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Abstract

The hidden terminal problem is an important issue in wireless networks based on the CSMA

medium access control scheme. Hidden terminals pose a complex challenge to network

operators trying to identify the underlying cause of performance issues.

This thesis describes new methods for the detection and measurement of the hidden terminal

problem in wireless networks based on commodity hardware and software platforms. These

new methods allow network operators to identify areas of a network where hidden terminals

are likely to exist; detect instances of the hidden terminal problem occurring; and estimate

the total impact hidden terminals are having on the performance of the network.

A new framework for measurement of wireless networks is described which provides a new

approach to wireless measurement on Linux based wireless routers. The new framework is

used to implement the methods and they are deployed across an operational commercial

wireless network and are shown to be useful.
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Chapter 1

Introduction

1.1 The Problem

Hidden terminals are a classic problem [65] faced by wireless network proto-

cols based on the Carrier Sense Multiple Access (CSMA) [29] medium access

control scheme and have the potential to negatively impact the performance

of such networks. CSMA-based wireless networks have become increasingly

prevalent over the last 10 years with the rapid and wide-spread adoption of

the IEEE 802.11 “Wi-Fi” [6] family of standards for wireless communications.

Aside from its wide-spread use in home and office networks, IEEE 802.11 has

proved to be useful in a multitude of other environments largely due to its low

implementation costs and relative ease of deployment.

IEEE 802.11 has found particular momentum as a backbone and access mech-

anism for low cost rural and remote community networks and Wireless ISP

(WISP) deployments, as can be seen in [10, 42, 62, 61] and many others. Such

network deployments aim to provide internet connectivity into remote areas

that do not have access to traditional broadband infrastructure. In many cases,

remote areas with low population densities do not warrant the significant in-

vestment required to deploy traditional broadband infrastructure [39, 63, 37]

and as such, IEEE 802.11 has proved fundamental in extending network reach

into such areas through community involvement and partnership with local

business and government.

These community networks are commonly built using commodity “off the shelf”

1



hardware and free and open source software platforms. It is also common for

such networks to be operated by groups of non-expert users. A lack of deep

technical knowledge of underlying technologies can make diagnosis of network

performance issues difficult, and hidden terminals in particular pose a complex

challenge for non-expert users to diagnose as the root cause of performance

issues.

The hidden terminal problem arises when a set of terminals in a CSMA net-

work are unable to fully carrier sense each another. A CSMA network that

includes hidden terminals is unable to operate at its maximum capacity as

hidden terminals can cause simultaneous overlapping transmissions leading to

collisions. Hidden terminals can be caused by a number of physical issues, from

obstacles obstructing the signal path between terminals, to path attenuation

over long distances.

Link distances in rural and remote networks are much greater than is usual for

standard IEEE 802.11 deployments, both in the point to point backbone net-

work as well as the point to multipoint access network. These long distances,

coupled with high gain directional antenna required to achieve such distances,

contribute to an increased likelihood of hidden terminals in these networks.

As such, hidden terminals are an important and real issue which operators of

rural and remote community networks need to be able to detect and measure.

Detection and measurement of the hidden terminal problem in community

networks is an open problem and there currently exists no scalable, robust

methods for detecting and measuring hidden terminals in this context. This

thesis sets out to design, validate, implement and deploy methods for detecting

the potential for and measuring the performance impact of hidden terminals

in IEEE 802.11 wireless networks based on commodity hardware and software

platforms, with a particular focus on enabling long term measurement on such

networks. In particular it asks the question, “can hidden terminals be detected

and can the performance impact of hidden terminals be measured in wireless

networks using commodity hardware and software platforms?”

2



1.2 Overview of the Thesis

This chapter presents the thesis problem and the contributions this thesis

makes to the field of hidden terminal detection in community wireless networks.

The next chapter, Background, provides a discussion of wireless medium ac-

cess techniques and provides an overview of existing literature on the effect

of hidden terminals and the current state of hidden terminal detection and

avoidance. In Chapter 3, Detecting Hidden Terminals, two new methods for

the detection and measurement of hidden terminals are presented; the first is

based on measuring network connectivity, and the second uses detailed packet

timing analysis to detect hidden terminal transmissions and estimate the total

collision rate due to hidden terminals. Chapter 4, Validation, describes a lab-

oratory validation of the timing (second) method and shows that it is effective

in detecting hidden terminals and estimating the total rate of collisions caused

by them.

Chapter 5, Implementation, describes a new approach to performing wireless

measurement on Linux based wireless routers. A new framework for imple-

menting wireless measurement tasks is described and the two hidden termi-

nal methods are implemented within it. The implementation of the methods

focuses on ensuring the methods are able to be deployed on a real-world, op-

erational network. The limitations of performing wireless measurement on a

large scale are discussed and a comparison of existing wireless measurement

techniques is given. The new framework and the implementation of the two

new methods for hidden terminal detection are described.

Chapter 6, Deployment Results, presents results from the deployment of the

methods across an operational wireless network and shows that the methods

can be used to solve real-world network problems. Finally, Chapter 7, Con-

clusions and Future Work, concludes the thesis and presents possible areas of

future work related to the outcomes of this thesis.
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1.3 Contributions

This thesis investigates the detection and measurement of hidden terminals

in community wireless networks based on commodity hardware and software.

The core contributions of this thesis are:

1. A method for detecting the possibility of hidden terminals in a wireless

network using network connectivity measurements;

2. A novel method for detecting the presence of hidden terminals using de-

tailed packet timing analysis;

3. A novel method for estimating the impact of hidden terminals by esti-

mating the total number of collisions being caused;

4. A laboratory validation of the hidden terminal detection and measure-

ment methodologies;

5. A new Linux kernel measurement framework for instrumenting wireless

network stacks;

6. An implementation of the hidden terminal detection and measurement

methodologies within the kernel measurement framework; and

7. A real-world deployment of the methodologies on an operational wireless

network.

The usefulness of the hidden terminal detection and measurement methods

is shown in chapter 6 by the results gained from deployment of the methods

on an operational IEEE 802.11 wireless network that serves mainly rural res-

idential customers. The operators of the network were able to make changes

to the network that improved the performance of the network based on new

information gained from the deployment of the methods.

The general focus in this thesis is to develop, test, implement and deploy new

methods for the detection and measurement of the hidden terminal problem in

operational IEEE 802.11 wireless networks based on commodity hardware and

software platforms. The focus on operational networks puts specific constraints
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on the implementation and hence a new approach to performing wireless mea-

surement is required. A new framework for large scale wireless measurement is

developed as part of this thesis to enable the implementation and deployment

of the hidden terminal methods. The new measurement framework and the

hidden terminal detection methods themselves have been presented in [54].

Additionally, data gathered by a deployment of the measurement framework

has been used elsewhere to provide long term wireless link-level data to a study

that challenged existing path-loss prediction models [45].
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Chapter 2

Background

The hidden terminal problem1 is an artefact of the Carrier Sense Multiple

Access (CSMA) [29] medium access scheme used by modern wireless technolo-

gies. This thesis is an investigation into the detection and measurement of

the hidden terminal problem in CSMA-based IEEE 802.11 wireless networks.

This chapter aims to provide motivation for the need for a robust, reliable and

scalable system for detecting and measuring the hidden terminal problem in

IEEE 802.11 wireless networks.

This chapter presents a review of current literature on the topic of random ac-

cess channel acquisition, the effect the hidden terminal problem has on IEEE

802.11 networks, its proposed solutions and current techniques for its mea-

surement. First, the evolution of the IEEE 802.11 medium access scheme is

presented through a short history of random-access channel acquisition meth-

ods. Second, the hidden terminal problem is more precisely described in the

context of IEEE 802.11 wireless networks as well as the effect hidden termi-

nals can have on IEEE 802.11 networks. Third, the IEEE 802.11 RTS/CTS

protection mechanism is evaluated. Existing solutions to avoid hidden termi-

nals at the transport, medium access and physical layers are then evaluated.

Finally, existing techniques for measurement of the hidden terminal problem

are discussed.

There have been many studies into the effect of hidden terminals and many so-

lutions to the problem have been proposed. However, very few of the proposed
1The hidden terminal problem is commonly referred to as the hidden node problem, however this thesis

uses the original terminology defined by Kleinrock and Tobagi.
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solutions are feasible for implementation within existing IEEE 802.11 networks

while limiting cost and maintaining compatibility with existing devices. These

constraints limit the ability of network operators to avoid hidden terminals in

their networks. Despite work towards a solution, the hidden terminal prob-

lem still exists in operational IEEE 802.11 networks and its detection and

measurement is important.

2.1 A brief history of wireless medium access schemes

The study of random packet-based medium access schemes for wireless net-

works is relatively new. In 1969 at the University of Hawaii, researchers devel-

oped the ALOHA system, known now as pure ALOHA. Many improvements

have been made since then however many of the same problems that were

present in ALOHA are still present in modern medium access schemes.

The following sections outline the evolution of wireless medium access schemes

leading up to the IEEE 802.11 Distributed Co-ordination Function (DCF) from

its origins in the ALOHA system.

2.1.1 The ALOHA System

The ALOHA system [3] (now known as “pure” ALOHA) was the first attempt

at providing true random packet based access to a shared wireless medium in

a point-to-multipoint manner. Previous to ALOHA, radio systems either used

frequency (FDMA) or time (TDMA) division techniques to share the medium.

These schemes often result in poor channel utilisation in cases where only a

small proportion of the terminals in the network have any data to transmit

as they allocate the shared resource independent of each terminal’s activity.

Random access schemes allow for more efficient re-use of the radio resource as

terminals are allocated the medium as required [66].

The ALOHA system does not attempt to avoid collisions. It instead relies

on stations to re-transmit packets for which no positive acknowledgement is

received. If an acknowledgement is not received within some time period, the
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Figure 2.1: Two Pure ALOHA terminals A and B access the channel in a random and
unsynchronised manner. This leads to a collision shown by the shaded area due to terminal
B beginning a transmission within the vulnerable period of A’s second data transmission.
Each of the terminals begins an ACK timer after the end of their transmissions. No ACKs
are received so each goes into independent random backoff states. Terminal B has selected
a shorter backoff than terminal A so re-transmits first. The transmission is successfully
ACKed. Terminal A completes its backoff and retransmits its data frame.

station assumes that a collision has occurred and will wait a random amount

of time before retransmitting. This random backoff is crucial to avoid re-

peated collisions. Given the unsynchronised nature of pure ALOHA, once a

terminal is transmitting again any other terminal may also transmit causing

yet another collision. Packets in the ALOHA system have a fixed length, and

communication from and to the central point is performed on separate chan-

nels; therefore acknowledgement frames from the central point do not collide

with data packets being sent by remote terminals. This behaviour is shown in

Figure 2.1.

While ALOHA provided the first true random access scheme and enabled low

cost resource sharing, the high probability of collision limited effective use of

the transmission medium under moderate to heavy loads. It was shown in

[29] that the maximum efficiency achievable by ALOHA was 0.184, where 1.0

indicates perfect scheduling and full use of the total available channel capacity.

In 1975, Roberts et al. [55] proposed Slotted ALOHA to improve on the

efficiency of ALOHA. In Slotted ALOHA, the channel is split into discrete

time slots. Terminals may only transmit at the start of a time slot and packet

sizes are fixed to be one time slot in length. This avoids the problem of

collisions occurring due to overlapping transmissions, however terminals may

still collide at the beginning of the slot boundaries and may continue to collide
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Figure 2.2: Two slotted ALOHA terminals are transmitting packets on slot boundaries.
Their transmissions only overlap when they both transmit during the same slot. This reduces
the vulnerable period to a single packet length and improves maximum achievable channel
usage.

as they attempt to re-transmit.

Slotted ALOHA improves the channel efficiency over pure ALOHA by doubling

ALOHA’s maximum achievable channel usage to 0.368 [29]. This improvement

is due to the reduced “vulnerable” period that collisions could occur in.

A later variant of ALOHA attempted to overcome the problem of repeated col-

lisions by adding slot reservation to Slotted ALOHA. In Reservation ALOHA

Borgonovo et al. [12] propose that when a collision occurs a Collision Queue

Table (CQT) is constructed at each colliding station in which each of the re-

transmissions are scheduled using a priority assignment. This requires each

station to know which other stations were involved in the collision. It is sug-

gested that a small TDMA window is used to signal the existence of trans-

missions in each slot so that each station can know which other stations are

attempting transmission and create the CQT accordingly.

The ALOHA system can be considered the first true random access packet

switched medium access scheme for wireless networks. It sparked a new way

of thinking about access to shared computing resources and was the catalyst

for the explosion in wireless computer communication that was to come over

the next several decades.
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Figure 2.3: A simple example of non-persistent CSMA. Terminal A has a packet ready to
transmit and senses the medium. Terminal B is already transmitting so terminal A senses
the medium as busy. It waits a random amount of time before sensing the medium again,
at which point it is idle and so transmits its packet, avoiding the collision with terminal B.

2.1.2 Carrier Sense Multiple Access (CSMA)

In order to address the lack of synchronisation amongst participants in the

ALOHA system, Kleinrock and Tobagi proposed a new access scheme, Carrier

Sense Multiple Access (CSMA) in 1975 [29]. CSMA differs from ALOHA in

that rather than sending randomly, a station with a packet of data to transmit

first senses the medium to see if it is busy. If it is, then the station defers

its transmission to allow the currently transmitting station to complete, thus

avoiding a collision.

There are several operational modes of CSMA described by Kleinrock and

Tobagi which dictate how the station responds to a busy channel [29]. In non-

persistent CSMA, when the station senses the channel is idle it may transmit;

however, if it is busy the station must reschedule another transmission attempt

at some random time in the future. In p-persistent CSMA when the channel

is sensed busy the terminal will continue to sense the channel until it becomes

idle and then transmit with probability p. The focus of this thesis is on non-

persistent CSMA access as used by the IEEE 802.11 Distributed Coordination

Function (DCF).

By adding carrier sensing, CSMA allows participants in the network to syn-

chronise their transmissions with each other and in perfect conditions avoid

collisions, greatly improving the channel utilisation. However, as mentioned by

Kleinrock and Tobagi, CSMA operates under the assumption that all stations

are within carrier sense distance of one another. If they are not, then collisions

may still occur. This is a manifestation of the hidden terminal problem and

will be discussed at length later in the thesis.
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Compared to ALOHA and Slotted ALOHA, CSMA achieves a much higher

maximum channel capacity usage. It is shown in [29] that when the channel

is able to be immediately sensed idle after a transmission (i.e. in the case

that a = 0 where a is propagation delay), non-persistent CSMA can achieve a

theoretical channel usage of 1 for an offered channel load of infinity.

However, in a more realistic setting where propagation delay is taken into

account, non-persistent CSMA achieves an effective channel usage of 0.815

when a = 0.01. Interestingly, for large values of a such as in satellite networks,

ALOHA and Slotted ALOHA become more efficient than CSMA. Given that

the operation of ALOHA does not rely on propagation delay it is able to

maintain a constant channel usage whereas CSMA degrades as a increases.

For ground based radio networks where a is relatively small, such as typical

IEEE 802.11 installations, CSMA is superior to any of the ALOHA variants in

terms of its effective channel use. However its reliance on carrier sensing can

cause issues when stations are not within carrier sense distance of each other.

2.1.3 Medium Access with Collision Avoidance for Wireless

CSMA relies on transmitters being able to detect an ongoing transmission

in order to avoid collisions. In 1994, Bharghavan et al. [11] argued that

it is not always the case that a transmitter can detect such interference, for

example, when two transmitters are hidden from one another. It should instead

be the responsibility of the intended receiver to ensure that senders do not

transmit simultaneously as the receiver has a more complete knowledge of its

current channel state. Bharghavan et al. proposed the Medium Access with

Collision Avoidance for Wireless (MACAW) protocol which allowed receivers

the opportunity schedule transmissions and inform other potential senders of

ongoing transmissions.

MACAW is a slotted, non carrier sensing protocol much like Slotted ALOHA.

It differs from CSMA/CA in that it uses an RTS-CTS-DS-DATA-ACK se-

quence to transmit data. A station with data to transmit first sends a Request

To Send (RTS) frame. The receiver sends back a Clear To Send (CTS) frame
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Figure 2.4: A simple example of MACAW. Terminal A has a packet to transmit and so
enters the RTS-CTS-DS-DATA-ACK sequence. When Terminal C hears the CTS it defers
any transmissions that it may have until the end of the ACK frame. In this way, the receiver,
terminal B is synchronising the transmissions of terminals A and C.

which informs all other stations that they are to be quiet while the sending

station transmits. The sending station then sends a Data Sending (DS) frame

followed by the actual data fragment. Once the data fragment is received

correctly the receiving station sends back an Acknowledgement (ACK) frame.

MACAW improves over the ALOHA variants by providing a mechanism for

stations to reserve the channel during data transmission, hence decreasing

the probability of collisions. It also improves over CSMA in the case where

terminals are hidden from one another. However it does so at the expense of

channel time given to the RTS/CTS frame exchange which ultimately leads

to reduced channel efficiency in situations where stations are not hidden from

one another.

2.1.4 IEEE 802.11 Distributed Coordination Function (DCF)

In 1997 the IEEE ratified 802.11 [6], the first of several specifications that stan-

dardise physical (PHY) and medium access (MAC) layer protocols for wireless

local area networks. At the heart of IEEE 802.11 is the Distributed Coordi-

nation Function (DCF). The DCF is a combination of CSMA with collision

avoidance, paired with an optional simplified version of MACAW.

IEEE 802.11 DCF uses CSMA as part of its channel access mechanism to

avoid collisions in the first instance and provide fair access to the medium

by employing a random delay before attempting to transmit, coupled with a

random backoff in the event of a collision.
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IEEE 802.11 DCF uses a simplified version of MACAW to improve performance

in the presence of hidden terminals. When the medium is sensed idle with

CSMA, a station may enter a RTS-CTS-DATA-ACK exchange. The RTS/CTS

protection mechanism is used to propagate “virtual carrier sense” information

to those stations that are not within carrier sense range of the transmitter.

Each station maintains a Network Allocation Vector (NAV) which is updated

whenever a packet is heard. If, for example, a station receives a CTS frame

destined for another station which is hidden from it, it will examine the CTS

duration field which contains the time the channel is scheduled to be busy and

update its local NAV to account for the busy channel time that cannot be

physically carrier sensed. This virtual carrier sensing mechanism is used along

with CSMA/CA to attempt to avoid hidden terminal collisions. The usefulness

of the RTS/CTS protection mechanism is discussed further in section 2.2.2.

2.2 The Hidden Terminal Problem

None of the access schemes that have been discussed are collision free. Even

with carrier sensing, collisions may still occur. Two stations may both sense

that the channel is idle at the same time and then transmit together, causing

a collision. A random access delay reduces the probability of this occurring.

The more likely scenario is that a second terminal that is not within carrier

sense distance of a transmitting terminal senses that the channel is idle when

it is in fact not and proceeds to transmit, causing a collision at the receiver.

This is the hidden terminal problem and has been the subject of much research

into its effect on network performance as well as potential solutions to it.

