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Abstract

According to standard procedure, building a
classifier is a fully automated process that
follows data preparation by a domain ex-
pert. In contrast, interactive machine learn-
ing engages users in actually generating the
classifier themselves. This offers a natu-
ral way of integrating background knowledge
into the modeling stage—so long as interac-
tive tools can be designed that support efli-
cient and effective communication. This pa-
per shows that appropriate techniques can
empower users to create models that compete
with classifiers built by state-of-the-art learn-
ing algorithms. It demonstrates that users—
even users who are not domain experts—
can often construct good classifiers, with-
out any help from a learning algorithm, us-
ing a simple two-dimensional visual interface.
Experiments demonstrate that, not surpris-
ingly, success hinges on the domain: if a
few attributes can support good predictions,
users generate accurate classifiers, whereas
domains with many high-order attribute in-
teractions favor standard machine learning
techniques. The future challenge is to achieve
a symbiosis between human user and machine
learning algorithm.

1. Introduction

Standard machine learning algorithms are non-
interactive: they input training data and output a
model. Usually, their behavior is controlled by pa-
rameters that let the user tweak the algorithm to
match the properties of the domain—for example, the
amount of noise in the data. In practice, even users
familiar with how the algorithm works must resort
to trial and error to find optimal parameter settings.

Most users have limited understanding of the underly-
ing techniques and this makes it even harder for them
to apply learning schemes effectively.

The same problem arises when choosing a technique
for a particular data mining problem at hand. The
best choice generally depends on the properties of the
domain, yet there is no standard recipe for selecting
a suitable scheme. The problem is compounded by
the fact that users are often unaware of the strengths
and weaknesses of the individual learning schemes. Pa-
rameter and scheme selection are the only mechanisms
through which users can affect how the model is gener-
ated, and (at least in propositional machine learning)
there is no other way for domain knowledge to en-
ter the inductive process beyond the data preparation
stage.

This paper presents a graphical interactive approach
to machine learning that makes the learning process
explicit by visualizing the data and letting the user
“draw” decision boundaries in a simple but flexible
manner. Because the user controls every step of the
inductive process, parameter and scheme selection are
no longer required. When used by a domain expert,
background knowledge is automatically exploited be-
cause the user is involved in every decision that leads
to the induced model. The scheme works most nat-
urally with numeric attributes, although the interface
does accommodate nominal attributes.

The material presented in this paper builds on an ear-
lier approach to interactive classifier construction by
Ankerst, et al. (1999), whose system lets users gener-
ate an univariate decision tree by placing split points
on numeric attributes using an interactive visualiza-
tion. There are two main differences with the work
presented here. First, our system allows complex in-
teractions between any pair of attributes to be cap-
tured using a two-dimensional visualization. Second,
we present results of an empirical evaluation that in-



volves several novice users and standard datasets, en-
abling us to identify strengths and weaknesses of this
interactive visual approach to machine learning.

The paper is organized as follows. The next section
describes our method of interactive classifier construc-
tion; Section 3 gives a detailed example. Next we ap-
ply the system to the problem of classifying Kiwifruit
and compare the resulting classifier’s performance to a
decision tree automatically generated by C4.5 (Quin-
lan, 1993). Section 5 presents an empirical compari-
son involving five benchmark datasets and classifiers
constructed by five novice users. Section 6 discusses
related work, while Section 7 summarizes the main re-
sults and future directions.

2. Visual Decision Tree Construction
Using 2D Polygons

Flexibility and simplicity are the key elements in the
design of our system. The goal is to make the pro-
cess of building a classification model as intuitive as
possible. The system enables the user to construct a
decision tree graphically with bivariate splits on at-
tributes (Lubinsky, 1994). Bivariate splits were cho-
sen for three reasons. First, they are representation-
ally more powerful than univariate splits. Second, it
is difficult to construct splits visually on more than
two attributes. Third, all users are familiar with two-
dimensional data representation from drawing pro-
grams and graphical packages.

