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Abstract 

 

Steam condensation plays an essential role in supplying and removing heat in many 

industrial applications, including the energy sector. It therefore is a phenomena of 

significance that requires deep understanding. This thesis presents effective vacuum 

steam condensation on the shell-side of vertical shell and tube condenser (VSTC) 

accompanying steam desuperheating. It describes a fundamental study of heat 

transfer in VSTC with considerations of several factors; explicitly degree of 

superheat related with each vacuum steam pressure, temperature waviness in 

desuperheating section, and steam condensation in absence of non-condensable gas 

(NCG). Experiments performed on the VSTC are:  

Steam desuperheating and condensation in the shell-side VSTC at a variety of 

vacuum steam pressures and respective steam flowrates, vacuum steam 

desuperheating and condensation in the shell-side of VSTC at reduced steam 

flowrates, and vacuum steam desuperheating and condensation at tube wall 

temperatures up to steam saturation temperature (T2 ≥ Tsat) to analyse dry heat 

transfer in the desuperheating section. To examine the stated aim, test facility was 

built in the laboratory of the University of Waikato. 

By generating desuperheating and condensation models for each test pressure, this 

investigation proves that vacuum steam condensation best occurs without 

involvement of superheat. About 60% of the VSTC occupied with desuperheating, 

and the heat transfer involved in desuperheating is minor approximately 1 kW, 

whereas, the condensation section of VSTC has heat transfer about 10 kW. By 

reducing the steam flow-rate, 10% reduction in the desuperheating section and 20% 

to 50% reduction in the Reynolds number was observed. After raising the tube wall 

temperature up to the steam saturation temperature, a smooth temperature profile 

across the desuperheating the section was seen with significant sensible heat 

transfer. Obstruction linked with superheated steam condensation in the dairy 

industrial leads to poor heat transfer area utilization by the desuperheating section 

and therefore, reduction of the evaporator rating or oversizing of the heat 

exchangers to attain appropriate duty. 
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Chapter One 

Introduction 

1.1 Context  

Several process and power generation industries require vacuum pressure 

condensers. Condensation occurs when a superheated fluid such as steam cools to 

and then below its saturation temperature. Condensation can occur by direct contact 

with subcooled medium or indirect contact, which is surface condensation. Surface 

condensation in heat exchangers is the most common condensation phenomena 

seen in industrial applications. Steam is a common heating medium in the industries.  

A wide range of industries in New Zealand use steam as a heating medium and 

driving force, usually manufacturing industries, such as pulp and paper, wood 

products, food, beverage and tobacco, petroleum, coal, chemical and related 

product manufacturing. About 16.5% of New Zealand’s Gross Domestic Product 

(GDP) is derived from these industries (Statistics New Zealand, 2014). Furnaces, 

steam driven equipment such as dryers, evaporators, and condensers are major unit 

operations in these industries that boost the production and ultimately the economy 

of the country. Temperature and pressure should be high enough to make steam dry 

saturated to improve rate of heat transfer, however not superheated.  

Processes in the food and beverage industries are heat sensitive and have a 

particular requirement of vapour saturation temperatures at vacuum pressures for 

precise heat exchange to maintain product quality. For example, in the dairy 

industry, multi-effect evaporators produce concentrated milk using vacuum-

pressure steam on the shell-side. The shell-side acts as a condenser. The application 

of Mechanical Vapour Recompression (MVR) and Thermal Vapour 

Recompression (TVR) helps to improve an evaporator’s energy efficiency. 

Nevertheless, both recompression techniques invariably produce superheated 

vacuum-pressure steam, which affects the heat transfer coefficients and therefore 

the performance of the evaporators. The pulp and paper industry has similar vacuum 

steam condensation requirements. Vacuum steam has its application in the cooking 

stage (removal of lignin) and secondary processes such as recovery of dissolved 

inorganic and organic solids. Wastewater with dissolved organics (e.g. lignin), and 

inorganic chemicals (e.g. sodium sulphide) i.e. black liquor pass through tubes of 
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evaporators and vacuum steam use as a heating medium to evaporate water in the 

first few effects. In both industries, superheated vacuum steam on the condensing 

shell-side of the evaporator is undesirable. Reducing the superheat temperature to 

the saturation temperature, i.e. desuperheating by indirect contact requires 

significant heat transfer area and reducing the overall heat transfer duty accordingly.        

Research parameters about vacuum steam condensation include the key parameters 

that affect condensation, such as analysis of the temperature profile along the length 

of a condenser, and the heat transfer rate of the desuperheating and condensing 

steam sections.  

A few researchers have examined the condensation of vapour at pressures below 

atmosphere. These studies investigated the effects of interfacial resistance, vapour 

superheat, non-condensable gas (NCG), and thermal diffusion. Minkowycz and 

Sparrow (1966) improved the laminar film condensation of steam on isothermal 

vertical plate with consideration of above-mentioned effects on condensation at 

pressure ranging from 3.44 kPag to 7 kPag. Berrichon et al. (2014) examined 

vacuum steam condensation at high vacuum pressure 0.035 barabs (saturation 

temperature 26.7˚C) in the presence of NCG. However, in the aforementioned 

industries, the majority of vacuum steam condensation needed is at 0.07 barabs- 0.47 

barabs (saturation temperature 40˚C-80˚C). 

The presence of superheat in the system is inevitable. Industries adopt various 

desuperheating techniques such as water spray although reduce the dryness fraction. 

Very little research in the literature has focused on condensation of vacuum steam 

in a vertical condenser with specific investigation of superheated steam 

condensation under vacuum pressures.   

1.2 Thesis Aim 

The aim of the thesis is to examine the heat transfer characteristics of superheated 

vacuum steam with its associated desuperheating and condensation on the shell-

side of a Vertical Shell and Tube Condenser (VSTC). The scope of the research 

includes the turbulent film condensation of vacuum steam. Particular focus is on 

the heat transfer characteristics of desuperheating of vacuum steam; analysis of 

desuperheating section of the condenser, temperature profile along the length of the 

VSTC during desuperheating, and examination of vacuum steam condensation 

mechanism for a range of steam flowrate. To achieve the aim, an appropriate test 

facility that includes steam-handling apparatus, VSTC, coolant loop, and vacuum 
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pump system was built and commissioned by the author at the University of 

Waikato and used to perform sets of experiments.  