The following sections give an overview of the existing literature on the effect

of hidden terminals on CSMA and IEEE 802.11 networks, the usefulness of

the existing RTS/CTS protection mechanism as well as a number of proposed

solutions to the problem at different layers of the OSI networking stack.
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Figure 2.5: The hidden terminal problem in a CSMA network. Terminals A and C both
have packets to transmit. Because they are hidden from one another, they both sense the
medium as idle and transmit simultaneously, causing a collision at terminal B.

2.2.1 The Effect of Hidden Terminals

The effect of hidden terminals on packet switched random access networks is

extensively documented in the literature. Tobagi and Kleinrock were the first

to show that hidden terminals had an effect on their CSMA scheme and noted

that in the presence of hidden terminals, CSMA degrades to pure ALOHA in

the worst case [65]. This section outlines a number of the studies that have

been carried out on the effect hidden terminals have on wireless networks. The

negative effect hidden terminals can have on a wireless network highlights the

need for tools to discover and measure the impact of hidden terminals on the

performance of operational networks.

In one of the earliest studies of the effect of hidden terminals on IEEE 802.11

networks, Khurana et al. [28] showed in 1998 that when approximately 30%

of stations in the network are hidden from one another throughput drops to as

low as 22% of available capacity. The authors proposed that the throughput

decrease is “acceptable” [28] when up to 10% of stations are hidden from each
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other.

Moh et al. [40] provided an early comparison of the HIPERLAN [1] and

IEEE 802.11 MAC protocols under hidden terminal conditions using simula-

tion. Their work focussed mainly on HIPERLAN and the effect hidden ter-

minals have on real-time communication support. However they showed that

IEEE 802.11 suffers severely under hidden terminals in terms of throughput.

They also note that increasing frame size does not reduce the effect of hidden

terminals.

Ray et al. [51] used queuing theory and simulation to analyse the effect of

hidden terminals on packet collision probability, delay and maximum through-

put. Their work shows, among other results, that in a linear topology hidden

terminals can cause IEEE 802.11 nodes to saturate at load as low as 15% of

their capacity.

Hung et al. [24] developed a Markov model to describe the performance of

IEEE 802.11 in the presence of hidden terminals. The authors use the model

to estimate the optimal stable transmission rate for each source in a network.

They propose that this method could be used to implement rate control algo-

rithms that deal with hidden terminals more effectively.

Kosek et al. [31] studied the effect hidden terminals have on star topologies

when using 802.11e for QoS. The authors used an ns2 [41] simulation to show

that, when using 802.11e priority queues, high priority flows achieve a lower

throughput and higher loss rate in the presence of hidden terminals than when

priority queuing is not used.

2.2.2 The Usefulness of the DCF RTS/CTS Mode

The IEEE 802.11 Distributed Coordination Function (DCF) uses the CS-

MA/CA medium access scheme, which leaves it vulnerable to hidden terminal

performance degradation. In order to address this, the IEEE 802.11 DCF

provides an RTS/CTS mechanism based on MACAW to attempt to propagate

virtual carrier sense information to all stations in the network. However, it has

been shown that the DCF RTS/CTS mechanism does not completely protect
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against hidden terminals. This section gives an overview of some of the liter-

ature surrounding the effectiveness of the RTS/CTS protection mechanism in

IEEE 802.11 and shows that the RTS/CTS mechanism is not an effective tool

to guard against hidden terminals.

Xu et al. [71] show that the IEEE 802.11 RTS/CTS mechanism is not effec-

tive at preventing hidden terminal collisions. They show that the RTS/CTS

mechanism fails in cases where a transmitter is out of receive range of the

intended receiver and hence does not receive the CTS frame. This causes the

transmitter to sense the channel as idle and transmit, potentially causing a

collision.

Ray et al. [50] showed that RTS/CTS doesn’t protect hidden terminals in ad-

hoc networks when a terminal fails to correctly receive RTS/CTS exchanges

because of other ongoing transmissions in the area. Their work shows that the

RTS/CTS mechanism is itself prone to hidden terminal collisions.

Shih et al. [60] also show that RTS collisions can still occur as the initial

RTS frame is only protected by physical carrier sensing. The RTS and CTS

protection frames are generally sent at a low bitrate in order to maximise

receive Signal to Noise Ratio (SNR). This however results in a longer time

on the channel and hence a longer period in which the initial RTS frame is

vulnerable to collision.

Ware et al. [68] studied the effect of the channel capture phenomenon on the

usefulness of RTS/CTS exchanges. The authors found that in the presence of

hidden terminals whose SNRs differ, terminals with stronger SNRs are able to

effectively capture the channel even when the RTS/CTS handshake is in use.

This work was extended in [69] to show that hidden terminals with only small

differences in SNR can render an RTS/CTS mechanism useless, effectively

blocking the channel to weaker users.

Ray et al. [49] investigated the overhead involved in the RTS/CTS mechanism.

They showed that, in ad-hoc networks, hidden terminals that cause RTS col-

lisions can in some cases lead to a deadlock whereby no stations are able to

transmit for long periods of time.
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Pananastasiou et al. [44] looked at the effect the RTS/CTS handshake has on

TCP “goodput”, or application level throughput. They found that in many

situations the use of RTS/CTS can decrease TCP goodput significantly. The

authors also noted the presence of RTS collisions in multihop scenarios, leading

to a decrease in effective throughput.

This section has shown that the RTS/CTS protection mechanism is not ef-

fective at combating the negative effects of hidden terminals. As such, mea-

surement of the hidden terminal problem remains important. The following

three sections discuss proposals that have been made to either solve the hidden

terminal problem or reduce the negative effect it has on the network. They

can be broadly categorised into transport layer, medium access control layer

and physical layer solutions and will be discussed as such.

2.2.3 Transport Layer Solutions

Many researchers have studied the effect of hidden terminals - and more gen-

erally the effect of interference and collisions - on TCP. TCP assumes a model

of a link that IEEE 802.11 links do not follow. Specifically, loss on an IEEE

802.11 link does not necessarily indicate link congestion and could instead be

caused by hidden terminal collisions, among other explanations such as ran-

dom bit errors, multi-path fading and external interference. Solutions to the

hidden terminal problem proposed at the transport layer have focussed heavily

on controlling TCP’s congestion window in order to provide fairer access to

the medium to all stations when hidden terminals are present.

Xu et al. [72] show that hidden terminals cause serious TCP instability and

unfairness in multi-hop environments due to the large number of in-flight TCP

segments causing RTS collisions and note that limiting the TCP congestion

window dampens this effect.

Fu et al. [16] further investigates limiting TCP’s maximum congestion window

size to allow for better spatial channel reuse in the presence of hidden terminals

in chain topologies. They find that for a given wireless network topology there

exists a window size at which TCP achieves a maximum throughput and that
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increasing the window size from there leads to link-layer contention and a

degradation of TCP service quality. It is noted that when the window size

is unbounded, TCP usually increases the window size far beyond the optimal

value, causing a degradation in service. As a solution to this, Fu et al. suggest

methods for TCP to co-operate with the IEEE 802.11 MAC directly. Link

Random Early Detection (RED) [16] allows the MAC to mark packets in much

the same way as traditional RED [15], however the probability of marking the

frame is based on the average number of retransmissions at the link-layer.

This allows Explicit Congestion Notification (ECN) [48] enabled TCP flows to

adjust their sending rate without losing packets.

Papanastasiou et al. [43] propose an alteration to TCP’s congestion avoidance

phase to slow the rate of congestion window increase. Their Slow Congestion

Avoidance (SCA) mechanism limits the rate at which the congestion window

is increased. An SCA sender maintains an SCA parameter such that the

congestion window is increased every SCA + 1 RTT. An SCA value of 0 is

equivalent to the default operation of TCP Reno. While the authors show that

slowing the growth of the congestion window does indeed lead to more efficient

spatial reuse and hence greater TCP goodput, they do not propose a method

by which to set the SCA parameter. However, SCA improves on Link RED

[16] in that it does not limit the maximum TCP congestion window size.

While these transport layer solutions provide some protection against the nega-

tive effect of hidden terminals they do so under a number of assumptions. First,

they assume that all traffic that is competing for the medium is doing so using

the same transport protocol, namely TCP. They also require modifications to

the TCP implementation on the end hosts and require the TCP implementa-

tion to have an explicit knowledge about the underlying link. Third, because

TCPs flow control is end-to-end, they require the sending host to be aware of

the presence of wireless hops.

While cross layer communication is possible, it breaks the standard layering

model which is adhered to by most network stacks. However, researchers

have proposed that the only way to achieve fairness in mobile ad-hoc wireless

networks is to move to a stack which is cross-layer aware and that the tra-
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ditional strict layered model simply cannot cope with the complexities of the

wireless medium [19]. In the area of wireless sensor networks where terminal

deployments are chaotic and unplanned, leading to significant hidden terminal

problems it is generally accepted that cross-layer aware network stacks are the

only way to achieve reasonable performance [25].

It is likely that wireless links are not the only type of links between the sending

and receiving end hosts. It is often impractical to expect end hosts to be aware

of the presence of wireless hops along the path and modify their TCP algorithm

accordingly.

2.2.4 MAC Layer Solutions

The hidden terminal problem is an artefact of random access medium access

schemes. As such, there have been many proposed solutions to the hidden

terminal problem in the form of MAC layer solutions. One such solution is the

RTS/CTS scheme based on MACAW which is discussed earlier in this chapter.

One of the first proposals to avoid the hidden terminal problem was made by

Tobagi and Kleinrock [65]. They identified the hidden terminal problem in

their original paper on CSMA and proposed a solution they called Busy Tone

Multiple Access (BTMA) [65]. BTMA uses a separate channel as a busy tone

channel on which a terminal transmits a busy tone during reception of a packet.

During this time all other transmitters who are within carrier sense distance of

the receiver are informed that a transmission is taking place (which they may

not have otherwise been aware of using plain CSMA if they were outside of car-

rier sense range from the transmitter). This improves synchronisation amongst

senders and avoids collisions, improving channel efficiency. The authors show

that BTMA with hidden terminals performs almost as well as CSMA without

hidden terminals.

The most significant cost to implementing BTMA is the additional busy tone

channel. This requires multiple radios per terminal, one for reception on the

data channel and another for the concurrent transmission on the busy tone

channel. This extra cost and complexity makes BTMA infeasible to implement

19



as a low cost solution to the hidden terminal problem, especially on networks

that already use single radio CSMA technology. A similar receiver-based busy

tone approach was taken by Wu et al. [70].

The Floor Acquisition Multiple Access (FAMA) scheme as described by Fullmer

et al. [17, 18] is a receiver initiated single channel BTMA mechanism. The

previously described MACAW protocol is a FAMA variant. FAMA combines

non-persistent carrier sensing with the RTS/CTS exchanges of MACAW and

is a predecessor of IEEE 802.11 DCF.

A number of token-ring style replacements to the DCF have been suggested,

usually in connection with multi-hop mobile ad-hoc networks in order to solve

quality of service issues with contention based systems, [35, 58].

An interesting approach was recently suggested by Al-Mefleh and Chang [4] in

which non-hidden terminals help each other retransmit faster when collisions

occur due to hidden terminals. A terminal that successfully receives a frame

that was not acknowledged will re-transmit the frame immediately after the

next frame it has in its transmit queue. This allows the non-colliding ter-

minal to take control of the channel sooner than the colliding terminal as it

does not have to wait the extra backoff time that occurs after a frame fails to

be acknowledged. The scheme remains compatible with existing DCF imple-

mentations and the co-operative retransmission technique results in improved

throughput, delay and fairness.

Finally, adjustment of the physical Carrier Sense Threshold (CST) can lead

to performance improvements in networks with hidden terminals as shown by

Zhu et al. [75]. A number of approaches have been suggested in the literature

for determining the optimal CST for a given network. Ma et al. [36] propose a

solution in which the Access Point (AP) calculates a new CST to be used by all

terminals in the network. Haghani et al. [21] extend this by proposing that ter-

minals in the network use feedback from the AP to determine their own CST.

Finally, Thorpe et al. [64] show that an optimal value for the physical car-

rier sense threshold can be found which maximises aggregate throughput in a

network. Their 802.11k Adaptive Physical Carrier Sense algorithm (K-APCS)

uses information provided by the radio resource measurement mechanism of
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IEEE 802.11k [26] that allows terminals to share detailed radio performance

metrics with other terminals in the area.

2.2.5 Physical Layer Solutions

Solving the hidden terminal problem has also been attempted at the PHY

layer. The main symptom of hidden terminals is the level of collisions. In

fact, even if terminals are hidden from one another, a CSMA network can still

perform without hidden terminal collisions if those terminals do not happen to

transmit at the same time. The problem only exists when terminals attempt

to transmit concurrently, causing a collision.

The capture effect [14] occurs when one terminal’s colliding transmission is

received at a significantly higher signal level than anothers. The louder termi-

nal effectively captures the channel, drowning out the weaker one. Lee et al.

[33] show that even when hidden terminals cause collisions, one transmitter

may be able to capture the channel if its receive SNR is high enough and the

receiver hardware is able to resynchronise its receive path. This is known as

Message in Message mode or Restart Mode. Restart Mode allows the louder

transmitter to have its transmission correctly decoded even in the presence of

a weaker colliding frame. While this may reduce the overhead involved in a

collision due to the captured frame not needing to be retransmitted, it also

introduces medium unfairness.

Gollakota et al. propose a new 802.11 receiver design called ZigZag that is able

to decode through collisions [20]. By exploiting the fact that hidden terminals

generally continue to collide on subsequent retransmissions coupled with the

jitter that the 802.11 DCF introduces, ZigZag is able to synchronise its decoder

in such a way that allows it to decode both colliding packets. ZigZag is able

to provide interference cancellation in situations where the bitrates in use are

close to the SNR threshold.
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2.2.6 Why the hidden terminal problem can’t be solved in IEEE

802.11 networks

This chapter has introduced the hidden terminal problem and overviewed the

techniques which have been proposed to overcome it. In the case where net-

work operators have an existing IEEE 802.11 network, there is little scope to

implement any of the proposed solutions, especially given the cost-sensitive na-

ture of commodity network deployments. To date there is no widely accepted

solution to the hidden terminal problem. In general, the approaches suggested

in the literature either do not generalise, are not backward compatible or imply

extra costs.

Transport layer solutions require the end hosts to be aware of the presence of

wireless hops along the forwarding path. While this may be possible in some

specific cases such as a self-contained wireless sensor network, it is not possible

in the general case where end hosts may not be aware of the wireless network.

MAC layer solutions are either too expensive, for example requiring extra

transceivers, or do not provide backward compatibility with existing clients.

Consider the case of an operator providing a wireless access network. The

provider does not have any control over the client devices which may connect

to the network, so a backward compatible solution is imperative if they are to

continue to provide access to existing IEEE 802.11 clients.

A physical layer solution such as ZigZag requires retro-fitting hardware into an

existing network, which could be considered cost-prohibitive. IEEE 802.11’s

built in RTS/CTS virtual carrier sense mechanism fails to cope with the hidden

terminal problem in many cases. In summary, there is no universally accepted

solution to the hidden terminal problem in IEEE 802.11 networks at this time.

2.3 Measurement of Hidden Terminals

This chapter has so far shown that the hidden terminal problem is significant

and that there are no viable solutions to the hidden terminal problem in an

operational IEEE 802.11 network. The ability to detect and measure the

22



hidden terminal problem is therefore important.

The remainder of this thesis focusses not on how to solve the hidden terminal

problem but on how to measure it within an existing network. Such a mea-

surement solution would be valuable to network operators who could use the

measurement data to better deal with the problem.

This thesis focusses on measuring the hidden terminal problem within an IEEE

802.11 network. More specifically it attempts to do so in a way that does not

intrude on the operation of the network it is measuring. It also aims to not

require the provision of extra monitoring hardware in order to keep the cost

of measurement to a minimum.

In order to ensure that such measurement can be performed on a wide variety

of existing IEEE 802.11 networks, this thesis focusses on ensuring measure-

ment can be performed using commodity hardware. The remainder of this

chapter presents a description of existing hidden terminal measurement solu-

tions and a discussion of the challenges faced when attempting to measure

hidden terminals in a wireless network.

2.3.1 Existing Hidden Terminal Measurement Systems

In 2004, Raya et al. presented DOMINO [52], a system for detection of greedy

behaviour in IEEE 802.11 wireless networks. It does so by using a passive

external monitor at the access point (AP) to detect anomalies in client backoff

times. They specifically focus on detecting clients with modified 802.11 con-

tention window parameters that allow unfair access to the medium. A benefit

of DOMINO is that it does not require modification to the client devices them-

selves and is an entirely passive system. While the original intent of DOMINO

was focussed on detecting greedy client behaviour, the same principle can be

used to detect the transmissions of hidden terminals.

The MOJO project [59] aims to diagnose a range of underlying physical layer

anomalies that cause problems in wireless networks. It does so by instrument-

ing client devices with an additional passive sniffer device and software to

perform measurement and collate data at the access point. The AP then ap-
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plies detection algorithms to diagnose physical layer anomalies. In the case of

hidden terminal detection, MOJO records the transmission time of each frame

from each sender and detects concurrent transmission. While MOJO is able

to detect hidden terminals it does so at the cost of additional radio hardware

on each client device. This may be feasible if the network operator has control

over the client devices, however in the general case it is not.

Li et al. [34] propose a combined passive and active technique for detecting

hidden terminals. Their approach listens for control frames and detects when

a CTS is received without a corresponding RTS, indicating that the intended

receiver of the CTS is hidden from the terminal under measurement. This

passive method will not always give an accurate count when there is no ongoing

background traffic so occasionally a probe frame is injected to solicit a response

from each terminal’s two-hop neighbours to generate a complete picture of the

neighbourhood. This method is simple enough to be implemented within the

MAC and appears to be intended for use by a wireless network stack to build a

hidden station table so that the MAC can determine if RTS/CTS is necessary

for each frame.

2.3.2 Measurement Challenges

Both DOMINO and MOJO rely on the use of passive external capture as a

method of capturing traffic on the channel. Passive external capture, also

known as “vicinity sniffing”, is a method for performing wireless link layer cap-

ture and analysis. It involves placing “sniffer” boxes in areas that are to be

measured [73, 27]. Passive external capture is physically separate from the

network being measured - it simply listens on the shared medium and records

packet transmissions that the capture point is able to decode. As such it does

not introduce any additional overhead to the wireless routers nor does it con-

sume any additional wireless resource. Because of its simplicity, the technique

is used extensively in the literature surrounding wireless measurement.

Because of the nature of the wireless medium, the capture point can only

provide a picture of the channel conditions at the point where it is placed,

which may be significantly different to those at the intended receiver. Frames
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which are decoded correctly by the capture point may not be decoded correctly

by the intended receiver and vice-versa, leading to an inconsistent view of the

channel. Multi-path and other environmental effects may cause the recording

of the channel conditions to differ between the capture point and the intended

receiver. Potentially different RF frontends and antenna configurations also

affect the accuracy of the capture.

Schulman, et al. [57] investigated the “fidelity” of wireless traces captured

using such methods and found that many traces are incomplete or inaccu-

rate, either missing packets or having inaccurate packet timestamps. Their

paper highlights the need for caution when using passive external capture as

a measurement tool.