Each bivariate split is represented as a polygon or
set of polygons. Polygons are easy to draw and
can approximate arbitrarily complex two-dimensional
shapes. In conjunction with the standard recursive
“divide and conquer” decision tree procedure, they en-
able users to approximate the target concept to any de-
gree of accuracy while minimizing the number of splits
that must be generated to identify “pure” regions of
the instance space.

Figure 1 illustrates the user interface. There are two
kinds of panel: tree visualizers (Figure la, d, and f)
and data visualizers (Figure 1b, ¢, and e). At the top
of each screen is a selector that indicates which kind of
panel is currently being displayed; users can click this
to switch between panels at any stage of the construc-
tion process. The tree visualizer displays the structure
of the decision tree in its current state: Figure la,
d, and f shows trees with one, two, and three leaves
respectively. The user can select any node by left-
clicking on it, which highlights the node and loads the
data at that node into the data visualizer. The data
visualizer contains a two-dimensional visualization of

the instances that reach the selected node: Figure 1b,
¢, and e show the data for the root node of Figure 1a,
the root node of Figure 1d, and the right child of the
root of Figure 1f respectively. The data visualizer al-
lows the user to define a split by drawing polygons in
the visualization. Once a split has been generated, the
resulting nodes are appended to the tree structure in
the tree visualizer.

2.1 Basic functionality

The data visualizer is divided into three areas: controls
(at the top), a two-dimensional scatter plot (on the
left), and one-dimensional bar graphs (on the right).
The controls allow the user to select attributes and
control other aspects of the display. The scatter plot
displays the instances on a plane whose axes are de-
fined by the two attributes currently selected by the
user. The color of each data point indicates the class
value of the instance corresponding to that point, and
a key to the color coding, giving each attribute name
in the color that represents it, is displayed below the
scatter plot. (Three colors are used in Figure 1, and
they appear as barely-distinguishable shades of gray;
of course the actual color display is far more striking.)

The bar graphs, one for each attribute in the dataset,
provide a compact one-dimensional visualization of
each attribute in isolation. The array of bar graphs
scrolls to accommodate more attributes than will fit
in the space provided (although this is not necessary
with the dataset of Figure 1). These bars provide a
convenient way of visualizing the discriminatory power
of individual attributes. The horizontal axis of an at-
tribute’s bar spans the range of the attribute it rep-
resents. Data points are randomly distributed along
the short vertical axis to provide an indication of the
distribution of class values at any given point in the
attribute’s range.

There are two ways in which the user can select at-
tributes for display in the scatter plot. First, pull-
down menus are provided in the control area at the top
of the data visualizer that allow the user to choose the
attribute for the X and Y axes by selecting the name
of an attribute from the appropriate drop-down list.
Second, attributes can be selected from the attribute
bars displayed in the right area of the data visualizer:
clicking on a bar with the left or right mouse button
chooses that attribute for the scatter plot’s X and Y
axis respectively. Nominal attributes can be chosen;
the different attribute values are displayed along the
axis in a discrete manner.

Once the user is satisfied with their choice of at-
tributes, a split can be drawn interactively in the scat-



ter plot area of the data visualizer. This is accom-
plished by enclosing data points within one or more
polygons. A pull-down menu at the top of the panel
lets the user choose from a list of shapes that can
be drawn. The shapes range from a simple rectan-
gle or polygon to a “polyline” or open-sided polygon
(as shown in Figure 1c and e). They are drawn by left-
clicking a series of points in the scatter plot. In the
case of a polyline, a final click (with the right mouse
button) on one side of the line determines which data
points are enclosed; the end-points of the line segment
at either end of the polyline are extended to infinity.

A split, is defined by the area enclosed within the poly-
gon that has been drawn, or the union of these areas if
there is more than one polygon. When satisfied with
the result, the user inserts it into the tree structure by
clicking the Submit button at the top of the data visu-
alizer. This appends two new nodes, the left contain-
ing all instances enclosed by the polygons, the right
receiving all remaining instances. The modified tree
can be viewed by switching to the tree visualizer. If,
on the other hand, the user is not satisfied with the
split they have drawn, it can be removed by clicking
the Clear button.

