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Abstract

The arithmetic of Galois representations plays a central role in modern number

theory. In this thesis we consider representations arising from tensor products

of the two-dimensional representations attached to modular forms by Deligne.

In particular, we shall study the Iwasawa theory of the adjoint representation,

as well as certain double and triple products of Deligne’s representations.

In the first half we will undertake a computational study of L-invariants

attached to symmetric squares of modular forms. Let f be a primitive modular

form of weight k and level N , and p - N a prime greater than two for which the

attached representation is ordinary. The p-adic L-function for Sym2f always

vanishes at s = 1, even though the complex L-function does not have a zero

there. The L-invariant itself appears on the right-hand side of the formula

d

ds
Lp(Sym2f, s)

∣∣∣∣∣
s=k−1

=

Lp(Sym2f)× (1− α−2
p pk−2)(1− α−2

p pk−1)× L∞(Sym2f, k − 1)

πk−1〈f, f〉N

where X2 − ap(f)X + p = (X − αp)(X − βp) with αp ∈ Z×p .

Now let E be an elliptic curve over Q with associated modular form fE, and

p 6= 2 a prime of good ordinary reduction. We devise a method to calculate

Lp(Sym2fE) effectively, then show it is non-trivial for almost all pairs of elliptic

curves E of conductor NE ≤ 300 with 4|NE, and ordinary primes p < 17.

Hence, in these cases at least, the order of the zero in Lp(Sym2fE, s) at s = 1

is exactly one. We also generalise this method to compute symmetric square

L-invariants for modular forms of weight k > 2.

In the second half we will establish congruences between p-adic L-functions.

In the late 1990s, Vatsal showed that a congruence modulo pν between two

newforms implied a congruence between their respective p-adic L-functions.

We shall prove an analogous statement for both the double product and triple

product p-adic L-functions, Lp(f⊗g) and Lp(f⊗g⊗h): the former is cyclotomic

in its nature, while the latter is over the weight-space.

As a corollary, we derive transition formulae relating analytic λ-invariants

for pairs of congruent Galois representations for Vf ⊗Vg, and for Vf ⊗Vg⊗Vh.



Acknowledgements

There are many people I would like to thank for making the last four years a

rewarding and enjoyable experience.

Firstly I thank my supervisor, Daniel Delbourgo, for being endlessly posi-

tive and encouraging, and for introducing me to the alluring world of number

theory. Daniel’s enthusiasm for mathematics and generosity in sharing his time

and expertise are deeply appreciated. I must also thank Daniel for introducing

me to Homer, who graciously spent many hours helping me make corrections

to my thesis by pointing out mistakes with his paws in between tin-fulls of

Fancy Feast.

I thank my co-supervisor Tim Stokes for proof reading my thesis and his

many useful suggestions.

I am also grateful for the supportive and nurturing environment created

by all the staff in the mathematics and statistics department, who are always

interested to hear how things are going and quick to offer encouragement.

My time at Waikato has also been enriched by the friendships I have made

with fellow graduate students. I particularly thank my good friend Chris King

for the countless hours spent ruminating on the deep and mysterious world of

number theory.

I gratefully acknowledge the financial assistance of a University of Waikato

Doctoral Scholarship.

Finally, I thank my parents for their unwavering support through my many

years of study.



Contents

1 Introduction 1

2 Modular forms 5

2.1 Classical modular forms . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Subspaces of modular forms . . . . . . . . . . . . . . . 7

2.1.3 Hecke operators on modular forms . . . . . . . . . . . 8

2.2 Hida families . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Nearly holomorphic functions . . . . . . . . . . . . . . . . . . 15

3 L-functions attached to Galois representations 17

3.1 Constructing p-adic L-functions . . . . . . . . . . . . . . . . . 18

3.1.1 Distributions and measures . . . . . . . . . . . . . . . 18

3.1.2 Example: The Kubota-Leopoldt L-function . . . . . . 22

3.2 L-functions attached to modular forms . . . . . . . . . . . . . 25

3.2.1 Hecke L-functions . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Galois representations associated with f . . . . . . . . 25

3.3 Symmetric square L-functions . . . . . . . . . . . . . . . . . . 26

3.3.1 Galois representations associated with Sym2f . . . . . 26

3.3.2 Complex L-functions attached to Sym2f . . . . . . . . 27

3.3.3 p-adic L-functions attached to Sym2f . . . . . . . . . . 29

3.4 Symmetric square L-invariants . . . . . . . . . . . . . . . . . . 30

3.4.1 Greenberg’s L-invariant . . . . . . . . . . . . . . . . . 30

3.4.2 The analytic L-invariant . . . . . . . . . . . . . . . . . 32

3.4.3 The connection with deformation theory . . . . . . . . 34

3.5 Double product L-functions . . . . . . . . . . . . . . . . . . . 36

3.6 Triple product L-functions . . . . . . . . . . . . . . . . . . . . 38

4 Computing L-invariants for the symmetric square of an elliptic

curve 41

4.1 The analytic theory . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Petersson inner product identities for f 0 . . . . . . . . 44



v

4.1.2 The q-expansion of the modular form Rm,e . . . . . . . 46

4.1.3 Expressing Rm,e

∣∣U2m−1
p in terms of a rational basis . . 50

4.1.4 An explicit formula for Lan
p (Sym2E) modulo pm, when

D(E, 1) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.5 A general formula for Lp(Sym2E, 1)′ modulo pm, even

when D(E, 1) = 0 . . . . . . . . . . . . . . . . . . . . . 55

4.1.6 Determining the set S1, and the bad factors Hl(X) with

l ∈ S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 The Basic Method . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 An algorithm to compute the L-invariant numerically . 61

4.2.2 A worked example . . . . . . . . . . . . . . . . . . . . 63

4.3 Attempts at evaluating the moments
∫
xj · dµimp

E for j 6= 0? . . 64

5 Computing L-invariants for higher weight modular forms 68

5.1 Computing L-invariants using families of overconvergent mod-

ular symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Modular symbols . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 Generating random families of modular symbols . . . . 71

5.1.3 The ordinary subspace . . . . . . . . . . . . . . . . . . 72

5.1.4 Constructing a basis of the ordinary subspace . . . . . 73

5.1.5 Isolating families of congruent modular forms . . . . . 74

5.1.6 A worked example . . . . . . . . . . . . . . . . . . . . 74

5.2 The higher weight analytic theory . . . . . . . . . . . . . . . . 76

5.2.1 Computing the derivative of the p-adic L-function . . . 78

5.2.2 Computing moments of the distribution dD− . . . . . 80

5.2.3 The basic method for computing Lan
p (Sym2f) . . . . . 84

6 Congruences between double and triple product L-functions 87

6.1 Statement of the main results . . . . . . . . . . . . . . . . . . 89

6.1.1 The double product . . . . . . . . . . . . . . . . . . . . 90

6.1.2 The triple product . . . . . . . . . . . . . . . . . . . . 92

6.1.3 A brief plan . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 A lowbrow study of Petersson inner products . . . . . . . . . . 96

6.2.1 Preliminaries on modular forms . . . . . . . . . . . . . 97

6.2.2 Expansions of nearly holomorphic functions . . . . . . 98

6.2.3 Projecting Eisenstein series and cusp forms . . . . . . . 102

6.2.3.1 The double product case . . . . . . . . . . . . 102

6.2.3.2 The triple product case . . . . . . . . . . . . 105

6.2.4 The effect of Σ-depletion and χ-twisting . . . . . . . . 106

6.2.5 Finishing off the inner product calculation . . . . . . . 110

6.2.5.1 The double product case . . . . . . . . . . . . 110



vi

6.2.5.2 The triple product case . . . . . . . . . . . . 112

7 Variation between the analytic λ-invariants 115

7.1 The double product p-adic L-function . . . . . . . . . . . . . . 117

7.2 The triple product p-adic L-function . . . . . . . . . . . . . . 122

Appendices 132

A Determining the ratio 〈f |Vm,f |Vn〉
〈f,f〉 explicitly 132

B Tables of L-invariants for elliptic curves 135

B.1 Tables of L-invariants for elliptic curves E with D(E, 1) 6= 0 . 135

B.2 Tables of L-invariants for elliptic curves E with D(E, 1) = 0 . 151

C Tables of L-invariants for higher weight modular forms 153

C.1 Weight k = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.2 Weight k = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.3 Weight k = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



Chapter 1

Introduction

The main purpose of Iwasawa theory is to link together the arithmetic world

with the analytic world. The two principal objects are the analytic p-adic

L-function which interpolates the normalised critical values, and the algebraic

p-adic L-function which is traditionally the characteristic power series of some

large Selmer group. The so-called ‘Main Conjecture’ predicts that they are

equal, up to a unit of course. In this thesis we will be concerned solely with

the analytic p-adic L-function.

As an illustration, in 1964 Kubota and Leopoldt interpreted the famous

Kummer congruences between Bernoulli numbers by demonstrating that they

imply the existence of a p-adically continuous function ζp,s0(s) with the inter-

polation property

ζp,s0(k) = (1− pk−1)ζ(1− k), k ∈ N.

Here ζ(s) denotes the complex Riemann zeta function, and each choice of

s0 ∈ {0, 1, . . . , p − 2} gives one of the p − 1 ‘branches’ of the p-adic zeta

function. The precise p-adic L-functions that we will be of interest to us are

defined in Chapter 3. In this chapter we will only state our goals in general

terms.

Let p be an odd prime, and M be a pure motive over Q that is ordinary

at p. Coates and Perrin-Riou [10] give a conjectural recipe for attaching to

M a p-adic L-function Lp(M,−, 0), and describe its expected behaviour at a
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critical point s = 0. At each Dirichlet character χ of conductor pnχ , the p-adic

L-function should be related to its complex counterpart L∞(M,χ, s) via the

equation

Lp(M,χ, 0) = Ep(M,χ−1, 0) · L∞(M,χ, 0)

Ω
sign(χ)
∞ (M)

for a suitable choice of Archimedean periods Ω±∞(M) ∈ C×. The p-adic mul-

tiplier term Ep(M,χ−1, s) is described fully in Equation (4.14) of op. cit. and

consists of a Gauss sum, an Euler factor at p, and a power of the unit root of

Frobenius.

Curiously, the p-adic multiplier may vanish at s = 0 even when L∞(M,χ, s)

does not, in which case we say that M has an exceptional p-adic zero. Let

us factorise out the trivial zero contribution into Ep(M,χ, s) = E†p(M,χ, s) ×

E triv
p (M,χ, s), where E†p(M,χ, 0) 6= 0 and orders=0

(
E triv
p (M,χ, s)

)
= ep. Green-

berg [31] has associated an explicit invariant LGr
p (M) ∈ Qp, and he predicts

that

depLp(M,χ, s)

dsep

∣∣∣∣
s=0

= LGr
p (M)× E†p(M,χ, 0)× L∞(M,χ, 0)

Ω∞(M)
.

One is naturally left to address the following problem.

Question. For a given motive M as described above, and for an ordinary

prime p satisfying the exceptional zero condition, is Greenberg’s L-invariant

term LGr
p (M) non-zero?

For example, let f be a primitive eigenform of weight k ≥ 2, level N and

trivial nebentypus. The symmetric square motives M = Sym2(f)(k − 1) and

M = Sym2(f)(k) both exhibit exceptional p-adic zero phenomena at ordinary

primes p - N . Recently there has been interest in this topic [3, 34, 56], in

particular with the construction of global cohomology classes (an Euler system)

for the motive M(f ⊗ f) in [49].

Under some standard assumptions, Hida has shown [40] that in a Λ-adic

family of modular forms {Fk}k∈W , the quantity LGr
p

(
Sym2(Fk)(k − 1)

)
can

vanish at only finitely many points in the weight-space W . It therefore seems

appropriate to address the problem of non-vanishing for the symmetric square
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L-invariant, albeit from a computational perspective. This is our goal in the

first half of this thesis, with our main result being the following.

Theorem 1.1. For every elliptic curve E with associated modular form fE

and conductor NE ≤ 300 such that 4 | NE, and every prime p ≤ 13 for which

E has good ordinary reduction, the invariant LGr
p

(
Sym2(fE)(1)

)
is non-zero,

with at most ten exceptions 1.

Two important quantities in Iwasawa theory are the µ-invariant (the mini-

mum p-adic valuation of the coefficients of a power series) and the λ-invariant

(the number of zeroes of the power series on the open unit disc). The sec-

ond half of the thesis is concerned with addressing the following interesting

problem:

Question. How does the analytic λ-invariant appearing in the Main Conjec-

ture vary as we switch between two pν-congruent GQ-representations?

We give an answer for the analytic p-adic L-functions attached to double and

triple product Galois representations, at least in certain common situations,

by proving:

Theorem 1.2. Suppose that f , g(I), and g(II) are p-ordinary modular forms

such that al(g
(I)) ≡ al(g

(II)) mod pν for all primes l not in the set Sg con-

sisting of those primes that divide the level of g(I) or g(II). At each branch

j ∈ {0, . . . , p− 2}:

(i) Lp,Sg

(
f ⊗ g(I), ωj

)
≡ Lp,Sg

(
f ⊗ g(II), ωj

)
mod pµ

(j)
cyc+ν , and

(ii) λ
(
Lp

(
f ⊗ g(I), ωj

))
= λ

(
Lp

(
f ⊗ g(II), ωj

))
+
∑

l∈Sg
e

(II)
l (ωj)− e

(I)
l (ωj).

Here µ
(j)
cyc denotes the minimum of the µ-invariants for Lp

(
f ⊗ g(I), ωj

)
and

Lp

(
f⊗g(II), ωj

)
, and e

(?)
l (ωj) is the λ-invariant of the power series interpolating

the Euler factor Ll
(
f ⊗ g(?) ⊗ ωj, s

)
at a prime l.

1These possible exceptions are due to being unable to compute the L-invariants to an

accuracy sufficient to establish their non-vanishing, we do not believe that they are genuine

exceptions.
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We also obtain an analogous result for triple product L-functions, which we

refrain from elaborating on here due to the complicated nature of the L-

function’s construction. We will simply remark that the congruences in the

triple product case are subject to some restrictions on the levels of the new-

forms that are necessary for the p-adic L-functions to exist (see Theorems 6.3

and 6.6 for precise statements), and that they are in the weight variable as

opposed to the cyclotomic variable.

Let us outline the structure of this thesis. Chapters 2 and 3 are dedi-

cated to background material to aid in the digestion of the remaining chapters.

Specifically, Chapter 2 focusses on modular forms: the critical values that are

interpolated by p-adic L-functions may be expressed in terms of inner prod-

ucts of modular forms, so the material in this chapter equips us with useful

tools for manipulating these expressions. In Chapter 3 we recall the defini-

tions of complex L-functions attached to the symmetric square of the Galois

representation associated with a modular form, as well as to tensor products

of pairs and triples of such representations. We also review the interpolation

properties of their p-adic analogues.

In Chapter 4 we devise a method for computing the L-invariant of the

symmetric square of an elliptic curve having good ordinary reduction at an

odd prime p. We then use this method to perform the computations necessary

to prove Theorem 1.1. Chapter 5 generalises this method to allow for mod-

ular forms of higher weight, and we compare our approach with the modular

symbols technique of Dummit et al. [23].

In Chapter 6 we wade through a mire of technical calculations. Essentially

we show that the various operators appearing in the expressions relating critical

values of double and triple product L-functions to Petersson inner products

are congruence preserving. Having done this, Chapter 7 is but a short stroll

along the boardwalk to prove Theorem 1.2 and its triple product counterpart.



Chapter 2

Modular forms

In this chapter we lay out the foundations of classical modular forms. We then

encounter families of p-adic modular forms, in particular Hida families passing

through p-ordinary forms. The chapter concludes with a short discussion of

nearly holomorphic modular forms.

2.1 Classical modular forms

We begin with an overview of the classical theory of modular forms. Author-

itative sources for the material in this section are the books of Miyake [51],

and Diamond and Shurman [22].

2.1.1 Basic definitions

We begin by describing the action of the group GL+
2 (R) on the upper half-

plane h = {z ∈ C | Im(z) > 0}, and on the complex-valued functions defined

on h. For any z ∈ h and γ =
(
a b
c d

)
∈ GL+

2 (R) we set

γz =
az + b

cz + d
∈ h.

For any function f : h → C and positive integer k, we define the weight k

action of γ on f as

(
f
∣∣
k
γ
)

= (det γ)k/2(cz + d)−kf(γz).
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Definition 2.1 (Congruence subgroup). A congruence subgroup Γ is any sub-

group of the modular group SL2(Z) that contains

Γ(N) = Ker
(
SL2(Z)→ SL2(Z/NZ)

)
for some positive integer N , and the least such N is called the level of Γ.

Of particular importance are the congruence subgroups

Γ0(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N)


and

Γ1(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

 .

Definition 2.2 (Modular forms). For any congruence subgroup Γ of level N

and positive integer k, we call a function f : h→ C a modular form of weight

k for Γ if the following properties hold:

1. f is holomorphic on the extended upper half-plane h∗ = h ∪ P1(Q),

2. f is invariant under the weight k action of Γ.

The set of all modular forms of weight k for some fixed congruence subgroup

Γ has the structure of a complex vector space, which we will denote Mk(Γ).

The study of modular forms may be reduced to that of modular forms on the

congruence subgroups Γ1(N), therefore we will frequently write Mk(N) for

Mk(Γ1(N)). Moreover, Mk(N) itself decomposes into

Mk(N) =
⊕
χ

Mk(N,χ) (2.1)

where the sum is over all Dirichlet characters modulo N . Here Mk(N,χ)

denotes the χ-eigenspace of Mk(N), that is the space of elements of Mk(N)

with the property that

f
∣∣
k
γ = χ(d)f for all γ =

a b

c d

 ∈ Γ0(N).
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A typical element f ∈ Mk(N) admits a Fourier expansion at the cusp ∞ of

the form

f(z) =
∞∑
n=0

an(f)qn

where q = exp(2πiz).

2.1.2 Subspaces of modular forms

Next we define various subspaces of modular forms, which arise naturally as

stable subspaces of Mk(N) under the action of the Hecke algebra of level N .

Definition 2.3 (Cusp forms). A modular form f ∈ Mk(N) exhibiting the

additional property that f vanishes at all of its cusps, that is f(z) = 0 for all

z ∈ P1(Q), is called a cusp form. The subspace of cusp forms in Mk(N) is

denoted by Sk(N).

Definition 2.4 (Petersson inner product). Given any two modular forms f

and g in Mk(N), such that at least one of them is a cusp form, we set

〈f, g〉N =

∫
Γ0(N)\h

f(z)g(z)yk
dx dy

y2
.

It follows from our normalisation of the Petersson inner product that

〈f, g〉M = [Γ0(N) : Γ0(M)]× 〈f, g〉N

whenever N |M , and f and g belong to Mk(N).

Definition 2.5 (Eisenstein series). A modular form f ∈ Mk(N) is called an

Eisenstein series if 〈f, g〉N = 0 for every g ∈ Sk(N). The subspace of all such

forms is called the Eisenstein subspace, and is denoted throughout by Ek(N).

We remark that Ek(N) is the orthogonal complement of Sk(N) inside

Mk(N) under the Petersson inner product. It follows that we have the de-

composition

Mk(N) = Sk(N)⊕ Ek(N). (2.2)
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This decomposition induces analogous decompositions which respect the χ-

eigenspaces Mk(N,χ), as χ ranges over Dirichlet characters modulo N .

Suppose that N and M are positive integers with M | N , and that d is a

positive divisor of N
M

. Then there is a natural degeneracy map Vd : Sk(M)→

Sk(N) given by setting Vd
(
f(q)

)
= f(qd). We define the old subspace of Sk(N)

to be the images of these maps for proper divisors M of N , that is

Sold
k (N) =

⊕
M |N
M 6=N

⊕
d| N
M

Vd(Sk(M)).

Now if we define the new subspace Snew
k (N) to be the orthogonal complement

of Sold
k (N) with respect to the Petersson inner product, we have a tautological

decomposition

Sk(N) = Sold
k (N)⊕ Snew

k (N).

2.1.3 Hecke operators on modular forms

Throughout this section we will take f to be a generic element of Mk(N,χ).

The degeneracy map Vm acts on f by the rule(
f
∣∣Vm) (z) = f(mz)

= m−k/2f

∣∣∣∣∣
k

m 0

0 1

 (z).

The map Vm sends Mk(N,χ) to Mk(mN, χ̃), and also maps Sk(N,χ) to

Sk(mN, χ̃) [51, Theorem 4.6.1]; here χ̃ denotes the character modulo mN

induced by χ. It is clear that f
∣∣Vm will have the Fourier expansion(

f
∣∣Vm) (z) =

∞∑
n=0

an(f)qmn.

For an integer d - N , the diamond operator 〈d〉 : Mk(N) → Mk(N) is

defined by setting (
f
∣∣〈d〉) (z) =

(
f
∣∣
k
α
)

(z),

for any α =
(
a b
c δ

)
∈ Γ0(N) with δ ≡ d (modN). The diamond operator

respects the decomposition in Equation (2.1), and for any f ∈ Mk(N,χ) we

have f
∣∣〈d〉 = χ(d)f .
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Given a prime number q, the Hecke operator Uq is defined by setting

f
∣∣Uq = qk/2−1

q−1∑
j=0

f
∣∣∣
k

(
1 j
0 q

)
.

The modular form f
∣∣Uq will have the Fourier expansion

(
f
∣∣Uq) (z) =

∞∑
n=0

anq(f)qn.

We may then define the Hecke operator Tq by the relation

f
∣∣Tq = f

∣∣Uq + qk−1f
∣∣〈q〉 ◦ Vq.

Note that Tq coincides with Uq whenever q | N .

Definition 2.6. We call f an eigenform if it is an eigenfunction of each

Hecke operator Tq for every prime number q. An eigenform in Snew
k (N,χ),

normalised so that a1(f) = 1, is then called a primitive eigenform.

By Hecke’s inverse theory, the Tq-eigenvalues of a primitive form are its

Fourier coefficients, and we therefore have the identities

f
∣∣Tq = aq(f)f, if q - N

f
∣∣Uq = aq(f)f, if q | N

where f is a primitive form of exact level N . We can extend the operators Tn

to all of n ∈ N by inductively defining

Tqr = TqTqr−1 − qk−1〈q〉Tqr−2 , r ≥ 2

(where T1 is the identity operator) and setting

Tmn = TmTn, gcd(m,n) = 1.

It is sometimes useful to know the relation between the Fourier coefficients

of f and those of f |Tn. If f ∈Mk(N,χ) then by [51, Theorem 4.5.11] we have

am(f |Tn) =
∑

d | gcd(m,n)

χ(d)dk−1amn/d2(f). (2.3)
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Definition 2.7 (Hecke algebra). The Hecke algebras Hk(N,χ) and hk(N,χ)

are defined to be the subalgebras of End(Mk(N,χ)) and End(Sk(N,χ)) respec-

tively, that are generated by {Tn : n ∈ N} ∪ {〈d〉 : d | N}.

The Fricke involution WN is defined by(
f
∣∣WN

)
(z) = (

√
Nz)−kf

(
− 1

Nz

)

= f

∣∣∣∣∣
k

 0 −1

N 0

 (z),

and WN induces the following isomorphisms [51, Theorem 4.3.2]:

Mk(N,χ) 'Mk(N,χ),

Sk(N,χ) ' Sk(N,χ),

Ek(N,χ) ' Ek(N,χ).

Note that the operator WN satisfies the relation

(f
∣∣WN)

∣∣WN = (−1)kf.

Moreover, if f is a primitive form of level N then there exists a complex

number γf of modulus 1, such that fρ
∣∣WN = γff [51, Theorem 4.6.15]. Here

fρ(z) = f(−z) =
∑∞

n=0 an(f)qn denotes the conjugate primitive form.

Finally we must define the trace operator. Given a complete set of repre-

sentatives R for Γ0(M)\Γ0(N) where N |M , we define

f
∣∣∣TrMN =

∑
γ∈R

χ(γ)f
∣∣∣
k
γ for all f ∈Mk(M,χ)

where we have written χ(γ) = χ(d) for each γ =
(
a b
c d

)
. The trace operator

sends Mk(M,χ) to Mk(N,χ), and has the neat property that

〈f, g〉M = 〈f
∣∣∣TrMN , g〉N

for every f ∈ Mk(M) and g ∈ Mk(N) with one of f, g a cusp form. We can

express ‘Tr’ in terms of Hecke operators and the involution WN :

f
∣∣∣TrNqN =


q1−k/2 × f

∣∣∣WNqUqWN , if q | N

q1−k/2 × f
∣∣∣WNqTqWN , if q - N.
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Let us conclude this section with a list of relations involving these operators,

that will be very useful in future calculations:

f
∣∣∣WN ◦ Vm = m−k/2 × f

∣∣∣WNm, (2.4)

f
∣∣∣Vm ◦WNm = m−k/2 × f

∣∣∣WN , (2.5)

f
∣∣∣WN ◦ Tq = f

∣∣∣T ∗q ◦WN , (2.6)

f
∣∣∣WN ◦ Uq = f

∣∣∣U∗q ◦WN , (2.7)

f
∣∣∣WN ◦ 〈d〉 = f

∣∣∣〈d〉 ◦W ∗
N , (2.8)

Here T ∗q , U∗q , and W ∗
N denote the adjoint Hecke operators with respect to the

Petersson inner product.

2.2 Hida families

In this section we introduce the notion of p-adic and Λ-adic modular forms; a

standard reference is [38], especially Chapter 7. Throughout p ≥ 3 will denote

a fixed prime number. We begin with some notation.

Let us denote by µp−1 the group of (p − 1)-st roots of unity in Zp. The

Teichmüller character ω : Z×p → µp−1 is defined by setting ω(x) to be the

unique (p − 1)-st root of unity such that ω(x) ≡ x (mod p), or equivalently

ω(x) = limn→∞ x
pn . We may also take the projection to principal local units

〈〉 : Z×p → 1 + pZp by choosing 〈x〉 to satisfy x = ω(x)〈x〉; in so doing, we have

a unique direct product decomposition

Z×p = µp−1 ×
(
1 + pZp

)
.

We will also put u := 1 + p, which is a topological generator of 1 + pZp.

Let χ be a Dirichlet character moduloN , and A a subring of C that contains

Z[χ]. It is well known that

Mk(N,χ) ∩ A[[q]] =
(
Mk(N,χ) ∩ Z[χ][[q]]

)
⊗Z[χ] A. (2.9)

This simple fact motivates our definitions of spaces of p-adic modular forms.
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Definition 2.8. Let χ be a Dirichlet character modulo N , and A be a subring

of Cp that contains Z[χ]. The space of p-adic modular forms over A with

respect to χ is

Mk(N,χ;A) =
(
Mk(N,χ) ∩ Z[χ][[q]]

)
⊗Z[χ] A,

and the subspace of p-adic cusp forms over A with respect to χ is

Sk(N,χ;A) =
(
Sk(N,χ) ∩ Z[χ][[q]]

)
⊗Z[χ] A.

That is, we regard p-adic modular forms asA-linear combinations of q-expansions

of those elements ofMk(N,χ) that have coefficients in Z[χ]. The action of the

Hecke operators Tn naturally carries over to these spaces via Equation (2.3).

Definition 2.9 (Ordinary projector). The ordinary projector e is given by

e = lim
n→∞

Un!
p .

It follows from [38, Lemma 7.2.1] that e exists as an idempotent element of both

Hk(N,χ;A) and hk(N,χ;A), and so we are able to define ordinary subspaces

of modular forms as those cut out by e.

Definition 2.10 (Ordinary subspaces). The space of ordinary modular forms

is given by

Mord
k (N,χ;A) = {f |e : f ∈Mk(N,χ;A)},

similarly, the space of ordinary cusp forms is

Sord
k (N,χ;A) = {f |e : f ∈ Sk(N,χ;A)}.

If f is an eigenform of Up then it is clear that

f
∣∣e =


f if |ap(f)|p = 1

0 if |ap(f)|p < 1,

so the effect of the ordinary projector is to kill off the primitive forms that do

not have p-adic unit eigenvalues ap(f). Remarkably, the rank of Sord
k (N,χ;Zp)

is constant as the weight k varies.



13

Theorem 2.11 (Hida). For any k ≥ 2 and Dirichlet character χ we have

rankZp Sord
k (N,χω−k;Zp) = rankZp Sord

2 (N,χω−2;Zp).

In order to define Λ-adic modular forms, we fix a base ring O, the ring of

integers of some finite extension of Qp, and let Λ = O[[X]]. We may think of

a Λ-adic modular form as a formal q-expansion, with coefficients that simul-

taneously interpolate the Fourier coefficients of a family of classical modular

forms; the following makes this idea precise.

Definition 2.12 (Λ-adic modular form). Let χ be a character modulo N0p
r,

where gcd(N0, p) = 1, with values in O×.

• A Λ-adic modular form of tame level N0 and character χ is a formal

q-expansion

F (q) =
∞∑
n=0

An(F ;X)qn ∈ Λ[[q]]

with the property that for all but finitely many weights k, the specialisa-

tion F (uk − 1) lies in Mk(N0p
r, χ;O). The space of all Λ-adic forms of

fixed tame level N0 and character χ is denoted M(N0p
∞, χ).

• If F (uk− 1) is in Sk(N0p
r, χ;O) for all but finitely many k, then we call

F a Λ-adic cusp form. The space of all Λ-adic cusp forms of fixed tame

level N0 and character χ is denoted by S(N0p
∞, χ).

• Any weight k for which F (uk− 1) yields a classical modular form will be

called an admissible weight for F .

The Hecke operators defined in Section 2.1.3 may be extended to Λ-adic mod-

ular forms. For any Λ-adic modular form F , we define F |Tn to be the series

in Λ[[q]] with coefficients

Am(F |Tn;X) =
∑

b | gcd(m,n)

κ(〈b〉)(X)χ(b)b−1Amn/b2(F ;X)

where the sum is over divisors of gcd(m,n) coprime to p and the character

κ : 1 + pZp → Λ× is given by κ(us) = (1 + X)s (c.f. Equation (2.3)). A
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straightforward calculation shows that if F (uk − 1) ∈ Mk(N,χω
−k;O) then

we also have (F |Tn)(uk − 1) = F (uk − 1)|Tn ∈Mk(N,χω
−k;O).

Likewise, the notions of newforms and eigenforms carry over to Λ-adic

modular forms in a natural way. As in the classical case, we define the Hecke

algebrasH(N0p
∞, χ) and h(N0p

∞, χ) to be the subrings of EndΛ(M(N0p
∞, χ))

and EndΛ(S(N0p
∞, χ)) respectively that are generated by the Hecke operators

Tn.

Definition 2.13. Let F be a Λ-adic modular form of tame level N0.

• We say that F is a newform if the specialisation F (uk − 1) is new at

level N0 for all but finitely many k.

• If the specialisation F (uk − 1) is an eigenform for all but finitely many

k, then we call F an eigenform.

• If F is both a new at level N0 and an eigenform, and F is normalised so

that A1(F ;X) = 1, then we say that F is a primitive Λ-adic form.

We also have a notion of an ordinary Λ-adic modular form.

Definition 2.14. A Λ-adic modular form F is ordinary if

F (uk − 1) ∈Mord
k (N0p

r, χ)

for all but finitely many k. We denote by Mord(N0p
∞, χ) and Sord(N0p

∞, χ)

the spaces of ordinary modular forms and ordinary cusp forms respectively.

The Hecke algebra H(N0p
∞, χ) contains a unique element e that projects

Mk(N0p
∞, χ) ontoMord

k (N0p
∞, χ), and satisfies the equation (F |e)(uk− 1) =

F (uk − 1)|e ([38, Proposition 7.3.1]).

The following result shows that we may think of the space Sord(N0p
∞, χ)

as p-adically interpolating the spaces Sord
k (N0p, χω

−k;Zp) as the weight varies.

Theorem 2.15. Let χ be a Dirichlet character with conductor N0p.

1. The space Sord(N0p
∞, χ) is free of finite rank over Λ, in particular

rankΛ Sord(N0p
∞, χ) = rankZp Sord

2 (N0p, χω
−2;Zp).
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2. After a suitable extension of coefficients to a finite extension K of Frac(Λ),

the space Sord(N0p
∞, χ) ⊗Λ K has a basis of Hecke eigenforms. More-

over, after specialising this basis at a weight k ≥ 2 we obtain a basis of

Hecke eigenforms for the space Sord
k (N0p, χω

−k;O) where O is the ring

of integers of some finite extension of Qp.

Definition 2.16. Let F ∈ Sord(N0p
∞, χ) ⊗Λ ΛK where ΛK is the integral

closure of Λ in some finite extension K of Frac(Λ). We call the set

{F (uk − 1) | k is admissible for F}

a Hida family. If f is an ordinary cusp form contained in some Hida family,

then we say that the family passes through f .

Proposition 2.17. For every cusp form f , there exists a unique (up to Galois

conjugacy) Hida family passing through f .

2.3 Nearly holomorphic functions

We recall properties of the Maass-Shimura differential operator ‘δ
(r)
w ’ from [60],

and then we give some background on the projection mapping ‘Hol∞’.

Let w, r ≥ 0 be integers, and consider the operator δw := 1
2πi

(
w

2iy
+ ∂

∂z

)
where as usual ∂

∂z
= 1

2

(
∂
∂x
− i ∂

∂y

)
for all z = x + iy. One can take an r-fold

composition

δ(r)
w := δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw

with the understanding that if r = 0, then δ
(0)
w just refers to the identity

operator.

If G is a holomorphic modular form of weight w, level N and character ψ,

then δ
(r)
w (G) has weight w + 2r, level N and character ψ although it may no

longer be holomorphic; in fact δ
(r)
w (G) is an element of the set

r∑
j=0

y−j · hj
∣∣ hj is holomorphic

 .
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It follows that δ
(r)
w (G) ∈ C∞(h) belongs to the larger space of C∞-modular

forms, denoted byM∞
w+2r

(
Γ(N)

)
, and exhibits ‘moderate growth’ in the sense

of [33, 53]. Specifically, a form H ∈ M∞
w

(
Γ(N)

)
is said to have moderate

growth at γ ∈ SL2(Z) if for all z ∈ h and s ∈ C with Re(s) � 0, the complex

integrals∫
τ=u+iv∈h

(
H
∣∣
w
γ
)
(τ) ·

(
τ − z

)−w−2r∣∣τ − z∣∣−2s

∞

(
Im(τ)

)w+2r+s · dudv

v2
(2.10)

are absolutely convergent, and admit an analytic continuation to the point

s = 0.

Definition 2.18. If H(z) =
∑

m∈ZAH(y,m) · e2πimx ∈ M∞
w (N,ψ) denotes

an arbitrary C∞-modular form with w ≥ 2 and AH(y,m) ∈ C∞(R+), then we

define

Hol∞(H) :=
∞∑
n=0

a(n,H) · qn ∈ C
[[
q
]]

where at each integer n > 0, the n-th Fourier coefficient is given by

a(n,H) = lim
s→0+

(
(4πn)w−1

Γ(w − 1)
·
∫ ∞

0

AH(y, n) e−2πnyyw+s−2 · dy

)
.

Theorem 2.19. (Gross-Zagier and Panchishkin [33, 53]) Let us suppose that

H(z) ∈M∞
w (N,ψ) is a C∞-modular form which exhibits the two extra proper-

ties:

(i) the coefficients AH(y,m) = 0 for all m ≤ 0, and

(ii) H
∣∣
w
γ ∈ M∞

w

(
Γ(N)

)
, γ ∈ SL2(Z) has moderate growth, cf. Equation

(2.10).

Then a(0, H) = 0, moreover Hol∞(H) belongs toMw(N,ψ) i.e. it is a classical

holomorphic modular form, and lastly it satisfies the inner product identity

〈
F,Hol∞(H)

〉
N

=
〈
F,H

〉
N

at every F ∈ Sw(N,ψ).

We will return to these C∞-modular forms in Chapter 6, where they will

be used to analyse both the double product and triple product L-functions.



Chapter 3

L-functions attached to Galois

representations

In this chapter we survey various complex and p-adic L-functions that are

going to be used later in this thesis. The archetypal complex L-function is the

Riemann zeta function

ζ(s) =
∞∑
n=1

n−s

which converges for all complex s with Re(s) > 1. Some properties of ζ(s)

which will be shared in some form by the other complex L-functions in this

chapter are:

• the Riemann zeta function has an Euler product expansion

ζ(s) =
∏

p prime

1

1− p−s

which also converges when Re(s) > 1;

• analytic continuation to a meromorphic function on the entire complex

plane via the functional equation

ζ(s) = 2sπs−1 sin

(
πs

2

)
Γ(1− s)ζ(1− s)

relating the value at s to the value at 1− s;
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• the values of the zeta function at negative integers are rational, specifi-

cally we have

ζ(1− k) = −Bk

k

for each integer k ≥ 1, where Bk is the k-th Bernoulli number defined

by the Taylor series expansion

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

The final property allows us to construct a p-adic analogue of the Riemann zeta

function; it is these special values which will be interpolated by the Kubota-

Leopoldt L-function constructed in the latter half of the next section.

3.1 Constructing p-adic L-functions

Before continuing our discussion of L-functions, we will develop the tools neces-

sary for constructing p-adic L-functions, and illustrate their use by construct-

ing the Kubota-Leopoldt L-function from scratch.

3.1.1 Distributions and measures

We begin by defining distributions and measures, and using them to develop

a theory of p-adic integration. The exposition mainly follows that of Chapter

II of [47] and Chapter 12 of [69].

Definition 3.1 (Distribution). Let X be a compact-open subset of Qp. A

p-adic distribution on X is a Qp-linear homomorphism

µ : Step(X)→ Cp

where Step(X) is the Qp-vector space of locally constant functions from X to

Qp.

The set X will typically be either Zp or Z×p . Given a locally constant function

f : X → Qp we will generally write
∫
X
fdµ instead of µ(f) for value of µ at f .
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Equivalently, we may think of p-adic distributions as finite additive functions

on the compact-open subsets of X.

Any distribution restricted to a function on compact-open subsets by set-

ting µ(U) =
∫
X
δUdµ is finitely additive. Conversely, if we are given a finitely

additive function µ, we can set
∫
X
δUdµ = µ(U) where δU is the characteristic

function on U . This naturally extends to a Qp-linear function on Step(X),

since any locally constant function can be written as a linear combination of

characteristic functions. For example, the function µα defined by setting

µα(U) =


1, if α ∈ U

0, otherwise

for some fixed α ∈ Zp can easily seen to be additive. Therefore it extends to

a distribution on Zp, which we call the Dirac distribution concentrated at α.

Proposition 3.2. Let µ be a Cp-valued function defined on the intervals in

X ⊆ Qp with the property that for every interval a+ pNZp ⊆ X we have,

µ(a+ pNZp) =
N−1∑
b=0

µ(a+ bpN + pN+1Zp).

The function µ extends uniquely to a p-adic distribution on X.

Any compact-open subset of X can be written as a finite union of intervals,

say U =
⋃
Ii. We may therefore extend µ to a function on the compact-

open subsets of X by defining µ(U) =
∑
µ(Ii) (if µ is to be additive, then

it must have this property). That µ does not depend on the partition of U

into intervals follows by applying the equality given in the statement of the

proposition to a refinement of two different partitions of U (see the proposition

on page 32 of [47] for details).

This proposition may be used to construct p-adic distributions, for example

the Haar distribution µHaar which is defined by setting

µHaar

(
a+ pNZp

)
=

1

pN
.
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This distribution is an example of a Bernoulli distribution (which will be de-

fined in Section 3.1.2, and will play a role in the construction of the ζ-function).

