While the unigram probability for "madrigal" is 
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Figure 3.4: Semantic latency effect for "madrigal". 

exceedingly small (i.e. 5/1, 065, 795 ~ 0.0000047) for the corpus as a whole, 

a model that estimates probabilities based upon local statistics can increase 

the likelihood of "madrigal" for the time the text is concerned with them. 

The graph in Figure 3.4 illustrates the semantic latency effect for "madri­

gal". It shows the changing local probability for "madrigal" within a 2500 

word segment of the Brown Corpus roughly centered around the 200 word 

window in which the word appears, where the local probability is calculated 

as the number of times "madrigal" occurs in the last 400 words. 

As the name suggests, semantic latency is a statistical phenomenon of 

content words only. Given that function words serve syntactic purposes more 

or less independently from discourse semantics, their local probabilities tend 

not to vary too far from their global probabilities. Figure 3.5 illustrates 

this for five of the more common grammatical terms of the Brown Corpus 

within the same 2500 word segment used in Figure 3.4. Once again, the local 

probabilities are calculated based upon a 400-word window. 

One technique that attempts to take advantage of semantic latency is 
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Figure 3.5: Semantic latency of five function words in the Brown Corpus. 

move-to-front (MTF) dictionary coding [92]. A MTF encoder maintains a 

list of the observed vocabulary sorted according to the most recently used 

term. Each word is encoded explicitly the first time it is encountered but 

thereafter with its corresponding index in the list. When instances of a 

particular word appear in unusually close proximity, that word remains near 

the top of the list, allowing its index to be encoded with just a few bits. This 

is tantamount to increasing its probability in response to semantic latency. 

As the topic of discourse drifts on to new themes, the word descends further 

and further down the list, requiring more bits to encode its index and thus 

effectively decreasing its probability. 

Bentley et al. [10] argue that some sequences can be encoded very effi­

ciently under MTF. For example, when a sequence is sorted then all indices 

are simply one. For typical language samples, however, MTF provides no 

better overall complexity estimates than does a unigram model. This is not 

surprising in light of a proof given by Bentley et al. which shows that, for a 

discrete memoryless source, the expected number of bits required to encode 
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Figure 3.6: Semantic latency of "madrigal" and "singing". 

a word using MTF approaches the entropy of the source. 

3.2.2 Topic latency 

Semantic latency is a highly specialised form of a more general statistical 

effect-that being an increased joint probability for two terms involved in a 

semantic dependency. The increased local probabilities for a semantic term 

are not so much attributable to recent prior occurrence of that term as they 

are to the more general local discourse semantics in which that word par­

ticipates. For example, there is an obvious relationship between the words 

"madrigal" and "singing". As long as the topic at hand pertains to madri­

gals, the local probability of "madrigal" will likely increase, but the local 

probability of "singing" might be expected to increase as well for more or 

less the same reason. That is, local discourse semantics can lead to increased 

probabilities for a set of related terms such that occurrence of any one term 

in that set may provide sufficient context to signal increases for all. 



3.2. STOCHASTIC LEXICAL RELATIONS 67 

0.014 r------,r------,r-------,,--------.------, 
'madrigal' -

'opera' ----· 

0.012 

'i' 
] 0.01 

"ii 
] 
~ 0.008 

1 
~ 
;: 0.006 

l 
.; 0.004 

.s! 

-

I ------ ---- I 

! l 
' ' ' ' 

i i 
[, ~ 

, I -
0

~ L..-____ .____,_ ______ ...._-... l.,_l-_--_--_--_--_--..... --..... --......... ___ ........_ __ ___.iL.....---_.....--

0 500 1000 1500 2000 2500 

Figure 3. 7: Semantic latency of "madrigal" and "opera". 

A graph of the local probabilities for both "madrigal" and "singing" is 

shown in Figure 3.6 using the same segment of the Brown Corpus as before. 

The graph shows a coincidental semantic latency for the two words, and this 

suggests a common triggering condition that might intuitively be attributed 

to the local topic. In comparison, Figure 3. 7 depicts the semantic latency 

for "madrigal" and "opera" for the same text segment. While the close 

proximity of the increased local probabilities for the two terms suggests some 

degree of semantic relationship, adjacency of their latency regions instead 

of overlap seems to imply a sequential treatment of distinct topics. This 

perhaps further suggests that the latency of both terms might be related to 

an even broader subject of discourse semantics. While the semantic latency 

of "singing" partly bridges the two regions, the graph in Figure 3.8 gives 

evidence of an even more general topic. It plots local probabilities ( using a 

600-word window) for "madrigal" and "opera" within a broader (6000-word) 

segment of the Brown Corpus, along with the encompassing semantic latency 

of "music". 
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Figure 3.8: Broad semantic latency of "music". 

While MTF codes can ( under certain circumstances) make gains from 

semantic latency, the scheme does not extend to take advantage of the more 

general effects of semantic association between any related pair of content 

words. A more effective technique would be one that has access to specific 

statistics for lexical cooccurrences-one that allows words to be predicted 

from whichever preceding term offers the best semantic cue and therefore 

delivers the best joint probability. 

3.2.3 Mutual information 

The notion of a lexical relationship, as defined by both LFG and link gram­

mar, is that a word may project syntactic constraints onto one or more other 

words in the expression. The implication is that selection over the vocabu­

lary is altered in some way whenever a word introduces such constraints. In 

the absence of a grammatical theory, it is not clear which subsequent word 

in the expression is expected to fulfil an outstanding requirement. What 
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is clear, however, is that the point at which the constraint is satisfied will 

likely be accompanied by a favourable distortion in the distribution over the 

vocabulary-favourable, that is, for whichever word satisfies the syntactic 

constraint. 

While LFG and link grammar focus on grammatical relations, semantic 

latency observes that terms related in meaning often exhibit locality of refer­

ence effects in close proximity to each other. Semantic dependency between 

two words is therefore also likely to produce a conspicuous cooccurrence 

statistic that can be translated into an improved probability estimate. 

These expectations suggest a strategy for detecting unadorned lexical re­

lationships: for each word in the expression, ascertain which preceding term 

gives the best joint probability. More formally, for each pair of words ( Wi, w3 ), 

where i and j are word indices in a sample text, find the index i satisfying 

i < j that maximises the conditional probability Pr[w3 lwi], and thereafte_r 

assume a lexical relationship between Wi and w3. Whether the relationship is 

syntactic or semantic ( or neither) is largely inconsequential. What is impor­

tant is that any positive difference between "the product of the independent 

probabilities for Wi and w/' and "the product of the independent probability 

for Wi and the conditional probability for [w3lwi]" implies redundancy in the 

information content of the related terms-redundancy that can be translated 

into a reduced complexity estimate for the language sample. 

From a communications theory perspective, such redundancy is called 

mutual information [3] and is usually expressed in terms of bits saved [75]. 

Recall from Chapter 2 that the information content of a symbol i is equal 

to the number of bits required to optimally encode it, and this is given 

by the formula - log2 Pi bits, where Pi is the probability of symbol i. The 

independent probability of a word is of course the ratio of the number of 

times it is observed with respect to the total number of words observed in 

the sample text. 

For example, the word "police" occurs 156 times in the 1,065,795 words 

of the Brown Corpus, and its information content within a unigram model 

of that corpus is thus - log2(156/1065795) :::::: 12.74 bits. The word "depart­

ment" occurs 225 times in the Brown Corpus, and -its unigram information 

content is - log2(225/1065795) :::::: 12.21 bits. The total information content 



70 CHAPTER 3. LEXICAL ATTRACTION MODELS 

of the sequence "police department" under the independence assumption is 

simply the sum of the information content of the two words, about 24.95 

bits. However, of the 156 times "police" occurs in the Brown Corpus, the 

word "department" occurs 5 times immediately after it. For a bigram model, 

the information content of "department" given "police" as prior context is 

only - log2(5/156) ~ 4.96 bits, and the information content of the sequence 

"police department" is now just 12.74 +4.96 = 17.70 bits, giving a savings 

of 24.95 - 17.70 = 7.25 bits over the unigram model. This difference is the 

mutual information of the two words, as given by bigram statistics. 

Rosenfeld [90] observes that mutual information is symmetric for a pair 

of words (wi, w;) in that it is the same regardless of whether one uses the 

forward conditional probability of w; given Wi or the backward conditional 

probability of Wi given w;. For example, "police" precedes the 225 oc­

currences of "department" 5 times, and its information content is conse­

quently - log2(5/225) ~ 5.49 bits. The combined information content of 

"police department" is now 12.21 + 5.49 = 17.70 bits, giving a savings of 

24.95 - 17.70 = 7.25 bits over a unigram model-the same as before. Thus 

the mutual information depends only on the pair of words involved and not 

on the direction of the assumed dependency. This is useful when it comes 

to establishing lexical relationships in that mutual information can be taken 

as a measure of undirected lexical attraction between two words. Under the 

assumption that pairs of words with a genuine linguistic relationship will 

demonstrate a high level of lexical attraction, mutual information provides a 

basis for hypothesising about which word in an expression satisfies a lexical 

constraint introduced by another. 

3.2.4 Trigger pairs 

Because mutual information for two words depends directly on their joint 

probability, precisely how that probability is established greatly affects the 

level of lexical attraction that can be assumed. The example given above 

relies on the statistics of bigram models, thus the conditional probabilities 

pertain to adjacent words. In fact, the bit savings obtained from the bigram 

models in Chapter 2 are simply measures of the mutual information for pairs 

of adjacent terms. But mutual information as given by bigram statistics is 
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of little value for establishing lexical relationships because adjacent words 

are assumed to be linked in n-gram models anyway, regardless of how strong 

their lexical attraction. For mutual information to be more useful, a more 

flexible model of language structure is required-one able to consider more 

distant dependencies. That is, the model must be able to search back in 

the sequence for the word most strongly attracted to the current one. This 

requires access to more general cooccurrence statistics for word pairs. 

Rosenfeld [91) describes a trigger pair as a pair of words, (s, t)H, for which 

the probability oft is given a "boost" if the words appears somewhere in the 

history H, where the history is a fixed-length window of words immediately 

preceding t. The boost is of course equal to the mutual information for sand 

t, and this leads to a slightly more rigorous definition for mutual information: 

MI(s, t)H = -(log2 Pr[t] - log2 Pr[tls)H) 

where Pr[tls)H is the probability of t given that s occurs earlier in history 

H, and thus MI(s, t)H is the mutual information for s and tin that history. 

In this formulation, an increased local probability from semantic latency is 

simply the boost afforded by a self-trigger pair ( s, s). To maximise mutual 

information, however, a more exhaustive search of trigger pairs is necessary. 

3.2.5 The history length trade-off 

The formula for mutual information shows that the degree of boost is in part 

a function of how far back the model is prepared to look when calculating 

lexical attraction (i.e. the length of H). Obviously if there is to be any 

lexical attraction for a pair of words they must both appear in the history. 

But as the length of the history grows without bound, Pr[tls)IHI given any s 

must approach Pr[t], and the mutual information for s and t accordingly ap­

proaches zero. More generally, prior occurrence of the conditioning word has 

an ever diminishing effect on the likelihood of another word as the distance 

between them increases. Beeferman et al. [7) provide empirical evidence that 

the boost for t decreases exponentially as the length of H increases, becoming 

more or less constant (and insignificant) at around IHI = 400. 
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A sequence model that aims to capitalise on mutual information must 

manage the trade-off between the availability of mutual information and its 

magnitude with respect to the length of the history. That is, if Pr(wi, w;]H 

is the probability that Wi and w; c_ooccur in a history of length H, and 

MI( Wi, w; )H is the corresponding mutual information, then an optimal mu­

tual information model for a sample of length N, based upon a fixed length 

history, would compute 

h-1 h 

H = argmax2<h<N(L L Pr[wi, w;]h * MI(wi, w;)h)­
- - i=l j=i+I 

For most language samples, such a computation would be, if not intractable, 

at least impractical. Huang et al. [55] undertook an investigation into the 

effects of lexical distance on mutual information through an extensive study 

of long-distance bigrams. Recall that a conventional n-gram model uses n - I 

immediately preceding words as the context for predicting the next word. 

A long-distance n-gram uses n - I words some distance back as the predic­

tive context. For example, a distance-2 trigram predicts Wi on the basis of 

(wi-J,Wi-2). Thus a distance-I bigram is a conventional bigram. Huang et 

al. systematically explored the amount of information in long-distance bi­

grams from distance-I to distance-1000 ( under the assumption that there 

would be no significant information at or beyond this extreme distance). 

Their results indicate that there is significant information in the last five 

words of history, but that average mutual information at greater distances 

is virtually neglible. More importantly, they conclude that long-distance n­

grams are seriously deficient for language modeling because they fail to merge 

instances of correlation at different distances-that is, in order to take advan­

tage of mutual information at a distance, a model must be able to generalise 

over variable length histories. 

Given that mutual information for word pairs appears to peak within 

a history of about five words, and that generalisation over variable length 

histories seems to be essential, there is a natural assumption about syntactic 

dependencies that implies a very simple heuristic for exploiting short but 

variable history lengths: simply restrict the search to word pairs within the 

bounds of a single sentence. 
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Webster's Revised Unabridged Dictionary defines a sentence (grammati­

cally) as "a combination of words which is complete as expressing a thought." 

Completeness of thought suggests an implicit cohesion between its words­

or, more plainly, given that it is a sentence, its words are de facto related. 

Combined with observations from long-distance n-grams, the implication is 

that sufficiently high levels of lexical attraction are likely available within the 

bounds of a single sentence, and that extending the search for lexical depen­

dencies beyond this is unwarranted. Indeed, maximising mutual information 

over sentence-bounded word pairs forms the basis for yet another in the ex­

ponential family of stochastic lexical models-the so-called lexical attraction 

model. 

3.3 Lexical attraction 

The lexical attraction model is an entropy-based scheme for assigning struc­

ture to isolated sentences. It links together words with high mutual informa­

tion on the assumption that genuine syntactic relations result in high joint 

probabilities. A complete syntactic structure is derived by finding a mini­

mum set of lexical links defining a connected acyclic planar graph for the 

entire sentence (where each word is a vertex), such that the total mutual 

information for the sentence is maximised. 

Like n-gram models, the lexical attraction model specifically focuses on 

the information theory perspective of language in that its goal is to capitalise 

on strong joint probabilities for related pairs of words. Unlike n-gram models, 

however, the cooccurrence statistics are not restricted to adjacent terms. 

3.3.1 Entropy and syntactic relations 

Following standard structural models, the lexical attraction model insists 

that every word in a sentence be attached to a dependency structure in 

accordance with syntactic relations. Unlike traditional structural accounts, 

however, the lexical attraction model has no predefined syntactic relations 

available to make judgments about where attachments should go. Instead, 

it infers them on the basis of mutual information-that is, lexical attraction 
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a portable electric heater is advisable in cold climates 

Figure 3.9: A lexical attraction dependency structure. 

is taken to be the likelihood of a syntactic relation and is therefore used to 

decide where links should go. 

Recall that the information content of a word can be estimated as its 

negative log likelihood under the independence assumption, and that the 

information content of a sentence is therefore simply the sum of the infor­

mation content of its words. For example, consider again the Brown Corpus 

sentence from Section 2.2, annotated with the information content of each 

word. 

a 
5.51 

portable 
16.32 

electric heater 
13.89 16.22 

IS 

6.72 
advisable m 

20.02 5.64 
cold 
12.58 

climates 
20.02 

Based on unigram statistics, the total information content of this sentence 

can be expressed in 116.92 bits. But if the probability of each word is made 

conditional on the context of the immediately preceding term, the (usually) 

higher joint probabilities lead to a decrease in the information content of 

each word, as with 

a 

5.60 
portable 

11.71 
electric heater IS 

2.70 4.54 3.81 
advisable 

13.30 
m 

3.64 
cold 
12.38 

climates 
7.44 

where the total bigram information content of the sentence is now only 65.12 

bits-a savings of 51.8 bits. (Recall from Section 2.1.5 that end-of-sentence 

markers are treated as individual words in this study, thus the conditioning 

context for the first word in the sentence above is a preceding fullstop.) 
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As noted earlier, the savings obtained when one word is predicted based 

on the context offered by another is the mutual information for the pair­

a symmetric relation. Because it is not always true that the immediately 

preceding word offers the best predicting context, higher mutual information 

may be found through examination of cooccurrence statistics for all pairs of 

words in the sentence. The goal of a lexical attraction model is to find a set of 

lexical links that ties all the words together as a single dependency structure 

in such a way as to maximise the available mutual information. Figure 3.9, 

for example, shows a lexical attraction dependency structure for the sample 

sentence, annotated with the mutual information of each syntactic relation. 

This structure estimates the total mutual information of the sentence at 91.3 

bits-almost double the 51.8 bits saved using bigrams. 

3.3.2 Dependency structure 

In the lexical attraction model, every word in a sentence must be linked to 

at least one other to produce a single dependency structure. Because any 

word can be used as the context for predicting another, there is potential for 

much higher joint probabilities than what is possible from n-grams. However, 

unlike n-grams, it is not obvious which word is predicting another in a lexical 

attraction account, and the uncertainty of the dependency structure must 

therefore be factored into the entropy calculation for the sentence. Formally, 

the entropy of a sentence S with dependency structure L is calculated as 

In other words, the information content of the sentence is the sum of the 

information in the words, less their mutual information from syntactic rela­

tions, plus the information in the dependency structure. 

Then-gram model itself assigns a dependency structure to a sentence; one 

where each word is linked to the preceding word. But the n-gram structure is 

implicit and can be predicted with perfect accuracy; thus it adds nothing to 

the entropy of the sentence. The potential mutual information savings from 
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lexical attraction, however, can only be realised if the cost of defining the 

dependency structure is less than the difference between the mutual informa­

tion available from lexical attraction and the mutual information captured 

through n-grams. 

Yuret [114] notes that if selection of links is unconstrained-as when each 

word is allowed to be linked to whichever other word gives the highest mea­

sure of mutual information, without regard to planarity-then the number 

of possible dependency structures for a sentence with n words is nn-2 (as per 

Cayley's formula [53]) and encoding of the structure requires about n log n 

bits. With the planarity constraint, the situation is much better. Yuret ob­

serves that encoding of planar dependency structures is linear with respect 

to the length of the sentence-approximately 2. 75 bits per word. 

3.3.3 Structure assignment 

Given the potential for efficient encoding of the dependency structure, it is 

still necessary to devise some method for assigning structures in the first 

place. Yuret (114] demonstrates how a Viterbi style algorithm can be con­

structed to find the dependency structure with the highest mutual informa­

tion. A dependency structure is a non-rooted tree and, under the planar 

constraint, each node of the tree corresponds to a contiguous subsequence of 

words (i.e a span). Each span is linked into the complete dependency struc­

ture by a syntactic relation between one of the words within the span and 

one outside it. By decomposing a sentence into shorter and shorter spans, 

it is possible to devise a recursive computation that builds an optimum de­

pendency structure bottom up, starting with shortest spans and combining 

them into longer ones. 

Yuret shows that computation of an optimum solution in this way can be 

done in O(n5 ) time. But, because his goal is to develop lexical attraction as a 

mechanism for learning syntactic structure, he argues that the runtime of the 

optimal algorithm is excessive. He proposes a much simpler approximation 

procedure that runs in O(n2 ). As each new word is encountered, it is linked 

to whichever preceding word shows the highest mutual information. If the 

link produces a cycle or a crossed link, the weakest of the links in conflict is 

eliminated. The process continues left to right through the sentence, linking 
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and unlinking words in such a way as to maintain at all times a planar graph 

for all words that have been seen. Though the resulting structure may not be 

optimal, Yuret's experiments indicate that the marginal gain of the optimal 

algorithm is not significant. 

3.3.4 Lexical attraction in practice 

Bach and Witten [5] experimented with lexical attraction as a model for 

text compression. Using Yuret's approximation algorithm, they attempted 

to devise a system of representation for efficiently encoding the dependency 

structure. Yuret had proposed an enumeration of all possible planar struc­

tures for a sentence of n words, allowing the actual structure to be encoded 

using its index in that set-as noted earlier, a technique that requires 2. 75 

bits per word. Bach and Witten improved on this by instead encoding the 

number of forward and backward links for each word. The pairs of link­

counts are treated as single symbols and compressed in isolation using a first 

order Markov model. The results indicated an average overhead of between 

1.61 and 2.38 bits per symbol over four large texts. 

Empirical studies by Bach and Witten on the 1.2 million words of Jeffer­

son the Virginian show that a lexical attraction model can deliver gains in 

lexical entropy of 24% over a unigram model, in comparison to 16% savings 

available from bigrams-a considerable improvement given that their model 

is entirely adaptive, estimating distributions on the fly as more and more of 

the text is encoded. However, they concede that this result is misleading in 

that it does not include the overhead of encoding the graph structure. De­

spite their improved method of structure representation, the total entropy of 

the data when structural information is included is considerably worse than 

estimates obtained from conventional bigrams. 

Bach and Witten traced the deficit directly to the overhead of encoding 

the dependency structures. But this should not be interpreted as conclusive 

evidence against the viability of lexical attraction models in general. As an 

adaptive lossless compression scheme, their model had to confront practical 

issues such as actually encoding words and link-counts explicitly the first time 

they are encountered-details normally overlooked in theoretical discussions 

of lexical attraction. Such overheads diminish as more and more text is 
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compressed, but only fade to nothing as the text size approaches infinity. The 

effects can be mitigated to some extent through prior training on a baseline 

text. However, certain characteristics observable in dependency structures 

suggest an entirely different solution: a simpler approximation algorithm 

that permits access to much of the mutual information available from lexical 

attraction without incurring any cost in the dependency structure. The idea 

is to alter the default structure assigned by n-gram models so as to increase 

the incidence of assumed adjacency between words likely to show strong 

lexical attraction-specifically, the content words. 