1.3  Structure of Thesis  

Chapter 2 presents the most significant literature that relates to the thesis aim. It 

begins by presenting basic knowledge about heat transfer fundamentals and 

mechanisms. It reviews studies focused on condensation mechanism and 

parameters, particularly those that affect the rate of condensation. 

Chapter 3 describes the experimental method and procedure. This chapter describes 

the experimental set-up, including the handling of steam, cooling water, condensate, 

and the vacuum system. A piping and instrument diagram of the test facility 

summarises the process. Chapter 3 also presents changes in the apparatus as per 

experiments and a detailed description of the operating procedure of test facility. 

The final section of Chapter 3 addresses interpretation of experimental data together 

with error analysis. It finishes by discussing the repeatability of experimental results. 

Chapter 4 presents the bulk of the experimental results and discussion. To be 

understandable, the first part focuses on one particular vacuum steam test pressure 

and the next section shows averaged results of desuperheating and condensation 

sections. The overall experimental results section shows systematic assessment of 

data measured during experiments, formation of desuperheating and condensation 

sections, calculated heat transfer coefficients and plots of different parameters to 

generate important correlations.  Finally, a detail explanation about the 

experimental results of high tube wall temperature than steam saturation 

temperature (T2 ≥ Tsat) is presented. 

Chapter 5 presents an industrial application of the results. Industrial application 

section presents an actual industry case where the steam condensation mechanism 

can improve by present conclusions obtained from the investigation. 

Chapter 6 put concisely the conclusion of all experimental investigation made on 

VSTC and expected future work with consideration of different parameters along 

present topic. 
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Chapter Two 

Literature Review 

2.1 Introduction 

This literature review includes various phenomena linked with a study of VSTC. 

The review comprises theories, correlations, mechanisms and equations unfolding 

the VSTC. The review is organised in following way. 

 Fundamentals of Heat transfer. 

 Condensation. 

 Modes of condensation. 

 Factors affecting the condensation mechanism- Geometry of heat exchanger, 

non-condensable gas (NCG), low atmospheric steam pressures, and 

superheat of steam.  

 Summary of developed correlations for condensation heat transfer. 

 Conclusion.  

2.2 Heat Transfer 

2.2.1 Introduction 

The study of heat transfer deals with the transmission of energy from one medium 

to another with consideration of temperature gradients. This exchange of heat to 

and from process medium and its transfer rate is an important part of most 

engineering processes. The fundamentals of heat transfer theory are covered by 

many authors, for example, Cengel (2007), Holman (1992), and Kern and Quentin 

(1950). This section reviews the three basic mechanisms of heat transfer, which are 

conduction, convection and radiation, and their phenomena where combinations of 

mechanisms applies. 

2.2.2 Conduction 

Conduction is a transfer of heat through a fixed substance or from one material to 

another material in physical contact. Heat transfer by conduction has two 

mechanisms: 
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a) By lattice vibration - transfer of heat by collisions of molecules moving 

rapidly in one part of a substance having a greater temperature gradient to 

molecules moving less rapidly. 

b) Transport of free electrons - production of energy flux in the direction of 

decreasing temperature. 

Kern and Quentin (1950) explained the mechanism of conduction using an example 

of an idealised stationary wall. Heat considered flowing perpendicular to the 

isothermal wall, which is isotropic and homogenous, from the left side of wall as 

shown in Figure 2.1. The heat transfer through the wall is proportional to the area 

of the wall and the temperature difference between the two ends of the wall. 

 

 

Figure 2.1: Conduction. 

Fourier derived the famous equation describing conduction, which is 

 𝑑𝑄 = 𝑘𝐴(−𝑑𝑇/𝑑𝑙) (2-1) 

Where, 𝑑𝑄 = Quantity of heat flow, in W, 

 𝑘 = Thermal conductivity, in W/m ˚C or W/m K 

 A = Area of wall, in m², 

 𝑑𝑇 = change in temperature at any point in the wall, in °C or K, 

 𝑑𝑙 = wall thickness, in m, in direction of heat flow. 
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The term 
𝑑𝑇

𝑑𝑙
  known as the temperature gradient and has negative sign along 

positive 𝑙  and so the negative sign included in Eq. 2-1 will give a positive Q. 

Thermal conductivities are available in engineering reference books for range of a 

materials. 

2.2.3 Convection 

Convection is the mechanism of heat transfer where heat flows within a fluid when 

one portion of fluid mixes with another. The heat flow depends on the properties of 

the fluid. Convection can thus divided into two sub mechanisms:  

a) Natural convection – this occurs when transmission of heat between hot and 

cold fluids due to natural differences in fluid properties such as density. 

Heated fluid become less dense due to its thermal expansion and thus mix 

with the cold fluid, which is denser. 

b) Forced convection - if any external work (e.g. by a mixer) is done to increase 

movement, the rate of convection is increased. 

Newton’s law of cooling explains convective heat transfer,  

 𝑑𝑄 = (ℎ𝐴)𝑑𝑇 (2-2) 

Where h is the heat transfer coefficient with typical units of W/m2 ˚C or W/m2 K 

which is affected by the nature of the fluid, its properties and by work done in the 

case of forced convection. In convection, fluid often observed flowing in an 

enclosure of a solid surface and a solid surface is a factor that possibly affect fluid 

flow and thus heat transfer. Considerable the work has been done and is still in 

progress on the boundary layer mechanism (i.e. the flow region adjacent to the solid 

surface), fluid properties, and mechanical factors such as stress, and friction 

(Dharma Rao et al. (2008)). 

2.2.4 Radiation 

Radiation is the transmission of energy in the form of electromagnetic waves or 

photons through space or a medium causing excitation at atomic and sub-atomic 

levels of a material. Materials hold radiation phenomenon in different amounts 

according to their types. The maximum (or idealised) radiation emitted or received 

by a material called blackbody radiation. A common example of radiation is the 

solar energy incident upon the Earth. The Boltzmann equation used to calculate the 

heat transfer by radiation based on the second law of thermodynamics is, 
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 𝑑𝑄 = 𝜎𝑒𝐴𝑇⁴ (2-3) 

Where, T=Absolute temperature, K, 

  σ = Stefan-Boltzmann constant, in W/m2K4  

    e = emissivity, ability of surface of a substance to radiate heat. (0 < ɛ < 1) 

2.2.5 Process Heat Transfer 

Process heat transfer deals with the investigation of the rate of heat transfer that 

occurs in the heat exchanger equipment. Thus, more emphasis to find the amount 

of heat transferred, its rate, driving force, and the physical arrangement of the two 

medium. 