Observe that µHaar grows p-adically as N →∞, as is the case for all Bernoulli

distributions. This prevents us from extending the definition of
∫
fdµHaar

beyond locally constant functions.

In order to make sense of
∫
fdµ for all continuous functions f , we will need

to look at a subset of distributions called measures.

Definition 3.3 (Measure). A p-adic distribution µ on X ⊆ Qp is called a

measure on X if it is p-adically bounded, that is if there is some number K ∈ R

such that

|µ(U)|p ≤ K

for every compact-open set U ⊆ X.

Now if we have some function f in C(X), the space of continuous Qp-valued

functions on X, and if {fn} is a Cauchy sequence of functions in Step(X)

that converges to f , then it follows from the boundedness of µ and the strong

triangle inequality that ∣∣∣∣∫
X

fndµ−
∫
X

fmdµ

∣∣∣∣
p

→ 0

as m,n→∞ (see Proposition 12.1 of [69]). Therefore we may define∫
X

fdµ = lim
n→∞

∫
X

fndµ

which leads us the following result.

Proposition 3.4. If µ is a bounded measure on a compact-open set X ⊆ Qp

then the map ∫
X

fdµ : Step(X)→ Cp

extends uniquely to a continuous map∫
X

fdµ : C(X)→ Cp

where C(X) denotes the space of continuous functions on X.
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Later we will make use of the following important technical result [47, p. 84].

Proposition 3.5. Let f, g : X → Qp be two continuous functions such that

|f(x) − g(x)|p ≤ ε for all x ∈ X, and µ a measure on X that is bounded by

K ∈ R. Then we have the inequality∣∣∣∣∫
X

fdµ−
∫
X

gdµ

∣∣∣∣ ≤ εK.

As an example, consider the Dirac distribution µα which is clearly a measure.

We have
∫
fdµα = f(α) for every f ∈ Step(X) and hence for every f ∈ C(X)

also. However the Haar distribution is not a measure, and while
∫
X
fndµHaar

might converge as n → ∞ for some Cauchy sequence {fn} → f ∈ C(X), the

value of the limit is not independent of the choice of Cauchy sequence {fn}

(see the discussion in [69, p. 238]).

In fact, the requirement that a distribution be bounded is stronger than

necessary. We are also able to develop a theory of p-adic integration using the

more delicate notion of an h-admissible measure, as introduced by Amice and

Vélu [1] and Vǐsik [68].

Definition 3.6 (h-admissible measure). Given a positive integer h, an h-

admissible measure on Zp is a linear homomorphism µ : Ch(Z×p ) → Cp that

satisfies the growth condition∣∣∣∣∣sup
a∈Zp

∫
a+pNZp

(xp − ap)idµ

∣∣∣∣∣
p

= o

(∣∣∣pNZp∣∣∣i−h
p

)
for all i such that 0 ≤ i < h. Here xp denotes the inclusion maps Z×p ↪→ C×p ,

and Ch(Z×p ) is the space of Cp-valued functions that can be locally represented

by polynomials of degree less than h.

Let f : Z×p → Cp be a function for which dh−1f/dxh−1
p exists and is Lips-

chitz continuous. For each positive integer N we define the Riemann sum

SN(f) =
∑

e∈(Z/pNZ)×

∫
e+pNZp

h−1∑
i=0

f (i)(e)

i!
(xp − ep)idµ.

Now SN(f) converges as N →∞ ([68, Definition-Lemma 1.6]), and so we may

define ∫
Z×p
fdµ = lim

N→∞
SN(f).
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3.1.2 Example: The Kubota-Leopoldt L-function

Now we will use the theory of p-adic integration from the previous section

in order to construct a p-adic analytic function that interpolates the special

values of the Riemann zeta function.

To begin with we need to p-adically interpolate the function f(s) = ns. To

do this, we must choose a positive integer n that is not divisible by p, and fix a

number s0 ∈ {0, 1, 2, . . . , p−2}. Now if s and s′ are two non-negative integers,

both congruent to s0 modulo p− 1, such that |s− s′|p ≤ 1/pN , then it can be

shown that |ns − ns′|p ≤ 1/pN+1. Furthermore, the set

Ss0 = {s ∈ N : s ≡ s0 (mod p− 1)}

is dense in Zp so each function f : Ss0 → Zp defined by f(s) = ns extends

uniquely to a continuous function f : Zp → Zp.

Recall that the Riemann ζ-function has special values ζ(1 − k) = −Bk/k

where the k-th Bernoulli number Bk is defined by the Taylor series expansion

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

Our goal is to p-adically interpolate the numbers −Bk/k. To this end we

define Bernoulli distributions using Bernoulli polynomials, which for each non-

negative integer k is defined to be the polynomial Bk(x) so that we have the

Taylor series expansion

text

et − 1
=
∞∑
k=0

Bk(x)
tk

k!
.

Definition 3.7 (Bernoulli distribution). For each positive integer k define a

map µB,k on intervals a+ pNZp by setting

µB,k

(
a+ pNZp

)
= pN(k−1)Bk

(
a

pN

)
.

This map satisfies the property required by Proposition 3.2, and therefore ex-

tends to a distribution on Zp.

A simple calculation shows that∫
Zp

dµB,k = Bk, (3.1)
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so we may refine our main goal to interpolating (−1/k)
∫
Zp dµB,k. As men-

tioned in the previous section, Bernoulli distributions are not bounded and

so before we proceed, we must modify them slightly in order to obtain a true

measure.

Definition 3.8. Let α 6= 1 be a rational integer not divisible by p. The α-

regularised Bernoulli distribution µk,α is defined by

µk,α(U) = µB,k(U)− α−kµB,k(αU)

for all compact-open subsets U ⊆ Z×p .

These distributions, for different k, are all closely related to µ1,α as we see in

the following result.

Proposition 3.9. If we define dk to be the least common denominator of the

coefficients of Bk(X), then

dkµk,α

(
a+ pNZp

)
≡ dkka

k−1µ1,α

(
a+ pNZp

) (
mod pN

)
.

This is proved in [47, Theorem II.5.5]. It follows immediately that these dis-

tributions are indeed bounded measures, and furthermore∫
U

dµk,α = k

∫
U

xk−1dµ1,α (3.2)

for all compact-open U .

We claim that the integral on the right hand side of this equation can be

p-adically interpolated. We saw earlier that if k′ ≡ k (mod (p− 1)pN) then∣∣∣xk′−1 − xk−1
∣∣∣
p
≤ 1

pN+1

for x ∈ Z×p , and so by Proposition 3.5∣∣∣∣∣
∫
Z×p
xk
′−1dµ1,α −

∫
Z×p
xk−1dµ1,α

∣∣∣∣∣
p

≤ 1

pN+1
. (3.3)

Therefore if we fix an s0 ∈ {0, 1, 2, . . . , p−2}, then the function
∫
Z×p
xk−1dµ1,α,

defined for all k ∈ Ss0 , extends to a continuous function∫
Z×p
xs0+s(p−1)−1dµ1,α
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which is defined for all p-adic integers s. We then calculate for each non-

negative integer k, ∫
Z×p

dµk,α = (1− α−k)(1− pk−1)Bk, (3.4)

and combining this with Equations (3.1) and (3.2) yields

(1− pk−1)

(
−Bk

k

)
=

1

αk−1 − 1

∫
Z×p
xk−1dµ1,α. (3.5)

At this point we make the observation that the factor 1 − pk−1 in Equation

(3.4) arises because we are forced to integrate over Z×p instead of all of Zp, since

xk−1 can only be interpolated when p - x. The factor 1− α−k is an artefact of

the α-regularisation of the Bernoulli distribution in Definition 3.8.

From the preceding discussion we are able to p-adically interpolate the right

hand side of Equation (3.5), so we are now in a strong position to define the

Kubota-Leopoldt p-adic zeta function.

Definition 3.10. For any fixed prime number p and s0 ∈ {0, 1, . . . , p− 2}, we

define

ζp,s0(s) =
1

α−(s0+(p−1)s) − 1

∫
Z×p
xs0+(p−1)s−1dµ1,α (3.6)

for s ∈ Zp (and with s 6= 0 if s0 = 0).

It can be shown that ζp,s0(s) is independent of the choice of α, see for example

[47, Theorem II.6.8]. Because of Equation (3.3), it follows that the function

ζp,s0(s) is p-adically continuous. Furthermore, by Equation (3.5) it p-adically

interpolates the special values of the Riemann zeta function.

If k ∈ Z and k ≡ s0 (mod p− 1), then

ζp,s0(k) = (1− pk−1)

(
−Bk

k

)
= (1− pk−1)ζ(1− k).

Note that the case s = 0 and s0 = 0 is excluded because here α−(s0+(p−1)s) = 1,

and as the denominator on the right hand side of Equation (3.6) vanishes, the

p-adic zeta function has a “p-adic pole” corresponding to the pole at s = 1 of

the complex Riemann zeta function ζ(s).
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3.2 L-functions attached to modular forms

Deligne [20] has constructed Galois representations associated with modular

forms of weight k ≥ 2. We begin our short survey by defining L-functions

attached to modular forms. Throughout, f will denote a primitive form of

level Nf and character χ that is p-ordinary, i.e. ordp
(
ap(f)

)
= 0, for some

fixed prime p ≥ 3.

3.2.1 Hecke L-functions

Given a newform f ∈ Sk(N,χ) with Fourier expansion f(z) =
∑∞

n=1 anq
n, we

define the L-function attached to f by

L(f, s) =
∞∑
n=1

an(f)n−s.

The function L(f, s) converges for Re(s) > 1+k/2, and satisfies the functional

equation

Λ(f, s) = ±Λ(f, k − s)

where Λ(f, s) = (2π)−sN s/2Γ(s)L(f, s). If f is a normalised eigenform, then

its L-function has an Euler product expansion

L(f, s) =
∏
l

[
(1− αll−s)(1− βll−s)

]−1

where X2 − al(f)X + χ(l)lk−1 = (X − αl)(X − βl) is the Hecke polynomial of

f at l.

3.2.2 Galois representations associated with f

Let K denote a number field containing the Fourier coefficients of f , let p be

a prime of K lying above p, and write Kp for the completion of K at p. By

the work of Deligne, if f has weight k ≥ 2 then we may associate with it a

2-dimensional Galois representation Vf , characterised by the condition

det
(

1−XFrob−1
l

∣∣Vf) = (1− αlX)(1− βlX)
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for all primes l - pNf , where Frobl is an arithmetic Frobenius element. Thus

we see that the L-function

L(Vf , s) =
∏
l

det
(

1−XFrob−1
l

∣∣Vf)−1 ∣∣∣
X=l−s

attached to Vf is in fact the same as L(f, s). It is by the deep work of Carayol

[6] that we know these L-functions agree even at bad primes.

There is a canonical GQ-stable OKp lattice T ∗f inside V ∗f which is generated

by the étale cohomology of Y1(N)Q with Zp-coefficients. Since the representa-

tion Vf is ordinary at p, it has a 2-step filtration

0 = Fil2(Vf ) ⊆ Fil1(Vf ) ⊆ Fil0(Vf ) = Vf

when viewed as a GQp-module. The quotients Fili(Vf )/Fili+1(Vf ) have local

Galois actions as follows:

Fil0(Vf )

Fil1(Vf )
= θ(α),

Fil1(Vf )

Fil2(Vf )
= κk−1θ

(
β

pk−1

)
.

Here κ denotes the cyclotomic character and θ(x) is the unramified character

that maps the arithmetic Frobenius element at p to x.

3.3 Symmetric square L-functions

One may also attach L-functions to the symmetric square Galois representa-

tions associated with modular forms, i.e. the symmetric squares of the repre-

sentations described in Section 3.2.2. We define complex L-functions attached

to these representations and also describe their p-adic analogues. We maintain

the notation of Section 3.2.

3.3.1 Galois representations associated with Sym2f

Let ψ be a Dirichlet character of conductor Nψ coprime to p. We will follow

the convention of identifying ψ with a character of GQ by composing it with
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the mod Nψ cyclotomic character so that ψ(Frobl) = ψ(l) for l - Nψ. We also

denote by νk,ψ the point in weight-space W = Homcont(Z×p ,C×p ) defined by

νk,ψ(z) = ψ(z)zk.

Definition 3.11. The symmetric square representation for f twisted by ψ is

given by

Wf = Sym2 V ∗f (ν1,ψ).

The space Wf is a 3-dimensional irreducible Kp-linear representation of GQ,

unramified outside pNfNψ, that is crystalline at p if p - Nf . Moreover, because

we picked an ordinary prime for f , Wf has as 3-step filtration

0 = Fil3(Wf ) ⊆ Fil2(Wf ) ⊆ Fil1(Wf ) ⊆ Fil0(Wf ) = Wf

when viewed as a GQp-module. The local Galois actions on the graded pieces

are as follows:

Fil0(Wf )

Fil1(Wf )
= κθ(α2ψ(p)),

Fil1(Wf )

Fil2(Wf )
= κkθ

(
χ(p)ψ(p)

)
,

Fil2(Wf )

Fil3(Wf )
= κ2k−1θ

(
β2

p2k−2
ψ(p)

)
.

3.3.2 Complex L-functions attached to Sym2f

In this section we introduce the primitive and imprimitive L-functions attached

to Sym2f . Let ψ be a Dirichlet character of conductor Nψ coprime to Nf . For

each prime l, we define

Pl(Sym2f ⊗ ψ,X) = det
(

1− FroblX
∣∣W Il

f

)
∈ K(χ)[X]

where Il ⊂ GQ is an inertia group at l, and Wf is the representation described

in the previous section.

Definition 3.12. The primitive L-function attached to Sym2f ⊗ψ is given by

the Euler product

L∞(Sym2f ⊗ ψ, s) =
∏
l

Pl(Sym2f ⊗ ψ, l−s)−1
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which converges when Re(s) > k.

This definition makes sense because each polynomial Pl(Sym2f ⊗ ψ,X) is

independent of any choices made. For example, if l - Nf then the Euler factor

at l is of the form

Pl(Sym2f ⊗ ψ,X) = (1− α2
lψ(l)X)(1− αlβlψ(l)X)(1− β2

l ψ(l)X),

and the Euler factors for primes l | Nf are calculated in [57].

The following algebraicity result, due to Sturm [62, 63], is of paramount

importance.

Proposition 3.13. Let s be an integer such that either s ∈ {1, . . . , k− 1} and

ψ(−1) = (−1)s+1, or s ∈ {k, . . . , 2k − 2} and ψ(−1) = (−1)s. If we set δ = 0

whenever 1 ≤ s ≤ k − 1, and δ = 1 whenever k ≤ s ≤ 2k − 2, then

L∞(Sym2f ⊗ ψ, s)
πk−1〈f, f〉Nf

(
τ(χ−1ψ−1)

(2π)s−k+1

)1+δ

∈ K ⊂ Q.

We call these the critical values of L∞(Sym2f⊗ψ, s). Here the complex number

τ(ω) =
∑Nω

j=1 ω(j)e2πij/Nω denotes the Gauss sum of a Dirichlet character ω

modulo Nω.

It is these critical values that will be interpolated by the p-adic analogue of

L∞(Sym2f ⊗ ψ, s).

We will also need an imprimitive version of this object.

Definition 3.14. The imprimitive L-function attached to Sym2f twisted by ψ

is

D(f, ψ, s) = LNfNψ(χ2ψ2, 2s− 2k + 2)
∞∑
n=1

ψ(n)an2(f)n−s

where LN(ω, s) denotes the Dirichlet L-function twisted by ω with Euler factors

at primes dividing N removed.

If we adopt the convention that (αl, βl) = (al(f), 0) whenever l | Nf , then we

have the following Euler product expansion for the imprimitive L-function:

D(f, ψ, s) =
∏
l

[
(1− ψ(l)α2

l l
−s)(1− ψ(l)αlβll

−s)(1− ψ(l)β2
l l
−s)
]−1

.
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3.3.3 p-adic L-functions attached to Sym2f

We now describe the p-adic L-functions that interpolate the special values

of the primitive symmetric square L-functions. We will assume that f is a

modular form such that h = b2ordp
(
ap(f)

)
c+ 1 ≤ k − 1.

We let Γ = Z×p , Λ(Γ) = Zp[[Γ]], and identify Λ(Γ) with the ring of Zp-

valued analytic functions on the weight-space W , i.e. the rigid analytic space

parametrising continuous characters of Γ. The existence of the following p-adic

L-function was proven in [13] and [57].

Theorem 3.15. There exists a p-adic L-function Lp(Sym2f⊗ψ, σ) :W → Cp

of type o(logh), where h = b2ordp
(
ap(f)

)
c+ 1, that is uniquely determined by

the following interpolation property:

1. If 1 ≤ s ≤ k − 1 and ε is a finite character of Γ satisfying ε(−1) =

(−1)s+1ψ(−1) then

Lp(Sym2f ⊗ ψ, νs,ε) =
(−1)s−k+1ε(−1)Γ(s)

22kia
τ(ε)

(2πi)s−k+1

× Ep(s, ε)
L∞(Sym2f ⊗ ψε−1, s)

πk−1〈f, f〉Nf

where a ∈ {0, 1} such that ψ(−1) = (−1)k+a, and

Ep(s, ε) =



(
ps−1ψ(p)−1α−2

p

)r
if Nε = pr > 1

(1− ps−1ψ(p)−1α−2
p )

× (1− ψ(p)αpβpp
−s) if Nε = 1.

× (1− ψ(p)β2
pp
−s)

2. If k ≤ s ≤ 2k − 2 and ε is a finite character of Γ with ε(−1) =

(−1)sψ(−1) then

Lp(Sym2f ⊗ ψ, νs,ε) =
Γ(s− k + 1)Γ(s)

22s+1
ε(Nψχ)τ(ε)2

× E ′p(s, ε)
L∞(Sym2f ⊗ ψε−1, s)

π2s−k+1〈f, f〉Nf
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where

E ′p(s, ε) =



(
ps−1ψ(p)−2χ(p)−1α−2

p

)r
if Nε = pr > 1

(1− ps−1ψ(p)−1α−2
p )

× (1− ψ(p)αpβpp
−s) if Nε = 1.

× (1− ps−1ψ(p)−1α−1
p β−1

p )

In each case Nε denotes the conductor of ε.

3.4 Symmetric square L-invariants

In this section we describe in detail Greenberg’s arithmetic L-invariant for the

symmetric square of an elliptic curve, and also the analytic L-invariant. We

then discuss the relationship between the arithmetic and analytic L-invariants,

and the significance of their non-triviality in the context of deformation the-

ory. While we only discuss in detail the symmetric square L-invariants for

elliptic curves, these notions generalise naturally to include symmetric square

representations attached to modular forms of weight k > 2.

Throughout this section, E will denote an elliptic curve over Q (so that

E is necessarily modular by the work in [5, 70]), and f will be its associated

modular form. We also fix an ordinary prime p.

3.4.1 Greenberg’s L-invariant

Consider the Galois representation

W = Sym2
(
Hét

(
E,Qp(1)

)∗) ∼= Qp ⊗Zp Sym2
(
Tap(E)

)
where Tap(E) = lim←−nEpn is the p-adic Tate module of E.

Let Σ denote a finite set of primes containing p and the primes of bad

reduction for E. Associated to the Gal
(
QΣ/Q

)
-representation W in [4] are
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the Bloch-Kato Selmer groups

H1
f,{p}(Q,W ) := Ker

H1
(
Gal(QΣ/Q),W

) ⊕resl−→
⊕

l∈Σ, l 6=p

H1
(
Il,W

)
and

H1
f (Q,W ) := Ker

(
H1
f,{p}(Q,W )

resp−→
H1
(
GQp ,W

)
H1
f

(
GQp ,W

))
where H1

f (GQp ,W ) denotes the kernel of the mapping from H1(GQp ,W ) to

H1(GQp ,W ⊗ Bcris). Flach et al. [26, 70, 21] have shown H1
f (Q,W ) = {0},

which implies that dimQpH
1
f,{p}(Q,W ) = 1. Let us fix a generator η of this

line, so that H1
f,{p}(Q,W ) = Qp · η.

We now explain how to choose coordinates. Observe that H1
(
GQp ,W

)
=

H1
(
GQp ,Fil1W

)
, an assertion that can be checked from the local formula

dimQp H
1
(
GQp , U

)
= dimQp

(
U ⊗Bcris

)GQp

+ dimQp H
0
(
GQp , U

)
+ dimQp H

0
(
GQp , U

∗(1)
)

which yields the value 3 + 0 + 0 if U = W , and the value 2 + 0 + 1 if

U = Fil1W . By applying Kummer theory, we make the natural identifica-

tion H1
(
GQp ,Qp(1)

) ∼= Qp ⊗Zp

(
lim←−nQ

×
p /Q× p

n

p

)
, from which one obtains the

homomorphism

q : H1
(
GQp ,W

)
= H1

(
GQp ,Fil1W

) mod Fil2−→ H1
(
GQp ,Fil1W/Fil2W

)
∼−→ Qp ⊗Zp

(
lim←−
n

Q×p /Q× p
n

p

)
.

Furthermore, on the right-hand target space there is an isomorphism

Qp ⊗Zp

(
lim←−
n

Q×p /Q× p
n

p

)
∼−→ Qp ×Qp

sending q 7→
(

logp(q), ordp(q)
)
.

Definition 3.16. The arithmetic L-invariant is defined to be the slope of

q ◦ resp(η) inside the vector space H1
(
GQp ,Fil1W/Fil2W

) ∼= Qp ×Qp, i.e.

LGr
p (Sym2E) :=

logp

(
q
(
resp(η)

))
ordp

(
q
(
resp(η)

))
which is independent of the choice of generator η for the Qp-line H1

f,{p}(Q,W ).
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3.4.2 The analytic L-invariant

In fact, there is a more analytic way to introduce the L-invariant if we work

with the p-adic L-function directly. Recall from Section 3.3.2 that, provided

Re(s) > 2, the complex symmetric square L-function for E is given by an

Euler product

L∞(Sym2E, s) =
∏

primes l

det

(
1− Frob−1

l X
∣∣∣ Sym2Hét

(
E,Qq(1)

)Il)−1 ∣∣∣
X=l−s

and if the prime number l does not divide the Q-conductor NE of the elliptic

curve, then

det

(
1− Frob−1

l X
∣∣∣ Sym2Hét

(
E,Qq(1)

)Il) =
(
1− α2

lX
)(

1− β2
lX
)(

1− lX
)

where 1 − al(E)X + lX2 =
(
1 − αlX

)(
1 − βlX

)
is the factorisation of the

Hecke polynomial at l. Gelbart and Jacquet [29] showed that the function

L∞(Sym2E, s) has an analytic continuation to all s ∈ C, and satisfies a func-

tional equation linking the value at s with the value at 3− s.

Since E has good ordinary reduction at p, by Theorem 3.15, there exists

an analytic function F(X) ∈ X · Zp[[X]]⊗Q such that

F
(
χ(1 + p)− 1

)
=

τ(χ)

α
2mχ
p

× L∞(Sym2E ⊗ χ, 1)

(2πi)−1Ω+
EΩ−E

at all non-trivial characters χ of conductor fχ = pmχ > 1 satisfying χ
∣∣
F×p

= 1,

while F(0) = 0. Here αp is the p-adic unit root of X2 − ap(E)X + p, secondly

τ(χ) denotes a Gauss sum for χ−1, and lastly Ω±E are real/imaginary periods

associated to a minimal Weierstrass equation for E/Z.

Definition 3.17. We write Lp(Sym2E,−) : Zp → Qp for the Mazur-Mellin

transform

Lp(Sym2E, s) := F
(
(1 + p)s−1 − 1

)
,

so that Lp(Sym2E, s) has an exceptional zero at s = 1.

In the late 1980s, Coates and Greenberg made the following prediction about

its first derivative.
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Conjecture 3.18. If E has good ordinary reduction at p, the L-invariant

given by the ratio

Lan
p (Sym2E) :=

d

ds
Lp(Sym2E, s)

∣∣∣
s=1

×

(
(1− α−2

p )(1− pα−2
p ) · L∞(Sym2E, 1)

(2πi)−1Ω+
EΩ−E

)−1

is a non-zero p-adic number, so in particular

orders=1

(
Lp(Sym2E, s)

)
= 1.

As will be discussed at length in Section 3.4.3, in most situations the work of

Citro, Dasgupta and Hida [9, 15, 40] implies that Lan
p (Sym2E) = LGr

p (Sym2E),

so we may shift between these two definitions as appropriate. In particular,

the non-vanishing of the analytic L-invariant means that the line H1
f,{p}(Q, V )

has a non-trivial slope inside Qp ⊗Zp

(
lim←−nQ

×
p /Q× p

n

p

)
∼= Qp ×Qp.

Remarks. (a) If E has complex multiplication, then a result of Ferrero and

Greenberg [25] implies that Lan
p (Sym2E) = logp(α

−2
p ); therefore in the

CM case, Conjecture 3.18 is at least known to be true.

(b) If E has split multiplicative reduction at p, under certain restrictions

Rosso [56] recently proved Lan
p (Sym2E) = logp(qE)/ordp(qE) where qE is

the Tate period of the rigid analytic curve; moreover logp(qE) 6= 0 by [2,

Theorem 3], so Conjecture 3.18 holds in this situation too.

(c) We should also point out that in the case where E has split multiplicative

reduction at p, the Tate period qE is a universal norm for the Zp-extension

F∞/Qp cut out by

Im
(
H1
(
GQp , Sym2Tap(E)

) mod Fil1−→ H1
(
GQp ,Zp

))
inside H1

(
GQp ,Zp

)
= Hom

(
GQp ,Zp

) ∼= Z2
p. Under the Tate local pairing

H1
(
GQp ,Qp(1)

)
×H1

(
GQp ,Qp

)
→ Qp,

the line q ◦ resp

(
H1
f,{p}(Q, V )

)
will then be orthogonal to the subspace

Hom
(
Gal(F∞/Qp),Qp

)
. Applying exactly the same reasoning as [31,
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p154], it follows that the slopes logp(qE)/ordp(qE) and

logp

(
q
(
resp(η)

))
/ordp

(
q
(
resp(η)

))
are actually equal.1

3.4.3 The connection with deformation theory

We now discuss these L-invariants in the context of Λ-adic cusp forms. For

a given elliptic curve E/Q and a good ordinary prime p ≥ 3, one can lift the

p-stabilisation f0 ∈ S2

(
Γ0(pNE)

)
to an I-adic eigenform, F , where I denotes a

suitable finite, flat extension of Zp[[X]], isomorphic to the irreducible compo-

nent of the universal ordinary Hecke algebra carrying the form f0.

For a sufficiently small choice of p-adic disk W ⊂ Zp centred on k = 2,

each specialisation

Fk := F
∣∣
X=(1+p)k−2−1

∈ Sk
(
Γ0(NEp

∞), ω2−k
p

)
for k ∈ W ∩ Z≥2

yields a classical cuspidal Hecke eigenform, with the q-expansion Fk(q) =∑∞
n=1 a

(
Fk, n

)
qn. One can then interpolate each qn-coefficient to yield a func-

tion, a
(
F(X), n

)
, on the disk W .

If n = p, then the derivative of a
(
F(X), p

)
with respect to X is rigid mero-

morphic on W . Hida established in [39, Prop 7.1] under suitable hypotheses

(which are true, for instance, if the versal deformation ring RE is Gorenstein)

that da(F ,p)
dX

is non-zero, and can thus vanish at only finitely many unspecified

bad weights. Furthermore, the main formula in [40, Thm 1.1] yields

LGr
p

(
Sym2(Fk)(k)

)
= −2 logp(1 + p) · a

(
Fk, p

)−1 · da(F , p)
dX

∣∣∣∣
X=(1+p)k−2−1

(3.7)

for every weight k ∈ W ∩ Z≥2, where LGr
p

(
−
)

again denotes Greenberg’s

algebraic L-invariant.

Note that the Gorenstein property of the versal deformation ring RE above

has been verified for numerous elliptic curves E, and ordinary primes p ≥ 3

1In the case of split multiplicative reduction the L-invariant for Sym2E is the same as

the L-invariant for E, and it is further conjectured (by Greenberg) that the L-invariants for

SymmE should be independent of m > 0.
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(see [5, 36, 70]). For example, it is known to hold if the conductor NE of the

elliptic curve is a square-free integer.

Remarks. (a) Let Lp

(
Fk ⊗Fk, s

)
denote the analytic p-adic L-function con-

structed in [35], which interpolates the special values L
(
Fk⊗Fk⊗χ, k

)
.

From Dasgupta’s result in [15, Thm 1], one has a factorisation

Lp

(
Fk ⊗Fk, s

)
= ? · ζp

(
s− k + 1, ω0

p

)
· Lp

(
Sym2(Fk), s

)
.

Here ? consists of some Euler factors which are non-zero at classical

weights, and so ?
∣∣
s=k
6= 0.

(b) Allowing s→ k and observing that Ress=k

(
ζp
(
s− k+ 1, ω0

p

))
= 1− p−1,

the above implies

Lp

(
Fk ⊗Fk, k

)
= Lan

p

(
Sym2(Fk)(k)

)
· Ep(Fk) ·

L∞(Sym2Fk, k)

Ω∞,Sym2(Fk)

(3.8)

with Ep(Fk) = ?
∣∣
s=k
·
(
1− p−1

) (
1−αp(Fk)−2pk−1

)(
1−β(Fk)−2

p p−k
)
6= 0.

(c) Under the same assumptions as [40, Thm 1.1], Citro proves in [9, Thm

1] that

Lp

(
Fk ⊗Fk, k

)
= LGr

p

(
Sym2(Fk)(k)

)
· Ep(Fk) ·

L∞(Sym2Fk, k)

Ω∞,Sym2(Fk)

. (3.9)

Using Equations (3.8) and (3.9), Dasgupta [15, Thm 4] then reads off

Greenberg’s prediction that

LGr
p

(
Sym2(Fk)(k)

)
= Lan

p

(
Sym2(Fk)(k)

)
= Lan

p

(
Sym2(Fk)(k − 1)

)
(note the second equality is a consequence of the p-adic functional equa-

tion for Sym2(Fk)).

A corollary of these remarks is that we can replace the algebraic L-invariant

in Equation (3.7) with either analytic version. In particular, at weight two

Hida’s formula now becomes

da(F , p)
dX

∣∣∣∣
X=0

= − αp
2 logp(1 + p)

· Lan
p

(
Sym2E

)
, (3.10)
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hence the derivative of a(F , p) at zero coincides with
Lan
p (Sym2E)

p
, up to an

explicit p-adic unit. Of course, this could just end up being the equation

“0 = 0” in disguise!

Dummit, Hablicsek, Harron, Jain, Pollack and Ross [23] have a direct

method to calculate a(F , p)′(0) through the use of overconvergent modular

symbols, and they have computed four examples in op. cit., thereby estab-

lishing the non-triviality of Lan
p (Sym2E) in these cases. Their results further

determine power series expansions for a(Fk, p), as a function of k, over the

weight-space W .

The non-triviality of this L-invariant has a key consequence for the Iwa-

sawa Main Conjecture for Sym2E over the cyclotomic Zp-extension Qcyc of Q.

The property that Lan
p (Sym2E) 6= 0 allows one to deduce that the order of the

algebraic p-adic L-function at s = 1 is exactly one. Here the algebraic p-adic

L-function denotes the Mazur-Mellin transform of a generator, for the char-

acteristic ideal of Homcont

(
Selp∞

(
Sym2E(1)/Qcyc

)
,Q/Z

)
over the cyclotomic

Iwasawa algebra Zp
[[

Gal(Qcyc/Q)
]]

– we refer the reader to [56, Sect 10] for a

fuller discussion.

3.5 Double product L-functions

We now describe the complex double product L-function attached to a pair of

modular forms of different weights, as well as its p-adic counterpart.

Definition 3.19. Let f =
∑∞

n=1 an(f)qn ∈ Sk(N,χ) and g =
∑∞

n=1 an(g)qn ∈

Ml(N,ψ) where k > l > 1. We define the convolution L-function

D(s, f, g) =
∞∑
n=1

an(f)an(g)n−s.

The series D(s, f, g) converges for Re(s) � 0, and can be expressed in

terms of the Petersson inner product at certain of its special values.
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Theorem 3.20 (Shimura). If f ∈ Sk(N,χ) and g ∈Ml(N,ψ), with l+2r < k

for some non-negative integer r, then

D(k − 1− r, f, g) = c× 〈fρ, g · δ(r)
λ E∗λ,N(z, χψ)〉N

where λ = k − l − 2r and

c =
(−1)r(4π)k−1Γ(k − l − 2r)

Γ(k − 1− r)Γ(k − l − r)
.

Here E∗w,N(z, η) is the Eisenstein series in [60, Eqn (2.3)] of weight w ≥ 0,

character η−1 and level N , given by the infinite series

E∗w,N(z, s, η) =
∑

Γ∞\Γ0(N)

η(γ)·(cz+d)−w
∣∣cz+d

∣∣−2s

∞ , γ =

 a b

c d

 . (3.11)

Definition 3.21. We define the complex double product L-function by setting

Ψ(s, f, g) = γ(s)LNfNg(2s+ 2− k − l, ψfψg)D(s, f, g)

where γ(s) = (2π)−2sΓ(s)Γ(s+ 1− l).

The function Ψ(s, f, g) has analytic continuation to all of C, and also sat-

isfies a functional equation, see [45, 61]. The normalised critical values

Ψ(l + r, f, g)

(2π)1−l〈f, f〉N

are algebraic for all integers r satisfying 0 ≤ r ≤ k − l − 1 [61, Theorem 4.2].

For the purposes of the next theorem, we will assume that f is p-ordinary for

some odd prime p.

Theorem 3.22 (Hida and Panchishkin [37, 53]). Let f ∈ Sk(Nf , ψ) and

g ∈ Sl(Ng, ω) with l < k. There is a bounded Cp-analytic function that is

uniquely determined by the interpolation property

Lp(f ⊗ g, χxsp) = ip

[
(−1)−rω(pnχ)

τ(χ)2pnχ(l+2r−1)

α
2nχ
p

Ψ(l + r, f, gρ ⊗ χ)

(−2πi)1−l〈f, f〉Nf

]
for each finite character χ of conductor pnχ, and integer r ∈ {0, 1, . . . , k−l−1}.

The domain of this function is Homcont(G,C×p ), the p-adic analytic Lie

group of continuous p-adic characters of the Galois group G = Gal(Q(µp∞)/Q).

Panchiskin’s original construction required that aNf (f) · aNg(g) be non-zero,

this restriction was mostly removed in [16].
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3.6 Triple product L-functions

We shall closely follow the notation employed by Fukunaga and Hsieh in [28,

42]. In particular, Ii denotes a normal finite flat extension of the algebra Λwt =

OK [[Γwt]] at each i ∈ {1, 2, 3}, with Γwt = 1+pZp and [K : Qp] <∞. Let us fix

a triple of Ii-adic forms
(
F1,G

(2),G(3)
)

such that F1 := G(1) ∈ Sord
(
C1, ψ1; I1

)
and also G(i) ∈ Sord

(
Ci, ψi; Ii

)
for i = 2, 3 are each primitive families in the

sense of Hida [37], and have expansions in Ii[[q]].

For a choice of index i ∈ {1, 2, 3}, we consider the set of non-zero continuous

OK-algebraic homomorphisms Xi :=
{
Q(i)
m : Ii → Qp

}
m∈N. Now given such a

formal series G(i) ∈ Ii[[q]] as described above, at every m ≥ 1 one can take its

specialisation

G(i)(m) :=
∞∑
n=0

Q(i)
m

(
an
(
G(i)

))
· qn ∈ Qp[[q]]

which yields a normalised p-stabilised newform of weight k(i)(m), level pe
(i)(m)Ci

and character ψiω
−k(i)(m)ε

(i)
m , where ε

(i)
m is the restriction of Q(i)

m to Γwt ⊂ Λwt.

Definition 3.23. If R = I1⊗̂OK I2⊗̂OK I3 is the three-parameter weight algebra,

then the unbalanced domain XF1
R of interpolation points for R is given by

XF1
R :=

Q =
(
Q(1)
m1
,Q(2)

m2
,Q(3)

m3

)
∈ X1 × X2 × X3

∣∣∣∣ k1 + k2 + k3 ≡ 0 (mod 2),

k1 > k2 + k2 − 1, k1 ≥ 2


where we abbreviate

(
k(1)(m1), k(2)(m2), k(3)(m3)

)
by instead using (k1, k2, k3).

Let Π′Q be the product of the automorphic representations πG(i)(m) on

GL2(A) associated to the triple
(
F1,G

(2),G(3)
)
(Q), and define ΠQ := Π′Q ⊗(

χQ
)
A with

χQ = ω−
k(1)(m1)+k(2)(m2)+k(3)(m3)

2 ·
(
ε(1)
m ε(2)

m ε(3)
m

) 1
2 at every point Q ∈ XF1

R .

Passing from the automorphic viewpoint to the setting of Galois representa-

tions, one has an identification of complex L-series

L(ΠQ, s) = Γ(ΠQ,∞, s)

×
∏

l∈SpecZ

Ll

(
F1(m)⊗G(2)(m)⊗G(3)(m)⊗ χQ , s+

w − 1

2

)
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where Γ(ΠQ,∞, s) = ΓC(s+w/2) ·
∏3

i=1 ΓC
(
s+ 1− k∗i

)
is the factor at infinity,

w = k(1)(m1) + k(2)(m2) + k(3)(m3)− 2, and each k∗i = w/2 + 1− k(i)(mi).

The following conditions (which are copied directly from those given in [28])

will guarantee the existence of a p-adic L-function attached to F1⊗G(2)⊗G(3)

interpolating the special values

ιp◦ι−1
∞

Ep(Fk1 ⊗G
(1)
k2
⊗G

(2)
k3
⊗ χ−1

k

)L(Fk1 ⊗G
(1)
k2
⊗G

(2)
k3
⊗ χ−1

k , k1+k2+k3−2
2

)
(−1)k1 · Ω∞(Fk1)2


at k = (k1, k2, k3) with k1 > k2 + k3 − 1, where χk is the unitarization of

det
(
Π

(?)
k

)1/2
.

Hypothesis (T1) The primitive characters satisfy ψ1ψ2ψ3 = 1.

Hypothesis (T2) The residual Galois representation ρF1
: GQ → GL2(Fp)

is absolutely irreducible, and the semi-simplification of

ρF1

∣∣
GQp

∼= θ1 ⊕ θ2 with θ1 6= θ2.

Hypothesis (T3) The value of gcd(C1, C2, C3) is a square-free integer.

Hypothesis (T4) At each Q ∈ XF1
R and l

∣∣C1C2C3, one has ε
(
1/2,ΠQ,l) = +1

where ε
(
s,ΠQ,l) denotes the local ε-factor at a prime l, as

defined by Ikeda in [44].

Theorem 3.24. (Hsieh-Fukunaga [28, 42]) Under the Hypotheses (T1)–(T4),

there exists a unique element LF1

G(2),G(3) ∈ R satisfying the interpolation prop-

erty (
LF1

G(2),G(3)(Q)
)2

= EF1(m)(ΠQ,p) ·
L(ΠQ, 1/2)

√
−1

2k(1)(m1) · Ω2
F1(m)

at all unbalanced points Q ∈ XF1
R , where the p-Euler factor EF1(m)(ΠQ,p) and

the canonical period ΩF1(m) are given in [28, (3.3.1) and Definition 3.3.4],

respectively.