3.3.5 The dominance of semantic relations 

Even though there is no implicit requirement to capture bona fide linguistic 

structures in a lexical attraction model, there is an underlying assumption 

that actual lexical relations exhibit stronger lexical attraction than unrelated 

pairs. Real lexical relations are primarily either syntactic or semantic. For 

example, in the sentence "the boy is eating a banana" we may say that there 

is an obvious semantic relationship between "eating" and "banana" in the 

sense that bananas frequently get eaten. We may further say that there 

is a similar semantic relationship between "boy" and "eating", given that 

boys eat while, say, rocks do not. Any assumption of a semantic relationship 

implies availability of mutual information from conditional probabilities-in 

this case, of the form Pr[eatinglboy] or Pr[bananaleating]. 

In comparison, the relationship between "the" and "boy" is qualitatively 

different in that their semantic association is, if not absent altogether, at 

least very much more abstract. That is, seeing the word "the" does not 

so much present a semantic cue that specifically increases the probability of 

"boy", rather it provides the syntactic cue that a noun is imminent. That the 

noun is "boy" instead of "rock" is not in any way implied by the determiner. 

Similarly, the auxiliary "is" provides a syntactic context for increasing the 

probability of an impending verb, but offers no semantic hint that the verb 

will likely pertain to the usual behaviours of a boy. 

Lexical attraction models do not differentiate between different types of 

lexical relations. Nevertheless, the difference between semantic relations and 

syntactic relations does manifest itself in dependency structures. Due to the 
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relative infrequency of content words, semantic relations tend to yield much 

higher levels of mutual information than syntactic relations. As a conse­

quence, the tendency of structural inference algorithms is to prefer semantic 

relations when making decisions about which links to preserve. Syntactic 

links involving function words, on the other hand, typically offer only a 

fraction of the savings in comparison with semantic relations, and are of­

ten tacked on wherever they can be so as to complete the graph without 

violating the planarity condition. 

The result of this preferential status for semantic relations is a tendency 

for content words to be linked to each other regardless of how far apart 

they are, and for function words to be linked to adjacent terms regardless 

of lexical category. Not surprisingly, dependency structures often bear a 

striking similarity to conventional grammatical structures. In the latter, top 

level syntactic structures link constituent substructures, each of which is 

normally headed by a word from a semantic lexical class. Substructures that 

have more than one content word will often link these first, while functional 

elements are usually added as ancillary features at the lowest levels. 

3.3.6 An alternative approximation algorithm 

The tendency for semantic relations to dominate lexical dependency struc­

tures suggests an alternative approximation procedure for choosing links­

one that can preserve the bulk of mutual information savings with no cost 

entailed by the structure itself. If content terms are regarded as a separate 

stream of words, such that two content words are taken to be adjacent ( or 

super-adjacent) when there are no other content words between them, then 

a bigram model constructed for this stream alone would link them implic­

itly. Given that close proximity content words typically demonstrate strong 

lexical attraction, their mutual information is utilised. But, by garnering 

bigram statistics for super-adjacent content words, the incidence of many 

conventional semantic bigrams increases. For example, "boy was eating", 

"boy is eating" and "boy has been eating" all contain the same super-adjacent 

content-word bigram ("boy", "eating"). The net effect is fewer bigrams, more 

reliable statistics, and greater utilisation of high mutual information. More­

over, given that the planarity constraint for dependency structures prevents 
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links between pairs of content words from crossing, super-adjacent content 

words experience greater preference in conventional lexical attraction models 

anyway, and this is preserved. 

Given that relationships involving function words are largely syntactic 

(pertaining more to associations between lexical classes than explicit words), 

function words could be predicted from an adjacent term regardless of its 

class. Moreover, since the relationship between a function word and a con­

tent word is predominantly class-based, recording the content word explicitly 

is somewhat unnecessary. That is, content words could be reduced to a class 

symbol without a significant penalty in terms of loss of mutual information 

in their relationship with an adjacent function word. By treating that class 

symbol as a functional term, all bigrams involving function words can be re­

duced to pairs of functional elements. Given that the set of function words is 

quite small, a comprehensive set of function word bigrams can be constucted 

more quickly and utilised more frequently than in a conventional bigram 

model. 

If all content words are predicted on the basis of the most recent prior 

content word, and if all function words are predicted on the basis of the 

most recent prior function word ( or content class symbol), then the entire 

dependency structure is implicit and its entropy is zero. At the same time, a 

super-adjacency bigram model of this kind would be smaller and more com­

pact, allowing more reliable statistics to be obtained more quickly, thereby 

reducing the amount of data needed for conditioning accurate probability 

estimates. Furthermore, a substantial number of links from an optimum de­

pendency structure are likely to be preserved by a super-adjacency model, 

allowing mutual information to contribute to reduced complexity estimates 

for language. 

3.4 Discussion 

Finite context models fail when the context does not contain useful informa­

tion. Since allowing the context to grow without bound leads to intractably 

large models, an alternative approach is to allow the context to move. That 

is, instead of restricting context to immediately preceding words, allow any 
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preceding word to be used for estimating the probability of the next word. 

More to the point, use the preceding word which maximises that probability. 

Allowing probabilities to be assigned to relationships between nonadja­

cent words is precisely what a stochastic link grammar attempts to achieve. 

Given that the relationship between, say, a determiner and noun is genuine, 

link grammars characterise the association with a syntactic link, and stochas­

tic versions assign a probability to the relationship. But the link formalism 

requires that words be annotated with the grammatical information to en­

sure that a given linkage is valid-an unnecessary overhead for entropy-based 

sequence modeling. Lexical attraction models, on the other hand, establish 

lexical relationships solely on the basis of mutual information. Unfortunately, 

the entropy entailed in specifying which words are linked tends to wipe out 

any gains afforded by improved joint probabilities. 

Whether a relationship between two words within a sentence is predom­

inantly semantic or syntactic is inconsequential to the notion of lexical at­

traction, but the fact that there are two distinct forms of lexical dependency 

suggests two layers of language structure interlaced within a stream of words. 

One layer comprises highly meaningful terms played out in a sequence dic­

tated by a temporal stream of discourse semantics. Adjacent terms in this 

stream are likely to contain very high levels of mutual information. The 

other layer comprises the grammatical terms needed to satisfy the syntac­

tic requirements of language. Mutual information for pairs of words in this 

stream arise from syntactic dependencies and are thus not as susceptible to 

the effects of semantic latency as meaningful terms. 

It is hypothesised that a parallel bigram model that maintains separate 

statistics for these two streams would preserve most of the lexical links of 

an optimum dependency structure without incurring any cost for specifying 

those links. This is the premise of the super adjacency models described in 

Chapters 5 and 6. However, given that interaction of these two streams is 

coordinated by an assumption about the relationship between lexical classes 

in language, it is useful first to examine the effects of class-based sequence 

modeling more closely in the next chapter. 
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Chapter 4 

Category-based Models 

Traditional theories of syntax usually express grammatical relations in terms 

of lexical categories, not as direct links between specific words. In Phrase 

Structure Grammar, for example, a typical nounphrase might be described 

as "a determiner followed by zero or more adjectives followed by a noun." 

Given that determiners do ( under normal circumstances) signal imminent 

arrival of a noun, class dependencies of this sort appear to be genuine and 

can be exploited to improve the predictive capacity of a statistical model. 

This chapter explores methods for translating class information into im­

proved complexity estimates by entropy-based models. Underlying assump­

tions of category-based lexical prediction are outlined, along with summaries 

of existing techniques that use fixed- or variable-length part-of-speech con­

texts. It is argued that such methods have the potential to give much better 

complexity estimates than conventional word-based approaches because the 

relative compactness of their models mitigates the problem of data sparse­

ness, reducing the amount of data required to condition accurate probabili­

ties. 

Class-based entropy models depend heavily on prior knowledge of lexical 

categories before structural inference can commence-knowledge most often 

provided by automatic tagging systems which are themselves class-based en­

tropy models trained on previously tagged texts. To break into this circle, an 

initial classification scheme is needed. A series of experiments is conducted 

with results that suggest part-of-speech information need not be terribly ac­

curate to yield benefits for stochastic modeling. It is argued that a very 

83 
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crude classification scheme based upon the distinction between open- and 

closed-class words is largely sufficient for exploiting categorial dependencies 

with class-based n-grams. This is a key component of the super-adjacency 

models outlined in the next chapter. 

4.1 Category-based lexical prediction 

A number of stochastic modeling schemes have attempted to capitalise on 

the additional linguistic regularity accessible when lexical categories are avail­

able to the predicting mechanism. The underlying idea is that knowledge of 

a word's category improves a model's ability to predict it, and that the cate­

gory itself can be predicted solely from its class-based context. This section 

outlines some of the fundamentals of category-based stochastic modeling. It 

is shown that while the underlying principle can lead to improved lexical pre­

dictions, this cannot be translated into gains in overall complexity estimates 

without a significant amount of prior linguistic knowledge. 

4.1.1 Weak structural assumption model 

In a word-based unigram model, the length of the code for a word is propor­

tionate to the negative log of its independent probability-specifically, as per 

Shannon's formula, the length of the code in bits for a word w with probabil­

ity Pr[w] is equal to -log2Pr[w]. Knowing the category of the word changes 

the basis for its prediction from merely its global frequency with respect to 

the complete vocabulary to its frequency with respect to the subset of the 

vocabulary comprised of just those terms from the same lexical class. More 

plainly, the probability for the word becomes conditional on knowledge of its 

lexical category; thus the code length for a word w, given its part of speech 

tag t, is equal to -log2Pr[wlt]. 

The weak structural assumption made by category-based prediction is that 

the probability of occurrence for a word is assumed to be dependent solely 

upon the category to which it is believed to belong [84]. Of course, the penalty 

for models based on this assumption is that the category information itself 

must somehow be included in the final complexity estimate for the word. Like 

the word-based unigram model, the code length for a tag is proportionate to 
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its negative log likelihood under the independence assumption-that is, the 

length of the code for a tag t is equal to -log2Pr[t]. The code length for a 

word encoded under the weak structural assumption is thus the sum of the 

code length for its tag plus the code length for the word given its tag, or 

more formally 

-(log2 Pr[t] + log2 Pr[wlt]) 

Leaving aside the problem of how the tag can be known, the immediate 

question is whether knowledge of the tag in such a simple model actually 

buys anything for encoding a word. 

4.1.2 Binary categories 

In a word-only unigram model, each bit of a word's code can be thought 

of as a kind of binary category symbol, partitioning the vocabulary into 

two subsets according to whether or not the bit in question is set or clear. 

For example, the most significant bit differentiates between all words whose 

code begins with a one as opposed to a zero and selects the subset with 

the matching high-order bit. Each subsequent bit continues in this way to 

subdivide the set of possible words into those that may contain the word in 

question and those that may not, until the last bit uniquely identifies that 

word. The total number of bits required is proportionate to the negative log 

likelihood of the word. While this view assumes integral bit codings for each 

word, the principle applies to other coding schemes as well, albeit in a more 

complex way. 

In a tag-based model based on the weak assumption, the bits of a tag's 

code subdivide the set of tags in the same way. Once the tag is known, some 

subset of the vocabulary which includes the target word has implicitly been 

isolated in a similar manner to what is achieved using the first few high-order 

bits in the word-only unigram code. Though the number of additional bits 

needed to identify the target word is reduced by the increased probability 

afforded by the conditioning context of its tag, the savings are exactly equal 

to the number of bits required to identify the tag beforehand, resulting in no 

net gain. 
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t1 1/4 W1 1/5 4/5 1/5 
W2 1/20 1/5 1/20 

t2 3/4 W3 1/2 2/3 1/2 
W4 1/4 1/3 1/4 

Table 4.1: Probabilities for tags and words of a small language. 

The situation is perhaps easier to see with a simple example. Consider 

Table 4.1 showing probabilities for the tags and words of a small language; 

one that has just two categories with two words in each. In this language w1 

and w2 are words of type t 1 , while W3 and W4 are of type t 2. The independent 

probabilities for each type are given in the second column, and the indepen­

dent probabilities for the words are given in the fourth column. Column five 

lists the conditional probabilities for each word given its type. A tag-based 

context model must encode each word as a pair-the code for its tag and the 

code for the word given its tag-thus the length of the code for the pair is 

equal to the sum of the lengths of the codes for each component, which is 

equal to the negative log of the product of their probabilities, and the inverse 

of this is given in column six of the table. A comparison of column six and 

column four shows that the code length for a tag/word pair is the same as 

for the word by itself when its category is not known. 

4.1.3 Class ambiguity 

The result from the example given above is not surprising because the part­

of-speech label carries no information not implicit in the word itself. That is, 

given the word, the category is immediately known. Because the number of 

tag-word pairs is exactly the same as the number of words, the probability 

of any one tag/word pair is obviously the same as for the word alone, thus 

the overall complexity estimate for that word is the same with or without 

knowledge of its lexical category. 

In natural language, however, words typically belong to more than one 

category and the global probability for a word is distributed over its set of 

possible tags. If tag/word pairs are encoded independently, their complexity 
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t1 3/8 W1 1/5 8/15 1/5 
W2 1/20 2/15 1/20 
W3 1/8 1/3 1/8 

t2 5/8 W3 3/8 3/5 3/8 
W4 1/4 2/5 1/4 

Table 4.2: Probabilities for a small language with class ambiguity. 

estimates must degrade as type ambiguity increases because the number of 

distinct pairs gets bigger-effectively increasing the number of parameters 

over which the distribution must be approximated. 

Consider the situation when the type t2 word w3 from the earlier example 

also belongs to category t1 one quarter of the time. The distribution for this 

new language is shown in Table 4.2. The global probability of w3 is unchanged 

from the previous example, and its conditional probability still improves 

over its independent probability when it is tagged as t2 • Its conditional 

probability when tagged as ti, however, entails an increased cost in its code 

length in comparison to coding it with respect to its independent probability 

alone. In fact, its average expected complexity almost doubles. When w3 

was unambiguously of type t 2 its complexity was constant at - log2 1/2 = 1. 

Under the new categorisation scheme, a quarter of the time its probability 

is 1/8 and three quarters of the time it is 3/8, giving an average complexity 

of 1/4 x (- log2 1/8) + 3/4 x (-log2 3/8) = 1.81128-a signficiant increase 

directly attributable to the ambiguity of its category. 

As noted in Chapter 3, most language samples exhibit highly nonstation­

ary statistical characteristics, such as a varying local probability for a given 

word within a finite window. The same variation may be observed for a word 

being used in one of its possible class senses. For example, the word "hit" 

in an American baseball commentary may be used more often as a noun 

than as a verb, while the reverse is perhaps more usual in common parlance. 

An adaptive model able to condition its tag-based predictions in accordance 

with local statistics can use local preferences to achieve improved complexity 

estimates for finite language samples. 

Consider, for example, the altered distribution for w3 shown in Table 4.3. 
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t1 7/20 W1 1/5 4/7 1/5 
W2 1/20 1/7 1/20 
W3 1/10 2/7 1/10 

t2 13/20 W3 2/5 8/13 2/5 
W4 1/4 5/13 1/4 

Table 4.3: A more favourable distribution for the ambiguous class. 

In this scenario, w3 is used in sense t 1 one fifth of the time and in sense t 2 

four fifths of the time, giving an average complexity of 1/5 x (- log2 1/10) + 
4/5 x (- log2 2/5) = 1.72193-a net improvement from the previous example. 

Thus a net savings can be realised by a tag-based model when within a finite 

text an ambiguous term is used in a particular sense with greater probability 

than is expected in a more representative sample of the language. Under any 

other circumstances, however, the ambiguity of the category increases the 

entropy of the sample, leading to poorer complexity estimates than would be 

obtained from a strictly word-based model. 

4.1.4 Class-based n-grams 

The principal limitation of the weak structural assumption is its failure to 

make proper use of the way in which lexical classes demonstrate regularity 

in language. Conventional theories of syntax describe linguistic structure in 

terms of part-of-speech categories, not in terms of explicit patterns of words. 

For example, a nounphrase is typically defined as a sequence comprised of 

a determiner, some adjectives and a noun, with similar definitions for the 

verbphrase, prepositional phrase and so forth. The fact that determiners 

always mark the onset of a noun phrase means that occurrence of a determiner 

can be used to trigger a local probability boost for the noun class. Similarly, 

appearance of a modal auxiliary typically signals the start of a verbphrase 

and can thus be used to temporarily assign a higher probability to all verbs 

until one is seen. More generally, the context afforded by occurrence of a 

particular word type can momentarily distort the probability distribution 

over the set of types in such a way as to temporarily favour the category 
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of the next word. Even if the entropy of a tag/word pair is equal to the 

entropy of the word by itself, as is argued in the preceding section, more 

accurate prediction of the tag leads to a net reduction in the entropy of the 

pair. This suggests the use of class-based contexts as a means for improving 

the predictive capacity of an entropy-based language model. 

Brown et al. [18] explore the possibility of achieving good complexity 

estimates for language using class-based n-grams. They combine the weak 

structural assumption with an additional assumption that the probability of 

a category is dependent solely on its category n-gram context. Formally, they 

calculate the probability of a word as 

where the probability of the i-th word, Wi, is computed as the product of the 

conditional probability of Wi given its tag, ti, and the conditional probability 

of that tag given the context of the previous k tags. 

The category n-gram context used to predict the current tag is defined 

by the sequence of tags associated with the n - 1 words immediately pre­

ceding the current word. More accurately, then, the probability of the next 

tag is approximated for an equivalence class s given that the word history 

( Wi-k, ... , Wi-d belongs to s, where k = n-1. As any particular word history 

may belong to several equivalence classes, the model must take into account 

the probability that the equivalence class for the history in question is indeed 

s. Thus, the formula for predicting the tag may be further decomposed into 

Because there are far fewer unique equivalence classes than there are 

different word histories of the same length, the model is able to condition an 

accurate estimate for Pr[tils] quite quickly. That is, given a vocabulary of 

size V and a tag set of size T, an order-3 category-based n-gram model has 

at most T x (T2 + V) independent parameters, whereas a word-only model 

has closer to V3 parameters. As T is often quite small ( typically around 

one or two hundred tags) and V is usually quite large ( often many tens of 

thousands of words) the category-based approach entails considerably fewer 

contexts than the word-based approach, resulting in a much more compact 
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model. This means that the counts for contexts observed in the language 

sample will be substantially less sparse for a category-based model, allowing 

accurate statistics to be formulated more quickly than a comparable word­

based model. 

4.1.5 Fixed-length class contexts 

Brown et al. [18] experimented with class-based trigram models using a 

vocabulary of 260,741 words garnered from a 365,893,263 word training 

text composed from a variety of sources. The vocabulary was partitioned 

into 1000 distinct nonoverlapping categories based on a mutual information 

heuristic. After training, they observed that the class-based model required 

just one-third as much storage as a word-based trigram model.1 They re­

port, however, that the complexity estimates from their class-based model 

were slightly worse than from the conventional word-based model-though, 

to be fair, their experiments were directed primarily at the prospects of using 

such models as a basis for class inference rather than as a specific means for 

reducing overall estimates of entropy. 

Teahan and Cleary [111] applied the concept of category-based n-grams 

to text compression with the explicit goal of trying to minimise estimates of 

language complexity. Their scheme uses two parallel models, each of which 

employs a blended context comprised of the previous word and some number 

of preceding tags. Specifically, the estimated probability of the next word 

is based on a trigram model, where the conditioning context consists of the 

word's tag and the preceding word. The tag itself is predicted using a 4-gram 

model, where the context consists of the preceding word and its tag and the 

tag before that. Probabilities are formed adaptively and, to be robust, each 

model escapes to a lower-order (ultimately character-based) context when 

the next word has not been seen in the current context. Despite this more 

sophisticated use of class contexts, their empirical studies with conventionally 

tagged versions of the LOB Corpus and Wall Street Journal produced results 

almost identical to those from standard word-based bigrams: at best 0.001 

bits per character better on the LOB Corpus and at worst by 0.008 bits per 

1If both models were exhaustive, then the class-based model would be nearly eight 
orders of magnitude smaller. 
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character poorer on the Wall Street Journal. It is worth noting, however, 

that this comparable performance was achieved from a considerably smaller 

model. 

4.1.6 Variable-length class contexts 

Because there are far fewer possible class-based contexts than word-based 

ones, a class-based n-gram model is more compact than a conventional model, 

and n-gram counts in the training data are less sparse. Nielser and Woodland 

[84] observe that these properties make the use of deeper contexts (say, longer 

than three or four preceding symbols) feasible both in terms of memory 

requirements and efficient calculation of probability estimates. They propose 

that the availability of longer contexts could decrease the amount of class 

ambiguity arising from polysemy, allowing more accurate prediction of lexical 

tags. 