It is very rare to encounter a single type of heat transfer mechanism in practice. 

Most problems involve combinations of mechanisms of heat transfer. Heat 

exchangers are devices that direct the thermal energy flow between two fluids or 

materials. Heat exchangers used in various divisions of engineering. Recuperators 

or regenerators are designed to best match their transfer processes (e.g. direct or 

indirect contact), geometry (e.g. tube, plate, finned, etc.), fluid type (e.g. single and 

two phase), and fluid flow arrangement (e.g. parallel, counter and cross flows). 

Kakac et al. (2002) provide a good explanation of the basic objectives of heat 

exchanger selection, thermal-hydraulic design, and rating. In the present work, 

considered process heat transfer is from vacuum steam to tube-side cold water in a 

VSTC. Thus, the work linked with rating of shell and tube heat exchanger involves 

determination of the heat transfer rate for each set of conditions, such as temperature 

of medium, pressure, and fluid flowrates. Thus, it requires understanding of 

performance calculations of a shell and tube heat exchanger. The difference in 

temperature in a heat exchanger is strongly dependent on the arrangement of the 

flow of fluids. Figure 2.2 illustrates two idealised heat exchanger flow arrangements: 

parallel or co-current and counter flow. The overall energy balance for steady state 

system of two different fluids with negligible energy change described by Eq. 2-4. 

 𝑑𝑄 =  𝑚͘𝑑ℎ (2-4) 

Where, 𝑚͘ is mass flowrate and 𝑑ℎ is the rate of change of specific enthalpy. The 

fluids with same phase and constant specific heat expressed as, 

 𝑄 = (𝑚͘ 𝑐𝑝)
ℎ

 (𝑡ℎ1−𝑡ℎ2
) (2-5) 
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 𝑄 = (𝑚͘ 𝑐𝑝)
𝑐
 (𝑡𝑐2−𝑡𝑐1

) (2-6) 

Where 𝑐𝑝 symbolises the specific heat of the fluid, subscripts h and c stand for hot 

and cold fluids respectively, and the numbers 1, and 2 refer to inlet and outlet 

conditions. Thus, the heat transfer rate for two fluids is calculated and the total heat 

transfer rate 𝑄 governed from the following equation, 

 𝑄 = 𝑈 𝐴 𝛥𝑇 (2-7) 

𝛥𝑇 is the log mean temperature difference between the hot and cold fluids, where 

it is integrated along a length of exchanger. To establish the temperature difference 

between two fluids, it is necessary to account for the thermal resistances between 

the two temperatures of fluids. Resistances encountered in a shell and tube 

exchanger are tube-wall resistance and fluid-film resistance. The fluid-film 

resistance is very small and therefore normally ignored. The overall resistance R 

stated as: 

  

Figure 2.2: Flow arrangements for heat exchangers. 
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 ∑ 𝑅 =  
1

ℎ𝑖𝐴𝑖
+

𝑡

𝑘𝐴
+

1

ℎ𝑜𝐴𝑜
 (2-8) 

and the overall heat transfer coefficient 𝑈 is the inverse of overall resistance:  

 1

𝑈
=  

1

ℎ𝑖𝐴𝑖
+

ln(
𝑟𝑖

𝑟𝑜
⁄ )

2𝜋𝑘𝑙
+

1

ℎ𝑜𝐴𝑜
 (2-9) 

Where ℎ𝑖  and ℎ𝑜  are heat transfer coefficients of convection for fluids flowing 

inside and outside the tube. Eq. 2-9 assumes the heat transfer area for both fluids. 

In reality, the area for outside and inside tube is different. If the outside area A of 

inner tube is used, then hi must multiplied by Ai /A so that ℎ𝑖  would give same value 

based on the larger area A instead of Ai.  

2.2.5.1 Logarithmic Mean Temperature Difference (LMTD) 

The temperature difference between hot and cold fluid is not constant along the 

length of the heat exchanger. The temperature difference along the length of a heat 

exchanger compute with the help of LMTD. LMTD for counter flow is greater than 

parallel flow for the same inlet and outlet conditions. Kakac, et al. (2002), state that 

counter flow has a higher heat transfer rate than parallel flow, and can give same 

heat transfer rate of parallel flow with a smaller heat transfer surface area. LMTD 

is expressed as:  

 𝛥𝑇𝐿𝑀𝑇𝐷 =
(𝛥𝑇1 − 𝛥𝑇2)

ln (
𝛥𝑇1

𝛥𝑇2
)

 
(2-10) 

 

The temperature difference for parallel flow (Figure 2.3) are,  
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Figure 2.3: Parallel flow. 

 𝛥𝑇1 = 𝑡ℎ1−𝑡𝑐1
 (2-11) 

 𝛥𝑇2 = 𝑡ℎ2−𝑡𝑐2
 (2-12) 

and for counter flow (Figure 2.4) are, 

 

Figure 2.4: Counter flow. 
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 𝛥𝑇1 = 𝑡ℎ1−𝑡𝑐2
 (2-13) 

 𝛥𝑇2 = 𝑡ℎ2−𝑡𝑐1
 (2-14) 

2.2.5.2 Effectiveness (ɛ) - Number of Transfer Units (NTU) Method for Heat 

Exchanger Analysis 

To determine the heat transfer rate, and for the sizing of a heat exchanger, the 

LMTD method may be used, however without the input and output temperatures of 

the heat exchanger, further calculations are not possible. With the ɛ-NTU method 

(Kays & London, 1984), the heat exchanger analysis simplified since it needs only 

input temperatures to the heat exchangers and the mass flow rate of streams. The 

heat capacity ratio (𝐶∗) is defined by Eq. 2-15: 

 𝐶∗ =
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
 (2-15) 

Where, 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 are the larger and the smaller of the two magnitudes of heat 

capacity rates, 𝐶ℎ and 𝐶𝑐  respectively 

 𝐶ℎ = (𝑚͘ 𝑐𝑝)
ℎ

 (2-16) 

 𝐶𝑐 = (𝑚͘ 𝑐𝑝)
𝑐
 (2-17) 

The effectiveness of the heat exchanger expressed as ratio of actual heat transfer (𝑄) 

to maximum possible heat transfer (𝑄𝑚𝑎𝑥) in a heat exchanger: 

 ɛ =
𝑄

𝑄𝑚𝑎𝑥
 (2-18) 

Actual heat transfer obtained from energy balance on hot and cold fluids and 

maximum heat transfer rate in a heat exchanger calculated by identifying the 

maximum temperature difference between the inlet temperatures of hot and cold 

fluids. 

 𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛(𝑇ℎ𝑖𝑛
− 𝑇𝑐𝑖𝑛

) (2-19) 

The NTU describes the non-dimensional heat transfer size of a heat exchanger, 

 𝑁𝑇𝑈 =
𝑈 𝐴

𝐶𝑚𝑖𝑛
 (2-20) 
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Thus, it can be shown that effectiveness is a function of number of transfer units 

(NTU), heat capacity ratio (𝐶∗), and flow arrangement. 

 ɛ = 𝑓( 𝑁𝑇𝑈, 𝐶∗, 𝐹𝑙𝑜𝑤 𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡) (2-21) 

ɛ - NTU, relationships have been derived for a variety of heat exchangers and flow 

configurations and many are presented in Kakac, et al. (2002). 

2.3 Condensation  

2.3.1 Introduction 

This section highlights mechanisms of condensation in vertical shell and tube 

condenser (VSTC), and numerical correlations for film condensation on the shell-

side of VSTC. Condensation plays a key role in supplying and removing heat 

usually via steam in chemical industries, power industries, and nuclear power plants. 

For example, a refrigerator uses a condenser to remove heat from refrigerant vapour 

and makes refrigerant into a liquid phase. In milk powder production, steam sent 

through shell-side evaporators, it supplies heat by condensation in order remove 

moisture, and concentrate the milk. Condensing steam has a high heat transfer 

coefficient, typically in the order of 4000 to 8000 W/m2°C (Sinnott, 2005) 

2.3.2 Condensation 

Condensation is the process of changing the phase of a fluid from vapour to the 

liquid state. The phenomenon occurs when its temperature of saturated or 

superheated vapour reduced to its saturation temperature. In engineering, it is 

important to understand the mass, energy and momentum transfer through different 

phases, condensation being one of the example of such types of transfers. During 

condensation, latent heat transferred as the vapour experiences a phase change to 

liquid. Condensation occurs at the saturation temperature and therefore heat can be 

supply at a constant temperature (if there is no cooling of the condensate), as shown 

in Figure 2.5. 
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Figure 2.5: Temperature distribution of fluids along the length of condenser. 

Muller, (1983) and Taborek, (1991) explained design and operational 

considerations while handling condenser operations.  

1) Condensation modes:  

a) Film-wise condensation 

b) Drop-wise condensation,  

2) Condensation regimes:  

a) Gravity controlled or Nusselt flow regime, 

b) Vapour shear controlled regime,  

3) Desuperheating: localised condensation of superheated vapour occurs, 

when the wall temperature of the condenser is below the dew point.  

4) Subcooling- subcooling the condensate.  

5) Construction: condenser is a two-phase flow heat exchanger that may have 

any type of orientation in terms of the Tubular Exchanger Manufacturers 

Association (TEMA) standards, horizontal or vertical with choice of 

condensation process, on either the shell-side or the tube-side of the 

condenser.  

6) Non-condensable gas (NCG): Presence of NCG in the flow of vapour affects 

condensation coefficient.  
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Heat transfer coefficient is the resulting factor for different orientation and 

allocation of condensing fluid on the shell-side or the tube-side of a condenser. 

Surface condensation is a common type condensation seen in heat exchangers. 

2.3.2.1 Drop-wise Condensation 

Condensate will either wet the heat transfer surface and form a continuous film, i.e. 

‘film-wise condensation’, or form discrete droplets i.e. ‘dropwise condensation’. In 

dropwise condensation, the condensed vapour forms droplets on the heat transfer 

surface. Dropwise condensation is an effective condensation mechanism and large 

condensing film coefficients can be achieve as little resistance to heat transfer. 

Since dropwise condensation does not wet the surface, after full growth of droplet, 

it falls from the surface leaving a clean surface for further condensation (Kern & 

Quentin, 1950). Large condensing film coefficients leads to high heat transfer rates 

and a smaller heat transfer area is required for the same amount of heat transferred. 

The critical factor to achieve dropwise condensation is the surface on which vapour 

condense. The surface needs to be treated with chemicals or coatings like Teflon, 

silicones, waxes, and some noble metals. There is a requirement of pure vapour 

such as steam or the mixture of immiscible vapour and special surfaces to sustain 

dropwise condensation. Most condensers designed to operate under a film-wise 

condensation mechanism. With the relevance to the present work, Tanner et al. 

(1968) analysed dropwise condensation at low steam pressures 1.0 kPag,1.69 kPag, 

2.7 kPag in the presence and absence of NCG. For effective condensation, their 

study used a polished condensing surface coated by diamond paste used. The 

experimental facility also used surface catalysts such as dioctadecyl disulphide, and 

monton wax to promote drop-wise condensation. Their study found that the rate of 

condensing heat transfer is higher due to low temperature gradients for drop-wise 

condensation. In present thesis condensation observed on plain stainless shell-side 

VSTC under film-wise condensation mode. 

2.3.2.2 Film-wise Condensation 

In film-wise condensation, the condensate wets the surface and forms a continuous 

liquid film on the surface. In the case of a vertical flat plate condenser as shown in 

Figure 2.6, the liquid film flows downwards under the influence of gravity or 

driving force of vapour. The thickness of condensate film increases as more vapour 

condenses on surface. The surface on which the vapour condenses covered by liquid 

film; thus, it creates an additional resistance to heat transfer between the surface 
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and vapour. It is the motion of the film that gives the condensing coefficient for this 

film-wise condensation. At the start of film formation, the flow of condensate is 

laminar, the wave starts forming on the surface that introduces disturbance in a 

laminar flow. It results in a shift from the laminar flow regime to transition flow 

and lastly to turbulent flow.   