Definition 3.25. The p-adic triple product L-function is given by

Lp

(
F1,G

(2),G(3)
)

=
(
LF1

G(2),G(3))
)2
.
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The construction of LF1

G(2),G(3) from op. cit. involves gluing ‘G(2)·δ(r)
•
(
G(3)

)
(Q)’

along the unbalanced points XF1
R to produce an interpolating family

Haux ∈ Sord
(
N,ψ1,(p)ψ

(p)

1 ; I1

)
⊗I1 R.

One then sets

LF1

G(2),G(3) := the first Fourier coefficient of ηF1 · 1F1 · TrN/C1

(
Haux

)
with N := C1C2C3, and where the operators ηF1 , 1F1 will be introduced in

Chapter 6 (in fact LF1

G(2),G(3) and LF1

G(2),G(3) differ from each other by a very

simple R-unit).

In this chapter we have encountered a number of L-functions. The sym-

metric square L-functions in Section 3.3 will be used in Chapters 4 and 5,

where we compute L-invariants of the p-adic L-functions numerically. The

double and triple product L-functions described in Sections 3.5 and 3.6 will be

used in Chapters 6 and 7 where we show that a congruence between two pairs,

or two triples, of modular forms implies a congruence between their respective

p-adic L-functions.



Chapter 4

Computing L-invariants for the

symmetric square of an elliptic

curve

By devising algorithms to compute Lp(Sym2E, 1)′ and Lan
p (Sym2E) numeri-

cally, and then implementing them in Sage [65], we have established the fol-

lowing result.

Theorem 4.1. Let E be an elliptic curve over Q of conductor NE ≤ 300, with

4 dividing NE.

(i) If p ∈ {3, 5, 7} is a prime of good ordinary reduction for E then Conjec-

ture 3.18 is true, i.e. Lan
p (Sym2E) 6= 0 and orders=1

(
Lp(Sym2E, s)

)
= 1.

(ii) If p = 11 is a prime of good ordinary reduction for E then Conjecture

3.18 is true, with the possible exceptions of the following elliptic curves

116a1, 124b1, 200a1, 296a1.

(iii) If p = 13 is a prime of good ordinary reduction for E then Conjecture

3.18 is true, with the possible exceptions of the following elliptic curves:

140a1, 200b1, 232b1, 244a1, 272b1, 280a1.

Here we employ Cremona’s elliptic curve labelling from [12].



42

Remark. We have no reason to believe that Lan
p (Sym2E) actually vanishes for

any of the possible exceptions listed in Theorem 4.1. We were simply unable

to compute the L-invariants to a high enough accuracy to prove their non-

vanishing in these cases.

Recalling the discussion in Section 3.4.3, the next result immediately follows.

Corollary 4.2. Suppose that E is an elliptic curve over Q of conductor NE ≤

300 with 4|NE, and let p ≤ 13 be a prime of good ordinary reduction for

E. Provided that (E, p) is not one of the ten missing pairs listed in Theorem

4.1(ii)-(iii), we have that

da(F , p)
dX

∣∣∣∣
X=0

= δp(E) ·
Lan
p (Sym2E)

p
6= 0

where F denotes the Hida family lifting fE ∈ Snew
2

(
Γ0(NE)

)
, and we define

δp(E) := − pαp
2 logp(1+p)

∈ Z×p .

An outline of the method used to perform these calculations will presented

in Section 4.2, but first we turn our attention to some technical results.

4.1 The analytic theory

Let fE ∈ Snew
2

(
Γ0(NE)

)
denote the primitive form associated to the modular

elliptic curve E. Without loss of generality, we assume that the conductor NE

of the newform fE is divisible by 4. Because L∞(Sym2E, s) is invariant under

taking quadratic twists, one can always ensure that this holds by replacing E

with its twist by the unique character of conductor 4 (if necessary). We also

modify the quantities in Conjecture 3.18, as follows:

• we swap the motivic period (2πi)−1Ω+
EΩ−E with the automorphic period

π〈fE, fE〉NE ;

• we exchange the primitive L-function L∞(Sym2E⊗χ, s) with its imprim-

itive version

D(E,χ, s) := LfχNE

(
χ2, 2s− 2

)
×
∞∑
n=1

χ(n)an2(E)

ns
;
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• we replace the p-adic L-function with

Limp
p (Sym2E, s) := F imp

(
(1 + p)s−1 − 1

)
where

F imp
(
χ(1 + p)− 1

)
=

τ(χ)

α
2mχ
p

× D(E,χ, 1)

π〈fE, fE〉NE
if χ 6= 1,

and F imp(0) = 0.

Providing the imprimitive L-function is non-vanishing at s = 1, the L-invariant

may be equivalently rewritten as

Lan
p (Sym2E) :=

d

ds
Limp
p (Sym2E, s)

∣∣∣
s=1

×
(

(1− α−2
p )(1− pα−2

p )× D(E, 1)

π〈fE, fE〉NE

)−1

. (4.1)

The right-hand bracketed term in Equation (4.1) is reasonably straightforward

to evaluate. (We will describe in Section 4.1.5 the modifications that need to

be made to our method when D(E, 1) = 0.)

Lemma 4.3. Assume E has minimal conductor amongst its quadratic twists.

If the geometric conductor of Sym2
(
h1(E)

)
is denoted by CSym2E ∈ N2, then

one has the formula

D(E, 1)

π〈fE, fE〉NE
=

4 ·
√
CSym2E

NE

×
∏
l∈S1

Hl(l
−1)

Hl(l−2)

where L∞(Sym2E ⊗ χ, s) = D(E,χ, s) ×
∏

l∈S1
Hl

(
χ(l)l−s

)−1
for a finite set

of bad primes S1.

Proof. If we define

Λ∞(Sym2E, s) :=
(
CSym2E

)s/2 · π−s/2Γ(s/2)(2π)−sΓ(s)× L∞(Sym2E, s),

then the functional equation [11, Thm 2.2] for this completed L-function states

that

Λ∞(Sym2E, s) = Λ∞(Sym2E, 3− s).

Combining this equation at s = 2 with the formula D(E, 2) = 8π3

NE
×〈fE, fE〉NE

for the imprimitive symmetric square L-function in [27, Equation (5)], the

result follows easily.
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To calculate Lan
p (Sym2E) numerically, we must therefore evaluate the deriva-

tive d
ds

Limp
p (Sym2E, s) at s = 1 to a reasonable accuracy. If µimp

E ∈ Meas(Z×p ,Qp)

is the p-bounded measure corresponding to the power series F imp(X) ∈ X ·

Zp[[X]][1/p], then

Limp
p (Sym2E, s) =

∫
x∈Z×p
〈x〉s−1

p · dµimp
E (x) for every s ∈ Zp,

where 〈−〉p : Z×p � 1 + pZp denotes the projection to the principal local units.

Using a Riemann sum approximation for the covering Z×p =
⊔
e

(
e+ pmZp

)
, it

follows that

d

ds
Limp
p (Sym2E, s)

∣∣∣
s=1

=

∫
x∈Z×p

logp〈x〉p · dµimp
E (x)

≈
∑

e∈(Z/pmZ)×

logp〈e〉p × µ
imp
E (e+ pmZp).

Question. Given a class e ∈ (Z/pmZ)×, how do we calculate each moment

µimp
E (e+ pmZp) efficiently?

It is well known [11, 13, 57] that the moments µimp
E (e+ pmZp) can be written

as an inner product of

f 0(z) :=
(
fE(z)− βpfE(pz)

)∣∣∣∣
 0 −1

pNE 0

 ∈ S2

(
Γ0(pNE)

)
with a certain modular form Rm,e ∈ M2

(
Γ0(pNE)

)
, whose Fourier coeffi-

cients are p-integral. The integrality of µimp
E (−) is then controlled by that

of
〈f0,Rm,e〉pNE
〈fE ,fE〉

for varying m and e.

4.1.1 Petersson inner product identities for f 0

Recall that the functional equation for the completed Hasse-Weil L-function,

Λ∞(E, s), has the form Λ∞(E, 2−s) = wEΛ∞(E, s) where wE ∈ {±1} denotes

the root number for E over Q. In terms of the associated newform,

fE
∣∣W (NE) = −wE · fE under the action of W (NE) =

 0 −1

NE 0

 .
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Let h(z) denote a weight 2 holomorphic modular form of level pNE, and with

trivial character. Our goal here is to derive the following technical result,

which we repeatedly make use of later.

Lemma 4.4. Letting wE ∈ {±1} denote the root number for E/Q, one has the

following identities:

(i) if C · h(z) ∩
(
C · fE(z)⊕ C · fE(pz)

)
= {0}, then

〈
f 0, h

〉
pNE

= 0;

(ii)
〈
f 0, fE(z)

〉
pNE

= −wE ·
α2
p−1

αp
·
〈
fE, fE

〉
NE

;

(iii)
〈
f 0, fE(pz)

〉
pNE

= −wE ·
α2
p−1

α2
p
·
〈
fE, fE

〉
NE

.

Proof. Since fρE = fE, the fE-isotypic part of M2

(
Γ0(pNE)

)
consists of the

subspace C · fE(z)⊕C · fE(pz). Without loss of generality, assume h(z) is an

eigenform for the Hecke algebra at level pNE. Then by multiplicity one, we

can pick a prime l - pNE such that al(fE) 6= al(h); consequently

al(fE)×
〈
f 0, h

〉
pNE

=
〈
f 0
∣∣T ∗l , h〉pNE =

〈
f 0, h

∣∣Tl〉pNE = al(h)×
〈
f 0, h

〉
pNE

in which case
〈
f 0, h

〉
pNE

= 0, so part (i) is true.

To establish statement (ii), let us first introduce the p-stabilisation

f0(z) := fE(z)− βpfE(pz) = α−1
p · fE

∣∣∣(Up − βpI2

)
∈ S2

(
Γ0(pNE)

)
. (4.2)

This cusp form f0 is related to f 0 through the formula

f 0(z) = fρE
∣∣W (pNE)− αpp−1fρE

∣∣W (NE) = fρ0
∣∣W (pNE), (4.3)

where the involution (−)ρ above sends each h(z) =
∑

n≥1 hne
2πinz to hρ(z) =∑

n≥1 hne
2πinz. Now using Equation (4.3) and observing that fρE = fE, one

obtains the equalities

〈
f 0, fE

〉
pNE

=
〈
fρE
∣∣W (pNE), fE

〉
pNE
− αpp−1 ·

〈
fρE
∣∣W (NE), fE

〉
pNE

=

〈
fρE

∣∣∣W (NE)
∣∣∣ ( p 0

0 1

)
, fE

〉
pNE

− βpp
−1 ·

〈
− wE · fE, fE

〉
pNE

=

〈
− wE · fE

∣∣∣ ( p 0
0 1

) ∣∣∣Tr
Γ0(pNE)
Γ0(NE) , fE

〉
NE

+ wEβpp
−1
[
Γ0(NE) : Γ0(pNE)

]
·
〈
fE, fE

〉
NE
.
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Note from the trace map identity fE

∣∣∣ ( p 0
0 1

) ∣∣∣Tr
Γ0(pNE)
Γ0(NE) = fE

∣∣T ∗p = ap(E)fE

together with the index formula
[
Γ0(NE) : Γ0(pNE)

]
= p + 1, the above

becomes 〈
f 0, fE

〉
pNE

= wE ·
(
−ap(E) + βp ·

p+ 1

p

)
·
〈
fE, fE

〉
NE

= −wE ·

(
α2
p − 1

αp

)
·
〈
fE, fE

〉
NE
.

Lastly to prove that (iii) is true, one knows from Equation (4.2) that〈
f 0, fE(pz)

〉
pNE

=
〈
f 0, β−1

p

(
fE(z)− f0(z)

)〉
pNE

= β−1
p ×

(〈
f 0, fE

〉
pNE
−
〈
f 0, f0

〉
pNE

)
.

The first term 〈f 0, fE〉pNE is already determined from (ii) above. To compute

the second term,〈
f 0, f0

〉
pNE

= (pαp)
−1(αp − βp)(pαp − βp) ·

〈
fρE
∣∣W (NE), fE

〉
NE

upon applying [30, Lemma 1], and clearly one has
〈
fρE
∣∣W (NE), fE

〉
NE

=

−wE
〈
fE, fE

〉
NE

. Combining these strands together:〈
f 0, fE(pz)

〉
pNE

= β−1
p ×

(
−wE ·

α2
p − 1

αp
+ wE ·

(αp − βp)(pαp − βp)
pαp

)
×
〈
fE, fE

〉
NE

= −wE ·

(
α2
p − 1

p
− (αp − βp)(pαp − βp)

p2

)
×
〈
fE, fE

〉
NE

= −wE ·

(
α2
p − 1

α2
p

)
×
〈
fE, fE

〉
NE
,

which completes the demonstration of (iii), and thereby the lemma.

4.1.2 The q-expansion of the modular form Rm,e

The key ingredient in calculating the first derivative of Limp
p (Sym2E, s) at

s = 1, is that the moments of the measure dµimp
E (−) can be written in terms

of the f 0-isotypic projection of a holomorphic modular form. More precisely,

let us recall from [11, Eqs (3.22)-(3.23)] that

µimp
E (e+ pmZp) = 2α−2m

p ×

〈
f 0, Rm,e

∣∣U2m−1
p

〉
pNE〈

fE, fE
〉
NE

(4.4)
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where Rm,e ∈M2

(
Γ0(p2mNE)

)
is obtained by summing up products of certain

theta-functions of weight 1/2 with Eisenstein series of weight 3/2 (the pre-

cise definitions will not be needed). Note also from [11, Lemma 3.10(ii)], the

classical trace map identity

h
∣∣U2m−1

p = h
∣∣∣W (p2mNE)

∣∣∣Tr
Γ0(p2mNE)
Γ0(pNE)

∣∣∣W (pNE)

implies that Rm,e

∣∣U2m−1
p actually has level pNE, so the inner product above is

well-defined.

Remarks. (a) If Rm,e =
∑∞

n=0 rn(m, e)qn then it is clear that Rm,e

∣∣U2m−1
p =∑∞

n=0 rnp2m−1(m, e)qn; furthermore, r0(m, e) = 0 since the theta-functions

of weight 1/2 vanish at the cusp ∞.

(b) Applying [11, Theorem 3.11] each coefficient rn(m, e) ∈ Q, in fact if

p2m−1
∣∣n then rn(m, e) ∈ Zp; it follows that Rm,e

∣∣U2m−1
p ∈ q · Z(p)

[[
q
]]

.

(c) Assuming p2m−1 divides n, from [11, p133] the qn-coefficient of Rm,e is

given by

rn(m, e) =
−2

φ(pm)

∑
χ∈∆m

∑
(n1,n2)∈Wn

∑
(a,b)∈Vn2

µ(a)b · εn2(a)

× χ(b2a)χ−1(n1e) · LNE(χεn2 , 0). (4.5)

Here we have employed the notation:

• ∆m denotes the set of non-trivial Dirichlet characters of conductor di-

viding pm;

• Wn is the set of pairs (n1, n2) ∈ N × N coprime to p, and satisfying

n2
1 × NE

4
+ n2 = n;

• Vn2 consists of pairs (a, b) ∈ N × N that are coprime to pNE, such that

(ab)2 divides n2;

• εn2 refers to the character of the imaginary quadratic field Q
(√
−n2NE

)
.
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As usual, LNE(χεn2 , s) indicates the χεn2-twisted zeta-function with its Euler

factors at the primes dividing NE removed.

Definition 4.5. (a) For an integer t ≥ 1 and y ∈ Z with p - y, one defines

ϑt(y) =



(p− 1)2/p2 if t ≥ 2 and y ≡ 1 (mod pt)

−(p− 1)/p2 if t ≥ 2, y 6≡ 1 (mod pt) but y ≡ 1 (mod pt−1)

0 if t ≥ 2 and y 6≡ 1 (mod pt−1)

(p− 2)/p if t = 1 and y ≡ 1 (mod p)

−1/p if t = 1 and y 6≡ 1 (mod p).

(b) For any m ∈ N and integers x, n2 both coprime to p, we set

M (n2)
m (x) :=

m∑
t=1

pt∑
j = 1,

p - j

pt · ϑt(xj) ×
−1

fεn2

·
fεn2
−1∑

i=0

εn2(i) ·
(
(i− j)p−t

)]

where
(
(i− j)p−t

)] ∈ {0, . . . , fεn2
− 1
}

is the unique integer congruent to (i−

j)p−t mod fεn2
.

The following yields an alternate expression for rn(m, e), designed for use in

our programs.

Proposition 4.6. If p2m−1 divides n, then the qn-coefficient of Rm,e is given

by

rn(m, e) =
−2

φ(pm)

∑
(n1,n2)∈Wn

∑
(a,b)∈Vn2

∑
d|NE

µ(ad)bεn2(ad)M (n2)
m

(
ab2d(n1e)

∗)
where (n1e)

∗ ∈ {1, . . . , pm−1} denotes the multiplicative inverse of n1e modulo

pm.

Before we give the demonstration, we make a couple of observations.

Firstly, the main expense in computing rn(m, e) is in tabulating the values

of εn2 necessary to compute M
(n2)
m (−). The length of time required to compute

rn(m, e) is roughly proportional to the sum
∑

(n1,n2)∈Wn
fεn2

, which has order

O(p3m) as a function of m.
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Secondly, the quantity φ(pm)−1 ·M (n2)
m

(
ab2d(n1e)

∗) occurring above is ac-

tually p-integral. The reason is that M
(n2)
m (−) coincides with ‘Mm(−)’ defined

in [11, Eq (3.30)], and then by Lemma 3.12 of op. cit., the latter is congruent

to zero modulo pm−1. However, once one has programmed in the function ϑt,

our version M
(n2)
m (−) is the quicker to calculate numerically.

Proof. If one recalls the standard identity

LNE(χεn2 , s) =
∑
d|NE

µ(d)χ(d)εn2(d)d−s · L(χεn2 , s),

then Equation (4.5) can be rewritten as

rn(m, e) =
−2

φ(pm)

∑
(n1,n2)∈Wn

∑
(a,b)∈Vn2

∑
d|NE

µ(ad)b · εn2(ad)

·
∑
χ∈∆m

χ

(
ab2d

n1e

)
L(χεn2 , 0).

Therefore, it is enough to show that
∑

χ∈∆m
χ(x)L(χεn2 , 0) is equal to the

quantity M
(n2)
m (x). Now as each L(χεn2 , 0) = −B1,χεn2

with B1,χεn2
denoting

a χεn2-twisted Bernoulli number,

L(χεn2 , 0) =
−1

fχfεn2

·
fχfεn2∑
a=1

χεn2(a) · a

=
−1

fεn2

· p−t ·
fεn2∑
i=1

pt∑
j=1

χ(ai,j)εn2(ai,j) · ai,j

where fχ = pt > 1 say, and the integers ai,j := (i − 1)pt + j. Moreover

χ(ai,j) = χ(j), so decomposing ∆m into a disjoint union of (∆t−∆t−1)’s yields∑
χ∈∆m

χ(x)L(χεn2 , 0)

=
m∑
t=1

∑
χ∈∆t−∆t−1

χ(x)L(χεn2 , 0)

=
m∑
t=1

pt∑
j = 1,

p - j

p−t · ∑
χ∈∆t−∆t−1

χ(xj)

× −1

fεn2

·
fεn2∑
i=1

εn2(ai,j) · ai,j.

The lemma will now follow, provided one can verify that:

(i) p−t ·
∑

χ∈∆t−∆t−1
χ(xj) equals ϑt(xj);
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(ii)
∑fεn2

i=1 εn2(ai,j) · ai,j coincides with pt ·
∑fεn2

−1

i=0 εn2(i) ·
(
(i− j)p−t

)]
.

To establish statement (i), if ∆t = ∆t ∪ {1} for t > 0 with ∆0 = {1} then

p−t ·
∑

χ∈∆t−∆t−1

χ(xj)

= p−t ·

∑
χ∈∆t

χ(xj) −
∑

χ∈∆t−1

χ(xj)


= p−t ·

(
φ(pt)× char1 mod pt(xj) − φ(pt−1)× char1 mod pt−1(xj)

)
where char1 mod pt(y) returns 1 if pt divides y − 1, and returns 0 otherwise.

It is then routine to check that the above formula agrees with ϑt(xj) from

Definition 4.5.

To prove that (ii) is true, we first observe that

fεn2∑
i=1

εn2(ai,j) · ai,j = pt
fεn2
−1∑

i=0

εn2

(
ipt + j

)
· i + j

fεn2
−1∑

i=0

εn2

(
ipt + j

)
and the right-most summation is identically zero. Furthermore

pt ·
fεn2
−1∑

i=0

εn2

(
ipt + j

)
· i = pt ·

fεn2
−1∑

i=0

εn2(i) ·
(
(i− j)p−t

)]
so statement (ii) is also verified.

4.1.3 Expressing Rm,e

∣∣U 2m−1
p in terms of a rational basis

The next stage is to write Rm,e

∣∣U2m−1
p in terms of an explicit rational basis of

M2

(
Γ0(pNE)

)
. One first uses the decomposition

M2

(
Γ0(pNE)

)
= S2

(
Γ0(pNE)

)
⊕ Eis2

(
Γ0(pNE)

)
where the second summand denotes the space of generalised Eisenstein series

of weight two, level pNE and trivial nebentypus. A basis of Eis2(Γ0(pNE)) can

be computed in SAGE using the command

EisensteinForms(Gamma0(p*N E), weight=2).
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Turning our attention to the space of cusp forms,

S2

(
Γ0(pNE)

) ∼= ⊕
M |pNE

⊕
c|pNE/M

Snew
2

(
Γ0(M)

)∣∣∣Vc
and one can express an arbitrary cusp form as a linear combination of Hecke

eigenforms. A basis of each subspace Snew
2

(
Γ0(M)

)
may be computed via the

command

NewForms(Gamma0(M), weight=2).

Write dS for the dimension of S2

(
Γ0(pNE)

)
, and let dEis be the dimension of

Eis2

(
Γ0(pNE)

)
. Then there exist coefficients δ•(m, e) ∈ Q such that

Rm,e

∣∣∣U2m−1
p = δ1(m, e) · fE(z) + δ2(m, e) · fE(pz)

+

dS∑
i=3

δi(m, e) · gi +

dEis∑
j=1

δj+dS (m, e) · hj (4.6)

where
{
fE(z), fE(pz), g3(z), g4(z), . . . , gdS (z)

}
is a basis of cuspidal eigen-

forms at level pNE, and
{
h1, . . . , hdEis

}
denotes an arbitrary Q-basis for the

Eisenstein component. Here we have adopted the labelling convention that

g1(z) = fE(z) and g2(z) = fE(pz). We are then left with the task of de-

termining the δ•(m, e)’s, especially δ1(m, e) and δ2(m, e). To accomplish this

we select an ordered tuple N =
[
n1, n2, . . . , ndS+dEis

]
∈ NdS+dEis of distinct

positive integers, then consider the (dS + dEis)× (dS + dEis)-linear system of

equations

rnp2m−1(m, e) =

dS∑
i=1

an(gi) · δi(m, e) +

dEis∑
j=1

an(hj) · δj+dS (m, e)

for each n ∈ N, arising from Equation (4.6). The corresponding q-coefficient

matrix is given by

M =



an1

(
g1

)
. . . an1

(
gdS
)

an1

(
h1

)
. . . an1

(
hdEis

)
an2

(
g1

)
. . . an2

(
gdS
)

an2

(
h1

)
. . . an2

(
hdEis

)
...

...
...

...

andS+dEis

(
g1

)
. . . andS+dEis

(
gdS
)

andS+dEis

(
h1

)
. . . andS+dEis

(
hdEis

)
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so we can write the system as r(m, e)T = M × δ(m, e)T , where r(m, e) =(
rnp2m−1(m, e)

)
n∈N and δ(m, e) =

(
δi(m, e)

)
i=1,...,#N

.

Hypothesis (detM 6= 0). The matrix M = M(N) is invertible for the choice

of tuple N.

Clearly one can always find an N for which the above holds, otherwise{
g1, . . . , gdS , h1, . . . , hdEis

}
would not be a basis forM2

(
Γ0(pNE)

)
. In practice,

we choose a tuple N that will minimise
∑

n∈N
∑

(n1,n2)∈Wn
fεn2

, and hence the

time needed to compute the vector r(m, e).

Corollary 4.7. If Hypothesis (detM 6= 0) is satisfied for a tuple N, and

W =
(
wi,j
)

1≤i,j≤#N
denotes the inverse matrix to M = M(m, e,N), then

δ(m, e)T = W × r(m, e)T ; in particular

δ1(m, e) =

#N∑
j=1

w1,j · r(m, e)
j

and δ2(m, e) =

#N∑
j=1

w2,j · r(m, e)
j
.

Therefore, to obtain these first two components of δ(m, e), we must:

• calculate g1, . . . gdS and h1, . . . , hdEis
using SAGE;

• find an optimal choice of N ∈ NdS+dEis such that Hypothesis (detM 6= 0)

holds;

• produce the vector of q-coefficients r(m, e) =
(
rnp2m−1(m, e)

)
n∈N from

Proposition 4.6;

• evaluate the first two basis coefficients, i.e. δ1(m, e) and δ2(m, e), using

Corollary 4.7.

The slowest part of the algorithm is the penultimate line, and as we need

#N = dS + dEis of these rnp2m−1(m, e)’s, the time required for this step has

order O
(
(dS + dEis)× p3m

)
.
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4.1.4 An explicit formula for Lan
p (Sym2E) modulo pm,

when D(E, 1) 6= 0

We shall begin by expressing the moments of the measure dµimp
E in terms of

the vector δ(m, e). For each m ≥ 1, define an integer νm,p = νm,p
(
F imp

)
by

the rule

νm,p
(
F imp

)
:= min

{
ordp

(
δ1(m, e)

)
, ordp

(
δ2(m, e)

)
where e ∈

(
Z/pmZ

)×}
.

Therefore to compute νm,p we must calculate the 2(p − 1)pm−1 coefficients

δi(m, e), for each i ∈ {1, 2}.

The Zp-module Lm,p ⊂ Qp generated by the δi(m, e)’s evidently satisfies

Lm,p := Zp ·
〈
δ1(m, e), δ2(m, e)

∣∣∣ e ∈ (Z/pmZ)×
〉

= pνm,p · Zp.

In particular, if all of the δi(m, e)’s are p-integral then Lm,p ⊂ Zp, hence

νm,p
(
F imp

)
≥ 0.

Lemma 4.8. For each integer m ≥ 1 and congruence class e ∈
(
Z/pmZ

)×
,

µimp
E

(
e+ pmZp

)
=
−2 wE
α2m
p

· (1− α−2
p )×

(
αp · δ1(m, e) + δ2(m, e)

)
and these moments lie inside pνm,p(1− α−2

p ) · Zp.

Proof. Considering Equations (4.4) and (4.6) in turn, one deduces that

µimp
E (e+ pmZp) = 2α−2m

p ·

〈
f 0 , Rm,e

∣∣U2m−1
p

〉
pNE〈

fE, fE
〉
NE

= 2α−2m
p ·

〈
f 0 , δ1(m, e)fE(z) + δ2(m, e)fE(pz) + R̃(z)

〉
pNE〈

fE, fE
〉
NE

where R̃(z) ∈ M2

(
Γ0(pNE)

)
intersects trivially with the isotypic subspace(

C · fE ⊕ C · fE(pz)
)
. If we make full use of Lemma 4.4, the three Petersson

inner product identities imply

µimp
E (e+ pmZp) = 2α−2m

p ·
(
δ1(m, e) ·

(
−wE ·

α2
p − 1

αp

)

+ δ2(m, e) ·

(
−wE ·

α2
p − 1

α2
p

)
+ 0

)
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which is equivalent to the stated formula.

Note the integrality statement for µimp
E (−) follows as δi(m, e) ∈ pνm,p · Zp

and −2wE
α2m
p
∈ Z×p .

An important corollary of this result is that the power series F imp(X)

belongs to pνm,p · Zp[[X]], hence the imprimitive p-adic L-function is p-integral

if
∣∣δ1(m, e)

∣∣
p
,
∣∣δ2(m, e)

∣∣
p
≤ 1 for all e. Furthermore, if Sord denotes the set of

primes where E has good ordinary reduction over Qp, and Sdenom consists of

those primes dividing 6 ×
∏

l∈S1
Hl(l

−1) × (2πi)−1Ω+
EΩ−E

π〈fE ,fE〉NE
(cf. Lemma 4.3), an

easy exercise verifies that

F(X) ∈ pνm,p · Zp[[X]] at every prime p ∈ Sord − Sdenom.

Consequently, the primitive p-adic L-function Lp(Sym2E, s) is a p-integral

Iwasawa function at good ordinary primes p 6∈ Sdenom for which we have

sup
{
νm,p(F imp)

∣∣ m ∈ N
}
≥ 0.

For each m, the quantities νm,p give a lower bound on the µ-invariant of

F(X) when p 6∈ Sdenom. In all of our numerical calculations, we found that

the exponent νm,p(F imp) stabilised as a function of m ≥ 3, and was only

once smaller than −2 in value. In fact, this was the single instance where

L′p(Sym2E, 1) 6∈ Zp, occurring at the prime p = 3 for the curve E = 268a1.

Theorem 4.9. Provided that D(E, 1) 6= 0, if one defines ξSym2E := D(E,1)
π〈fE ,fE〉NE

and sets εp = ordp
(
(1 − α−2

p ) · ξSym2E

)
, then the L-invariant will satisfy the

congruences

Lan
p (Sym2E) ≡

−2 wE · ξ−1
Sym2E

α2m
p (1− pα−2

p )

×
∑

e∈(Z/pmZ)×

logp〈e〉p ·
(
αp · δ1(m, e) + δ2(m, e)

)
mod pm+νm,p−εp

for every integer m ≥ 1.
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Proof. From Lemma 4.8, our formulae for the moments of dµE imply that

d

ds
Limp
p (Sym2E, s)

∣∣∣∣∣
s=1

=

∫
x∈Z×p

logp〈x〉p · dµimp
E (x)

≡
∑

e∈(Z/pmZ)×

logp〈e〉p · µ
imp
E (e+ pmZp) mod pm+νm,p

≡ −2 wE
α2m
p

· (1− α−2
p )

×
∑

e∈(Z/pmZ)×

logp〈e〉p ·
(
αp · δ1(m, e) + δ2(m, e)

)
mod pm+νm,p .

Now using Equation (4.1) which is valid as D(E, 1) 6= 0, the L-invariant can

be expressed as

Lan
p (Sym2E) =

(
(1− α−2

p )(1− pα−2
p ) ξSym2E

)−1

× d

ds
Limp
p (Sym2E, s)

∣∣∣
s=1

and since (1−α−2
p )(1−pα−2

p ) ξSym2E ·Zp = pεp ·Zp, the result follows directly.

4.1.5 A general formula for Lp(Sym2E, 1)′ modulo pm,

even when D(E, 1) = 0

It is important to mention that for the six elliptic curves 176b1, 196a1, 200b1,

240d1, 272b1, 300c1, the value of Limp
p (Sym2E, 1)′ is zero at all primes p simply

because D(E, s) vanishes at s = 1. One should note that the triviality of

Limp
p (Sym2E, 1)′ does not imply either the triviality of Lp(Sym2E, 1)′, nor the

triviality of Lan
p (Sym2E).

In order that our study of Conjecture 3.18 is not missing out any curves of

conductor ≤ 300, for those six elliptic curves listed above with D(E, 1) = 0,

we shall now describe a general method to approximate Lp(Sym2E, 1)′ that

will work irrespective of whether D(E, 1) is zero. Let us begin by partitioning

the set S1 = S1(E), consisting of primes dividing NE for which E had additive
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reduction, into a disjoint union of

S ′1,− :=
{
l ∈ S1 − {2} such that #Φl > 2 and Gal

(
Ql(E4)/Ql

)
is abelian

}
,

S ′′1,− :=
{
l ∈ S1 such that #Φl = 2

}
, and

S1,+ := S1 − S ′1,− − S ′′1,−.

Here, if l 6= 2 then Φl ⊂ Gal
(
Ql(E4)/Ql

)
denotes the inertia subgroup, and if

l = 2 then we write Φ2 ⊂ Gal
(
Q2(E3)/Q2

)
for the inertia subgroup.

A careful reading of the argument in [11, pp119-121] indicates that for each

prime l ∈ S ′1,− ∪ S ′′1,−, one has Hl(X) = (1− lX) ·Υl(X) where

Υl(X) :=


1 if l ∈ S ′1,−(
1− α̂2

lX
)(

1− β̂2
lX
)

if l ∈ S ′′1,−.

(4.7)

Alternatively, if a prime l ∈ S1,+ then Hl(X) = (1 + lX) unless either l = 3

and Φ3
∼= C4 o C3, or instead l = 2 and Φ2 ∈

{
SL2(F3), Q8

}
, in which case

Hl(X) = 1.

It follows that for s ∈ C, there is a natural separation of Euler factors given

by

∏
l∈S1

Hl(l
−s) =

 ∏
l∈S1,+

Hl(l
−s) ×

∏
l∈S′′1,−

Υl(l
−s)

× ∏
l∈S′1,−∪S′′1,−

(
1− l1−s

)
with the bracketed term non-zero at s = 1, while the other term has order

#S ′1,− + #S ′′1,−.

Definition 4.10. For any s ∈ Zp, let us define the (period modified) p-adic

L-function by

Laut
p (Sym2E, s) :=

(2πi)−1Ω+
EΩ−E

π
〈
fE, fE

〉
NE

× Lp(Sym2E, s).

Comparing the above with the imprimitive p-adic L-function, one can factorise

the latter into

Limp
p (Sym2E, s) = Ip(s) ·

∏
l∈S′1,−∪S′′1,−

(
1−〈l〉s−1

p

)
× Laut

p (Sym2E, s) (4.8)
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where Ip(s) ∈ Zp〈〈s〉〉 is an Iwasawa function satisfying

Ip(1) =
∏
l∈S1,+

Hl(l
−1)×

∏
l∈S′′1,−

Υl(l
−1).

It follows directly from this factorisation that

orders=1

(
Limp
p (Sym2E, s)

)
= #S ′1,− + #S ′′1,− + orders=1

(
Laut
p (Sym2E, s)

)
,

hence Conjecture 3.18 is equivalent to Limp
p (Sym2E, s) vanishing with order

1 + #S ′1,− + #S ′′1,− at the critical point s = 1.

To verify Coates and Greenberg’s conjecture for a given elliptic curve

E when S ′1,− ∪ S ′′1,− 6= ∅, we must therefore supply a method to calculate

Laut
p (Sym2E, 1)′, then check it is non-zero.

Theorem 4.11. For all integers m ≥ 1, there are congruences

d

ds
Laut
p (Sym2E, s)

∣∣∣∣∣
s=1

≡
∑

e∈(Z/pmZ)×

(
logp〈e〉p

)1+#S′1,−+#S′′1,− · µimp
E (e+ pmZp)

(1 + #S ′1,− + #S ′′1,−)!× Ip(1)×
∏

l∈S′1,−∪S′′1,−
logp(1/l)

modulo p
m+νm,p−ordp

(
Ip(1)×

∏
l∈S′1,−∪S

′′
1,−

logp(1/l)
)
.

Proof. Let us first set κp := #S ′1,−+ #S ′′1,− ≥ 0. We have the following Taylor

series at s = 1:

• Limp
p (Sym2E, s) =

dκp+1Limp
p (Sym2E, s)

dsκp+1

∣∣∣∣
s=1

· (s− 1)κp+1

(κp + 1)!
+ O

(
(s− 1)κp+2

)
• Laut

p (Sym2E, s) =
dLaut

p (Sym2E, s)

ds

∣∣∣∣
s=1

· (s− 1) + O
(
(s− 1)2

)
• Ip(s) = Ip(1) · (s− 1)0 + O

(
(s− 1)1

)
•
(
1− 〈l〉s−1

p

)
= logp(1/l) · (s− 1)1 + O

(
(s− 1)2

)
for each prime l 6= p.

Plugging these directly into Equation (4.8), one reads off from the (s− 1)κp+1-

term that

dLaut
p (Sym2E, s)

ds

∣∣∣∣
s=1

=

dκp+1Limp
p (Sym2E,s)

dsκp+1

∣∣∣∣
s=1

(κp + 1)! · Ip(1)×
∏

l∈S′1,−∪S′′1,−
logp(1/l)

.



58

Further, upon differentiating the Mazur-Mellin transform (κp + 1)-times, one

easily deduces

dκp+1Limp
p (Sym2E, s)

dsκp+1

∣∣∣∣∣
s=1

=

∫
x∈Z×p

(
logp〈x〉p

)κp+1 · dµimp
E (x)

≡
∑

e∈(Z/pmZ)×

(
logp〈e〉p

)κp+1 × µimp
E (e+ pmZp) mod pm+νp .

Dividing by (κp + 1)! · Ip(1)×
∏

l∈S′1,−∪S′′1,−
logp(1/l) yields the approximation.

Remarks. (a) The preceding theorem yields an effective method to calculate

Laut
p (Sym2E, 1)′, as a formula for the moments of the measure dµimp

E has

already been given in Lemma 4.8.

(b) The L-invariant itself is then obtained simply by working out the ratio

Lan
p (Sym2E) =

d

ds
Laut
p (Sym2E, s)

∣∣∣∣
s=1

×

(
(1− α−2

p )(1− pα−2
p )× L∞(Sym2E, 1)

π〈fE, fE〉NE

)−1

.

(4.9)

(c) In the Section 4.1.6, we give a method to determine S1,+, S ′1,−, S ′′1,− and

also the Hl(X)’s.

(d) If S ′1,− = S ′′1,− = ∅ so that D(E, 1) 6= 0, then Theorem 4.11 and the

L-invariant equation specialise to the situation covered in Section 4.1.4

– here Laut
p and Limp

p have the same order at s = 1.

4.1.6 Determining the set S1, and the bad factors Hl(X)

with l ∈ S1

The purpose of this section is to compute the decomposition S1 = S1,+∪S ′1,−∪

S ′′1,−, and the corresponding Euler factors Hl(X). We retain the same notation

and assumptions as Section 4.1.5. Let ∆E denote the discriminant associated

to a minimal Weierstrass equation for E over Z.
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Proposition 4.12. (a) A prime l ∈ S1 belongs to the subset S ′′1,− if and

only if ordl
(
NE⊗θ

)
= 0 at the character θ = $l if l > 2, or instead at θ ∈{

$2,
(−

2

)
,
( −
−2

)}
if l = 2, in which case

Hl(X) = (1− α̂2
lX)(1− β̂2

lX)(1− lX)

where 1− al(E ⊗ θ)X + lX2 = (1− α̂lX)(1− β̂lX).

(b) A prime l ∈ S1 − S ′′1,− − {2, 3} belongs to S ′1,− if and only if either

• ordl
(
∆E

)
= 2, 4, 8, 10 and l ≡ 1 (mod 3), or

• ordl
(
∆E

)
= 3, 9 and l ≡ 1 (mod 4)

in which case Hl(X) = 1− lX.

(c) A prime l ∈ S1 − S ′′1,− − {2, 3} belongs to S1,+ if and only if either

• ordl
(
∆E

)
= 2, 4, 8, 10 and l ≡ 2 (mod 3), or

• ordl
(
∆E

)
= 3, 9 and l ≡ 3 (mod 4)

in which case Hl(X) = 1 + lX.

(d) For a prime l ∈
(
S1 ∩ {2, 3}

)
− S ′′1,−, one determines whether it belongs

to S ′1,− or to S1,+, and also its Euler factor Hl(X), by using the tables in [11,

p121] and Lemma 2.13 of op. cit.

