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Abstract summer monsoon rainfall in northeastern (NE) Australia exhibits substantial interannual variability
resulting in highly variable river flows. The occurrence and magnitude of these seasonal river flows are reliably
recorded in modern inshore corals as luminescent lines. Here we present reconstructed annual river flows for
two ~120 year mid-Holocene windows based on luminescence measurements from five cores obtained from
three separate coral colonies. We were able to cross-date the luminescence signatures in four cores from two of
the colonies, providing confidence in the derived reconstruction. Present-day NE Australian rainfall and river flow
are sensitive to El Nifio—Southern Oscillation (ENSO) variability, with La Nifa (El Nifio) events typically associated
with wetter (drier) monsoon seasons. Thus, our replicated and annually resolved coral records provide valuable
insights into the northern Australian summer monsoon and ENSO variability at a key period (6 ka) when
greenhouse gas levels and ice sheet cover were comparable to the preindustrial period but orbital forcing was
different. Average modern and mid-Holocene growth characteristics were very similar, suggesting that sea
surface temperatures off NE Australia at 6 kyr were also close to present values. The reconstructed river flow
record suggests, however, that the mid-Holocene Australian summer monsoon was weaker, less variable from
year to year (possibly indicative of reduced ENSO variability), and characterized by more within-season flood
pulses than present. In contrast to today, the delivery of moisture appears to have been dominated by
eastward propagating convective coupled waves associated with the Madden-Julian Oscillation.

1. Introduction

Reliably projecting future climatic conditions depends on the ability to realistically model both the present
and times in the past subjected to different climate forcings. Knowing that such paleoclimatic models are
indeed realistic depends upon comparisons with paleoclimatic records [Braconnot et al., 2012a, 2012b].
Reconstructions from natural archives can, however, encompass, a wide spread of ages, climate interpretation,
local or regional representativeness, and temporal resolution [Wanner et al,, 2008]. The latter becomes particularly
important when trying to capture the current major source of interannual climate variability, El Niio—Southern
Oscillation (ENSO) events, and assessing how these could change in the future as the world continues to warm
[Collins et al., 2010].

Here we examine interannual variability of the northeastern (NE) Australian monsoon for two absolute-dated
windows in the mid-Holocene (~6 ka). At this time the primary driver of climate differences from present was
orbital forcing, leading to greater summer insolation in the Northern Hemisphere extratropics and reduced
summer insolation in the Southern Hemisphere extratropics [Braconnot et al.,, 2007; Wanner et al., 2008]. Although
some climate model studies suggest a mid-Holocene enhancement of the Australian monsoon [Liu et al., 2004],
recent multimodel studies [Zhao and Harrison, 2012; Mantsis et al., 2013] suggest a weakening. Unfortunately, few
quantitative paleoclimate reconstructions are available from northern Australia for comparison with climate
simulations, but qualitative paleoclimatic data imply relatively moist conditions prior to ~5 ka [Haberle, 2005;
Donders et al., 2007] which may be related to a stronger summer monsoon. Several modeling studies suggest
that ENSO-driven climate variability was suppressed during the mid-Holocene and that modern ENSO variability
only appeared after ~5 ka [Clement et al., 2000; Conroy et al., 2008; Zheng et al., 2008; Roberts et al,, 2013]. Various
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sources of proxy climate information, although limited in number, spatial coverage, and of varying temporal
resolution, appear to support this [Schulmeister et al., 2006], though the models tend to underestimate the
magnitude of the reduction in variability suggested by the proxy records [Brown et al., 2008].

Importantly, annual and subannually resolved stable oxygen isotope records (reflecting sea surface
temperature (SST) and/or salinity) from fossil Indo-Pacific corals provide evidence for ENSO variability
operating over at least the past 130ka [Tudhope et al., 2001]. When compared to modern conditions
some coral and other paleoclimatic records imply reduced ENSO variability in the mid-Holocene

[Moy et al., 2002; Gagan et al., 2004; Cane, 2005; McGregor and Gagan, 2004; Conroy et al., 2008; Wanner
et al., 2008; Koutavas and Joanides, 2012; Cobb et al., 2013; McGregor et al., 2013]. These and other
studies also suggest that ENSO variability is currently higher than in the past, though attributing this to
anthropogenic forcing is confounded by the paleo-evidence for temporal variations in the magnitude of
variability [Cobb et al., 2013]. Modeling studies also highlight multidecadal variability in ENSO amplitude
with extended periods of enhanced or suppressed activity that can make it difficult to detect ENSO
responses to changing climate forcings [Wittenberg, 2009; Borlace et al., 2013]. More tropical paleoclimatic records
are needed to better constrain both monsoonal and ENSO activity at key periods in the past and compare
with paleoclimate model simulations [Brown et al., 2008; Griffiths et al., 2009; Mooney et al., 2011; Luan et al,, 2012;
Zhao and Harrison, 2012; Mantsis et al., 2013].