 

Figure 2.6: Film-wise condensation mechanism. 

For the investigation of film-wise condensation heat transfer, a large number of 

experiments have been performed with various geometries of condenser. Numerous 

heat transfer correlations have been reported, based on dimensional analysis and 

the properties of fluids. Nusselt, (1916) developed the basic equations describing 

laminar film-wise condensation on an isothermal vertical plate. Derived 

correlations can also apply to horizontal plain tubes. Nusselt neglected the effects 

of various parameters such as the wavy nature of film, heat capacity rate of 

condensate, and vapour drag. This leads further explorations to Nusselt work by 

various authors. Many condensation models have proposed for various conditions, 

which include laminar and turbulent film condensation in vertical and horizontal 

geometries. Most of the correlations presented are based on local Nusselt number 

from which the heat transfer coefficient for film condensation can be calculated. 

These developed models may be further divided into flat plate type and annular film 
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type condensation and expressed using non-dimensional numbers, mostly Reynolds 

(Re) and Prandtl (Pr) number. The average heat transfer correlation for turbulent 

condensation given by Chun and Seban (1971) can be expressed as, 

 𝑁𝑢𝑇 = 2.297 × 10−3𝑅𝑒0.4𝑃𝑟0.65  (2-22) 

For 𝑅𝑒 > 1800 

Chen et al. (1987) established an annular-film condensation correlation based on 

analytical and empirical results for vertical and horizontal type orientation linking 

the heat transfer coefficient with factors such as interfacial shear stress, waviness, 

and turbulent transport phenomenon. They formed the correlation for annular film 

condensation for vertical and horizontal orientation with parallel and counter flow 

arrangements. For parallel flow turbulent condensation inside vertical tubes, the 

correlation reported is: 

 
𝑁𝑢𝑇 = 𝑅𝑒𝑇

−0.44 +
𝑅𝑒𝑇

0.8𝑃𝑟1.3

1.718 × 10−3
+

𝐴𝑅𝑒𝑇
1.8𝑃𝑟1.3

2075.3
 (2-23) 

Chen, et al. (1987) analysed the effect of aforementioned factors and compared with 

Nusselt’s solution, which was a lower estimate than predicted using their 

correlation.  

Chun and Kim (1991) also present a semi-empirical correlation for laminar and 

turbulent film-wise condensation on a vertical surface. They concluded that there is 

a lack of compatibility for existing correlations and examined the error associated 

with each correlation and formed a new correlation that applied to both laminar and 

turbulent film condensations on a vertical surface. The established relation is valid 

for sets of data ranging from laminar to turbulent flow regime:  

 𝑁𝑢 = 1.33𝑅𝑒−1 3⁄ + 9.56 × 10−6𝑅𝑒0.89𝑃𝑟0.94 + 8.22 × 10−2 (2-24) 

        10 < 𝑅𝑒 < 31,000 

2.3.3 Effect of NCG on Condensation 

Typically, the fluid that condensed is a gas mixture, and depending on the 

conditions, not every part of the vapour condensed during process. The remaining 

uncondensed gas portion is termed non-condensable gas (NCG). Presence of NCG 

decreases the vapour pressure of the condenser causing a decrease in saturation 

temperature. NCG also forms layer (Figure 2.7), which reduce heat transfer rate. 
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NCG management is an important consideration in the design and operation of 

condensers. 

 

Figure 2.7:  Condensation mechanism with consideration of NCG. 

Minkowycz and Sparrow (1966), investigated gravity flow laminar film 

condensation on isothermal plate in the presence of NCG. They observed a 

reduction in a heat flux corresponding to increase in NCGs fraction, therefore 

reduction in heat transfer at saturation temperature ranging from 117- 45ºC at 0.5 

bar pressure. They also concluded that the collection of NCG cause reductions in 

vapour pressure and saturation temperature. The reason behind large heat transfer 

reduction was convective flow of NCG with condensate. The bulk concentration of 

NCG they tested was from 0.001 to 0.1 fraction of air. Later Sparrow et al. (1967), 

investigated forced convection boundary layer condensation in the presence of 

NCG and similar conclusions to their earlier work were made. The effect of NCG 

on heat transfer was most pronounced at sub-atmospheric pressures and as higher 

temperatures ranging from 60-200ºC. Comparison of effect of NCG showed 

reduction in heat transfer coefficient in gravity-flow condensation than forced 

convection condensation. Wang and Chuan (1988), experimentally investigated 

NCG in a vertical tube, and developed a physical model of laminar film 

condensation of a vapour–gas mixture in turbulent flow and found similar results 
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as those of Sparrow, et al. (1967). Corradini (1984) modelled turbulent 

condensation on a cold wall in presence of NCG. Reynolds- Colburn analogy for 

heat and momentum transfer used to generate model. He examined the 

condensation mechanism for forced and natural convection as a function of mass of 

air and the steam velocity at 1 m/s and 0.28 bar pressure. The heat transfer 

coefficient for 0.28 bar was 50% higher than 1 bar. 

Dehbi and Guentay (1997) found analytical model for vertical tube condenser in 

presence for air fractions of 0, 0.05, and 0.1. Their results after model 

implementation showed, as inlet mass fraction of NCG increased, the performance 

of vertical tube decreased. Their research also found reduction in the condensation 

rate with increase in inlet mixture temperature. The study also included effect on 

condensation by variation in molecular mass of NCG. Maheshwari et al. (2004) 

analysed annular turbulent film condensation in the vertical tube, at 2.6 bar pressure, 

0.004 kg/s steam flow, and 11.5 to 23% NCG mass fraction, and developed 

experimental correlation with consideration of NCG.  

 𝑁𝑢 = 0.15𝑅𝑒𝑓𝑖𝑙𝑚
0.15𝑊𝑎−0.85𝐽𝑎−0.8𝑅𝑒𝑔

0.5 (2-25) 

   For    0.1 < 𝑚𝑎 < 0.95, 𝑚𝑎= Mass fraction of air,  

   445 < 𝑅𝑒𝑔 < 22700 

       0.004 < 𝐽𝑎 < 0.07, 𝐽𝑎= Jakob number. 