Proof. Most of these statements follow from the description in [58] of the

Galois representation ρE,p∞ : Gal(Q/Q) → GL2(Zp) associated to the p-adic

Tate module Tap(E) := lim←−nEpn .

Firstly (a) is true because ρE,p∞⊗θ will be unramified at l, and corresponds

to the Tate module of the quadratic twist E ⊗ θ, which has good reduction at

l by the criterion of Néron, Ogg and Shafarevich; consequently Sym2(ρE,p∞) ∼=

Sym2(ρE,p∞ ⊗ θ) is also unramified at l.

To establish (b) and (c), let us now assume (i) the prime l ≥ 5, and also

(ii) dl := #Φl > 2 so that Φl ∈ {C3, C4, C6} here. Then using [11, Lemma

1.4],

Hl(X) =


1− lX if Ql(Ep)/Ql is abelian

1 + lX if Ql(Ep)/Ql is non-abelian.
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Since Ql(Ep∞)/Ql(Ep) is unramified, we observe that Ql(Ep)/Ql is abelian if

and only if Ql(Ep∞)/Ql is abelian.

If Ql(Ep)/Ql is abelian, then Φl factors through the inertia subgroup inside

Gal
(
Qab
l /Ql

)
, and hence through Gal

(
Ql(µl∞)/Ql

)
. Because l - dl clearly

Gal
(
Ql(µl∞)/Ql(µl)

)
acts trivially on Tap(E), in which case Φl factors through

Gal
(
Ql(µl)/Ql

)
, whence l ≡ 1 (mod dl).

Conversely, there exists a unique tamely ramified extension Hd of Qnr
p with

degree d > 0. If l ≡ 1 (mod dl) then the action of Φl
∼= ρE,p∞(Il) on Tap(E)

factors through the algebraic extension Hdl = Qnr
l (Ep∞) ⊂ Qnr

l (µl), which is

certainly an abelian extension of Ql.

Conclusion: The extension Ql(Ep)/Ql is abelian if and only if l ≡ 1 (mod dl).

To complete the proof, we note that dl = #Φl can be read off from [58, p312]

as follows:

• #Φl = 3 if and only if ordl(∆E) ≡ 4 or 8 mod 12;

• #Φl = 4 if and only if ordl(∆E) ≡ 3 or 9 mod 12;

• #Φl = 6 if and only if ordl(∆E) ≡ 2 or 10 mod 12.

It is then a tedious but straightforward exercise to verify that the conditions

stated in (b) correspond to l ≡ 1 (mod dl), while the conditions in (c) corre-

spond to l 6≡ 1 (mod dl).

4.2 The Basic Method

Using the SAGE computer package, we implemented the method outlined in

Sections 4.1.1-4.1.5 to compile tables of d
ds

Limp
p (Sym2E, s)

∣∣
s=1

for all curves E

of conductor NE ≤ 300 such that 4
∣∣NE, as well as their symmetric square L-

invariants. These numerical values are tabulated in Appendix B. Here we were

mainly interested in verifying that Lan
p (Sym2E) was non-zero, rather than in

computing it to a high p-adic accuracy.
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4.2.1 An algorithm to compute the L-invariant numer-

ically

We begin with some general observations. Assume we are given an elliptic

curve E/Q with no restriction on its conductor NE. Then Lan
p (Sym2E) depends

only on the Q-isogeny class of E. Indeed Nastasescu [52] has shown that the

p-adic L-function for Sym2E uniquely determines the Q-isogeny class of the

elliptic curve E, up to a twist by a quadratic character.

Let l 6= 2 be a prime. We write ωl : F×l → µl−1 for the Teichmüller character

modulo l. One can then define a quadratic character $l : F×l → {±1} by the

rule $l(x) = ω
(l−1)/2
l (x). However if l = 2, then $2 : (Z/4Z)× → {±1} denotes

the quadratic character of conductor 4.

Step 1: If E has conductor NE divisible by 4 and 2 ≤ ord2(NE⊗θ) < ord2(NE)

where θ is one of $2,
(−

2

)
, and

( −
−2

)
, then replace E with its twist E ⊗ θ;

alternatively, if E has conductor NE such that ord2(NE) ≤ 1, then replace E

with its twist E ⊗$2 to ensure that 4|NE holds.

Step 2: For our (possibly new) choice of E, let us define the set S1 = S1(E) to

be the set of primes dividing NE for which E had additive reduction. Compute

the bad Euler factors Hl(X) at each prime number l ∈ S1 as follows:

(i) If ordl(jE) < 0 then Hl(X) = 1−X.

(ii) If E ⊗ θ has good reduction at l where θ ∈
{
$2,

(−
2

)
,
( −
−2

)}
if l = 2, or

θ = $l if l > 2, then Hl(X) = (1−α̂l2X)(1−β̂l
2
X)(1−lX) with Φl

∼= C2,

where the Hecke polynomial 1−al
(
E⊗θ

)
X+ lX2 = (1− α̂lX)(1− β̂lX).

(iii) If #Φl > 2, then each factor Hl(X) is determined by Proposition 4.12.

Step 3: Compute CSym2E =
∏

l|NE l
ordl(CSym2E), where for each prime number l

dividing NE:

(i) if ordl(jE) < 0 then ordl(CSym2E) = 2;

(ii) if Φl
∼= C2 then ordl(CSym2E) = 0;
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(iii) if #Φl > 2 then ordl(CSym2E) can be read off from the results in [11,

pp120-121].

Step 4: Evaluate the imprimitive L-value ξSym2E = D(E,1)
π〈fE ,fE〉NE

using the formula

in Lemma 4.3, which requires both
∏

l∈S1
Hl(X) and CSym2E from the previous

steps. If D(E, 1) = 0 then compute the primitive L-value L∞(Sym2E,1)
π〈fE ,fE〉NE

instead.

Step 5: Find a tuple N such that the coefficient matrix M = M(N) has

det(M) 6= 0. Fix the desired accuracy m ≥ 1 and compute the vector rn(m, e)

for each e ∈ (Z/pmZ)×.

Step 6: For each e ∈ (Z/pmZ)×, compute both of the terms δ1(m, e) and

δ2(m, e) by following the method described at the end of Corollary 4.7.

Step 7: If D(E, 1) 6= 0 then calculate Lan
p (Sym2E) mod pm+νm,p−εp via the

numerical congruences in Theorem 4.9. If however D(E, 1) = 0, then com-

pute d
ds

Laut
p (Sym2E, s)

∣∣∣
s=1

using the congruences in Theorem 4.11 and hence

Lan
p (Sym2E) by equation 4.9.

The structure of these inertia subgroups Φl was worked out completely by

Serre in [58, §5.6]. To summarise, if ordl(jE) ≥ 0 and l
∣∣NE then Φl ∈{

C2, C3, C4, C6

}
provided that l 6= 2, 3. If l = 3 then the semi-direct product

C4 o C3 is also a possibility, while if l = 2 then both SL2(F3) and Q8 (the

quaternion group of size 8) can also occur as Φl.

Fortunately, there is an extensive table given in [11, p121] which contains

the information required to pin down the structure of Φ2 and Φ3, as well as

the 2- and 3-parts of CSym2E. Therefore Step 3 can be fully automated.

We should also point out that the matrix M(N) in Step 5 need only be

determined once, which is fortunate because dS +dEis can typically be greater

than 104 even if NE is relatively small.
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4.2.2 A worked example

Consider the elliptic curve

E = 176b1 : y2 = x3 + x2 − 5x− 13

of conductor NE = 24 · 11. Its first few good ordinary primes are p =

3, 5, 7, 13, . . . with corresponding Hecke eigenvalues a3(E) = 1, a5(E) = 1,

a7(E) = 2, a13(E) = 4, . . . respectively. The quadratic twist E ⊗$2 has con-

ductor 11, and therefore will be Q-isogenous to X0(11). One determines that

S1,+(E) = S ′1,−(E) = ∅ and S ′′1,−(E) = {2}, with

Υ2(X) =
(
1− α̂2

2X
)(

1− β̂2
2X
)

= 1 + 4X2

where α̂2 = −1 + i and β̂2 = −1− i are the roots of X2 − a2

(
X0(11)

)
X + 2 =

X2 +2X+2. Furthermore at s = 1, the primitive complex L-function satisfies

L∞(Sym2E, 1)

π〈fE⊗$2 , fE⊗$2〉NE⊗$2

=
4 ·
√
CSym2E

NE⊗$2

×
∏

l∈S1(E⊗$2)

1

Hl(l−2)

=
4 ·
√

121

11
× 1 = 4.

The period ratio is given by

〈fE⊗$2 , fE⊗$2〉NE⊗$2

〈fE, fE〉NE

=
[
Γ0(NE⊗$2) : Γ0(NE)

]−1 × Ress=2

(∑∞
n=1 an(E ⊗$2) · n−s∑∞

n=1 an(E) · n−s

)

=
NE⊗$2 ·

∏
l|NE⊗$2

(1 + 1/l)

NE ·
∏

l|NE(1 + 1/l)
× 1 + 1/2

D2(E ⊗$2, 2)

=
1

16×
(
(1− 21−2) ·Υ2(2−2)

) =
1

10

in which case

L∞(Sym2E, 1)

π〈fE, fE〉NE
=

L∞(Sym2E, 1)

π〈fE⊗$2 , fE⊗$2〉NE⊗$2

×
〈fE⊗$2 , fE⊗$2〉NE⊗$2

〈fE, fE〉NE
=

2

5
.

Now for each choice of prime p ∈ {3, 5, 7, 13}, applying Theorem 4.11 yields

the congruences

Laut
p (Sym2E, 1)′ ≡

∑
e∈(Z/pmZ)×

(
logp〈e〉p

)2 · µimp
E (e+ pmZp)

2!×Υ2(2−1)× logp(1/2)

mod pm+νm,p−1.
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Evaluating the moments of the measure dµimp
E (via Lemma 4.8) for varying

m ≥ 2, we obtain

Laut
3 (Sym2E, 1)′ = p+O(p4), Laut

5 (Sym2E, 1)′ = p+O(p2),

Laut
7 (Sym2E, 1)′ = 2p+O(p2), Laut

13 (Sym2E, 1)′ = 4p+O(p2).

Finally, dividing the above derivatives by (1 − α−2
p )(1 − pα−2

p ) × L∞(Sym2E,1)
π〈fE ,fE〉NE

,

we conclude that

Lan
3

(
Sym2X0(11)

)
= Lan

3 (Sym2E) = 1 + 2p2 +O(p3)

Lan
5

(
Sym2X0(11)

)
= Lan

5 (Sym2E) = p+O(p2)

Lan
7

(
Sym2X0(11)

)
= Lan

7 (Sym2E) = 2p+O(p2)

Lan
13

(
Sym2X0(11)

)
= Lan

13(Sym2E) = 2p+O(p2)

which are all non-zero elements of Zp.

Remark. In fact, if one chooses p = 11 so that X0(11) has split multiplicative

reduction at p, then it is established in [23, p51] that Lan
11

(
Sym2X0(11)

)
=

6p+5p2 +7p3 +7p4 +O(p5) 6= 0 by using an approach based on overconvergent

modular symbols1. It follows immediately that Conjecture 3.18 must hold for

the modular elliptic curve X0(11), at all odd primes p < 17.

4.3 Attempts at evaluating the moments
∫
xj ·

dµimp
E for j 6= 0?

Theoretically at least, there should be a more efficient way to compute the

derivative of the imprimitive p-adic L-function at s = 1, which we now outline.

1 We also computed Lp(Sym2E) for E = 304e1 at the good ordinary prime p = 5,

using an identical method. In fact L5(Sym2(304e1)) = L5(Sym2(19a1)) because E ⊗$2 is

Q-isogenous to 19a1; thankfully, the value we obtained numerically agreed with the 5-adic

expansion for L5(19a1) given in [23, p52], at the weight k + 2 = 2.



65

Keeping our previous notation,

d Limp
p (Sym2E, s)

ds
=

∫
Z×p
〈x〉s−1

p logp〈x〉p · dµimp
E (x)

=

p−1∑
e=1

∞∑
j=0

Ae,j(s) ·
∫
e+pZp

xj · dµimp
E (x)

where
∑∞

j=0Ae,j(s)xj is the power series development for 〈x〉s−1
p logp〈x〉p along

e+ pZp.

Question. Is there an efficient algorithm to determine
∫
e+pZp x

j · dµimp
E (x)

when j 6= 0?

If there is a positive answer, then one simply needs to evaluate
∑∞

j=0Ae,j(1) ·∫
e+pZp x

j · dµimp
E to some prescribed p-adic precision, and next sum the values

over the range e = 1, . . . , p − 1. In theory this should yield a far quicker and

more accurate method than using Riemann sums, but in practice there are a

number of difficulties that arise.

To better illustrate these difficulties, let us assume that Fk is a p-stabilised

ordinary Hecke eigenform of weight k ≥ 2 and level Np. The critical points

for the L-function of the symmetric square of Fk are {1, . . . , 2k − 2} which,

after p-adically interpolating Limp
(
Sym2Fk, s

)
at positive integer values, natu-

rally subdivide into the disjoint subsets {1, . . . , k − 1} and {k, . . . , 2k − 2}.

If dµimp,−
Sym2Fk(j)

is the measure interpolating χ-twists of Sym2Fk(j) at each

j ∈ {1, . . . , k − 1}, then the analytic methods in [13, 57] imply for some

non-zero constant ck ∈ Q×:∫
e+pmZp

xj−1 · dµimp,−
Sym2Fk(1)

(x) = µimp,−
Sym2Fk(j)

(
e+ pmZp

)
= ck ×

〈
F0
k , Hol

(
R̃

(k,j)
m,e

)∣∣U2m−1
p

〉
pN〈

Fk,Fk
〉
pN

where R̃
(k,j)
m,e are certain C∞-modular forms exhibiting moderate growth at the

cusps of X1(p2mN), and ‘Hol’ denotes the operator of holomorphic projection,

in the terminology of [33].

Remarks. (a) If j = k− 1 then the modular forms R̃
(k,k−1)
m,e are already holo-

morphic, and there is no need to apply the operator ‘Hol’ (e.g. for weight
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k = 2, one has Rm,e = R̃
(2,1)
m,e ).

(b) However if j ∈ {1, . . . , k − 1} and j 6= k − 1, then R̃
(k,j)
m,e is not a holo-

morphic modular form.

(c) More alarmingly, if j ∈ Z − {1, . . . , k − 1} then R̃
(k,j)
m,e no longer has

moderate growth at the cusps of X1(p2mN), so attempting to evaluate

Hol
(
R̃

(k,j)
m,e

)
does not even make sense.

For each of the critical values j ∈ {1, . . . , k − 1}, the Fourier expansion

of Hol
(
R̃

(k,j)
m,e

)∣∣U2m−1
p can be readily computed [13, pp.592-594], and is of the

form

Hol
(
R̃(k,j)
m,e

)∣∣∣U2m−1
p =

∞∑
n=1

( ∑
p2m−1n=Nn2

1+n2

C(k,j)
n2,m,n

×
∫
x∈e+pmZp

xj−k+1 · dµ−(x, εn2)

)
· qn (4.10)

where the scalars C
(k,j)
n2,m,n ∈ Q, and dµ−(x, εn2) is the twisted Kubota-Leopoldt

pseudo-measure interpolating
∫
Z×p
χxs · dµ−(x, εn2) = ζp(s, χ

−1εn2) at finite

order characters χ, with 1− s ∈ N.

In order to evaluate
∫
xj ·dµimp,−

Sym2Fk(k−1)
, one could naively try to Tate twist

the q-expansions in Equation (4.10) at integer values j 6∈ [1, k − 1], and then

compute the F0
k -isotypic component. We attempted this for both the ranges

j > k − 1 and j < 1 (which lie outside the region of p-adic interpolation),

but found that the corresponding q-expansions could not possibly come from

modular forms of level Np. Essentially these methods fail because the operator

‘Hol’ cannot be extended to real analytic forms that do not exhibit moderate

growth.

A possible salvage is to allow the p-stabilised eigenform Fk to vary in

an ordinary family. For example, one could pick another weight k′ = k +

t(p − 1)pr for some t, r ∈ N, and a Hecke eigenform Fk′ ∈ Sk′
(
Γ1(Np)

)
such

that Fk′ ≡ Fk mod pr. One might expect that Lan
p

(
Sym2(Fk′)(k′ − 1)

)
and

Lan
p

(
Sym2(Fk)(k − 1)

)
are also congruent, albeit modulo a lesser power of p.
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Suppose that we want to compute the moments
∫
xj · dµimp,−

Sym2Fk′ (k′−1)
instead.

Because k′ = k + t(p− 1)pr with the chosen r > 1, the strip {1, . . . , k′ − 1} is

considerably larger than the strip {1, . . . , k − 1}, so the range of j’s for which

Hol
(
R̃

(k′,j)
m,e

)∣∣∣U2m−1
p is a classical weight k′ modular form is now bigger. There

are also more moments
∫
xj · dµimp,−

Sym2Fk′ (k′−1)
available.

The main hindrance is that expressing Hol
(
R̃

(k′,j)
m,e

)∣∣∣U2m−1
p in terms of a ba-

sis of weight k′ modular forms is computationally far slower than before, as the

dimension of Mk′
(
Γ0(Np)

)
grows rapidly with k′. Therefore any advantage

gained by calculating this larger set of moments is immediately offset by the

slowness in writing each Hol
(
R̃

(k′,j)
m,e

)∣∣∣U2m−1
p in terms of a C-basis. For example,

if p = 5, N = 11, k = 2 and k′ = 2 + (5 − 1)510 then a simple SAGE calcu-

lation reveals dimC

(
Mk′

(
Γ0(Np)

))
= 234, 375, 008, which is crippling from a

numerical standpoint. Nevertheless, because the subspace of p-ordinary mod-

ular forms has fixed dimension by Hida’s control theory, any theoretical result

which could bypass the slowness in computing a full basis for Mk′
(
Γ0(Np)

)
would make the algorithm far more efficient.
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Computing L-invariants for

higher weight modular forms

We will further develop the methods described in Chapter 4 in order to calcu-

late the analytic L-invariants for symmetric squares of newforms having weight

greater than two. In doing so we will establish the following result.

Theorem 5.1. Let f be a modular form of weight k ≤ 6 and level C ≤ 15, or

weight k = 8 and level C ≤ 10, with rational coefficients and trivial nebentypus.

If p ∈ {3, 5, 7} such that p - C and f is ordinary at p then

Lan
p (Sym2f) 6= 0 and orders=k−1

(
Lp(Sym2f, s)

)
= 1

with the possible exception of f = 10.4.a.a 1 and p = 3 where we have been

unable to compute Lan
p (Sym2f) to a high enough precision to prove that it is

non-zero.

Before doing that, we will give an account of an alternative method for cal-

culating symmetric square L-invariants using p-adic families of overconvergent

modular symbols, which are intimately connected to the eigencurve (a rigid

analytic space parametrising all finite slope Hecke eigenforms).

1Throughout this chapter we employ the labelling conventions of the L-functions and

modular forms database [64]
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5.1 Computing L-invariants using families of

overconvergent modular symbols

The techniques described in this section are due to the work of Dummit et

al. [23], which generalises the algorithms developed by Pollack and Stevens

[54] for computing with overconvergent modular symbols of fixed weight. We

begin with a summary of how computing families of overconvergent modular

symbols allows for the computation of L-invariants, and introducing the main

objects at play. These ideas will be elaborated on in subsequent sections.

The goal here is to compute q-expansions of Hida families numerically.

That is, given a newform f of weight k0, and a Hida family F =
∑
an(F, k)qn

passing through f , we want to compute the Fourier coefficients an(F, k) as

p-adic power series in the weight variable k. Specifically, if we have an approx-

imation of ap(F, k) then we can use the formula

Lp(Sym2f) = −2
d

dk
logp ap(F, k)

∣∣∣
k=k0

(5.1)

to approximate the L-invariant.

Let A be the set of Qp-power series that converge on the unit disc in Cp,

and D = Homcont(A,Qp) be the dual space of distributions. If we define

Σ0(p) =


a b

c d

 ∈ GL2(Zp)
∣∣∣ a ∈ Z×p and c ∈ pZp


then for each integer weight k we may endow D with a weight k action of

Σ0(p), and we will denote D equipped with this action by Dk. The space of

overconvergent symbols of a fixed weight k and level Γ0 = Γ0(Np) is denoted

by SymbΓ0
(Dk) and will be defined later.

The space SymbΓ0
(Dk) can be interpolated p-adically over weight space

W = Hom(Z×p ,C×p ). Recalling that Z×p ∼= (Z/pZ)× × (1 + pZp), we define Wm

to be the subspace ofW consisting of characters whose restriction to (Z/pZ)×

is ωm, where ω is the Teichmüller character. We also define Wm ⊆ Wm to be

the subspace of characters κ that satisfy |κ(γ)−1|p ≤ 1/p for every topological
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generator γ of 1+pZ×p . Note that every classical weight k ∈ Z, when identified

with the “raising to the k-th power” character, is contained in some Wm. The

space D may also be equipped with a weight κ action of Σ0(p) for every p-adic

weight κ ∈ Wm, see [23, Section 2.3].

If R is the set of convergent power series on the closed disc Wm, then

the space D⊗̂R, where ⊗̂ denotes the completed tensor product, consists of

R-valued distributions. Evaluating at a weight κ ∈ D gives a specialisation

D⊗̂R → Dκ, so we refer to elements of D⊗̂R as families of distributions.

Furthermore, D⊗̂R may be equipped with a Σ0(p)-action that is simultane-

ously compatible with all the specialisation maps; this allows us to think of

SymbΓ0
(D⊗̂R) as a space of p-adic families of overconvergent modular symbols

of level Γ0.

Crucially, the space SymbΓ0
(D⊗̂R) admits a Hecke action which allows us

to define an ordinary subspace, SymbΓ0
(D⊗̂R)ord, as the intersection of the

images of SymbΓ0
(D⊗̂R) when all powers of Up are applied. This subspace

contains all the information contained in the Hida families of tame level N .

Thus, by explicitly computing approximations to the characteristic polyno-

mials of Hecke operators acting on SymbΓ0
(D⊗̂R)ord, one may also extract

approximations to q-expansions of Hida families as desired.

Before continuing in greater detail, we remark that we will be discussing the

calculations at a theoretical level only. In order to carry out the computations

numerically, one must devise a way of approximating families of overconvergent

modular symbols in such a way that the assertions we make about them still

hold true. The details of how the computations are implemented numerically

is beyond the scope of what we wish to discuss here, and the interested reader

is referred to Section 4 of [23].

5.1.1 Modular symbols

Denote by ∆0 the set of degree zero divisors on P1(Q) endowed with the action

of GL2(Q) by linear fractional transformations. That is, for each γ =
(
a b
c d

)
∈
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GL2(Z) and D ∈ ∆0 we have

γD =
aD + b

cD + d
.

Definition 5.2. Let Γ be a congruence subgroup of SL2(Z), and V be a right

Γ-module. The space of additive homomorphisms ϕ : ∆0 → V having the

property

ϕ(γD) = ϕ(D)
∣∣∣ γ−1

for all γ ∈ Γ and D ∈ ∆0 is called the space of V -valued modular symbols of

level Γ and is denoted SymbΓ(V ).

For example, SymbΓ(Symk(Q2
p)) is the space of classical modular symbols.

Here we consider mainly SymbΓ0
(Dk) and SymbΓ0

(D⊗̂R) where Γ0 = Γ∩Γ0(p).

In each of these cases the action of Γ0(p) may be extended to the algebra

S0(p) =


a b

c d

 ∈ GL2(Z)
∣∣∣ gcd(a, p) = 1 and c ∈ pZ

 ,

allowing a Hecke action to be defined on these spaces.

The space SymbΓ0
(Dk) consists of overconvergent modular symbols, and

the Hecke eigenvalues in this space essentially match those in the corresponding

space of overconvergent modular forms [55, Theorem 7.1].

For any κ ∈ Wm, the specialisation κ : D⊗̂R → Dκ induces a Hecke

equivariant map

spκ : SymbΓ0
(D⊗̂R)→ SymbΓ0

(Dκ).

Thus we view SymbΓ0
(D⊗̂R) as a family of overconvergent modular symbols,

since for any Φ in this space, spκ(Φ) varies in a p-adic family as κ varies

p-adically.

5.1.2 Generating random families of modular symbols

In order to find a basis of the ordinary subspace SymbΓ0
(D⊗̂R)ord, it is neces-

sary to generate families of overconvergent modular symbols at random. The

following result gives rise to a method for achieving this goal.
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Proposition 5.3. [23, Proposition 3.1] If V is a right Γ-module and Γ0 is

torsion free, then there exist D1, . . . , Dt ∈ ∆0 and γ1, . . . , γt ∈ SL2(Z) such

that

φ({0} − {∞})
∣∣∣(T − 1) =

t∑
j=1

φ(Dj)
∣∣∣(γj − 1)

for all φ ∈ SymbΓ0
(V ), where T = ( 1 1

0 1 ). Conversely, given any v1, . . . , vt ∈ V

that satisfy

v∞

∣∣∣(T − 1) =
t∑

j=1

vj

∣∣∣(γj − 1), (5.2)

there is a unique φ ∈ SymbΓ0
(V ) with φ(Dj) = vj for each j.

Algorithms for computing the Di and γi are given in [54], as are techniques for

solving difference equations of the form w
∣∣(T − 1) = v. The strategy therefore

is to chose v1, . . . , vt ∈ V = D⊗̂R at random and then solve Equation (5.2) to

find v∞.

Now Proposition 5.3 implies that there is a unique family of overconvergent

modular symbols Φ such that Φ(Dj) = vj. Furthermore we have v∞
∣∣(T −1) =

Φ({0}−{∞})
∣∣∣(T −1), which by [23, Lemma 3.3] implies that Φ({0}−{∞}) =

v∞. Lastly, as the Di are the Z[Γ]-generators of ∆0, we obtain a complete

description of Φ.

5.1.3 The ordinary subspace

Because we are interested in families of ordinary modular forms, we will explain

how to pass from families of overconvergent modular symbols to ordinary fam-

ilies. In this section we will consider D0, the unit ball of D under the operator

norm, and R0, the unit ball of R under the sup norm.

Recall that for a compact Zp-module X with a compact operator Up, the

ordinary subspace is defined to be Xord =
⋂∞
n=1 U

n
p (X). If X is profinite then

it canonically decomposes as X = Xord⊕Xnil where Up acts invertibly on Xord

and topologically nilpotently on Xnil.

Since R0 is not profinite, it is not immediately clear that SymbΓ0
(D0⊗̂R0)

can be decomposed with its ordinary subspace as one of the summands. How-
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ever, the ring Λ = Zp[[w]] is profinite and contains R0. If we view Λ as the

ring of bounded functions on the open disc radius of 1/p contained in R0, then

we see that it is preserved by the action of Σ0(p). We thereby obtain a Hecke

equivariant inclusion

SymbΓ0
(D0⊗̂R0) ⊆ SymbΓ0

(D0⊗̂Λ).

This larger space does decompose into ordinary and non-ordinary parts:

SymbΓ0
(D0⊗̂Λ) ∼= SymbΓ0

(D0⊗̂Λ)ord ⊕ SymbΓ0
(D0⊗̂Λ)nil.

The rank of the ordinary subspace may be expressed in terms of the Zp-rank

of a space of classical modular forms [23, Theorem 3.9], i.e.

rankΛ

(
SymbΓ0

(D0⊗̂Λ)ord
)

= rankZp

(
SymbΓ0

(Symk(Zp))ord
)

(5.3)

which is readily computed.

5.1.4 Constructing a basis of the ordinary subspace

We now describe how to compute a Λ-basis of the ordinary subspace Xord =

SymbΓ0
(D0⊗̂Λ)ord. First we need a way of determining when a set of families

{Φ1, . . . ,Φj} ⊆ Xord is able to be completed to a Λ-basis of Xord. To this

end, suppose that D1, . . . , Dt ∈ ∆0 generate ∆0 as a Zp[Γ0]-module. We define

the “vector of total measures” map α : Xord → Λt by sending Φ to the vector

(Φ(Di)(1))ti=1. We also define a map αk : Xord
k → Ztp for a fixed weight k in the

same way where Xord
k = SymbΓ0

(D0
k)

ord. Both maps α and αk are injective, as

is the induced map ᾱ : Xord⊗Λ/m→ (Λ/m)t where m is the maximal ideal of

Λ and (Λ/m)t ∼= Ft [23, Proposition 3.10]. It follows that {Φ1, . . . ,Φj} can be

completed to a Λ-basis of Xord if and only if {ᾱ(Φ1), . . . , ᾱ(Φj)} is a linearly

independent set in Ftp [23, Corollary 3.11].

Now suppose that B ⊆ Xord is a set that satisfies this criterion (but is not

large enough to be a basis). We may extend B in the following way:

1. Produce a random Φ ∈ SymbΓ0
(D0⊗̂Λ) using the method outlined in

Section 5.1.2.
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2. Calculate Φord, the projection of Φ onto Xord, using the operator e =

limn→∞ U
n!
p .

3. Check if B ∪ {Φord} can also be completed to a basis. If it cannot, then

repeat Steps (1) and (2) until a suitable Φord is found.

Provided the method for generating Φ is sufficiently random, we will always

be able to repeat this procedure in order to extend B to a full basis (we know

when to stop because Equation (5.3) tells us what the rank of the basis must

be).

5.1.5 Isolating families of congruent modular forms

Finally we explain how to isolate a component of Xord containing information

from a single Hida family. Let T be the Hecke algebra over Λ acting on Xord.

There is a decomposition T ∼=
⊕

m Tm where m ranges over the maximal ideals

of T, which induces a Hecke equivariant isomorphism Xord ∼=
⊕

mX
ord
m .

For any prime l, let T be Tl or Ul, depending on whether l | Np or l - Np.

For any pair (m, l) consisting of a maximal ideal m and prime number l, we

define the polynomial f̄m,l over Fp be the characteristic polynomial of T acting

on Xord/mXord. Now for each fixed m, there will be some prime l such that

any lift of f̄m,l to characteristic 0, say fm,l, will act invertibly on Xord
m′ for all

m′ 6= m and topologically nilpotently on Xord
m . Therefore a basis of Xord

m can

be constructed in the same manner as in Section 5.1.4 by forming random

elements of Xord, and applying the Hecke operator
∏

m′ 6=m fm′,l(T ) to project

them onto Xord
m .

5.1.6 A worked example

Let p = 5 and consider f = 17.2.a.a the unique newform of level N = 17 and

weight kf = 2 with q-expansion.

f(q) = q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 +O(q10).
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There are three other Galois conjugacy classes of newforms of weight 2 and

level dividing Np = 85, they are:

(i) h1 = 85.2.a.a which has q-expansion

h1(q) = q + q2 + 2q3 − q4 − q5 + 2q6 − 2q7 − 3q8 + q9 +O(q10);

(ii) h2 = 85.2.a.b which has q-expansion

h2(q) = q + (−1 + η)q2 + (−2− η)q3 + (1− 2η)q4 − q5

− ηq6 + (−2 + η)q7 + (−3 + η)q8 + (3 + 4η)q9 +O(q10)

where η = ±
√

2; and

(iii) h3 = 85.2.a.c which has q-expansion

h3(q) = q + νq2 + (ν + 1)q3 + q4 + q5 + (ν − 3)q6

+ (ν − 1)q7 − νq8 + (−2ν + 1)q9 +O(q10)

where ν = ±
√

3.

Now the minimal polynomials for the eigenvalues a2(h1), a2(h2), and a2(h3)

over Q are µ1(X) = X − 1, µ2(X) = X2 + 2X − 1, and µ3(X) = X2 − 3

respectively. Therefore, even though Xord is 6-dimensional, we see that if we

denote by mi the maximal ideal corresponding to gi for each i ∈ {1, 2, 3},

then the 1-dimensional space Xord
m1

will be annihilated by µ1(U2) = U2− 1, the

2-dimensional subspaces Xord
m2

will be annihilated by µ2(U2) = U2
2 + 2U2 − 1,

and the 2-dimensional subspace Xord
m3

will be annihilated by µ3(U2) = U2
2 − 3.

Because each µi(a2(f)) is non-zero, the subspace corresponding to f will be pre-

served by these operators. Moreover, as this remaining space is 1-dimensional,

a basis of it must be an eigensymbol. Performing this calculation yields the

eigenvalue

ap(k) = 3 + 2p+ 4p2 + 2p3 +O(p4) +
(
2p+ 4p2 + 2p3 +O(p4)

)
k

+
(
2p3 +O(p4)

)
k2 +

(
2p3 +O(p4)

)
k3 +O(p4, k4).
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Evaluating Equation (5.1) at k0 = kf − 2 = 0 gives

L5(Sym2f) = 2p+ 2p2 +O(p4).

Note the f is in fact the minimal quadratic twist of the modular form associated

with the elliptic curve E = 272b1, fortunately the L-invariant calculated here

agrees with our calculation of L(Sym2E) in Chapter 4.

Now, keeping p = 5, consider the newform g = 17.4.a.a of level N = 17

and weight kg = 6 ≡ kf (mod p− 1) with q-expansion

g(q) = q − 6q2 + 10q3 + 4q4 − 72q5 − 60q6 − 196q7 + 168q8 − 143q9 +O(q10).

We have congruences an(f) ≡ an(g) (mod p) for all positive integers n, there-

fore g belongs to the same Hida family as f , and evaluating Equation (5.1) at

k0 = kg − 2 = 4 with the eigenvalue above gives

L5(Sym2g) = 2p+ 2p3 +O(p4).

5.2 The higher weight analytic theory

Now we move on to generalise the analytic theory developed in Chapter 4

to include modular forms of weight k > 2. Throughout this section, we will

denote by f =
∑∞

n=1 an(f)qn a primitive weight k newform of level C and

trivial nebentypus, and fix a prime p - C for which f is ordinary. We shall

also assume that f is minimal in the sense that it is not a Dirichlet twist of a

newform of lower level.

Recall from Definition 3.14 that the imprimitive symmetric square L-series

for f twisted by χ is given by

D(f, χ, s) = LMC(2s− 2k + 2, χ2) ·
∞∑
n=1

χ(n)an2(f)n−s

for s ∈ C, where χ is a Dirichlet character moduloM . The primitive symmetric
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square L-series has the form

L∞(Sym2f ⊗ χ, s) =
∏
q|C

Υq(χ, s)
−1LCCχ(χ2, 2s− 2k + 2)

L(χ, s− k + 1)

×
∞∑
n=1

∣∣an(f)
∣∣2 χ(n)n−s

where

Υq(χ, s) =


1− χ(q)2q−2(s−k+1) if aq(f) = 0 and ordq(C) is even

1− χ(q)q−(s−k+1) otherwise.

If we define

C̃ =
∏
q|C

qordqC−m(q)

with

m(q) =


⌊

1
2
ordqC

⌋
if aq(f) = 0

0 otherwise,

then the primitive L-function L∞(Sym2f, s) satisfies the functional equation

Λ∞(f, s) = Λ∞(fρ, 2k − 1− s) [13, Theorem 1.3.2], where

Λ∞(f, s) = C̃(2π)−sΓ(s)π
1
2
sΓ

(
1

2
(s− k + 2)

)
L∞(Sym2f, s)

is the completed L-function.

In parallel with our approach at weight two, we may define the analytic

L-invariant Lan
p (Sym2f) by the equation

d
ds

Lp(Sym2f, s)

∣∣∣∣∣
s=k−1

= Lan
p (Sym2f) · Γ(k − 1)

22k

× (1− pk−2α−2
p )(1− pk−1α−2

p ) · L∞(Sym2f, k − 1)

πk−1〈f, f〉C

(5.4)

provided the imprimitive L-function does not vanish at s = k − 1. Here

Lp(Sym2f, s) is the p-adic L-function discussed in Section 3.3.3. The final

term may be computed exactly as follows.

Proposition 5.4. If f is minimal amongst its Dirichlet twists, then

ξSym2f :=
L∞(Sym2f, k − 1)

πk−1〈f, f〉C
=

22k−2C̃

(k − 2)!C
×
∏
l|C

Hl(l
−k)−1
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where

Hl(X) =
Pl(Sym2f,X)(

1− α2
lX
) (

1− β2
lX
)

(1− αlβlX)

and the polynomial Pl(Sym2f,X) was defined in Section 3.3.2.

Proof. The functionsD(f, s) := D(f,1, s) and L∞(Sym2f, s) differ only by Eu-

ler factors at primes dividing C, hence D(f, s) =
∏

l|C Hl(l
−s) · L∞(Sym2f, s).

The exact forms of the functions Hl(s, f) are calculated in [57]. Combining

the functional equation at s = k − 1 with the result of Hida and Tilouine [41,

Theorem 7.1]:

D(f, k) =
22k−1πk+1

C Γ(k)
〈f, f〉C

yields the result.

5.2.1 Computing the derivative of the p-adic L-function

We define the imprimitive p-adic L-function by

Limp
p (Sym2f, s) =

∫
x∈Z×p
〈x〉s−k+1

p dD−(x) (5.5)

for every s ∈ Zp. Here dD−, defined in [13, Section 2.6], is the distribution 2

on Z×p satisfying ∫
Z×p
χ dD− = D−k−1(χ) (5.6)

where for each s ∈ {1, . . . , k−1} and Dirichlet character χ of p-power conductor

pm we have

D−s (χ) = (1− χ̄2(2)2−2(s−k+1))η · τ(χ)Γ(s)

(2π)s
· Ep(f, χ̄, s) ·

D(f, χ̄, s)

〈f, f〉C

2 The S-adic distributions in [13] are modified by the factor (1−χ2(c)c2(s−k)) for a fixed

c with gcd(c, 4Cp) = 1. Since we are dealing only with the p-adic case, we may (and indeed

do) omit this extra factor.
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with

Ep(f, χ̄, s) =



pm(s−1) · α−2m
p if m = 0

(1− χ̄(p)p−(s−k+1))

×(1− χ(p)α−2
p ps−1) if m > 0

×(1− χ̄(p)β−2
p p−s),

and

η =


1 if C is odd

0 if C is even.

The next result relates the derivative of the imprimitive p-adic L-function to

the derivative of the primitive one. For simplicity, we only consider the case

where the imprimitive complex L-function does not vanish at s = k − 1, this

will be sufficient to prove Theorem 5.1.

Proposition 5.5. Provided D(f, k− 1) 6= 0, so that Hl(l
1−k) does not vanish,

d

ds
Lp(Sym2f, s)

∣∣∣∣∣
s=k−1

=

dη+1

dsη+1 Limp
p (Sym2f, s)

∣∣∣
s=k−1

2k+1 ·Hl(l1−k) ·
(

4 logp〈2〉p
)η .

Proof. Comparing the interpolation properties for the primitive and imprimi-

tive p-adic L-functions, we see that

Limp
p (Sym2f, s) = 2k+1 ·

(
1− 〈2〉−2(s−k+1)

)η
· Ip(s) · Lp(Sym2f, s) (5.7)

where Ip(s) ∈ Zp〈〈s〉〉 is an Iwasawa function satisfying

Ip(k − 1) =
∏
l|C

Hl(l
−(k−1)).