They developed a statistical part-of-speech tagging algorithm which makes 

use of a multiway trie for efficiently storing variable length equivalence classes 

comprised of part-of-speech traces gleaned from a tagged training text. To 

avoid the potential for excessive growth of the model arising from unbounded 

contexts, they employ a pruning criterion which retains an equivalence class 

only if it decreases the average log likelihood of the training corpus by a 

predefined threshold, a value derived from ad hoc experiments using Duda 

and Hart's leave-one-out cross-validation framework [39]. 
Surprisingly, Niesler and Woodland's so-called varigram tagger does not 

perform significantly better than Elworthy's bigram based ACQUILEX tag­

ger [42] for overall tagging accuracy. However, their algorithm does do con­

siderably better at tagging out of vocabulary words. Because their n-grams 

express regularities in terms of lexical categories, the varigram model is able 

to generalise over unseen word sequences. When the category of a new word 

is known, or can be guessed, it inherits the n-gram statistics observed for that 

category. Given that the sequential behaviour of the category is likely to be 

consistent regardless of the exact word in the history, probabilities for novel 

words can be estimated more accurately from class-based n-grams than from 

explicit word contexts. Finite class-based contexts have this same property 

to some extent, but a variable-length context has a distinct advantage. Given 
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that lexical categories are the substance of grammatical structure, and that 

such structures may occur with varying lengths, a variable-length class-based 

model is more likely to have observed an exemplar of the equivalence class 

required to predict the class of a novel word. 

4.2 Class characteristics 

A significant drawback for many of the class-based models outlined in the pre­

vious section is their a priori requirement that the input sample be accurately 

tagged with part-of-speech labels. This creates the somewhat undesirable sit­

uation where a model of language must already be available before another 

can be inferred. Brown et al. [18] attempted to circumvent this problem by 

devising a clustering algorithm to create classes heuristically on the basis of 

mutual information before garnering class-based n-grams, but they concede 

they were unable to achieve a partition that gave final complexity estimates 

as good as conventional word-based n-grams. 

This section describes a series of experiments devised to examine the im­

portance of accurate classification when seeking to exploit class dependencies 

in an n-gram model. By deliberately altering the tagging scheme for the in­

put and observing the effect on the complexity estimate from an unrestricted 

class-based n-gram model, it is possible to form hypotheses about the char­

acteristics of class information that are most useful for predicting language 

structure. The results indicate that a very crude categorisation scheme based 

on the distinction between open- and closed-class words is largely sufficient 

for taking advantage of category dependencies in an entropy-based model. 

4.2.1 Unrestricted class-based context 

From a linguistic perspective, lexical categories are the material of syntactic 

structures such as nounphrases and verbphrases. Though appearance of, 

say, a determiner certainly foreshadows appearance of a noun, in no way 

can it be used to help predict which of all possible nouns is about to be 

observed (subcategorisations notwithstanding). The possible benefit of class­

based prediction lies with its potential to lower the entropy of tags from a 

characterisation of syntactic regularity. 



4.2. CLASS CHARACTERISTICS 93 

N-gram models of syntax, being stochastic regular grammars, are not 

able to capture the complete grammatical structure of natural language [25]. 

Jelinek [58], however, points out that the high frequency of a relatively small 

number of local syntactic constructs in typical language samples gives n-gram 

models the ability to extract many useful elements of grammatical structure. 

To that extent, variable-length class-based n-gram models can be satisfactory 

practical approximations to natural language grammars. 

Niesler and Woodland [84] limited the set of retained n-grams in their 

variable-length class-based model to avoid the problem where complexity 

estimates continue to increase monotonically as contexts lengthen. By re­

moving this constraint, and allowing class n-grams to grow without restric­

tion, the model can take full advantage of the predictive capacity available 

in class contexts, mitigating some of the shortcomings that arise from the 

overall inadequacy of the formalism. This provides a mechanism for studying 

the effects of various classification schemes on grammatical complexity. 

4.2.2 TPD 

A greedy tag-phrase dictionary system (TPD2 ) for lossless text compression 

can be constructed in a manner similar to LZW, a variant of LZ78 proposed 

by Welch [112]. A tagged-text is given to the encoder as a stream of word/tag 

pairs. The encoder parses the input into a dictionary of phrases, where each 

phrase is constructed as a trace of lexical tags from the input. The phrase 

dictionary is maintained as a multi-way trie, initialised to include each unique 

tag as an individual phrase. As each word/tag pair of the input is read, 

the encoder finds the longest matching trace for the tag sequence and then 

outputs the appropriate phrase number. 

As each phrase merely depicts a sequence of lexical categories, additional 

information is encoded with the phrase number to identify the correct word 

for each tag. When a new word/tag pair is encountered, the word is explicitly 

encoded for output and then added to the appropriate dictionary as given by 

the tag. If the word is already in the dictionary, it is arithmetically encoded 

according to the empirical distribution for that category derived from counts 

2This system is the result of collaborative work with Ross Peeters, and a report on its 
compression performance appears in Proceedings of DCC'98 [102]. 
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maintained for each word. The output from the encoder is thus a variable­

length tuple of the form ( u;, w1, w2, ... , wn), where O'j is the encoded phrase 

number and Wi is the encoded word for the i-th category symbol in O'j. 

Figure 4.1 illustrates four states of the TPD model when coding the sen­

tence "the boy ate the pear". Before any text is encoded (Figure 4.la) all 

word dictionaries are empty and the trie is initialised to have one phrase for 

each possible part-of-speech label in the tagging scheme--in this case phrase 

1 is a D for determiner, phrase 2 is an N for noun, and phrase 3 is a V for 

verb. The first word/tag pair is read from the input and a match is found for 

the tag context D leading to phrase 1. The next pair is read, but no match is 

found for the tag N leading out from phrase 1, therefore the code for phrase 

number 1 is output. The phrase has one word, which has not been seen, so 

"the" is coded explicitly and then saved in the corresponding dictionary for 

category D. 

A new phrase is created by appending the unmatched tag as a leaf node 

to the phrase just output. In this instance, the N for "boy" is unmatched, so 

a new node is added below phrase 1 and assigned the lowest unused phrase 

number (phrase 4 in Figure 4.lb ). The transition to the new phrase is labeled 

with the unmatched tag. Note that this phrase could not be used to encode 

the first two input pairs because it did not exist at the time. So it is that 

new phrases are created in anticipation that they may be useful at a later 

time. 

The word associated with the first unmatched tag is coded as if it has 

not been seen at all-that is, as a new phrase. Starting from the root node, 

the longest matching tag trace is again found for the input. In this case, 

the tag for "boy" leads to phrase 2 (Figure 4.lc). The next pair, ate/V, is 

read but no match is found leading out from phrase 2 for its tag. The code 

for phrase number 2 is output and, as "boy" has not been seen before, the 

word is coded explicitly and saved in the appropriate dictionary. Again, a 

new phrase is created as an extension to phrase 2 and the transition to it is 

labeled with the unmatched tag. The process then repeats, always looking 

for the longest trace that begins with the last unmatched tag. 

Figure 4.ld demonstrates how optimistic phrase creation becomes useful. 

When it comes time to code "the pear", the first tag leads to phrase 1 and 
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c) after encoding second word/tag pair 

input: the/D boy/N ateN the/D pear/N ... 

trie 

_ D_ 

I~ 
the 
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cb 3 
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cb 

output: 1 "the" 2 "boy" 

d) after encoding fourth word/tag pair 
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output: 1 "the" 2 "boy" 3 "ate" 4 the "pear" 
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Figure 4.1: TPD states during the encoding of a tagged sentence. 
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the next tag leads to the as yet unused phrase 4. The next tag/word pair 

( whatever it might be) will not produce a match, thus the code for phrase 4 

is output and a new phrase, number 7, is created ready to be labeled with 

the tag of the next pair. The output phrase requires that two words also be 

coded before the next phrase number. The first is a determiner, but one that 

has been seen before, allowing "the" to be encoded more efficiently with an 

arithmetic code. The noun "pear" is novel and so must be encoded explicitly 

and added to a dictionary. 

The TPD decoder works by building the trie in a complementary manner. 

Starting with the same initial state, a new phrase is added by appending 

the first tag of the next phrase as a leaf node to the end of the previous 

phrase. Explictly coded words are added to the dictionary on first encounter, 

and arithmetic codes are subsequently calculated in the same manner as the 

encoder. Further details of the encoding and decoding processes are not 

relevant to this study and are therefore omitted (see [102] for a thorough 

treatment). 

4.2.3 TPD performance 

As more and more text is encoded with TPD, the tag traces stored in its trie 

become a better and better regular grammar approximation of its syntax 

(albeit through exhaustion). Given no restriction on context length, a new 

phrase is created after each phrase number is output, where the new phrase 

corresponds to the first unmatched tag appended to the longest matching 

trace. As a result, output phrase codes correspond to longer and longer tag 

sequences as the model develops. The net result is a very efficient per tag 

encoding. 

Bell et al. [9] offer a proof to show that the coding rate of such greedy dic­

tionary schemes asymptotically approaches the entropy of an ergodic source 

model-in accordance with Solomonoff's conjecture [107] that all inductive 

inference problems can be expressed in terms of extrapolation from a very 

long sequence (Section 1.2). However, in practice, character-based dictio­

nary schemes tend to converge on source entropy more slowly than purely 

statistical models. In the case of TPD, this could undermine its utility for ob­

taining good complexity estimates for finite samples of language-even quite 
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Figure 4.2: Rate of convergence for LZW, PPMC and TPD on Brown Corpus. 

large ones. As it happens, the generality of the equivalence classes in the 

TPD model allows it to converge on source entropy as quickly as an adaptive 

character-based finite-context model. 

Figure 4.2 plots the rate of convergence for TPD when compressing the 

tagged Brown Corpus. The vertical axis of the graph is the compression 

ratio, measured in bits per character, and the horizontal axis is the amount 

of text processed, expressed as the base-2 log of the number of input charac­

ters that have been compressed. Included in the graph is the corresponding 

compression rate for standard character-based LZW [112], along with the 

compression performance of a well known adaptive statistical context model, 

PPM [31]. This particular version of PPM is an order-3 character model 

using escape method C to code unseen events (see page 146 of [9] for more 

details of this escape method). The graph clearly shows a comparable rate 

of convergence between TPD and PPM up to about 10,000 characters, after 

which TPD starts to perform better. Whatever other conclusions may be 



4.2. CLASS CHARACTERISTICS 99 

suggested by the graph, it is sufficient to observe that the TPD method con­

verges sufficiently quickly to give useful complexity estimates for subsequent 

experiments. 

4.2.4 Structural complexity 

While there is empirical evidence to suggest that TPD makes good use of 

the structural information expressed in the part-of-speech labels of a tagged 

text, there may be an alternative explanation. It is possible, for example, 

that TPD makes all of its gains through arithmetic coding of words, and that 

the information content of the tags is so low that the penalty for encoding 

them is almost insignificant. 

One way to determine whether TPD is gaining anything from syntactic 

regularities involving lexical classes is to change the tagging scheme in such 

a way as to impose a regular artificial structure on the training text. If the 

structure given by the original tagging scheme results in a better complexity 

estimate for the text than is obtained from the artificial scheme, it would 

suggest that TPD is successful in exploiting the structural regularity of lexical 

categories. 

Two experiments were devised. In the first, sentences are tagged in such a 

way that the first word of each sentence has a unique common tag, all second 

words have another distinct tag, all third words another, and so on, until the 

end of the sentence. More formally, the set of k distinct tags used in the orig­

inal tagged text is ordered to produce an analogous set T = { t 0 , t 1, ... , t k-l}, 

and the i-th word of each sentence is labeled with the tag ti mod ki except end­

of-sentence markers whose tags are unchanged and not used anywhere else. 

In this way, every sentence is given a highly regular structure to the extent 

that the first n words of any sentence have exactly the same tag structure, 

and each tag can therefore predict with almost perfect accuracy what tag 

will appear next. 

In the second experiment, end-of-sentence markers and determiners are 

left with their original tags. All other words are tagged in sequence from Tin 

the same manner as the first experiment, except that each time a determiner 

is encountered, subsequent words are tagged in sequence starting from the 

determiner's tag in T. That is, if the determiner tag is ti, then the i-th word 
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Figure 4.3: Effects of imposed structure on TPD compression rates. 

after the most recent determiner is tagged with t(j+i) mod k· Determiner tags 

and end-of-sentence tags are reserved exclusively for their original purpose 

(i.e. they are skipped in the sequencing). 

Figure 4.3 plots a comparison of the progressive compression ratios when 

TPD is applied to the original tagged Brown Corpus (ORIGINAL), the sen­

tence sequential structure of the first experiment (S-SEQUENCE) and the 

determiner sequential structure of the second experiment (D-SEQUENCE). 

Surprisingly, both artificial structures result in good compression. However, 

it is clear that the original tag scheme supplies the compressor with better 

structural regularity-that is, regularity more useful for translating part-of­

speech information into lower complexity estimates. To some extent, one 

might expect the determiner sequential scheme to accidentally capture some 

nounphrase regularity present in the original tagged text, making its com­

pression results closer to those for the original than for those from the simple 

sentence sequential scheme, and this is borne out in the evidence of the graph. 
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Additional conjectures might also be made, but no other conclusion need be 

suggested from these experiments except that TPD is indeed influenced by 

the accuracy of the classification scheme. 

4.2.5 Tagging accuracy 

That the artificial structures used in the experiments of the preceding section 

result in poorer entropy estimates than the original tagging scheme-despite 

greater structural regularity-is easily understood. Given that in both ex­

periments words are tagged based on their position relative to either the 

sentence start or the most recent determiner, words end up being attributed 

to categories in an entirely arbitrary manner. Ignoring the fact that English 

sentences do in fact demonstrate some lexical patterns in their first few words, 

in the limit one would expect these contrived tagging schemes to eventually 

put every word into every class. Even a modestly large sample text like the 

Brown Corpus is likely to produce a classification where tags are of little help 

for predicting words. 

Given that estimates of grammatical complexity are sensitive to the ac­

curacy of the tags, this raises the question of whether there is some ideal 

tagging scheme for optimising the estimate. The Brown Corpus used in 

these experiments was tagged with the AMALGAM automatic tagging sys­

tem, whose designers claim a very high level of tagging accuracy-as much as 

a 97% correspondence to manual tagging. But there are a good many other 

automatic tagging algorithms that also claim to give very accurate results 

[35, 71, 93]. Their outputs would certainly differ for the same input text, 

and it is likely that one would produce a baseline Brown Corpus text with a 

better TPD compression ratio than the others. But it may also be the case 

that the output from one of the other systems would give a better result for 

a different training text. 

In addition to the various tagging algorithms, there is also a plethora of 

alternative tag sets available. Some are quite large-such as the LOB set 

with 153 distinct tags [60]-and discriminate between different verb tenses, 

noun declensions, and so forth through subcategorisation. Others-like the 

UNIX parts set of 19 tags [79]-do not make such distinctions, but label 

all verbs and all nouns, for example, uniformly with gross category tokens. 
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Given the many syntactic-agreement relations in English, such as number or 

person agreement between a subject noun and main verb, subcategorisation 

labels can help a structural model like TPD access subtle class dependencies 

that are obfuscated under a more crude labeling scheme. 

A series of experiments was devised to determine the extent to which the 

refinement of a lexical classification system influences the ability of a class­

based model to reduce entropy estimates of language. The goal was not so 

much to find an optimum classification as it was to ascertain some of the 

characteristics of category differentiation that are most useful to a structural 

model. The ultimate aim is to develop an approximate classification that 

is sufficient for preserving many class dependencies, but one that can be 

inferred easily and thereby eliminate the prior knowledge required by class­

based entropy models. 

4.2.6 Class complexity 

Kazman [65] summarises a widely held linguistic view that much of the syn­

tax of a language may be characterised by the inventory and properties of 

its functional categories (i.e. its closed-class words). He further proposes 

that the acquisition of syntax by a developing child is a progression from 

an invariant base (i.e. innate grammar) to an articulated view of functional 

categories. The results from word-based n-gram experiments in Chapter 2 

perhaps support these conjectures in that combinations of closed-class words 

appear to make the greatest individual contribution to low complexity esti­

mates of language. 

An experiment was devised to examine the extent to which functional 

categories contribute to the structural regularity of language. Only two of 

the 102 most frequent words in the Brown Corpus are not function words, 

and those 100 most frequent function words account for more than 50% of 

the tokens in the text. Using these words as a simple approximation of the 

closed-class, the corpus was re-tagged so that the part-of-speech labels for 

these words were left unchanged from the original, while all other words were 

tagged with a common label, effectively treating them as one large thematic 

category. The text was then compressed using TPD. 

Figure 4.4 plots ( among other things) a comparison between the TPD 
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Figure 4.4: Effects on TPD compression rates of simplified FCs and TCs. 

compression performance on the original tagged text (ORIGINAL) and on 

the altered text (ONE TCAT). The graph indicates that very little structural 

information is lost to TPD despite having 99.8% of its vocabulary treated as 

a single class. This suggests support for Kazman's conjecture-that almost 

all syntactic structure is captured in the juxtaposition of functional terms. 

To test this further, a second experiment was devised where those 100 

most frequent function words were collapsed into a single functional cate­

gory and tagged with a common part-of-speech label, while the tags of the 

remaining vocabulary were left unchanged from the AMLAGAM output. 

The result after compressing this text with TPD (plotted in the graph of 

Figure 4.4 as ONE FCAT) was a substantial increase in the entropy of the 

text, apparently confirming the hypothesis that syntax is embodied primarily 

in closed-class words. 

Given that the top 100 function words account for more than half of the 

text, it is possible that the increased entropy observed in the second test is 
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simply attributable to loss of meaningful structure for so much of the text, 

rather than as a symptom arising directly from differences between open­

and closed-class words. A third test was therefore devised to see if increased 

precision in the tagging of thematic words within the parameters of the first 

test would result in a net gain in compression. 

82% of the vocabulary of the Brown Corpus is comprised of nouns, and 

these constitute about a quarter of all tokens in the text. By repeating the 

first experiment after adding nouns to the set of words whose category labels 

are left unchanged from the output of the AMALGAM tagger, the number 

of words in the input that are accurately tagged is increased from just over 

50% to about 75%. More plainly, the 100 most frequent function words 

and all nouns are labeled as in the original tagged text, and the rest of the 

vocabulary is treated as a single unique class. This has the effect of splitting 

the class of thematic terms into two subclasses: one comprised of nouns, and 

the other made up of all the rest (primarily verbs and adjectives). 

The newly tagged text was passed through TPD and the resulting rate 

of compression is documented in the graph of Figure 4.4 (TWO TCAT). 

This experiment appears to indicate that the additional information made 

available when discrimination between nouns and other non-function words is 

supported does not translate into improved complexity estimates for the text 

as a whole. Although gains of about 0.1 bit per word over a single thematic 

category scheme are realised up to about one million characters, beyond this 

the extra precision of the noun tag offers no improvement. One possible 

explanation is that any decrease in the entropy of the nouns arising from 

the additional precision in the tagging scheme may be offset by increased 

entropy in the class structure due to greater detail in the contexts. Given 

that a thematic tag in this last experiment divides the set of thematic words 

from the first experiment almost exactly in two, it should improve the code 

for the associated word by about one bit; but it may also double the number 

of distinct contexts that include thematic tags, thereby increasing the length 

of phrase codes by one bit. 

One reason why this explanation is unlikely to be correct is that it assumes 

rather specific characteristics for the contexts. The assumption that the 

number of phrases doubles when a distinction is made between noun and 
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non-noun thematic words rests on an additional assumption that the set of 

contexts involving a noun ends up being duplicated but with the noun tags 

replaced by non-noun tags. If this were true, then the structural roles of 

nouns and non-nouns would be identical and splitting the category would 

be pointless, as the compression results indicate. As it is generally not true 

that nouns and, say, verbs participate in the same grammatical structures, 

however, the phrase dictionary is likely to be entirely different. 

A more plausible explanation is that the structural information contained 

in the noun tag is actually redundant. Given that determiners predict nouns 

very well on their own, any class n-gram that includes a determiner tag al­

ready embodies the necessary context to predict a subsequent noun tag accu­

rately, thus the appearance of the noun tag is inconsequential with respect to 

the model's ability to select the specific noun in question. Other class-based 

contexts, such as those with prepositions, may also contain the necessary 

information to predict nouns accurately without the need for noun tags, and 

similar circumstances may exist for other thematic words as well-as when 

auxiliaries predict verbs. 

Understanding why subcategorisation of non-function words does not ap­

pear to improve structural predictions is not expedient to the purposes of 

this thesis. It is sufficient to observe that almost all category structure re­

quired for obtaining good complexity estimates from class-based n-grams is 

adequately represented when a distinction is made between different func­

tional categories, and when content words are recognised as something else 

entirely. 

4.3 Discussion 

The class-based context models outlined in this chapter attempt to make 

gains on the basis of two structural assumptions. The first is that knowledge 

of a word's category increases a model's ability to predict the word itself. 

Section 4.1 shows that this assumption alone does not lead to improved com­

plexity estimates because the entropy of the category information is exactly 

equal to the reduction in the entropy of the word it is being used to predict. 

To make gains from class information, the probability of a category label 
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must itself be improved. 

The second structural assumption is that the probability of a category 

symbol depends solely on the context of preceding category labels. For ex­

ample, the fact that determiners signal onset of a nounphrase means that 

appearance of a determiner label not only provides a conditional probability 

boost for the associated determiner but for the ensuing noun ( or perhaps 

adjective) as well. 