The process of defining splits and appending them to
the tree continues until the user is satisfied with the
resulting classifier. At any stage the data at any given
node in the tree can be visualized by left-clicking on
that node. If the user decides to redefine a split at
an existing interior node, the subtree below that node
will be replaced by the nodes corresponding to the new
split. The user also has the option of simply removing
an existing subtree without defining a new split by
right-clicking on a node in the tree visualizer.

2.2 Other features

Users can adjust how the tree structure is displayed in
the tree visualizer. A right-click outside a node gener-
ates a pop-up menu from which one can select different
options to rescale the tree. In addition, it is possible
to move the tree by dragging it with the left mouse
button.

The data visualizer offers additional options that alter
the appearance of the data to accommodate prefer-
ences of individual users. The color assigned to each
class can be changed using a pop-up color selector.
The jitter slider is useful if several instances occupy
exactly the same coordinates in the scatter plot. De-
pending on the level of jitter, all data points are ran-
domly perturbed by a small amount.

The data visualizer also allows the user to examine

properties of individual data points by left-clicking
on any point in the scatter plot (so long as “select
instance” is chosen in the shape-selection pull-down
menu near the top—as it is in Figure 1b). This brings
up a text window summarizing all attribute values for
the instances (possibly more than one) located at that
point in the plot.

3. An example

Here is a detailed walk through the process of build-
ing a decision tree for the well-known Iris data (Blake,
Keogh & Merz, 1998). This dataset has a sirnple struc-
ture that lends itself naturally to interactive classifier
construction. It consists of four numeric attributes
that measure properties of Iris flowers. There are three
classes, each representing a different variety of Iris.

Before any splits are made, the tree visualizer displays
a single node that corresponds to the root of the tree
(Figure 1a). Inside the node is shown the number of
instances belonging to it, broken down by class. In
this case there are 50 instances of each class. The
node is automatically selected: this is indicated by a
highlighted border (cf. the borderless unselected nodes
in Figure 1d and f).

To generate a split, the user switches to the data visu-
alizer, which at this juncture displays the data points
at the root node. Figure 1b shows the situation after
the user has chosen the third and fourth attributes
(petallength and petalwidth) for the X and Y axes
respectively; both the selection controls and the at-
tribute bars are updated accordingly.

Next, the user draws a split in Figure 1c, in this case by
choosing the polyline option to generate an open-sided
polygon and splitting off the instances belonging to the
Iris-setosa variety (located in the lower left corner of
the display, and easily distinguished by color in the
actual interface). The “enclosed” area of the polyline
is shown in light gray.

Figure 1d shows how the tree is altered as a conse-
quence of submitting the split. Two new nodes are
attached to the root. The left one corresponds to the
light gray area in the data visualizer, the right one
to the remaining (black) region of the instance space.
The right node is automatically highlighted for further
processing, because users generally work by splitting
off “easy” regions and leaving the rest for later refine-
ment. The instances at this new node are automati-
cally displayed in the data visualizer.

The illustration shows one further split being made,
again using the polyline primitive, which divides the
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Figure 1. Constructing a classifier for the Iris data
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Figure 2. Classifying Kiwifruit vines

remaining instances into two almost pure subsets in
Figure le. The resulting decision tree is shown in Fig-
ure 1f. It contains a total of five nodes and classifies
all but one of the training instances correctly.

4. Classifying Kiwifruit

Our interest in interactive machine learning derives
from the observation that several datasets from our ap-
plied data mining projects appear to lend themselves
naturally to manual classification. We first noticed
this when displaying the datasets using the XGobi data
visualization tool (Swayne, Cook & Buja, 1998) so that
our clients could see what was going on.