Rainfall across northern Australia is concentrated in the summer half year associated with the seasonal
southward migration of the Australasian monsoon [McBride, 1987]. Summer monsoonal rainfall shows
large-scale coherence across NE Australia and also substantial interannual and decadal variability
[Lough, 1991; Verdon et al., 2004]. Interannual rainfall variability is linked with ENSO activity with drier
conditions typically related to El Nifio events and wetter conditions typically associated with La Nifa
events [Lough, 1994; Risbey et al., 2009]. The recent 2010-2011 and 2011-2012 La NiAa events, for
example, resulted in substantial flooding across large parts of Queensland [Bureau of Meteorology,
2012]. The strength of the teleconnection between NE Australian rainfall and ENSO is modulated on
decadal time scales by the Pacific Decadal Oscillation (PDO) [Mantua et al., 1999; Power et al., 1999].
The link between ENSO and NE Australian rainfall is stronger during PDO cool phases and rainfall
anomalies show greater coherence across the region and higher variability compared to PDO warm
phases [Kiem et al., 2003; Verdon et al., 2004; Meinke et al., 2005]. Intraseasonally, monsoonal rainfall
activity is modulated by the Madden-Julian Oscillation (MJO) with active and suppressed convective
activity and hence rainfall associated with the passage of the wavelike disturbance across northern
Australia [Risbey et al., 2009; Wheeler et al., 2009; http://www.bom.gov.au/climate/mjo/#tabs=MJO-phase]. The
highly seasonal and variable rainfall regime of NE Australia also results in highly seasonal and variable river flows
[Finlayson and McMahon, 1988; Lough, 1994] with eastern Australian river flows being the most sensitive in the
world to ENSO extremes [Ward et al., 2010].

Significant freshwater discharge into the nearshore waters of the Great Barrier Reef (GBR) occurs primarily during
the Australian summer monsoon. The resulting freshwater flood plumes tend to not only flow northward from
the river mouths as a result of prevailing winds and the Coriolis Force but are also limited to within ~20 km from
land and can be up to 20 m thick [King et al,, 2001]. Although there are 35 river catchments draining into the GBR,
two thirds of the total drainage area is contributed by the Burdekin and Fitzroy River catchments alone. The
occurrence and intensity of these freshwater flood plumes is reliably recorded in inshore annually banded
massive coral skeletons as luminescent lines when slices are viewed under ultraviolet (UV) light [Isdale, 1984]. The
luminescent lines are the result of terrestrial humic and fulvic acids transported in the flood plumes being
incorporated into the coral skeleton [Boto and Isdale, 1985]. They have been shown to reflect river flow
and rainfall in adjacent catchments on the GBR [Lough et al., 2002; Jupiter et al., 2008; Lewis et al., 2012]
and other tropical coral reef sites [Scoffin et al., 1989, for Papua New Guinea; Fang and Chou, 1992; Peng
et al., 2002; Grove et al., 2010]. Coral luminescence records have also been used to develop robust
reconstructions of tropical river flow and rainfall over recent centuries [Smith et al., 1989; Isdale et al., 1998;
Hendy et al., 2003; Lough, 2007, 2011; Grove et al., 2013] and to infer rainfall regimes that differ from
present in the late Quaternary [Klein et al., 1990]. There are, however, a few reports of luminescent lines in
corals which appear to have no correlation with river flow or rainfall (e.g., Scoffin et al. [1989] for south
Thailand and Moses and Swart [2006] for Tobago) or where there is no immediate source of freshwater
flow to the reefs (e.g., Tudhope et al. [1996] for southern Oman).
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Figure 1. Map of Magnetic Island and Nelly Bay, Australia, showing occurrence of coral reefs (shading) and Nelly Bay. Inset
shows seasonality of annual rainfall across northern and eastern tropical Australia (adapted from Australian Bureau of
Meteorology, www.bom.gov.au) and the Burdekin River.

During dredging in 2001 for construction of a marina in Nelly Bay, Magnetic Island, central GBR (~19°S, 147°E,
Figure 1), several large (2-3 m), whole massive Porites corals were retrieved from under ~ 0.5 m of sediment
on the sea floor. A preliminary assessment of their age, based on their location, suggested that they lived and
died in the mid-Holocene between ~4 and 7 ka—a key period for paleoclimate modeling [Harrison et al.,
2002]. Corals in Nelly Bay are most strongly influenced by annual freshwater flood plumes of the Burdekin
River [King et al., 2001] which currently enters the GBR lagoon ~100 km to the south.

Here we examine the annually resolved luminescence records in three of these mid-Holocene corals and
compare them with three modern corals from the same location. We report accurate radiocarbon dating of
the mid-Holocene corals, a comparison of modern and mid-Holocene humic acid signatures, assessment of
diagenetic alteration of the coral skeletons, and the development of a mid-Holocene reconstruction of
Burdekin River flow. Specifically, we consider whether the environment for coral growth in Nelly Bay and the
signature of Burdekin River flood events, and inferred NE Australian monsoon variability, were substantially
different between the mid-Holocene and the present.