In principle, part-of-speech traces cannot improve lexical prediction in­

definitely. In the limit, any useful context they provide will be embodied 

in the explicit word sequences with which they are associated. But, given 

that all language samples are finite, part-of-speech contexts can yield gains 

in entropy estimates because they generalise very quickly about very real lex­

ical dependencies-dependencies that are most practically regarded as class­

based. That is, each tag context corresponds to an equivalence class for a 

potentitally infinite set of word sequences ( assuming new words can be intro­

duced to a language without limit). For example, because the word "goat" 

can almost always be used in the same structural context as "cow", a class­

based model that has seen "goat" can impart its statistics to "cow", provided 

it knows they belong to the same category. 

The most important observation made in this chapter is that the preci­

sion of class assignment does not appear to be tremendously important for 

exploiting much of the benefit of class-based prediction. The experiments 

of Section 4.2 indicate that the distinction between open- and closed-class 

words is significant, as are subcategorisations of the latter. However, differ­

entiation between subclasses of open-class words is much less important, and 

perhaps even entirely unnecessary for class-based n-gram modeling. 

An equally important observation is that even a very crude approxima­

tion of open- and closed-class categories is sufficient to preserve the class­

dependencies that are useful for category-based n-grams. The experiments 

outlined in this chapter more or less fixed a boundary between these two 

broad categories solely on the basis of a statistical heuristic-namely, the top 

100 most frequent words are function words and the rest are not. The re­

sulting compression from an unrestricted category context model was almost 

identical for a text tagged using this simple classification method and the 
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same text tagged by the more discriminate AMALGAM technique. This sug­

gests that access to the predictive capacity of class contexts can be achieved 

without the a priori need for an accurate tagger. 

Taken together, these observations create a framework for building a sim­

ple entropy-based n-gram model that exploits the regular structure exhibited 

by lexical categories. The goal now is to combine this with the high utility 

bigrams of Chapter 2 and the semantic dependencies between close proximity 

content words discussed in Chapter 3. This is the basis of the super-adjacency 

model introduced in the next chapter. 
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Chapter 5 

Super-Adjacency Models 

Three key observations are made in the preceding chapters. The experiments 

in Chapter 2 indicate that word-based n-grams work well for modeling adja­

cent closed-class words, but less well for lexical patterns involving open-class 

words. Chapter 3 provides evidence to suggest that a substantial amount of 

the mutual information in pairs of close proximity open-class words can be 

accessed by using the most recent open-class word as the conditioning con­

text for predicting the next one, ignoring any intervening closed-class words. 

And Chapter 4 shows that the distinction between open- and closed-class 

categories, combined with some discrimination among closed-class subcat­

egories, is sufficient for capitalising on structural dependencies in a class­

based entropy-model. This chapter shows how all three of these properties 

can be exploited through a simple, but unconventional, word-based bigram 

technique-the super-adjacency model. 

5.1 Function/content n-gram models 

Linguists have long recognised a grammatical distinction between function 

words ( also called grammatical words, closed-class words, or functional cat­

egories) and content words ( also called semantic words, open-class words, 

or thematic categories), and there is substantial psycholinguistic evidence to 

suggest that these two broad lexical classes are subject to entirely different 

cognitive processes [48, 80, 36, 54, 50]. This section outlines early attempts 

to exploit the differences between these two lexical types through unconven-
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tional n-gram models of language. While such systems have been able to 

achieve some level of satisfactory performance, they have not been able to do 

so without interpolating the statistics of conventional word-based n-grams 

into the probability estimates. However, an analysis of their methods and 

results suggests that a much simpler approach might be more successful. 

5.1.1 A particle/content bigram model 

lsotani and Sagayama [56] observed that Japanese sentences have a very 

regular form when a distinction is made between content words and particles. 

Specifically, a Japanese sentence consists of phrases, each of which typically 

consists of a content word followed by an optional particle. Thus a sentence 

can be regarded as a sequence of n phrases, where wf is the content word 

head of the i-th phrase and w! is the particle tail of that phrase. Isotani and 

Sagayama developed an interpolated bigram model that attempts to exploit 

this view of Japanese phrase structure as a means for achieving improved 

accuracy in sentence recognition tasks. 

lsotani and Sagayama contend that the sequence of content words that 

results when all particles are ignored "is expected to statistically describe 

the semantic relationship between words in the sentence." Specifically, they 

argue that high mutual information can be presumed to exist for pairs of 

consecutive content words, and that this can be exploited by an independent 

bigram model of the content word sequence. They estimate the probability 

of the content word sequence formally as 

n 

IT Pr[wf lwf--1]. 

i=l 

In a complementary fashion, they contend that syntactic constraints are 

exposed in the sequence of particles that results when all content words are 

ignored. Japanese particles serve primarily to assign case to the content 

words they follow. The nominative case marker -ga, for example, identi­

fies the subject noun of a sentence, and as a consequence it is very rare for 

it to appear in successive phrases. Further, postpositions ( which are also 

treated as particles in the model) exhibit regular sequential behaviour, as 
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when kara, meaning "from", is often followed by made, meaning "to". Syn­

tactic regularities such as these can be statistically modeled by dedicated 

particle-to-particle bigrams, and the probability of the particle sequence can 

be calculated in isolation using 

n 

II Pr[w!lwL1]. 

i=l 

If this view of Japanese sentence structure was sufficient to cover all well­

formed expressions, and if independence between the particle and content 

word sequences can be assumed, then sentence probabilities could be esti­

mated as 

n 

Pr[S] ~ II Pr[w!lwL1] x Pr[wf lwf-1]. 

i=l 

Unfortunately, there are a number of sequential exceptions that upset this 

calculation. One difficulty is that the first phrase of a sentence has no prior 

context for predicting its particle or content word. To avoid this, lsotani and 

Sagayama assume a dummy phrase1 at the start of each sentence. A similar 

problem arises when a content word is not accompanied by a particle-as with 

nouns whose case is unmarked, such as ergative or absolutive. In situations 

such as this, their model assumes a null particle between the adjacent content 

words. 

The situation is more troublesome for adjacent particles, as when several 

auxiliary verb particles are applied to the main verb. In such cases, lsotani 

and Sagayama choose simply to ignore all but the last particle. While at first 

it may seem an unsatisfactory feature of a language model to simply ignore 

terms in this way, it is important to remember that lsotani and Sagayama 

were not interested in complexity measures per se. Their goal was instead 

to develop a solution to the candidate sentence selection problem [40] and, 

to that end, they needed only the ability to assign a higher probability to a 

correct response than to any other candidate sentence. 

1The exact nature of the dummy phrase is not elaborated upon in their report [56]. 
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5.1.2 Experiments with particle/content bigrams 

To examine the extent to which particle-to-particle bigrams (hereafter called 

P-P bigrams) and content word-to-content word bigrams (hereafter called 

C-C bigrams) can contribute to accurate candidate selection, Isotani and 

Sagayama conducted a series of tests with twelve samples of spoken Japanese 

sentences. They compared the accuracy obtained using just P-P bigrams 

against that obtained from using just C-C bigrams, and also against a third 

model that combined the two (hereafter called the P-P + C-C model). While 

the two simpler models achieved comparable levels of accuracy, the particle 

bigrams fared slightly better overall-with an average of 69.2% for the P-P 

model as compared to 68.3% for the C-C model-and outperformed the con­

tent word model in eight of the twelve individual tests. In all cases, however, 

the combined P-P + C-C model outperformed both of the dedicated bigram 

models; by at best 6.9% and at worst by just 0.3%. The researchers con­

cluded that P-P bigrams and C-C bigrams did in fact capture independent 

linguistic information. 

Isotani and Sagayama hypothesised that strong inter-phrase correlations 

might exist between the particle of a phrase and the content word of the next 

phrase-dependencies that could not be captured in the P-P + C-C model. 

To test this, they constructed a model based just on particle-to-content word 

bigrams (hereafter called P-C bigrams) and tested it using the same twelve 

language samples. For seven of the samples, this model did better than 

either of the P-P or C-C models, and it was never worse than both. A more 

important observation, however, is that the P-C model did better than the 

P-P + C-C model a third of the time-apparently confirming the hypothesis. 

To incorporate inter-phrase dependencies, lsotani and Sagayama con­

structed yet another model that interpolated the statistics from all three 

types of simple bigrams (P-P, C-C and P-C bigrams). In this model, the 

probability of a sentence is estimated using 

Subsequent experiments found the overall average performance of this model 

to be better than the P-P + C-C model (73.8% compared to 72.4%), but 
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worse in four of the twelve individual tests. 

On the basis of all their experimental results, the researchers concluded 

that the three basic bigrams (the P-P bigrarns, C-C bigrams and P-C bi­

grams) "have independent information about inter-phrase connectivity", and 

that an interpolated model that utilises all three bigram types simultane­

ously "can catch the syntactic and semantic relationships between words in 

Japanese sentences by estimating probabilities from a large text database." 

5.1.3 Analysis of particle/content bigrams 

Isotani and Sagayama do not include specific sentence probabilities in their 

report, and in the absence of this information it is difficult to say how effec­

tive their approach might be as an entropy-based model of language. Even 

comparisons against conventional bigram models would provide a basis for 

speculation, but these also do not appear as part of their experimental re­

sults. Nevertheless, there are observations and issues related to their studies 

that merit some comment. 

One can view the set of terms constituting the vocabulary of a language as 

being the union of two non-overlapping subsets: a subset F of all functional 

terms and a subset T of all thematic terms (i.e. content words). A conven­

tional bigram model of the language thus has (F + T)2 = F 2 + T 2 + 2FT 

independent parameters. The interpolated model proposed by Isotani and 

Sagayama employs three different types of bigrams in its calculations. The 

P-P bigrams are constructed from functional terms only, and there are F 2 

many of them. There are also T2 many C-C bigrarns, and F x T many 

P-C bigrams. Their interpolated model thus has F x T fewer parameters 

than the conventional model, where the missing elements are of course the 

intra-phrasal C-P bigrams. 

In light of the claim by Isotani and Sagayama that "particles mainly con­

vey case information about the content words preceding them", one might 

expect a strong correlation between the content word and particle within a 

given phrase, and that exclusion of C-P bigrarn statistics would therefore 

undermine the accuracy of their probability estimates. The researchers ex­

plain that their decision to omit these bigrams is based on the fact that input 

sentences are parsed into phrases prior to training, and that "an intra-phrase 
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CFG is used for phrase recognition, therefore, only the particle-to-content 

word bigram is taken into account". The intra-phrase information to which 

they allude is specifically that of content-to-particle dependencies. 

This explanation does not obviate the question as to whether estimates of 

sentence probabilities can be as good as those given by a conventional bigram 

model if C-P bigrams are not factored into the calculation. Given that the 

three bigram types they ultimately use all target inter-phrasal dependencies, 

these could not subsume the missing information. In order for this method to 

be more effective than the conventional model, then, the predictive contexts 

discovered through syntactic abstraction must be sufficient to compensate for 

any loss attributable to the unused intra-phrasal bigrams. Obviously P-C 

bigrams cannot make up this deficit as they correspond to conventional word 

bigrams, thus the gains would have to come from either or both of the P-P 

or C-C bigrams. 

Languages that have overt case-marking, as Japanese does, generally per­

mit more liberal word-order in sentence construction than is possible for un­

cased languages, which must rely on fixed canonical orders to imply case, 

as with the subject-verb-object order of English. Japanese does have a pre­

ferred canonical word-order of subject-object-verb, but a speaker can move 

any nounphrase to the start of a sentence if it is desirable to increase its 

importance in the utterance. In addition, some nounphrases can in many 

instances be assumed, and as a consequence they are often omitted from sen­

tences. Given such flexibility in the use of case-marked nouns, it is not likely 

that the statistics of P-P bigrams are on their own sufficient to offset the loss 

of intra-phrase correlations. More plainly, a noun in a conventional Japanese 

bigram provides about as good a predictive context for its case-marker as 

would the particle of the preceding phrase. So it must be that if the model 

proposed by Isotani and Sagayama is in any way superior to conventional 

bigrams it is because of its ability to better exploit the mutual information 

of close proximity content words through C-C bigrams. 

5.1.4 A function/content word trigram model 

Like lsotani and Sagayama, Geutner [46] observes that standard word-based 

n-grams generally fail to capture genuine linguistic constraints. As an alter-
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native, she proposes a model of English that uses the distinction between 

function words and contents words to gain access to the local constraints 

that effectively correspond to syntactic and semantic knowledge. 

Geutner's idea is to use an unconventional trigram model, where the 

prediction of the word Wi is based on the context of the preceding word Wi-I 

combined with either the most recent content word c if wi-I is a function 

word, or with the most recent function word f if Wi-I is a content word. More 

formally, the probability of a word is estimated as 

p [ ·] = { ifwi_1 is a content word Pr[wilf,wi-i] 
r w, if Wi-I is a function word Pr[wilc, Wi-1] 

Geutner uses the sentence "we will ride on the bus" as an example in support 

of her reasoning. In a conventional model, "on the" provides the context 

for predicting "bus", but Geutner contends that "ride the" is just as good 

a predictor. Though she does not elaborate further, one might presume 

her claim rests on the observation that both models include the determiner, 

which serves to predict an ensuing noun, and while the preposition within 

the standard context further constrains that noun to be likely a referent to 

something that can have something else "on" it, the verb in Geutner's so­

called function/content trigram provides a more restrictive semantic clue: 

that the referent will likely be something that one can "ride" and, hence, 

implicitly be "on" as well. 

Despite the apparent soundness of her function/content word trigram 

idea, empirical studies by Geutner produced much higher complexity esti­

mates than those obtained by a conventional trigram model. Geutner is 

not surprised by this, stating candidly that "as to be expected, the func­

tion/ content word model has no use on its own". She does, however, maintain 

that the model is able to capture distinct linguistic knowledge that can be 

interpolated with a parallel word trigram model to give improved complex­

ity estimates-just as Isotani and Sagayama interpolated particle-to-content 

word bigram statistics in their probability estimates. Though Geutner does 

not include a description as to how the interpolation is effected, she does 

provide results from several experiments that show her combined model out­

performing conventional trigrams by about 4%. 
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5.1.5 Analysis of function/content trigrams 

Geutner's results are disappointing in that the function/ content word model 

does not by itself make good on its potential for translating syntactic and 

semantic dependencies into improved complexity estimates. More plainly, 

that the model has to be combined with standard word-based trigrams before 

delivering its picayune gains suggests that it fails to capture the targeted 

dependencies effectively. 

Indeed, there does not appear to be much linguistic basis to Geutner's 

approach. Consider that there are only four types of function/ content word 

trigrams possible in her model. 

Wi-2 Wi-1 W1 

f C f 
f C C 

C f f 
C f C 

If the word to be predicted is a content word then it is unlikely the most 

recent preceding function word can contribute much to conditioning an ac­

curate probability. The function word may offer some clue about the category 

of the next word, as when a determiner signals imminent onset of a noun, 

and may even project some agreement constraint, as when a singular deter­

miner normally constrains the following noun to be singular. But adjectives 

also predict nouns; so too do verbs to some extent; and a subject noun not 

only foreshadows the main verb implicitly but often also projects exactly 

the same agreement relation as might be dictated by the noun's determiner. 

More plainly, the most recent content word will often subsume the predictive 

potential of the most recent function word. Given that all contexts for pre­

dicting a content word also include the next most recent content word, the 

potential contribution of the function word is quite likely marginalised. 

If, on the other hand, the word to be predicted is a function word then 

the most recent content word is similarly not likely to be of much help. A 

subject noun, for instance, may tend to be followed by an auxiliary, and 

the auxiliary may even have to agree with the noun in terms of person or 

number features, but the noun's determiner will often embody the very same 

constraint information. Further, verbs are often followed by adjunct phrases 
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that begin with a preposition followed immediately by a determiner. In that 

respect, the verb may be said to predict the determiner, but no more so 

than the intervening preposition. In the sentence supplied by Geutner, for 

example, the probability of "the" is estimated from a function/content word 

trigram as Pr[thejride, on]. Though the verb transitivity certainly suggests 

a direct object and therefore the determiner of the object's nounphrase, the 

preposition "on" subsumes this predictive potential almost entirely. 

Insofar as these conjectures are correct, they suggest that there is little to 

be gained by combining function and content words within the same predic­

tive contexts. Any potential the lexical distinction might have for capturing 

syntactic and semantic dependencies would be just as accessible in a bigram 

model that predicts each function or content word from the most recent word 

of the same class, as was originally proposed by Isotani and Sagayama. What 

is uncertain is whether such a model can be extended as a complete account 

of language-without the need for dropping words or introducing duminy 

terms-and whether inter-class dependencies (between function and content 

words) can be incorporated efficiently and effectively. 

5.2 The super adjacency model 

If one divides the vocabulary of a language into the two broad classes of 

content words and function words, then language can be viewed as the in­

terlacing of two streams, one comprised only of the content words and the 

other solely of function words. Two words are said to be "super-adjacent" if 

they are next to each other in either of the two streams. By garnering sep­

arate bigram statistics for each stream of super-adjacent terms, the unique 

sequential characteristics of the streams can be modeled independently. It is 

argued that the nature of the interaction between the two streams is implicit 

and class-based, not explicit and word-based, and thus inter-sequence depen­

dencies can be captured through the use of an escape symbol that manages 

the transfer from one super-adjacency model to the other. The net effect 

is a parallel model that preserves the most useful bigrams of a conventional 

approach and simultaneously increases the incidence of adjacency for pairs of 

content words with high mutual information. The result is a more compact 
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model that delivers better estimates of language complexity than is possible 

from standard bigrams. 

5.2.1 Sequential agreement effects 

The ways in which words can be combined together to create well-formed 

sentences are governed by the syntactic constraints of a language. Such con­

straints may be dictated by rules that explicitly define permissible structures, 

or by more sublime heuristics that indicate preferential orderings for success­

ful communication. Whatever the exact nature of the underlying generative 

mechanism, the output effect is a lexical sequence with conspicuous statistical 

properties wherever true linguistic dependencies arise. 

Broadly speaking, there are three kinds of agreement phenomena appar­

ent in the surface structure of language: 1) syntactic agreement structure 

emerges as intra-phrasal patterns within constituent elements, and as inter­

phrasal patterns within complete sentences; 2) semantic agreement is ob­

served as patterns of thematically related words whose juxtaposition reflects 

coherent intension with respect to the present topic of discourse; and 3) 

inflectional agreement morphology is manifest as correlations between sub­

categorisations embodying more abstract lexical features like number and 

tense. 

Syntactic agreement structures are components of isolated sentences and 

do not extend across sentence boundaries. Following from the arguments 

of Chapter 2 and Chapter 4, the essential characteristics of such structures 

are determined by the functional categories of a language, a view that is 

consistent with modern theories of syntax [44, 109, 64]. Isotani and Sagayama 

proposed that the statistical properties of these structures can be suitably 

approximated by a bigram model of the sequence of function words that 

remains when all content words in a language sample are ignored, and this is 

the approach adopted by the super-adjacency model described below. Unlike 

the model defined by Isotani and Sagayama, however, the entire function 

word sequence is modeled without alteration-that is, no functional terms 

are dropped or inserted to compensate for unwanted irregularities. 

Semantic agreement pertains to the appropriate combination of thematic 

terms to produce coherence of meaning in sentences. In broader discourse, 
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semantic regularities may extend across sentence boundaries given that in­

tension of adjacent sentences are often related. Following the argument of 

Chapter 3, semantic agreement is reflected in high mutual information for 

pairs of co-occurring words, and it can to a great extent be captured by a bi­

gram model of the content word sequence that results when all function words 

are ignored. This is the view taken by Isotani and Sagayama in their par­

ticle/ content word model, and it is maintained here in the super-adjacency 

model. However, unlike the particle/content word model, super-adjacency 

ignores sentence boundaries in the content word sequence and therefore has 

no need of dummy content words to provide context for the first semantic 

term in a sentence. 

Inflectional agreement morphology is the extension to structural agree­

ment needed to enforce compatibility for the inflectional attributes of words­

as when a noun must agree in number with its associated determiner (e.g. 

"that dog" as compared to "those dogs"). Manifestation of this form ·of 

agreement often involves morphological transformations that modify a base 

semantic root to an appropriately inflected surface form, frequently by affix­

ing a inflectional morpheme-such as the -ed or -ing tense suffixes of regular 

English verbs, or the -s plural marker for countable nouns. The statistical 

effect of inflectional agreement is strong correlation either between inflec­

tion markers or between inflection markers and function words. In fact, it is 

generally held that inflectional affixes are distinct elements within the func­

tional categories of a language [48, 66], and their agreement effects are more 

properly viewed simply as regular syntactic agreement structures [64, 29]. If 

inflection markers can be disentangled from their associated roots and treated 

as independent function words, then their agreement behaviour is subsumed 

by a model of syntactic agreement structures. This is the view taken by the 

inflectional super-adjacency model outlined in Chapter 6. The remainder 

of this chapter, however, is restricted to the more fundamental problem of 

modeling whole-word agreement phenomena. 

5.2.2 A bigram model of super-adjacency streams 

Given the above descriptions of the particle/ content word bigram model by 

Isotani and Sagayama, and the function/ content word trigram model by 
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functwn word the up into a 
stream 

f1 f2 f3 f4 f5 

l l l l 
the cat ran 

sentence 
up into a tree 

W1 W2 W3 W4 W5 w6 w., Wg 

1 1 

content word cat ran tree 
stream 

Cl C2 C3 

Figure 5.1: A sentence as interlaced function and content word streams. 

Geutner, the basic mechanism of a super-adjacency model is easily stated. 