Their models based on waviness, rippling, suction effect, local mass flow, and 

interfacial shear stress. The developed models were compared with existing models 

of Blangetti and Schlunder (1978), to find local Nusselt number for turbulent 

regime, which is, 

 𝑁𝑢𝑇 = 0.00402 × 𝑅𝑒0.4 × 𝑃𝑟0.65 (2-26) 

The research concluded an increase in heat transfer coefficient due to high 

turbulence in the boundary layer, which represented by high Reynolds number. 

Mackereth (1995) discussed different approaches to deal with NCG which were 

installation of de-aeration ports, and changing air concentration. The study 

investigated the presence of 0.55% of air in the steam that reduced condensation 

rate by 33% compared with no air being present. Presence of NCG concentration 

measured by different techniques that based on temperature and pressure of system, 

although measurement was somewhat problematic.  

Al-Shammari et al. (2004) performed condensation of steam in a vertical tube. They 

examined the condensation of steam at 0.16-0.22 bar pressure and steam air at 0.19-
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0.33 bar pressure. It was clear from their work that the presence of NCG produced 

gas resistance to heat transfer such that it could be reduced almost 50% in the case 

of pure steam condensation. Thus, reviews suggest decrease in the heat transfer 

coefficient due to presence of NCG. The presence of NCG may be less however; 

the growth in NCG over time affects condensation by significant difference, 

therefore, NCG must be remove at the point it arrives.  

2.3.4 Steam Condensation at Vacuum and below Atmospheric 

Pressures 

Buglaev et al. (1971) studied the steam-air mixture condensation on a horizontal 

tube bank under vacuum conditions. The tested pressure range was 1, 0.9, 0.5, 0.25, 

and 0.12 bar. Investigation found that temperature of tube wall influenced by 

thermal resistance. Increase in the rate heat transfer at the lower portion of heat 

exchanger observed. Secondly, they introduced flash steam with existing test 

facility. They explained the effect of air content on the condensation heat transfer 

coefficient by forming an equation that was a function of pressure, air content, and 

temperature gradient obtained from saturation temperature of steam.  

Cheng et al. (2012) studied heat transfer phenomenon on horizontal tube bundles 

under vacuum pressure. The process for measuring condensation was intermittent, 

flowrate of cooling water also changed for different sets of vacuum pressure, which 

were 70 kPa, 40 kPa and 20 kPa. Results showed an increase in overall heat transfer 

coefficients by 82% as vacuum pressure enhanced for brass tube bundle and 

velocity of steam flow through tubes of heat exchanger for 0.02 MPa to 0.07 MPa. 

The second part of the experiment consisted replacement of Ni-based implanted 

steel tube with ion implanted brass tube of heat exchanger, and brass tubes were 

more effective than Ni-based steel tubes.  

Recently, Berrichon, et al. (2014) examined steam condensation inside a vertical 

tube surrounded by cooling water flow under forced convection at low pressure for 

enhancing power plant efficiency in absence of NCG. Small percentage of NCG 

was however noticeable in the experiment. Experiment conducted with pure water 

vapour and air mixture at constant inlet vacuum pressure of 0.035 bar. Two cases 

of film-wise condensation smooth film, and wavy film were considered and 

respective heat transfer coefficients were found. Berrichon, et al. (2014) had good 

comparison with previous models of condensation and generated new correlation 
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for wavy nature of film condensation at low pressure, which supports the present 

work.  

 𝑁𝑢𝑇 = 0.007 × 𝑅𝑒0.38 × 𝑃𝑟𝑁 (2-27) 

Where, 𝑁 = [1.3 + 0.24 ln 𝑃𝑟]−1 

In the case of 4% NCG, they achieved about 40% decrease in heat transfer 

coefficients.  

2.3.5 Superheated Steam 

When temperature of water increases, the space above the liquid filled with 

molecules of water vapour. When the number of molecules leaving the liquid 

surface is more, water molecules evaporates. At this instant water is at saturation 

temperature. Increase in pressure causes increase in enthalpy of water and 

saturation temperature, steam at a condition above the saturation temperature is 

superheated steam. The temperature above saturation temperature known as degree 

of superheat of steam. Figure 2.8 shows temperature versus duty of condenser. 

When superheated steam enters the condenser, initially it gets desuperheated and 

soon attain its saturation temperature by latent heat transfer to corresponding fluid 

as seen in Figure 2.8.   

 

 Figure 2.8: Desuperheating in a condenser (Sinnott, 2005). 

Superheated steam is unavoidable in several applications, e.g. refrigeration, steam 

turbines, and dairy industries. Superheated steam has the ability to drive the 
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moisture out of materials effectively. It has advantage in terms of nutrient 

preservation.  

Superheated steam condensation is not suitable due to significant reasons, which 

are variable heat transfer coefficient, typically low and difficult to quantify 

correctly that leads to difficulty in accurate sizing and control of heat transfer 

equipment, and will result in a higher rated and more expensive heat exchanger. 

The higher temperature of superheated steam may damage sensitive equipment. 

Not many investigations made on the influence of superheated steam on 

condensation. Minkowycz and Sparrow (1966) analysed condensation of vapour 

and air on isothermal vertical plate at pressure ranging from 3.44 kPa to 7 kPa with 

consideration of different models that included interfacial resistance, superheating, 

and free convection, mass and thermal diffusion. They found that about 200˚C 

superheat brought minor increase in the wall heat transfer without free convection 

during pure vapour condensation than in presence of NCG. For investigation of 

interfacial resistance, authors analysed superheated and saturated vapour. However, 

they could not attain to exact solution.  Later, Minkowycz and Sparrow (1969) 

investigated the effect of vapour superheating for forced convection film 

condensation on a flat plate in presence of NCG. The effect of superheat represented 

with the ratio of heat flux of vapour to degree of superheat. The values represented 

superheating of vapour mainly enhanced the surface heat transfer that was about 

10% at high wall temperature. The comparison of effect of superheat on forced 

convection boundary layer and gravity-induced condensation showed that gravity 

induced condensation had significant change for superheat. The saturation 

temperature and mass flowrate also had significant effect in case superheating.  