Yeo, et al. [74] discuss the limits of vicinity sniffing for distributed measure-

ment and suggest that multiple traces, taken by different capture points, should

be merged to reduce the problem of individual capture points recording a dif-

ferent set of frames to the network nodes. Such merged traces are of limited

use for analysis of the conditions at the link-level as they contain information

from physically separate capture points.

Finally, the use of passive external capture requires the provision of extra

hardware to the network to act as capture points. This limits its applicability

in a scenario where long term wide scale network measurement and monitoring

is desired, as the cost of outfitting a network with these extra devices would be

prohibitive. As such, any proposed measurement system that is to be deployed

by a cost-sensitive network operator must use the capabilities of their existing

hardware.

2.4 Chapter Summary

This chapter has provided an overview of the hidden terminal problem, why it

exists and why it is important. Several attempts have been made to either solve

the hidden terminal problem or reduce its effect, though there is currently no

widely accepted solution that is applicable to existing IEEE 802.11 networks.

For this reason, detection of hidden terminals and measurement of the effect
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they are having in an operational network is important.

Existing hidden terminal detection and measurement techniques do not scale

to the point where they can provide network wide, long-term measurement of

large networks. This is especially true in cases where the network operator

does not have access to the client devices. Their reliance on passive external

capture techniques has been shown to be both costly and unreliable.

This thesis aims to solve the problem of detecting and measuring the hidden

terminal problem within operational wireless networks in such a way that does

not require the use of passive external capture techniques. In this way, the

measurement can be easily deployed and be useful to network operators.
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Chapter 3

Detecting Hidden Terminals

This thesis proposes that the existence of hidden terminals and their impact

on network traffic can be discovered using existing commodity hardware and

new software algorithms.

In this chapter, two methods for the detection of hidden terminals are pre-

sented. The first method uses network connectivity measurements to identify

areas of the network where hidden terminals exist. The second method uses

the strict timing requirements of the IEEE 802.11 Distributed Coordination

Function (DCF) to detect and quantify the number of collisions caused by the

hidden terminals in an area of a network.

The two methods differ in their ability to identify different aspects of the

hidden terminal problem. The first method is able to identify problem areas

in which hidden terminals exist and hidden terminal collisions may occur. The

second method is able to directly measure the effect of the hidden terminals

on network performance. The methods can be used together to build a picture

of the potential and current impact of hidden terminals in a network.

The methods are described separately in this chapter. First, the network

connectivity method is described and it is shown that areas where hidden

terminals have the potential to affect network performance can be identified.

Second, the timing analysis method is described and it is shown that the effect

hidden terminals have on a network can be quantified.
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Figure 3.1: Sample connectivity graphs. Each vertex represents a terminal and each edge
represents connectivity. A strongly connected graph, such as shown in (a) indicates no
hidden terminals. A weakly connected graph, such as shown in (b) shows that terminals B
and D are hidden from one another, indicating the potential for hidden terminal collisions at
terminal A. Additionally, a one-way hidden terminal relationship exists between terminals
C and D indicating that D can sense the transmissions of C but not vice-versa.

3.1 Network Connectivity

The first method uses connectivity measurements of a network to build a graph

of the connections between terminals. Graph theory can then be used to reason

about the graph and identify areas where hidden terminals exist.

A directed graph can be used to model the connectedness of a network. In

Figure 3.1, each vertex in the connectivity graph indicates a terminal and

each directed edge indicates the ability of the vertex at the head of the edge

to carrier sense the tail vertex. A strongly connected graph (one where each

vertex has an incoming and outgoing edge to each other vertex) would indicate

that there are no hidden terminals and CSMA is able to perform effectively.

If the graph is weakly connected, hidden terminals exist. Hidden terminals

can be found in this graph by examining vertices and looking for cases where

two terminals both have outgoing edges to a common third vertex but not to

each other. If the disconnected vertices do not both have outgoing edges to

a common third vertex then they are able to concurrently transmit without

causing collisions.

In more formal terms, to find if hidden terminals can affect terminal A, find

the set of vertices VA that are a tail vertex to an edge with the head vertex

of A. If the subgraph containing the vertices VA is not strongly connected,

the hidden terminal problem has the potential to affect terminal A. For each
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vertex v in the set VA, v is hidden from any other vertex in VA that it does

not have an outgoing edge to.

3.1.1 Problems with measuring connectivity

Measuring the connectedness of a network based on carrier sensing using only

commodity wireless hardware is not always possible. Sensing a transmission

is not always enough to determine where that transmission came from. The

transmission needs to be decoded in order to be able to obtain the transmitter

address of the frame.

Sometimes a terminal that is able to sense the carrier of another terminal’s

transmissions may not be able to decode the packet being received. The frame

may have been received at too low a signal to noise ratio (SNR) to decode or

it may have been involved in a collision. If a receiver is never able to identify

the transmitting terminal from its transmissions but can detect its carrier then

the edge from the transmitter to the receiver cannot be added to the graph,

even though CSMA can operate to reduce collisions (see Figure 3.2).

Many researchers have attempted to identify the source of transmissions with-

out decoding frames by using Received Signal Strength Indication (RSSI) as

an indicator of the distance between the transmitting and receiving terminals.

Literature on location determination in wireless networks such as [9, 8, 67]

suggests that the use of RSSI as a distance determination metric is inaccu-

rate and that significant calibration and multi-lateration (measuring distance

to multiple reference points) work is required to achieve acceptable location

determination results. Variation in RSSI measurements can be caused by a

number of factors such as multi-path fading, environmental conditions, and

transmitter and receiver hardware implementation differences. Calibration

and multi-lateration are achievable in indoor environments, however they are

not always appropriate in large outdoor environments such as long-distance

rural or remote wireless networks.

The use of high precision time-of-flight measurements such as in [47] have

been shown to be more reliable, though requires much more accurate timing
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Figure 3.2: In this connectivity graph, full connectivity is shown by solid arrows, whereas
the ability to carrier sense but not decode a terminal’s transmissions is shown in dashed
lines. These lines would not normally appear on the connectivity graph, and so terminals
B, C and D would appear as hidden from one another when they are in fact not.

measurement than is available on commodity hardware.

By constraining the graph to indicate receive connectivity, rather than carrier

sense connectivity, the graph can only indicate the possibility of hidden ter-

minals. As a consequence, the connectivity graph shows which nodes are not

hidden terminals and which nodes might be hidden from one another. This

is a useful result because it removes the hidden terminal problem from the

potential causes of poor performance in many cases.

The hidden terminal problem will only affect the performance of the network

if the transmissions of two or more hidden terminals overlap at a receiver.

Terminals could potentially remain hidden from one another for long periods

of time without affecting the performance of the network if their transmissions

do not overlap. This is a function of the traffic patterns of a network. In this

case, in graphs based either on carrier sense or receive range, the terminals

would be indicated as hidden even though they are not causing a reduction in

performance. Because of this, connectivity graphs can only show the potential

for hidden terminals to cause problems.

Graphs based on receive range rather than carrier sense range will show a

higher potential for hidden terminal problems. It should be noted that if two

terminals are not within carrier sense range then they will most certainly not

be within receive range, therefore a graph based on receive range will not

indicate fewer hidden terminals than a graph based on carrier sense range.

Building a graph that shows receive-level connectivity is a far more practical

solution than building a graph that shows carrier sense connectivity. It can
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Figure 3.3: In this connectivity graph, terminals A, B, C and D are under measurement.
Terminal C can also detect transmissions from terminals E and F , which are not under
measurement. These external terminals are marked with dashed circles, and do not return
any connectivity data of their own. As such they appear to be hidden from one another in
the connectivity graph but this may not be the case.

be performed using the commodity hardware used for low-cost community

wireless networks. Building graphs of carrier sense range in this context is

a very difficult problem to solve as there is no practical way to identify the

source of a signal without first decoding it.

Another limitation of the connectivity method is that it cannot identify hidden

terminals that are not part of the measured network. For example, a measured

terminal may be able to detect and decode transmissions from two terminals

that are not part of the network. These terminals may be hidden from each

other and potentially causing collisions at the measured terminal. However,

because it is unknown which terminals the non-measured terminals can hear,

the connectivity graph cannot be completed (see Figure 3.3). This is a signif-

icant factor in deployments where networks are co-located, such as in urban

environments.

3.1.2 Summary

Network connectivity graphs are a practical way of determining where the po-

tential for hidden terminal problems may exist in a network. However connec-

tivity graphs cannot directly measure the impact hidden terminals are having

on a network. Moreover they cannot include connectivity information from

terminals that are not under measurement. Network connectivity measure-

ments can give a network operator valuable information about the operation
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of their network, for example, network connectivity can rule out hidden termi-

nals as the cause of poor performance if the network connectivity graph is well

connected. It can also highlight areas of the network which have the potential

to be affected by hidden terminal collisions, even when none are occurring.

3.2 Packet Timing Analysis

Hidden terminals can also be detected using receive packet timing. This ap-

proach measures the effect hidden terminals are having on the network at the

time of measurement, rather than the potential for hidden terminal collisions

to occur. The use of receive packet timing and the techniques described in this

section are new and novel.

Before describing the approach, this section reviews the IEEE 802.11 PPDU

format and the IEEE 802.11 DCF rules that are necessary to understand the

method. Next, the different types of collisions that hidden terminals cause

are characterised. Finally, a method for detecting transmissions from hidden

terminals as well as a method for estimating the overall collision probability

due to hidden terminals is presented.

The method is validated with experiments in a controlled laboratory environ-

ment which are discussed in Chapter 4. An implementation of the method in

a network carrying user traffic and the main characteristics of the implemen-

tation are discussed in Chapter 5.

3.2.1 The IEEE 802.11 PPDU

The Physical Layer Convergence Protocol (PLCP) allows IEEE 802.11 stations

to transfer data between stations while supporting multiple PHY types. The

following is a short description of the IEEE 802.11 PLCP Protocol Data Unit

(PPDU) which is used to transfer data between IEEE 802.11 stations on the

wireless medium.

Figure 3.4 shows how an Ethernet frame generated by a host network stack

is converted to an IEEE 802.11 MAC Protocol Data Unit (MPDU) and then
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Figure 3.4: The encapsulation of an Ethernet payload within an MPDU and PPDU.

encapsulated within an PPDU. The MPDU contains the standard IEEE 802.11

MAC header followed by the Ethernet payload as the MAC Service Data Unit

(MSDU) and a Frame Check Sequence (FCS) covering the MPDU. The MPDU

format is independent of the IEEE 802.11 PHY used to transmit it, and is

colloquially referred to as a “raw 802.11” frame. In most packet captures,

it is the IEEE 802.11 MPDU that is captured and subsequently analysed.

However, when the MPDU is transmitted, it is also encapsulated within a PHY

layer dependent PPDU which allows 802.11 stations to support multiple PHY

types and encoding mechanisms. The PPDU encapsulation and decapsulation

is generally hidden from the host operating system as it is a physical layer

function performed by the wireless network interface hardware at the physical

layer.

The PPDU represents the final bitstream before it is serialised to the medium.

It consists of a PLCP preamble, a PLCP header and a PLCP Service Data

Unit (PSDU). The PSDU contains the MPDU described above.

The preamble is a bit sequence that enables a receiver to detect the start of a

transmission and synchronise its clock to the transmitter so that it may decode

the remainder of the frame. The PLCP header is sent at a fixed encoding for

each PHY type and encodes the length of the frame in microseconds as well

as the encoding used for the PSDU. This allows receivers to correctly decode

PSDUs with a range of encoding schemes as well as continue to update the

virtual carrier sensing mechanism when an encoding scheme is used that the

receiver is unable to decode. Finally the PLCP header contains a CRC field

to ensure that it was decoded correctly. If the PLCP header CRC check fails,

then the PPDU is discarded.
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Figure 3.5: The IEEE 802.11 basic access procedure, as it appears in the IEEE 802.11 1999
standard.

Each PHY type has its own short and long preamble lengths and PLCP header

encoding scheme so the exact format and length of a PPDU depends on the

PHY type in use as well as options such as whether the station is sending

frames with long or short preambles. For a given packet, the length of time

it occupies on the medium is a function of the length of the original Ethernet

frame encapsulated within the MPDU and the PHY type, PHY options and

the PSDU encoding scheme.

3.2.2 The DCF Basic Access Procedure

In order to synchronise the transmissions of multiple terminals, the IEEE

802.11 specification defines the Distributed Co-ordination Function (DCF).

The DCF provides a mechanism by which terminals in the network can syn-

chronise their transmissions so as to avoid overlapping transmissions which

would cause frame collisions.

The IEEE 802.11 Distributed Co-ordination Function (DCF) is based on the

CSMA/CA medium access method, coupled with a set of rules to allow both

priority access to the medium as well as backoff in times of medium congestion.

In addition to the basic access procedure, RTS/CTS was defined to reduce the

effect of hidden terminals. However as has already been shown, RTS/CTS

exchanges are not sufficient to completely protect against hidden terminal

collisions (see section 2.2.2).

The DCF basic access procedure is shown in Figure 3.5. The inter-frame

spacings are defined in the PHY specifications and vary between PHY types.

They are referred to here by their names, such as the DIFS, rather than by
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their absolute values.

When a terminal has a PPDU to transmit, it first checks if the medium has

been idle for at least the Distributed Inter-Frame Space (DIFS) period. If

it has been, then the terminal may immediately transmit the PPDU without

any deferral or backoff. Otherwise, the terminal must defer for the specified

inter-frame space for the MPDU that it is trying to deliver.

The shortest inter-frame space is the Short Inter-Frame Space (SIFS) and is

used when a terminal has a control frame, such as an ACK, to transmit. If

another terminal wanted to transmit a DATA frame during this time, it would

defer for the DIFS. The SIFS is shorter than the DIFS so the ACK will be

transmitted before the DATA frame. When the terminal waiting to transmit

the DATA frame again rechecks the medium (after the DIFS delay) it will

find that the medium is busy due to the ACK that started before it, causing

it to back off further. This approach gives priority access to the medium for

terminals wanting to transmit control frames, ensuring that the DATA-ACK

frame exchange is allowed to complete before another exchange begins.

In the case of a terminal wanting to transmit a DATA frame, it must defer until

the medium has been idle for the DIFS and then perform an additional random

backoff. The terminal picks a random slot in the contention window (CW) and

then backs off for this time. If the medium becomes busy during this time,

the backoff procedure is repeated once the medium becomes idle. The CW is

increased in size exponentially until it reaches an upper limit or until it is reset

by the successful completion of the frame exchange. The exponential binary

backoff is intended to provide medium stability under congestion conditions.

The DCF relies on carrier sensing to operate correctly. This is either achieved

through physical carrier sensing, where the medium is defined to be busy when

a received signal level is above a certain threshold, or by virtual carrier sens-

ing, where the terminal gains a knowledge of the network medium’s alloca-

tion through inspection of the duration field in received frames. Each station

maintains a Network Allocation Vector (NAV) which records the results of

the virtual carrier sensing mechanism. Using a combination of physical carrier

sensing and the NAV, the terminal can perform a Clear Channel Assessment
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(CCA) to determine if the medium is busy via physical and virtual means and

hence participate in the DCF.

When all terminals are able to fully participate in the DCF their transmissions

are said to be synchronised. The minimum inter-frame spacing that should be

seen on the medium between any two frames is the SIFS period.

When not all terminals are able to participate in the DCF, perhaps due to their

inability to carrier sense one another, the transmissions are unsynchronised.

That is, they may begin transmission of a PPDU at any given time relative

to another existing transmission that may be in progress, possibly leading to

frame collisions.

3.2.3 Characterising Hidden Terminal Activity

This section characterises the ways in which two unsynchronised terminals may

transmit PPDUs relative to each other and the effect this has on the ability

of a third terminal, that is within receive range of both, to receive the PPDUs

correctly.

Consider two hidden terminals which are transmitting PPDUs randomly in

an unsynchronised manner. The two unsynchronised terminals are unable to

participate in the DCF, and may transmit in such a way that violates the DCF

rules. In this thesis, a DCF violation describes any transmission that does not

follow the DCF rules. A collision is a type of DCF violation that results in

the overlapping transmission of two PPDUs.

A third terminal, that is within receive range of the two hidden terminals,

will detect each of the hidden terminals’ transmissions. The following sections

outline the ways in which the hidden terminals transmissions may interact

depending on the relative timing and signal strengths of the two frames. To

simplify, other errors such as noise caused by bit errors are ignored. Each

scenario has an effect on the ability of the third terminal to receive each trans-

mitter’s PPDU.

There are six possible interactions in this model: normal operation where

no DCF violation occurs; a collision during the frame preamble; a collision
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during the frame PLCP; a collision during the frame PSDU; a non-destructive

preamble collision; and a violation of the SIFS period.

Normal operation

A

Preamble PLCP PSDU

Preamble PLCP PSDU

B

Figure 3.6: Normal operation. Two frames sent by independent terminals do not overlap
and do not result in a collision.

While two terminals may be hidden from each other, they only present a

problem when their transmissions overlap. Some PPDUs may not overlap

(Figure 3.6), and hence not lead to a DCF violation. In this case, in the

absence of other problems such as random bit errors, both transmissions will be

received correctly by the third terminal. The terminals appear to be operating

normally and give no indication that they are hidden from one another.

Collision during preamble

Preamble PLCP PSDU

Preamble PLCP PSDUB

A

collision

Figure 3.7: Collision during preamble.

On other occasions, a hidden terminal may begin transmission of its PPDU

during the preamble of an existing transmission (Figure 3.7). The preamble is

used to allow a decoder to synchronise its clock with that of the transmitter

and detect the start of a PPDU. If the preamble is corrupted by an overlapping

transmission it is likely that the start of the PPDU will not be detected and

decoding will not take place.

When concurrent transmissions occur, the radio capture effect may occur [68,

33]. The capture effect allows one terminal’s transmission to overwhelm the
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other if the difference in signal strength is high enough, causing the receiver

to “lock on” to the higher powered signal. In this case, the PPDU that is

able to capture the channel will be detected and decoded with no dependence

on whether it is the first or second PPDU [30]. However, the PPDU that

captures the channel may suffer from a higher bit error rate due to the ongoing

concurrent transmission of the other PPDU.

If neither PPDU is able to capture the channel, it is likely that neither PPDU

will be correctly detected or decoded, leading to both PPDUs being dropped.

In the case of a collision during the preamble of a PPDU, at least one of the

two PPDUs involved will be dropped, if not both.

Collision during PLCP header

Preamble PLCP PSDU

Preamble PLCP PSDUB

A

collision

Figure 3.8: Collision during PLCP header.

Sometimes the second terminal may begin transmission during the PLCP

header of an existing transmission (Figure 3.8). In this case, the receiver has

already synchronised its decoder to the existing transmission and is decoding

the PLCP header of the original transmission.

The capture effect may allow the existing PPDU to complete which will lead to

the second PPDU being dropped. If the second PPDU captures the channel,

the first PPDU will be dropped due to an invalid PLCP header checksum. The

second PPDU will often also be dropped as the receiver is unlikely to be able

to stop decoding the PLCP header of the first PPDU and resynchronise to the

new transmission.

Some vendor-specific hardware extensions, such as the Atheros “Message in

Message” mode [56], allow a receiver to resynchronise to a new PPDU that

has captured the channel. In this case, the second PPDU may be received.
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However the concurrent transmission of the first PPDU may interfere leading

to a higher than normal bit error rate.