Taking Taylor expansion about s = k − 1 we have the following:

• Limp
p (Sym2f, s) =

dη+1

dsη+1
Limp
p (Sym2f, s)

∣∣∣
s=k−1

× (s− k + 1)η+1

(η + 1)!
+O

(
(s− k + 1)η+2

)
,

•
(

1− 〈2〉−2(s−k+1)
)η

=
(

2 logp〈2〉p · (s− k + 1)
)η

+O
(
(s− k + 1)η+1

)
,
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• Ip(s) = Ip(k − 1) +O (s− k + 1) ,

• Lp(Sym2f, s) =
d

ds
Lp(Sym2f, s)

∣∣∣
s=k−1

· (s− k + 1) +O
(
(s− k + 1)2

)
.

Substituting these into Equation (5.7) and equating the (s− k + 1)η+1 terms

yields the result.

It follows from Equation (5.5) that

dη+1

dsη+1
Limp
p (Sym2f, s)

∣∣∣
s=k−1

=

∫
x∈Z×p

(
logp〈x〉p

)η+1

dD−(x)

≈
∑

e∈(Z/pmZ)×

(
logp〈e〉p

)η+1

D−(e+ pmZp)

(5.8)

so we are able to approximate dη+1

dsη+1 Limp
p (Sym2f, s) provided we can compute

the moments D−(e+ pmZp).

5.2.2 Computing moments of the distribution dD−

Now we turn to the calculation of D−(e+ pmZp) for e ∈ (Z/pmZ)×. As usual,

αp and βp denote the roots of the Hecke polynomial of f at p, that is

X2 − ap(f) + pk−1 = (X − αp)(X − βp)

with αp ∈ Z×p ; and f0(z) = f(z)− βpf(pz) is the p-stabilisation of f .

Proposition 5.6. The moments of the distribution D− are given by

D−(e+ pmZp) =
22k−3p

1
2
k−1C

1
2
k−1

α2m
p

×
〈fρ0 |VC , Rm,e|U2m−1

p W4C2p〉4C2p

〈f, f〉C

where Rm,e|U2m−1
p =

∑∞
n=1 rnp2m−1(m, e)qn ∈ Sk(Γ0(4Cp)) has q-expansion

rnp2m−1(m, e) =
1

φ(pm)
×

∑
χ∈∆m

(n1,n2)∈Wnp2m−1

(a,b)∈Vn2

χ

(
e

n1

)
n1P

−(n2, np
2m−1)

× µ(a)b · χεn2(ab2)L4Cp(0, χεn2).

Here the notations above are precisely:
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• LN(s, ξ) denotes the ξ-twisted zeta function with Euler factors at primes

dividing N removed;

• ∆m is the set of non-trivial Dirichlet characters having conductor di-

viding pm;

• P−(X, Y ) ∈ Q[X, Y ] is the polynomial

P−(X, Y ) =

1
2
k−1∑
j=0

(−1)j

4j
× k − 1

k − 2j − 1
×
(
k − j − 2

j

)
×X

1
2
k−j−1Y j;

• Wn = {(n1, n2) ∈ N2 : n = CN2
1 + n2 and gcd(n1, p) = gcd(n2, p) = 1};

• Vn = {(a, b) ∈ N2 : ab | m and gcd(4Cp, a) = gcd(4Cp, b) = 1};

• εn2 is the character of the quadratic extension Q(
√
−Cn2)/Q.

Proof. By the result of [13, Corollary 2.6.2], for χ ∈ ∆m we have

D−k−1(χ) =
22k−3p

1
2
k−1C

1
2
k− 3

4

α2m
p

×
〈fρ0 |VC , F−(z, k − 1, χ)|U2m−1

p W4C2p〉4C2p

〈f, f〉C

where F−(z, s, χ) =
∑∞

n=1 v
−(n, s, χ)qn ∈ Sk(Γ0(4Cp2m)). The Fourier coeffi-

cients of F−(z, s, χ)|U2m−1
p at s = k − 1, given on p. 594 of op. cit., are

v−(np2m−1, k − 1, χ) =
∑

(n1,n2)∈Wnp2m−1

(a,b)∈Vn2

(
C−

1
4χ(n1)n1P

−(n2, np
2m−1)

× β(n2, 0, εn2χ)L4Cp(0, χ̄εn2)
)

where

β(n2, 0, εn2χ) =
∑

(a,b)∈Vn2

µ(a)b · εn2χ(ab2).

The result follows by defining

Rm,e(z) =
C

1
4

φ(pm)

∑
χ∈∆m

χ(e)F−(z, k − 1, χ)

and noting that Equation (5.6) implies

D−(e+ pmZp) =
1

φ(pm)

∑
χ∈∆m

χ(e)D−k−1(χ̄).
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As in Chapter 4, we may write the formula for the Fourier coefficients rnp2m−1(m, e)

in a form that is more practical from a computational standpoint.

Corollary 5.7. The Fourier coefficients of Rm,e|U2m−1
p are given by the equiv-

alent expression

rnp2m−1(m, e) =
1

φ(pm)

∑
(n1,n2)∈Wnp2m−1

(a,b)∈Vn
d|4Cp

P−(n2, np
2m−1)

× µ(ad)εn2(ab2d)M (n2)
m

(
ab2de

n1

)

where M
(n2)
m (x) is exactly the function given in Definition 4.5.

The final step is to compute 〈fρ0 |VC , Rm,e|U2m−1
p W4C2p〉4C2p in terms of

〈f, f〉C , given q-expansions of f and Rm,e|U2m−1
p . In order to do this, we

recall some useful identities.

If g and h are two cusp forms that both exist at level N |M then we may

lower the level of the Petersson inner product according to the formula

〈g, h〉M = [Γ0(N) : Γ0(M)]× 〈g, h〉N . (5.9)

We will denote by wf the complex number of modulus 1 such that

f |WC = −wf · f.

We also recall the identity

〈g, h〉N = (−1)k〈g
∣∣WN , h

∣∣WN〉N . (5.10)

The operators Vm and WN satisfy the compatibility relations

(g
∣∣Vm)

∣∣WNm = m−
k
2 g
∣∣WN , (5.11)

and

g
∣∣WNm = m

k
2 (g
∣∣WN)

∣∣Vm. (5.12)

With these identities in hand, we turn to the calculation of the inner prod-

uct in Proposition 5.6.
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Proposition 5.8. If the newform f has rational coefficients and exact level

C, then

〈fρ0 |VC , Rm,e|U2m−1
p W4C2p〉4C2p =

wfC
1− 1

2
k
∑
d|4p

δd(m, e)
(

4
k
2 p−

k
2βp〈f |V4, f |Vd〉 − 4

k
2 p

k
2 〈f |V4p, f |Vd〉

)
where δd(m, e) denotes the projection of Rm,e|U2m−1

p onto f |Vd.

Proof. By Equations (5.10) and (5.11),

〈fρ0 |VC , Rm,e|U2m−1
p W4C2p〉4C2p = 〈fρ0 |VCW4C2p, Rm,e|U2m−1

p 〉4C2p

= C−
1
2
k〈fρ0 |W4Cp, Rm,e|U2m−1

p 〉4C2p.

In fact fρ0 |W4Cp and Rm,e|U2m−1
p both have level 4Cp so, by noting that

[Γ0(4Cp) : Γ0(4C2p)] = C, we can apply Equation (5.9) to obtain

〈fρ0 |VC , Rm,e|U2m−1
p W4C2p〉4C2p = C1− 1

2
k〈fρ0 |W4Cp, Rm,e|U2m−1

p 〉4Cp.

Since f has rational coefficients, fρ0 = f − β̄pf |Vp so

〈fρ0 |W4Cp, Rm,e|U2m−1
p 〉4Cp = 〈f |W4Cp, Rm,e|U2m−1

p 〉4Cp

− βp〈f |VpW4Cp, Rm,e|U2m−1
p 〉4Cp.

Applying the relations in Equations (5.11) and (5.12), we have

f |W4Cp = (4p)
1
2
kf |WCV4p = −wf (4p)

1
2
kf |V4p,

and also

f |VpW4Cp = p−
1
2
kf |W4C = 4

1
2
kp−

1
2
kf |WCV4 = −wf4

1
2
kp−

1
2
kf |V4.

Therefore we deduce that

〈fρ0 |W4Cp, Rm,e|U2m−1
p 〉4Cp = βp4

1
2
kp−

1
2
kwf〈f |V4, Rm,e|U2m−1

p 〉4Cp

− (4p)
1
2
kwf〈f |V4p, Rm,e|U2m−1

p 〉4Cp.

Recall that by Hecke’s theory, there is a natural decomposition of cusp forms

of level 4Cp into

Sk(Γ0(4Cp)) =

⊕
N |4Cp

⊕
d| 4Cp

N

Snew
k (Γ0(N))

∣∣∣Vd
 .
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If B is a basis of Hecke eigenforms for the subspace Snew
k (Γ0(C)) then, under

the Petersson inner product, the complement of the f -isotypic part is given by⊕
d|4p

C{f}
∣∣∣Vd
⊥ =

⊕
g∈B
g 6=f

⊕
d|4p

C{g}
∣∣∣Vd
⊕

⊕
N |4Cp
N 6=C

⊕
d| 4Cp

N

Snew
k (Γ0(N))

∣∣∣Vd
 .

Therefore, if we write

Rm,e|U2m−1
p =

∑
d|4p

δd(m, e)f
∣∣Vd + R̃

where R̃ ∈
(⊕

d|4pC{f}
∣∣Vd)⊥ is the image of Rm,e|U2m−1

p in the complemen-

tary subspace, then

〈f |Vw, Rm,e|U2m−1
p 〉4Cp =

∑
d|4p

δd(m, e)〈f |Vw, f |Vd〉4Cp

where w ∈ {4, 4p}. The result follows easily from these two identities.

We remark that bases of the subspaces Snew
k (Γ0(N)) may be computed as

sets of q-expansions of Hecke eigenforms in SageMath [65] using the function

Newforms(Gamma0(N), weight=k). Therefore the values of δd(m, e) are read-

ily computed given q-expansions of Rm,e|U2m−1
p to a sufficient precision. In

order to compute Dc−(e+pmZp) it is sufficient to be able to compute the ratio

〈f |Vm,f |Vn〉N
〈f,f〉C

for any N a multiple of C, and both m and n dividing N
C

; this

calculation is performed in Appendix A.

5.2.3 The basic method for computing Lan
p (Sym2f)

We conclude the chapter with a summary of the method we use to compute

Lan
p (Sym2f) when D(f, k − 1) 6= 0, followed by a worked example. Tables of

results of the computations we performed in order to verify Theorem 5.1 can

be found in Appendix C.

Step 1. Choose a primitive newform f ∈ Sk(C,1) that is minimal among its

quadratic twists, and has rational coefficients. Fix a prime p - C such that f

is ordinary at p. Also fix a positive integer m which will determine the level

of precision of our approximations.
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Step 2. Calculate the complex L-value ξSym2f using Proposition 5.4.

Step 3. Compute q-expansions for Rm,e|U2m−1
p for each e ∈ (Z/pmZ)× using

the formula given in Corollary 5.7.

Step 4. Find a basis of Sk(4Cp,1) consisting of Hecke eigenforms, and hence

calculate D−(e+ pmZp) for each e by expressing the Rm,e|U2m−1
p ’s in terms of

this basis and applying Propositions 5.6 and 5.8.

Step 5. Once we have computed the moments D−(e + pmZp), we may use

Proposition 5.5 and Equation (5.8) to obtain an approximation to the deriva-

tive L′p(Sym2f, k − 1).

Step 6. Finally, we may compute an approximation to Lan
p (Sym2f) by sub-

stituting the values we have computed for ξSym2f and L′p(Sym2f, k − 1) into

Equation (5.4).

Example 5.9. Consider f = 12.4.a.a, the unique newforms of level C = 12,

weight k = 4, and trivial character. The q-expansion for f is

f(q) = q + 3q3 − 18q5 + 8q7 + 9q9 +O(q10).

As a2(f) = 0, we have m(2) = b1
2
ord2Cc = 1, and m(3) = 0 since a3(f) 6= 0.

Therefore C̃ = 22−1× 3 = 6. Furthermore, it follows from Lemmas 1.5 and 1.6

of [57] that H2(X) = 1 + 2k−1X, and H3(X) = 1. Hence, using Proposition

5.4, we calculate the primitive L-value

L∞(Sym2f, k − 1)

πk−1〈f, f〉C
=

22×4−2 · 6
(4− 2)! · 12

× (1 + 2−1)−1 =
32

3
.

Computing the moments D−(e + pmZp) for p = 5 with m = 4, and p = 7

with m = 3, and using the approximation in Equation (5.8) along with the

result of Proposition 5.5 reveals that

d

ds
L5(Sym2f, s)

∣∣∣
s=3

= 4p+ 4p2 +O(p4), and

d

ds
L7(Sym2f, s)

∣∣∣
s=3

= p+ 5p2 +O(p3).
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By substituting these values into Equation (5.4) we obtain

Lan
5 (Sym2f) = 3p+ 2p2 + 3p3 +O(p4), and

Lan
7 (Sym2f) = 5p+ 5p2 +O(p3).



Chapter 6

Congruences between double

and triple product L-functions

In the next two chapters we turn our attention to studying the λ-invariants of

double and triple product L-functions. Our main results are in Chapter 7, but

first we must undertake a series of somewhat tedious calculations involving the

Petersson inner product with a view to proving the following.

THE MAIN GOAL. Let
(
f (I),g(I),h(I)

)
and

(
f (II),g(II),h(II)

)
denote triples

of newforms of suitable weight, character and level. We want to prove an

implication

“Tp
(
M (I)

)
≡ Tp

(
M (II)

)
mod pν =⇒ Lp

(
M (I),−, 1

)
≡ Lp

(
M (II),−, 1

)
mod pν ”

for the double product motives M (?) = M
(
f (?) ⊗ g(?)

)
and for the triple prod-

uct motives M (?) = M
(
f (?) ⊗ g(?) ⊗ h(?)

)
, with Tp(−) denoting their p-adic

realisations.

Note for M (?) = M
(
f (?)
)

with ? ∈ {I, II} the above is a theorem of Vatsal

[66], who established the existence of canonical periods Ω±∞
(
M (?)

)
∈ C× such

that if one normalises each Lp

(
M(f (?)),−

)
using his periods, the congruences

hold modulo pν . It would therefore be worthwhile to recall Vatsal’s congru-

ences in a bit more detail, but we must outline some standard definitions and

terminology first.
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Let Qcyc denote the cyclotomic Zp-extension of Q. If one writes µpn for the

group of pn-th roots of unity, there is a decomposition

G∞ := Gal
(
Q(µp∞)/Q

) ∼= Z×p ∼= F×p ×
(
1 + pZp

) ∼= ∆× Γcyc

where ∆ := Gal
(
Q(µp)/Q

)
, and the topological group Γcyc := Gal

(
Qcyc/Q

) ∼=
Zp.

For a discrete valuation ring R of residue characteristic p, let us define the

(cyclotomic) Iwasawa algebras

Λcyc := R
[[

Γ
]]

= lim←−
n≥1

R
[
Γ/Γp

n]
and R

[[
G∞
]]

:= Λcyc[∆] ∼=
p−2⊕
j=0

R
[[

Γ
]]

(ωj)

where ω : ∆
∼−→ µp−1 is obtained from the Teichmüller character modulo p

via the isomorphism ∆ ∼= F×p . Now fix a topological generator γ0 of Γ. By

linearity and continuity, the mapping γ0 7→ X + 1 induces isomorphisms

Λcyc
∼−→ R[[X]] and R[[G∞]]

∼−→
p−2⊕
j=0

R[[X]](ωj).

Definition 6.1. Let $ be a uniformiser of R, and choose β(X) ∈ R[[X]][1/π].

(i) If the power series β(X) =
∑∞

n=0 cn(β) · Xn, then the integer invariant

µ(β) = µ$(β) is the largest power of $ such that cn(β) ∈ $µ(β) · R for

all n ≥ 0.

(ii) The non-negative integer λ(β) equals the number of zeroes (counted with

multiplicity) of β(X), viewed as a function on the open p-adic unit disk

inside Cp. One can also take λ(β) := rankR/$[[X]]

(
R[[X]]

〈$,$−µ(β)·β(X)〉

)
, and

both are equivalent.

Suppose we are given two newforms f (I) and f (II) of weight k > 1, character

ψ, and of levels N
(I)
f and N

(II)
f respectively, such that their Fourier coefficients

satisfy

an
(
f (I)
)
≡ an

(
f (II)
)

(mod pν) at each n ∈ N with gcd
(
n,N

(I)
f N

(II)
f

)
= 1.

By enlarging R if necessary, one may assume that R contains an
(
f (?)
)

for all n.

The following result due to Vatsal [66, Prop 1.7] concerns congruences between
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the Mazur-Tate-Teitelbaum [50] p-adic L-functions Lp

(
f (?), ωj

)
∈ Λcyc, and

was instrumental in Greenberg and Vatsal’s subsequent work on the Iwasawa

Main Conjecture for elliptic curves [32].

Theorem 6.2 (Vatsal). At each ωj-branch with j ∈ {0, . . . , p− 2}:

(i) Lp,Sf

(
f (I), ωj

)
≡ Lp,Sf

(
f (II), ωj

)
mod pν · Λcyc, and

(ii) λ
(
Lp

(
f (I), ωj

))
= λ

(
Lp

(
f (II), ωj

))
+
∑

l∈Sf
v

(II)
l (ωj)− v

(I)
l (ωj)

where Sf consists of the primes dividing N
(I)
f · N

(II)
f , and v

(?)
l (ωj) is the λ-

invariant of the power series that interpolates the Euler factor Ll
(
f (?) ⊗ ωj, s

)
at a prime l.

Strictly speaking, this is not quite the statement that Vatsal proves in op.

cit. but it is an easy exercise, involving the Sf -depletions of the newforms

f (I) and f (II), to show that it follows from his congruences (e.g. see [18, §4.1-

§4.2] for a discussion). He also assumes irreducibility of the residual Galois

representations ρf (?) and the torsion-freeness of some H1-groups, the details of

which we ignore for brevity.

Emerton, Pollack and Weston [24] later generalised this construction to

allow f to vary within a Hida family, and showed that the λ-invariant was

stable along the branches of a certain Hecke algebra, TΣ(ρ), parametrising the

deformation. Recently the theory has been extended to cover anticyclotomic

λ-invariants in the work of Castella, Kim and Longo [7], and also to treat

non-commutative p-adic Lie extensions (with a meta-abelian structure) by

Delbourgo in [16, 17]. Further generalisations of Vatsal’s original ideas can be

found in [8, 18, 19, 48, 59].

6.1 Statement of the main results

There are three basic approaches one can take in constructing p-adic L-functions

for tensor products of modular forms:
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• the Betti realisation approach adopted by Mazur-Tate-Teitelbaum, Vat-

sal, and others [50, 66, 67], which utilises modular symbols;

• the étale realisation approach of Perrin-Riou [14, 46], which converts

Euler systems directly into p-adic L-functions; or

• the de Rham realisation approach of Hida and Panchishkin [37, 53], which

involves both the Rankin convolution and Petersson inner product.

In the Betti approach, the two main ingredients are a ‘mod p multiplicity-one’

theorem and Ihara’s Lemma. The multiplicity-one result is used to show that

the µ-invariant is stable amongst families of p-congruent modular symbols,

whilst Ihara’s Lemma allows one to change between different level structures.

We follow the de Rham approach, which has the advantage of being com-

pletely explicit in nature. It also carries the disadvantage that the associated

periods may not be canonical with respect to the Iwasawa Main Conjecture,

hence the µ-invariants of our automorphic p-adic L-functions can sometimes

be negative. Here the role of mod p multiplicity-one is played by holomorphic

projection [33], while Ihara’s Lemma is replaced with an explicit calculation

involving depletions of χ-twisted modular forms (see Theorem 2.19 and Propo-

sition 6.15, respectively).

6.1.1 The double product

Let
(
f ,g(I)

)
and

(
f ,g(II)

)
denote pairs of newforms of weight (k1, k2) ≥ 1 with

k1 > k2, levels
(
Nf , N

(I)
g

)
,
(
Nf , N

(II)
g

)
respectively, and nebentypes (ψ1, ψ2). We

also assume they are p-ordinary, i.e. ap(f), ap
(
g(?)
)
∈ O×Cp . Using the results

of Hida and Panchishkin [37, 53], for each choice of ? ∈ {I, II} there exists a

p-adic L-function Lp

(
f ⊗ g(?)

)
∈ Λcyc[∆][1/p] interpolating

ιp◦ι−1
∞

(
Ep
(
f ⊗ g(?), χ−1, n+ k2

)
·
L
(
f ⊗ g(?), n+ k2

)
(2πi)1−k2 · Ω∞(f)

)
with Ω∞(f)=

〈
f , f
〉

Pet
,

at all integers n ∈ {0, . . . , k1 − k2 − 1} and special characters of the form

χκncyc where χ is of finite order, and κcyc : G∞
∼−→ Z×p is the p-th cyclotomic
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character.

Remark. If fE is the weight two newform arising from an elliptic curve E/Q,

then it is an easy exercise to show that

Ω∞(fE) =
deg
(
X0(NfE)� E

)
4π2
√
−1 · r2

E

×
∫
E(C)+

ωE ·
∫
E(C)−

ωE

where ωE is the differential associated to a minimal Weierstrass equation for

E/Z, and rE ∈ Q× denotes the Manin constant for the modular parametrisa-

tion.

Let ρg(?) : GQ → GL2

(
Qp

)
be the p-adic Galois representation attached

to g(?) by the work of Deligne if k2 ≥ 2, and by Deligne-Serre if k2 = 1. We

assume that

ρg(I)

∣∣∣
GQl

∼= ρg(II)

∣∣∣
GQl

mod pν2 at all primes l - N (I)
g ·N (II)

g ,

which is equivalent to saying

an
(
g(I)
)
≡ an

(
g(II)
)

mod pν2 if gcd
(
n,N (I)

g N (II)
g

)
= 1.

For technical reasons, we must also suppose that ψ1 is trivial or a quadratic

character.

Theorem 6.3. At each branch j ∈ {0, . . . , p−2}, let µ
(j)
cyc denote the minimum

of the µ-invariants for Lp

(
f⊗g(I), ωj

)
and Lp

(
f⊗g(II), ωj

)
. If p > k1−2, then

(i) Lp,Sg

(
f ⊗ g(I), ωj

)
≡ Lp,Sg

(
f ⊗ g(II), ωj

)
mod pµ

(j)
cyc+ν2 · Λcyc, and

(ii) λ
(
Lp

(
f ⊗ g(I), ωj

))
= λ

(
Lp

(
f ⊗ g(II), ωj

))
+
∑

l∈Sg
e

(II)
l (ωj)− e

(I)
l (ωj).

where Sg consists of the primes dividing N
(I)
g · N (II)

g , and e
(?)
l (ωj) is the λ-

invariant of the power series interpolating the Euler factor Ll
(
f ⊗ g(?)⊗ωj, s

)
at a prime l.

There is a nice application of this result towards the Iwasawa Main Con-

jecture. By the work of Kings, Loeffler and Zerbes [46, Def 3.3.2], there exist

one-cocycles

Eis
[f ,g(?),r]
ét,b,N ∈ H1

ét

(
Z[1/Np], Tp

(
f ⊗ g(?)

)∗⊗ κ−rcyc

)
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for 0 ≤ r ≤ k2 − 2, b ∈ Z/NZ called Rankin-Eisenstein classes, that map to

each component Lp

(
f ⊗ g(?), ωj

)
. Applying Theorem 11.6.4 of op. cit. which

relies on the existence of these classes outside of the critical range, one obtains

a divisibility of power series

charΛcyc

(
H̃2
(
Z[1/S], Tp

(
f ⊗ g(?)

)∗ ⊗ ΛΓ(−j); ∆(f)
)

(ωj)

) ∣∣∣∣
Tw1+j

(
Lp

(
f ⊗ g(?), ωj

))
where the left-hand side is described fully in Proposition 11.2.9 of op. cit.

and arises naturally from Nekovǎŕ’s theory of Selmer complexes (in fact, it is

helpful to think of the H̃2(· · · )-cohomology intuitively as being a cyclotomic

Selmer group).

If we now write λalg(f⊗g(?), ωj) for the λ-invariant of charΛcyc

(
H̃2(· · · )

)
(ωj)

and likewise λan(f ⊗ g(?), ωj) for the λ-invariant of Lp

(
f ⊗ g(?), ωj

)
, then their

divisibility theorem implies that λalg(f ⊗g(?), ωj) ≤ λan(f ⊗g(?), ωj); moreover{
zeroes of charΛcyc

(
H̃2(· · · ; ∆(f))(ωj)

)}
⊂
{

zeroes of Tw1+j

(
Lp

(
f ⊗ g(?), ωj

))}
for all j ∈ {0, . . . , p− 2}, and at either choice of ? ∈ {I, II}.

Conjecture 6.4. At branches j ∈ {0, . . . , p−2}, there is a transition formula

λalg(f ⊗ g(I), ωj) = λalg(f ⊗ g(II), ωj) +
∑
l∈Sg

e
(II)
l (ωj)− e

(I)
l (ωj).

Assuming its validity, one can show if the Iwasawa Main Conjecture is true

for one motive, M
(
f ⊗ g(I)

)
say, it must be true for the pν2-congruent motive

M
(
f⊗g(II)

)
. Unfortunately we have not yet found a method to switch between

two dominant weight newforms f (I) and f (II), if they are congruent to each other

modulo pν1 .

6.1.2 The triple product

We shall now add an extra pair of forms into the discussion: let
(
f ,g(I),h(I)

)
and

(
f ,g(II),h(II)

)
denote triples of newforms of weight k = (k1, k2, k3), levels
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Nf , N

(?)
g , N

(?)
h

)
and nebentypes (ψ1, ψ2, ψ3). We further suppose that these

triples are p-ordinary, so that ap(f), ap
(
g(?)
)
, ap
(
h(?)
)
∈ O×Cp . There exist

primitive Λ-adic families
(
F,G(?),H(?)

)
passing through

(
f ,g(?),h(?)

)
at each

choice of ? ∈ {I, II}. For technical reasons only, we impose the conditions:

(T1) the primitive characters satisfy ψ1ψ2ψ3 = 1;

(T2) ρF1
: GQ → GL2(Fp) is absolutely irreducible and p-distinguished;

(T3) gcd
(
Nf , N

(?)
g , N

(?)
h

)
is a square-free integer for both choices ? ∈ {I, II};

(T4) ε
(
1/2,Π

(?)
k,l ) = 1 at primes l

∣∣NfN
(?)
g N

(?)
h and unbalanced k = (k1, k2, k3),

where Π
(?)
k is the representation attached to F⊗G(?) ⊗H(?) at each k.

Remark. To consider congruences here we will treat the following situation.

Assume there exists a p-adic line V in the ambient weight-space for the triple(
F,G(?),H(?)

)
, such that for all primes l - N (I)

g ·N (II)
g ·N (I)

h ·N
(II)
h and unbalanced

k = (k1, k2, k3) ∈ V :

(i) ρ
G

(I)
k2

∣∣∣
GQl

∼= ρ
G

(II)
k2

∣∣∣
GQl

mod pν2 , and

(ii) ρ
H

(I)
k3

∣∣∣
GQl

∼= ρ
H

(II)
k3

∣∣∣
GQl

mod pν3 .

Whenever this line is parametrised by a finite flat extension IV ofOK,p[[1+pZp]],

then we call V a congruence line of type (pν2 , pν3) for the triples
(
F,G(?),H(?)

)
.

Let LVp
(
F ⊗G(?) ⊗H(?)

)
∈ IV denote the restriction of the p-adic L-function

to V .

Example 6.5. Consider two modular elliptic curves E(I) and E(II) over Q,

whose p-adic Galois representations ρE(?),p : GQ → GL2(Zp) satisfy the con-

gruences ρE(I),p

∣∣
GQl

∼= ρE(II),p

∣∣
GQl

(mod pν2) at all prime numbers l - condQ(E(I)) ·

condQ(E(II)). Let G(I) ∈ I2[[q]] and G(II) ∈ I2[[q]] be Hida families passing

through E(I) and E(II) respectively, and assume that F ∈ I1[[q]] and H(I) =

H(II) ∈ I3[[q]] denote arbitrary primitive Ii-adic forms. Then we can choose our

p-adic line in weight-space to be the set

V =

{
(k, 2, k − 2)

∣∣∣ k ∈ DF ∩ DH(?)

}
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where DF ⊂ Zp (resp. DH(?)) is the disk of convergence for F (resp. H(I) =

H(II)), and the specialisation map

φV : I1⊗̂OK,pI2⊗̂OK,pI3 � IV

is induced by sending (X1, X2, X3) 7→
(
XV , 0,

XV+1
(1+p)2 − 1

)
.

As it is non-standard, we should define the (weight) λ-invariant in this

context. Since IV is a finite extension of Λwt := OK,p[[1 + pZp]] ∼= OK,p[[X]], one

can consider its normal closure IV,cl and the field of fractions KV = Frac
(
IV,cl

)
.

We then define

λwt(β) :=
[
KV : Fwt

]−1×
(

the number of zeroes of
∏

σ∈Gal(KV/Fwt)

βσ
)

for each β ∈ IV , where Fwt is the field of fractions of Λwt (note that we have∏
σ β

σ ∈ OK,p[[X]]). Let us denote by µ
(V)
wt the minimum value of the weight

µ-invariant amongst the two p-adic L-functions, namely LVp
(
F ⊗G(I) ⊗H(I)

)
and LVp

(
F⊗G(II) ⊗H(II)

)
.

Theorem 6.6. If the weights k = (k1, k2, k3) satisfying k1 > k2 + k3 − 1 and

p - (k1−2)!(
k1+k2+k3

2
−2
)

!
are dense in Spec(IV), and if ψ1 is trivial or quadratic, then

(i) LVp,Sg,h

(
F⊗G(I) ⊗H(I)

)
≡ LVp,Sg,h

(
F⊗G(II) ⊗H(II)

)
mod pµ

(V)
wt +min{ν2,ν3}, and

(ii) λwt
(
LVp
(
F⊗G(I) ⊗H(I)

))
= λwt

(
LVp
(
F⊗G(II) ⊗H(II)

))
+
∑
l∈Sg,h

w
(II)
l,V −w

(I)
l,V

where Sg,h consists of those primes dividing N
(I)
g ·N (II)

g ·N (I)
h ·N

(II)
h , and w

(?)
l,V is the

λwt-invariant for the IV-adic factor Ll

(
Fk1⊗G

(?)
k2
⊗H

(?)
k3
⊗χ−1

k , k1+k2+k3−2
2

)∣∣∣
k∈V

.

An example of such a congruence line V is given by specialising G(?) at a

fixed weight k2 at which there exists a mod pν2 congruence between G
(I)
k2

and

G
(II)
k2

, and taking the weights (k1, k2, k1−k2) with k1 the free variable: one thus

obtains congruences between Lp,Sg,h

(
Fk1 ⊗ G

(I)
k2
⊗ Hk1−k2

)
and Lp,Sg,h

(
Fk1 ⊗
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G
(II)
k2
⊗Hk1−k2

)
. By symmetry, the same thing works when the roles of G(?)

and H(?) are reversed.

The reader will notice that there is no cyclotomic variable appearing here,

although by recent work of Hsieh and Yamana on exceptional p-adic zeroes [43],

this extra variable can certainly be introduced. The techniques presented here

should carry over to the four-variable (quaternionic) setting, thereby enabling

us to prove transition formulae for the cyclotomic λ-invariant at balanced

(k1, k2, k3) ∈ V .

We should also mention the results of Darmon, Rotger and others, which

relate specialisations of Lp

(
F ⊗G(?) ⊗H(?)

)
to generalised Kato classes [14]

in global Galois cohomology with coefficients in Tp
(
Fk1 ⊗ G

(?)
k2
⊗ H

(?)
k3

)
. In

particular, at weight (k1, k2, k3) = (2, 1, 1) they obtain key information on the

Birch and Swinnerton-Dyer Conjecture for elliptic curves E. Therefore given

the existence of a congruence line V of type (pν2 , pν3) containing (2, 1, 1) as a

point, one could use a balanced version of Theorem 6.6 to produce non-trivial

congruences between the values of L
(
E, ρ

(I)
2 ⊗ ρ

(I)
3 , s

)
and L

(
E, ρ

(II)
2 ⊗ ρ

(II)
3 , s

)
at s = 1, for twists by degree four Artin representations ρ

(?)
2 ⊗ ρ

(?)
3 which are

self-dual and congruent.

6.1.3 A brief plan

In Section 6.2 we study projections of C∞-modular forms of the type g ·δ(r)
w (h),

where the differential operator δw = 1
2πi

(
w

2iy
+ ∂

∂z

)
. If h is an Eisenstein series,

then these projections are related to double products, while if h is a cuspidal

eigenform then they are essentially triple product L-values. In Chapter 7, by

writing these critical values in terms of a linear functional L(r,ε)
g (−) acting

on the space of nearly holomorphic forms, one can then read off congruences

amongst the L-values in terms of congruences between the original modular

forms. This is an ad hoc approach and we apologise in advance for the very

ugly formulae!
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Conventions. We employ the following terminology throughout the following

two chapters.

• If χ : Z→ C is any Dirichlet character, then we write χ(p) for its p-part

and similarly we use χ(p) to denote its non-p-part, so that χ = χ(p) ·χ(p).

• If F is a number field or local field then OF will be its ring of integers,

and we say that two expansions H,H† ∈ OF [[q]] are congruent modulo pν

if their qn-coefficients satisfy an(H) ≡ an
(
H†
)

mod pν for every n ≥ 0.

• If I denotes the normal closure of Λwt := OK [[1+pZp]] inside of Frac
(
Λwt

)
,

then we assume K/Qp is chosen large enough to ensure I∩Qp = OK , and

that the algebraic points Spec I
(
OK
)alg

are Zariski dense in Spec I
(
Qp

)
.

• For an integer N ≥ 1 coprime to p and a Dirichlet character χ modulo N ,

we use Tord
(
N,χ; I

)
to indicate the Hecke algebra acting on Sord

(
N,χ; I

)
,

the space of ordinary I-adic cusp forms of tame level N and character χ.

6.2 A lowbrow study of Petersson inner prod-

ucts

Let F1, G2, G3 be modular forms of levels N1, N2, N3, weights k1, k2, k3 > 0

and nebentypes ψ1, ψ2, ψ3 respectively. We shall assume that F1 and G2 are

cusp forms, that the primitive characters satisfy ψ2 · ψ3 = ψ−1
1 , and that

k1 > k2 + k3 − 1. Our main goal here is to derive an explicit expression for

quotients of the type〈
F ]

1 ,TrÑ/N0

(
Hol∞

(
G2 · δ(r)

w (G3)
)∣∣
k1
W ε
Ñ

)〉
N0〈

F1, F1

〉
N1

, ε ∈ {0, 1} (6.1)

where the various operators, levels and inner products above will be defined

shortly (the precise formulae for these ratios will be given in Propositions 6.16

and 6.17). We need to study these projections in some detail, as the critical

values of both the double and triple product L-functions can be represented

via integrals of this type.
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6.2.1 Preliminaries on modular forms

For the three modular forms F1, G2, G3 of levels N1, N2, N3 mentioned above

we will use the following notation.

Notes. (a) For each i ∈ {1, 2, 3}, we factorise the level into Ni = pei · N (p)
i

where ei = ordp(Ni) and N
(p)
i is the corresponding tame level.

(b) We set Ñ := lcm(N1, N2, N3), which one decomposes into Ñ = pẽ · Ñ (p).

(c) Lastly let us choose N0 := p · lcm
(
N

(p)
1 , N

(p)
2 , N

(p)
3

)
= p1−ẽ · Ñ ∈ p · Z×p .

Now F1 belongs to Sk1(N1, ψ1) with q-expansion F1(q) =
∑∞

n=1 an(F1)qn, so

there exists a conjugate form F ]
1 ∈ Sk1(N1, ψ

−1
1 ) with F ]

1(q) =
∑∞

n=1 an(F1)qn.

We shall further suppose that F1 is a newform of conductor N1, so that

F1

∣∣∣
k1

WN1 = ε1 · F ]
1 with ε1 ∈ C and

∣∣ε1∣∣∞ = 1. For simplicity, we will

assume that F ]
1 = F1 and ψ2

1 = 1.

Lemma 6.7. If p - N1 so that e1 = 0, then for an arbitrary G ∈Mk1(Ñ , ψ1),

〈
F ]

1 ,TrÑN0
(G)
〉
N0

= ε1p
1− (k1−2)(ẽ−2)

2

(
Ñ (p)

N1

)k1
2

·
∑
d

∣∣N0
N1

cd,Ñ,ẽ(G)·
〈
F1

∣∣
k1
VN0
N1

, F1

∣∣
k1
Vd

〉
N0

where each form G
∣∣
k1
WÑ ◦ U ẽ−1

p ∈ Mk1(N0, ψ1) has been decomposed into a

sum

G
∣∣
k1
WÑ ◦ U

ẽ−1
p =

∑
d

∣∣N0
N1

cd,Ñ,ẽ(G) · F1

∣∣
k1
Vd + G

(⊥)

Ñ,ẽ
for scalars cd,Ñ,ẽ(G) ∈ C,

and here the modular form G
(⊥)

Ñ,ẽ
above is obtained by projecting G

∣∣
k1
WÑ ◦U ẽ−1

p

onto the orthogonal complement of the F1-isotypic subspace insideMk1(N0, ψ1).

Proof. As the ratio Ñ/N0 = pẽ−1 is a power of p and p|N0, one deduces that

TrÑN0
(G) = p(1−k1/2)(ẽ−1) ×G

∣∣
k1
WÑ ◦ U

ẽ−1
p ◦WN0 .
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Applying this standard identity to our inner product:

〈
F ]

1 ,TrÑN0
(G)
〉
N0

= p(1−k1/2)(ẽ−1) ×
〈
F ]

1 , G
∣∣
k1
WÑ ◦ U

ẽ−1
p ◦WN0

〉
N0

= (−1)k1p(1−k1/2)(ẽ−1) ×
〈
F ]

1

∣∣
k1
WN0 , G

∣∣
k1
WÑ ◦ U

ẽ−1
p

〉
N0

= (−1)k1p1− (k1−2)(ẽ−2)
2

(
Ñ (p)

N1

)k1
2

×
〈
F ]

1

∣∣
k1
WN1 ◦ Vp· Ñ(p)

N1

, G
∣∣
k1
WÑ ◦ U

ẽ−1
p

〉
N0

and the last line follows because (−)
∣∣∣
k1

WN0 =
(
p· Ñ(p)

N1

)k1/2 ·(−)
∣∣∣
k1

WN1 ◦Vp· Ñ(p)

N1

.

However F ]
1

∣∣
k1
WN1 = ε1 · (−1)k1 × F1 and also p · Ñ(p)

N1
= N0

N1
, in which case

〈
F ]

1 ,TrÑN0
(G)
〉
N0

= ε1p
1− (k1−2)(ẽ−2)

2

(
Ñ (p)

N1

)k1
2

×
〈
F1

∣∣
k1
VN0
N1

, G
∣∣
k1
WÑ ◦ U

ẽ−1
p

〉
N0

.

Finally our assumption that F ]
1 = F1 implies that the F1-isotypic subspace

insideMk1(N0, ψ1) is spanned by the normalised eigenforms F1

∣∣
k1
Vd as d runs

through the divisors of N0/N1; we may therefore write

G
∣∣
k1
WÑ ◦ U

ẽ−1
p =

∑
d

∣∣N0
N1

cd,Ñ,ẽ(G) · F1

∣∣
k1
Vd + G

(⊥)

Ñ,ẽ

for the particular choice of scalars, cd,Ñ,ẽ(G), obtained by projecting G
∣∣
k1
WÑ ◦

U ẽ−1
p onto each basis element F1

∣∣
k1
Vd. Since the modular form G

(⊥)

Ñ,ẽ
is orthog-

onal to F1

∣∣
k1
VN0
N1

under the Petersson inner product at level N0, the result now

follows.