Miropolskiy et al. (1974) studied superheated steam condensation inside tubes. The 

testing conditions for finding local heat transfer coefficients were at turbulent flow 

of fluids at pressure ranging 4 bar to 216 bar and mass velocity ranging 400-4000 

kg/m² s.  Authors divided their investigation into heat transfer from superheated 

steam at high pressures from 100 to 216 bar, heat transfer from superheated steam 

at low pressure and low mass velocity, and heat transfer of superheated steam with 

and without condensation. They investigated the relation between the heat transfer 

coefficient and the relative enthalpy, it was observed that heat transfer increased 

with increase in relative enthalpy that ranged from 0-1, and it decreased when it 

exceeded 1. It was due to formation of thermal resistance of steam layer at wall 
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surface with increased with superheat temperature. Nusselt correlation used for 

calculating the heat transfer coefficient, 

 𝑁𝑢𝑇 = 𝐶 × 𝑅𝑒0.8 × 𝑃𝑟0.4 (2-28) 

The coefficient 𝐶  depends on microstructure of the surface. Shang (1997) 

developed numeral solution for steady state laminar film condensation of a 

superheated vapour on an isothermal vertical plate. Shang studied the two-phase 

boundary layer mechanism with consideration of fluid properties and with the help 

of velocity component method.  Assumptions were made while carrying out 

experimentation; laminar flow within liquid and vapour prompted by gravity at 

atmospheric pressure, a vertical plate suspended in the volume of superheated 

vapour. The subcooled water, and steam temperature gradients were in range of 0˚C 

-100˚C and 0˚C-427˚C. The condensate mass flowrate showed decrement as 

superheat increased Yang (1997), developed a convection film condensation model 

on a non-isothermal horizontal tube. Results presented for natural and forced 

convection film condensation of superheated vapour. The author divided the results 

into two parts, firstly effect of superheat on condensate film thickness and secondly 

the heat transfer for same conditions. Investigation found thin condensation film 

due to conduction effect of superheated vapour. It noted that film condensation for 

natural convection was steadier with tube than condensation under forced 

convection. Forced convection involved limited scope for superheat due to larger 

Reynolds number and reduced thickness of condensate film. Significant increase in 

heat transfer coefficients observed about 15-20% for a range of pressure gradients 

and degree of superheat of vapour. Though the developed model could apply to 

different convective condensation mechanism, author did not explain the replica’s 

use for different geometries allowable with range of pressure.  
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2.4 Conclusion 

To put it briefly, the literature suggests various situations of condensation of 

turbulent film condensation, condensation in presence and absence of NCG, 

condensation under low vacuum pressure, and condensation of superheated steam. 

The literature that consisted low vacuum steam condensation either are for 

horizontal condensers or steam condensation inside tubes. Variation in NCG is 

hardly a parameter in the present investigation since literature spoke about NCG 

effect adequately. Less work has done on superheated steam condensation topic. In 

addition, negligible research has performed on the study of superheated steam 

condensation phenomenon under vacuum pressure. The study of superheated steam 

condensation in vertical shell and tube condenser (VSTC) where steam condensed 

on shell-side under high vacuum pressure and cooling water flows through tubes 

represents gap in current knowledge.    

Next chapter shows the structure of test facility that has prepared in the large-scale 

lab at the University of Waikato, to investigate research objectives.
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Chapter Three 

Methods 

3.1 Overview 

This section provides an overview of various investigations made on the VSTC. 

The aim of this study, requires following parameters: 

a) the heat transfer coefficients of condensation in VSTC in absence of NCG 

between 30 kPaabs to 100 kPaabs pressure, and 

b) the effect of superheat on the heat transfer coefficient within the same 

pressure range. 

Taking into account the above goals of the investigation, a new experimental 

facility set-up in the Large Scale Lab (LSL) at the University of Waikato 

(Figure 3.1). The experimental rig consisted of five major parts:  

1) VSTC, 

2) steam injection system,  

3) the coolant circulation loop,  

4) the measurement and data acquisition system, and  

5) liquid ring vacuum pump system.  

The stainless steel VSTC heat transfer section was 1.14 m high, 0.035 m inner shell 

diameter, and 3 tubes. Dry vacuum steam is conditioned and injected into the shell-

side of VSTC. The cooling water on the tube-side had a constant inlet temperature 

of 49°C and a flowrate of 15 L/min for all tests.  
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Figure 3.1: Photograph of experimental test facility.
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3.2 Apparatus and Materials  

Steam from a boiler at 6 barg is dried and reduced to the desired pressure through a 

pressure reducing valve before entering the shell-side of the VSTC, while cold 

water is passed on the tube-side for desuperheating and condensing the steam.  The 

vacuum system sets and maintains the desired pressure of the system. Heat is 

rejected through an air-cooled heat exchanger and a liquid cooled heat exchanger 

so that the VSTC can be properly controlled and achieve stable operation for the 

experimental runs. Figure 3.2 shows piping and instrument diagram of test facility. 

Each part of the system is describe separately in next several sections. 
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Figure 3.2: Piping and instrument diagram of test facility. 
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3.2.1 VSTC Design 

The stainless steel VSTC heat transfer section used throughout the research as 

shown in Figure 3.3. Table 3.1 below lists about VSTC dimensions. 

.  

Figure 3.3: VSTC. 

Table 3.1: VSTC details  

Feed Arrangement in VSTC Parallel flow 

VSTC Length, 𝑳 1.14 m 

Tube inner diameter, 𝒅𝒊 0.010 m 

Tube outer diameter, 𝒅𝒐 0.013 m 

Number of Tubes, 𝑵𝒕 3 

Inner shell diameter, 𝑫𝒊𝒔 0.035 m 

VSTC material 316 Stainless steel 

Water flowrate through tubes, 𝒎̇𝒘𝒂𝒕𝒆𝒓 0.25 kg/s 

Wall thickness of tube 1.2 mm 
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Tubes have an equilateral triangular pitch (Figure 3.4). The centre-to-centre tube 

spacing were 20 mm. To separate shell-side and tube-side, the top and the bottom 

of tubes were welded plates. 

 

 

Figure 3.4: Tubes arrangements in a condenser. 