2. Materials and Methods
2.1. Coral Samples

Eight mid-Holocene corals recovered from Nelly Bay in 2001 were returned to the Australian Institute of
Marine Science (AIMS) and two to three cores extracted from each colony using standard drilling techniques
[Isdale and Daniel, 1989]. When X-rayed, ~7 mm thick slices from some of the cores showed annual density
banding patterns suitable for dating and extraction of growth and geochemical information [Lough and
Cooper, 2011] and all cores showed luminescent lines when slices were viewed under UV light. Here we focus
on five cores from three of these corals: two from NELO3 (NELO3A and NELO3D), two from NELO7 (NELO7B and
NEL07C), and one from NELO1 (NELO1D) for which initial radiocarbon and U/Th dating indicated the corals
lived and died nearly contemporaneously during the mid-Holocene ~6 ka [Lewis, 2005]. For comparison,
three modern short cores (NEL29A, NEL35A, and NEL39B), collected from living corals in Nelly Bay in 2004,
were selected from the AIMS coral core archive (Table 1). Some additional analyses were undertaken on a
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Table 1. Details of Coral Cores” modern core from Geoffrey Bay, Magnetic Island, collected
AIMS Sample ID Years in May 1987 (AIMS ID MAGO1D) previously used in the

Mid-Holocene reconstruction of NE Queensland summer rainfall [Lough, 2011].
NELO3A 298 to 232

2.2, Radiocarbon Dating of Corals

NELO3D 313 to 234

NELO7B 294 to 188 2.2.1. Sample Pretreatment and Measurement

NELO7C 294 to 199 Contiguous decadal samples were taken for radiocarbon

NELO1D 128-75, 67-0 dating through NELO3D, NELO7B, and NELO1D pretreated at
Modern AIMS using the technique of Nagtegaal et al. [2012]. Samples

HELZER Jegz e were cleaned with analytical grade sodium hypochlorite (one

NEL35A 1971-2002 £ de 8-12.5% ilable chlori

NEL39B 1972-2002 part of reagent grade, 8-12.5% available chlorine to one part

*Year 0 5 the last dateable year ot the outer Milli-Q) f9r ~20h 'Fo remove nonskeletal matter trapped in the
e fEiEess v @ NEAWID whid corals prior to being subsampled and dated. Samples were
was ~2cm from the colony surface. There then rinsed 3 times with Milli-Q water in an ultrasonic bath for
is a 7 year gap in the NELO1D record (Years 68 10 min, blown with compressed air (to remove loose
iﬁ;ﬁe)nzstshof)'?ttide ‘g';g \i/agsrcc)jvgttr:\l?r::;;om particles) and dried in a 40°C oven. At the University of
an adjacent core. Allowing for the 60 year gap Waikato samples were given a light acid wash to remove any
identified by radiocarbon dating (section 3.1),  surface contamination during shipment. Coral blocks
ﬁi:;;fgl;g\rlzstgc;fa'r\lgl‘gf’,\?g&:\gl‘w are weighing 8-10 g were digested with 2 M HCl and the CO,

subsampled for Accelerator Mass Spectrometry (AMS)

analysis, with graphite produced at the University of Waikato
(laboratory code “Wk”) and '*C analysis at the University of California at Irvine. Oxalic acid Il (HOxIl) was used
as the normalizing standard with Carrara Marble used as the Background blank. 6'>C fractionation correction
was achieved with measurements obtained from the AMS spectrometer itself.
2.2.2. Radiocarbon Calibration Using Marine 13 and OxCal 4.1
To calibrate the sequence of ages, we wiggle-matched the radiocarbon ages to the Marine13 curve [Reimer
et al., 2013] using the calibration program OxCal 4.1 [Bronk Ramsey, 2008; Bronk Ramsey and Lee, 2013; see
supporting information]. The Marine13 curve was generated by a marine-atmosphere-ocean box model and
represents a hypothetical “global” marine reservoir [Reimer et al., 2013]. Although Marine13 provides a
baseline for ocean variations in '*C, a local marine reservoir age correction of 11 + 13 years had to be applied
using local preindustrial observations (http://calib.qub.ac.uk/marine/). We assumed annual precision with no
counting error and used the option “Defined Sequence” (D-sequence) to fix the period (10 years) between
the midpoints of the dated decadal blocks; where the two coral sequences for NELO3D and NELO7B overlap,
the period between midpoints was 5 years.

Using Bayes theorem, it is possible to use prior knowledge in the calibration of radiocarbon ages to increase
the accuracy and precision of the age model. In the context of the Nelly Bay corals, this prior information is
the known chronological sequence of growth. The probability distribution of each radiocarbon age
measurement is first treated independently of the other ages in the analysis. The calibration is then
constrained to take into account coral growth. The result is a sequence of prior (unconstrained) and posterior
(constrained) probability distributions, and the difference expressed as an agreement index. By adjusting the
positions of the data points within their uncertainties, a record of known duration can therefore be fixed
against an absolutely dated sequence (Marine13), with the posterior probability densities quantifying the
most likely age distributions.