A language sample is viewed as the product of interlacing two separate lex­

ical streams: one stream comprised entirely of content words and the other 

entirely of function words, as depicted in Figure 5.1. The probability of a 

word w is made conditional on the context given by the most recent word of 

the same type. Formally, if c is the most recent content word and f the most 

recent function word, then 

[ ] { 
if w is a content word Pr[wlc] 

Prw = 
if w is a function word Pr[wlf] 

End-of-sentence markers are regarded as function words by the super-adjacency 

model, thus the first function word of a sentence has the end-of-sentence 

marker from the previous sentence as its conditioning context. In compar­

ison, no sentence boundaries exist in the stream of content words, and the 

first content word of a sentence is predicted based upon the context of the 

last content word in the preceding sentence. 
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The probability of a sentence can, in part, be calculated as the product 

of the conditional probabilities of its words. Given a sentence with n con­

tent words and m function words, where c0 is the last content word in the 

preceding sentence and fo is the end-of-sentence marker for the preceding 

sentence, the probability of the sentence S produced when the two streams 

are combined can be approximated as 

n m 

Pr[S] ~ II Pr[ciJci-1] x II Pr[fjJf3-1] 
i=l j=l 

This formula does not by itself assign a probability to a specific sentence; 

rather it assigns a probability to the set of sentences comprised of the spec­

ified function and content word sequences. No account is provided for the 

precise manner in which the two streams interlace. Viewed another way, 

given the set of bigrams used to estimate the probability from the formula 

above, it is possible to reconstruct the sentence only to a limited extent. 

The function words involved, and their order with respect to each other, are 

known, as are the content words and their order, but the exact points where 

the two streams come together is unspecified. Given the stream of function 

words and the stream of content words, it is possible for a speaker of that 

language to make quite sound guesses as to how the two are interlaced, but 

the additional linguistic and world knowledge required to do so is not avail­

able to a sequential model. The uncertainty of the interaction necessarily 

entails additional cost in the entropy of the sentence, thus the goal is to find 

a way to model it as efficiently as possible. 

5.2.3 Modeling stream interaction 

There are three methods by which an n-gram model can provide an account 

of how the streams of function words and content words interlace, and il­

lustrations of these methods are given in Figure 5.2. One way is to insert a 

marker (SC) into the stream of function words at each point where a content 

word ought to appear. The marker is treated as an additional functional 

term: a category symbol for the set of semantic terms. The modified func­

tional stream is modeled independently using function word bigrams; but 
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a) 

- the - SC-SC-up-into-a -SC-. 

f1 f2 f3 f4 fs f6 f7 fa 

l 1 l 1 l 1 
cat ran tree 

Cl C2 C3 

b) 

the up into a 

f1 f2 f3 f4 f5 

ll ll l l ll ll 
- FC- cat-ran -FC-FC-FC-tree -FC 

C1 C2 C3 C4 C5 c6 C, Cs 

c) 

- the - SC up-into-a -SC 

cat-ran-FC tree-FC 

Figure 5.2: Three options for modeling stream interaction. 

whenever a semantic category symbol is encountered, processing is momen­

tarily transferred to the content word bigram model. The content word is 

predicted and processing returns to the function word model immediately 

afterward. 

A second method, depicted in Figure 5.2b, is the complement of the first. 
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A marker (FC) is inserted into the stream of content words wherever a func­

tion word would normally appear. The marker is treated as an extra content 

term: a category symbol for the functional class. The content word stream 

is modeled using content word bigrams and processing is momentarily trans­

ferred to the function word bigrams whenever a function category symbol 

is encountered. After the function word has been accounted for, processing 

returns to the content word model. 

The third option, illustrated in Figure 5.2c, is a blend of the first two. A 

semantic category symbol is inserted into the function word stream at each 

point where a contiguous sequence of content words would normally be found. 

Similarly, a functional category symbol is substituted into the content word 

stream for each contiguous subsequence of function words. The functional 

stream is modeled by function word bigrams and when a semantic category 

symbol is encountered processor control is transferred to the content word 

model. The content word model continues to be used until a functional cate­

gory symbol is discovered, at which point control is returned to the function 

word model, and so on. 

There are a number of reasons why the first method is preferred. First, 

the position of content words is a property of syntax, and syntactic depen­

dencies are largely given by the functional structure of sentences. Moreover, 

function words often foreshadow a subsequent content word at the category 

level-for example, determiners predict adjectives and nouns quite well, and 

auxiliaries predict verbs. Content words, on the other hand, do less well at 

predicting functional terms. While a subject noun may, for example, increase 

the probability of, say, an auxiliary, there is nothing in an n-gram model to 

provide the necessary case information for this. A noun is just a noun and as 

such offers little clue as to whether the next word will be a verb, an auxiliary, 

or an end-of-sentence marker. 

Second, both of the other methods involve interrupting the stream of 

content words with a functional category symbol. Having category symbols 

adjacent to content words interferes with the content word bigram model's 

ability to exploit the mutual information of close proximity semantic words. 

This could be avoided by ignoring functional category symbols when it comes 

time to predict the next content word, so that when control returns to the 
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semantic model the next content word is predicted based upon the context 

of the most recent content word regardless of whether there is an intervening 

functional category symbol. Unfortunately, this increases the statistics of 

the predicting context as it must now predict both the adjacent functional 

category symbol and the content word that follows. To avoid this, an addi­

tional set of content word bigrams must be maintained for situations where 

a category symbol must be ignored, but this entails a significant increase in 

the size and complexity of the model. 

Regardless of speculations about what may happen, the most important 

reason for using the first method is that it gives better entropy results in 

empirical studies. Before the relevant experimentation can be discussed, 

however, it is necessary to clarify one more detail of the super-adjacency 

model: how the distinction between function and content words is made. 

5.2.4 The function word class 

Fundamental to the super-adjacency model is a requisite ability to distinguish 

between function words and content words. Given that these two broad 

categories are nonoverlapping in the super-adjacency model, it is sufficient 

to define just one of them; the other is implied as the complement portion 

of the vocabulary. The set of content words is often referred to as the open 

class because it is subject to limitless new additions. For example, new proper 

nouns for people, places and products, the neologisms of technological jargon, 

and words borrowed from foreign languages are constantly incorporated into 

the vocabularies of the world's languages. In comparison, the set of function 

words is often referred to as the closed class because its membership is more 

or less fixed. That the number of function words is very much smaller than 

the number of content words is a further incentive to define the closed class. 

As far as intuitions go, linguists are more or less agreed about the prop­

erties that distinguish a function word from a content word. Function words 

are generally more abstract in meaning than content words, with their role 

in language being primarily syntactic as opposed to semantic. They typically 

do not bear stress in spoken language, though deliberate emphasis is possible, 

and they do not enter freely into word formation processes, like compounding 

and derivation. Furthermore, the fact that function words tend to appear late 
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in the productive vocabulary of children acquiring their first language, and 

that the facility for recognising function words can be selectively impaired in 

aphasic adults suggests they are subject to different mental representations 

and processes than content words [20]. 

Despite general agreement about the linguistic attributes of function 

words, there is no clear consensus as to precisely which words are functional 

and which are not. Even so there are a number of heuristics available for 

approximating the closed class. Most are based on a conspicuous statistical 

property of function words; namely, that they are generally very much more 

frequent than content words. 

Dictionary method 

Function words are exemplified by minor grammatical categories, including 

prepositions, determiners, auxiliaries, pronouns, possessive adjectives, and so 

forth. Viewed another way, content words are nouns, verbs, adjectives and 

adverbs, and function words are pretty much all the rest. Thus one way to 

derive the set of function words is simply to scan through a dictionary and 

gather up all words that do not belong to a content word category. 

There is some difficulty with this method in that a few words belong to 

both semantic and functional categories (such as copula verbs, some inter­

jections and some prepositions). A conservative ad hoc solution might be 

to only include a word if none of its listed categories are of the four major 

semantic types. But, given that the ultimate goal of the language model is 

to deliver low entropy estimates, it is perhaps undesirable to exclude a high 

frequency word that is most often used as a grammatical term just because it 

may occasionally be used in an overtly semantic sense. Thus a more practi­

cal heuristic might be to make decisions based upon the preferred (i.e. first) 

category associated with a word. Using a machine readable version of the 

Oxford English Dictionary, 248 words of the Brown Corpus vocabulary are 

deemed to be members of the closed class using this selection criterion. 

Top 100 

The dictionary method outlined above differentiates between function and 

content words based upon the grammatical judgments of language experts-
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specifically, judgments made by the lexicographers who compiled the dic­

tionary. While linguists may disagree as to the which words are functional 

and which are not, the judgments made by the lexicographers are perhaps 

as sound as can be hoped for. In the absence of expert linguistic knowledge, 

however, decisions about closed-class membership can still be made based on 

the statistical properties of function words. 

Caplan claims that "there are approximately 500 or so function words in 

English, and, of the 100 most common words in English, most are function 

words" ([20], page 267). On the assumption that the grammatical impor­

tance of the other 400 function words diminishes proportionately with their 

decreasing frequency, a practical approximation of the closed class might sim­

ply be to use the 100 most frequent words from a large representative sample 

of English. While some erroneous inclusions are likely to occur from this 

method, and some oversights certain, the statistical significance of the 100 

most frequent words may be sufficient for the purposes of a super-adjacency 

model. 

1% solution 

The errors and omissions that occur when the 100 most frequent words are 

defined to be the closed class arise in response to specific characteristics of 

the sample used. If the training text happens to include excessive treatment 

of, say, household appliances, there is some risk that words like "toaster" and 

"refrigerator" will make it into the approximated closed class, even though 

they are not typically among the 100 most frequent words of English in 

general. Moreover, some bona fide function words may just fall outside of 

the top 100 as a direct consequence of two or three content words appearing 

with unusual frequency in the training sample. 

Side-effects from inaccurate lexical probabilities attributable to the id­

iosyncrasies of the sample can be mitigated by taking the intersection of 

vocabularies from several large and disparate language sources before gar­

nering the set of function words. Because function words are grammatical 

terms required by English syntax as a whole, they have a high likelihood of 

appearing in any sufficiently large sample, and thus will be preserved when 

the vocabularies of several such samples are intersected. Conversely, while 
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any one sample may have some number of unusually frequent semantic terms, 

it is unlikely that such terms will occur in all large samples, thus they are 

eliminated when the intersection is taken. 

Once idiosyncratic terms are removed, the proportion of function words 

at or near the top of the frequency-sorted intersection vocabulary tends to 

be greater than it is in the vocabulary of any one sample. This permits 

consideration of a greater number of most frequent words when approximating 

the closed class. Given the ratio of function to content words in English, it 

has been proposed that the top 1 % of most frequent words in an intersection 

vocabulary is a good approximation [104]. When this approach is taken using 

machine readable versions of four large novels, each with vocabularies greater 

than 11,000 words-Wuthering Heights, Moby Dick, Far from the Madding 

Crowd, and Dracula-the result is a closed class with 83 words. 

Split points 

Two other heuristics have been proposed to partition a frequency-sorted vo­

cabulary into the sets of function words and content words. One is based on 

the observation that approximately half of all tokens in a typical sample of 

English are function words (98]. The suggestion is that a fair approximation 

of the closed class can be established using the minimum number of most fre­

quent words needed to account for 50% of the tokens in a large representative 

sample of English. Using the statistics of the Brown Corpus, 102 words are 

included in the functional set using this method-just slightly more than the 

top 100. 

Another technique was proposed to isolate content words for a model that 

automatically derives inflectional suffixes (100]. The idea is based on Zipf's 

principle of least effort-a theory advanced to explain the many harmonic 

distributions found in a variety of data sets, but a theory that is perhaps 

more impressive than perspicuous [115]. The partitioning algorithm plots the 

hyperbolic distribution of a vocabulary ordered by frequency, then divides it 

into function words and content words at the knee2 of the curve. Applied 

to the vocabulary of the Brown Corpus, the 210 most frequent words are 

established as the closed class. Subjective analysis of this set identifies almost 

2 the point on the curve closest to the origin 
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50 words that would more appropriately belong in the set of semantic terms. 

That only three of these are regularly inflected, however, perhaps accounts 

for the suitability of this method in the application for which it was originally 

suggested. 

Given that both of these techniques, and the top 100 method, simply as­

sume some number of most frequent words as an approximation of the closed 

class, a more systematic approach for studying this heuristic is simply to try 

different partition points in the sorted vocabulary and observe the complexity 

estimates that result. This approach is adopted in the experiments outlined 

below. 

5.3 Experimentation 

This section outlines a series of experiments designed to measure the per­

formance characteristics of super-adjacency models given a diverse range of 

predefined function word sets. The results show that super-adjacency models 

perform well under a variety of initial conditions, both in terms of per word 

entropy estimates and model size. Analysis of the final models indicates a 

strong correlation between performance and the number of unique instance 

content word bigrams, and it is hypothesised that a much smaller and more 

general model could be made to deliver even better complexity estimates 

if morphological inflection could be incorporated into the super-adjacency 

paradigm-a conjecture explored more fully in Chapter 6. 

5.3.1 Per word entropy 

A super-adjacency bigram model preserves most of the useful bigrams of a 

conventional model. That is, all pairs of adjacent function words and all pairs 

of adjacent content words normally captured as standard bigrams are also 

captured in a super-adjacency model. Bigrams that combine a function word 

with a content word, however, are reduced to one of two more general types. 

Function-to-content word bigrams are transformed into bigrams where the 

function word predicts a content category symbol, and content-to-function 

word bigrams are reduced to a context where the content category symbol 

predicts a function word. Given that the relationship between function words 
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and content words is primarily categorial, as argued in Chapter 4, very little 

contextual information is lost by such generalisation. 

The advantage of a super-adjacency model is that consecutive content 

words which are not adjacent in a sentence can be treated as if they were. 

Given that close proximity content words tend to have high mutual infor­

mation, the super-adjacency approach increases the availability of these low­

entropy relationships. The gains that follow tend to be more than sufficient 

to overcome any losses from the generalisation of function-to-content word 

and content-to-function word bigrams. Moreover, as there are fewer possible 

super-adjacency bigrams than possible standard bigrams, accurate probabil­

ities are conditioned more quickly in a super-adjacency model. 

A series of experiments was devised to test the hypothesis that a super­

adjacency model will outperform a conventional model in terms of its ability 

to deliver low estimates of language complexity. A second and more inter­

esting objective of the experiments was to explore how changes to the initial 

approximation of the closed class affects the overall performance of the model. 

The language sample used for test input is the Brown Corpus, preprocessed 

in the manner described in Section 2.2. The controlled (i.e. explanatory) 

variable is the approximation of the set of function words, and the random 

(i.e. response) variable is the per word entropy given by the model. 

Figure 5.3 shows a graph of the average symbol entropy for the Brown 

Corpus given a broad range of initial function word sets. Per word entropy, 

expressed in bits, is given on the y-axis, and the x-axis corresponds to the 

base-2 logarithm of the number of most frequent words included in the closed 

class approximation. There are several useful observations to be made from 

these experimental results. 

Two forms of standard bigrams 

The rightmost point on the curve plots the average symbol entropy when all 

44,519 words in the Brown Corpus vocabulary are included in the function 

word set. The net effect is that the entire corpus is modeled using function 

word bigrams alone (i.e. no content category symbols are ever encountered), 

thus the result is equivalent to what is obtained from a conventional bigram 

model-approximately 6.486 bits per word. 



130 CHAPTER 5. SUPER-ADJACENCY MODELS 

6.8 .----.---.----~---r-----r------.-------r----. 

6.6 

] 6.4 

E 
>, 

.!!! 

I 
C 6.2 u 

6 

'MOST FREQUENT WORDS' -+­
'1 % SOLUTION' -+--· 

'DICTIONARY' ·O·· 

5.8 ......_ __ ..__ __ ...__ __ ........_ __ _._ __ _._ __ __._ __ _.,_ __ __. 

0 2 4 6 8 10 12 14 16 

closed class size (logarithmic) 

Figure 5.3: Effect of function word set on entropy /word. 

Correspondingly, the leftmost point on the curve plots the average symbol 

entropy when no words are included in the function word set. In this instance, 

the entire function word stream is treated as an uninterrupted sequence of 

content category symbols, and every word is modeled using content word bi­

grams. The entropy of the category symbols is exceedingly small ( effectively 

zero) in the functional model, and the overall result is again equivalent to 

what is obtained from standard bigrams. 

Superior performance 

The graph shows that, for function word sets comprised of between about 

4 and 2000 (i.e. between 2 and 11 on the logarithmic scale) of the most 

frequent words, super-adjacency models of the Brown Corpus give better av­

erage complexity estimates than a conventional model. The set sizes selected 

for analysis where chosen to produce a graph indicative of the overall rela­

tionship between the controlled and random variables. However, the cluster 
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of points around the 100-word mark (i.e. about 7 on the logarithmic scale) 

reflects additional class sizes tested in an effort to zero-in on the optimum 

function word set. The best result was delivered when the 95 most frequent 

words were defined to be the closed class, with a per word entropy of ap­

proximately 6.03 bits-an improvement of just over 7% on the conventional 

bigram model. 

Special cases 

Also included in the graph are two additional points indicating the per word 

entropy from two specific closed class approximations. The 248 function 

words gleaned from the Oxford Dictionary resulted in an average symbol 

entropy of approximately 6.062 bits. As it happens, this result differs by less 

than 0.0003 bits from that obtained when the closed class was taken to be 

simply the 248 most frequently used words-but, surprisingly, this difference 

is in favour of the 248 most frequent words, indicating that a statistics-based 

approximation is perhaps slightly more useful when minimising language 

complexity is the primary goal. The second point plots the result when the 

83 most frequent words from the 1 % solution (Section 5.2.4) is used. This 

approximation produced a noticeably poorer per word entropy than the 83 

most frequent words from the Brown Corpus-approximately 6.063 bits per 

symbol for the former as opposed to 6.038 for the latter. 

Inferior models 

Two other notable features of the graph are the two regions where per word 

entropy from a super-adjacency model is worse than for standard bigrams. 

For a super-adjacency model whose function word set consists of just the 

two most frequent symbols ( the definite article "the" and the fullstop end­

of-sentence marker "."), 90% of its bigrams correspond to those from a con­

ventional model, while the rest correspond to consecutive but non-adjacent 

content words with presumably high mutual information. One might there­

fore expect this model to give at least marginally better complexity results 

than the conventional one, but the reality is that the average symbol entropy 

rises slightly to 6.513 bits. 

The only explanation is that the mutual information for the super-adjacent 
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content terms is less than expected-specifically, it must be less than the 

combined mutual information each content word has with the intervening 

function words. It is possible to show that this is in fact what happens, but 

an analysis based on our own linguistic intuitions is sufficient to see why it 

happens. Consider the situation for complex nounphrases like "outcome of 

the experiment" and "eclipse of the moon". In a conventional model, "of 

the" is by far the most common bigram, but in a super-adjacency model 

that has just "the" and "." in the function word set, the word "of" is gen­

eralised to the content category symbol, and its predictive capacity in the 

syntactic model is lost. Further, the sequential relationship between "of" 

and the following noun is considerably weaker than the relationship between 

the intervening determiner and that noun, thus there is additional increase in 

entropy when "of" is counted among the content words. Moreover, because 

the content word "of" stands between two genuine content words with high 

mutual information, their semantic relationship cannot be capitalised upon 

because they are not super-adjacent. 

When the function word set size is increased to three, "of" is incorporated 

into the functional sequence. As a consequence, the syntactic relationship 

between "of" and "the" becomes available in the functional stream, and the 

high mutual information of the close proximity content words is made acces­

sible for the semantic model. Given that this form of nounphrase is so very 

common, the result is a significant improvement in the overall complexity 

estimate. 

At the far right of the graph ( where function word sets are larger than 

about 3000 words) is a much broader region where entropy estimates are 

worse than from a conventional model, but here the effect is much easier to 

understand. As the size of the function word set increases, more and more 

of the conventional bigrams are moved to the function word stream. As a 

side-effect, unbroken strings of functional terms become longer and longer 

so that whenever the semantic model is triggered the distance between the 

conditioning content word and the content word to be predicted tends to 

be quite large. As demonstrated in the discussion on semantic latency in 

Section 3.1.1, the more distant two content words are, the less likely they 

are to have high mutual information, and this is the observed effect in these 
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experiments. The penalty only disappears when the entire vocabulary is 

moved into the functional set and the conventional model is emulated again. 

5.3.2 Model size 

Super-adjacency models based on a closed class of about 100 words give bet­

ter entropy estimates than do conventional bigram models, though the gains 

are not extreme. In the best case, based on the experiments in the preced­

ing section, the complexity estimates from super-adjacency bigrams are just 

over 7% better than those obtained from standard bigrams-not much bet­

ter than the 4% improvement realised by Geutner's function/content trigram 

model. Geutner, however, interpolated statistics of conventional word-based 

trigrams with those from her unconventional function/ content trigrams, cre­

ating a significantly larger model than the standard approach. The super­

adjacency technique, in comparison, can deliver improved performance from 

fewer bigrams than is required by a standard model. 

Recall from Section 5.1.3 that a vocabulary comprised of F functional 

terms and T thematic terms leads to a comprehensive conventional model 

with (F+T) 2 bigrams. For the super-adjacency model, there are only F 2+T2 

bigrams in the worst case ( although there is one additional functional term 

in the form of the content category symbol), thus 2 x F x T bigrams are 

saved. Given the 44,519 words in the Brown Corpus vocabulary, an exhaus­

tive super-adjacency model with 100 function words has almost 9 million 

fewer bigrams than a complete conventional model. 