If neither transmission captures the channel, the existing PPDU will be re-

ceived, with a higher than normal bit error rate, probably leading to a PLCP

header checksum error or an MPDU FCS failure. In this case, the second

transmission will not be decoded. In almost all cases, at least one of the two

frames will not be received correctly by the receiver.

Collision during PSDU

Preamble PLCP PSDU

Preamble PLCP PSDUB

A

collision

Figure 3.9: Collision during PSDU

In this case, the second terminal begins transmission during the PSDU of an

existing transmission (Figure 3.9). The receiver has synchronised with the

existing PPDU and decoded the PLCP header correctly and is now decoding

the PSDU.

In most respects, the effect of channel capture or increased bit error rate is sim-

ilar to the previous cases. However, if the second PPDU captures the channel,

a truncated MPDU may be passed to the host depending on the implementa-

tion of the decoder. Whether the second PPDU is able to be decoded, depends

on the implementation of the receiver hardware, so the second PPDU may or

may not be dropped.

One or both PPDUs may be dropped or a truncated or highly errored MPDU

from the first PPDU may be delivered. The outcome cannot be generalised.

Non-destructive preamble collision

A special case of the Collision during PSDU occurs if the second terminal

begins its transmission slightly before the end of an existing transmission, but
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Figure 3.10: Non-destructive preamble collision

not so much that it overlaps the entire preamble (Figure 3.10). If enough of

the preamble is uncorrupted, the receiver will synchronise and begin reception

of the second transmission after completing the first.

Whether the last few symbols of the first transmission are affected by the

colliding preamble is dependent on the relative signal strengths of the two

transmissions. If the first PPDU captures the channel, the portion of the

preamble that is in collision may not affect the final symbols of the first PSDU.

However, if the second PPDU captures the channel, the final symbols of the

first PPDU may be corrupted.

Both PPDUs are received, however the first MPDU may contain errors. It is

possible though that the first MPDU is received intact. The second MPDU is

received correctly if there are no other errors from other sources.

SIFS Violation

SIFS

Preamble PLCP PSDU

Preamble PLCP PSDUB

A

Figure 3.11: SIFS violation.

In each of the previous cases the behaviour of a receiver during a collision

is difficult to to predict. The outcome of a collision is dependent on several

factors, including the relative signal strengths of the PPDUs involved in the

collision (which may lead to the capture effect) and the implementation of the

receiver hardware itself.
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MPDUs are generally only sent to the host when a PSDU is received. So, it

is very difficult for the host operating system to accurately detect collisions

occurring. The only collision case described so far in which both packets may

be received is the collision during PSDU, and even then the outcome is not

guaranteed and one of the MPDUs may be truncated.

The final DCF violation condition that can occur if two terminals are hidden

from one another does not involve a collision at all and is distinct from the

“normal operation” case presented earlier.

The definition of the DCF states that no transmissions shall start within the

SIFS period of the end of a PPDU. In practice, a terminal may begin trans-

mission of a PPDU within the SIFS period if the transmission originates from

a terminal that is hidden from it (Figure 3.11). Hence, the second terminal is

unknowingly violating the DCF.

If a terminal starts a transmission within the SIFS period and violates the

DCF, it indicates that the terminal is not able to detect the already transmit-

ting terminal. An unsynchronised transmission of this type indicates a hidden

terminal and is referred to in this thesis as a SIFS violation.

While DCF violations that involve collisions are difficult to detect due to the

unpredictable nature of the signal strengths of each transmission at a given

time, detection of a SIFS violation does not suffer from this issue. A receiver is

able to correctly decode and process both PPDUs involved in a SIFS violation

and both MPDUs are passed to the host operating system.

3.2.4 Using SIFS violations to detect hidden terminals

Hidden terminal activity can be characterised by the DCF violation scenarios

presented in the previous section. The host operating system can only reliably

detect DCF violations when the two MPDUs involved in the DCF violation are

delivered to it. The only scenario in which both MPDUs can be reliably deliv-

ered is the SIFS violation scenario. All other cases result in a high probability

of one or both of the PPDUs being dropped. The outcome of a DCF violation

that results in a collision is very difficult to predict due to the channel capture
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effect, which can be randomly influenced by multipath fading, and the specific

vendor hardware extensions that may or may not be present.

It is proposed that observation of DCF violations that result in a SIFS vio-

lation, rather than a collision, can be used to detect the presence of hidden

terminals.

aSifsTime − 

DCF violation window

Preamble PLCP PSDU

PPDU

ACK

window

aSifsTime

10% aSlotTime

(SIFS violation window)

Figure 3.12: The relationships between a PPDU, its ACK window and the SIFS violation
window. Any PPDU beginning within the violation window is from a terminal that is
unsynchronised with the transmitter of the original PPDU.

Each 802.11 PHY defines a set of PHY characteristics, including the aSifsTime

which defines the SIFS time for the specific PHY as well as the aSlotTime which

defines the length of each slot in the contention window. An ACK frame must

be received within the ACK window, as defined by the IEEE 802.11 PHY

standard:

ACKwindow = aSifsT ime± 10%aSlotT ime (3.1)

For example, the 802.11b HR/DSSS PHY defines aSifsT ime = 10µs and

aSlotT ime = 20µs. Therefore the ACK window for an 802.11b PHY is 10µs±

2µs. If a frame is received within 8µs of the end of reception of a PPDU it

violates the DCF and must be from a terminal that is unsynchronised and

therefore the transmitter of the original PPDU is hidden from it. The space

following a PPDU in which detection of a transmission indicates a hidden
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terminal transmission is shown in Figure 3.12 as the SIFS violation window,

v, and is given by:

v = aSifsT ime− 10%aSlotT ime (3.2)

In the case of a SIFS violation neither of the PPDUs are interfered with as no

collision has occurred. As a consequence, the senders of the PPDUs can be

identified by inspecting the transmitter address field of the MPDUs involved

(assuming that the MPDU type contains a transmitter address and has not

suffered from other errors). This allows the method to not only identify that

a hidden terminal exists, but also to identify the hidden terminal itself.

Using this method, the transmitter of the first PPDU can be determined to

be hidden from the transmitter of the second PPDU. However, the relation-

ship is not necessarily symmetric; the transmitter of the second PPDU is not

necessarily hidden from the transmitter of the first. A SIFS violation in which

the roles of the two transmitters are reversed must be observed before the

relationship becomes symmetric.

3.2.5 Using the SIFS violation rate to estimate total collision rate

This section describes a method for using SIFS violations to estimate the total

number of collisions occurring due to hidden terminals. It is first described for

the simple case of fixed length frames, and then generalised to include arbitrary

length frames.

If two terminals are hidden, their unsynchronised transmissions have equal

probability of starting at any time relative to one another. Over time, this will

cause various types of DCF violations, many of which will be collisions leading

to dropped and corrupted PPDUs. However, there is equal probability that a

transmission from a hidden terminal will begin within the SIFS violation win-

dow, so given enough time, a proportion of DCF violations will be observed as

SIFS violations. The length of time before observing a SIFS violation depends

on the rate at which PPDUs are being transmitted by each terminal.
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Even if both terminals begin synchronised and are transmitting continuously,

the relative start times of each PPDU will naturally drift as each terminal has

an independent and unsynchronised clock.

As outlined in previous sections, the host operating system is unable to deter-

mine the total number of collisions occurring as it only receives MPDUs from

PPDUs that have not been dropped at the PHY layer. Neither is it possible

to determine the number of collisions occurring by observing the MPDU se-

quence numbers as these are not incremented upon retransmission, nor does

a lost MPDU necessarily indicate a collision (it may have been lost due to

fading, for example).

However, the previous section showed that SIFS violations can be detected.

Using this information, the total rate of hidden terminal collisions can be

estimated.

Consider a single instance of a hidden terminal collision. The first PPDU

occupies tµs of time on the medium. A second sender must start within tµs

of the beginning of the first PPDU, i.e, the vulnerable period is tµs. To detect

a SIFS violation, the vulnerable period must be extended by the length of the

SIFS violation window, v, as defined in equation 3.2. Therefore, the total DCF

violation window, w, in which a hidden terminal may begin transmission and

either cause a collision or SIFS violation is given by:

w = t+ v (3.3)

An independent transmitter causing a DCF violation has a uniform chance

of beginning anywhere within the DCF violation window, w. When a DCF

violation occurs, the proportion p′ of those occurring within the SIFS violation

window and hence being able to be detected by the host operating system can

be given by the equation:

p′ =
v

w
(3.4)

This gives the probability of a single colliding pair of PPDUs causing a SIFS

44



violation. Consider two hidden terminals, transmitting independently of each

other at a fixed rate with fixed length PPDUs. A fixed proportion of PPDU

pairs will result in a DCF violation. Of those, a smaller proportion will be

observed within the SIFS violation window and the rest will occur within the

remainder of the DCF violation window as collisions. Therefore p′ gives the

overall proportion of SIFS violations which should be expected to occur and

hence be detected by the host.

In order to estimate the total rate, r, of collisions caused by hidden terminals,

the proportion of SIFS violations detected, d, over a period of time of the total

number of PPDUs received, n, is required. This is given by:

d =
SIFS violations detected

n
(3.5)

The number of PPDUs received, n, does not include the count of PPDUs

dropped due to collisions. The rate of SIFS violations occurring is proportional

to the total rate of collisions occurring to hidden terminals. Therefore the total

rate of hidden terminal collision, r, can be estimated with:

r =
d

p′
(3.6)

3.2.6 Estimating collision probability for arbitrary packet lengths

The previous section introduced a method for estimating total collision proba-

bility based on the rate of observed SIFS violations for the special case of fixed

PPDU length. In an operational setting PPDU lengths will vary on a packet by

packet basis, not only due to variations in the length of MPDUs, but also due

to rate adaptation algorithms switching PSDU encoding schemes per-packet.

This section extends the model to account for variable length PPDUs.

With variable length PPDUs the length of the collision window varies, how-

ever the length of the SIFS violation window remains constant. As such, the

proportion of SIFS violations to collisions is no longer constant. Instead, when

estimating the total rate of collisions over a period of time, the total length
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of the PPDUs received in that time period must be taken into account, while

still allowing for the constant SIFS violation window.

Given the transmission time for a set of frames T = {t0, t1, · · · ti}; the constant

length of the SIFS violation window, v; and the number of PPDUs received,

n, the equation for p, the proportion of of SIFS violations to DCF violations

is given as:

p =
vn

n∑
i

ti + v

(3.7)

When PPDU lengths are constant, as in the previous section, the equation

above simplifies to the original equation for p′ given by equation 3.4. However,

when PPDU lengths are variable, equation 3.7 takes into account the variable

PPDU length versus the fixed violation window.

Now that arbitrary PPDU lengths have been taken into account, the total rate

of collisions due to hidden terminals can be estimated by substituting p into

Equation 3.6 for p′. The final equation for r is:

r =
SIFS violations detected

n
vn

n∑
i

ti + v

(3.8)

3.2.7 Comparison to existing techniques

The timing method for detecting hidden terminal activity and estimating the

total collision rate due to hidden terminals is novel and unique. Its receiver-

based approach is fundamentally different to existing techniques for detecting

hidden terminals such as MOJO [59] and is more specific than general ap-

proaches such as DOMINO [52].

MOJO instruments each client device with a passive external capture point

and collates measured frame transmission times at a central server. It infers

hidden terminals by comparing frame transmission times from various senders
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and detecting overlapping transmissions. This approach requires additional

hardware at every transmitter which is not only costly, but infeasible in en-

vironments where transmitters are mobile or transient. Additionally, MOJO

requires clock synchronisation of the distributed measurement points and uses

the IEEE 802.11 Timer Synchronisation Function (TSF) to achieve this. How-

ever, the TSF is only valid within a single Basic Service Set (BSS) so MOJO

can only operate within a single BSS.

In contrast, the timing method proposed in this chapter is receiver-based. Hid-

den terminal activity is detected at any terminal in the network by observing

received frames at that terminal. Measurement can be performed in a single

location to determine the effect hidden terminals are having at that particu-

lar location. Transmitters do not require additional hardware or software and

timer synchronisation is not required. The timing method can detect hidden

terminals whether they are part of the BSS under measurement or not.

DOMINO instruments an Access Point with a passive external monitor. It

does not attempt to detect hidden terminals. Instead it infers greedy client

behaviour by detecting misbehaviour in client backoff times. The authors of

DOMINO mention hidden terminals as a source of interference to their backoff

estimator and filter the “false positives” caused by hidden terminals by adjust-

ing their detection thresholds. The timing method presented in this chapter is

distinct from DOMINO’s general approach in that it can detect hidden termi-

nals as well as estimate the total rate of hidden terminal collisions. DOMINO

makes no attempt to detect hidden terminals or estimate their impact.

3.3 Chapter Summary

This chapter has presented two complimentary methods for detecting hid-

den terminals and measuring their impact on the performance of a network.

The first method uses distributed measurement to create network connectivity

graphs and analysis to detect potential hidden terminals by finding areas in

which the graph is weakly connected.

The second method uses measurement at a particular receiver and performs
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timing analysis of received packets to detect violations of the DCF in the form

of SIFS violations that indicate hidden terminal activity. Additionally, the

method can be used to estimate the impact of hidden terminal activity by

estimating the total number of collisions occurring due to hidden terminals.

In Chapter 4, the timing method is validated in a laboratory setting. Chapter

5 describes the experience of implementing the methods within a measurement

framework that can be used on an operational network, and Chapter 6 shows

results from a real-world deployment of the implementations on an operational

wireless network carrying customer traffic.
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Chapter 4

Validation

This chapter presents an experimental validation of the timing analysis method

described in Chapter 3. In particular, the goal of this chapter is to investigate

the hypothesis that the total rate of collisions occurring due to hidden terminals

can be estimated by observing SIFS violations.

Sections 4.1 to 4.4 describe the series of methods that are used in the final

section, 4.5, which describes the experimental validation of the timing method.

Traffic generation is described in 4.1; PPDU length calculation is described in

4.2; hardware timestamp accuracy is validated in 4.3; and a method for hiding

terminals from one another in a laboratory environment is described in 4.4.

Finally in section 4.5, the timing method is validated experimentally by gener-

ating a known number of hidden terminal collisions and analysing the empirical

results against the theoretical outcomes.

The equipment used in the following experiments is; Atheros 5212 based mini-

PCI 802.11abg wireless NICs, Soekris 4526 microcomputers for the transmit-

ting terminals and a Soekris 5501 microcomputer for the receiving terminal.

The 5501 is sufficiently powerful to capture all frames sent by the 4526s with-

out any frame drops due to buffer overruns. The Soekris microcomputers run

a customised Linux distribution based on Debian Sarge and the 2.6.16 kernel

and the MadWiFi Atheros driver for Linux version 0.9.4. This equipment was

chosen because it is believed to be typical of that used by wireless ISPs.
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4.1 Traffic Generation

A small command-line utility, wgen, was created for generating raw 802.11

traffic for the purpose of these experiments. wgen operates on monitor mode

interfaces, allowing the generation and transmission of arbitrary IEEE 802.11

MAC frames while avoiding the automatic rate-control algorithms within the

driver.

wgen generates IEEE 802.11 MAC frames (MPDUs) prepended with a Radio-

tap header that describes the desired PSDU encoding scheme (bitrate). The

number of MPDUs generated, their length, and the data they carry can be

varied.

wgen will generate a given number of such frames and write them to the raw

network interface for transmission using either a fixed inter-packet delay or

a delay taken from a uniform random distribution. Each MPDU generated

by wgen has its destination address set to the ethernet broadcast address to

ensure that only a single transmission is attempted (IEEE 802.11 broadcast

frames are specified as unreliable and are only transmitted once) and to ensure

that no ACKs are generated by receiving IEEE 802.11 terminals.

wgen allows for fine-grained control of the traffic being generated and trans-

mitted by each terminal in the experiment. wgen can be used to generate

traffic patterns with a given channel occupancy rate. If more than one trans-

mitter running wgen is used and there are no other transmitters, the number

of collisions that occur can be calculated as will be shown in section 4.5.

4.2 Calculating PPDU Length

Figure 4.1 shows an IEEE 802.11b HR/DSSS/long PPDU, which encapsulates

the MPDU generated by wgen. The length of time this PPDU occupies on

the channel at a receiver can be given by the TXTIME functions found in the

802.11 PHY specifications. The experiments in sections 4.3 to 4.5 are based on

the IEEE 802.11b HR/DSSS/long PHY whose TXTIME function is defined

as:
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.

PPDU

192 µs

SYNC
128 bits

SFD
16 bits

SIGNAL
8 bits

SERVICE
8 bits

LENGTH
16 bits

CRC
16 bits

PLCP Preamble
144 bits PSDUPLCP Header

48 bits

Scrambled One’s

1 Mbit/s DBPSK

1 DBPSK 
2 DQPSK
5.5 or 11 Mbit/s

Figure 4.1: An IEEE 802.11 HR/DSSS/long PPDU

PreambleLength+ PLCPHeaderLength+ ceil

(
LENGTH × 8

DATARATE

)
(4.1)

PreambleLength and PLCPHeaderLength are dependent on whether the

PPDU is sent with a long or short preamble option. If sent with the short

preamble they are 72µs and 24µs respectively. If sent with the long preamble

they are 144µs and 48µs respectively. LENGTH is the MPDU length in

octets and DATARATE is the PSDU encoding data rate in units of Mbit/s.

The other 802.11 PHYs such as 802.11a and 802.11g specify their own TXTIME

functions. In particular they differ as they use OFDM encoding which makes

the TXTIME function more complex.

4.3 Validating RX Timestamps

To calculate the number of SIFS violations, we must know the inter-frame

spacing of consecutive PPDUs. This can be calculated if we know the start

and end timestamp of each PPDU received. The AR5212 chipset as used by the

Atheros miniPCI cards used in these experiments provides a 64 bit timestamp

with a 1µs resolution with each frame received. This section describes an

experiment to measure the accuracy of the frame timestamps.

The timestamp provided with each frame describes the timestamp at the end
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of the frame’s reception. The first step in determining the accuracy of the

timestamp is to calculate the timestamp at the start of the PPDU. The start

timestamp can be calculated by subtracting the PPDU length (as calculated

in section 4.2) from the frame timestamp.

Two experiments were carried out in order to explore the accuracy of the times-

tamp provided by the hardware. First, the behaviour of the host operating

system when generating frames was explored in order to determine if frames

could be generated in a controlled manner. This was achieved by setting a

single transmitter to generate fixed length PPDUs at a fixed rate. The rate

was set slow enough that the hardware transmit queue was always empty when

a new frame arrived to be transmitted. An independent passive terminal in

monitor mode was used to capture a packet trace and the resulting packet

timing was analysed. The results of this experiment are shown in 4.3.1.

Second, the behaviour of the transmitter was explored under conditions where

the hardware always had a frame ready to transmit. With host operating sys-

tem queuing delay effects removed, any packet timing variation would indicate

the limits of the hardware when transmitting successive frames. Assuming

that the hardware is able to meet the strict DCF timing requirements, any

variation from the expected behaviour would likely indicate limited accuracy

of the receive timestamps. To achieve this, a transmitter was set to generate

fixed length PPDUs at a rate which ensured that the transmitter always had

a frame in its hardware transmit queue, ready to be sent. The results of this

experiment are shown in 4.3.2.