A particular example of this type of problem involves
classifying Kiwifruit vines into twelve classes. The task
is to determine which pre-harvest fruit management

Table 1. Datasets.

Dataset Train Test  Attributes  Classes
waveform 500 4500 40 3
shuttle 43500 14500 9 7
segment 210 2100 19 7
sat 4435 2000 36 6
letter 15000 5000 16 26

treatment had been applied to the vines, on the basis
of visible-NIR spectra collected at harvest and after
storage (Kim, Mowat, Poole & Kasabov, 1999). The
training and test data contain 879 instances and 929
instances respectively.

The training data, visualized using the first two at-
tributes, is shown in Figure 2a. One author, with no
prior knowledge of the domain and no previous at-
tempts at generating a classifier for this problem, cre-
ated a decision tree manually from the training data
using the procedure described in the last section. The
resulting tree contained 53 nodes and achieved an ac-
curacy of 85.8% on the test data: Figure 2b shows a
miniature view. For comparison, we ran the decision
tree inducer C4.5 (revision 8) using the same training
and test data. It produced a tree containing 93 nodes
with an accuracy of 83.2% on the test data. The differ-
ence in accuracy is statistically significant at the 80%
level according to a two-sided paired t-test.

This result encouraged us to perform a controlled ex-
periment involving more subjects and standard bench-
mark datasets.

5. Experiments on Benchmark Datasets

In order to test whether users can, in general, con-
struct accurate models, we performed an experi-
ment using a selection of standard numeric-attribute
datasets from the UCI repository (Blake, Keogh &
Merz, 1998). The datasets were chosen to present
subjects with a range of predictive tasks of varying
difficulty, and to be large enough to obtain reliable ac-
curacy estimates (since cross-validation would be te-
dious, to say the least!-—and it would be impossible
to prevent the user from transferring knowledge from
one fold to another). Each dataset was divided into
training and test sets. Table 1 summarizes the char-
acteristics of the datasets.

Five novice users used our system to construct a model
for each dataset. They were allowed to familiarize
themselves with the software by practicing on the Iris
dataset before building classifiers for the benchmark
datasets. Table 2 shows the accuracy on the test set
and the size of each decision tree produced by the



Table 2. Accuracy and size of the generated decision trees.

Accuracy Tree size
Dataset C4.5 A B C D E | C45 A B C D E
waveform | 72.47 7253 71.58 7813 66.33 64.53 73 21 61 23 13 19
shuttle 99.95 99.83 99.95 99.97 99.93 99.76 53 19 29 27 23 29
segment 88.90 88.71 86.52 89.67 90.52 74.95 35 25 31 25 17 57
sat 85.45 78.10 7890 83.85 80.80 81.95 431 37 71 39 23 241
letter 87.70 42.00 33.86 63.86 43.94 3854 | 2105 121 73 171 79 137

users; it also contains corresponding figures for the
trees generated by C4.5.

Table 2 shows that for three of the five datasets—
waveform, shuttle and segment—users are able to
equal or better C4.5’s performance. For sat, three
users were able to get within 5% of C4.5’s performance.
On the letter dataset, all users were roundly outper-
formed by C4.5, although user C put in a sterling effort
and achieved nearly 64% accuracy.

The user-generated trees are almost always smaller
than those produced by C4.5, the only exception being
the tree that user E produced for the segment dataset.
This is no surprise because bivariate splits are inher-
ently more powerful than the univariate splits that
C4.5 uses. Although univariate splits have the ad-
vantage of being easily interpretable when printed in
textual form, bivariate splits can be analyzed simply
by visualizing them—and our experience with clients
is that they find such visualizations extremely enlight-
ening.

The difference in size between the manually-generated
trees and those produced by C4.5 is particularly strik-
ing for the letter dataset. It is clear from the mag-
nitude of the difference that users were overwhelmed
by the task of generating an accurate classifier for this
domain. The problem is that the data cannot be sep-
arated into clearly defined clusters by looking at just
two attributes at a time. High-dimensional attribute
interactions need to be modeled to obtain an accurate
classifier for this domain.