6.2.2 Expansions of nearly holomorphic functions

The strategy over the next two sections is to show for G2 ∈ Sk2(N2, ψ2) and

G3 ∈Mk3(N3, ψ3) as before, that the modular forms

Hol∞
(
G2 · δ(r)

k1−k2−2r(G3)
)

with r = (k1 − k2 − k3)/2 ∈ Z≥0

behave well under mod pν congruences, in the sense that if we replace G2

and G3 by pν-congruent forms then Hol∞
(
(−) · δ(r)

k1−k2−2r(−)
)

preserves these

congruences.
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Definition 6.8. Let R ⊂ C be a commutative ring, and pCR a prime ideal.

(i) For each t ≥ 0 we will denote by N∞,tw,pol

(
Γ(N);R

)
the R-submodule of

M∞
w

(
Γ(N)

)
consisting of C∞-modular forms, H(z), with Fourier expan-

sions of the type

H(z) =
∑

m∈N−1Z

e−2πmy · PH
(

1

4πy
, m

)
· e2πimx

where z = x + iy ∈ h and for all m ∈ N−1Z, the coefficient terms

PH(X,m) ∈ R[X] satisfy deg(PH) ≤ t.

(ii) We similarly define N∞,tw,pol(N,ψ;R) := N∞,tw,pol

(
Γ(N);R

)
∩M∞

w (N,ψ).

(iii) If H(z), H†(z) ∈ N∞,tw,pol

(
Γ(N);R

)
and there exists ν ≥ 1 such that

PH(X,m)− PH†(X,m) ∈ pν ·R[X] for every m ∈ N−1Z,

then we say that H is congruent to H† modulo pν, and we will write

H ≡ H† (mod pν ·R).

For example, if R = OK is the ring of integers of some number field K, and

if one considers a classical form G =
∑∞

n=0 an(G)qn ∈Mw(N,ψ)∩OK [[q]], then

clearly PG(X,m) = am(G) if m ∈ Z≥0, while PG(X,m) = 0 if m 6∈ Z≥0. We

therefore have a natural containmentMw(N,ψ)∩OK [[q]] ⊂ N∞,0w,pol(N,ψ;OK).

Furthermore, the definition of mod pν-congruent forms introduced above gener-

alises the standard notion of modulo pν congruences used for series expansions

in OK [[q]].

Lemma 6.9. (a) For a commutative ring R as above, the differential oper-

ator δ
(r)
w sends the space of nearly holomorphic forms N∞,tw,pol

(
Γ(N);R

)
into N∞,t+rw+2r,pol

(
Γ(N);R

)
, and by restriction sends N∞,tw,pol(N,ψ;R) into

N∞,t+rw+2r,pol(N,ψ;R).

(b) If H(z), H†(z) ∈ Mw(N,ψ) are pν-congruent forms with R-coefficients,

then one also obtains congruences

δ(r)
w (H) ≡ δ(r)

w (H†) (mod pν ·R)

at all integers r ≥ 0, in the spirit of Definition 6.8(iii).
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Proof. Let us deal with part (a) first. Recall from op. cit. that a C∞-modular

form G(z) ∈ M∞
w

(
Γ(N)

)
can be always expanded as a Fourier series of the

type

G(z) =
∑

m∈N−1Z

AG(y,m) · e2πimx with z = x+ iy,

and each term AG(y,m) ∈ C∞(R+). Applying the operator ∂
∂z

to G(z) then

yields

∂G(z)

∂z
=

∑
m∈N−1Z

(
mπi · AG(y,m)− i

2
A′G(y,m)

)
· e2πimx

with A′G(y,m) = dAG(y,m)
dy

, so that as an element ofM∞
w+2

(
Γ(N)

)
we find that

δw
(
G(z)

)
=

∑
m∈N−1Z

((m
2
− w

4πy

)
· AG(y,m)− 1

4π
A′G(y,m)

)
· e2πimx.

In the specific situation with G ∈ N∞,tw,pol

(
Γ(N);R

)
, one can further write

AG(y,m) = e−2πmy · PG
(

1

4πy
,m

)
where PG (X,m) =

∑t
j=0 βj(m) · Xj ∈ R[X]. A straightforward calculation

reveals that

A′G(y,m) = −2πe−2πmy ·

(
t∑

j=0

mβj(m) · (4πy)−j

+ 2 ·
t∑

j=1

jβj(m) · (4πy)−j−1

)
,

in which case

δw
(
G(z)

)
=

∑
m∈N−1Z

[(m
2
− w

4πy

)
· e−2πmy PG

(
1

4πy
,m

)
− 1

4π
A′G(y,m)

]
· e2πimx

=
∑

m∈N−1Z

e−2πmy ·
[
mβ0(m)

+
t∑

j=1

(
mβj(m) + (j − 1− w)βj−1(m)

)
· (4πy)−j

+ (t− w)βt(m) · (4πy)−t−1

]
· e2πimx.
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Consequently for every m ∈ N−1Z, we set Pδw(G)(X,m) equal to the polyno-

mial

mβ0(m) +
t∑

j=1

(
mβj(m) + (j − 1− w)βj−1(m)

)
·Xj + (t− w)βt(m) ·X t+1

so in particular, Pδw(G)(X,m) ∈ R[X] with deg
(
Pδw(G)

)
≤ t+ 1, hence

δw
(
G(z)

)
=

∑
m∈N−1Z

e−2πmy · Pδw(G)

(
1

4πy
, m

)
· e2πimx ∈ N∞,t+1

w+2,pol

(
Γ(N);R

)
.

It follows that δw : N∞,tw,pol(
(
Γ(N);R

)
→ N∞,t+1

w+2,pol

(
Γ(N);R

)
, and then applying

an inductive argument to δ
(r)
w = δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw for increasing values

of r > 0, we conclude that δ
(r)
w : N∞,tw,pol

(
Γ(N);R

)
→ N∞,t+rw+2r,pol

(
Γ(N);R

)
as

asserted in (a).

To show that statement (b) is true, let us in greater generality suppose

that:

H(z) =
∑
m∈Z

e−2πmy · PH
(

1

4πy
, m

)
· e2πimx, PH(X,m) =

t∑
j=0

βj(m) ·Xj;

H†(z) =
∑
m∈Z

e−2πmy · PH†
(

1

4πy
, m

)
· e2πimx, PH†(X,m) =

t∑
j=0

β†j (m) ·Xj.

The condition H ≡ H† (mod pν ·R) is by definition equivalent to the family of

congruences βj(m) ≡ β†j (m) (mod pν · R) for every m ∈ Z and j ∈ {0, . . . , t}.

Adopting the same argument as in part (a), it directly follows that

δw
(
H(z)

)
=
∑
m∈Z

e−2πmy · PδH
(

1

4πy
, m

)
· e2πimx

where PδH(X,m) =
∑t+1

j=0 β
δ
j (m) ·Xj and

βδj (m) =



(t− w)βt(m) if j = t+ 1

mβj(m) + (j − 1− w)βj−1(m) if 0 < j < t+ 1

mβ0(m) if j = 0.

Likewise for the second Fourier expansion,

δw
(
H†(z)

)
=
∑
m∈Z

e−2πmy · PδH†
(

1

4πy
, m

)
· e2πimx
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where Pδ
H†(X,m) =

∑t+1
j=0 β

†,δ
j (m) ·Xj and

β†,δj (m) =



(t− w)β†t (m) if j = t+ 1

mβ†j (m) + (j − 1− w)β†j−1(m) if 0 < j < t+ 1

mβ†0(m) if j = 0.

The implication ‘βj(m) ≡ β†j (m) (mod pν) ⇒ βδj (m) ≡ β†,δj (m) (mod pν)’ is

now obvious since m, j, w, t ∈ Z, hence δw(H) ≡ δw(H†) (mod pν ·R). Finally,

recalling that δ
(r)
w = δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw and iterating this process above

(r − 1)-times more, one establishes that δ
(r)
w (H) ≡ δ

(r)
w (H†) (mod pν ·R).

6.2.3 Projecting Eisenstein series and cusp forms

Proceeding further with our calculation of the inner product in Equation (6.1),

we shall require some background on the operator ‘Hol∞(−)’ which appears in

the automorphic theory. Throughout G2 is a cusp form of weight k2, level N2

and character ψ2.

6.2.3.1 The double product case

The first case we treat relates to the double product L-function L(F1⊗G2, s).

Consider the Eisenstein series in [60, Eqn (2.3)] of weight w ≥ 0, character

η−1 and level N , given by the infinite series

E∗w,N(z, s, η) =
∑

Γ∞\Γ0(N)

η(γ) · (cz + d)−w
∣∣cz + d

∣∣−2s

∞ , γ =

 a b

c d

 . (6.2)

For technical reasons, our formulae become tidier if we renormalise these series

via

E∗w,N(z, η) :=
Nw/2

2
· Γ(w)

(2πi)w
· ζN(w, η)× E∗w,N(z, 0, η). (6.3)

Henceforth let us assume that r, w ∈ Z satisfy both w = k1 − k2 − 2r ≥ 0 and

r ≥ 0.
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Proposition 6.10. Setting N = Ñ , η = ψ3 and Ğ3 = E∗
k1−k2−2r,Ñ

(z, ψ3), then

H = Hol∞
(
G2 · δ(r)

k1−k2−2r(Ğ3)
∣∣
k1−k2

WÑ

)
∈Mk1

(
Ñ , ψ2ψ3

)
has the Q

(
am(G2)

∣∣ m ∈ N
)

-rational q-expansion H(z) =
∑∞

n=1 a(n,H) · qn,

where

a(n,H) =
∑

n=ξ2+ξ3>0

aξ2(G2) ·
∑
ξ3=b·c

bk1−k2−2r−1 · ψ3(c) · P−r(ξ3, n)

and for s ∈ Z≤0, the rational polynomial ‘Ps(−,−)’ is given by

Ps(X, Y ) =
−s∑
j=0

(−1)j

−s
j

 Γ(k1 − k2 + s)

Γ(k1 − k2 + s− j)
Γ(k1 − 1− j)

Γ(k1 − 1)
·X−s−jY j.

Proof. Firstly applying [60, Equation (2.9)], one has the identity

E∗
w+2r,Ñ

(
z,−r, η

)
=

Γ(w)

Γ(w + r)
(−4πy)r · δ(r)

w

(
E∗
w,Ñ

(
z, 0, η

))
.

If one has r = 0 then E∗
w+2r,Ñ

(
z, 0, η

)
is of holomorphic type, while if r > 0

then it is nearly holomorphic and has moderate growth, so that Theorem 2.19

is applicable. After rearranging the above equation, it follows directly that

δ(r)
w

(
E∗
w,Ñ

(
z, 0, η

)) ∣∣∣WÑ = (−4π)−r · Γ(w + r)

Γ(w)
×
(
y−r · E∗

w+2r,Ñ

(
z,−r, η

)) ∣∣∣WÑ

and then combining it with Panchishkin’s definitions [53, (4.3), (4.6) and

(4.13)],(
y−r · E∗

w+2r,Ñ

(
z,−r, η

)) ∣∣∣
w+2r

WÑ =
2 · ζN

(
w, η

)−1

Ñw/2 · Γ(w + r)
· (2πi)w

(−4π)−r
·Ew+2r(−r, η).

Here Ew+2r(s, η) denotes the Eisenstein series introduced in [53, Equation

(4.13)]: in particular at s = −r, the C∞-function Ew+2r(−r, η) has the Fourier

development

(4πy)−r ·
∞∑
ξ3=1

∑
ξ3=b·c

bw−1η(c)
r∑
j=0

(−1)j

r
j

 Γ(w + r)

Γ(w + r − j)
· (4πξ3y)r−j

e2πiξ3z.

Writing everything in terms of our renormalised Eisenstein series E∗w,N(z,−),

one finds that δ
(r)
w

(
E∗
w,Ñ

(z, η)
)∣∣∣
w+2r

WÑ coincides with Ew+2r(−r, η), in which

case

Hol∞

(
G2 · δ(r)

w

(
E∗
w,Ñ

(z, η)
)∣∣∣

w+2r
WÑ

)
= Hol∞

(
G2 · Ew+2r(−r, η)

)
.
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We next apply the integral operator (4πn)k1−1

Γ(k1−1)
·
∫∞

0
AH(y, n) e−2πnyyk1−2 · dy to

the n-th Fourier coefficient of the form

H(z) = G2 · Ew+2r(−r, η) =
∞∑
m=1

AH(y,m) · e2πimx

and then exploit the well known identity

(4πn)k1−1

Γ(k1 − 1)
·
∫ ∞

0

(
(4πy)−je−2πny

)
·e−2πnyyk1−2 ·dy = nj ·Γ(k1 − j − 1)

Γ(k1 − 1)
. (6.4)

A tedious calculation, but essentially identical to the one given in [53, Section

5], allows us to conclude that

Hol∞

(
G2 · Ew+2r(−r, η)

)
=
∞∑
n=1

 ∑
n=ξ2+ξ3>0

aξ2(G2) ·
∑
ξ3=b·c

bw−1η(c) · P−r(ξ3, n)

qn.
The automorphy properties follow directly from Theorem 2.19 since each trans-

late G2 · Ew+2r(−r, η)
∣∣∣
k1

γ has moderate growth for γ ∈ SL2(Z), and secondly

the Fourier coefficients AH(y, n) of the form H = G2 · Ew+2r(−r, η) vanish at

every n ≤ 0.

Corollary 6.11. Suppose G
(I)
2 , G

(II)
2 ∈ Sk2

(
N2, ψ2

)
have expansions in OK

[[
q
]]

for a given number field K, that they satisfy the p-adic congruence

G
(I)
2 ≡ G

(II)
2 (mod pν2)

at some integer ν2 ≥ 1, and that Ğ3 = E∗
k1−k2−2r,Ñ

(z, ψ3). If p > k1 − 2, then

Hol∞

(
G

(I)
2 · δ

(r)
k1−k2−2r(Ğ3)

∣∣
k1−k2

WÑ

)
≡ Hol∞

(
G

(II)
2 · δ

(r)
k1−k2−2r(Ğ3)

∣∣
k1−k2

WÑ

)
modulo pν2 ·OK

[[
q
]]

, provided the integer r lies in the range 0 ≤ r ≤ 1
2
(k1−k2).

Proof. We use the Fourier expansions given in the preceding result for both

G2 = G
(I)
2 and G2 = G

(II)
2 , and observe that P−r(X, Y ) ∈ Zp[X, Y ] as p >

k1 − 2.
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6.2.3.2 The triple product case

The next case relates to L(F1 ⊗ G2 ⊗ G3, s). Here there are no Eisenstein

series to contend with, and their role is replaced by the holomorphic form G3

of weight w = k3, level N3 and nebentypus ψ3 = (ψ1ψ2)−1.

Proposition 6.12. If G3 ∈ Mw

(
N3, ψ1ψ2;R

)
for a given subring R ⊂ C,

then

G = Hol∞
(
G2 · δ(r)

w (G3)
)

at each r = (k1 − k2 − w)/2 ∈ Z≥0

is a cusp form of weight k1, level Ñ and character ψ1; furthermore, it has the

R
[
am(G2)

∣∣ m ∈ N
]
-rational q-expansion G(z) =

∑∞
n=1 a(n,G) · qn, where

a(n,G) =
∑

n=ξ2+ξ3>0

aξ2(G2) ·
r∑
j=0

Γ(k1 − 1− j)
Γ(k1 − 1)

· β(r)
j (ξ3) · nj

and P
δ
(r)
w (G3)

(X,m) =
∑r

j=0 β
(r)
j (m) · Xj ∈ R[X] in the sense of Definition

6.8(i).

Proof. One simply points out that G2 · δ(r)
w (G3) has the Fourier expansion(

G2 · δ(r)
w (G3)

)
(z)

=
∞∑
n=0

 ∑
n=ξ2+ξ3>0

aξ2(G2) ·
r∑
j=0

β
(r)
j (ξ3) · (4πy)−j

 · e2πinz

to which we apply the operator Hol∞(−), and then repeatedly use Equation

(6.4). The property that G2 is a cusp form directly implies G vanishes at cusps

too.

Corollary 6.13. If G
(I)
2 , G

(II)
2 ∈ Sk2

(
N2, ψ2

)
and G

(I)
3 , G

(II)
3 ∈ Mk3

(
N3, ψ3

)
have expansions in OK

[[
q
]]

for a given number field K, if they satisfy respec-

tively

G
(I)
2 ≡ G

(II)
2 (mod pν2) and G

(I)
3 ≡ G

(II)
3 (mod pν3) for some ν2, ν3 ≥ 1,

and lastly if the prime p - (k1−2)!
(k1−2−r)! , then

Hol∞

(
G

(I)
2 · δ

(r)
k1−k2−2r

(
G

(I)
3

))
≡ Hol∞

(
G

(II)
2 · δ

(r)
k1−k2−2r

(
G

(II)
3

))
mod pmin{ν2,ν3}
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provided again that the integer r lies inside the range 0 ≤ r ≤ 1
2
(k1 − k2).

Proof. From Lemma 6.9(b), δ
(r)
k1−k2−2r

(
G

(I)
3

)
≡ δ

(r)
k1−k2−2r

(
G

(II)
3

)
(mod pν3) and

using the Fourier expansions which are calculated in the preceding proposition,

the result follows immediately.

6.2.4 The effect of Σ-depletion and χ-twisting

In the following discussion g(I) and g(II) denote primitive Hecke eigenforms of

weight k, character ψ, and levels N
(I)
g and N

(II)
g respectively (note we treat both

p - N (I)
g ·N (II)

g and p | N (I)
g ·N (II)

g ). We shall further suppose the coefficients in

their q-expansions satisfy:

an
(
g(I)
)
≡ an

(
g(II)
)

(mod pν) (6.5)

for all n ∈ N with gcd
(
n,N

(I)
g N

(II)
g

)
= 1. Let Σ ⊂ Spec(Z) be a finite set

containing the primes dividing N
(I)
g N

(II)
g , but not p.

Definition 6.14. (a) If ? ∈ {I, II}, then g
(?)
Σ indicates the depleted cusp form

g
(?)
Σ (z) =

∞∑
n=1

an
(
g

(?)
Σ

)
· qn ∈ Sk

(
N

(?)
Σ , ψ

)
, N

(?)
Σ = lcm

(
N (?)

g ,
∏
l∈Σ

l2
)

where an
(
g

(?)
Σ

)
= an

(
g(?)
)

if supp(n) ∩ Σ = ∅, and an
(
g

(?)
Σ

)
= 0 if

supp(n) ∩ Σ 6= ∅.

(b) For a Dirichlet character χ of conductor pnχ ≥ 1, and for each choice

of ? ∈ {I, II}, we define χ-twisted cusp forms by g
(?)
χ := g(?)⊗ χ and

g
(?)
Σ,χ :=

(
g(?)⊗ χ

)
Σ

= g
(?)
Σ ⊗ χ.

If we set ÑΣ,χ := lcm
(
p2nχ , N

(I)
Σ , N

(II)
Σ

)
then both g

(I)
Σ,χ and g

(II)
Σ,χ are cuspidal

Hecke eigenforms of weight k and character ψχ2, each of whose levels divides

ÑΣ,χ. Furthermore, their q-expansions automatically satisfy

g(?)
χ =

∞∑
n=1

χ(n) · an
(
g(?)
)
· qn and g

(?)
Σ,χ =

∞∑
n=1

χ(n) · an
(
g

(?)
Σ

)
· qn

provided that the conductor pnχ ≥ max
{∣∣N (I)

g

∣∣− 1
2

p
,
∣∣N (II)

g

∣∣− 1
2

p

}
.



107

Proposition 6.15. If g(I) and g(II) satisfy Equation (6.5) above, then at all

characters χ of p-power conductor and for each finite set of prime numbers

Σ ⊃ supp(N
(I)
g ·N (II)

g )− {p},

g
(I)
Σ,χ

∣∣∣
k
WÑ ≡ g

(II)
Σ,χ

∣∣∣
k
WÑ (mod pν) if ÑΣ,χ

∣∣Ñ and ordp
(
ÑΣ,χ

)
= ordp

(
Ñ
)
,

as a congruence between p-integral linear sums of eigenforms 1.

Proof. For a rational prime l, if l does not divide the level we write Tl for the

l-th Hecke operator, while if l does divide the level we shall use the notation

Ul. For m ∈ N coprime to the level, the m-th diamond operator is denoted by

〈m〉 and for an integer d ≥ 1, one writes Vd for the degeneracy map (as we did

in Section 6.2.1). Let us begin by remarking that for each ? ∈ {I, II},

g
(?)
Σ,χ = g(?)

χ

∣∣∣∣
k

∏
l ∈ Σ,

l -N(?)
g

(
1− Tl · Vl + lk−1 · 〈l〉 · Vl2

)
·
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

(
1− Ul · Vl

)
(6.6)

which gives an alternative construction of these Σ-depleted, χ-twisted cusp

forms. To prove our result, it is necessary to establish that the composition of

operators

(
−
) ∣∣∣∣

k

∏
l ∈ Σ,

l -N(?)
g

(
1− Tl · Vl + lk−1 · 〈l〉· Vl2

)
·
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

(
1− Ul · Vl

) ∣∣∣∣
k

WÑ

acting on newforms of weight k and character ψχ2 preserves the integral struc-

ture.

Fix a choice of ? ∈ {I, II}. Let us assume that l is a rational prime number,

and M denotes a multiple of N
(?)
g such that l2 divides M . Then for a ‘weight

k’ action,

(
1− Ul · Vl

)
·WM = WM − Ul · Vl ·WM

= lk/2 ·WM/l · Vl − l−k/2 · Ul ·WM/l

1 By work of Vatsal [67, Prop 4.5], the canonical motivic periods associated to g
(?)
Σ,χ

and g
(?)
χ are known to differ from each other by a p-adic unit, at least in the case where

ap
(
g(?)

)
∈ O×Cp

.
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because at such a weight, we have WM = lk/2 · WM/l · Vl and Vl · WM =

l−k/2 ·WM/l. One therefore deduces(
1− Ul · Vl

)
·WM = lk/2 ·WM/l · Vl − l−k/2 ·WM/l · U∗l

= WM/l ·
(
lk/2 · Vl − l−k/2 · U∗l

) (6.7)

where (−)∗ indicates the adjoint Hecke operator. Analogously, one calculates

that (
1− Tl · Vl + lk−1〈l〉 · Vl2

)
·WM

= WM − Tl · Vl ·WM + lk−1〈l〉 · Vl2 ·WM

= lk ·WM/l2 · Vl2 − l−k/2 · Tl ·WM/l + lk−1(l2)−k/2〈l〉 ·WM/l2

as WM = lk ·WM/l2 ·Vl2 , Vl ·WM = l−k/2 ·WM/l and Vl2 ·WM = (l2)−k/2WM/l2 .

We then obtain a string of equalities(
1− Tl · Vl + lk−1 · 〈l〉 · Vl2

)
·WM

= lk ·WM/l2 · Vl2 − Tl ·WM/l2 · Vl + l−1 · 〈l〉 ·WM/l2

= lk ·WM/l2 · Vl2 −WM/l2 · T ∗l · Vl + l−1 ·WM/l2 · 〈l〉∗

= WM/l2 ·
(
lk · Vl2 − T ∗l · Vl + l−1 · 〈l−1〉

)
(6.8)

and these three lines follow from the respective identities: l−k/2 · WM/l =

WM/l2 · Vl, Tl · WM/l2 = WM/l2 · T ∗l and 〈l〉∗ = 〈l−1〉, applied in consecutive

order.

Returning to the description in (6.6), our calculations in Equations (6.7-

6.8) imply via an inductive argument that

g(?)
χ

∣∣∣∣
k

( ∏
l ∈ Σ,

l -N(?)
g

(
1− Tl · Vl + lk−1〈l〉· Vl2

)

×
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

(
1− Ul · Vl

))∣∣∣∣
k

WÑΣ,χ

= g(?)
χ

∣∣∣∣
k

WM̃Σ,χ
·
∏
l ∈ Σ,

l -N(?)
g

(
lk · Vl2 − T ∗l · Vl + l−1 · 〈l−1〉

)

×
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

(
lk/2 · Vl − l−k/2 · U∗l

)

(6.9)
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with the level of the W -operator being decreased to

M̃Σ,χ := ÑΣ,χ ·
∏
l ∈ Σ,

l -N(?)
g

l−2 ·
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

l−1 = Ng(?)⊗χ ×M
(?)
Σ,g

for some M
(?)
Σ,g ∈ N ∩ Z×p . Under this weight k action, we may factorise

WM̃Σ,χ
=
(
M

(?)
Σ,g

)k/2
·WN

g(?)⊗χ
· V

M
(?)
Σ,g

and one readily deduces that

g(?)
χ

∣∣∣
k
WM̃Σ,χ

=
(
M

(?)
Σ,g

)k/2
·
(

g(?) ⊗ χ
∣∣∣
k
WN

g(?)⊗χ

) ∣∣∣
k
V
M

(?)
Σ,g

=
(
M

(?)
Σ,g

)k/2
·
(
ψ
(
p2nχ

)
χ
(
N (?)

g

)τ(χ)2

pnχ

× ε(?)g

(
g(?),] ⊗ χ−1

))∣∣∣∣
k

V
M

(?)
Σ,g

(6.10)

where ε
(?)
g ∈ C,

∣∣ε(?)g

∣∣
∞ = 1 satisfies g(?)

∣∣
k
W
N

(?)
g

= ε
(?)
g · g(?),] (see [53, Eqn

(1.24)]). If we define the algebraic number

Z(?)
Σ,χ :=

(
M

(?)
Σ,g

)k/2
· ψ
(
p2nχ

)
χ
(
N (?)

g

)τ(χ)2

pnχ
ε(?)g

which is a p-adic unit as τ(χ)2

pnχ
, ε

(?)
g ∈ O×Cp , Equations (6.7) and (6.9-6.10) imply

g
(?)
Σ,χ

∣∣∣∣
k

WÑΣ,χ
= Z(?)

Σ,χ ·
(
g(?),] ⊗ χ−1

)∣∣∣∣∣
k

V
M

(?)
Σ,g

×
∏
l ∈ Σ,

l -N(?)
g

(
lk · Vl2 − T ∗l · Vl + l−1 · 〈l−1〉

)

×
∏
l ∈ Σ,

l
∣∣∣∣N(?)

g

(
lk/2 · Vl − l−k/2 · U∗l

)
.

The right-hand side of the above equation is clearly a p-integral combination

of eigenforms with algebraic integer q-expansions, therefore the left-hand side

is too. To pass from g
(?)
Σ,χ

∣∣∣
k
WÑΣ,χ

to the cusp form g
(?)
Σ,χ

∣∣∣
k
WÑ , one employs the

identity

g
(?)
Σ,χ

∣∣∣
k
WÑ =

(
Ñ
/
ÑΣ,χ

)k/2
·
(

g
(?)
Σ,χ

∣∣∣
k
WÑΣ,χ

) ∣∣∣
k
VÑ/ÑΣ,χ

and observes that the quotient Ñ
/
ÑΣ,χ ∈ N∩Z×p since ordp

(
ÑΣ,χ

)
= ordp

(
Ñ
)
.
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Finally, those congruences asserted in the statement of the proposition now

follow from the system of congruences

χ−1(n) · an
(
g

(I)
Σ

)
≡ χ−1(n) · an

(
g

(II)
Σ

)
(mod pν)

which hold at integers n ≥ 1 by Equation (6.5), and the proof is complete.

6.2.5 Finishing off the inner product calculation

Let us return to our earlier computation of the numerator from Equation (6.1),

namely we must evaluate

〈
F ]

1 ,TrÑ/N0

(
Hol∞

(
G2 · δ(r)

w (G3)
)∣∣
k1
W ε
Ñ

)〉
N0
, ε ∈ {0, 1}

for forms F1, G2, G3 of level N1, N2, N3, weight k1, k2, k3 and nebentypus ψ1,

ψ2, ψ3 with ψ2 · ψ3 = ψ−1
1 . Throughout we will again suppose that F ]

1 = F1

and ψ2
1 = 1.

In particular, after dividing through by the period 〈F1, F1〉N1 , one wants

to see how this quantity varies when we replace G2 and G3 with pν-congruent

forms. We shall treat the same two cases as in Section 6.2.3, corresponding to

the double product L(F1 ⊗ G2, s) and the triple product L(F1 ⊗ G2 ⊗ G3, s),

respectively.

6.2.5.1 The double product case

Assume we are given newforms g(I) and g(II) of common weight k = k2 > 0,

common character ψ, and conductors N
(I)
g and N

(II)
g . Let us further suppose

Equation (6.5) holds for their q-expansions with ν = ν2, i.e.

an
(
g(I)
)
≡ an

(
g(II)
)

(mod pν2) for all n ∈ N with gcd
(
n,N (I)

g N (II)
g

)
= 1.

We shall carefully select the subset Σ ⊂ Spec(Z) of primes in order to satisfy

the three conditions: (i) supp
(
N

(I)
g N

(II)
g

)
− {p} ⊂ Σ, (ii) #Σ < ∞, and (iii)

p 6∈ Σ.

Let χ denote a character of conductor pnχ ≥ 1. If we set Ñ = lcm
(
N1, ÑΣ,χ

)
and ψ2 = ψχ−2, one may consider g

(I)
Σ,χ

∣∣
k2
WÑ and g

(II)
Σ,χ

∣∣
k2
WÑ as belonging to
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the vector space Sk2

(
Ñ , ψ2

)
; they have p-integral q-expansions by Proposition

6.15, and their Fourier coefficients lie in some finite algebraic extension of Q.

Now for any integer r in the range 0 ≤ 2r ≤ k1 − k2, just as in Equation

(6.3) one can define

Ğ3(z) := E∗
k1−k2−2r,Ñ

(
z, ψ3

)
where ψ3 = (ψ1ψ2)−1 = ψ1 ·ψ ·χ2, and the level of the Eisenstein series equals

Ñ . It follows for each choice of ? ∈ {I, II}, the product of the two modular

forms

G(?) = g
(?)
Σ,χ · δ

(r)
k1−k2−2r(Ğ3) ∈ M∞

k1

(
Ñ , (ψ2ψ3)−1

)
is such that G(?)

∣∣
k1
γ has moderate growth at every γ ∈ SL2(Z), in which case

H(?) := Hol∞
(
G(?)

)∣∣∣
k1

WÑ = Hol∞

(
g

(?)
Σ,χ

∣∣∣
k2

WÑ · δ
(r)
k1−k2−2r(Ğ3)

∣∣∣
k1−k2

WÑ

)
is an element of Mk1

(
Ñ , ψ2ψ3

)
.

Let OK,χ denote the integral extension of Z generated by the Fourier coef-

ficients an
(
g

(?)
Σ

)
and the character values χ(n), for all positive integers n and

? ∈ {I, II}. Note that in the context of Lemma 6.7, each of the holomorphic

modular forms

H(?)
∣∣∣
k1

U ẽ−1
p = Hol∞

(
G(?)

)∣∣∣
k1

WÑ ◦ U
ẽ−1
p ∈Mk1

(
N0, ψ2ψ3

)
∩ OK,χ

[[
q
]]

can be decomposed into its F1-isotypic and non-F1-isotypic components via

H(?)
∣∣∣
k1

U ẽ−1
p =

∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ
(H) · F1

∣∣
k1
Vd + H(?),(⊥)

Ñ,ẽ

for scalars c
(?)

d,Ñ,ẽ
(H) ∈ OK,χ. If we define M̃ := Ñ/ÑΣ,χ ∈ N ∩ Z×p , using

Proposition 6.15 one finds that

g
(I)
Σ,χ

∣∣∣
k2

WÑ ≡ g
(II)
Σ,χ

∣∣∣
k2

WÑ

(
mod pν2

)
and moreover, if the prime p > k2 − 1, then Corollary 6.11 implies

H(I) ≡ H(II)
(

mod pν2
)
. (6.11)

We next apply the results in Section 6.2.1 to this pair of congruent modular

forms.
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Proposition 6.16. If ε = 0 and G(?) = g
(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ3)
)

as

above for either ? ∈ {I, II} with the prime p 6∈ Σ, p > k2 − 1 and p - N1, then〈
F ]

1 ,TrÑN0

(
Hol∞(G(?))

∣∣
k1
W ε
Ñ

)〉
N0〈

F1, F1

〉
N1

= ε1 · p1− (k1−2)(ẽ−2)
2 ·

(
Ñ (p)

N1

)k1
2

×
∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ
(H) ·

〈
F1

∣∣
k1
VN0
N1

, F1

∣∣
k1
Vd
〉
N0〈

F1, F1

〉
N1

(6.12)

where Ñ = lcm
(
N1, p

2nχ , N
(I)
Σ , N

(II)
Σ

)
, Ñ (p) =

∣∣Ñ ∣∣
p
· Ñ and lastly N0 = p · Ñ (p).

Moreover the congruences c
(I)

d,Ñ,ẽ
(H) ≡ c

(II)

d,Ñ,ẽ
(H)

(
mod pν2

)
hold at integers

d
∣∣N0

N1
.

Proof. Most of these assertions follow upon applying Lemma 6.7 directly to the

forms G = Hol∞

(
g

(I)
Σ,χ · δ

(r)
k1−k2−2r(Ğ3)

)
and G = Hol∞

(
g

(II)
Σ,χ · δ

(r)
k1−k2−2r(Ğ3)

)
.

The levels Ñ , Ñ (p) and N0 are easily determined from their descriptions in

Section 6.2.1. We should point out that the q-expansions of H(I) and H(II) take

values in OK,χ by Propositions 6.10 and 6.15, hence so do the q-expansions

of the N0-level modular forms H(I)
∣∣
k1
U ẽ−1
p and H(II)

∣∣
k1
U ẽ−1
p . Finally, one may

combine Equation (6.11) together with the implication

H(I) ≡ H(II)
(

mod pν2
)

=⇒ H(I)
∣∣
k1
U ẽ−1
p ≡ H(II)

∣∣
k1
U ẽ−1
p

(
mod pν2

)
to conclude that the F1-isotypic parts of H(I)

∣∣
k1
U ẽ−1
p and H(II)

∣∣
k1
U ẽ−1
p are simi-

larly congruent modulo pν2 · OK,χ[[q]], whence c
(I)

d,Ñ,ẽ
(H) ≡ c

(II)

d,Ñ,ẽ
(H) (mod pν2).

6.2.5.2 The triple product case

Alternatively, suppose one is given cusp forms g(I),g(II) of weight k2, character

ψ2, and that their respective levels are N
(I)
g , N

(II)
g . In addition, we suppose that

h(I),h(II) are modular forms of weight k3 = k1 − k2 − 2r, character ψ3 = ψ1ψ2,

with levels N
(I)
h and N

(II)
h respectively. One further assumes:

an
(
g(I)
)
≡ an

(
g(II)
)

(mod pν2) if gcd
(
n,N (I)

g N (II)
g

)
= 1, and (6.13)

an
(
h(I)
)
≡ an

(
h(II)

)
(mod pν3) if gcd

(
n,N

(I)
h N

(II)
h

)
= 1. (6.14)
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We shall now choose the set of rational primes Σ to satisfy the three modified

conditions: (i) supp
(
N

(I)
g N

(II)
g N

(I)
h N

(II)
h

)
− {p} ⊂ Σ, (ii) #Σ < ∞ and (iii)

p 6∈ Σ.

Notes. (a) If we construct a ‘suitably large enough’ level by taking

Ñ := lcm

(
N1 , N

(I)
g , N (II)

g , N
(I)
h , N

(II)
h ,

∏
l∈Σ

l2
)

then the Σ-depleted forms g
(I)
Σ ,g

(II)
Σ ,h

(I)
Σ ,h

(II)
Σ will each exist at this top

level Ñ .

(b) LetK = K
(
gΣ,hΣ

)
denote the number field generated by the q-coefficients

of the depleted modular forms g
(I)
Σ ,g

(II)
Σ ,h

(I)
Σ and h

(II)
Σ .

(c) We shall write OK = OK
(
gΣ,hΣ

)
for the ring of integers of K

(
gΣ,hΣ

)
.

Proposition 6.17. If ε = 1 and G(?) = g
(?)
Σ ·δ

(r)
k1−k2−2r

(
h

(?)
Σ

)
for ? ∈ {I, II} with

p 6∈ Σ, p - (k1−2)!
(k1−2−r)! and p - N1, then G(I) and G(II) belong to N∞,rk1,pol

(
Ñ , ψ−1

1 ;OK
)

and they both satisfy Equation (6.12), where H(?) = Hol∞
(
G(?)

)∣∣∣
k1

W 2
Ñ

and

H(?)
∣∣∣
k1

U ẽ−1
p =

∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ
(H) · F1

∣∣
k1
Vd + H(?),(⊥)

Ñ,ẽ
,

with c
(?)

d,Ñ,ẽ
(H) ∈ OK

(
gΣ,hΣ

)
. Moreover the congruences c

(I)

d,Ñ,ẽ
(H) ≡

c
(II)

d,Ñ,ẽ
(H)

(
mod pmin{ν2,ν3}

)
hold for d

∣∣N0

N1
.

Proof. The forms above satisfy h
(?)
Σ ∈ Mk3

(
Ñ , ψ3;OK

)
⊂ N∞,0k3,pol

(
Ñ , ψ3;OK

)
so that δ

(r)
k1−k2−2r

(
h

(?)
Σ

)
∈ N∞,rk1−k2,pol

(
Ñ , ψ3;OK

)
by Lemma 6.9(a); consequently

G(?) = g
(?)
Σ · δ

(r)
k1−k2−2r

(
h

(?)
Σ

)
∈ N∞,rk1,pol

(
Ñ , ψ2ψ3;OK

)
,

and combining Equations (6.13) and (6.14) with Lemma 6.9(b) implies the

congruence G(I) ≡ G(II) mod pmin{ν2,ν3}. From Corollary 6.13 with G
(?)
2 = g

(?)
Σ

and G
(?)
3 = h

(?)
Σ , it follows directly that

Hol∞
(
G(I)

)
≡ Hol∞

(
G(II)

)
mod pmin{ν2,ν3} · OK [[q]].
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Next we apply Lemma 6.7 to the pair of cusp forms G = Hol∞

(
G(I)

) ∣∣
k1
WÑ

and G = Hol∞

(
G(II)

) ∣∣
k1
WÑ . By copying the same argument as in the previous

proof, the required congruences are a consequence of the implication

H(I)≡ H(II) mod pmin{ν2,ν3} =⇒ H(I)
∣∣∣
k1

U ẽ−1
p ≡ H(II)

∣∣∣
k1

U ẽ−1
p mod pmin{ν2,ν3}

and the property that taking the F1-isotypic projection will respect congru-

ences (because the moduleMk1

(
N0, ψ

−1
1

)
∩OK [[q]] contains a basis consisting of

Hecke eigenforms whose q-expansion coefficients also lie in the ring of integers

OK).



Chapter 7

Variation between the analytic

λ-invariants

With the technical calculations in Chapter 6 complete, we now use the es-

tablished formulae to study the λ-invariant for both the double and triple

product p-adic L-functions. A nice feature of our inner product expression is

that the special values of both types of p-adic L-function can be treated on an

equal footing, using the same ideas. However let us begin by streamlining the

existing notation to avoid clutter later.