4.3.1 Experiment 1: Transmit queue length = 0

The first experiment used a fixed PPDU length of 12, 224µs (1504 octet MPDU

at 1Mbit PSDU encoding with a HR/DSSS/long preamble) and one frame was

generated every 50, 000µs. With these timings, the median inter-frame spacing

should be expected to be 37, 776µs, plus or minus any variation introduced by

the host operating system. Figure 4.2 shows a timing diagram to illustrate

this.
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50,000us fixed transmit delay
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37,776us expected inter−frame spacing
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Figure 4.2: Expected inter-frame spacing
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Figure 4.3: Inter-frame spacings from 10, 000 fixed-length PPDUs sent with a fixed delay of
50, 000µs.

Figure 4.3 shows the cumulative distribution of inter-frame spacings obtained

from the first experiment. The observed median inter-frame spacing was

39, 782µs with a median absolute deviation of 11.86µs.

The variance from the median is most likely caused by variable queueing delay

within the operating system. The median inter-frame spacing has a difference

to the expected value of approximately 2, 000µs. The significant difference

from the expected inter-frame space was explored further by modifying the

transmitter behaviour and repeating the experiment.

The fixed delay was changed to a uniform random delay with parameters

min = 20, 000,max = 60, 000 and the trace was captured once again. Under

these conditions the expected cumulative distribution of interframe spaces is a

straight line through the range (20, 000 − 60, 000). Instead, Figure 4.4 shows

“steps” 4, 000µs wide. This result suggests that the operating system (most

likely as a result of the select(2) system call) provides a timer resolution for
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Figure 4.4: Inter-frame spacings from 10, 000 fixed-length PPDUs sent with a uniform ran-
dom delay with parameters (min=20, 000, max=60, 000).

packet transmission no lower than 4, 000µs.

With a 4, 000µs quantisation effect on packet start time, the original result

shown in Figure 4.3 can now be explained. The original delay of 50, 000µs

is not a multiple of 4, 000µs. The timer resolution causes the frames to be

delayed by a further 2, 000µs, leading to the 2, 000µs offset from the expected

inter-frame spacing.

This first experiment shows that the select(2) system call suffers from a

4, 000µs timer granularity, restricting the precision in which frames can be

scheduled to be sent from userspace. However, once the transmit timer gran-

ularity is taken into account, the receive timestamps appear correct, i.e. the

observed median inter-frame spacing matches the expected result, indicating

that the operating system is able to generate frames in a controlled manner.

The level of variance is within what would be expected by variable queuing

delay within the operating system.

4.3.2 Experiment 2: Transmit queue length > 0

The second experiment examines the transmitter behaviour when host op-

erating system queuing delay effects are removed. By generating frames fast

enough that there is always at least one frame in the hardware transmit queue,
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the hardware always has a frame ready to transmit as soon as it has finished

transmitting the current frame. The sender is expected to send a sequence of

frames with minimum allowable spacing. This way the distribution of inter-

frame spacings on the medium can be examined without any interference from

effects of the host operating system, as observed in the previous experiment.

In this experiment, the Clear Channel Assessment (CCA) mechanism is dis-

abled (see the next section, 4.4 for more details). When CCA is disabled, a

terminal always senses the medium as idle, even when there are ongoing trans-

missions. The DCF states that transmission of a DATA frame may not begin

until the medium has been sensed idle for at least the DIFS and a Contention

Window backoff is performed (see section 3.2.2). In the case where CCA is

disabled, the initial DIFS deferral never occurs as the medium is always con-

sidered idle. Instead, only the random backoff occurs.

The Contention Window has an initial size of 15 slots. The individual slots are

aSlotT ime µs long and in the case of the 802.11b PHY, aSlotT ime = 20µs.

A random slot is chosen in the CW each time a back off is performed. Under

the conditions of this experiment over a period of time, each slot should be

chosen uniformly. The minimum inter-frame spacing expected on the medium

(when CCA is disabled and the DIFS deferral never occurs) is 0µs, i.e. the 0th

slot in the Contention Window. Practically, however, processing delays in the

MAC and PHY mean that even if slot 0 were selected, an inter-frame space of

0µs is unlikely to be achieved.

Similar to the previous experiment, frames were generated by the wgen tool.

1504 octet MPDUs (12, 224µs PPDUs) were sent with a fixed delay of 12, 000µs

in order to ensure that there was always a PPDU in the hardware queue to

transmit. Figure 4.5 shows the cumulative distribution of inter-frame spacings

as measured by the monitoring terminal.

A step function is shown in the data. These steps reflect the expected operation

of the 802.11 Contention Window. Each “step” in the graph is 20µs wide and

represents a single slot in the Contention Window. The consistency of the

step widths illustrates that the receive timestamp accuracy is stable. Figure

4.6 shows a single step in the graph. The median absolute deviation for each
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Figure 4.5: Inter-frame spacings from 10, 000 fixed-length PPDUs sent with a fixed delay of
12, 000µs. The “steps” reflect slots in the 802.11 Contention Window.
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Figure 4.7: Inter-frame spacings from 10, 000 fixed-length PPDUs sent with a fixed delay
of 12, 000µs. In this case, the PPDUs are 8µs longer than the previous experiment and the
minimum inter-frame space has moved to 8µs.

step is 1.5µs. This indicates that the receive timestamp is accurate enough to

be used by the timing method to detect transmissions within the SIFS violation

window.

It was expected that the minimum frame spacing would be approximately 1µs

due to the lack of DIFS deferral. However, the results indicate a minimum

inter-frame spacing of 16µs. This result was explored further by modifying

the PPDU length.

The length of the PPDU was increased by 8µs by adding one octet to the

length of the MPDU. Figure 4.7 shows the result of the same experiment with

a longer PPDU. The same slot effect can be seen, however the minimum inter-

frame spacing shifts to 8µs. The shift in minimum inter-frame spacing follows

a sawtooth pattern as the PPDU length is adjusted, the effect of which can

be seen in Figure 4.9, which shows the minimum inter-frame spacing mea-

sured for a number of PPDU lengths. Given the consistency of the slot width

measurements, it is unlikely that this is a measurement error at the receiver.

Instead, the shifting minimum inter-frame space can be explained with a closer

look at the transmitter behaviour. When a transmitter has a frame to send,

it defers for the DIFS and then selects a slot in the Contention Window.

Slot times however are clocked in a separate time domain to the initial DIFS
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residual slot time

A

aSlotTime

DIFS

Figure 4.10: Residual slot time caused by clock domain crossing. The PPDU starts on a
slot boundary however its duration is not necessarily a multiple of aSlotT ime. The DIFS
deferral starts from the end of reception, however, because the slots are clocked in a different
time domain, there exists a residual slot time after the end of the DIFS and before the next
slot begins. The length of this residual slot time will vary depending on the duration of the
PPDU.

deferral. This clock domain crossing means that there will be some residual

slot time left at the end of the DIFS deferral. In this experiment, because

CCA is disabled, the residual slot time is left at the end of the previous PPDU

rather than the DIFS deferral, however the principle remains the same. This

is illustrated in Figure 4.10. The effect of this clock domain crossing is that a

transmission may be deferred by up to the length of a slot time greater than

would be expected if using a simple, single clock domain model.

As a PPDU always starts on the boundary of a Contention Window slot and

the time a PPDU will occupy the channel can be calculated, the length of the

residual slot time can also be calculated. The residual slot time is given by:

r = aSlotT ime− (TXTIME mod aSlotT ime) (4.2)

By updating the simple, single clock domain model to take into account sepa-

rate clock domains for the DIFS deferral and CW slots, the variable minimum

frame spacing observed in Figure 4.7 can be explained. When the residual

slot time is subtracted from the observed inter-frame spacings, the expected

result of a constant minimum inter-frame space is observed. For example, the

residual slot time for a 12, 224µs PPDU is 16µs and minimum median inter-

frame spacing observed on the medium was 16µs. The residual slot time for a

12, 232µs PPDU is 8µs and the minimum median inter-frame spacing observed

on the medium was 8µs.

While taking clock domain crossing into account is necessary to adjust for the

more complex transmitter model when searching for the minimum inter-frame

59



spacing to validate the correctness of the timestamps, it is not necessary to

adjust for clock domain crossing in the general case. The receive timestamp is

still an accurate representation of when the frame was received on the channel

and hence can be used to determine accurate inter-frame spacings. The clock

domain crossing affects transmitter behaviour; it does not affect the accuracy

of the received PPDU timestamp.

The results of these experiments have shown that frames can be generated in a

controlled manner and that the timestamps reported by the AR5212 hardware

are accurate enough (by the result of the median absolute deviation of 1.48µs

when measuring Contention Window slot boundaries) to be used by the timing

method to detect SIFS violations.

4.4 Hiding Terminals

To measure hidden terminal collisions in a laboratory requires the ability to

hide one terminal from another even though they are physically close to each

other. The ability to hide terminals from one another is not a requirement of

the timing method; it is a requirement of the validation of the timing method

in a laboratory environment.

In the experiment, the two transmitting terminals must be hidden from one

another so that their transmissions become unsynchronised and concurrent

transmission occur. In an indoor environment and in the absence of specialised

equipment such as Faraday cages, this is difficult to achieve reliably through

physical separation of the terminals while still maintaining connectivity to a

common terminal for monitoring.

The method to disable Clear Channel Assessment (CCA) and hence hide ter-

minals from one another in this experiment is described by Anderson, et. al

in [5]. They identify the registers which affect the operation of CCA in the

Atheros AR52XX-based wireless NICs that are used in this thesis. In order

to disable CCA, the open-source MadWiFi Linux driver was modified to set

these registers accordingly. In particular the AR5K_AR5212_DIAG_SW (0x8048)

register is bitwise ORed with the values AR5K_AR5212_DIAG_SW_IGNOREPHYCS
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(0x00100000) and AR5K_AR5212_DIAG_SW_IGNORENAV (0x00200000) which dis-

ables both physical and virtual carrier sensing.

The two terminals under test were configured with CCA mechanisms disabled.

This means that the terminals do not check for the presence of existing trans-

missions on the medium before transmitting themselves, which causes them

to behave in the same way as if they were hidden from one another through

physical separation.

Under these conditions and given suitable traffic patterns, over time, DCF

violations in the form of collisions and SIFS violations will occur.

4.4.1 Validating CCA Disable

The effectiveness of disabling CCA was confirmed experimentally by observing

the transmission behaviour of two terminals with CCA enabled and disabled.

wgen was used to generate traffic on two terminals with CCA enabled such that

they would both have PPDUs to transmit at the same time, leading to channel

contention. A third passive terminal was used to capture the resulting traces.

The procedure was repeated with CCA disabled. The results are shown in

Figure 4.11 by plotting the cumulative distributions of the inter-frame spacings

in each trace.

The CCA enabled and disabled cumulative distributions are very different from

one another. With CCA enabled, the transmission behaviour follows that of

two synchronised terminals competing for the medium. With CCA disabled,

the transmission behaviour follows that of two hidden terminals transmitting

frames without regard to existing transmissions. This can be seen by the near

uniform distribution of inter-frame spacings in the CCA disabled data set.

A detailed view of the data set is shown in Figure 4.12. This shows the

behaviour of the two cases where the inter-frame spacing is very short, that is,

when the two terminals are competing for the channel.

When CCA is enabled, the inter-frame spacing indicates that the terminals

are obeying the DCF by deferring their transmissions and participating in the

61



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5000  10000  15000  20000  25000  30000

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

of
 In

te
r-f

ra
m

e 
Sp

ac
in

gs

Inter-frame spacing (microseconds)

Transmit behaviour with CCA enabled and disabled

CCA Enabled
CCA Disabled

Figure 4.11: Transmitter behaviour with CCA enabled and disabled

random backoff rules. When CCA is disabled, the distribution looks different.

A small number of negative inter-frame spacings indicate the occurrence of

non-destructive preamble collisions as discussed in section 3.2.3. A number of

frames appear within the SIFS violation window and the remainder follow the

uniform distribution expected from two unsynchronised senders.

These results show that disabling CCA, by setting the debug registers on the

AR5212 hardware, allows terminals to be hidden from one another reliably.

When the terminals are hidden their transmissions become unsynchronised

and SIFS violations are observed.

4.5 Experimental Validation of the Timing Method

This section presents experiments carried out in order to validate the timing

method presented in Chapter 3.

4.5.1 Hypothesis

This experiment explores the hypothesis that the number of PPDUs that start

within the SIFS violation window of the previous PPDU can be used to esti-

mate the total number of collisions caused by hidden terminals.
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Figure 4.12: Detail view of transmitter behaviour with CCA enabled and disabled. This
shows with CCA enabled, the transmitters behave as expected. With CCA disabled, the
transmitters behave as if they are hidden from one another. Additionally, a number of
PPDUs arrive “before” the end of the previous PPDU (indicating a non-destructive preamble
collision) and a number arrive in the SIFS violation window.

Hidden terminal collisions can be generated by hiding two terminals from one

another and generating known traffic on each. The total number of colli-

sions can be calculated from the number of frames sent and the number of

frames received by a third, passive terminal that listens for frames but does

not transmit. If the passive terminal also records the number of SIFS viola-

tions detected, the timing method can be used to estimate the total number

of collisions occurring due to hidden terminals.

This experiment sets out to validate the timing method’s estimate of the total

number of collisions by comparing it to the known number of collisions caused

during the experiment. The known number of collisions caused during the ex-

periment is controlled by altering the rate at which the two terminals transmit

PPDUs.

4.5.2 Method

Two identical Soekris 4526 microcomputers were set up in an otherwise quiet

radio environment with a modified version of the MadWiFi Linux driver for
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Table 4.1: wgen fixed experiment parameters
Total TX PPDUs Fixed Delay Uniform Delay min Uniform Delay max

3, 600, 000 48, 000µs 1µs 90, 000µs

Table 4.2: Variable parameters
MPDU octets PSDU bitrate PPDU length Collision Rate

39 5.5 Mbits 249µs 0.75 %
39 1 Mbits 504µs 1.2 %
98 2 Mbits 584µs 1.4 %
98 1 Mbits 976µs 2.2 %
216 1 Mbits 1, 920µs 4.2 %
452 1 Mbits 3, 808µs 8.2 %
924 1 Mbits 7, 584µs 19.8 %
1504 1 Mbits 12, 224µs 35.4 %

Atheros based wireless NICs which allowed the terminals to be hidden from

one another, as described in section 4.4. A third terminal, a higher powered

Soekris 5501, was set up to passively capture all frames on the air and was

placed such that the received signal strength from each of the transmitting

terminals was approximately equal. The monitor terminal captured frames

from both transmitting terminals and recorded them to a PCAP network trace

file.

The wgen tool was used to generate traffic from each of the two transmitting

terminals in such a way that ensured some proportion of PPDU transmissions

would cause DCF violations.

A series of experiments were run to generate different traffic profiles from

which an approximate collision rate could be calculated. Each experimental

setup was run for approximately 24 hours with a fixed inter-frame delay on one

terminal and a uniform random delay on the other. Different collision rates

were generated by varying the MPDU length and PSDU encoding rate. The

fixed parameters for the experiments are given in Table 4.1. The parameters

that were varied are given in Table 4.2.

The resulting trace files were analysed and the total number of collisions deter-

mined by subtracting the number of frames captured from the known number

of frames transmitted. PPDU drops were unlikely to be caused by other factors

such as path attenuation due to the proximity of the monitoring terminal to
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the two transmitting terminals. The monitoring terminal had sufficient CPU

power to capture all frames generated by both transmitting terminals while

writing the trace to disk without dropping frames. As such, any frame miss-

ing in the resulting trace was considered as being caused by a collision with

another PPDU.

Frames in which an FCS error occurred were also treated as the result of a

collision. With the two transmitting terminals so close together the received

signal level was high enough to ensure a negligible bit error rate. As such, all

FCS errors were treated as being caused by a second frame starting during the

PSDU of an existing transmission.

The proportion of SIFS violations expected to occur within each experiment

was determined based on the known traffic profile of each experiment by cal-

culating the SIFS violation window size as a proportion of the PPDU length,

as outlined in section 3.2.4.

The number of SIFS violations that occurred within each trace file was deter-

mined by calculating the spacing between each consecutive frame pair. Frame

pairs in which the spacing was in the range (0µs < x < 8µs) and in which the

first frame of the pair suffered no damage were determined to be SIFS viola-

tions. The total number of hidden terminal collisions could then be estimated

using the timing method (section 3.2) and compared to the known number of

frame collisions.

4.5.3 Results

Figure 4.13 compares the expected proportion of SIFS violations to hidden

terminal collisions by PPDU length to the observed proportion. The expected

proportion is calculated using the method outlined in section 3.2.4. The actual

measured proportion of SIFS violations to known collisions in the captured

trace is plotted alongside and it can be seen that the measured relationship

follows the expected result.

The number of SIFS violations can be measured and given the total known

number of collisions in the trace, the proportion of SIFS violations to collisions
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Figure 4.13: Expected versus observed proportions of SIFS violations to hidden terminal
collisions by PPDU length.

can be determined. In practice, the total number of collisions cannot be known

in advance. Instead, the total number of collisions must be estimated using

the number of SIFS violations detected and the number and length of PPDUs

received.

By estimating the total number of collisions based on the rate of SIFS viola-

tions, the total rate of dropped PPDUs can be estimated, as presented in 3.2.5.

These estimates can then be compared to the known number of collisions in

each experiment, validating the method.

The method requires the rate of SIFS violations to be measured over time. In

order to determine a reasonable length of time before the estimations become

stable, the trace data from each 24 hour experiment was split into bins of

varying length; 300, 600, 1800 and 7200 seconds. The results from each bin size

were analysed separately in order to determine the time period that minimised

overall measurement variation.

Figures 4.13(a)–(d) show the estimated rate of DCF violation caused by hidden

terminal collisions (Y-axis) for each of the four time periods. The binning

process allows us to make an estimate for each bin-length sample from the

trace data and compile quartile plots of these estimates. The data is plotted
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(a) 10 minute bins
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(b) 30 minute bins
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(c) 1 hour bins
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(d) 2 hour bins
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Figure 4.14: Estimated versus Actual drop rate due to hidden terminal collisions.
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against the known drop rate for each trace (X-axis), which allows comparison

of the estimation to the known, controlled drop rate.

10 minute intervals were not sufficient to estimate the drop rate reliably, how-

ever the median drop rates estimated are close to the known drop rate, at least

where the drop rate is < 10%. By 30 minutes, estimations at the low end of

the drop rate range (< 5%) have lower variability, however estimation during

times of heavy loss are still very unstable.

Using 1 hour bins, the timing method can achieve an estimation accuracy for

loss rates < 10% of ±5%. 2 hour bins improve this accuracy to ±2%. For loss

rates > 10%, estimation accuracy suffers. This is mainly due to the change in

ratios between SIFS violations and collisions. As the drop rate increases, the

ratio of SIFS violations (which are detectable) to DCF violations decreases,

which causes the timing method to struggle to accurately estimate drop rate.

The 1 and 2 hour bins improve the stability of the estimation at times of heavy

loss, however the variation at these times is still very high. A PPDU loss rate

greater than 10% is cause for concern to a network operator, however once

the loss rate reaches this level it is not necessarily useful to be able to predict

the exact level with fine grained accuracy. It is often enough to say that an

extreme level of loss is occurring.