All Nelly Bay ages had a large overlap with the likelihood probability distribution and returned an agreement
index >60%. The overall model agreement index was 252.3%. This high level of agreement provides
confidence in the chronology and supports the use of Marine13 as a marine calibration curve for the mid-
Holocene. Surprisingly, our results suggest little, if any, difference in the local marine reservoir age during the
mid-Holocene. The resulting best fit against the calibration curve implies a 60 year gap between the youngest
dated section of NELO7B and the oldest part of the NELO1D sequence.

2.3. Coral Growth and Luminescence Measurement and Dating

Skeletal density and luminescence were measured along each core slice using AIMS densitometer/luminometer
[Barnes et al.,, 2003; Lough and Cooper, 2011]. Each year of growth was identified from the X-rays and density
versus distance measurements. Three annual growth variables were obtained: skeletal density, linear extension
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Figure 2. Digitally enhanced photographs of coral slices under UV light for (a) NELO7C and (b) NELO3D illustrating matching
patterns of luminescent lines. Mid-Holocene Years 255 and 265 marked by arrows.

between adjacent density minima, and, the product of these, calcification. Similarly, three luminescence variables
were obtained from photographs of coral luminescence under UV light and luminescence versus distance
measurements: annual maximum, annual minimum, and annual luminescence range (the difference between
summer maximum luminescence and previous winter minimum luminescence) [Lough, 2011]. “Monthly”
luminescence values were interpolated from the luminescence versus distance measurements between adjacent
luminescence minima for selected portions of the samples.

The patterns and intensity of luminescent lines in the three modern corals (NEL29A, NEL35A, and NEL39B),
examined in photographs of coral slices under UV light, closely matched each other. For the mid-Holocene
corals we were also able to cross-date the patterns of luminescent lines in the replicate cores from NELO3 and
NELO7. Excitingly, we were then able to cross-date the luminescent lines in slices from the two separate
colonies (Figure 2). This meant we could exactly match the same year in the different colonies over a 61 year
period, providing a combined record extending for 126 years from the youngest dateable year of NELO7B
(~2cm from the outer edge of the core) through the oldest dateable year at the base of NELO3D. We could
not match the luminescent patterns in these two colonies with NELO1D but were able to extract annual
luminescence data for Years 0 to 67 and Years 75-128, relative to the last dateable year in this core which was
~2 cm from the outer edge. The 7 year gap (Years 68-74) was associated with a growth hiatus, the duration of
which we were able to identify from an adjacent, but much shorter core, from the NELO1 colony.

2.4. Coral Diagenesis

Coral samples (2 x 2 cm) from the upper and lower sections of a modern coral MAGO1D and the mid-
Holocene corals NELO1, NEL0O3, and NELO7 were analyzed for secondary aragonite or calcite replacement by a
JEOL JSM-5410LV Scanning Electron Microscope (SEM) at the Advanced Analytical Centre at James Cook
University. Samples were platinum coated, to divert the negative charge, and placed in the SEM. Images were
taken at 100 x and 2000 x magpnifications and photographed. Eight thin sections were also prepared from
these four cores. These samples were impregnated with a blue-dye resin, so the coral pores could be
identified and discriminated from the skeleton. Samples were then glued onto frosted glass and ground
down to approximately 60-100 um. The thin sections were placed under a Leica IM50 microscope and
photographed with a mounted Leica digital camera.
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Table 2. Average (+1SD) Growth and Luminescence 2.5, Comparison of Luminescence Properties
Characteristics for Modern and Mid-Holocene Corals of Modern and Mid-Holocene Corals

Variable Modern Mid-Holocene . .
3 To assess whether the luminescence properties
Eens'ty gam = 1.17+0.06 123+0.13 of the mid-Holocene (NELO3) and modern
xtension mm yr 13.34+£4.43 12.14+3.58 A
2 NEL29) corals were similar, wavelength-defined
Calcification g cm 2 yr ! 1.56+0.54 1.48+0.44 ( ) 9

photoluminescence images were created using
the technique of Llewellyn et al. [2012]. Briefly, the
coral surface was scanned in a matrix (0.25 X 0.25 mm spacing) measuring light caused by photoexcitation
with wavelength-defined filters. Measurements were rendered using image analysis software (NIH ImageJ
1.60) where each pixel represents the photoluminescence at that XY location on the coral surface. Images
obtained at different excitation and emission wavelength pairings were aligned to enable extraction of
measurements at the same location under different conditions. This was used to produce a pseudo-
excitation:emission matrix for the maximum and minimum regions of photoluminescence intensity on each
coral piece. Measurements were normalized by dividing their intensity by the resolution of the excitation:
emission filter (i.e., excitation filter bandwidth x emission filter bandwidth) and then standardized to the
maximum intensity for the 13 filter pairs which was set to 100%.

The temperature of the measurement chamber was also varied from ambient to 45°C allowing construction
of thermal quench curves by exposing corals to a range of temperatures at different combinations of
excitation and emission wavelengths. The resulting quench curve slopes measure the sensitivity of coral
photoluminescence to warming.