Table 3 provides insight into the complexity of the
tasks from a user’s perspective. It shows the time
spent constructing models, in minutes for the users and
minutes and seconds for C4.5. For the letter dataset,
the problem is that two attribute dimensions are insuf-
ficient to separate off substantial numbers of instances
of the same class. This leads to a seemingly endless
interaction where the human desire to finish the task
outweighs the need to build an accurate model.

Table 3. Time to construct tree (seconds for C4.5; minutes
for users A, B, C, D and E).

Dataset C4.5 A B C D E
waveform | 0:11 28 34 18 20 11

shuttle 0:50 22 18 34 33 25
segment 0:03 22 10 15 30 24
sat 0:22 47 32 40 52 91
letter 0:47 107 67 207 182 56

6. Related Work

Ankerst et al. (1999) pioneered interactive decision
tree construction. Their system, which they called
“perception-based classification” (PBC), allows users
to generate splits from a visualization of a dataset.
The dataset is shown as a set of circle segments, one
for each attribute, and concentric arcs are associated
with attribute values. In other words, instances are
sorted from the center of the circle to its outer bound-
ary according to their value for that attribute; along
the arc, instances are distributed randomly. The color
of an instance indicates its class. The user can define
univariate multiway splits on an attribute by choosing
a circle segment and inserting arcs into it. As in our
approach, the data is then divided into subsets using
this split and corresponding nodes are added to the
tree structure.

PBC is closely related to our approach to interactive
machine learning. Instead of simple univariate splits
we allow more complex bivariate splits, exploiting the
user’s ability to identify clusters in two-dimensional
scatter plots. In our system, the functionality of the
circle segments is achieved by the attribute bars on
the right side of the data visualizer. In fact, it is not
clear to us why PBC is based on circle segments in-
stead of linear attribute bars: due to their shape, circle
segments may give the user the misleading impression
that there is a qualitative difference between instances
close to the center of the circle and those close to its
boundary.

Ankerst et al. (1999) present experimental results for
PBC, obtained from a single user, for three of the
five datasets employed in Section 5: sat, segment, and



shuttle. Unfortunately they state neither the user’s ex-
perience nor how many trials were involved in obtain-
ing the results. In their experiments, user-generated
decision trees were less accurate than an implementa-
tion of C4.5 on sat and segment, and equally accurate
on shuttle. However, the difference in accuracy was
never large and the user-generated trees had the ad-
vantage of heing much smaller.

The experimental results presented in Section 5 add
two important new findings. First, manual classifier
construction is not likely to be successful for large
datasets with high-dimensional attribute interactions.
Second, the accuracy of a user-generated classifier de-
pends strongly on the person who produced it. We
might expect even better results from professionally-
motivated users who were intimately familiar with the
datasets.

7. Conclusions

This paper presents a novel interactive method for con-
structing decision tree classifiers. The system is easy
and intuitive to use. With it, people can build accu-
rate classifiers after very little practice, shortly after
encountering the system for the first time. An in-
teractive approach to building classifiers allows users
who are familiar with the data to exercise effective
use of domain knowledge. It also has the advantage of
demonstrating the inductive process in a concrete way,
thereby educating users about what the results mean.

Experiments on standard numeric-attribute datasets
involving several users show that for some datasets
manually-constructed models can be smaller and as ac-
curate as those produced by the decision tree inducer
C4.5. Users build good models when clusters are vi-
sually apparent in two dimensions. For large datasets
involving high-dimensional interactions, manual clas-
sifier construction is too tedious to be worthwhile.

The new challenge is to create a symbiotic relation-
ship that combines the skills of human user and ma-
chine learning algorithm. Situations in which manual
decision-tree construction will fail can be identified by
visualizing the data, and in such cases the user may
want to invoke a learning algorithm to take over the
induction process. The latest version of our system
has this capability: its empirical evaluation is next on
our research agenda.
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