This reduction in estimation accuracy at higher levels of loss can in part be

explained by the variable n in Equation 3.8. As frame loss rate increases

the host is unable to accurately count n, the number of PPDUs transmitted.

This causes the equation to over-estimate the proportion of SIFS violations

detected to frames on the channel and hence affects the overall estimation of

DCF violations caused by hidden terminals.

4.6 Conclusions

This chapter has investigated the timing method outlined in Chapter 3 and has

provided an experimental validation of its efficacy in a controlled laboratory

environment.
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Experiments in a controlled setting were carried out to validate the accuracy of

the receive timestamps provided by the wireless NICs, a method for arbitrarily

hiding terminals from one another was confirmed and experiments were carried

out that showed that the SIFS violation rate can be predicted based on PPDU

length and that the actual SIFS violation rate can be used to predict collision

rates due to hidden terminal.

The results of these experiments show that the rate of SIFS violations can be

used to estimate the total number of DCF violations (and hence total number of

collisions) occurring due to hidden terminals. At low hidden terminal collision

rates, the estimation is accurate enough to provide a clear view of the loss

occurring due to hidden terminal collisions. However, as the loss rate increases,

the estimation accuracy decreases.

The timing method can therefore be used to estimate the rate of collisions

being caused by hidden terminals when the overall collision rate is < 10%. For

higher collision rates, the timing method can only indicate that high numbers

of collisions are occurring – it cannot provide an accurate estimate at these

high collision rates.

The next chapter presents a practical implementation of both the network

connectivity method and the timing method for deployment on a real-world

network. Implementing the method for use on a production network poses

several additional challenges which are addressed in the next chapter. Chapter

6 goes on to present results from a deployment of the methods on an operational

network carrying customer traffic and shows that the methods are useful in a

practical setting.
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Chapter 5

Implementation

Two methods for the detection and measurement of the hidden terminal prob-

lem were presented in Chapter 3 and the methods were validated in a labora-

tory setting in Chapter 4.

The goal of this chapter is to demonstrate the implementation of the methods

within a measurement system that allows deployment across the entirety of an

operational wireless network. Network operators can then use the measure-

ment system to detect and measure the effect of hidden terminals over time as

an integral part of their existing network measurement and monitoring infras-

tructure.

This chapter begins by outlining the requirements of such an implementation

in section 5.1. These requirements are motivated by the goal of deployment on

an operational network. Section 5.2 discusses existing techniques for perform-

ing measurement and section 5.3 introduces the WMP Kernel Measurement

Framework for performing wireless measurement directly on hosts. Finally,

sections 5.4 and 5.5 discuss the implementation of the hidden terminal de-

tection methods within the WMP framework and section 5.6 concludes this

chapter.

5.1 Requirements for wide-scale implementation

The hidden terminal detection methods aim to provide network operators with

useful tools to detect and measure the effect of hidden terminals on their
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networks. An implementation of the hidden terminal detection methods needs

to adhere to a number of specific requirements in order to be useful in an

operational setting. This section outlines those requirements which guide the

implementation of the methods in the following sections.

5.1.1 Scalability

An implementation should scale in its deployment across large networks. In

particular, the network connectivity method requires connectivity information

from as many participants in the network as possible for it to be effective. As

such, any implementation of the hidden terminal detection methods should be

able to be deployed across as many of the network hosts as possible without

increasing the complexity of the deployment.

5.1.2 Accurately capture information

An implementation should accurately capture information. The timing method

requires accurate timestamps for each frame and requires all frames to be

captured, not just those that are destined for the Basic Service Set (BSS) that

the Station (STA) is a part of. Any implementation that cannot provide the

necessary timestamp accuracy or which compromises the completeness of the

captured dataset is not suitable.

5.1.3 Limit adverse affects on the network

An implementation should not impose significant extra overhead on the net-

work by consuming undue amounts of network resource. This is especially

important for any implementation of distributed measurement where measure-

ment traffic should not overwhelm legitimate network management or user traf-

fic. Additionally, an implementation should not slow down packet forwarding

significantly or negatively affect the performance of the network as perceived

by end users.
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5.1.4 Limit cost

An implementation should not impose significant per-host costs. This is a di-

rect consequence of the requirement for scalability as well as the cost-sensitive

nature of operators of networks based on commodity hardware. If the imple-

mentation imposes significant per-host costs or if the cost and complexity of

deployment does not scale gracefully with the number of measured hosts, then

the ability to deploy the implementation across the network is compromised.

5.2 Existing Measurement Techniques

This section outlines existing passive measurement techniques that are com-

mon in the literature and discusses their ability to meet the requirements set

out in section 5.1.

5.2.1 Passive External Capture

Passive external capture is one of the most common forms of wireless link-

layer measurement likely due to its simplicity. It is sometimes referred to as

vicinity sniffing [27] or indirect capture [7] as it involves sniffing frames in the

vicinity of a passive monitor which is not part of the network being measured.

For example, a laptop computer could be used to passively sniff frames from

a network operating in the same area. This technique is used extensively

by wireless monitoring software systems such as Kismet [2] and much of the

literature on wireless network monitoring uses this technique. For example,

Yeo [73] and Jardosh [27] use passive external capture when characterising

indoor WLAN environments.

Use of this monitoring technique introduces no overhead to the network under

measurement. That is, the nodes that are part of the network perform no

extra work to facilitate the measurement. Additionally, no frames are injected

into the network, so no bandwidth is used for the measurement aside from any

used to retrieve the measurement data.
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One of the main advantages of passive external capture is that a more power-

ful machine can be used to perform the capture. Modifications to the existing

network infrastructure are not necessary. The constraints of the individual

routers are not a factor because the capture node is completely separate from

the network. This allows full packet capture to be performed easily. How-

ever, in the case of monitoring a wide-area network, providing a second more

powerful machine at each node to perform measurement is seldom a feasi-

ble solution given both the cost and power constraints generally applicable to

wireless deployments.

Ability to meet implementation requirements

Passive indirect capture does not meet the implementation requirements set

out in section 5.1. It fails to satisfy the requirements of scalability and cost

as it requires a separate measurement host for each host under measurement.

This additional cost and the problems it causes for wide-spread use of passive

external capture is acknowledged by Yeo et al. in [74].

It fails to satisfy the requirement of accurate information capture as it - by

definition - provides a view of the channel state from the position of the mon-

itoring host, rather than the monitored host. Due to the varying nature of

the wireless channel as well as differences in the RF front-end, the monitoring

host will receive frames at a different signal power and in a different noise

environment than that of the intended receiver. This is significant because the

monitoring host may receive frames in error when they were received by the

intended receiver without error, or vice versa.

It does however meet the requirement of limited performance impact. Passive

external capture does not impose any additional overhead on the hosts under

measurement so it will not cause perceived performance degradation to end

users. However, its failings exclude it as a suitable candidate for use in network-

wide monitoring.

73



5.2.2 Passive Internal Capture

Passive internal capture involves instrumenting each wireless node to be mea-

sured with a “tap” that provides a copy of each frame as it is seen on the

medium and does not require additional physical hardware. This direct cap-

ture at the receiver (rather than external or indirect capture at a third-party

node) provides a much more accurate view of the channel state at the intended

receiver and requires extra software on each node.

Passive internal capture provides many benefits in comparison to external cap-

ture. It becomes possible to see at each node how and when frames were re-

ceived with an accurate view of the channel state. With this information it

is possible to see how each node in range of a transmitter heard a particu-

lar frame. With each node instrumented with a direct tap, a picture can be

built of the network as a whole, rather than the snapshot of a particular node

provided by external capture.

Direct capture involves the use of “promiscuous” mode which turns off any

hardware address filtering. Usually the Network Interface Card (NIC) will filter

frames that are not intended to be processed by the host. In a measurement

scenario it is generally desirable to see all frames on the medium. Disabling

receive filtering increases the interrupt load on the system as well as the number

of kernel- to user-space memory copy operations performed because additional

frames have to be processed by the CPU.

Frames are copied to userspace using tools such as libpcap and tcpdump and

then processed either online by a userspace tool or traces are transported back

to an offline processing location.

Ability to meet implementation requirements

Passive internal capture meets the requirements of scalability and limited per-

host costs as it does not require extra hardware at each host under measure-

ment as passive external capture does.

However it fails to meet the requirement of limited performance degradation as
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it increases the load on the host under measurement. This increased load has

been measured in studies such as those performed by Schulman et al. [57] and

has been identified as a source of measurement error (failure to meet require-

ment accurate information capture) due to overloading at the measurement

host causing frames to be dropped.

While passive internal capture is able to be deployed cheaply and widely, it

cannot provide an accurate view of network activity and cannot operate with-

out imposing significant performance penalties on the network. As with pas-

sive external capture, passive internal capture cannot be used for wide scale

monitoring of operational networks because of these failings.

5.3 The WMP Kernel Measurement Framework

The Wireless Measurement Project (WMP) Kernel Measurement Framework

is a new method for accurate measurement of wireless networks that meets

the implementation requirements set out in section 5.1. The WMP Kernel

Measurement Framework was designed and implemented as part of this thesis.

The WMP framework provides an in-kernel approach to passive internal mea-

surement. Most existing passive internal measurement is performed by copying

frames to userspace applications for analysis. The WMP framework moves the

measurement task into kernelspace, reducing the overhead and increasing the

accuracy of passive internal capture. This is a fundamentally different ap-

proach from the common passive external capture technique and provides a

number of benefits over the passive internal capture technique.

The approach differs to existing approaches that attempt to perform passive

internal measurement in kernelspace such as [59, 38] in that the measurement

code is abstracted cleanly from the device driver internals. The WMP ker-

nel measurement framework is unique in that it provides the necessary APIs

for measurement tasks to be implemented without the need for researchers to

understand or integrate directly with the low-level hardware device drivers.

Module writers can instead focus on the implementation of the measurement

task. Additionally, the WMP framework can abstract multiple underlying
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Figure 5.1: The WMP Kernel Measurement Framework Architecture

hardware devices which can reduce the amount of duplicated effort when de-

ploying measurement tasks to heterogeneous networks.

The in-kernel API abstracts driver specific details from the implementation of

measurement tasks and encourages each measurement task to be modularised

and kept separate from the kernel device driver modules. This modular ap-

proach has three main benefits; first, the approach simplifies the implemen-

tation of measurement tasks by removing the need to integrate measurement

code directly into device driver code paths. Second, the separation of mea-

surement code from device driver code provides the ability to load and unload

measurement modules independently of the device drivers, allowing measure-

ment tasks to start and stop without affecting packet forwarding. Finally, the

API allows a single measurement module to operate on any device that is sup-

ported by the WMP API, rather than requiring individual implementations of

the measurement module for each device driver.

Figure 5.1 shows a high level architecture diagram of how the WMP Kernel

Measurement Framework fits into the Linux kernel. The wmp-core layer in-

tegrates into each supported device driver and exposes the WMP API. WMP

modules link against the wmp-core module and implement individual measure-

ment tasks.
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To investigate the hidden terminal problem, only a single device driver is in-

strumented with the WMP API. MadWiFi version 0.9.4 was chosen due to its

wide-spread use in Linux-based wireless network deployments, and in partic-

ular its use on the Rural Link wireless network which is used for deployment

testing later in this thesis. There is however no reason that the WMP API

could not be applied to other device drivers and network stacks.

As well as providing the implementation framework for the measurement mod-

ules for this thesis, the WMP kernel measurement framework has been used to

provide network wide long term link level statistics for a study that challenged

the accuracy of traditional path loss prediction models [45].

The WMP Kernel Measurement Framework is split into two main parts; the

individual Network Interface Card (NIC) device driver hooks and the measure-

ment module API. The remainder of this section describes the framework and

compares it to the passive external capture approach.

5.3.1 Driver Hooks

At the lowest level of the framework, modifications are made to individual

wireless NIC device drivers to enable extraction of relevant metadata about

each MPDU as it is processed by the driver. Figures 5.2 and 5.3 describe the

metadata collected for RX and TX frames respectively. Once the metadata

has been collected, the driver dispatches the frame and metadata to the WMP

kernel module so that measurement modules can inspect the frame. The meta-

data that the WMP API currently exports is based on the metadata available

from the MadWiFi driver and Atheros 5212 hardware descriptors. In future

versions of the WMP API it is envisioned that specific hardware capabilities

will be encoded into the metadata blocks to indicate the availability of specific

metadata on individual hardware devices.

A wireless NIC generates an interrupt after a frame has been received, decoded

and placed in a hardware receive queue. Frames are transferred from the device

to host memory during interrupt processing. Most NIC hardware will perform

receive-address filtering before the frame is placed into a receive queue to
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1 struct wmp_rx_status {
2 uint64_t t s f ;
3 uint16_t channel_mode ;
4 uint16_t channel_frequency ;
5 uint8_t padding ;
6 uint8_t i e e e r a t e ;
7 uint8_t antenna ;
8 uint8_t rss i_db ;
9 int8_t noise_dbm ;

10 uint16_t short_preamble : 1 ;
11 uint16_t f c s_e r ro r : 1 ;
12 uint16_t phy_error : 1 ;
13 uint16_t has_fcs : 1 ;
14 uint16_t rx_error : 1 ;
15 } ;

Figure 5.2: RX frame metadata collected by the WMP API

1 struct wmp_tx_status {
2 uint64_t t s f ;
3 uint16_t channel_mode ;
4 uint16_t channel_frequency ;
5 uint8_t padding ;
6 uint8_t antenna ;
7 uint8_t i e e e r a t e ;
8 uint8_t r e t r i e s ;
9 uint8_t tx_power ;

10 /∗ For dev i c e s t ha t support mult i−ra t e r e t r i e s ,
11 ∗ ’ t r i e s ’ counts the number o f t ransmiss ion at tempts
12 ∗ at each rate , and ’ ra t e ’ i n d i c a t e s the ra t e t r i e d .
13 ∗/
14 uint8_t t r i e s [ 4 ] ;
15 uint16_t ra t e [ 4 ] ; /∗ Kbps ∗/
16 uint16_t ack_duration [ 4 ] ;
17 uint16_t short_preamble : 1 ;
18 uint16_t tx_fa i l ed : 1 ;
19 } ;

Figure 5.3: TX frame metadata collected by the WMP API
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reduce the number of interrupts generated and reduce the number of frames

transferred from the NIC to host memory. For example, the NIC may have the

ability to filter frames that are not relevant to the Basic Service Set (BSS) the

station is a member of. However in many measurement situations it is desired

that all frames on the medium be captured regardless of the target BSS, thus

devices under measurement are generally put into promiscuous mode, disabling

filtering at this level.

Multiple frames are normally transferred to the host during a single interrupt

to reduce load on the host, and the NIC provides a hardware timestamp with

each frame. If the timestamps were to be taken at interrupt time, they would

not represent the true time that each frame was observed on the medium. This

is important to measurement modules that require an accurate timestamp on

individual frames.

Once the driver has frames from a physical NIC device, the frames are dis-

patched to the appropriate logical network devices. It is at this point, before

the frames are dispatched, that the WMP kernel measurement framework takes

each frame and also passes it to any measurement modules that have registered

with the WMP framework for the physical device.

In the case of the MadWiFi driver, frame metadata is collected from the

Atheros hardware descriptor that accompanies each frame as it is transferred

from the hardware and the data is converted into the common WMP metadata

format.

In the transmit path, the frames and metadata are passed to the WMP frame-

work once the frame has finished transmission and a transmit interrupt is

asserted. A frame is finished transmission either once the remote station has

acknowledged successful reception, or the frame has reached its retry limit, or

once the frame has been transmitted in the case of frames that do not require

acknowledgement. Many drivers will transfer the frame to the wireless NIC

and wait for an interrupt to indicate that the frame has been sent, hiding the

process of retransmission and acknowledgement from the driver itself. Once

the frame has finished transmission, the NIC will notify the driver, and the

WMP framework will extract metadata about retransmissions, success or fail-
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ure, etc, and make that information available to the measurement modules

through the frame metadata.

5.3.2 Measurement Module API

Measurement modules interact with the WMP framework through a simple

callback-based API. A module can register with the WMP framework to in-

dicate its interest in frames received or transmitted by a particular physical

NIC. Once a module is registered it receives a callback for each frame as it

is processed by the WMP framework. This callback includes a pointer to a

zero-copy reference of the raw frame data as well as the metadata collected by

WMP for the frame.

The MAC header is usually discarded by the IEEE 802.11 stack when it con-

structs an Ethernet frame to pass to the higher layers of the network stack

however the MAC header includes potentially interesting information to mea-

surement modules, such as the retry bit and sequence number which can in-

dicate the presence of link-level retransmissions. The zero-copy reference to

each frame is a pointer to the start of the IEEE 802.11 MAC header as seen

on the medium. The metadata block passed to the module includes the hard-

ware timestamp, bitrate, antenna, and other information about the frame’s

reception. For example, a module may record the bitrates used by each sender

by recording the bitrate from the metadata block and examining the packet

contents to determine the sender address. It is assumed that modules do not

attempt to modify the contents of the frame as the same copy of the frame is

passed up the host network stack after all modules have finished with it. This

reduces the overhead involved in copying frame data into each measurement

module individually.

When a module is finished with a frame it returns from its callback. In addition

to performing measurement tasks, a module can indicate whether the packet

should be passed to a “monitor mode” logical network interface if one exists.

Monitor mode interfaces pass a raw copy of each frame to userspace and usually

include packet metadata via a Radiotap [46] or Prism II header. Monitor

mode interfaces are used in passive external capture. Copying each frame into
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1 int (∗ cb ) (
2 struct sk_buff ∗ skb ,
3 struct net_device ∗ dev ,
4 int d i r e c t i on ,
5 void ∗ metadata ,
6 void ∗ data
7 ) ;

Figure 5.4: WMP measurement module callback prototype

userspace introduces significant overhead on resource constrained systems. In

some measurement cases it may be beneficial to have a copy of some select

frames passed to userspace, for example, to take a random sample of frames

on the medium. A WMP kernel measurement module could perform random

sampling itself and mark only a subset of frames for copying into userspace.

After the module has returned from its callback the packet continues through

the host network stack as it would have previously and is passed to any monitor

mode interfaces if a module has marked it. If there are no WMP modules

loaded, no selective filtering of frames is performed and monitor interfaces

operate as per usual.

5.3.3 API Details

WMP measurement modules implement a callback function (see Figure 5.4)

which is called whenever a frame arrives at the WMP measurement frame-

work. Modules register their callbacks with the framework by calling the

wmp_register_monitor_handler function that is exported by the wmp-core

module (see Figure 5.5). The module passes a device name, a function pointer

to its callback function and an opaque data pointer that is passed back to the

callback function. Once a module is registered it must be ready to start receiv-

ing callbacks immediately. Modules can unregister from the WMP framework

by calling the wmp_unregister_monitor_handler function.