2.6. Observational Data

The modern coral data were compared to Burdekin River daily and monthly flows obtained from Queensland
Department of Environment and Resource Management (www.derm.qld.gov.au), 1922-2013 and NE
Queensland (~11°5-23°S, 144°E-151°E) summer (October-March) rainfall derived from the Australian Bureau
of Meteorology gridded rainfall data set [Lough, 2011].

3. Results
3.1. Coral Ages

Radiocarbon (**C) dating of contiguous decadal-length segments through NELO3D and NELO7B provided an
absolutely dated chronology with a calendar age that spans 6223 to 6098 year B.P. (Table S1 and Figure S1 in
the supporting information). This appears to have been followed by a 60 year gap with NELO1D dated to 6038
to 5918 year B.P. Thus, the mid-Holocene coral cores from Nelly Bay lived and died around the 6 ka period
used for model comparison studies [Mantsis et al., 2013].

Based on this dating, we assigned Year 0 to the last dated year at the outer edge of NELO1D (i.e, 5918 year B.P.).
Allowing for the 60 year gap, the youngest year of NELO7B was assigned Year 188 and the oldest year of NELO3D
was assigned Year 313. Cross-dating of cores also showed that NELO7 died 44 years after NELO3. Thus, we
obtained four time series of coral luminescence from two colonies (NELO3 and NELO7) which could be precisely
related to each other and overlapped for 61 years (Years 294 to 234) and a single time series from colony NELO1
for Years 128 to 0.

3.2. Coral Diagenesis and Luminescence Properties

Microscopic analyses of the fossil corals (scanning electron microscopy (SEM) and thin sections) were used to
determine if they were free of diagenesis. The presence of secondary aragonite or calcite replacement can
strongly influence, for example, sea surface temperature (SST) reconstructions from coral geochemistry
[Enmar et al., 2000; Miiller et al., 2001; McGregor and Gagan, 2003]. The first signs of diagenesis typically occur in
the basal section or toward the top of the coral and hence these areas received particular attention [Enmar et al.,
2000; Hendly et al., 2007; McGregor and Abram, 2008].

Scanning electron microscopy (SEM) of the mid-Holocene corals showed there was no obvious addition of
secondary aragonite in the coral pore spaces or on the surface of the coral slices (Figure S2). In addition, there
were no other clear signs that the corals had been diagenetically altered (e.g., calcite replacement), although
there was possibly some signs of dissolution features. We note, however, that the modern coral also displayed
similar features (Figures S2a and S2b). The coral thin sections displayed the original internal fabric of the coral;
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30 A Modern however, they also showed what appeared
25 to be cement surrounding some of the
coral pores (Figure S3). This feature was
<20 present throughout all the corals, including
7 the upper sections of the modern coral
E A (Figures S3a and S3b). This possible “cement”
515 seem:s likely, therefore, to be an artifact of
the blue-dye impregnation procedure.
10 y=033x-698 Therefore, it is considered that the modern
R*=0.85 and mid-Holocene corals are free of
0 23 2 25 2 27 28 29 30 secondary aragonite and aragonite has not

SST°C

Figure 3. Average annual calcification rate versus annual average sea
surface temperature for massive Porites from 49 Indo-Pacific sites (grey

been replaced with calcite.

Luminescence properties of mid-Holocene
and modern corals were found to be almost

diamonds) and linear regression equation [Lough, 2008]. Modern Nelly Bay indistinguishable (Figure S4). Specifically,
average calcification plotted as black triangle versus 1971 to 2000 average
SST (19.5°5/147.5°E) and mid-Holocene (6.1 to 6.2 ka) average calcification
rate as grey triangle.

the shape and peak of luminescence
excitation-emission matrices, and the linear
relationship between intensity and
sensitivity to thermal quenching, at both minimum and maximum luminescence did not differ between the mid-
Holocene and modern samples. This preservation of organic matter and coral luminescence in coral skeletons is
also consistent with earlier studies [Ingalls et al., 2003; Klein et al,, 1990]. We, therefore, conclude from these various
lines of evidence that the skeletal properties we measured in the modern and mid-Holocene corals are comparable.

3.3. Average Coral Growth Characteristics

The often convoluted appearance of the annual density banding patterns was similar in the mid-Holocene and
modern corals (Figures S5 and S6) and typical for the nearshore, turbid environment of Nelly Bay. Average skeletal
density for the three mid-Holocene corals was slightly higher than modern and extension slightly lower and
there was no significant difference in average annual calcification rate (Table 2). Mid-Holocene and modern
Nelly Bay Porites growth rates were within the range of modern corals across the GBR: 12.5+3.4mm yr~
(1.3-22.1) for extension, 1.30+0.15g cm™> (0.92-1.93) for density and 1.60+0.38g cm? yr' (0.51-2.81)

for calcification based on 357 colonies [Lough et al., 1999]. Average massive Porites calcification is significantly
related to average annual sea surface temperature (SST) [Lough and Barnes, 2000; Lough, 2008]. Both
modern and mid-Holocene calcification rates were close to that expected based on modern average annual
SST of 26.1°C at Nelly Bay (Figure 3).