Definition 7.1. (a) For ε ∈ {0, 1} and an integer r ∈
{

0, . . . , bk1/2c
}

, one

defines a linear functional

L(r,ε)
F1

= L(r,ε)
F1

(p,N0, N1, Ñ) : N∞,rk1,pol

(
Ñ , ψ−1

1

)
−→ C

by

L(r,ε)
F1

(
H
)

:= ε−1
1 p

(k1−2)(ẽ−2)
2

−1

(
Ñ (p)

N1

)− k1
2(

N0

N1

)k1

×
〈
F ]

1 ,TrÑN0

(
Hol∞(H)

∣∣
k1
W ε
Ñ

)〉
N0〈

F1, F1

〉
N1

where F1

∣∣
k1
WN1 = ε1 · F ]

1 , and the levels Ñ = pẽ · Ñ (p), N0 = p · Ñ (p) are

as before.
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(b) At each positive divisor d of N0/N1, we introduce the algebraic number

Xd(N0, N1) :=∏
l|N1

lordl(N0)−ordl(N1) ×
∏

l|N0, l-N1

(l + 1) · lordl(N0)−1

×
∏
l| N0
dN1
l|N1

altl,d (f)×
∏
l‖ N0
dN1
l-N1

al(F1)

1 + ψ1(l) · l−1

×
∏
l2| N0

dN1
l-N1

altl,d (F1)− lk1−2altl,d−2(F1)

1 + ψ1(l) · l−1

with the exponent tl,d := ordl(N0)− ordl(dN1).

For instance, using these definitions above along with Corollary A.2, one

may repackage Equation (6.12) into the more succinct form

L(r,ε)
F1

(
G(?)

)
=
∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ
(H) ·Xd(N0, N1) (7.1)

where H(?) = Hol∞
(
G(?)

)∣∣
k1
W 1+ε

Ñ
at either choice of ? ∈ {I, II}.

The Xd(N0, N1)’s each have bounded denominators, and are independent

of G(?). Furthermore, if G(?) = g
(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ3)
)

or if G(?) =(
g

(?)
Σ · δ

(r)
k1−k2−2r

(
h

(?)
Σ

))∣∣∣
k1

WÑ , corresponding to the double product and triple

product cases respectively, then the scalars c
(?)

d,Ñ,ẽ
(H) are algebraic integers

which are congruent to each other as one switches between ? = I and ? = II.

Although we shall treat the double and triple product separately, the un-

derlying methods are basically the same. In both situations F1 = f will be a

weight k1 newform of level N1, p - N1 and nebentypus ψ1, where f ] = f and

ψ2
1 = 1. In addition, it is now necessary to assume that the cusp form f is

ordinary at p.
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7.1 The double product p-adic L-function

For two eigenforms F and G of weights k1 > k2 and characters η1, η2, the

L-function attached to F ⊗G equals

Ψ(s, F,G) :=
Γ(s)Γ(s+ 1− k2)

(2π)2s

× ζ(2s+ 2− k1 − k2, η1η2) ·D(s, F,G)

(7.2)

with Re(s) � 0, and this admits an analytic continuation to the complex

plane. We write ΨΣ(s, F,G) for the L-function stripped of Euler factors at

primes l ∈ Σ.

Throughout assume we are given newforms g(I),g(II) of weight k2, character

ψ, with conductors N
(I)
g , N

(II)
g respectively, and which satisfy:

an
(
g(I)
)
≡ an

(
g(II)
)

(mod pν2) for all n ∈ N with gcd
(
n,N (I)

g N (II)
g

)
= 1.

We again choose the set Σ so that supp
(
N

(I)
g N

(II)
g

)
− {p} ⊂ Σ, #Σ < ∞ and

p 6∈ Σ.

Proposition 7.2. If χ has conductor pnχ ≥ max
{∣∣N (I)

g

∣∣− 1
2

p
,
∣∣N (II)

g

∣∣− 1
2

p

}
, then

L(r,0)
f

(
g

(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ1ψχ
2)
))

=

(
Ñ (p)

)k1−k2/2−rN
−k1/2
1

ε1 · 2 · (2i)k1−1
× pnχ(2k1−k2−2r−2)+1

×
ΨΣ

(
k1 − 1− r, f ,g(?) ⊗ χ

)
(2πi)1−k2 ·

〈
f , f
〉
N1

at each integer r in the range 0 ≤ 2r < k1 − k2, and for either choice of

? ∈ {I, II}.

Proof. Recall that ψ3 = ψ1 ·ψ ·χ2 and also Ñ = lcm
(
N1, ÑΣ,χ

)
= pẽ · Ñ (p). An

essential starting point is the following formula 1 of Shimura [60, Theorem 2],

D
(
k1 − 1− r, f ,g(?)

Σ,χ

)
=

(−1)r(4π)k1−1 · Γ(k1 − k2 − 2r)

Γ(k1 − 1− r) · Γ(k1 − k2 − r)

×
〈
f ], g

(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ3)
)〉

Ñ

1His normalisation of the Petersson inner product differs from ours by vol
(
Γ1(Ñ)\h

)−1
.
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where E∗
k1−k2−2r,Ñ

(z, η) denotes the C∞-modular form defined in Equation

(6.2), and D
(
s, f ,g

(?)
Σ,χ

)
coincides with the Σ-depleted convolution L-function

DΣ

(
s, f ,g(?)

χ

)
=

∞∑
n = 1,

supp(n)∩Σ=∅

an(f)an
(
g(?)
)
χ(n) · n−s, Re(s)� 0.

Reconciling the different normalisation of Eisenstein series in Equations (6.2-

6.3), one may rephrase Shimura’s identity above into an equivalent form〈
f ], g

(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ3)
)〉

Ñ

=
(−1)r

(4π)k1−1
· Ñ

k1−k2−2r
2

2(2πi)k1−k2−2r

× Γ(k1 − 1− r) · Γ(k1 − k2 − r)

× ζÑ(k1 − k2 − 2r, ψ3) ·DΣ

(
k1 − 1− r, f ,g(?)

χ

)
=
(
4π2
)k1−1−r · (−1)r

(4π)k1−1
· Ñ

k1−k2−2r
2

2(2πi)k1−k2−2r
×ΨΣ

(
k1 − 1− r, f ,g(?)

χ

)
.

In fact, the terms directly before ΨΣ(· · · ) can be simplified to (2i)k2−k1 ·
Ñ
k1−k2−2r

2

2π1−k2
, which means that if G(?) = g

(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ3)
)

then〈
f ], G(?)

〉
Ñ〈

f , f
〉
N1

=
Ñ

k1−k2−2r
2

2(2i)k1−k2
×

ΨΣ

(
k1 − 1− r, f ,g(?)

χ

)
π1−k2 ·

〈
f , f
〉
N1

.

Focussing on the left-hand side, since G(?)
∣∣
k1
γ has moderate growth for all

γ ∈ SL2(Z) it follows from Theorem 2.19 that〈
f ], G(?)

〉
Ñ〈

f , f
〉
N1

=

〈
f ],Hol∞

(
G(?)

)〉
Ñ〈

f , f
〉
N1

=

〈
f ],TrÑ/N0

(
Hol∞

(
G(?)

))〉
N0〈

f , f
〉
N1

and so by Definition 7.1(a),

L(r,0)
f

(
G(?)

)
= ε−1

1 · p
(k1−2)(ẽ−2)

2
−1 ·

(
Ñ (p)

N1

)− k1
2

·
(
N0

N1

)k1

×
〈
f ], G(?)

〉
Ñ〈

f , f
〉
N1

= ε−1
1 · p

(k1−2)(ẽ−2)
2

−1 ·

(
Ñ (p)

N1

)− k1
2

·
(
N0

N1

)k1

× Ñ
k1−k2−2r

2

2(2i)k1−k2
·

ΨΣ

(
k1 − 1− r, f ,g(?)

χ

)
π1−k2 ·

〈
f , f
〉
N1

.

Provided that p2nχ ≥ max
{∣∣N (I)

g

∣∣−1

p
,
∣∣N (II)

g

∣∣−1

p

}
, the p-part of the level of both

cusp forms g
(I)
Σ,χ and g

(II)
Σ,χ equals p2nχ : thus ẽ = 2nχ, Ñ = p2nχ · Ñ (p) and
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N0 = p · Ñ (p). Substituting these values into our formula, the result follows

after a clean-up.

LetK be the number field generated by the Fourier coefficients of f ,g(I),g(II).

Since the newform f is p-ordinary, we can factorise its Hecke polynomial at p

into

X2 − ap(f)X + ψ1(p) · pk1−1 =
(
X − αp

)(
X − α′p

)
where

∣∣αp∣∣p = 1 and
∣∣α′p∣∣p = p1−k1 < 1. Now applying the results of Hida

and Panchishkin [37, 53], for each choice of ? ∈ {I, II} there exists a p-adic

L-function Lp

(
f ⊗ g

(?)
Σ

)
∈ OK,p

[[
Z×p
]]

[1/p] interpolating

χxsp

(
Lp

(
f ⊗ g

(?)
Σ

))
= ψ(p)nχ · τ(χ)2 · pnχ(k2+2s−1)

(−1)s · α2nχ
p

×A(s, χ) ·
Ψ
(
k2 + s, f ,g

(?)
Σ,χ

)
(2πi)1−k2 ·

〈
f , f
〉
N1

at all integers s ∈ {0, . . . , k1−k2−1}. Here τ(χ) =
∑pnχ

j=1 χ(j)e2πij/pnχ denotes

a Gauss sum for χ, and the p-Euler factor term A(s, χ) is equal to 1 whenever

χ 6= 1.

Remarks. (i) If one changes variable by instead setting s = k1 − k2 − r− 1,

then for χ 6= 1 the above becomes

χxsp

(
Lp

(
f ⊗ g

(?)
Σ

))
= ψ(p)nχ · τ(χ)2 · pnχ(2k1−k2−2r−3)

(−1)k1−k2−r−1 · α2nχ
p

×
Ψ
(
k1 − 1− r, f ,g(?)

Σ,χ

)
(2πi)1−k2 ·

〈
f , f
〉
N1

.

(ii) The formula in Proposition 7.2 can similarly be expressed in the form

L(r,0)
f

(
G(?)

)
=

(
Ñ (p)

)k1−k2/2−rN
−k1/2
1

ε1 · 2 · (2i)k1−1
· pnχ(2k1−k2−2r−2)+1

×
Ψ
(
k1 − 1− r, f ,g(?)

Σ,χ

)
(2πi)1−k2 ·

〈
f , f
〉
N1

.

(iii) Consequently, (−1)s ·χxsp
(
Lp

(
f⊗g

(?)
Σ

))
= p−1 ·Ξr,χ×L(r,0)

f

(
G(?)

)
where

Ξr,χ :=

(
ψ(p)

α2
p

)nχ
· τ(χ)2

pnχ
× ε1 · 2 · (2i)k1−1(

Ñ (p)
)k1−k2/2−rN

−k1/2
1

is actually a p-adic unit.
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One can split the Iwasawa algebra up into F×p -eigenfactors

OK,p
[[
Z×p
]] ∼= p−2⊕

j=0

OK,p
[[

1 + pZp
]]

(ωj)

∼−→
p−2⊕
j=0

OK,p
[[
X
]]

(ωj)

where the last isomorphism arises by sending 1 + p ∈ Z×p to the polynomial

X + 1. For each j ∈ Z and ? ∈ {I, II}, we will write Lp

(
f ⊗ g

(?)
Σ , ωj

)
for

the image of the Hida-Panchishkin p-adic L-function inside the ωj-eigenspace

OK,p
[[
X
]]

[1/p](ωj). Let us also choose a local parameter, $, for the discrete

valuation ring OK,p.

Theorem 7.3. At each j ∈ {0, . . . , p−2}, let us define µ
(j)
I,II to be the minimum

of µ$
(
Lp

(
f⊗g

(I)
Σ , ωj

))
and µ$

(
Lp

(
f⊗g

(II)
Σ , ωj

))
. If the prime p > k1−2, then

one obtains a congruence of Σ-imprimitive p-adic L-functions

Lp

(
f ⊗ g

(I)
Σ , ωj

)
≡ Lp

(
f ⊗ g

(II)
Σ , ωj

)
mod$epν2+µ

(j)
I,II · OK,p

[[
X
]]

(ωj)

where the ramification index ep ∈ N satisfies 〈$〉ep = p · OK,p.

Proof. We first pick an integer s = k1−k2−r−1 ≥ 0 to Tate twist by. Consider

the OCp-module, L(j,r), generated by the special values L(r,0)
f

(
G

(?)
χ

)
where for

any non-trivial character χ conductor pnχ ≥ max
{∣∣N (I)

g

∣∣− 1
2

p
,
∣∣N (II)

g

∣∣− 1
2

p

}
such

that χ
∣∣
F×p

= ωj we define

G(?)
χ := g

(?)
Σ,χ · δ

(r)
k1−k2−2r

(
E∗
k1−k2−2r,Ñ

(z, ψ1ψχ
2)
)
∈ M∞

k1

(
Ñ , ψ1

)
.

Using the identity χxsp

(
Lp

(
f⊗g

(?)
Σ

))
= ±p−1Ξr,χ ·L(r,0)

f

(
G(?)

)
in Remark (iii),

and also because
∣∣Ξr,χ

∣∣−1

p
= 1, it follows that L(j,r) = $ep+µ

(j)
I,II · OCp where

µ
(j)
I,II = min

?∈{I,II}

{
µ$
(
Lp

(
f ⊗ g

(?)
Σ , ωj

))}
∈ Z ∪

{
±∞

}
.

From a naive perspective only three possibilities can ever happen:

(a) L(j,r) = {0},

(b) L(j,r) = $ep+µ
(j)
I,II , ·OCp with µ

(j)
I,II 6= ±∞, or

(c) L(j,r) = Cp
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In case (a) one has Lp

(
f ⊗ g

(I)
Σ , ωj

)
= Lp

(
f ⊗ g

(II)
Σ , ωj

)
= 0 and therefore

µ$
(
Lp(f ⊗ g

(?)
Σ , ωj)

)
= +∞, so the congruence is vacuously true and content-

free. On the other hand, if we are in case (c) then µ$
(
Lp(f ⊗g

(?)
Σ , ωj)

)
= −∞,

which would then imply that the ωj-branches of Lp(f ⊗ g
(?)
Σ ) arise from an

unbounded p-adic measure – this directly contradicts the work in [37, 53] and

so never occurs!

This leaves us to deal with the interesting case (b). Recall from Equation

(7.1) that the linear functional degenerates into a finite sum

L(r,0)
F1

(
G(?)
χ

)
=
∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ
(Hχ) ·Xd(N0, N1)

whereH(?)
χ = Hol∞

(
G

(?)
χ

)∣∣
k1
WÑ , and the Xd(N0, N1)’s are independent of G

(?)
χ .

Applying Proposition 6.16, one has congruences

c
(I)

d,Ñ,ẽ
(Hχ)≡ c

(II)

d,Ñ,ẽ
(Hχ)

(
mod pν2

)
at every d

∣∣N0

N1
and finite order character χ on Z×p . As an immediate consequence

L(r,0)
F1

(
G(I)
χ

)
− L(r,0)

F1

(
G(II)
χ

)
∈ $ep+µ

(j)
I,II · pν2 · OCp ,

i.e. χxsp

(
Lp

(
f⊗g

(I)
Σ

)
−Lp

(
f⊗g

(II)
Σ

))
∈ $epν2+µ

(j)
I,II ·OCp at almost all characters2

χ : Z×p → Q×p such that χ
∣∣
F×p

= ωj. The rest now follows by p-adic continuity.

Let us instead consider primitive versions of these double product L-functions,

namely Lp

(
f⊗g(I), ωj

)
and Lp

(
f⊗g(II), ωj

)
which belong to OK,p

[[
X
]]

[1/p](ωj).

For either choice of ? ∈ {I, II}, they are related to their Σ-imprimitive cousins

via

Lp

(
f ⊗ g

(?)
Σ , ωj

)
= Lp

(
f ⊗ g(?), ωj

)
×
∏
l∈Σ

El(f ⊗ g(?), ωj) (7.3)

where each El(f ⊗g(?), ωj) ∈ OK,p
[[
X
]]
p-adically interpolates the Euler factor

Ll
(
f ⊗ g(?)⊗χωj, s

)
as χ ranges over finite order characters on 1 + pZp ⊂ Z×p .

2This containment is also true for the missing characters, which can be seen by exploiting

the p-adic density of finite order characters χ with χ
∣∣
F×p

= ωj inside the parameter space

1 + pZp.
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Definition 7.4. At each prime l ∈ Spec(Z) and any branch j ∈ {0, . . . , p−2},

let us define the non-negative integer e
(?)
l (ωj) to be the λ-invariant of the Euler

factor El(f ⊗ g(?), ωj).

Theorem 7.5. If the prime p > k1 − 2, then

λ
(
Lp

(
f ⊗ g(I), ωj

))
= λ

(
Lp

(
f ⊗ g(II), ωj

))
+

∑
l|N(I)

g N
(II)
g

e
(II)
l (ωj)− e

(I)
l (ωj).

Proof. Firstly, we note that the Euler factors El(f ⊗g(?), ωj) in Equation (7.3)

for primes l ∈ Σ each have unit content, and therefore possess a trivial µ-

invariant. If µ
(j)
I,II ∈ Z ∪ {+∞} denotes the minimum of the µ-invariants for

Lp

(
f ⊗ g(I), ωj

)
and Lp

(
f ⊗ g(II), ωj

)
, then by Theorem 7.3 one has

$−µ
(j)
I,II · Lp

(
f ⊗ g

(I)
Σ , ωj

)
≡ $−µ

(j)
I,II · Lp

(
f ⊗ g

(II)
Σ , ωj

)
mod$ep·ν2 · OK,p

[[
X
]]
.

Moreover as ep · ν2 ≥ 1, we can then deduce that

λ
(
Lp

(
f ⊗ g

(I)
Σ , ωj

))
= rankF[[X]]

(
OK,p

[[
X
]]/〈

$,$−µ
(j)
I,II · Lp

(
f ⊗ g

(I)
Σ , ωj

)〉)
= rankF[[X]]

(
OK,p

[[
X
]]/〈

$,$−µ
(j)
I,II · Lp

(
f ⊗ g

(II)
Σ , ωj

)〉)
= λ

(
Lp

(
f ⊗ g

(II)
Σ , ωj

))
where F = OK,p

/
〈$〉 indicates the residue field. Finally, using Equation (7.3)

in tandem with the additivity of the λ-invariant, clearly one has a relation

λ
(
Lp

(
f ⊗ g

(?)
Σ , ωj

))
= λ

(
Lp

(
f ⊗ g(?), ωj

))
+ e

(?)
l (ωj).

The result follows upon observing that e
(I)
l (ωj) = e

(II)
l (ωj) at any prime l ∈ Σ

such that l - N (I)
g N

(II)
g , because here El(f⊗g(I), ωj) ≡ El(f⊗g(II), ωj) mod$ep·ν2 .

7.2 The triple product p-adic L-function

At the risk of bombarding the reader with too many superscripts, suppose that

we are given two primitive Ii-adic triples(
F1,G

(2),(I),G(3),(I)
)

and
(
F1,G

(2),(II),G(3),(II)
)
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where F1 has level N1 = C1, and the families G(i),(?) have level equal to C
(?)
i .

Assume there exists a one-dimensional subset (i.e. line) V ⊂ X1 × X2 × X3 in

the parameter space, such that for all unbalanced points Q ∈ V ∩ XF1
R :

Q
(
an
(
G(2),(I)

))
≡ Q

(
an
(
G(2),(II)

))
(mod pν2) if gcd

(
n,C

(I)
2 C

(II)
2

)
= 1, (7.4)

Q
(
an
(
G(3),(I)

))
≡ Q

(
an
(
G(3),(II)

))
(mod pν3) if gcd

(
n,C

(I)
3 C

(II)
3

)
= 1. (7.5)

We also suppose the image of the specialisations φV : R →
⊕
Q∈V∩XF1

R
Q(R)

glues into a one-parameter algebra, IV ∼= φV(R), of finite-type over Λwt.

Let us write µ
(V)
wt ∈ Z ∪ {−∞,+∞} for the minimum of the (weight) µ-

invariants associated to φV

(
Lp

(
F1,G

(2),(?),G(3),(?)
))
∈ IV over both choices

of ? ∈ {I, II}. The theorem immediately below is the primary technical result

in this section.

Theorem 7.6. If both triples
(
F1,G

(2),(I),G(3),(I)
)

and
(
F1,G

(2),(II),G(3),(II)
)

satisfy Hypotheses (T1)–(T4), the congruences (7.4)-(7.5) hold for ν2, ν3 ≥ 1,

the points Q ∈ XF1
R with p - (k1−2)!

(k1−2−r)! are dense in Spec(IV), and if ψ2
1 = 1,

then

φV

(
Lp,Σ

(
F1,G

(2),(I),G(3),(I)
))
≡ φV

(
Lp,Σ

(
F1,G

(2),(II),G(3),(II)
))

modulo pµ
(V)
wt +min{ν2,ν3} ·IV , where the finite set Σ := supp

(
C

(I)
2 C

(II)
2 C

(I)
3 C

(II)
3

)
.

In particular, this is equivalent to Theorem 6.6(i) stated in the Introduc-

tion. Moreover let us recall that the Σ-imprimitive p-adic L-function factorises

into

Lp,Σ

(
F1,G

(2),(?),G(3),(?)
)

= Lp

(
F1,G

(2),(?),G(3),(?)
)

×
∏
l∈Σ

E
(?)
l

(
F1,G

(2),G(3)
)

where E
(?)
l (−) interpolates Ll

(
F1(m)⊗G(2),(?)(m)⊗G(3),(?)(m)⊗ χQ , w2

)
on

XF1
R . Applying an identical argument to that used in the proof of Theorem
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7.5,

λwt ◦ φV
(
Lp

(
F1,G

(2),(I),G(3),(I)
))

+
∑
l∈Σ

λwt ◦ φV
(
E

(I)
l

(
F1,G

(2),G(3)
))

= λwt◦ φV
(
Lp,Σ

(
F1,G

(2),(I),G(3),(I)
))

by 7.5
= λwt◦ φV

(
Lp,Σ

(
F1,G

(2),(II),G(3),(II)
))

= λwt ◦ φV
(
Lp

(
F1,G

(2),(II),G(3),(II)
))

+
∑
l∈Σ

λwt ◦ φV
(
E

(II)
l

(
F1,G

(2),G(3)
))

and Theorem 6.6(ii) now follows as an immediate corollary.

Remarks. The strategy we adopt to establish Theorem 7.6 has three steps:

(1) At each point Q ∈ XF1
R and ? ∈ {I, II}, we will express the special value

Q
(
LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

)
in terms ofQ

(
a1

(
ηF1 · 1F1 · TrÑ/C1

(
H

aux,(?)
Σ

)))
. Note

that by construction, both of the Σ-depleted families

H
aux,(?)
Σ ∈ Sord

(
Ñ , ψ1,(p)ψ

(p)

1 ; I1

)
⊗I1 R

exist at the top-most level

Ñ := lcm

C1C
(I)
2 C

(I)
3 , C1C

(II)
2 C

(II)
3 ,
∏
l∈Σ

l2

 .

(2) By replacing the original triple
(
F1,G

(2),(?)
Σ ,G

(3),(?)
Σ

)
with the twisted

triple

(
F1 ⊗

(
ω−k

(1)(m)ε(1)
m

)−1/2
,G

(2),(?)
Σ ⊗

(
ω−k

(1)(m)ε(1)
m

)1/2
,G

(3),(?)
Σ

)
,

we relate Q
(
a1

(
ηF1 · 1F1 · TrÑ/C1

(
H

aux,(?)
Σ

)))
to the special value of our

functional L(r,1)
F1

(
Q
(
G

(2),(?)
Σ

)
· δ(r)

k3

(
Q
(
G

(3),(?)
Σ

))∣∣∣??

)
with Fα

1 = Q(F1)⊗

(ω−k
(1)(m)ε

(1)
m

)−1/2
, k = (k1, k2, k3), r = (k1 − k2 − k3)/2, and ‘??’ a

combination of Hecke operators.

(3) Finally, upon exploiting the congruence preserving properties of the lin-

ear functionals L(r,1)
F1

(
−
∣∣??
)

and the Zariski density of V ∩ XF1
R inside
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of Spec(IV), the mod pmin{ν2,ν3}-congruences between Q
(
H

aux,(I)
Σ

)
and

Q
(
H

aux,(II)
Σ

)
will produce mod pµ

(V)
wt +min{ν2,ν3}-congruences between the

respective triple product L-values.

Step 1: Expressing the special value Q
(
LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

)
in

terms of Q
(
a1

(
ηF1
· 1F1

· TrÑ/C1

(
H

aux,(?)
Σ

)))
Let us begin by reviewing the important properties of Haux,(?). In fact this

family is obtained from a secondary R-adic family, Hord,(?), through

Haux,(?) =
∑
I⊂ΣIIb

1,0

(−1)#I ·
ψ1,(p)(nI/d1)〈nI/d1〉I1d1

βI(F1) · nI
◦Hord,(?)

∣∣∣ Ud1/nI

where definitions of the sets I,ΣIIb
1,0 and the positive integers nI , d1 can be found

in [28, Sect 4]. Each βI(F1) ∈ I×1 is a distinguished root of the polynomial

X2 − al(F1)X + ψ1(l) · l−1〈l〉I1 at the primes l
∣∣C1C

(?)
2 C

(?)
3 , in which case the

denominator βI(F1) · nI must be a unit.

Definition 7.7. The operator Υaux
N,F1

∈ EndI1
(
Sord

(
N,ψ1,(p)ψ

(p)

1 ; I1

)
⊗I1 R

)
is

obtained via the formula

H
∣∣∣ Υaux

N,F1
:=

∑
I⊂ΣIIb

1,0

(−1)#I ·
ψ1,(p)(nI/d1)〈nI/d1〉I1d1

βI(F1) · nI
◦H

∣∣∣ Ud1/nI .

If we instead deplete our families by omitting the qn-coefficients involv-

ing those integers n such that supp(n) ∩ Σ 6= ∅, then analogously H
aux,(?)
Σ =

H
ord,(?)
Σ

∣∣ Υaux
Ñ,F1

. Now by its very definition,

LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

:= a1

(
ηF1 · 1F1 · TrÑ/C1

(
H

aux,(?)
Σ

))
(e.g. see [28, §4.2.5]) where ηF1 ∈ I1 generates the annihilator of the congruence

module attached to F1, while 1F1 ∈ Tord
(
C1, ψ1; I1

)
mF1

⊗I1 Frac(I1) is the idem-

potent element3 which cuts the F1-isotypic part out from Sord
(
C1, ψ1,(p)ψ

(p)

1 ; I1

)
.

3Hsieh and Fukunaga consider ηF̌1
and 1F̌1

where F̌1 := F1

∣∣∣[ψ(p)
1

]
; however our condition

ψ2
1 = 1 implies F1 and F̌1 share the same character, so we suppress notation and ignore this

switch.
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Therefore at every Q ∈ XF1
R ,

Q
(
LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

)
= Q(1)

m1

(
ηF1

)
×Q

(
a1

(
1F1 · TrÑ/C1

(
H

ord,(?)
Σ

∣∣∣ Υaux
Ñ,F1

))) (7.6)

and the next stage is to relate the right-hand side of this to our functional.

Step 2: Relating Q
(
a1

(
ηF1
· 1F1

· TrÑ/C1

(
H

aux,(?)
Σ

)))
to L(r,1)

F1

Before we can proceed further, a word of caution: for a fixed unbalanced point

Q ∈ XF1
R , the specialisationQ(F1) = Q(1)

m1(F1) has the character ψ1ω
−k(1)(m)ε

(1)
m ,

which in general is not quadratic. Consequently the theory we developed in

Section 6.2 cannot be directly applied to the classical eigenform Q(F1).

To salvage the argument, we replace the triple
(
F1,G

(2),(?)
Σ ,G

(3),(?)
Σ

)
with its

modified version
(
F1⊗

(
ω−k

(1)(m)ε
(1)
m

)−1/2
,G

(2),(?)
Σ ⊗

(
ω−k

(1)(m)ε
(1)
m

)1/2
,G

(3),(?)
Σ

)
,

which works fine for even k(1)(m). If the original triple satisfies (T1)–(T4), it

is easy to check the modified version does too. Furthermore, it follows readily

that

Fα
1 := Q

(
F1 ⊗

(
ω−k

(1)(m)ε(1)
m

)−1/2
)
∈ Sk(1)(m)

(
pC1, ψ1;O

K,ε
(1)
m

)
must be an ordinary p-stabilised newform. If k(1)(m) > 2 then we can assume it

is principal series at p, in which case Fα
1 (z) = F1(z)−ψ1(p)pk

(1)(m)−1α−1 ·F1(pz)

where the underlying newform F1 ∈ Sk(1)(m)

(
C1, ψ1

)
is exactly as in Section

6.2.

Remarks. (a) If k(1)(m) = 2 and Fα
1 is Steinberg at p, then Fα

1 = F1 is

already a newform of level pC1, and we cannot apply the calculations in

Section 6.2 to it.

(b) Replacing
(
F1,G

(2),(?)
Σ ,G

(3),(?)
Σ

)
by the modified (twisted) triple above

has no effect on the triple product L-function as the Galois representation

is unchanged, however LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

is essentially a square-root so it

might flip its sign around.
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By the previous discussion, after first modifying
(
F1,G

(2),(?)
Σ ,G

(3),(?)
Σ

)
one

may then assume Fα
1 = Q

(
F1

)
has exact level pC1 and character ψ1, such

that ψ2
1 = 1. To simplify the notation suppose that we have fixed a point

Q ∈ XF1
R , and define (k1, k2, k3) =

(
k(1)(m), k(2)(m), k(3)(m)

)
, N1 = C1, and

Ni= pe
(i)(m)Ci for i = 2, 3. We shall also require the depleted Hecke eigenforms

g
(?)
Σ := Q(2)

m2

(
G

(2),(?)
Σ

)
and h

(?)
Σ := Q(3)

m3

(
G

(3),(?)
Σ

)∣∣∣ ΘQ

in the context of Section 6.2.5, where ΘQ = ψ1,(p) ·ω−(k1−k2−k3)/2 ·
(
ε

(1)
m ε

(2)
m ε

(3)
m

)1/2

and the twisting operation ‘ −
∣∣ ΘQ’ sends

∑∞
n=1 cn · qn 7→

∑∞
n=1 cnΘQ(n) · qn.

Lemma 7.8. If Q is unbalanced of weight (k1, k2, k3) and k1 ∈ 2 · Z≥2, then

Q
(
a1

(
1F1 · TrÑ/N1

(
H

ord,(?)
Σ

)))
= uQ · L(r,1)

F1

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

(
1

p
· id− ψ1(p)

p2α
· U∗p
))

with uQ ∈ O×Cp independent of ? ∈ {I, II}, and U∗p the adjoint of Up at level Ñ .

Proof. We start by using a convenient formula of Hida in [37, Lemma 9.1],

which implies that the specialised coefficient

Q
(
a1

(
1F1 · TrÑ/N1

(
H

ord,(?)
Σ

)))
=

〈
Q(F1)], eord · Q

(
H

ord,(?)
Σ

)∣∣
k1
WÑ

〉
Ñ〈

Q(F1)],Q(F1)
∣∣
k1
WÑ

〉
Ñ

.

Here the idempotent eord = limn→∞ U
n!
p and Q(F1) = Fα

1 as before, while from

[28, Lemma 4.2.3] we know that Q
(
H

ord,(?)
Σ

)
coincides with

eord · Hol∞

(
Q(2)
m2

(
G

(2),(?)
Σ

)
· δ(rQ)

k3
Q(3)
m3

(
G

(3),(?)
Σ

)∣∣∣ ΘQ

)
= eord · Hol∞

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

))
with r = rQ = (k1 − k2 − k3)/2.

As an immediate consequence, one deduces that

Q
(
a1

(
1F1 · TrÑ/N1

(
H

ord,(?)
Σ

)))
=

〈
(Fα

1 )], eord · Hol∞

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

)) ∣∣∣
k1

WÑ

〉
Ñ〈

(Fα
1 )], Fα

1

∣∣
k1
WÑ

〉
Ñ

.
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To deal with the denominator first, applying [37, Lemma 5.3(vi)] it can be

shown

〈
(Fα

1 )], Fα
1

∣∣
k1
WÑ

〉
Ñ

= (−1)k1
〈
(Fα

1 )]
∣∣
k1
WÑ , F

α
1

〉
Ñ

= (−1)k1p

(
2−k1

2

)
ẽ
u† ·

〈
F1, F1

〉
N1

where the term u† is composed of Euler factors/Gauss sums4, and is a p-adic

unit.

To study the numerator term, if we write ‘gh’ as shorthand for g
(?)
Σ ·

δ
(r)
k3

(
h

(?)
Σ

)
then because the p-stabilised newform Fα

1 is p-ordinary,

〈
(Fα

1 )], eord · Hol∞ (gh)
∣∣
k1
WÑ

〉
Ñ

=
〈
(Fα

1 )], Hol∞ (gh)
∣∣
k1
WÑ

〉
Ñ

by 2.19
=

〈
(Fα

1 )],gh
∣∣
k1
WÑ

〉
Ñ

=
〈
F1,gh

∣∣
k1
WÑ

〉
Ñ
− ψ1(p)pk1−1

α

〈
F1|k1Vp,gh

∣∣
k1
WÑ

〉
Ñ

and the last equality follows since (Fα
1 )](q) = F1(q) − ψ1(p)pk1−1

α
· F1(qp) if

k1 > 2. Now
〈
F1|k1Vp,gh

∣∣
k1
WÑ

〉
Ñ

= p−k1
〈
F1,gh

∣∣
k1
WÑ◦Up

〉
Ñ

while WÑ◦Up =

U∗p ◦WÑ , in which case

〈
(Fα

1 )], eord · Hol∞ (gh)
∣∣
k1
WÑ

〉
Ñ

=
〈
F1,gh

∣∣∣
k1

(
id− ψ1(p)

pα
· U∗p

)
◦WÑ

〉
Ñ
.

Therefore, combining together the numerator and denominator calculations:

Q
(
a1

(
1F1 · TrÑ/N1

(
H

ord,(?)
Σ

)))
=

p

(
k1−2

2

)
ẽ

(−1)k1u†
·

〈
F1,gh

∣∣∣
k1

(
id− ψ1(p)

pα
· U∗p

)
◦WÑ

〉
Ñ〈

F1, F1

〉
N1

.

On the other hand, carefully rearranging the factors in Definition 7.1(a) one

4In fact, the term u† = η(p)ẽ ·ψ∞(−1) ·W ′(Fα1 ) ·S(P ) ·
∏

q∈Σ1
τ(η′ −1ψ′ −1) ·

∏
v∈Σ

ηη′(dv)
|ηη′(dv)|

in the notation of [37, Section 5]; one then carefully checks each individual term is a unit of

OCp
.



129

finds

L(r,1)
F1

(
gh
∣∣∣
k1

(
id− ψ1(p)

pα
· U∗p

))
= ε−1

1 · p
1+
(
k1−2

2

)
ẽ ·

(
N

(p)
0

N1

)k1
2

×

〈
F1,gh

∣∣∣
k1

(
id− ψ1(p)

pα
· U∗p

)
◦WÑ

〉
Ñ〈

F1, F1

〉
N1

and then setting uQ := ε1·
(
N

(p)
0

N1

)−k1
2 ·(−1)k1 ·u−1

† ∈ O
×
Cp , the result is proven.

Of course, we want the value of a1

(
ηF1 ·1F1 ·TrÑ/N1

(
H

aux,(?)
Σ

))
at a point Q

not the value of a1

(
1F1 ·TrÑ/N1

(
H

ord,(?)
Σ

))
at Q, but they are closely connected.

Comparing the preceding lemma with Definition 7.7, at even weight k1 > 2

Q
(
a1

(
ηF1 · 1F1 · TrÑ/N1

(
H

aux,(?)
Σ

)))
= uQ · Q(1)

m1

(
ηF1

)
× L(r,1)

F1

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

Q
(
Υaux
Ñ,F1

)
◦
(

1

p
· id− ψ1(p)

p2α
· U∗p
))

.

Moreover by its construction LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

= a1

(
ηF1 · 1F1 ·TrÑ/N1

(
H

aux,(?)
Σ

))
,

and so we may summarise the various calculations of Step (2) in the following

way.

Corollary 7.9. If Q ∈ XF1
R has weight k = (k1, k2, k3) and k1 ∈ 2 · Z≥2, then

the special value of LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

at the unbalanced point Q is equal to

p−2·uQ·Q(1)
m1

(
ηF1

)
×L(r,1)

F1

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

Q
(
Υaux
Ñ,F1

)
◦
(
p · id− ψ1(p)

α
· U∗p
))

.

N.B. The operator Q
(
Υaux
Ñ,F1

)
◦
(
p · id − ψ1(p)

α
· U∗p

)
is ‘??’ mentioned in the

remarks after Theorem 7.6.

Step 3: Proving the congruences

The final task is to prove the congruences for LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

by reading them off

at enough unbalanced specialisations Q which are Zariski dense. An important

initial observation is that

LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

=
(
− ψ1,(p)(−1)

)−1/2 · LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

×
∏
l|N

f
−1/2
l
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where the factors fl ∈ R× are given in [28, Prop 5.1.4], but are not re-

quired here. Thus to prove a congruence for the LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

’s over the

one-dimensional set V , it is necessary and sufficient to show the same congru-

ence for the LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

’s. Because each LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

is a square-root, one

has an equality of µ-invariants

µ ◦ φV
(
Lp

(
F1,G

(2),(?)
Σ ,G

(3),(?)
Σ

))
= 2 · µ ◦ φV

(
LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

)
at either ? ∈ {I, II}, which means Q

(
LF1

G
(2),(?)
Σ ,G

(3),(?)
Σ

)
takes values in pµ

(V)
wt

/
2 ·OCp

for all Q ∈ V ∩ XF1
R . It follows directly from Corollary 7.9 that for each

? ∈ {I, II},

L(r,1)
F1

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

Q
(
Υaux
Ñ,F1

)
◦
(
p · id− ψ1(p)

α
· U∗p
))

lies inside Q(1)
m1

(
ηF1

)−1
p2+µ

(V)
wt

/
2 · OCp , provided that Q ∈ V ∩ XF1

R with k1 ∈

2 · Z≥2.

Remarks. (i) By Equation (7.1), the functional values below degenerate into

L(r,1)
F1

(
g

(?)
Σ · δ

(r)
k3

(
h

(?)
Σ

))
=
∑
d

∣∣N0
N1

c
(?)

d,Ñ,ẽ

(
HΣ

)
·Xd(N0, N1)

whereH(?)
Σ = Hol∞

(
g

(?)
Σ ·δ

(r)
k3

(
h

(?)
Σ

))∣∣
k1
W 2
Ñ

= (−1)k1·Hol∞
(
g

(?)
Σ ·δ

(r)
k3

(
h

(?)
Σ

))
.

(ii) Applying Proposition 6.17 at divisors d
∣∣N0

N1
and if p - (k1−2)!

(k1−2−r)! , one has

c
(I)

d,Ñ,ẽ

(
HΣ

)
≡ c

(II)

d,Ñ,ẽ

(
HΣ

) (
mod pmin{ν2,ν3}

)
.