When a frame is received by the WMP framework, the callback functions of

each module registered with the framework are called in the order in which

they were registered. The callback function receives: a pointer to the struct

sk_buff that contains the frame payload; a pointer to the struct net_device

that the frame arrived on; a flag to indicate the frame direction, that is,
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1 int wmp_register_monitor_handler (
2 const char ∗ devname ,
3 int (∗ cb ) ( struct sk_buff ∗ , struct net_device ∗ , int , void ∗ , void ∗) ,
4 void ∗data
5 ) ;
6
7 int wmp_unregister_monitor_handler (
8 const char ∗devname ,
9 int (∗ cb ) ( struct sk_buff ∗ , struct net_device ∗ , int , void ∗ , void ∗)

10 ) ;

Figure 5.5: Registration and de-registration of WMP measurement modules

whether it was received or transmitted; a pointer to the metadata block de-

scribing the frame; and the opaque data pointer that was passed to the register

function.

The pointer to the metadata block must be cast to the appropriate type de-

pendent on the direction of the frame. Frames received on an interface are

described by a struct wmp_rx_status, while frames transmitted on an in-

terface are described by a struct wmp_tx_status. Once the metadata block

has been cast to the appropriate type it is up to the measurement module

to perform its measurement task. Details of the data provided in each of the

metadata blocks is available in the API header files.

When the callback function is finished with the frame, it must return an indi-

cation as to whether the frame should be captured into userspace via a monitor

interface or simply passed to the upper network layers. It can do so by return-

ing either WMP_FRAME_DROP or WMP_FRAME_SAMPLE.

The WMP framework does not provide any specific methods for communicat-

ing measurement results back to the user. The Linux kernel already provides

several methods for kernel modules to communicate with userspace. WMP

leaves it up to the module writer to decide which method best suits the

measurement task. For example, the Linux kernel provides the /proc vir-

tual filesystem [13] which allows kernel modules to export arbitrary data to

userspace via a virtual filesystem. Alternatively, a module may implement a

NETLINK socket [23] to communicate measurement events to userspace in

real time.
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5.3.4 Ability to meet implementation requirements

The WMP approach of instrumenting the wireless network stack has many

advantages over passive internal and passive external capture techniques. It

also meets the implementation requirements set out in section 5.1.

WMP meets the requirements of scalability and limited per-host costs as it

does not require extra hardware at each host under measurement. It meets

the requirement of limited performance degradation as it allows measurement

tasks to be performed within the kernel itself, rather than relying on frames to

be passed to userspace, reducing per-packet measurement overhead. Finally,

it meets the requirement of accurate information capture; firstly because the

measurement represents a more accurate view of the channel as it measures

the exact same set of frames as the host under measurement (when compared

to passive external capture); and secondly because the reduced per-packet

measurement overhead leads to the measurement system suffering from less

packet loss (when compared to passive internal capture).

Passive external capture has some advantages over the WMP approach. It is

a very simple method for quickly measuring a small area, such as when per-

forming site-surveys or access point coverage checks. If the measurement task

does not require the accurate capture of all frames on the medium, or if the

hardware that is used for the capture point is sufficiently powerful enough, or

if the measurement task only requires very few measurement points, then de-

ploying passive external capture is very simple. Additionally, passive external

capture is separate from the host under measurement, so it does not pose any

additional overhead on the host under measurement.

Passive internal capture is conceptually simpler than the WMP approach, and

significantly easier to deploy as it does not require the creation of kernel mod-

ules to implement the measurement.

The following sections discuss the practical details of implementing the two

methods for detection of hidden terminals within the WMP kernel measure-

ment framework.
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5.4 Implementation of the network graph method

This section discusses the implementation of the network connectivity method

for detecting hidden terminals that was introduced in section 3.1 . The network

connectivity method uses information from hosts in the network collecting data

about the hosts they can receive packets from. This data is then collated at

a central point and a connectivity graph is constructed. Hidden terminals can

be found by applying graph theory.

The process is split into three parts; the raw data collection that must be

performed per-host, the transfer of raw data to the central processing point,

and the processing of the data at the central collection point. Each of the

parts are discussed separately.

5.4.1 Raw data collection

The raw data collection phase is performed by a WMP kernel measurement

module on each host in the network. The wireless NIC is put into promiscuous

mode so that all frames that are able to be decoded are passed to the host, re-

gardless of their destination. As frames are received by the WMP measurement

module the sender addresses are extracted. In this way, the module builds a

list of all terminals that the host under measurement can hear, regardless of

whether the terminals are part of the same BSS or not. The module maintains

a list of sender addresses it has seen and exports the list via the /proc virtual

filesystem.

This process has very little overhead and does not require measurement traffic

to be injected into the network. However, when a frame is received that fails

its FCS (as indicated by the rx_error flag) the frame contents cannot be

trusted and hence the sender address cannot be extracted. Frames may fail

their FCS for a number of reasons, for example simple corruption due to fading

effects, poor receive SNR due to path attenuation, or frame truncation due to

collisions or desynchronisation.

In the case of corruption due to fading or truncation due to collisions, it is likely
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that a frame from the same sender will be heard correctly within a relatively

short time period. In the case of high path attenuation, it may be the case

that the time period before receiving another frame without error is relatively

high. In this case, the sender is contributing to the carrier-sense behaviour

of the host, but it is unable to have its transmissions reliably decoded - and

hence the source of the transmissions is unable to be determined.

Active measurement can be used to try and reduce the period taken to pos-

itively identify senders in the network. By periodically injecting frames with

a known payload into the network and recording reception of such frames, a

graph can be created which shows with a high level of confidence the connec-

tions between terminals. These active measurement frames contain a forward

error corrected payload which protects the sender address of the frame, allow-

ing frames to be identified more reliably when received in error. This improves

the ability for terminals to be identified when they are on the edge of receive

range.

A simple daemon process periodically injects 802.11 frames through a monitor

mode interface, which are then transmitted by the wireless NIC. These frames

are addressed to the broadcast address, so they are processed by all listening

terminals. The 802.11 MAC header is intentionally obfuscated by setting the

frame control bits to 1’s (an invalid combination) so that the driver does not

pass the frame up the network stack of any host it is received by. The frames

are however processed by the WMP kernel module(s).

The collected data is exported by the WMP measurement module via the

/proc virtual file system. Raw packet counts are kept for each terminal de-

tected, as well as information such as which BSS the terminal belongs to, the

terminal’s average signal-to-noise ratio, and the channel the BSS is operating

on.

5.4.2 Data Processing

A small daemon that runs on each host periodically collects and compresses

the data exported by the WMP measurement module. The compressed data
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is then sent via an HTTP POST to a central monitoring server. In the event

of a failure to send the measurement data, the daemon will retry a number of

times before giving up.

At the central processing server, a web CGI uncompresses the results as they

are POSTed by each monitored host and stores the data in a local database.

The database contains historical connectivity data for the entire network under

measurement.

With network connectivity data being collected from each host, hidden ter-

minals can be found by generating connectivity graphs and applying graph

theory. Each network interface is represented by a vertex in the graph, and

directed edges are drawn between vertexes when there is a record of packet

reception. New vertices are added for each transmitting interface seen, so all

terminals appear on the graph, whether they are under measurement or not.

For example, if terminal A has recorded receiving a frame from terminal B,

a directed edge will be drawn from B to A, even if terminal B is not under

measurement.

During construction of the graph, vertices that are added to the graph that

are not under measurement are marked as “external nodes”. An external node

represents a terminal which was not under measurement, but was detected by a

terminal that was under measurement. These external nodes have no incoming

edges since they do not report any connectivity information, so no assumptions

can be made about their part in hidden terminal activity. However, while the

method cannot draw any conclusions about external nodes’ participation in

hidden terminal activity, the presence of such terminals on the graph may

help to give information about the density of wireless activity in the area, and

hence the possibility of hidden terminal activity.

5.5 Implementation of the timing analysis method

The timing analysis method described in section 3.2 detects violations of the

IEEE 802.11 DCF by examining the inter-frame spacing of consecutive packets.

Violations of the DCF are likely to indicate the presence of hidden terminals,
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and the rate at which these violations are occurring can be used to estimate

the total probability of collisions due to hidden terminals.

The timing analysis method can be run on a single wireless network interface

to measure the rate of hidden terminal events at a single point in the network.

Alternatively it can be run on every wireless network interface in the network

as part of a long term measurement system. This is different from the network

connectivity method, which requires connectivity information from as many

interfaces in the network as possible.

As with the network connectivity method, the implementation of the timing

analysis method is split into two parts; raw data collection on the measured

hosts and processing on a central server.

5.5.1 Data collection

The timing analysis method is implemented as a WMP kernel module. Ob-

serving the properties of inter-frame spacing requires operating on consecutive

pairs of received frames. The WMP module retains information about the

previously received frame and compares it to the frame that is currently being

processed.

When a packet is processed the timestamp at the start of reception, tsstart, is

calculated using the method described in section 4.2. The inter-frame space

is determined by subtracting the timestamp at the end of reception, tsend,

of the previous packet from the tsstart of the current packet. If the resulting

inter-frame space is smaller than a configurable threshold—the default case

is 16µs—a packet pair record (Figure 5.6) is created. The packet pair record

describes the packet pair involved in the DCF violation and includes start and

end timestamps, bitrates, signal levels, sender addresses if applicable, flags

to indicate whether the packets were received in error and the length of the

received packet in octets.

Heuristics are applied to packet pairs as they are processed to improve the

DCF violation detection accuracy and are described in the following sections.

First, frames are tested for truncation to avoid mis-classification of collisions as
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1 struct ppr_t {
2 /∗ Timestamp when the d i f f e r e n c e was measured ∗/
3 struct t imespec tv ;
4
5 int64_t d i f f e r e n c e ;
6
7 unsigned int l a s t_oc t e t s ;
8 uint64_t l a s t_s t a r t ;
9 uint64_t last_end ;

10 unsigned int l a s t_ratecode ;
11 unsigned int l a s t_rxe r r o r ;
12 uint8_t last_sa [ 1 9 ] ;
13 unsigned int last_type ;
14 unsigned int last_subtype ;
15 unsigned int l a s t_truncated ;
16
17 unsigned int o c t e t s ;
18 uint64_t s t a r t ;
19 uint64_t end ;
20 unsigned int ra tecode ;
21 unsigned int r x e r r o r ;
22 uint8_t sa [ 1 9 ] ;
23 unsigned int type ;
24 unsigned int subtype ;
25 unsigned int t runcated ;
26
27 int shpreamble ;
28
29 struct ppr_t ∗ next ;
30 } ;

Figure 5.6: A Packet Pair Record describing the packet pair involved in a DCF violation.
The Packet Pair Records are stored as a simple linked list.

SIFS violations. Secondly, the length of the inter-frame space must be checked

to ensure that the correct PLCP preamble length is being used and adjusted

if not.

5.5.2 Detection of truncated frames

A truncated frame followed very closely by another frame is usually a symptom

of a collision. While collisions are in general caused by hidden terminals, they

are not used by the timing method as it is searching for SIFS violations rather

than collisions. The difference is that SIFS violations do not cause frame

overlap, rather they cause frames to arrive “too soon” after the previous frame.

Truncated frames cause the timing analysis method to erroneously classify the

collisions that caused them as SIFS violations. Truncated frames therefore

must be detected and marked as such so that the timing method can discard

these frame pairs.

If truncated frames are not removed from the sample set, a large number of 0,
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1 and 2 µs inter-frame spacings are recorded and are considered by the method

as SIFS violations when they are in fact not. It is not enough to simply remove

all instances of 1 and 2 µs frame spaces either, as these are valid values for

non-colliding inter-frame spacings in the presence of hidden terminals. Instead,

the first frame must be inspected to see if there are any indications that the

frame was truncated. If so, the frame pair is not considered as causing a SIFS

violation and is instead considered as a collision.

Detecting truncated IEEE 802.11 MPDUs is not straight forward. The PLCP

header includes a length field, but this is not generally made available to

the host operating system. The 802.11 MAC header that is available to the

host contains no length field. A heuristic must therefore be used in order to

determine if a frame is truncated.

Frames that pass their FCS are immediately classified as not truncated. The

remaining frames are checked against several rules to make a best-effort guess

at their truncation. The frame length is first checked against the minimum

IEEE 802.11 MPDU length. Then, if the ethertype of the MPDU payload is

recognisable the length of the frame is compared to expected frame lengths

for the payload. If the ethertype is not recognisable, the heuristic returns

“unknown”.

The ethertypes supported are: LLC/SNAP, ARP, IP, PPPoE, and EAPOL.

Care is taken to ensure that hardware data padding bytes are taken into ac-

count, as well as variable length 802.11 MAC headers such as optional QoS

and four-address frame formats. If these payloads can be decoded far enough

that a length field is found it is compared to the length of the received payload.

If the received payload is shorter than the expected payload length, then the

heuristic returns “truncated”.

In this way, a simple best-effort guess can be made to determine if frame trun-

cation has occurred and the mis-classification of collisions as SIFS violations

can be reduced.
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5.5.3 Detection of preamble length

The methodology requires the total length of the PPDU to be known in or-

der to accurately determine the start timestamp of the PPDU. The length of

the PLCP preamble varies depending on the PHY used by the transmitter and

other options of the transmitting terminal and so the total length of the PPDU

is not easily calculated. These options are not known by the receiver - there

is no indication that is given to a receiving host about the PLCP preamble

type that was used by the transmitter. In the absence of concrete informa-

tion regarding the PLCP preamble length, a heuristic must be applied. This

heuristic relies on the prior removal of frames that are known to be truncated

due to collisions which was presented in the previous section.

The heuristic is as follows: PPDUs sent with a PSDU encoding rate of 1Mbit/s

are sent with a long PLCP preamble, as the IEEE 802.11 standard requires

this to ensure backward compatibility amongst stations. All other PPDUs

have their PLCP preamble length set via an option on the transmitter. The

timing method first assumes that a long preamble was used. The total PPDU

length is calculated under this assumption and the inter-frame spacing is then

calculated. If this assumption yields the impossible result of an inter-frame

spacing with a large negative magnitude then assume a short preamble was

used.

Calculation of PPDU length is further complicated by the multiple High Rate

PHYs available. For example, a terminal operating in 802.11g mode has the

option of using either OFDM or DSSS encoding schemes for the PLCP header,

depending on the capabilities of the BSS. MPDU fields only indicate the ca-

pabilities of the stations, not the actual use of these optional parameters, and

again, information about the PPDU decoding is not passed to the host so it

is difficult to determine which encoding and hence which TXTIME calcula-

tion to use. As such, the implementation has been restricted to the IEEE

802.11b PHY as it requires less heuristics to determine frame length and still

demonstrates the viability of the method without loss of generalisation. The

implementation of an IEEE 802.11g PHY capable module is left as future work.

90



5.5.4 Identifying senders

Finally, to resolve hidden terminal collision based performance problems it is

very useful for a network operator to know how hidden terminal collisions are

distributed among the remote stations. In order to identify the terminals that

are involved in a particular hidden terminal collision, it is necessary to identify

the sender address of each packet in the pair.

The sender address of a packet is not always readily available. IEEE 802.11

Control frames, such as ACK and CTS frames do not contain a sender address.

Frames which are truncated, such as those involved in a collision, may not

contain enough of the payload to contain a sender address. Even though the

timing method discards packet pairs in which the first frame is truncated, the

second frame may be truncated due to a subsequent collision. Finally, frames

which fail their FCS may contain the sender address but it may be in error. As

such, only SIFS violation events in which both frames are able to be correctly

decoded are considered for sender identification. Packet pairs in which one

or both frames are damaged are counted towards the overall rate but are not

attributed to individual sender pairs.

5.5.5 Data output

The module records every packet pair that has an inter-frame space below the

defined threshold. These packet pair records are then exported via a CSV

formatted file in the /proc virtual file system. One file is created per interface

under measurement. When this file is read by a userspace helper process the

record list maintained in the kernel module is cleared to limit the maximum

memory use of the module. The number of records that the kernel module will

retain is limited and once this limit is reached, old records are dropped from

the tail of the list.

The file is prepended with a header containing metadata about the data col-

lection process. This includes the number of packets processed by the kernel

module, the number of events detected, the number of event records dropped

due to memory constraints, the device’s hardware address and its interface
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name and the total channel time occupied by frames received by the interface.

After the header, each record is printed separated by line endings. The data in

each CSV record consists of: the inter-frame space in microseconds and then

for each packet in the pair, the MPDU length in octets; the tsstart and tsend

timestamps of the PPDU; the PSDU bitrate; the error flag; the sender address

if available; the frame type and subtype; and the results of the truncation and

preamble heuristics.

5.5.6 Post processing

A small userspace helper process on each measured host periodically reads the

contents of the /proc file and transmits its contents back to a central server

via an HTTP POST. The POST handler on the server inserts records into an

SQLite database for future processing.

For IEEE 802.11b PHYs (HR/DSSS), if the inter-frame space x is 0µs < x <

8µs, and the first frame of the packet pair was not truncated, the event is

counted as a violation of the SIFS. The sender of the second frame caused a

violation as it was unable to detect the transmission of the sender of the first

frame. The sender address of each frame may be available in the event record

if the frames contained sender addresses, which allows the event to be counted

against the sender of the second frame.

The total number of frames received by the interface and the total channel time

occupied are available as part of the update and along with the counts of SIFS

violations, the total number of hidden terminal collisions can be estimated by

using the equations presented in 3.2.

5.6 Chapter Summary

This chapter has presented a set of implementation requirements which con-

strain the implementation of the hidden terminal detection methods in order

to make them widely usable by network operators. It has discussed existing

techniques for wireless measurement and has shown that existing techniques
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do not meet these requirements.

This chapter has introduced the WMP kernel measurement framework for low-

overhead, accurate measurement of wireless networks. WMP instruments the

wireless stack directly in the kernel, giving measurement modules access to ex-

actly the same frames as were processed by the host under measurement while

not imposing extra overheads usually introduced by passive internal capture.

The WMP approach meets the implementation requirements.

Finally, each of the hidden terminal detection methods were implemented

within the WMP framework and the details of each implementation were dis-

cussed. The following chapter presented results from a real-world deployment

of the implementations discussed in this chapter. It shows that they can be

used to detect and measure the effect of hidden terminals in a real, operational

wireless network.
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Chapter 6

Deployment Results

This chapter shows that the combination of network connectivity and timing

methods can be used on an operational network to detect the potential for,

and measure the effect of, hidden terminals. It also demonstrates how this

information can form the basis for tools that are useful to network operators

to help diagnose real world network problems.

The methods described in Chapter 3 were validated in a laboratory setting in

Chapter 4 and their implementation within a wireless measurement framework

for Linux-based wireless routers was described in Chapter 5. This chapter

presents results from case studies based on deployment of the hidden terminal

detection methods within an operational, commercial IEEE 802.11 network.

The methods were implemented within the WMP Kernel Measurement Frame-

work (Chapter 5) and were deployed across 85 wireless routers comprising the

backbone and access network of a commercial rural wireless ISP in Hamilton,

New Zealand.

The Rural Link no.8wireless network is primarily made up of 5.8GHz point-to

point backbone links and a 2.4GHz point-to-multipoint access network, based

on IEEE 802.11 technology. Client CPEs and the backbone routers run a

customised GNU/Linux operating system and use Atheros 802.11 chipsets,

making the network a suitable target for measurement using the WMP Kernel

Measurement Framework described previously.