3.4. Average Coral Luminescence Characteristics

Average luminescence range of both mid-Holocene coral series was significantly different from the modern series

(50% and 54% of modern for NELO1D and NEL 03 and 07, respectively) but not significantly different from each
other (significance at 5% level based on

Student’s t test; Figure 4). Most of this difference
from modern values was due to lower
luminescence maxima for the two mid-Holocene
series (78% and 86% of modern for NELO1D and
0.4 NELO3 and 07, respectively) compared to
luminescence minima (90% and 99% of modern
for NELO1D and NELO3 and 07, respectively). In
the modern record, the annual minimum
luminescence occurs during the dry winter
months when freshwater inputs to the central
GBR lagoon are minimal. The coefficient of
variation (% cv) of the luminescence range was
Modern NELO1D NELO3&07 5604 in the modern record and 44% for NELO1D
and 41% for NELO3 and 07, i.e.,, 12-15% lower
interannual variability in the mid-Holocene.

0.6

0.2

Luminescence units

0.0

Figure 4. Mean + standard deviation (SD) luminescence range for
modern corals, NELO1D, and NELO3 and 07.

LOUGH ETAL.

©2014. American Geophysical Union. All Rights Reserved. 587



@AG U Paleoceanography 10.1002/2014PA002630

1.0
50

0.8
40

0.6 o
30 E
3

.4 [
0 20

Luminescence units

02 10

0.0
1950 1960 1970 1980 1990 2000

Year

.4
0 b.

02 |

Luminescence units

01 ©

0.0
313 303 293 283 273 263 253 243 233 223 213 203 193
Year toward present

0.4
c.

0.3
0.2
0.
0

1
.0

Luminescence units

128 118 108 98 88 78 68 58 48 38 28 18 8
Year toward present

Figure 5. (a) Annual modern luminescence range series for NEL29B (blue, 1952 to 2002), NEL35A (red, 1971 to 2002),
NEL39B (green, 1972 to 2002), and October-September Burdekin River flow (grey bars, 1950 to 2002); (b) annual mid-
Holocene coral luminescence range series for NELO3A (blue, Years 298 to 232), NELO3D (dashed blue (Years 313 to 234),
NELO7B (green, Years 294 to 188), and NELO7C (dashed green, Years 294 to 199)); and (c) annual luminescence range series
for NELO1D, Years 128 to 75, 67 to 0.

3.5. Luminescence Time Series

The three modern coral luminescence series showed similar variations through time that matched those of
Burdekin River flow (Figure 5a). The three series were significantly correlated with each other sharing 88-94%
variance with the three-core average series. The individual and average series were significantly correlated
with Burdekin River flow and NE Queensland summer rainfall (Table 3), illustrating that the annual
luminescence records from modern corals in Nelly Bay are robust proxies for local river flow and the NE
Australian summer monsoon [Lough et al., 2002; Lough, 2011].

The four overlapping mid-Holocene luminescence series for the 6.2 to 6.1 ka period showed similar variations
through time (Figure 5b) and were also significantly correlated over the common period Years 294 to 234

(Table 4). Individual coral time series shared between 67 and 76% variance with the four-core average series,
thus confirming the visual cross-dating (Figure 2). Lead/lag correlations between the average luminescence
range time series for NELO3 and NELO7 (Figure S7) again confirms the visual cross-dating and that NELO7 died
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Table 3. Correlations Between Modern Luminescence Indices for Three Cores, Three-Core Average Series, Burdekin River
October-September Flow, and Queensland Summer (October—March) Rainfall, 1972 to 2002 (All Values Significant at 5% Level)

NEL29A NEL35A NEL39B Three Core Burdekin Queensland Rainfall

NEL29A 1

NEL35A 0.84 1

NEL39B 0.86 0.90 1

Three core 0.94 0.96 0.97 1

Burdekin 0.89 0.78 0.89 0.89 1

Queensland rainfall 0.73 0.66 0.67 0.72 0.75 1

44 years after NELO3. The slightly younger (6.0 to 5.9 ka) single coral luminescence range time series (NELO1D)
is shown in Figure 5c.

3.6. Reconstructing Burdekin River Flow

October-September (i.e., annual) Burdekin River flow was estimated from the modern three-core average
luminescence series using an exponential regression [Isdale et al., 1998] model (Burdekin =-0.231 + exp
((0.437) + (4.324*coral))), 1972 to 2002. The modern luminescence series explained 93.4% of the variance in
Burdekin River flow, 1972 to 2002. Given the reproducibility of the luminescence range in the mid-Holocene
corals, this regression model was then used with the mid-Holocene four-core average luminescence series to
reconstruct Burdekin River flow for Years 313 to 188 (NELO3 and NELO7) and Years 128-75, 67-0 from
NELO1D. Additional regression models were tested based on (a) December-May Burdekin River flow and (b)
summed “monthly” (from interpolation between annual luminescence minima) luminescence values for each
year. These alternate models explained a similar amount of variance in the modern record and produced
identical reconstructions for the mid-Holocene flow as for the October-September model.