Since the composition of operators RQ := Q
(
Υaux
Ñ,F1

)
◦
(
p · id − ψ1(p)

α
· U∗p

)
does not introduce any new denominators involving p, it follows from these

remarks that

L(r,1)
F1

(
g

(I)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

RQ

)
− L(r,1)

F1

(
g

(II)
Σ · δ

(r)
k3

(
h

(?)
Σ

)∣∣∣
k1

RQ

)
belongs to Q(1)

m1

(
ηF1

)−1
p2+min{ν2,ν3}+µ(V)

wt

/
2 · OCp at all the points Q ∈ V ∩ XF1

R

satisfying k1 ∈ 2 · Z≥2 and p - (k1−2)!
(k1−2−rQ)!

. Reversing the previous chain of

reasoning,

Q
(
LF1

G
(2),(I)
Σ ,G

(3),(?)
Σ

)
−Q

(
LF1

G
(2),(II)
Σ ,G

(3),(?)
Σ

)
∈ pmin{ν2,ν3}+µ(V)

wt

/
2 · OCp
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hence both Q
(
Lp

(
F1 ⊗G

(2),(I)
Σ ⊗G

(3),(I)
Σ

))
and Q

(
Lp

(
F1 ⊗G

(2),(II)
Σ ⊗G

(3),(II)
Σ

))
are congruent to each other modulo pµ

(V)
wt +min{ν2,ν3}.

Lastly as p 6= 2, we use the density of those Q ∈ V ∩XF1
R with p - (k1−2)!

(k1−2−rQ)!

and 2
∣∣k1 inside Spec(IV) to obtain the full congruence, and Theorem 7.6 is

proved.
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Determining the ratio
〈f |Vm,f |Vn〉
〈f,f〉

explicitly

We will derive a useful technical result relating the value of 〈f |Vm, f |Vn〉M to

〈f, f〉N where f ∈ Sk(N,ψ), m and n are positive integers, and M is a multiple

of lcm(Mm,Mn). We assume that f has rational coefficients so that fρ = f .

Applying [60, Lemma 1],〈
f
∣∣Vm, f ∣∣Vn〉M〈
f, f
〉
M

= Ress=k

(
D
(
s, fρ

∣∣Vm, f ∣∣Vn)
D(s, f ], f)

)

where the L-series D(s,F ,G) :=
∑∞

n=1 an(F)an(G) · n−s for Re(s) � 0. Be-

cause fρ = f , we may factorise the ratio of L-functions above into

D
(
s, fρ

∣∣Vm, f ∣∣Vn)
D(s, f ], f)

=

(
mn

gcd(m,n)

)−s
·
∏
l

∣∣m′n′
∑∞

j=0 alj(f) alj+tl (f) · l−js∑∞
j=0 alj(f)2 · l−js

where m′ and n′ denote the positive integers satisfying m = m′ gcd(m,n) and

n = n′ gcd(m,n), and the integer exponent tl := ordl(m
′n′) ≥ 1.

Lemma A.1. If the prime l divides into m′n′, then

∑∞
j=0 alj(F1) alj+tl (f) · l−jk∑∞

j=0 alj(f)2 · l−jk
=



altl (f) if l | N

a
ltl

(f)−lk−2a
ltl−2 (f)

1+ψ(l)·l−1 if l - N and tl ≥ 2

al(f)
1+ψ(l)·l−1 if l - N and tl = 1.
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Proof. At each prime l, let us factorise the Hecke polynomial for f into X2 −

al(f)X+ψ(l)·lk−1 =
(
X−αl

)(
X−α′l

)
where we choose α′l = 0 if l

∣∣N . Quoting

verbatim from Equation (3.1) of op. cit., for any integer t ≥ 0:

Yl
(
s
)
×
∞∑
j=0

alj(f) alj+t(f) · l−js

=



alt(f)− alt−1(f)al(f)αlα
′
l · l−s + alt−2(f)

(
αlα

′
l)

3 · l−2s if t ≥ 2

al(f)− al(f)αlα
′
l · l−s if t = 1

1−
(
αlα

′
l)

2 · l−2s if t = 0,

and the Euler factor1 here is defined by

Yl(s) :=
(
1− α2

l · l−s
)(

1− α′2l · l−s
)(

1− αlα′l · l−s
)2
.

Putting s = k and utilising the identities αl+α
′
l = al(f) and αlα

′
l = ψ(l)·lk1−1,

the required quotient can be readily computed from this expression at t = tl.

We will leave these details as an exercise for the reader.

Corollary A.2. For any positive integers m and n, and M a multiple of

lcm(mN,nN), one has the identity

〈
f
∣∣Vm, f ∣∣Vn〉M〈
f, f
〉
N

=

(
mn

gcd(m,n)

)−k
×
∏
l|N

lordl(M)−ordl(N) ×
∏

l|M, l-N

(l + 1) · lordl(M)−1

×
∏
l|m′n′
l|N

altl (f)×
∏
l‖m′n′
l-N

al(f)

1 + ψ(l) · l−1

×
∏

l2|m′n′
l-N

altl (f)− lk−2altl−2(f)

1 + ψ(l) · l−1

1In general, given two distinct cusp forms F =
∑∞
n=1 an(F) ·qn and G =

∑∞
n=1 an(G) ·qn,

the Euler factor Yl(s) = (1 − αlβl · l−s)(1 − αlβ′l · l−s)(1 − α′lβl · l−s)(1 − α′lβ′l · l−s) where

αl, α
′
l (resp. βl, β

′
l) denote the Weil numbers of F (resp. G); moreover the actual formula

for
∑∞
j=0 alj (F) alj+t(G) · l−js involves αl, α

′
l, βl, β

′
l, and only simplifies to the above when

F = G.



134

Proof. The result follows upon splitting up the quotient into a product〈
f
∣∣Vm, f ∣∣Vn〉M〈
f, f
〉
N

=

〈
f
∣∣Vm, f ∣∣Vn〉M〈
f, f
〉
M

×
〈
f, f
〉
M〈

f, f
〉
N

and using the above lemma to compute the first ratio, whilst it is well known

that 〈
f, f
〉
M〈

f, f
〉
N

=
[
Γ0(N) : Γ0(M)

]
=

∏
l|M lordl(M) + lordl(M)−1∏
l|N l

ordl(N) + lordl(N)−1
.



Appendix B

Tables of L-invariants for elliptic

curves

We have only considered elliptic curves E/Q whose conductors are divisible by

4. We first treat the curves with D(E, 1) 6= 0, and then the six exceptional

curves with D(E, 1) = 0.

B.1 Tables of L-invariants for elliptic curves E

with D(E, 1) 6= 0

Tabulated below are the values we computed for both the derivative of the

imprimitive p-adic L-function Limp
p (Sym2E, s) at s = 1, together with the

corresponding L-invariant term, for the elliptic curves E with D(E, 1) 6= 0.

If the elliptic curve E is already a quadratic twist of another (earlier) elliptic

curve listed in our tables, then we omit the L-invariant data for E completely.

The reader will notice for the elliptic curves of conductor 32 and 36,

which have complex multiplication by Q
(√
−1
)

and Q
(√
−3
)

respectively, that

Lp(Sym2E) coincides with logp(α
−2
p ) in agreement with the Ferrero-Greenberg

formula. However if E has no complex multiplication, this identity no longer

appears to hold in general.
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E = 20a1, CSym2E = 102, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 p2 + p3 + 2p4 + 2p5 + 2p6 +O(p7) p2 + 2p4 +O(p7)

7 2 2p+ 2p2 + p3 +O(p4) p+ 2p2 + p3 +O(p4)

13 2 11p+ 2p2 +O(p3) 12p+ 12p2 +O(p3)

E = 24a1, CSym2E = 122, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −2 2p2 + p3 + p4 +O(p5) 3p2 + 2p3 +O(p5)

11 4 6p+ 8p2 +O(p3) p+O(p3)

13 −2 7p+ 9p2 +O(p3) 9p+ 4p2 +O(p3)

E = 32a1, CSym2E = 82, S1 = {2}, ξSym2E = 1

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −2 3p+ p2 + 2p3 + 4p4 +O(p5) 4p+ 3p2 + 3p3 + 3p4 +O(p5)

13 6 p+ 9p2 +O(p3) 4p+ 7p2 +O(p3)

E = 36a1, CSym2E = 62, S1 = {2, 3}, ξSym2E = 4
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 −4 6p+ 3p2 + 2p3 +O(p4) 2p+ 3p2 + 2p3 +O(p4)

13 2 p2 +O(p3) p2 +O(p3)

E = 40a1, CSym2E = 202, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 −4 p+ 6p3 +O(p4) p+ 4p2 + 6p3 +O(p4)

11 4 5p+ 4p2 +O(p3) 10p+ 3p2 +O(p3)

13 −2 10p+ 2p2 +O(p3) 11p+ 11p2 +O(p3)

E = 44a1, CSym2E = 222, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 2p3 +O(p6) p3 + p5 +O(p6)

5 −3 4p+ 2p2 + p4 +O(p5) 2p+ 3p3 + 3p4 +O(p5)

7 2 3p+ 5p3 +O(p4) 5p+ p2 +O(p4)

13 −4 3p+ p2 +O(p3) 9p+ 11p2 +O(p3)
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E = 52a1, CSym2E = 262, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 4p+ 2p4 +O(p5) 2p+ 2p3 + 3p4 +O(p5)

7 −2 p3 +O(p4) 4p3 +O(p4)

11 −2 10p+ p2 +O(p3) 5p+ 9p2 +O(p3)

E = 56a1, CSym2E = 282, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 p+ p2 + 2p3 +O(p4) 4p+ 2p3 +O(p4)

11 −4 p+O(p3) 2p+ 10p2 +O(p3)

13 2 9p+O(p2) 6p+O(p2)

E = 56b1, CSym2E = 282, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 2p+ p4 +O(p5) 2 + p3 +O(p4)

5 −4 3p+ p2 +O(p3) 4 + 2p+O(p2)

E = 76a1, CSym2E = 382, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 1 + 2p+O(p4) 1 + p+ 2p2 +O(p4)

5 −1 4p+ 3p2 +O(p3) 3 + 2p+O(p2)

7 −3 p2 +O(p3) 6p2 +O(p3)

11 5 5p+ 4p2 +O(p3) 9p+ 4p2 +O(p3)

13 −4 4p+ 9p2 +O(p3) 12p+ 3p2 +O(p3)

E = 84a1, CSym2E = 422, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

11 −6 5p+ 3p2 +O(p3) 9p+ 4p2 +O(p3)

13 2 10p+ 10p2 +O(p3) 5p+ 6p2 +O(p3)

E = 84b1, CSym2E = 422, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 4 p+ 2p2 +O(p3) 1 + 3p+O(p2)

11 2 5p+ 4p2 +O(p3) 8p+ 3p2 +O(p3)

13 −6 7p+ 3p2 +O(p3) 4p+ 2p2 +O(p3)
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E = 88a1, CSym2E = 442, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −3 4p+ p3 +O(p4) p+ 4p2 + p3 +O(p4)

7 −2 6p+ 5p2 +O(p3) 4p+ 5p2 +O(p3)

E = 92a1, CSym2E = 462, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 p4 + 2p5 +O(p6) 2p4 + 2p5 +O(p6)

7 2 6p+ 2p2 +O(p3) 3p+ 4p2 +O(p3)

13 −1 11p+O(p2) 2 +O(p)

E = 92b1, CSym2E = 462, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −2 4p+ p2 + 2p3 +O(p4) 2p+ 3p2 +O(p4)

7 −4 3p+ 3p2 +O(p3) 4p+ 4p2 +O(p3)

11 2 10p+O(p2) 5p+O(p2)

13 −5 12p+O(p2) 12p+O(p2)

E = 96a1, CSym2E = 242, S1 = {2}, ξSym2E = 1

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 p2 + 2p3 +O(p4) 3p2 + 4p3 +O(p4)

7 −4 4p+ 2p2 +O(p3) p+ 2p2 +O(p3)

11 4 9p+O(p2) 3p+O(p2)

13 −2 3p+O(p2) 4p+O(p2)

E = 104a1, CSym2E = 522, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 p+ p2 + 2p3 + p4 +O(p5) 2 + 2p+ 2p3 +O(p4)

5 −1 2p2 +O(p3) 2p+O(p2)

7 5 p+O(p3) 3p+ 6p2 +O(p3)

11 −2 9p+O(p2) 6p+O(p2)

E = 108a1, CSym2E = 182, S1 = {2, 3}, ξSym2E = 8
9

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 5 6p+ 5p2 +O(p3) 2p+ 3p2 +O(p3)

13 −7 6p2 +O(p3) p2 +O(p3)
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E = 112c1, CSym2E = 142, S1 = {2}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 p+ 2p2 +O(p5) 2p+ p2 + p3 +O(p5)

13 −4 9p+O(p2) 8p+O(p2)

E = 116a1, CSym2E = 582, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 3 p+ 3p2 +O(p3) 3p+ 2p2 +O(p3)

7 4 4p+ 3p2 +O(p3) 3p+ 2p2 +O(p3)

11 −1 O(p2) O(p)

13 −3 12p+O(p2) p+O(p2)

E = 116b1, CSym2E = 582, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 2p2 + 2p3 +O(p5) p2 + p3 + p4 +O(p5)

5 3 3p+ 4p2 + 4p3 +O(p4) 4p+ 2p2 + 4p3 +O(p4)

7 −4 6p+ 4p2 +O(p3) p+ 4p2 +O(p3)

11 3 5p+O(p2) 4p+O(p2)

13 5 9p+O(p2) 9p+O(p2)

E = 116c1, CSym2E = 582, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 1 + 2p+ p2 + 2p3 +O(p4) 1 + p+ 2p3 +O(p4)

5 −2 p+ 4p2 +O(p3) 3p+ 4p2 +O(p3)

7 4 3p+ 4p2 +O(p3) 4p+ 3p2 +O(p3)

11 −6 2p+O(p2) 8p+O(p2)

13 2 8p+O(p2) 4p+O(p2)

E = 120a1, CSym2E = 602, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

11 −4 6p+O(p2) p+O(p2)

13 6 11p+O(p2) 9p+O(p2)

E = 120b1, CSym2E = 602, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 4 5p+ 3p2 +O(p3) 5p+ 2p2 +O(p3)

13 −6 6p+O(p2) 12p+O(p2)
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E = 124a1, CSym2E = 622, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2 + 2p+ p2 +O(p4) 2 + p2 + 2p3 +O(p4)

5 −3 2p+ 3p2 + 2p3 +O(p4) p+ p2 + 2p3 +O(p4)

7 −1 2p2 +O(p3) 4p+O(p2)

11 −6 7p2 +O(p3) 6p2 +O(p3)

13 2 4p+O(p2) 2p+O(p2)

E = 124b1, CSym2E = 622, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 1 p+ 3p2 +O(p3) 2 + p+O(p2)

7 3 5p+ 6p2 +O(p3) 2p+ 5p2 +O(p3)

11 6 O(p3) O(p3)

13 −4 11p+O(p2) 7p+O(p2)

E = 128a1, CSym2E = 162, S1 = {2}, ξSym2E = 1
2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2p+ 2p2 + p3 +O(p5) 2 + p+ p2 + 2p3 +O(p4)

5 −2 4p+ 2p2 + p3 +O(p4) 4p+ 3p3 +O(p4)

7 −4 3p+ 5p2 +O(p3) 5p+ 6p2 +O(p3)

11 2 7p+O(p2) 4p+O(p2)

13 −2 5p+O(p2) 9p+O(p2)

E = 132a1, CSym2E = 662, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 4p+ p2 + p3 +O(p4) 2p+ 3p2 + 2p3 +O(p4)

7 −2 p+O(p3) 4p+O(p3)

13 −2 12p+O(p2) 6p+O(p2)

E = 132b1, CSym2E = 662, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 2p+ 3p2 +O(p3) p+ 4p2 +O(p3)

7 2 3p+ p2 +O(p3) 5p+ 5p2 +O(p3)

13 6 3p+O(p2) 11p+O(p2)
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E = 136a1, CSym2E = 682, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2p2 + 2p3 + p4 +O(p5) 2p+ 2p2 + p3 +O(p4)

5 −2 3p+ 3p2 + 3p3 +O(p4) 2p+ 2p2 + 4p3 +O(p4)

7 −2 2p+ 2p2 +O(p3) 6p+ 2p2 +O(p3)

11 −6 10p+O(p2) 2p+O(p2)

13 2 9p+O(p2) 6p+O(p2)

E = 136b1, CSym2E = 682, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 2p+ 2p2 + 2p3 + 2p4 +O(p5) 2 + 2p+ 2p2 + 2p3 +O(p4)

11 2 3p+O(p2) 2p+O(p2)

13 −6 p+O(p2) 2p+O(p2)

E = 140a1, CSym2E = 702, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 2p+ p2 +O(p4) p+ 2p2 + 2p3 +O(p4)

11 3 p+O(p2) 3p+O(p2)

13 −1 O(p2) O(p)

E = 140b1, CSym2E = 702, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

11 −5 2p+O(p2) 8p+O(p2)

13 −3 8p+O(p2) 5p+O(p2)

E = 148a1, CSym2E = 742, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2p+ p2 +O(p4) p+ 2p2 + 2p3 +O(p4)

5 −4 3p+ 4p2 +O(p3) 3 + 2p+O(p2)

7 −3 p+ 3p2 +O(p3) 6p+ 4p2 +O(p3)

11 5 8p+O(p2) 10p+O(p2)
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E = 152a1, CSym2E = 762, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2p+O(p5) 2 +O(p4)

5 −1 p+ 2p2 +O(p3) 1 + 4p+O(p2)

7 −3 p+ 6p2 +O(p3) p+O(p3)

11 −3 3p+O(p2) p+O(p2)

13 −4 4p+O(p2) 3p+O(p2)

E = 152b1, CSym2E = 762, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 2p+ 2p2 + 2p3 + 2p4 +O(p5) 1 + 2p+O(p4)

7 3 p+O(p3) p+ p2 +O(p3)

11 2 8p+O(p2) 9p+O(p2)

13 1 7p+O(p2) 8 +O(p)

E = 156a1, CSym2E = 782, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −4 2p+ p2 +O(p3) 2 + 3p+O(p2)

7 −2 4p+O(p3) 2p+ 2p2 +O(p3)

11 −4 7p+O(p2) 5p+O(p2)

E = 156b1, CSym2E = 782, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 2 6p+O(p3) 3p+ 3p2 +O(p3)

E = 160a1, CSym2E = 402, S1 = {2}, ξSym2E = 1

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2p+ 2p2 + p3 + p4 +O(p5) 1 + 2p+O(p4)

7 −2 p+ 3p2 +O(p3) 6p+O(p3)

11 −4 2p+O(p2) 8p+O(p2)

13 −6 10p+O(p2) p+O(p2)

E = 168a1, CSym2E = 842, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 p+ p2 + 3p3 +O(p4) 4p+ p3 +O(p4)

13 −2 3p+O(p2) 2p+O(p2)
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E = 168b1, CSym2E = 842, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 4p2 + 2p3 +O(p4) p2 +O(p4)

13 6 10p+O(p2) 7p+O(p2)

E = 172a1, CSym2E = 862, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2 + p+O(p4) 2 + 2p+ 2p3 +O(p4)

7 −4 4p+ 2p2 +O(p3) 3p+ 3p2 +O(p3)

11 −3 3p+O(p2) 9p+O(p2)

13 −1 9p+O(p2) 4 +O(p)

E = 184a1, CSym2E = 922, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2p2 + p3 + p4 +O(p5) p+ p3 +O(p4)

5 −4 2p2 +O(p3) p+O(p2)

7 2 p+ 6p2 +O(p3) 3p+ 2p2 +O(p3)

11 −4 6p+O(p2) p+O(p2)

13 −5 3p+O(p2) 4p+O(p2)

E = 184b1, CSym2E = 922, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2p2 + 2p3 +O(p5) p+ 2p2 + 2p3 +O(p4)

5 −2 p+ 3p2 +O(p4) 4p+ 3p2 + 2p3 +O(p4)

7 −4 3p+ p2 +O(p3) 3p+ 6p2 +O(p3)

11 −2 4p+O(p2) 10p+O(p2)

13 7 3p+O(p2) 6p+O(p2)

E = 184c1, CSym2E = 922, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 4 5p+ 5p2 +O(p3) 5p+ 4p2 +O(p3)

11 6 8p+O(p2) 6p+O(p2)

13 −2 7p+O(p2) 9p+O(p2)
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E = 184d1, CSym2E = 922, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 −2 p+O(p3) 3p+ 5p2 +O(p3)

13 −5 p+O(p2) 10p+O(p2)

E = 200a1, CSym2E = 202, S1 = {2, 5}, ξSym2E = 2
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 2 5p+ 6p2 +O(p3) 3p+ 2p2 +O(p3)

11 1 O(p2) O(p)

13 4 6p+O(p2) 7p+O(p2)

E = 204a1, CSym2E = 1022, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −1 2p+ p2 +O(p3) 4 + 2p+O(p2)

7 4 6p3 +O(p4) p3 +O(p4)

11 3 8p+O(p2) 2p+O(p2)

13 3 3p+O(p2) 10p+O(p2)

E = 204b1, CSym2E = 1022, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 1 2p2 +O(p3) 4p+O(p2)

11 5 10p+O(p2) 7p+O(p2)

13 −5 8p+O(p2) 8p+O(p2)

E = 208a1, CSym2E = 262, S1 = {2}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 p+ 2p2 + 2p4 +O(p5) p+ p3 + p4 +O(p5)

5 −3 2p+ 3p2 + 4p3 +O(p4) 3p+ 4p2 +O(p4)

7 1 6p+O(p2) 5 +O(p)

11 −6 7p+O(p2) 4p+O(p2)

E = 208d1, CSym2E = 262, S1 = {2}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −1 4p+ 4p2 +O(p3) 4 + p+O(p2)

7 −1 3p2 +O(p3) 6p+O(p2)

11 2 6p+O(p2) 2p+O(p2)



145

E = 212a1, CSym2E = 1062, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2 + 2p+ p3 +O(p4) 1 + p+ p2 + p3 +O(p4)

5 −2 p2 + 2p3 +O(p4) 3p2 + 3p3 +O(p4)

7 −2 3p+ 4p2 +O(p3) 5p+ 3p2 +O(p3)

11 2 8p+O(p2) 4p+O(p2)

13 −7 11p+O(p2) 10p+O(p2)

E = 212b1, CSym2E = 1062, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 1 + p+ p2 + 2p3 +O(p4) 1 + p2 + p3 +O(p4)

5 2 4p+ p2 + 3p3 +O(p4) 2p+ 3p2 + 3p3 +O(p4)

11 −4 10p+O(p2) 4p+O(p2)

13 −2 3p+O(p2) 8p+O(p2)

E = 216a1, CSym2E = 362, S1 = {2, 3}, ξSym2E = 2
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −4 2p+ 3p2 +O(p3) 3 + p+O(p2)

7 −3 p+ 4p2 +O(p3) 3p+ p2 +O(p3)

11 −4 6p+O(p2) 3p+O(p2)

13 1 4p+O(p2) 10 +O(p)

E = 216c1, CSym2E = 362, S1 = {2, 3}, ξSym2E = 2
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 1 2p+O(p2) 1 +O(p)

7 3 4p+ 2p2 +O(p3) 5p+ 5p2 +O(p3)

11 −5 10p+O(p2) 6p+O(p2)

13 4 2p+O(p2) 11p+O(p2)

E = 220a1, CSym2E = 1102, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2 +O(p2) 2 + p+O(p2)

7 −4 p+O(p3) 6p+ 4p2 +O(p3)

13 −4 2p+O(p2) 6p+O(p2)
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E = 220b1, CSym2E = 1102, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 1 + p2 +O(p3) 1 + 2p+ p2 +O(p3)

E = 224a1, CSym2E = 562, S1 = {2}, ξSym2E = 1

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 p3 +O(p4) 2p2 +O(p3)

11 −4 10p+O(p2) 7p+O(p2)

13 −4 8p+O(p2) 12p+O(p2)

E = 228a1, CSym2E = 1142, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 p+O(p3) 3p+ 2p2 +O(p3)

11 2 9p+O(p2) 10p+O(p2)

13 2 11p+O(p2) 12p+O(p2)

E = 228b1, CSym2E = 1142, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −3 2p+ 4p2 +O(p3) p+ 4p2 +O(p3)

7 1 6p+O(p2) 5 +O(p)

11 −5 2p+O(p2) 8p+O(p2)

13 −6 p+O(p2) 8p+O(p2)

E = 232a1, CSym2E = 1162, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 p+O(p4) 2 + 2p2 +O(p3)

5 −3 p+ 3p2 +O(p3) 4p+ p2 +O(p3)

7 2 p+O(p3) 3p+ 5p2 +O(p3)

11 −3 3p+O(p2) p+O(p2)

13 −5 2p+O(p2) 7p+O(p2)
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E = 232b1, CSym2E = 1162, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 p+ 2p3 +O(p4) 2 +O(p3)

5 1 3p+O(p2) 3 +O(p)

7 2 2p+O(p3) 6p+ 3p2 +O(p3)

11 3 6p+O(p2) 2p+O(p2)

13 −1 O(p) O(1)

E = 236a1, CSym2E = 1182, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2p2 +O(p3) p2 +O(p3)

5 −1 4p+O(p2) 3 +O(p)

7 −3 6p+O(p3) p+ 5p2 +O(p3)

11 −2 3p+O(p2) 7p+O(p2)

E = 236b1, CSym2E = 1182, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 2p2 +O(p4) p2 +O(p4)

5 3 2p3 +O(p4) p3 +O(p4)

7 −1 6 +O(p) 5p−1 +O(1)

11 6 5p+O(p2) 9p+O(p2)

13 −4 7p+O(p2) 8p+O(p2)

E = 240b1, CSym2E = 302, S1 = {2}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 4 p+ 2p2 +O(p3) 6p+ p2 +O(p3)

13 2 10p+O(p2) p+O(p2)

E = 244a1, CSym2E = 1222, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −3 p+ 4p2 +O(p3) 3p+O(p3)

7 −3 3p+ 2p2 +O(p3) 4p+O(p3)

11 −1 4p+O(p2) 2 +O(p)

13 1 O(p2) O(p)
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E = 248a1, CSym2E = 1242, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 p2 +O(p4) p+O(p3)

5 1 3p+O(p2) 3 +O(p)

7 −3 2p+ 2p2 +O(p3) 2p+ 4p2 +O(p3)

11 −2 7p2 +O(p3) p2 +O(p3)

13 −2 6p+O(p2) 4p+O(p2)

E = 248b1, CSym2E = 1242, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 2p3 +O(p4) 2p2 +O(p3)

5 2 4p+O(p3) p+ 2p2 +O(p3)

11 2 5p+ 5p2 +O(p3) 7p+ 5p2 +O(p3)

13 4 12p+O(p2) 9p+O(p2)

E = 248c1, CSym2E = 1242, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −3 p3 +O(p4) 4p3 +O(p4)

7 −3 6p+O(p3) 6p+ 6p2 +O(p3)

11 2 3p2 +O(p3) 2p2 +O(p3)

13 −4 7p+O(p2) 2p+O(p2)

E = 256a1, CSym2E = 82, S1 = {2}, ξSym2E = 1
6

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 p+ p3 +O(p4) p+ p2 + p3 +O(p4)

11 −6 2p+O(p2) 7p+O(p2)

E = 256b1, CSym2E = 82, S1 = {2}, ξSym2E = 1
6

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −4 p2 +O(p3) p+O(p2)

13 −4 5p+O(p2) 6p+O(p2)

E = 260a1, CSym2E = 1302, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 2 + p2 +O(p3) 2 + p+ 2p2 +O(p3)

7 2 p2 +O(p3) 4p2 +O(p3)

11 4 4p+O(p2) 6p+O(p2)
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E = 264a1, CSym2E = 1322, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 2 3p+ p2 +O(p3) 2p+ 5p2 +O(p3)

E = 264b1, CSym2E = 1322, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 2 p+ 2p2 +O(p3) 4p+ 4p2 +O(p3)

13 2 12p+O(p2) 8p+O(p2)

E = 264c1, CSym2E = 1322, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −2 p2 +O(p3) 4p2 +O(p3)

7 4 5p+ 6p2 +O(p3) 5p+ 5p2 +O(p3)

13 6 5p+O(p2) 10p+O(p2)

E = 264d1, CSym2E = 1322, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 4 3p+O(p2) 4 +O(p)

7 −2 6p+O(p2) 4p+O(p2)

E = 268a1, CSym2E = 1342, S1 = {2}, ξSym2E = 8
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 p−1 + 2 + p+O(p2) p−1 + 1 +O(p2)

5 2 4p+ 3p2 +O(p3) 2p+ 4p2 +O(p3)

7 2 p+ 6p2 +O(p3) 4p+ 3p2 +O(p3)

11 −4 3p+O(p2) 10p+O(p2)

13 −6 6p+O(p2) 9p+O(p2)

E = 272d1, CSym2E = 342, S1 = {2}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 2 p+ p2 + p3 +O(p4) 2p+ 2p2 + 2p3 +O(p4)

7 4 3p+ 2p2 +O(p3) 4p+ 2p2 +O(p3)

11 −6 p+O(p2) 10p+O(p2)

13 2 7p+O(p2) 2p+O(p2)
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E = 280a1, CSym2E = 1402, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 p+ 2p2 + 2p3 +O(p4) 2 + p+ p2 +O(p3)

11 −5 7p+O(p2) 8p+O(p2)

13 1 O(p) O(1)

E = 280b1, CSym2E = 1402, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

11 −5 4p+O(p2) 3p+O(p2)

13 −5 10p+O(p2) 9p+O(p2)

E = 288a1, CSym2E = 242, S1 = {2, 3}, ξSym2E = 1
2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −4 2p2 +O(p3) 4p+O(p2)

13 −6 7p+O(p2) 4p+O(p2)

E = 296a1, CSym2E = 1482, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 p2 +O(p4) 2p+O(p3)

5 −2 4p+ p2 +O(p3) p+ p2 +O(p3)

7 1 4p+O(p2) 6 +O(p)

11 1 O(p) O(1)

13 −6 2p+O(p2) 4p+O(p2)

E = 296b1, CSym2E = 1482, S1 = {2}, ξSym2E = 2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 2p+ 2p2 + p3 +O(p4) 1 + 2p+ p2 +O(p3)

7 −3 2p+ 3p2 +O(p3) 2p+ 5p2 +O(p3)

11 −3 8p+O(p2) 10p+O(p2)

E = 300a1, CSym2E = 302, S1 = {2, 5}, ξSym2E = 8
9

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 1 p+O(p2) 6 +O(p)

11 6 5p2 +O(p3) 5p2 +O(p3)

13 −5 3p+O(p2) 9p+O(p2)
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B.2 Tables of L-invariants for elliptic curves E

with D(E, 1) = 0

Included below are the values we computed for both the derivative of the

automorphic p-adic L-function Laut
p (Sym2E, s) at s = 1 and the corresponding

L-invariant term, for the six exceptional elliptic curves with D(E, 1) = 0 (we

omitted these specimens from Section B.1 as Limp
p (Sym2E, 1)′ = 0 for each of

these six curves). To calculate these p-adic numbers, we used the generalised

congruences given in Theorem 4.11.

E = 176b1, CSym2E = 112, S1 = {2}, ξSym2E = 2
5

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 1 p+O(p4) 1 + 2p2 +O(p3)

5 1 p+O(p2) p+O(p2)

7 2 2p+O(p2) 2p+O(p2)

13 4 4p+O(p2) 2p+O(p2)

E = 196a1, CSym2E = 142, S1 = {2, 7}, ξSym2E = 2
9

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −1 1 + 2p+ p2 +O(p3) 2p+ p2 + 2p3 +O(p4)

5 −3 3p+O(p2) 3p+O(p2)

11 −3 p+O(p2) 3p+O(p2)

13 −2 10p+O(p2) 8p+O(p2)

E = 200b1, CSym2E = 202, S1 = {2, 5}, ξSym2E = 1
2

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

3 −2 p+ p3 +O(p4) 1 + p+ p2 +O(p3)

7 −2 4p+O(p2) 6p+O(p2)

11 −4 7p+O(p2) p+O(p2)

13 −4 O(p2) O(p2)

E = 240d1, CSym2E = 152, S1 = {2}, ξSym2E = 1
4

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

11 4 10p+O(p2) 6p+O(p2)

13 −2 3p+O(p2) 3p+O(p2)
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E = 272b1, CSym2E = 172, S1 = {2}, ξSym2E = 1
4

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

5 −2 p+ 4p2 +O(p3) 2p+ 2p2 +O(p3)

7 −4 2p+O(p2) 2p+O(p2)

13 −2 O(p) O(p)

E = 300c1, CSym2E = 302, S1 = {2, 5}, ξSym2E = 1
3

p ap(E) Limp
p (Sym2E, 1)′ Lan

p (Sym2E)

7 4 2p+O(p2) 5p+O(p2)

11 −4 4p+O(p2) 4p+O(p2)



Appendix C

Tables of L-invariants for higher

weight modular forms

Below are tables of L-invariants and derivatives of the primitive p-adic L-

function for the symmetric squares of modular forms of weight k > 2. Labelling

of modular forms follows the conventions of the “L-functions and Modular

Forms Database” [64]. For example f = 5.4.a.a is the unique cusp form of

level N = 5, weight k = 4 with trivial character.

C.1 Weight k = 4

f = 5.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 2 p+ 2p2 + 2p3 + p4 +O(p6) p+ 2p4 + 2p5 +O(p6)

7 6 p+ 2p2 +O(p3) 4p+ p2 +O(p3)

f = 6.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 6 3p+ 2p2 +O(p4) 2p+ 4p3 +O(p4)

7 −16 p2 +O(p3) 4p2 +O(p3)

f = 7.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −2 p+ 2p4 +O(p6) p+ p2 + p3 + p5 +O(p6)

5 16 3p2 + 3p3 +O(p4) 2p2 + 4p3 +O(p4)
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f = 8.4.a.a, ξSym2f = 16

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −4 p+ p3 +O(p6) 2p+ 2p2 + p3 + 2p5 +O(p6)

5 −2 2p+ p3 +O(p4) p+ 3p2 + 2p3 +O(p4)

7 24 4p+O(p3) 4p+ 4p2 +O(p3)

f = 9.4.a.a, ξSym2f = 8

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 20 p+ 4p2 +O(p3) 2p+ 3p2 +O(p3)

f = 10.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −8 O(p6) O(p6)

7 −4 6p+O(p3) 3p+ 3p2 +O(p3)

f = 12.4.a.a, ξSym2f = 32
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −18 4p+ 4p2 +O(p4) 3p+ 2p2 + 3p3 +O(p4)

7 8 p+ 5p2 +O(p3) 5p+ 5p2 +O(p3)

f = 13.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −7 p+ 2p3 + 2p4 +O(p5) p+ p2 +O(p5)

5 −7 3p+ p2 +O(p4) 2p+ p2 + 4p3 +O(p4)

7 −13 2p+ 5p2 +O(p3) p+O(p3)

f = 14.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 8 2p2 + p3 + p4 +O(p5) 2p2 + 2p4 +O(p5)

5 −14 p+ 4p3 +O(p4) 4p+O(p4)

f = 14.4.a.b, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −2 2p+ p2 + p3 + p4 +O(p5) 2p+ 2p3 +O(p5)

5 −12 2p+ 2p2 + 2p3 +O(p4) 3p+ 4p2 + p3 +O(p4)

f = 15.4.a.a, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −24 2p+ 4p2 +O(p3) p+ 3p2 +O(p3)
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f = 15.4.a.b, ξSym2f = 32

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 20 4p+O(p3) 2p+ 2p2 +O(p3)

C.2 Weight k = 6

f = 3.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 6 2p+ 4p2 +O(p4) 2p+ 2p2 + p3 +O(p4)

7 −40 3p+ 4p2 +O(p3) 2p+ 3p2 +O(p3)

f = 4.6.a.a, ξSym2f = 128
9

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 54 p+ p3 +O(p4) 3p+ 2p2 + 2p3 +O(p4)

7 −88 6p2 +O(p3) 5p2 +O(p3)

f = 5.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −4 2p+ p3 + p4 +O(p6) p+ p3 + 2p5 +O(p6)

7 192 3p2 +O(p3) 2p2 +O(p3)

f = 6.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −66 p+ p2 + 2p3 +O(p4) p+ p3 +O(p4)

7 176 5p+O(p3) p+ 4p2 +O(p3)

f = 7.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −14 2p+ 2p3 + 2p4 + 2p5 +O(p6) p+ p4 + p5 +O(p6)

5 −56 2p+ 3p2 + 4p3 +O(p4) 2p+ p2 + p3 +O(p4)

f = 8.6.a.a, ξSym2f = 64
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 20 2p+ 2p3 + 2p5 +O(p6) 2p+ 2p5 +O(p6)

5 −74 p2 +O(p4) 2p2 + 3p3 +O(p4)

7 −24 5p+ 4p2 +O(p3) 2p+ 4p2 +O(p3)
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f = 10.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 −26 2p2 + p3 + p4 +O(p5) p2 + 2p3 + 2p4 +O(p5)

7 −22 4p+ 4p2 +O(p3) 5p+ 2p2 +O(p3)

f = 10.6.a.b, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −172 3p+ 2p2 +O(p3) 2p+ 4p2 +O(p3)

f = 10.6.a.c, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −118 5p+ 4p2 +O(p3) p+ 2p2 +O(p3)

f = 11.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −19 2p+ 2p2 +O(p4) 2p+ 3p3 +O(p4)

7 10 4p+ p2 +O(p3) 5p+O(p3)

f = 14.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 10 p+ 2p2 + 2p4 +O(p5) 2p+ 2p2 + 2p3 + 2p4 +O(p5)

5 84 p+ 2p2 +O(p3) p+ p2 +O(p3)

f = 14.6.a.b, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 8 2p2 + 2p4 +O(p5) p2 +O(p5)

f = 15.6.a.a, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −132 6p+ 2p2 +O(p3) 4p+ 2p2 +O(p3)

f = 15.6.a.b, ξSym2f = 128
3

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 12 5p+O(p3) p+ 4p2 +O(p3)
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C.3 Weight k = 8

f = 2.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 1016 6p+ 2p2 + 4p3 +O(p4) 3p+ 4p2 + 3p3 +O(p4)

f = 3.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −64 p+O(p3) 4p+O(p3)

f = 5.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

7 −1644 5p+ 2p2 +O(p3) 6p+ 3p2 +O(p3)

f = 6.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −114 3p+ 4p2 + 3p3 +O(p4) 2p+ 3p2 +O(p4)

7 −1576 4p+ p2 +O(p3) 2p+ 6p2 +O(p3)

f = 7.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −84 3p2 + 4p3 +O(p4) 2p2 + 3p3 +O(p4)

f = 8.8.a.a, ξSym2f = 512
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

5 −82 2p+ 3p2 +O(p4) p+ 2p2 +O(p4)

7 −456 4p+ 4p2 +O(p3) 4p+ p2 +O(p3)

f = 8.8.a.b, ξSym2f = 512
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 44 p+ p2 + 2p3 + 2p4 + p5 +O(p6) 2p+ p2 + p3 + p4 +O(p6)

7 −1224 6p2 +O(p3) 6p2 +O(p3)

f = 10.8.a.a, ξSym2f = 1024
45

p ap(f) L′p(Sym2f, k − 1) Lp(Sym2f)

3 28 2p2 + 2p3 + p4 +O(p5) 2p2 + p3 + p4 +O(p5)

7 104 3p+ 5p2 +O(p3) 5p+O(p3)
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