All of the wireless interfaces in the network were measured. Three cases are

described in detail in this chapter to illustrate the various ways in which the
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methods can give network operators useful information about the impact hid-

den terminals may be having on the performance of their network. Each case

study is introduced with a description of the segment of the network and its

traffic characteristics followed by results of the connectivity and timing meth-

ods and a discussion of the results obtained.

The connectivity graphs (e.g. Figure 6.2) show hidden terminals from the

perspective of the interface under measurement by showing the connectedness

of terminals that are heard by the interface under measurement. The con-

nectivity graphs shown do not include external terminals that were not under

measurement as connectivity data for such terminals is unavailable. Such ex-

ternal terminals may however cause hidden terminal collisions at the interface

under measurement. These will be detected by the timing method.

The remote terminals shown in the connectivity graphs may hear other ter-

minals that the interface under measurement cannot. In this case, the termi-

nals are not considered hidden terminals with respect to the interface under

measurement as they cannot produce a collision with it. Such terminals are

generally referred to as “exposed” terminals [11], as they prevent the affected

terminal from transmitting to a third terminal that would otherwise not cause

a collision due to their participation in CSMA. Exposed terminals are not the

focus of this thesis and hence are not included in the connectivity graphs,

however they can be detected by the network connectivity method.

The interfaces to study were chosen from the set of measured interfaces by

measuring the connectivity of each interface, ordering them, and choosing three

examples that were indicative of different levels of connectivity. These three

examples were then studied in detail and their results are presented in the

following sections. The interfaces were not chosen based on their measured

collision rates or any other factor that made them more or less likely to show

“interesting” results. In this way, three interfaces were chosen which illustrate

three different hidden terminal scenarios without bias toward any particular

result.
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Figure 6.1: Indicative traffic profile of the KAA access point interface over a 24hr period
with 5 minute averages. This graph shows traffic generated by directly connected clients.
Any 802.11 traffic that can be heard by this interface but is filtered (i.e. not part of the
BSS) will not be included in this graph.

6.1 Case Study 1

The first case study shows a site with good connectivity between its clients.

The “KAA” repeater site in Whakamaru, New Zealand is an edge node of the

5.8GHz wireless backbone network. The site itself is in a remote area which

is an otherwise quiet radio environment at 2.4 GHz. It hosts a 2.4GHz access

point interface that services nine client CPEs. On an average day, the clients

connected to the site generate an average of 100 Kbps of aggregate traffic,

peaking to approximately 1 Mbps (Figure 6.1).

Seven of the nine clients are within a 300 meter radius of the site. The other two

clients are approximately 1.5 kilometres from the site. Network connectivity

(Figure 6.2) shows that the clients are mostly well connected which is expected

in cases where clients are within such close proximity of one another. Such

well-connected clients are unlikely to exhibit significant numbers of hidden

terminal collisions.

The timing method shows a very low level of detected SIFS violations, and

hence estimates a low hidden terminal collision probability (Figure 6.3).

This case shows that, for a set of well connected sites, very few hidden ter-

minals collisions are detected by the proposed methodologies, as expected.

This information would allow network operators to be confident that hidden

terminals are not causing performance problems. Performance problems in a

scenario like this one would more likely be attributed to other factors such as
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Figure 6.2: Connectivity graph for KAA site. The blue square node indicates the access
point interface under measurement. The yellow circular nodes indicate terminals that the
interface under measurement can hear. A directed edge indicates connectivity from the tail
to the head node.
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Figure 6.3: Estimated hidden terminal collision rate based on timing method at KAA site.
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Figure 6.4: Indicative traffic profile of the HAU access point interface over a 24hr period
with 5 minute averages.

non-802.11 interference, signal fading, hardware faults, or other effects.

6.2 Case Study 2

In this case study, an access point on the network is shown to have poor

connectivity between its clients which would suggest a high possibility for

hidden terminal collisions. However, the timing method shows few hidden

terminal collisions actually occurring during the period of measurement.

The “HAU” repeater site in Ngahinapouri, New Zealand, has eight clients and

the network connectivity graph shows relatively poor connectivity between

them. In particular, several of the clients can only hear one or two of the other

clients, suggesting a high probability of hidden terminal collisions.

The timing method shows that hidden terminal collisions are detected and es-

timates that they cause approximately 1% of packets to collide. The directly

connected clients that are causing the majority of identified SIFS violations as

shown in Table 6.1 are the clients that are most poorly connected in the net-

work connectivity graph (Figure 6.5). The low hidden terminal collision rate

is consistent with the traffic patterns of the clients involved. On an average

day, the clients generate an average of 200Kbps of aggregate traffic, peaking

to 1.1 Mbps. If the clients are all relatively light users of the network fewer

collisions are likely to occur even when connectivity shows a high potential for

hidden terminal collisions. The indicative traffic graph (Figure 6.4) shows traf-

fic only from directly connected clients, however the estimated hidden terminal
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Figure 6.5: Connectivity graph for HAU site. Note that while there are no non-directly
connected clients visible, the directly-connected clients form two distinct groups that are
hidden from one another.
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Figure 6.6: Estimated hidden terminal collision rate based on timing method at HAU site
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Table 6.1: Top identified sources of SIFS violations at HAU over a 24 hour period.
Sender MAC Address SIFS Violations Detected Directly Connected

00:18:0a:01:5d:04 (G) 518 Yes
00:11:3b:11:6c:69 377 No
00:15:6d:53:ee:60 298 No

00:18:0a:01:5a:43 (B) 162 Yes
00:16:e3:64:8e:70 150 No

00:12:cf:81:fe:bd (E) 39 Yes
00:12:cf:cb:93:0 (C) 18 Yes
70:72:cf:17:2b:a1 (H) 13 Yes
00:18:0a:01:5c:da (D) 10 Yes
70:72:cf:17:2d:b (A) 6 Yes
00:12:cf:80:69:37 (F) 5 Yes

collision rate is no smaller than 0.8% throughout the 24 hour period. Table

6.1 shows a large number of SIFS violations are detected from non directly

connected clients, which could explain this background level of collisions, even

when traffic from directly connected clients is low.

This case study shows the different strengths of the two methodologies. The

network connectivity method finds the potential for hidden terminal collisions

while the timing method measures the current impact of hidden terminal col-

lisions. Network operators can use the information from the network connec-

tivity method to identify areas in the network that require monitoring. If

the traffic in this part of the network increases it is likely that the number of

hidden terminal collisions would also increase.

6.3 Case Study 3

The final case study shows a site that has very poor connectivity between its

clients and very high hidden terminal collision detections. The “PKU” repeater

site in Te Awamutu, New Zealand is situated on an elevation with wide ranging

views of the Waikato plains. It is also an edge node on the 5.8GHz wireless

backbone, with a 2.4GHz sector antenna for client access.

The site itself has 11 directly connected clients, however the network connec-

tivity method shows it is able to receive transmissions from 22 transmitters

in total. The non-directly connected transmitters are part of the same net-
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Figure 6.7: Indicative traffic profile of the PKU access point interface over a 24hr period
with 5 minute averages.

work under measurement. The directly connected clients are poorly connected

amongst themselves due to long link distances and the additional transmitters

that can be heard by the access point interface add to the potential for hidden

terminal problems. In this case, Figure 6.8 shows a very high potential for

collisions to be caused by hidden terminals.
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Figure 6.8: Connectivity graph for PKU site. Note that several other site interfaces can be heard by the PKU interface under measurement, including another
interface on the same host. These non-directly connected interfaces are indicated in black. Most of the client CPEs are poorly connected to each other, and there
are several client CPEs visible that are not directly connected to the PKU site.
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The timing method confirms this theory (Figure 6.9), estimating between a

5 and 13% collision rate due to hidden terminals. The collision rates are

consistent over time, showing that this segment of the network is badly affected

by the hidden terminal problem.

Table 6.2 shows the remote terminals that the methodology identified as caus-

ing collisions and the number of detected SIFS violations caused by each. The

table shows that the non-directly connected terminals were the main source

of SIFS violations. Further investigation into the problem showed that the

non-directly connected terminals were transmitting on the same channel as

the terminal in question.

Although the no. 8wireless network operators were aware that the interfaces

involved were operating on the same channel, it was thought that the sites

were sufficiently separated geographically that transmissions would not inter-

fere. With this new information in mind, the channel allocation scheme was

modified to reduce channel overlap. Figure 6.10 shows the connectivity after

the change. The number of non-directly connected terminals decreased from

11 to 2. The estimated rate of hidden terminal collisions (Figure 6.11), de-

creased from approximately 10% to 2%. The lead to an overall improvement

in the performance of the network.

This case study shows that the combination of the network connectivity and

timing methods can provide relevant information to network operators that

allows them to discover, diagnose and resolve hidden terminal based network

problems. It demonstrates that these problems may cause a significant degra-

dation of network performance but are not always visible to operators. The

use of WMP found this problem when passive measurement would not have, in

part because WMP could be deployed on all terminals in the network without

significant cost. The connectivity method highlighted the potential for hid-

den terminal collisions to occur and the timing method showed the extent of

those collisions. It highlighted that non-directly connected terminals were the

largest contributors. This in turn allowed the network operators to make con-

figuration changes that improved the performance of the network by reducing

the number of hidden terminal collisions.
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Figure 6.9: Estimated hidden terminal collision rate based on timing method at PKU site

Table 6.2: Top identified sources of SIFS violations at PKU over a 24 hour period. This table
shows the majority of SIFS violations were caused by non-directly connected interfaces, and
in particular, other access point interfaces on the network.

Sender MAC Address SIFS Violations Detected Directly Connected

00:0b:6b:80:c5:5e (mil) 570 No
70:72:cf:17:26:fd 362 Yes

00:0b:6b:57:45:e8 (tmw) 318 No
00:0b:6b:db:ec:27 (wde) 269 No
06:0b:6b:80:c5:5e (mil) 154 No
00:0b:6b:37:23:a9 (dav) 96 No

00:12:cf:d3:36:03 62 Yes
00:12:cf:c9:3e:f8 53 Yes
00:18:0a:01:5c:81 38 Yes
00:12:cf:83:82:15 35 Yes
00:0b:6b:84:b4:5a 23 Yes
00:12:cf:81:80:5d 20 Yes
00:0b:6b:84:b5:54 15 Yes
00:12:cf:d3:35:17 13 Yes
00:12:cf:d3:9b:49 8 Yes
00:0b:6b:0a:83:ef 8 No
00:12:cf:d3:35:21 8 Yes
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Figure 6.10: Connectivity graph at PKU after channel change. Only two non-directly con-
nected terminals are now present in the graph. The connectivity between directly connected
client CPEs remains similar, as expected. Hidden terminal collisions are still likely due
to poor connectivity between directly connected visible terminals as well as the removal of
other site interfaces should reduce the overall collision rate.
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Figure 6.11: Estimated hidden terminal collision rate based on timing method at PKU
site. At midnight local time (12 noon UTC), the channel was changed based on previous
connectivity data. The drop in hidden terminal collisions is reflected here.
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6.4 Chapter Summary

This chapter has presented three case studies in which the network connectiv-

ity and timing methods were used to characterise hidden terminal activity at

individual wireless repeater sites on an operational commercial wireless net-

work.

In all three cases, the methods provided practically useful information to the

network operators. In one case, the methods diagnosed a significant problem

and the network operators were able to make changes to the network which

improved overall performance. Without the use of the hidden terminal detec-

tion methods, it is unlikely that the channel planning issue would have been

detected.

The information returned by the hidden terminal detection methods was anal-

ysed manually for the purposes of this chapter. However, the analysis is easily

automated, allowing for integration into automated network monitoring sys-

tems and analysis by non-expert operators.

This chapter has shown that the hidden terminal detection methods presented

in this thesis are practical and useful in a real world, operational wireless

network environment. It has also shown empirically that the effect hidden

terminals can have on a network is significant, further confirming existing

literature.
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Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

The hidden terminal problem is an important issue in wireless networks based

on the CSMA medium access control scheme. In particular, tools are required

to reduce the difficulty of diagnosing complex issues such as the hidden termi-

nal problem in community networks operated by non-experts. In this thesis,

new methods are presented for the detection and measurement of the hid-

den terminal problem in networks based on commodity hardware and software

platforms.

A method that measures network connectivity can be used to detect areas of a

network in which hidden terminals have the potential to affect the performance

of the network. A complimentary method that uses the strict timing require-

ments of the IEEE 802.11 Distributed Coordination Function can be used to

detect actual instances of the hidden terminal problem. An extension of the

timing method allows for an estimation of the overall impact hidden terminals

are having on the performance of the network by estimating the total rate of

collisions caused by hidden terminals.

The methods are validated in a controlled laboratory environment through

a set of experiments in which known rates of hidden terminal collisions are

generated. It is shown that the overall rate of collisions caused by hidden

terminals can be estimated based on detection of SIFS violations during times

of low to medium packet loss. During times of high packet loss, the estimation
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accuracy is reduced.

The methods are implemented within a new framework for instrumenting

Linux based wireless routers. This framework allows for measurement to be

performed on wireless routers without significant impact on the performance of

the network. The in-kernel approach to measurement provides an abstracted

API against which measurement tasks can be implemented without the need

for module writers to integrate directly with individual device drivers. This

approach simplifies the implementation of measurement tasks and provides a

number of benefits over existing techniques for performing wireless measure-

ment. The performance penalty of performing measurement in userspace is

reduced when compared to passive internal capture. The need for external

measurement hardware is removed and the overall accuracy of measurement is

improved when compared to passive external capture.

Three case studies are presented in which the hidden terminal detection meth-

ods are deployed in an operational rural wireless network. In all three cases,

the methods are able to provide useful information to the network operators

about the state of hidden terminals in the network. In one case, the methods

highlight an area of the network which is suffering from hidden terminal prob-

lems and identifies the source of the hidden terminal collisions. The network

operators were able to make a change to the network configuration, measur-

ably reducing the impact of hidden terminals on network performance. These

case studies show that the hidden terminal detection methods are useful in

real-world operational networks and can provide information to help diagnose

the root cause of network performance problems.

7.2 Conclusions

This thesis set out to answer the question, “can hidden terminals be detected

and can their impact on a network be measured using commodity hardware

and software?” This thesis has developed, validated, implemented and tested

two new methods for detecting hidden terminals as well as a new in-kernel

wireless measurement framework in which to implement the methods. The
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results of laboratory validation as well as real-world operational deployment

succeed in answering the original thesis question positively.

As part of implementing the two methods in order to be useful to operators

of existing wireless networks, a new approach to wireless measurement was re-

quired and so a new in-kernel wireless measurement framework was developed.

The new framework allows measurement to be deployed in a cost effective

manner over the entirety of the network without the performance penalty or

additional costs associated with existing measurement approaches. Reducing

the cost and performance impact of measurement allows network operators

to deploy measurement more widely than previously possible, increasing the

benefits of such measurement.

The combination of the two methods provide valuable insight for operators of

wide area 802.11 networks. The network connectivity method can highlight

areas in the network that have the possibility for hidden terminal collisions

to occur, and it can discount hidden terminal collisions as the cause of poor

performance when the network is well connected. The timing method can then

measure the impact hidden terminals are having on the network and identify

those terminals that are hidden from one another, allowing network operators

to make changes to the network, as illustrated in Chapter 6. The use of the

two methods in parallel can provide valuable information to the operators of

wireless networks.

This thesis concludes that hidden terminals can be detected and their overall

effect can be estimated in networks using commodity hardware and software by

performing measurement efficiently in-kernel and by using connectivity mea-

surements and packet timing analysis. The methods become useful in an op-

erational context when they are able to be deployed across the entire network

without negative performance impact and without additional significant costs

associated with previously existing methods for performing wireless measure-

ment. It has also shown through case studies that the ability to detect and

measure hidden terminals is useful in a real-world, operational context. The

operators of the case study network continue to use the WMP framework and

the hidden terminal detection methods as part of their standard network mon-
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itoring regime.

7.3 Future Work

The hidden terminal detection methods presented in this thesis as well as the

WMP kernel measurement framework in general open many opportunities for

future research. This section outlines several new areas of research that could

now be pursued.

There are many applications for the hidden terminal detection methods outside

of what has been presented in this thesis and scope for future work to extend

it. The detection of DCF violations could be integrated into wireless receiver

hardware and allow the NIC a way to detect the presence of hidden terminal

collisions itself and report these to the host operating system. The method

could be used by the 802.11 stack to adjust its behaviour in the presence of

hidden terminal collisions, either by co-operatively scheduling transmissions or

by switching to a TDMA-like protocol, for example.

The hidden terminal detection and measurement methods become even more

valuable when applied to increasingly popular ad-hoc and mesh wireless net-

works. The prevalence and impact of hidden terminals in ad-hoc and mesh net-

works due to their unplanned nature warrants detailed study. Several studies

of the hidden terminal problem in ad-hoc networks exist, for example [34, 22],

and the WMP framework could be used to further these by providing further

data through the connectivity and timing methods. Ad-hoc and mesh rout-

ing protocols could potentially be improved if they were to be made aware of

collisions occurring due to the presence of hidden terminals.

The WMP framework for in-kernel wireless measurement and the hidden ter-

minal detection methods presented in this thesis makes longer term studies of

hidden terminal behaviour in wireless networks possible. Existing work into

simulation of the effect of hidden terminals on throughput and rate control,

such as [24], could be extended with data collected from real-world, operational

wireless networks.
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Bitrate selection algorithms are still an active area of research and a study

of the effect of bitrate selection algorithms on hidden terminal collision rates

would be a useful piece of future work. For example, if rate selection algorithms

are consistently choosing high bitrate encodings resulting in low received signal

to noise ratio this may cause terminals to become hidden from one another.

This result has been suggested in a recent study of Meraki mesh networks [32]

in which the authors state that a lack of data from a wide range of networks re-

duces the overall understanding of such networks. The WMP framework allows

operators of wireless networks based on commodity hardware and software to

collect detailed data sets which could be used to improve the availability of

such data and hence the understanding of these networks.

More generally, the WMP kernel measurement framework allows for long term,

low overhead and wide scale measurement of wireless networks. The WMP

framework can be used to collect large amounts of data about the operation

of wireless networks in a way that does not significantly impact on the per-

formance of the network. This allows for long term measurement studies and

collection of large data sets from real-world networks. Phillips et al [45] have

used real-world data collected by the WMP kernel measurement framework

to publish a study that challenged traditional path loss prediction models.

Additional work to collect real-world data sets for use in future research is

ongoing.
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Appendix A

Related Publications

In-kernel passive measurement of the performance impact of hidden termi-

nals in 802.11 wireless networks was published in the proceedings of the 8th

ACM Symposium on Performance Evaluation of Wireless Ad-Hoc, Sensor, and

Ubiquitous Networks, pages 81–88, 2011. It describes the WMP kernel mea-

surement framework and two new methods for hidden terminal detection and

measurement [54].

The Efficacy of Path Loss Models for Fixed Rural Wireless Links was published

in the proceedings of the 12th international conference on Passive and Active

Measurement, pages 42–51, 2011. It describes the use of data collected by the

WMP kernel measurement framework which was used to challenge traditional

path loss prediction models [45].

Other Publications

Using the IEEE 802.11 Frame Check Sequence as a Pseudo Random Number

for Packet Sampling in Wireless Networks was published in the proceedings

of the 7th international conference on modelling and optimisation in mobile,

ad-hoc and wireless networks, WiOPT’09, pages 552–557 [53].
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