Comparing the worst case model sizes of these two modeling paradigms 

is only of marginal interest, given that both are in E>(n2). What is generally 

more interesting is how many of the potential bigrams are actually used 

when modeling a large language sample. The more compact a model is, 

the less vulnerable it is to the problem of data sparseness, allowing accurate 

probabilities to be conditioned more quickly. 

Compactness 

Figure 5.4 plots the relationship between the size of the function word set 

(expressed on the x-axis and scaled to the base-2 logarithm) and the number 
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Figure 5.4: Effect of function word set on model size. 

of distinct bigrams that result ( expressed without scaling on the y-axis) in 

the corresponding super-adjacency model of the Brown Corpus. The graph 

shows separate curves for the number of function word bigrams and for the 

number of content word bigrams (the two bottom lines), and the third curve 

plots the sum of the other two. Once again, the end points correspond to 

two emulations of the conventional model-on the extreme left is the empty 

function word set (actually one that has just the content category symbol) 

and on the extreme right is the model for which the entire vocabulary is 

deemed the closed class. 

The graph indicates that, for small function word sets, the number of 

bigrams in the super-adjacency model is actually greater than it is for the 

standard model. The worst case occurs when the 16 most frequent words con­

stitute the closed class, at which point the model is just over 16.5% larger 

than a conventional one. Almost all of the excess comes in the form of 

content-to-content word bigrams, indicating that, contrary to initial specu-
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lations, the extraction of a small number of high frequency words fails to 

create greater regularity in the content word stream. Viewed another way, 

the amount of additional mutual information made available by ignoring a 

small number of function words comes at the price of increased model size. 

As the size of the function word set grows, the overall number of bigrams 

in the super-adjacency model ultimately begins to decrease, dipping below 

the size of the conventional model when the closed class includes around 

200 of the most frequent words. Although the number of distinct function­

to-function word bigrams begins to increase dramatically at this point, the 

rate of decrease in the size of the content word model is significantly higher, 

resulting in a more compact model as a whole. Interestingly, the minimum 

number of most frequent words needed to produce a super-adjacency model 

with fewer bigrams than a conventional model is 210-the knee of the curve in 

a graph plotting lexical rank against frequency. At this point the average per 

word entropy is nearly maximum at about 6.035 bits-roughly 7% lower than 

what the standard model gives. Thus it is confirmed that super-adjacency is 

able to deliver better estimates of language complexity from a smaller model. 

Unique bigrams 

Model compactness appears to be minimised when the function word set 

grows to about 2000 of the most frequent words. This is a considerably 

larger set of function words than is presumed for English by even the most 

forgiving linguistic criteria. Though it is difficult to find an explanation as to 

why this particular set size produces the smallest model, there are a number 

of factors that help explain how it happens. 

The graph in Figure 5.5 plots the relationship between the size of the func­

tion word set and the number of single instance bigrams in the corresponding 

super-adjacency model. Similar to the previous figure, separate curves are 

given for the number of unique content-to-content word bigrams and for the 

function-to-function word bigrams, and a third curve plots the sum of these 

two. Included in the graph as the top line is the curve from the previous 

figure showing the total number of bigrams in the model. The graph implies 

that increased model size results directly from an increase in the number of 

single instance content bigrams, as the number of unique function-to-function 
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Figure 5.5: Effect of closed class size on the number of unique bigrams. 

bigrams does not become notable until well after overall model size begins 

to decline. 

The increase in unique content bigrams is also a primary cause of the 

decrease in average symbol entropy provided by the super-adjacency model. 

In the absence of smoothing, the predictive capacity of the first term in a 

single instance bigram is essentially perfect; thus the more single instance 

bigrams arising in the model, the lower the per word entropy. The effect is 

easier to see in the graph of Figure 5.6. In this graph, the top line shows the 

average symbol entropy as a percentage of the entropy given by a conventional 

bigram model. The bottom line plots the percentage of the model comprised 

of single instance bigrams. As the ratio of unique bigrams increases, the 

average entropy improves such that the lowest point of one curve is the 

highest of the other, and vice versa, indicating more or less a reciprocal 

relationship. Even so, for closed class sizes between 200 and 2000 words, 

the super-adjacency model gives superior entropy estimates from a smaller 
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Figure 5.6: Correlation between entropy gains and the ratio of unique bi­
grams. 

model. 

5 .4 Discussion 

The evidence of this chapter confirms the hypothesis that the super-adjacency 

technique can produce better complexity estimates than the conventional ap­

proach from a more compact model. Minimum entropy is realised when 95 

of the most frequent words are defined as function words. Unfortunately, 

the point of minimum entropy does not coincide with the point of minimum 

model size with respect to the size of the closed class required at their op­

tima. Though increased availability of mutual information for super-adjacent 

content words is the principal factor contributing to improved entropy esti­

mates, the fact that it appears to entail a high percentage of single instance 

content bigrams is somewhat unsatisfying. 
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The entropy results support the conclusion that the function word se­

quence and the content word sequence exhibit different kinds of linguistic 

regularity. If too many words are excluded or included in the closed class, 

the entropy benefits diminish rapidly, indicating that one or two hundred of 

the most frequent words is a suitable approximation of the closed class for 

making the most out of the distinct characteristics of syntactic and semantic 

relationships. Given such a small set of function words, it is quite feasible to 

increase the depth of context in the functional model, allowing more complex 

syntactic structure to be exploited and creating the possibility for even bet­

ter per symbol entropy estimates as a consequence. However, this would do 

nothing to ease the problem of excess single instance content bigrams, and 

would in fact only add to the overall model size. 

To reduce model size without entailing an increase in complexity esti­

mates requires that the content word bigrams be generalised in such a way 

as to preserve their mutual information yet reduce their numbers. The fol­

lowing chapter outlines a means for doing just that by disentangling the core 

semantic root of each content word from its inflectional suffix. The result 

is that all subcategorisations of a content word are reduced to a base form, 

and the variety of bigrams involving fundamentally the same pair of core 

semantic terms are collapsed into a single content bigram. The inflectional 

suffixes are moved to the functional stream where the agreement constraints 

to which they are subject are better modeled as syntactic phenomena. 



Chapter 6 

Inflectional models 

N-gram models face a considerable problem in the form of data sparseness. 

Given that a typical English vocabulary consists of. several tens of thousands 

of words, the number of possible bigrams, for instance, runs into the hundreds 

of millions. And because lexical distributions are inherently exponential, 

so too is any derivative n-gram distribution, resulting in a situation where 

impossibly large amounts of training data are required to condition accurate 

statistics. 

To mitigate the effects of data sparseness, a model must incorporate some 

form of generalisation. The super-adjacency model outlined in the preceding 

chapter does this to a limited extent by reducing all n-grams that involve 

both function and content words to one of four general cases, but the savings 

are rather small in comparison to what is needed to effectively combat the 

effects of data sparseness. 

Given that function words are few in number and typically quite frequent, 

data sparseness is chiefly a problem attributable to content words. Thus one 

solution is to exploit the combinatoric characteristics of content words in a 

more general way. We observe that a good deal of data sparseness arises 

because of inflection morphology-where a general low-entropy semantic re­

lationship between two base form thematic words is diffused by the diversity 

of their possible inflections. For example, in the sentences "he eats bananas", 

"he has eaten a banana" and "he is eating the banana" , the fundamental se­

mantic relationship between "eat" and "banana" must be modeled in three 

separate accounts. However, if inflected words can be glossed to their corre-

139 
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sponding base form, or lemma, the multiplicative effect of inflection is undone 

and data sparseness diminishes. 

This chapter explores the possible benefits of lemmatisation for n-gram 

models-in particular, the effect it has on complexity estimates and model 

size. It is observed that lemmatisation of regularly inflected words brings 

about a significant decrease in the number of distinct content words and, as 

a consequence, large numbers of infrequent bigrams are effectively collapsed 

into fewer more general cases. Though much of the mutual information of se­

mantic relationships is preserved in the lemmata, some inflection agreement 

information is lost and a slight increase in entropy follows. A super-adjacency 

model can compensate for this by moving inflectional suffixes to the func­

tional stream where their agreement dependencies can be recaptured. The 

result is low entropy estimates from a much smaller model. Further, as the 

function word class is quite small, even when inflectional suffixes are added, 

it becomes feasible to consider using deeper contexts in the functional model. 

Access to more distant grammatical dependencies is made possible without 

as significant a penalty in model size as would be experienced from an equiv­

alent higher-order conventional model. 

6.1 Lemmatisation 

To examine the effects of lemmatisation on the behaviour of n-gram models, 

it is necessary to first outline the means by which lemmata are derived. One 

option is to simply maintain a comprehensive list of inflected words and their 

corresponding base forms, but an interminable problem of out-of-vocabulary 

words makes this unattractive. Many rule-based stemming algorithms have 

been developed to circumvent this problem [73, 37, 87], but unfortunately 

their output is not quite suitable for the purposes of a stochastic sequential 

model that aims to preserve good entropy estimates from substantially fewer 

n-grams. 

This section provides an overview of the lemmatisation problem, high­

lighting important concerns that suggest the need for a special purpose desuf­

fixion algorithm. Such an algorithm is defined in the subsequent section, then 

applied in a series of modeling experiments detailed in the remainder of this 
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chapter. 

6.1.1 Suffixes, stems and roots 

Linguistics differentiates between two general types of suffix: derivational 

and inflectional. Briefly, derivational suffixes modify the major category of a 

word. For example, when "-less" is appended to words like "hope" or "cloud" 

then an adjective is derived from a noun, and when "-ly" is attached to words 

like "correct" or "dense" then an adverb is derived from an adjective. In com­

parison, inflectional suffixes mark a word for such things as tense or number 

( and, in some languages, also case and gender) so as to preserve syntactic 

agreement constraints, but the major category of the word is unaffected. For 

example, applying either of the suffixes "-ed" or "-ing" to an English verb 

can change its tense, but it remains a verb just the same. 

A stem is a word to which a suffix has been appended,1 so that "hope" 

is the stem of "hopeless" and "formalize" is the stem of "formalized". For 

this second example, the stem itself has a stem, "formal", which also has a 

stem, "form". The word that remains when no further stemming is possible 

is called the root morpheme, or often just the root. So it is that through 

suffixion English is able to parlay a relatively small set of lexical roots into 

a substantially bigger vocabulary. Conversely, this very large vocabulary 

can be simplified through desuffixion, reducing both the number of n-grams 

needed to model a language and the amount of data required to garner reli­

able statistics. 

6.1.2 Semantic class triggers 

Rosenfeld [90] explored the potential of vocabulary simplification for stochas­

tic sequence modeling-specifically, for a model based on trigger pairs ( see 

Section 3.2.4). His approach was to combine words sharing a common stem 

into a single semantic class identified by a unique base form-so, using 

Rosenfeld's example, the words "bank", "banks", "banking", "banker", and 

"bankers" are combined into a single class associated with the base form 

1 Linguistically speaking, a stem is a word to which an affix is attached, which includes 
prefixes and infixes, but only regular suffixes are of interest in this study. 
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"bank". Entropy estimates are then calculated based upon the triggering re­

lationships between base forms. The assumption is that mutual information 

for two words is preserved in the associations of their respective base forms, 

to the extent that the triggering effect of one base form on another is sim­

ilar to the triggering effect between the corresponding words. For instance, 

occurrence of any word with the base form "bank" ought to produce some 

probability boost for any word with the base form "loan", including "loans", 

"loaned" and even "loan" itself. 

As there are substantially fewer base forms than words, there are corre­

spondingly fewer class triggers. The expectation is that entropy estimates 

should improve because the generalisation allows related words to inherit the 

statistics of their class, reducing some of the adverse effects of data sparse­

ness. What Rosenfeld discovered, however, was that complexity estimates 

from his class-based model were actually worse than those obtained from 

a word-based one, despite having also interpolated conventional unigram 

statistics into his trigger model. Rosenfeld struggled to find an explanation 

for the poorer performance, suggesting perhaps that when rare words com­

bine with common words to form a class they lose the predictive power of 

their uniqueness without significantly improving the potential of their more 

frequent "classmates." This is almost certainly true in light of the results 

from n-gram experiments detailed in Chapter 2 and Chapter 5, where sin­

gle instance bigrams are shown to play a big part in delivering low entropy 

estimates. 

There is, however, another potential drawback for context models built 

from semantic base forms. Consider the following two sentences: 

this bank loans its money. 

these banks loan their money. 

When the content words are replaced by their base forms, the sentences are 

reduced to 

this bank loan its money. 

these bank loan their money. 

Generalised in this way, the number of unique contexts in a corresponding 

bigram model is reduced and bigram counts are increased, but the entropy 
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result might not improve because important agreement information is sac­

rificed. The base form bigram "bank loan" (where "bank" is a noun and 

"loan" is a verb) fails to embody the fact that a subject noun and main verb 

must agree in number. Similarly, the bigrams that model relationships be­

tween each of these base forms and their adjacent function words (e.g. "these 

bank") gives no hint as to the fact that they too must have surface forms 

that agree. As much as base form reduction might help diminish the effect 

of data sparseness, and regardless of the optimistic assumption that mutual 

information of semantic relationships might be preserved or even enhanced, 

the generalisation of n-grams in this way appears likely to entail a necessary 

trade-off between good entropy estimates and model compactness. To get the 

best of both, some means must be found to preserve important grammatical 

information embedded in the actual words. 

6.1.3 Inflectional suffixes only 

The syntactic detail lost by semantic base form reduction is predominantly 

agreement information formerly expressed in the suffixes of the words. One 

way to preserve this information without losing the potential of vocabulary 

simplification is to retain the suffixes in the reduced training sample as in­

dividual tokens alongside their base forms. The combined lexicon of base 

forms and suffixes is still much smaller than that of a complete vocabulary, 

but the opportunity for exploiting agreement dependencies is retained. 

Isolation and retention of all suffixes is unnecessary-even unhelpful­

and there are a number of reasons why only inflectional suffixes should be 

kept. Linguists maintain that inflectional suffixes are part of the functional 

categories of a language such that they must be learned as part of systemic 

grammar in order for wellformed sentences to be produced or understood. 

Derivational suffixes, on the other hand, are morphological components used 

to construct new words and may be acquired separately. And while deriva­

tional suffixes serve primarily to indicate the syntactic category of a word in 

isolation, inflectional suffixes participate in agreement relations with other 

functional terms, creating dependencies with potential for exploitation by a 

stochastic sequential model. 

There are also good reasons to leave derivational suffixes as part of seman-
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tic base forms. Derivational suffixes often have a fundamental impact on the 

meaning of a stem such that their detachment could interfere with modeling 

semantic relationships. For example, "banks" and "bankers" are certainly 

both associated with "loans", but bankers do very many things that banks 

do not, like have lunch, fall asleep at their desk, and commit suicide. Losing 

the distinction between various derivations might therefore undermine the 

ability for a word like "bank" to predict "closed" or for "banker" to predict 

"dead". 

There is empirical evidence supporting the idea that derivational suffixes 

should be left alone. Xu and Croft [113] observed that semantic clustering 

of words based on expected mutual information measures usually results in 

partitions where derivations are in separate classes and inflectional forms are 

grouped together. As an example, they present the following set of clusters 

as sample output from their experiments with the Wall Street Journal. 

{ absorbable, absorbables} 
{ absorbencies, absorbency, absorbent} 
{absorber, absorbers} 

In this instance, the various derivations of "absorb" (apart from "absorbent") 

have been isolated in different classes but related inflectional forms are com­

bined. Xu and Croft subsequently show that a base form trigram model 

using their semantic classes performs better in retrieval tasks than one using 

classes created from the conflations of an automatic stemmer. 

6.1.4 Stemming objectives 

To retain the utility of inflectional suffixes, some means must be found for 

extracting them. Using an automatic stemmer seems a practical option, but 

care must be taken in choosing the right algorithm. An overly aggressive 

stemmer that pares words down to their root can lead to excessive conflation 

of terms undermining the goal of accentuating perspicuous semantic rela­

tionships between base forms. For example, the widely used Porter-Lovins 

stemmer [87] conflates both "expectant" and "expectorate" to "expect", and 

all three of "precedence", "precious" and "precision" to the unhelpful ( and 

incorrect) root "prec". Another caution is that the suffix must not be de­

stroyed by the desuffixion process. One could try to infer the suffix afterward 
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by taking the difference between the stem and the original word, but this can 

lead to difficulties, as when "quality" is returned as the stem of "qualities". 

Moreover, to be most useful, suffixes themselves must be, in a way, lein­

matised. Most automatic stemmers, for example, give "fox" as the root of 

"foxes" and "dog" as the root of "dogs". If suffixes are derived as the dif­

ference between a word and its stem, two separate plural markers result for 

these two words-specifically "-es" and "-s". Given that all plural markers 

participate in agreement relations in more or less the same way, this can 

lead to situations where fundamentally identical syntactic relations must be 

modeled with more than one n-gram. 

The ideal stemmer is thus one that only processes inflected words, and 

whose output is both stem and suffix in some kind of canonical form. Un­

fortunately, stemmers of this type are not readily available, but it turns out 

that an appropriate algorithm can be constructed in a fairly straightforward 

manner. The problem is further simplified by restricting lemmatisation to 

regularly inflected words only, as irregular inflection does not submit to sys­

tematic treatment in any obvious way. Even people, it appears, must learn 

to deal with irregular forms as special cases [13, 64, 86]. 

6.2 A practical stemmer 

This section describes a simple algorithm for reducing regularly inflected 

words to their lemma and suffix. The fundamental approach follows that of 

other rule-base stemmers, but differs in two important ways. First, it only 

stems a word if the result is itself a word. This avoids some of the errors 

that arise from overly aggressive stemming; but, more importantly, restricts 

stemming to situations where the simplified word will reduce the problem 

of data sparseness in a stochastic sequence model. Second, it produces as 

output both the stem and the suffix, with the suffix itself given in a general 

form so that its role in agreement dependencies is modeled as uniformly as 

possible. 
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6.2.1 Desuffixion 

Complex English words are constructed by applying some number of deriva­

tional and inflectional suffixes to a root morpheme. But, at most, only one 

inflectional suffix can be added and it is always last. This property is very 

useful as it renders lemmatisation largely a problem of just separating an 

inflectional suffix from its stem. Unfortunately, simply detaching inflectional 

suffixes does not always produce lemmata. For example, when the inflectional 

suffix of "abating" is detached, what remains is "abat" instead of the correct 

stem "abate", and if "spanning" is lemmatised in the same way the incor­

rect root "spann" is left. One might elect simply to ignore problems such as 

these, as many stemmers do, in the hope that close enough is good enough. 

Alternatively, one might adopt the approach of more sophisticated stemming 

algorithms and apply reconstruction procedures or additional pruning to try 

and correct desuffixion errors. As it happens, only a few correction proce­

dures are necessary to transform simple suffix detachment into a sufficiently 

robust algorithm. 

6.2.2 The target suffixes 

The lemmatisation algorithm detailed below addresses only five forms of reg­

ularly inflected words: nouns marked for number with a regular pluralising 

suffix; verbs marked for tense, number and third person singular case agree­

ment; and nouns marked for possessive case. These restrictions greatly re­

duce the number of possible word endings that will trigger the lemmatisation 

process. 

English nouns are pluralised in a great many ways. The most common 

is for the regular suffix "-s" to be appended to a stem, as with "dogs" and 

"cats". Another quite common plural marker is "-es", as with "foxes" and 

"kisses", which is rather more just a conventional orthographic form of "-s". 

There are of course a great many other less common pluralising suffixes, such 

as the very rare "-en" of "oxen" and the senescent transformations observed 

in words like "hypotheses" and "crises" or "curricula" and "bacteria". But, 

of all the plural marking suffixes that might be used in English, only the first 

two occur with any frequency as to be of practical benefit for a stochastic 
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sequence model of inflection. 

Verbal inflection for English is much less varied and easily summarised. 

The suffixes of interest are simply the "-s" third person singular agreement 

marker used in expressions like "a dog chases" and "my uncle works", and 

the two regular participial endings "-ed" and "-ing" applied to words like 

"work" to form "worked" and "working". The fact that these endings are 

also used for gerunds and participial adjectives, as in "living is dangerous" 

and "the living planet", is inconsequential as lemmatisation is still desirable 

for situations such as these. 

One possibly contentious inclusion in the set of targeted inflectional suf­

fixes is the possessive marking "- 's". The reasons for including this suffix 

relate to the ultimate goal of isolating inflectional suffixes so that they may 

be more properly modeled as functional terms. The fact that many gram­

matical theories ( e.g. DP-Theory [44]) regard possessive markers as func­

tional terms makes it worthwhile to consider them, but of greater practical 

importance is the fact that they improve the performance of the stochastic 

sequence model used in the experiments detailed lated in this chapter. Note 

that it is common for nouns whose singular forms end in "s" to be marked 

for possessive case with just an apostrophe, and this is also incorporated into 

the stemmer. 

Thus a set of four suffixes is defined to be of interest for this study: 

{ -s, -ed, -ing, - 's. } 

6.2.3 The stemming algorithm 

The lemmatisation algorithm is very simple and is based on the same prin­

ciples as other rule-based stemmers. The idea is to remove anything that 

looks like an inflectional suffix and then, if needed, apply some corrective 

procedures to the stem to turn it into a valid lemma. Unlike other rule-base 

stemmers, however, this algorithm only removes suffixes used to indicate 

regular inflection, and it produces as output both the lemma and the suffix. 