3.7. Characteristics of Mid-Holocene Burdekin River Flow

The annual reconstructed Burdekin River flow for the two mid-Holocene windows shows substantially
different characteristics to the modern record (Figure 6) and reconstructed flows during the Little Ice Age,
1631 to 1850 [Lough, 2007] (Table 5). Median flows in the mid-Holocene are about half of modern and
interannual variability is about a third of modern values. The greatest difference is found in the lack of
occurrence of flows >8 km? in the mid-Holocene; such flows occur in ~40% of years in the 92 yearlong
modern Burdekin record. Eighty percent of the 6.2 to 6.1 ka reconstructed annual flows were within the range
2.2 t0 4.6 km> (Table 5), flows that do occur in the modern record but less frequently. Only 18% of years, 1922
to 2013, experienced flows typical of the mid-Holocene.

3.8. Intra-Annual Variability in the Mid-Holocene

Another feature of the mid-Holocene records, which differs from modern luminescence signatures, is the
greater number of multiple (2 to 3) lines per year (Figure S8). For Years 294 to 234 of NELO3 and NELO7, there
were 20 years (33%) when both colonies had >2 lines per year. For NELO1D, 30% of years had =lines per year.
In the modern record, 1972 to 2002, only 2 years (6.5%) showed double annual lines in all three colonies, and
none showed more than two lines. The more complex mid-Holocene signals were also evident from
“monthly” luminescence for a 9 year window (Figure 7a) compared to the modern record (Figure 7b). The
modern record was characterized by single annual peaks with only 1 year (1976-1977) with a double peak.

4. Discussion and Conclusions

Table 4. Correlations Between Mid-Holocene Luminescence Indices ~ We have developed proxy records of NE
for Four Cores From NELO3 and NELO7 Colonies and Four-Core  Queensland river flow from replicated

Average Series, Years 294 to 234 (All Values Significant at 5% Level) luminescence records in modern and mid-

NELO3A NELO3D NELO7B NELO7C  Holocene massive Porites corals from Nelly
NELO3A 1 Bay (~19°S, 147°E), Magnetic Island, in the
NELO3D 0.67 1 central GBR. Gauged Burdekin River flow
NELO7B 0.66 0.68 1 records, 1922-2013, show that 95% of the
NELO7C 0.60 0.52 0.57 1

annual flow occurs from December to

F 0.84 0.87 0.84 0.82 . . .
ourcore May in association with the summer
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Figure 6. (a) Annual (October-September) Burdekin River flow, 1922 to 2013, and reconstructed flow, 1972 to 2002 (blue
line); (b) reconstructed annual Burdekin River flow, Years 313 to 188, mid-Holocene 6.2 to 6.1 ka; and (c) reconstructed
Burdekin River flow, Years 128 to 75, 67 to 0, mid-Holocene 6.0 to 5.9 ka. Dashed lines denote respective 90th percentile,
median, and 10th percentile. Note different y axis scale for Figures 6b and 6¢c compared to Figure 6a.

Table 5. Observed (1922 to 2013), Reconstructed Little Ice Age (1631 to 1850) [Lough, 2007] and Reconstructed Mid-

Holocene October-September Burdekin River Flow Characteristics (km3)

Observed Reconstructed Mid-Holocene Mid-Holocene
1922 to 2013 1631 to 1850 6.2 to 6.1ka 6.0 to 5.9ka
Mean 9.1 10.7 33 3.1
% cv 104.4 59.9 299 37.7
Median 6.6 8.2 3.1 2.8
90th 232 214 4.6 49
10th 1.0 3.0 2.2 1.8
Range 222 18.4 24 3.0
n 92 220 126 122
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Figure 7. Comparison of “monthly” interpolated luminescence for (a) mid-Holocene NELO7B Years 255 to 247 and (b) modern
NEL29A 1968 to 1978 and monthly Burdekin River flow (grey bars). (Note different y axis scale for mid-Holocene and modern corals).

monsoon. Median water year (October-September) flow is 6.62 km3, but this shows substantial
interannual variability from a maximum of 54.07 km® in 1973-1974 to a minimum of 0.25 km> in 1930-
1931. The Burdekin River drains a large, ~130,000 km?, catchment of the NE Queensland dry tropics, and
hence, our reconstruction captures climate variability over a large part of NE tropical Queensland [Lough,
2007]. Seasonal and interannual variability of the Burdekin River also reflects summer monsoon rainfall
over NE tropical Queensland which is significantly related to ENSO [Lough, 2011]. Here we examine
whether the environment for coral growth in Nelly Bay, Burdekin River flow, and inferred NE Australian
summer monsoon rainfall differed from present.