Moreover, rather than relying on the rules alone to make correct judgments 

about whether desuffixion should take place, the algorithm requires confir­

mation that the stem is actually a word, otherwise the suffix is left intact. 

The assumption is that a word is only inflected if it has been observed in an 
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uninflected form. This is a strong assumption ( and linguistically incorrect) 

but it does help avoid some common desuffixion errors made by other rule­

based stemmers, like mistaking "everything", "anything" and "something" 

as present participles. More practically, however, if a word only appears in 

the training text in its inflected form, then lemmatisation will not reduce 

the vocabulary and therefore will not help to diminish the problem of data 

sparseness. 

Exactly what corrective procedures to apply depends in part on the kind 

of suffix being removed, but there are effectively only three special cases. For 

words like "abating" and "ceasing" an "e" must be appended after desuffix­

ion; for words like "difficulties" and "puppies" a "y" must be added; and 

for words like "swimming" and "planning" the twinned consonant must be 

removed. The apostrophe also presents some minor difficulties, but the requi­

site "s" on one side or other of the apostrophe greatly simplifies things. The 

rules for dealing with each of the four suffixes are summarised in Table 6.1. 

One added difficulty for the stemmer arises because the function word "is" 

is often represented in a contracted form that is identical to the possessive 

case marker, as in "let's go" and "Mary's gone". In such situations it is 

thought desirable to leave the contraction unchanged, but in the absence of 

sophisticated grammatical knowledge it is a difficult condition to test for. 

In most instances, the contraction has a function word for a stem, thus it 

is sufficient in practice simply to test whether the stem of an apparently 

possessive noun form is a function word and abort desuffixion if it is. To 

do this, of course, the stemmer needs to have a predefined set of function 

words to consult. Based on earlier experiments in this thesis, the top 100 

most frequent words in the Brown Corpus was deemed a sufficiently useful 

approximation for this purpose. 

6.2.4 Stemming results 

The stemming algorithm outlined above is quite simple and, while it obvi­

ates many problems entailed from using existing stemmers, it nevertheless 

still produces errors. To determine precisely how robust it is as a lemmati­

sation procedure would require a comprehensive set of precision and recall 

tests, and a comparison of results with those obtained from other algorithms. 
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• word ends with - ' 

- set stem to word less ', set suffix to 's 

- if stem ends with sand is a word then output stem and suffix, otherwise 
output word 

• word ends with -ed 

- set stem to word less -d, set suffix to -ed 

- if stem is a word then output stem and suffix 

- set stem to stem less -e 
- if stem is a word then output stem and suffix, otherwise output word 

• word ends with -ing 

- set stem to word less -ing, set suffix to -ing 

- if stem is a word then output stem and suffix 

- set stem to stem plus -e 

- if stem is a word then output stem and suffix 

- set stem to stem less -e 
- if stem ends with a twinned letter then set stem to stem less last letter 
- if stem is a word then output stem and suffix, otherwise output word 

• word ends with -s 

- set stem to word less -s, set suffix to -s 
- if stem is a word then output stem and suffix 

- if stem ends with ' then 
* set stem to stem less ' and set suffix to - 's 
* if stem is a function word then output word 
* if stem is a word then output stem and suffix 

- if stem ends with -e set stem to stem less -e 
- if stem is a word then output stem and suffix 

- if stem ends with -i set stem to stem less -i then set stem to stem plus 
-y 

- if stem is a word then output stem and suffix, otherwise output word 

Table 6.1: Lemmatisation rules. 

But this stemmer is not proposed as a general purpose algorithm, rather it is 

designed simply to give suitable output for testing the hypothesis that lem­

matisation leads to an improved super-adjacency model. The experimental 

results outlined below indicate that it is indeed sufficient for this purpose. 

When the algorithm is applied to the complete Brown Corpus, the vo­

cabulary of the training text is reduced from 44,519 down to 31,857, and the 
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number of tokens increases from 1,065,795 words to 1,200,518. 

6.3 Inflection experiments 

Lemmatisation of regularly inflected words in a very large corpus of English 

leads to reduction in the size of its apparent vocabulary and, as a result, 

fewer n-grams are required to model the corpus. This means that counts 

for individual n-grams must increase and accurate probability estimates can 

be conditioned more quickly, mitigating some of the effects of data sparse­

ness. For a conventional bigram model, however, entropy estimates from 

lemmatised input are likely to become worse because important agreement 

information embodied in inflectional suffixes is lost. The goal is thus to try 

and retain this information in such a way that the gains in model size are 

preserved. 

Leaving suffixes in the stream of lemmata is a possible solution, but this 

introduces extra tokens between semantic terms and consequently interferes 

with the adjacency requirement needed to capitalise on mutual information 

for pairs of content terms. Because agreement relationships chiefly pertain 

just to inflectional suffixes and function words, the super-adjacency tech­

nique offers a means to recapture agreement dependencies by moving inflec­

tional suffixes to the closed class and modeling them as part of the functional 

stream. 

This section details experiments using the super-adjacency technique with 

lemmatised input, and the results are compared against those obtained with­

out stemming. Of specific interest is how lemmatisation affects model size 

and entropy estimates. The results indicate that important syntactic and se­

mantic relationships are indeed preserved by super-adjacency when regularly 

inflected content words are lemmatised and inflectional suffixes are treated 

as free-standing function words. The net result is better entropy estimates 

from a smaller model than is possible from either conventional word-based 

n-grams or a standard super-adjacency approach. 

In addition, it is shown that the super-adjacency technique makes it fea­

sible to use deeper contexts for functional terms and thereby gain access to 

more long distant structural relationships. Estimates of language complex-
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ity are improved, but without the same penalties associated with using a 

higher-order conventional n-gram model. 

6.3.1 Input 

The availability of both lemmata and regular inflectional suffixes suggests the 

possibility for modeling semantic relationships and syntactic dependencies 

independently in a smaller super adjacency model. The idea is to move 

inflectional suffixes into the closed class and model them just like any other 

function word, then observe what effects this has on model size and entropy 

estimates by repeating the experiments of Chapter 5 using lemmatised input. 

The previous experiments sought evidence that the super-adjacency ap­

proach is advantageous. The basic approach was to make systematic changes 

to the function word set and observe the effect on model size and entropy 

results. Because the function word set was defined as a nonoverlapping sub­

set of the vocabulary, repeating the experiments with lemmatisation raises a 

question about when lemmatisation ought to take place. 

There are effectively two options. The input can be preprocessed so that 

regularly inflected words are transformed into pairs of stems and suffixes, then 

token statistics can be recalculated and function words chosen as before. But 

as larger function word sets inevitably succumb to the inclusion of more and 

more content terms, it is lemmata that start being treated like members of 

the closed class instead of the actual content words themselves. Because the 

frequency of inflectional suffixes leads them to be included in the closed class 

first, lemmata end up serving primarily as the conditioning context for their 

former suffixes. 

If a word is functional, however, ontologically it is not inflected and should 

perhaps exercise its conditioning influence intact. As an alternative, then, it 

may be desirable to stem the words left in the open class only after the closed 

class has been defined. But of course this precludes the possibility of suffixes 

making it into the functional class, and agreement relations remain obscured. 

To avoid this, all regular inflection suffixes might simply be assumed func­

tional przma facie, but this leads to a situation where an inflectional suffix 

can be both a bound morpheme (i.e. must be attached to a stem) in the 

functional stream and a free morpheme (i.e. a word in its own right) in the 
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semantic stream at the same time. 

The objections to either approach are minimal, thus it was decided that 

the first should be adopted because it is simpler and more practical; its chief 

advantage being that lemmatisation of the training corpus need only be done 

once prior to all experiments. 

Escape suffixes 

A suffix must take on a kind of dual role in the model if its agreement 

relation with a preceding functional term is to be captured. Recall that the 

super-adjacency model effectively processes input from the function word 

model, escaping to the content word model from time to time whenever 

the content category escape symbol is encountered. For most closed class 

approximations, suffixes are treated as function words and content lemmata 

are treated as open class terms. This leads to the situation where every 

suffix is preceded by the content category symbol in the functional stream, 

precluding any possibility of it demonstrating an agreement relation with the 

most recent functional term in a way that can be captured with a bigram. 

To get around this, the content category symbol preceding each suffix 

is simply ignored. As it is implicit that a content term must come imme­

diately before a suffix, a small change is made to the processor so that it 

treats suffixes as additional content category symbols. That is, when a suffix 

is predicted, control passes to the content model to predict the stem that 

precedes it just as if the content category symbol had been detected. While 

this notionally upsets the sequential nature of the model, in that the suffix of 

a content word is predicted before its stem, this has no effect on the relevant 

model characteristics nor on how they should be interpreted. 

6.3.2 Effect on model size 

The experiments of Section 5.3 were repeated on the lemmatised Brown 

Corpus, so that for each experiment the function word set is defined as some 

fixed number of the most frequent words, beginning with none and increasing 

on each iteration by powers of two: thus the second iteration uses just the 

most frequent word, then the two most frequent are used, then the top four, 
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Figure 6.1: Size comparison for conventional, subcategory and lexeme bigram 
models. 

then eight, and so on until the final experiment includes all 31,857 words of 

the lemmatised vocabulary. 

The first characteristic of interest is how lemmatisation influences model 

size, and the relevant results from experimentation are summarised in the 

graph of Figure 6.1. As before, the x-axis is the number of most frequent 

words included in the closed-class (scaled to the base-2 log) and the y-axis is 

the number of distinct bigrams in the complete model. For comparison, corre­

sponding model sizes obtained with the super-adjacency model when content 

words were still marked for subcategorisation by inflectional suffixes are in­

cluded (SUBCATEGORY MODEL), along with a straight line indicating the 

size of a standard word-based bigram model (CONVENTIONAL MODEL). 

The graph shows that, for all function word set sizes, the lemmatised model 

(LEXEME MODEL) is much smaller than that obtained previously using 

word-based super-adjacency, and in almost all cases the lemmatised input 

gives a more compact model than the conventional approach. 
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The result is as expected, and it is easy to explain the behaviour of the 

changing model size as a reaction to changes in the size of the function 

word set when input is lemmatised. As with the previous super-adjacency 

model, the extreme left point on the curve corresponds to conventional bi­

grams of the lemmatised input because all words are in the content word 

stream and the functional stream is an uninterrupted sequence of category 

symbols. Compactness, relative to the other models, is as expected because 

the effective vocabulary has been reduced through desuffixion, leading to a 

corresponding decrease in the number of possible bigrams. This is enhanced 

from an ancillary effect brought on by the introduction of a small number of 

very frequent suffixes into the input stream in a highly regular way. Pairs 

of lemmata for content words that were formerly adjacent are now likely to 

be separated by the inflectional suffix of the first word. The word now acts 

as the conditioning context for its own suffix while the suffix itself is used as 

the predictor for the second word. Thus a great many low-frequency content 

word pairs are simplified to substantially fewer bigrams comprised of one 

suffix and one lemma. 

When a few of the most frequent terms are moved to the closed class, 

model size starts to increase rapidly, as it did without lemmatisation. This 

is understandable because inflectional suffixes are among the most frequent 

terms and removing them negates some of the structural regularity intro­

duced by lemmatisation. That is, the suffix "-s" is the second most common 

symbol in the input and almost on par with the most frequent function word 

"the". The suffix "-ed" is the fourth most common term and "-ing" is eighth, 

and for all closed class sizes greater than twenty-one all four of the regular 

inflectional suffixes are included. Just as their presence in the content word 

stream introduces tremendous regularity, their removal has an equally dra­

matic counter effect. 

When the closed class gets to be sufficiently large, beginning at around 

32 words, enough functional terms are removed from the semantic sequence 

to start reaping the same benefits as the original super-adjacency model. 

Specifically, close proximity content words are shunted together often enough 

to increase their incidence of adjacency and the number of distinct bigrams 

in the content model declines in response to the increased generality. Though 
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the functional model becomes more complex at the same time, the fact that it 

exhibits a great deal of sequential regularity means its size does not increase 

at nearly the same rate that the size of the content model diminishes. As more 

and more words are moved into the function word set, the model converges 

on an optimum size, which the graph indicates is when the function word set 

has around 2000 terms-roughly the same place where the standard super­

adjacency model peaks. Beyond this point, adding terms to the function 

word set causes model size to increase again as the functional stream begins to 

resemble the original content stream more and more. Eventually all words are 

treated as closed class and the model degenerates completely to conventional 

bigrams, as indicated at the extreme right of the graph. 

6.3.3 Entropy results 

N-grams are useful because they are a simple formalism for assigning prob­

abilities to linguistic events. Their ability to condition accurate statistics 

is a function of two things: the length of context used and the amount of 

training data available. Specifically, as the order of a model increases, the 

number of different n-grams increases exponentially and so does the amount 

of data required for adequate training. This is the fundamental problem of 

data sparseness. 

The size of an n-gram model is only of interest insofar as it impacts on 

the model's ability to formulate accurate probabilities. For the conventional 

model these two properties tend to go up and down together, but only if 

availability of suitable amounts of training data is not an issue. In practice, 

the amount of training data is generally constant, and this places limits on 

how deep a context the model can sustain before the risk of finding too 

many novel events in subsequent testing becomes unacceptable. Thus data 

sparseness gives rise to the need for compromise. 

The super-adjacency technique tries to circumvent this problem by using 

n-grams to model more abstract forms of lexical dependency in the hope 

that better use can be made of the available data. In Chapter 5 it was shown 

that this is indeed what happens-that a smaller model can be made to give 

better complexity estimates. Another abstraction has been proposed in this 

chapter, and we have shown that this leads to further reduction in the model 
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Figure 6.2: Comparison of average symbol entropy for conventional, subcat­
egory and lexeme bigram models. 

size. But if it also entails less accurate probability estimates then any notion 

of improvement is moot. 

Figure 6.2 summarises the average per symbol entropy of the lemmatised 

Brown Corpus as given by super-adjacency models using various approxima­

tions of the closed class (LEXEME MODEL). Once again, for comparison 

purposes the entropy results given by super-adjacency without lemmatisa­

tion are included (SUBCATEGORY MODEL) along with an extended plot 

of the entropy given by standard word-based bigrams (CONVENTIONAL 

MODEL). The x-axis corresponds, as usual, to the base-2 log of the number 

of most frequent words defining the closed class and the y-axis is the average 

per symbol entropy. 

As before, the extreme ends of the plot correspond to situations where 

the entire vocabulary is either the closed class or the functional class, ren­

dering the super-adjacency model equivalent to a conventional one. Entropy 

estimates are poorer in such instances, and this is as expected because pre-
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viously strong lexical relations between adjacent words become weakened by 

increased distance. That is, each inflected content word is separated into its 

lemma and suffix such that the lemma now becomes the conditioning con­

text for predicting its own suffix. Any strong semantic relation it might once 

have shared with the following word is lost and it is left to the suffix alone 

to provide clues about the next term. Moreover, any agreement dependency 

between a function word and the inflectional properties of a following content 

word is also lost because the lemma of the next word is in the way. If an 

uninflected word precedes an inflected one, however, some gains might arise 

from the more general semantic relationship shared between lemmata, but 

this is unlikely to offset all other losses and the results in the graph appear 

to bear this out. 

When a few frequent terms are taken out of the content stream, semantic 

relationships between lemmata are restored and entropy begins to decline 

in response to the sudden availability of mutual information. And in the 

functional model, even the top two most frequent terms, "the" and "-s", are 

sufficient to capture many instances of number agreement, further adding 

to overall entropy gains. By the time sixteen words make it to the closed 

class, lexical patterns that include "was" and "-ed" ( e.g. "was chased") or 

"is" and "-ing" ( e.g. "is chasing") are well captured as generalisations in the 

functional model. 

As more and more words are transferred to the closed class, entropy even­

tually begins to rise again, just as it did before lemmatisation. Peak entropy 

occurs when the function word set has about fifty terms. Unfortunately if 

we consult Figure 6.1 we see that model size at this point is actually greater 

than that of a conventional word-based bigram model. However, there is some 

range of closed-class approximations where average per symbol entropy and 

overall model size are simultaneously superior to what is possible from the 

conventional model. For example, when 128 of the most frequent terms define 

the function word set, average entropy is 6.40 bits per symbol as compared to 

6.49 for the conventional model, and the super-adjacency model has 415,013 

bigrams as compared to 438,106 bigrams in the conventional model. Al­

though the gains are quite small they are nonetheless evidence that a smaller 

and more effective model can be obtained by the super-adjacency technique 
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if regularly inflected words are stemmed and inflectional suffixes retained 

as functional terms. Furthermore, when the function word set includes 128 

terms, the entropy results equal those obtained from a conventional bigram 

model but are delivered using 17% fewer bigrams. 

6.3.4 Suffix obstruction 

The original motivation for lemmatising the input was to try and reduce the 

size of the model in the hope that accurate probabilities might be conditioned 

more quickly. But we recognised ahead of time that complexity estimates 

would likely get worse unless important agreement information embedded in 

inflections could somehow be preserved. It was conjectured that retention of 

inflectional suffixes as individual tokens could present the opportunity to do 

this, but only if the relationships in which they are involved are specifically 

targeted-say, by treating suffixes as if they are function words in their own 

right. 

The graph of Figure 6.2 shows that this approach is successful; that the 

initially poorer complexity estimates are quickly brought under control again 

when just a few of the most common words are moved into the closed class. In 

fact, entropy results become better than those obtained from a conventional 

model when as few as eight terms make it into the functional set. But 

the super-adjacency model never quite manages to attain the same level of 

performance as it did before lemmatisation; thus some predictive potential 

has been lost. 

One likely explanation for this decrease in performance is that the pres­

ence of inflectional suffixes is interfering with more useful syntactic depen­

dencies that existed previously between bona fide function words. There is 

some evidence to support this view. Consider, for example, the following set 

of English subexpressions: 

distribution of funds is ... 

appointment of administrators is ... 

surveillance of prisoners is ... 

study of insects is ... 

Without lemmatisation, these expressions have a common functional struc­

ture that might be characterised as 
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CW of CW is ... 

and this general pattern is relatively common in the Brown Corpus, arising 

about 500 times. In this sequence, "of" predicts the content category symbol 

CW, and the category symbol predicts "is". Linguistically, there is no direct 

relationship between "of" and "is" because "of" is the head of a prepositional 

phrase qualifying the preceding noun, and it is that noun's number that 

must agree with "is". With lemmatisation, however, the common functional 

structure becomes 

CW of-sis ... 

Now the word "of" predicts the inflectional suffix "-s", and the suffix predicts 

"is". Given that "-s" is a plural marker it might normally be expected 

to predict "are" instead of "is", thus lemmatisation has, in this instance, 

confounded an important agreement relationship. 

There are many similar situations where a weaker or incorrect relationship 

is modeled because an inflectional suffix has been introduced into the stream 

(e.g. try adding "by experts" just before "is" in the previous examples), 

indicating that perhaps an entirely separate model of the sequential char­

acteristics of inflectional suffixes may be required to maximise their utility 

without decreasing the utility of actual function words. However, the heart 

of the problem may have more to do with the fundamental limitations of 

order-I contexts when it comes to generalising the complexities of syntactic 

structure. 

6.3.5 Single instance bigrams 

From a practical perspective, the fact that lemmatisation offers such small 

gains is disappointing. But there is some evidence to suggest that the model 

is actually a more effective generalisation of lexical dependencies. 

Section 5.3.2 describes how single instance bigrams have an enormous 

impact on a model's overall ability to generate good complexity estimates. 

In general, the more unique bigrams there are, the lower the entropy; but a 

high percentage of single instance bigrams is also a sign that the model is 

over-fitting the data and is thus not a good generalisation of the underlying 

dependencies. 
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Figure 6.3: Percentage of single instance bigrams in subcategory and lexeme 
models. 

Figure 6.1 shows that lemmatisation leads to a smaller model, and Fig­

ure 6.2 shows that better entropy estimates are achieved. This evidence alone 

suggests that the inflectional model is a more effective generalisation. But it 

is also possible that the utility of a small number of very common bigrams 

has improved enough to account for all of the gains, and that the model still 

maintains an extremely large number of special case contexts. 

The graph in Figure 6.3 plots the percentage of single instance bigrams in 

the super-adjacency model when it is trained on lemmatised input (LEXEME 

MODEL) as compared to when the input is not lemmatised (SUBCATE­

GORY MODEL). The graph shows that lemmatisation significantly reduces 

the number of special case contexts needed to account for lexical patterns in 

the data. For all approximations of the function word set, the improvement 

is about 10% relative to the overall model, and about 15% relative to the 

number of unique cases before lemmatisation. At the point where model size 

and complexity estimates are simultaneously better with lemmatisation (i.e. 
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when there are 128 words in the closed class) there are well over 50,000 fewer 

single instance bigrams. These results are a clear indication that lemmatisa­

tion allows for a much more general characterisation of lexical dependencies 

with the super-adjacency technique. 

6.3.6 Deeper contexts 

As noted earlier, the primary objective of an n-gram model is to provide 

accurate predictions about linguistic events, and data sparseness is a signif­

icant limiting factor. Super-adjacency is proposed as a means to moderate 

this problem by exploiting more useful forms of lexical dependency, and the 

experiments above show that lemmatisation of the input further increases its 

ability to converge on optimum probability estimates more quickly than the 

conventional approach. But there are times when even rapid convergence on 

a theoretical optimum is not sufficient for practical language processing tasks, 

and more accurate probabilities are needed than can be obtained simply by 

increasing the amount of available training data. 