Before interpreting this record, we consider possible controls on the luminescence signal in the ~6 ka corals that
could influence the reliability of our reconstructions. First, the location of the Burdekin River mouth has varied
and in the mid-Holocene was either in its present position or ~50 km closer to Nelly Bay than present [Fielding
et al,, 2006]. We would, therefore, expect, if mid-Holocene river flows were similar to present, that luminescence
in the fossil Nelly Bay corals would be of similar magnitude to present or even more intense; this is in marked
contrast to the observed difference. Second, relative sea level was ~1 to 1.5m higher than present [Lewis et al.,
2013]. In the modern records a 1 m difference in depth does not significantly affect the magnitude of the
luminescence signal (average luminescence range for NEL29A and NEL35A, which differ in depth by 1.4 m, was
identical), unsurprising given the freshwater flood plumes can be 20 m thick [King et al., 2001]. Third, diagenetic
alteration is known to affect coral geochemical records [McGregor and Abram, 2008] but there is no evidence for
secondary infilling in the mid-Holocene corals (Figures. S2 and S3). Fourth, we find no evidence that the
luminescence signature due to humic acids [Boto and Isdale, 1985] differs between the mid-Holocene and
present (Figure S4). Collectively, these various lines of evidence suggest that the luminescence records in the
modern and mid-Holocene corals of Nelly Bay are comparable.

The growth characteristics (Figures S5 and S6) and calcification rates (Figure 3) of the mid-Holocene and modern
corals are very similar. This implies that the mid-Holocene corals were growing in a similar nearshore, turbid
environment as present-day Nelly Bay coral reefs. In addition, the average mid-Holocene calcification rate based
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on three coral colonies suggests that the thermal environment (~25.9°C estimated from the Indo-Pacific Porites
calcification versus SST relationship shown in Figure 3) was similar to the present (~26.1°C). This is also supported
by an earlier SST reconstruction based on Sr/Ca ratios measured in two of the mid-Holocene corals, NELO3D and
NELO1D [Lewis, 2005]. Although one coral record from the central GBR suggests SST were ~1°C warmer in the
mid-Holocene [Gagan et al,, 1998], several paleorecords for seas to the north and east of Australia suggest SST
similar to present [Gagan et al., 2004; Abram et al., 2009; Duprey et al., 2012], as do multimodel PMIP2 ensembles
[Zhao and Harrison, 2012; Mantsis et al., 2013], supporting the evidence that average annual SSTs at Nelly Bay are
representative of the wider western Coral Sea and northern Australia (Figure S9).

Reconstructed Burdekin River flows at ~6 ka suggest that average flow was substantially lower (median ~ half of
present) and less variable from year to year (Table 5 and Figure 6). Lower river flows and interannual variability
suggest that the summer monsoon was weaker and modulation by ENSO reduced. Eastern Australian river flows
are particularly sensitive to ENSO [Ward et al., 2010], and this is reflected in median Burdekin River flow being
substantially different in El Nifio (3.0 km?, 20 events) and La Nifia (9.4 km?, 21 events) years, 1922 to 2013. Of the
18% of observed Burdekin River flows (1922 to 2013) with flows within the range of 80% of the mid-Holocene
reconstruction (i.e,, 2.2-4.6 km?), 71% of these years were associated with neutral ENSO conditions. This again
suggests reduced ENSO activity in the mid-Holocene. Caution is needed in interpreting relatively short
paleoclimatic records in terms of ENSO variability as modeling studies indicate that there can be substantial
modulation of ENSO characteristics on decadal and longer time scales [Wittenberg, 2009; Borlace et al., 2013]. Our
two coral luminescence records suggest, however, that suppression of the NE Australian monsoon and
potentially ENSO activity lasted at least ~300 years during the mid-Holocene.

Intra-annual variability of the luminescence signatures, as evidenced by multiple rather than a single annual
luminescence peak, is more evident in the mid-Holocene than the modern corals (Figure 7). This could be
evidence that intraseasonal monsoon variability, the Madden-Julian Oscillation (MJO) [Wheeler et al., 2009],
was more evident at 6 ka than present; something hitherto unsuspected. Intriguingly, there is some evidence
from the observational record that MJO variability is more apparent during weak monsoon seasons [Hendon
et al., 1999]. The inferred record of MJO variability may explain the apparently moist conditions and greater
vegetation cover in tropical Australia during the mid-Holocene [Donders et al., 2007; Mooney et al., 2011].
Although the magnitude of Burdekin flow appears to have been significantly lower than present, we suggest
delivery of frequent, low-intensity rainfall may have been more effective at sustaining terrestrial vegetation;
something not possible to identify in low-resolution records from the region. Our annually resolved,
absolutely dated window of river flow therefore provides a unique insight into the climate dynamics across
NE Queensland and the western Coral Sea, a region currently influenced by the northern Australian summer
monsoon, with ENSO modulating interannual and the MJO modulating intra-annual rainfall variability [Risbey
et al., 2009]. Our coral records indicate that ~6 ka thermal conditions off NE Australia were similar to present
but that the summer monsoon was weaker and interannual ENSO variability was suppressed allowing the
intraseasonal variability of the MJO to be more evident.
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