The most obvious way to improve the entropy results from an n-gram 

model is to increase the length of context used to predict each symbol-that 

is, use a higher-order model. But this greatly exacerbates the problem of 

data sparseness. As context length increases linearly, model size increases 

exponentially and so too does the effective minimum data requirement. The 

exact rate of growth for practical models is difficult to determine in general, 

but the worst case for an order-n model with v vocabulary terms is vn. For the 

44,519 different words of the Brown Corpus, a bigram model has to maintain 

statistics for almost two thousand million parameters. An increase to an 

order-3 model creates the potential for 90 million million distinct trigrams. 

Super-adjacency, however, provides an opportunity to mitigate this problem 

as well. 

The super-adjacency technique entails partitioning the vocabulary into 

two classes: a closed class with (optimally) around 100 words, and an open 

class with several tens of thousands of words. Because each class is modeled 

independently, it is possible to increase the length of context used in one 

while maintaining statistics for shorter contexts in the other. Given that the 

closed class is so small, its order can be increased to gain access to at least 



162 

~ 
I!! 
Cl c 

I 

800000 

700000 

CHAPTER 6. INFLECTIONAL MODELS 

'CONVENTIONAL MODEL' -
'SUBCATEGORY MODEL' -+--· 

'LEXEME MODEL' -a-­
'TRIGRAM FUNCTION MODEL' ·M···· 

.. ~ ............ )( 

.... ··· 
.x··· 

.......... 

.. x ..... 

o 600000 

B 
E 
:::, 
C 

.. ·•·· 

500000 ................. -+-----+-----............... ~ .. 
,..- '-.,.. ...... x··· 

_____ ,...-- -----•-----•··,·,·,·:·.l!,· ........... i,:~--.~ .... I( 

X 

·"El. .............. .. ... +-'+-+,. ___ .+-
.... .. ...... + 

...... +.. ____ --+- _____ ...,.. ...... 1:1 

400000 _./ 

,------·---·---
1:1_ _ __ a-----a 

300000 -13- _____ 13-- ----a· .. -a·. 

0 2 4 6 8 10 12 14 
closed class size (logarithmic) 

Figure 6.4: Effects of function word trigrams on model size. 
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some of the more distant lexical dependencies without nearly the same cost in 

overall model size and data requirements as would be entailed by increasing 

the order of the whole model. 

Figure 6.4 provides a graph showing the effect on super-adjacency model 

size when function word trigrams are incorporated (TRIGRAM FUNCTION 

MODEL). At the extreme left, only the content category symbol is in the 

closed class and therefore only one trigram is used ( which predicts with per­

fect accuracy), thus the model is effectively a conventional bigram model 

using lemmatised input. As the approximation of the closed class increases 

in size, the number of function word trigrams increases more quickly than it 

does when bigrams are used, but because the number of function words is so 

very small the additional cost is undetectable in the graph. 

Given the scale and resolution of the graph, model size differences need 

to reach about 5,000 before we would expect to be able to see separation 

for two otherwise colinear curves. A comprehensive functional model with 

sixteen words and one content category symbol would have 289 bigrams or 
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4,913 trigrams-a difference that should perhaps be noticeable in the graph. 

As it happens, while the bigram model at this point has 266 bigrams, the 

trigram model has only 1406 and no separation is observed in the graph. 

When the closed class reaches 64 words plus the content category symbol, 

worst case scenarios for each model would yield 4225 bigrams and 274,625 

trigrams, and the difference should be quite visible. Using the lemmatised 

Brown Corpus as input, however, the number of bigrams is almost exhaustive 

at 3193, while the 20,175 trigrams is less than a tenth of the total possible, 

and the difference in model size is only just visible in the figure. 

These results suggest that the sequential behaviour of function words is 

highly constrained, and that there is not a lot of variation in the way func­

tion words combine together in syntactic structures. Even when there are 

256 words in the closed class, plus the content category symbol, there could 

be as many as 17 million different combinations of three function words, but 

only 118,103 of these are observed in the Brown Corpus-barely half of one 

percent. Only when the closed class starts to include actual content words 

are the exponential consequences of higher order contexts realised in the 

super-adjacency model. The implication is that a great deal of syntactic reg­

ularity is indeed being captured when bona fide function words are modeled 

in isolation. 

The fact that functional trigrams do not exhibit much more variety than 

functional bigrams suggests that perhaps only marginal gains in entropy will 

follow from the increased context. That is, if the number of trigrams is not 

significantly higher than the number of trigrams for a given closed class, then 

the bigrams may be capturing the sequential characteristics sufficiently well. 

Figure 6.5 compares the entropy results from function word trigrams 

(TRIGRAM FUNCTION MODEL) against those obtained from the other 

three models. With no words in the closed class, the model with trigrams is 

effectively the same as the bigram model with lemmatised input and the en­

tropy results are the same. But even when just one common word is included 

in the set of function words, entropy results begin to diminish more quickly 

with the availability of trigrams. By the time five or six of the most common 

terms are moved to the closed class, the model performs on par with a super­

adjacency model that does not use lemmatised input. This may suggest that 
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Figure 6.5: Entropy when function word trigrams are combined with content 
word bigrams. 

the inflection agreement information that was lost through lemmatisation 

and only partly regained by modeling inflectional suffixes with functional 

bigrams is more or less completely recaptured when trigrams are available. 

Entropy gains continue to improve slightly through larger and larger ap­

proximations of the closed class, but significant improvement only starts to 

become apparent when content terms inevitably start to be included and the 

model begins its steady degeneration into a conventional trigram model. 

6.4 Discussion 

In Chapter 5, the super-adjacency model was proposed as a means for sep­

arating the problems of modeling syntactic relations and semantic relations 

by characterising the sequential behaviours of function words and content 

words in isolation. This chapter has extended the idea in such a way that 

syntactic and semantic associations between two content words may also be 
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treated independently. It has been argued that the semantic dependency 

between two content words has to do with an association of meaning con­

ceptually embedded in their semantic base forms, while syntactic agreement 

dependency is an effect entirely attributable to their inflectional component. 

The solution is to lemmatise any regularly inflected content word and treat 

its inflectional suffix as just another syntactic term. 

This chapter has shown that the separation of stem and suffix for regularly 

inflected content words does lead to a more effective super-adjacency model. 

The bulk of the mutual information for a pair of content words is preserved in 

their lemmata and, because lemmatisation greatly simplifies the vocabulary, 

the number of content bigrams observed in a training text diminishes greatly. 

This leads to general increases for bigram counts and, therefore, reliable 

probabilities are conditioned more quickly. 

The probabilities are reliable, but not necessarily better for obtaining 

good estimates of language complexity because all syntactic agreement con­

straints are lost when inflectional suffixes are detached. Given that syntactic 

agreement is a property of the functional categories of language, the pre­

dictive benefits of inflectional suffixes can be recaptured by treating them 

as free-standing function words. The experimental results outlined in this 

chapter have shown that this approach allows for good complexity estimates 

from a much more compact model. 

At some point, any bigram model eventually maximises its predictive 

capacity in the sense that additional training data is not going to improve 

its entropy estimates in any significant way, and this is no less true for a 

super-adjacency model. The fact that lexical dependencies often exist across 

greater distances than bigrams can accommodate ultimately leads to a situ­

ation where lengthening the predictive context is the only option for achiev­

ing further gains. However, a general increase in the order of the model 

is often unsuccessful because there are exponential consequences in terms of 

data sparseness. But because the super-adjacency technique models function 

words in isolation, and there are relatively few of them, the use of deeper 

contexts in the functional model alone is viable, and this chapter has shown 

that better entropy estimates result without a significant penalty in terms of 

overall model size. 
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Chapter 7 

Conclusions 

N-gram models are a fundamental component of many practical language 

processing systems. Their appeal is overall simplicity and an ability to sup­

port reasonably sound decisions in the face of uncertain linguistic events. 

Even so, conventional word-based n-grams are fundamentally limited in terms 

of the kinds of linguistic regularity they can access, and their exponential 

model size leads to an inherent problem of data sparseness, where impossibly 

large amounts of training data are required to condition accurate probabili­

ties. 

This thesis has shown that these problems can be mitigated by making 

a distinction between function words and content words and modeling the 

sequential behaviours of each independently. The idea is to try and isolate 

syntactic and semantic dependencies in such a way as to create the oppor­

tunity for a more effective characterisation of structure in language. More­

over, by reducing regularly inflected content words to lemmata and treating 

their inflectional suffixes as free-standing functional morphemes, mutual in­

formation for words involved in semantic relationships can be exploited with 

far fewer n-grams, and agreement dependencies can be modeled in a more 

general way. The super-adjacency model presented in this thesis embodies 

these ideas, and we have shown that it provides better estimates of language 

complexity from a much smaller model than is possible from a conventional 

approach. 

In this chapter, we summarise important observations and achievements 

detailed earlier in the thesis, and consolidate them into terse statements 
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highlighting the contributions made to language modeling research. Avenues 

for possible future work are also outlined, along with some closing remarks. 

7.1 Summary 

Statistical models have proven very effective at a variety of specific language 

tasks, such as speech recognition, text compression, part-of-speech tagging 

and information retrieval. By viewing language as a stochastic process, a 

system can be conditioned to make a good guess as to how to proceed when 

confronted with novel input. N-gram models are the preferred formalism, 

primarily because of their simplicity, but also because they have potential to 

be made at least as effective as any other conceivable model. In practice, their 

performance is severely limited because the scale of model required creates an 

insurmountable problem of insufficient training data. In fact, even low-order 

models trained on very large samples frequently find themselves confronted 

with contexts for which they have just not seen enough evidence to make the 

correct decision. 

One solution is to direct n-gram models away from the onerous task of col­

lecting statistics about every conceivable combination of words and instead 

gear them up to focus on more abstract forms of linguistic dependency as 

suggested by syntactic theory. The primary hypothesis of this thesis is that 

separate models of the sequential characteristics of function words and con­

tent words is a viable way to do this, and that better estimates of language 

complexity will result from a smaller model. 

Initial evidence in support of the conjecture is found in an analysis of 

results obtained through experimentation with conventional word-based n­

grams. The general utility of a particular n-gram is measured by its average 

expected entropy, and from this it is observed that most gains realised by 

the conventional model are made from a relatively small number of frequent 

n-grams comprised exclusively of grammatical terms, combined with a large 

number of rare n-grams comprised solely of content words with strong se­

mantic relationships. Added to these is a plethora of n-grams that include 

both grammatical and content words but which fail to advance the predictive 

goals of the model in a generally useful way. 
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Additional support for separate characterisation of function and content 

words is derived through experiments with lexical attraction models. Such 

models assign structure to sentences by linking words in a manner that max­

imises the total available mutual information without violating planarity for 

the parse tree. They subsume bigram models, but have the potential to out­

perform them because any word in a sentence can act as the conditioning 

context for any other. As it happens, semantic relationships tend to domi­

nate the lexical dependency structure, and content words end up being linked 

to one another regardless of how far apart they are in a sentence. In compar­

ison, mutual information for lexical relationships involving function words is 

generally quite minimal, and because of the planarity constraint they end up 

being tacked on with short links to nearby words, often to each other. Inas­

much as dependency structures seek to maximise total mutual information, 

the net effect is a tendency for content words to link to each other and for 

function words to link to each other, and for connections between these two 

broad classes to be largely subordinate in establishing the final structure. 

A potential hazard for separate modeling of function and content words is 

total loss of information about dependencies between the two classes-for ex­

ample, the relationship between determiners and nouns in constituent noun­

phrases. Because dependencies between function and content words appear 

to operate at the level of lexical categories-in that determiners can predict 

nouns but not specific words-some experiments were devised with a class­

based n-gram model to explore the characteristics of categorial relationships. 

The results suggest that highly discriminate function word categories, to the 

extent of one word per category, and very general content word categories, 

to the extent of one category for all content words, is largely sufficient to 

maintain adequate predictions about how function words and content words 

interact. Moreover, it is observed that even a very crude approximation 

of the function word class based solely on lexical frequency is satisfactory 

for delivering good entropy estimates from category-based n-grams, and this 

obviates the need for an a priori classification scheme. 

The super-adjacency model is proposed as a mechanism for giving n­

grams better access to syntactic and semantic dependencies. The model 

views language as two interlaced streams-one comprised only of function 
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words and the other of content words-and each is modeled independently. 

Interaction between the two streams is coordinated by inserting a unique 

content category symbol in the stream of function words at each point where 

a content word must be predicted. The probability of a function word is 

made conditional on the most recent function word, and whenever a category 

symbol is encountered the next content word is predicted based on the context 

of the most recent content word. The result is a 10% improvement in the 

average per symbol entropy estimates over what can be obtained from a 

conventional model. 

The best entropy estimates from a super-adjacency bigram model occur 

when the function word class includes around a hundred of the most frequent 

words, and the model size at this point is slightly smaller than the conven­

tional model. Optimum size, on the other hand, occurs when the function 

word class is comprised of about a thousand most frequent words, and av­

erage entropy at this point is just slightly below what is given by standard 

bigrams. For all class sizes in between, entropy estimates and model sizes 

are simultaneously improved. This confirms the principal claim of the thesis, 

that separate modeling of function words and content words can give better 

entropy estimates from a smaller model. 

The fact that optimum performance does not coincide with optimum size 

gives rise to the idea that the basic super-adjacency technique might be 

improved. It is observed that much of the entropy gains come from a large 

number of single instance bigrams, and that these arise in part because of 

the multiplicative effects of inflection morphology. On the assumption that 

the relationship between two content words is primarily semantic, the bulk of 

their mutual information can be preserved in fewer bigrams by lemmatising 

inflected words. To preserve any loss of useful agreement information, the 

inflectional suffixes are retained as part of the functional stream-an idea 

that is consistent with the linguistic view that inflectional morphemes are 

part of the functional categories of language. Because agreement relations 

often exist between inflectional suffixes and function words, the new model 

is on the whole better able to exploit syntactic dependencies. The result 

is an even more compact model that delivers better estimates of language 

complexity. 
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Finally, because the function word set is quite small even with the added 

inflectional suffixes, the use of deeper contexts for the function word stream 

becomes feasible. This allows some of the benefits of more distant agreement 

relationships to be exploited by the super-adjacency technique without as 

significant a penalty in model size as would be entailed by an equivalent 

higher-order conventional model, and this is substantiated by experimental 

results. 

7 .2 Contributions 

This thesis makes a number of contributions to language modeling research. 

In approximate order of importance they are: 

• evidence that dependencies between function words and between con­

tent words are generally more useful for stochastic sequence modeling 

than relations between function and content words; specifically 

- conventional n-gram models make most of their gains from n­

grams comprised solely of function words or solely of content 

words; 

- dependency structures based on lexical attraction tend to prefer 

links between content words first, between function words second, 

and lastly between content words and function words; 

• an effective heuristic for finding lexical attraction dependency struc­

tures that make good use of the total available mutual information but 

entail no cost for specifying the structure itself; 

• the finding that increased specialisation of function word categories 

increases the availability of class-based dependencies, while extreme 

generalisation of content word categories has few negative effects; 

• a framework for modeling the sequential characteristics of function 

words and content words in isolation-namely, the super-adjacency 

technique; 
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• the finding that an approximation of the closed class based solely on 

high lexical frequency is as effective for stochastic sequence modeling 

as a more considered class definition; specifically 

compression from unbounded category contexts gives almost iden­

tical results when words are labeled with a crudely derived frequency­

based tagging scheme and when they are tagged with the more 

discriminate AMALGAM tagger; 

entropy estimates from a super-adjacency model which defines 

the function word set solely based on lexical frequency are not 

surpassed by a model whose function word set has been derived 

from a dictionary; 

• separate bigram models of the sequential characteristics of function 

words and content words allows better entropy estimates to be obtained 

from a smaller model than is possible from the conventional approach; 

• a simple algorithm for lemmatisation of regularly inflected words; 

• the finding that inclusion of inflectional suffixes in a separate model of 

functional terms, combined with a model of semantic lemmata, leads 

to better entropy estimates from substantially fewer n-grams than is 

possible from a strictly word-based approach; 

• the finding that deeper function word contexts improve entropy es­

timates of language but do not entail a significant cost in terms of 

increased model size; 

7.3 Future work 

Stochastic language models are applied with considerable success to a wide 

variety of practical language processing tasks, and the quest for ever better 

probability estimates of specific linguistic features continues as one of the 

more active areas of computer science research. The super-adjacency model 

outlined in this thesis demonstrates that even the basic n-gram approach has 

untapped potential for providing better performance, but a number of issues 

have been raised suggesting further research. 
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Of primary importance is the need to determine just how robust the 

super-adjacency technique is. Models based upon conditional probabilities 

are susceptible to making invalid assumptions about what is known or needs 

to be known when estimating a probability, and one way to test whether or 

not such assumptions are made by a particular formalism is to apply it to a 

practical language processing task where overlooked information cannot go 

unnoticed. Text compression, for example, reduces plain text to a size pro­

portionate to the probability assigned to it by the compressor's underlying 

model. If the compressor's output can be restored to its original uncom­

pressed form without loss of detail and without any additional information 

then soundness of the approach is confirmed. 

Some effort has already been given towards the construction of a text 

compression scheme based on super-adjacency. An adaptive algorithm has 

been trialed that uses a super-adjacency model without lemmatised input. 

Preliminary experiments have delivered compression ratios commensurate 

with what is expected based on the experiments detailed in Chapter 5. And 

a complementary decompression scheme has been developed that restores 

the compressed language sample to its original form, providing evidence that 

the results outlined in this thesis are accurate. Moreover, the compressor 

achieves its results adaptively, using statistics conditioned "on the fly", and 

this indicates that the use of posterior probabilities in the calculations of this 

study has not overly distorted the results. The fact that the compressor gives 

the expected results for a variety of sample inputs further suggests that the 

approach is robust. It remains to be seen now whether lemmatisation can be 

incorporated with similar success. 

Because the super-adjacency model maintains different models for gram­

matical terms and semantic terms, it may prove a useful tool for certain 

information retrieval and text mining tasks. For example, a super-adjacency 

model can be trained on a collection of documents pertaining to a particular 

topic, then the semantic model alone could be used to calculate entropy esti­

mates for the content word stream of unknown documents. Those addressing 

similar topics would likely yield low cross entropy scores while unrelated doc­

uments would give high scores. Conventional n-grams can of course do the 

same thing, but the fact that they make most of their gains from function 
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word n-grams leads to greater ambiguity in their results. Alternatively, if one 

wanted to be able to distinguish whether a source was a technical work or a 

novel, one might train a super-adjacency model on a collection of documents 

of one kind or the other and then just use the grammatical model to calculate 

cross-entropy scores for the functional sequence in an unknown document. 

Given that technical writing typically employs quite a different grammatical 

style than fiction, a high entropy score may be a reliable way to determine a 

match. 

Chapter 4 provides evidence that the distinction between different content 

word categories is not terribly important for a class-based context model, and 

throughout this thesis there have been suggestions that further subcategori­

sation of content words is implicit in other ways. Still, the fact that there are 

very real dependencies between, say, determiners and nouns, and between 

modal auxiliaries and verbs, suggests that the use of a single content word 

category symbol may be an excessive simplification. A key factor leading 

to this simplification is the absence of a clear cut method for subclassing 

content words. Lexical frequency was shown to be suitably effective for iden­

tifying function words, but more sophisticated techniques may be needed to 

differentiate between specific kinds of content words. 

In the lemmatisation model, inflectional suffixes were also used as con­

tent category symbols. Given that verbs inflect in manners that nouns do 

not, suffixion may offer some clue for distinguishing between these two cate­

gories, and this is something that could be explored. Even incorporating the 

inflectional suffix into the context for predicting its associated stem seems 

a logical option to examine. In fact, regular derivational suffixes typically 

signal the grammatical category of a word, and consideration of these may 

also be beneficial for developing a more discriminating classification scheme 

within the model. 

The content category symbol is troublesome in other ways. The fact that 

some number of content category symbols frequently stand between function 

words involved in a dependency relationship makes it desirable to seek a 

way to reach across this distance. Longer function word contexts have been 

shown to help, but this approach does not generalise over syntactic patterns 

of variable length. We suggested earlier that separate statistics might be 
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maintained so that a function word can be predicted using the context of 

the most recent function word regardless of any intervening content category 

symbols, and this is a certainly a modification that merits further study. 

One of the most interesting observations from Chapter 6 was that the 

number of function word trigrams was not significantly larger than the num­

ber of function word bigrams for closed class sizes smaller than about 128 

words ( see Figure 6.4). It would be interesting to see if this holds for higher­

order contexts. If so, it may suggest that grammatical patterns could actually 

be rote learned. 

It was claimed at the outset that this thesis is not presenting a theory 

of grammar or learning, but is instead addressing the problem of developing 

a sound performance-based model of language. However, it was also stated 

that consideration to theories about genuine linguistic phenomena is a design 

motivation. Whether the super-adjacency technique upholds this objective 

is difficult to determine in light of the fact that all of the experiments have 

been directed specifically at English, and it may be of theoretical interest 

to try to adapt the model to work for other languages. In any event, the 

goals of language modeling are not restricted to practical problems, nor is 

interest in the topic limited to computer scientists. The basis, framework, 

and results from any particular model have the potential to provide insights 

into more general questions about sequence modeling, automatic induction, 

grammatical theory, learnability and even cognition. 
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