The VSTC had 11 mountings for thermocouples spaced 100 mm apart evenly along 

the length of the exchanger. Figure 3.5 shows the schematic details of VSTC used 

for experiment. The rig was pressure tested using compressed air to find and seal 

any leaks. Leak detection performed before experimental runs were undertaken 

whenever a change or replacement carried out with the test facility. 
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Figure 3.5: Detailed VSTC.  
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The lab has installed an AQUAHEAT VPX steam generator that generates low 

quality steam, ~0.90. The generator provided steam at 6 barg. The steam was 

conditioned before entering the VSTC using a strainer, separator, steam trap, and 

PRV (Pressure Reducing Valve) as shown in Figure 3.6. 

 

 

Figure 3.6: Steam handling system. 

3.2.1.1 Strainer 

Strainer is a form of inline screen. The strainer blocks the pipeline debris such as 

scale, rust, jointing compound, weld metal and other solids in flowing liquids and 

gases. It contains a mesh, which obstruct these solids, and allowing clean steam to 

pass through the process. Y-type strainer used for the experiment as shown in 

Figure 3.7, which is standard, compact, strong and sustained for high pressures. Y-

type strainer has two orientation for installation. For steam and gases, horizontal to 
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pipeline, which stops water collecting in pocket. For liquids, pocket should be 

vertically downwards. Vertically downward orientation prevents drawing debris 

back to the flow. Due to low dirt holding capacity, Y-type strainers requires regular 

cleaning, current strainer cleaned at regular interval during experiments. 

 

 

Figure 3.7: Strainer. 
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3.2.1.2 Separator 

A VALSTEAM ADCA ENG. S.A. made S16/S baffle steam separator is used. It is 

the most efficient type of separator over wide range of steam velocities. Figure 3.8 

shows the separator that used in the experiment. 

 

 

Figure 3.8: Steam Separator. 
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3.2.1.3 Steam Trap 

An inverted bucket-type steam trap also used to discharge condensed water to the 

drain without losing dry steam. 

Figure 3.9 shows the photo of inverted bucket-type steam trap that was used for the 

experiment. 

 

Figure 3.9: Steam trap. 

3.2.1.4 Pressure Reducing Valve 

A direct acting DR20 PN-DR pressure-reducing valve (PRV) was used to reduce 

the pressure of the incoming steam from a nominal 6 barg to the desired pressure 

(with the aid of the vacuum pump system) and also to control flow of steam.  

The PRV has restricting element that provides restricted flow of steam to the system. 

PRV comes with pressure adjustment handle connected to diaphragm. The 

movement of diaphragm is use to regulate the pressure. Figure 3.10 shows the PRV 

used on the experimental rig, the downward pressure on the diaphragm can increase 

by adjusting the handle position upwards. With no inlet pressure, the spring above 

the diaphragm pushes it down on the poppet valve, holding it open. Once steam 

introduced, the open poppet allows flow to the diaphragm and the pressure in the 

upper chamber increases, the diaphragm pushed upward against the spring, causing 
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the poppet to reduce a flow, finally stopping further increase of pressure (Spirax-

Sarco, 2007)  

 

Figure 3.10: Pressure reducer valve. 

3.2.2 Coolant Loop 

The test facility was equipped with a liquid water coolant to operate in a closed loop 

configuration. The liquid handling system consisted of a 40 L tank and two pumps 

for recirculating the coolant and discharge of the coolant. A 40 L tank initially filled 

with approximately 18 L of water. The water level in the tank measured using a 

differential pressure transmitter that measure the pressure difference between two 

mediums, inside tank. Figure 3.11 describes the flow of water in the system. Water 

pumped directly from tank to the tubes of the condenser. A CDX/A 70703 Lowara 

pump (A) extracted water from the tank, passing it through the inner tubes of the 

condenser. On leaving the tubes, the hot water was sent to cool through a fin and 

tube heat exchanger (HEX 1), mixed with the condensate which were coming out 

from shell of the VSTC, and then to a plate heat exchanger (HEX2). The 
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temperature of tube-side water was controlled by adjusting the external cooling 

water flowrate and airflow over plate, and fin and tube heat exchanger respectively. 

A centrifugal fan used to blow cool air over fin and tube heat exchanger. A 0.37 kW 

three phase EBARA CDX 70/05 series centrifugal pump (B), controlled by VSD- 

Altivar 61, as a discharge pump was used to expel water from tank. The pump 

controlled using a PID feedback loop to the VSD based on the reading of the 

differential pressure transmitter, which measured the tank level. The pump runs at 

its maximum frequency of 50 Hz when the PID feedback is much greater than the 

set PID reference. Similarly, the pump would stop when the PID feedback is well 

below the set PID reference. A bypass line from the pump discharge some water to 

tank via a partially closed valve. 

 

Figure 3.11: Cooling water circulation of a system. 

3.2.3 Vacuum System 

A vacuum system used to reduce the system pressure below atmospheric pressure. 

The vacuum system included water tank (under vacuum), and a vacuum pump. 

Pressure was measured by a vacuum gauge on top of the water tank. A TRMX257-

1-C-RX single stage liquid ring vacuum pump provides the vacuum in the system. 

With seal, water provided by a separate tank as seen in the Figure 3.12. The system 

provided a needle valve to provide precise control the vacuum.



 

38 

 

 

 

A. Suction from top of the tank 

 

 

B. Liquid-ring Vacuum Pump  

 

Figure 3.12: Vacuum system.  
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3.2.4 Condensate Handling 

On leaving the VSTC, the condensed steam and uncondensed saturated vapour from 

outlet of the shell-side mixed with cooling water that was entering the tank after 

dumping heat at plate, and fin and tube heat exchanger after flowing through tubes 

of the condenser. The arrangement for mixing the condensate/steam mixture into 

water loop is presented in Figure 3.13. 

 

  

Figure 3.13: Mixing region of condensate and water. 
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3.2.5 Insulation 

The test rig and steam handling system were insulated by 50 mm fibre glass wool 

(Figure 3.14). The insulation can withstand high temperature, 450°C.  

 

Figure 3.14: Insulation to the system. 

 

3.3 Instrumentation and Process Control  

3.3.1 Temperature 

Fifteen (15) sheathed Class 1 T-type thermocouples used for measuring temperature, 

at different position of system. Eleven (11) thermocouples were placed along the 

length of VSTC, at equal distance. The remaining four of thermocouples are placed 

axially at the steam inlet and condensate outlet, and inlet and outlet of tube-side 

water respectively. 

An Agilent 34970A data logger is used to record thermocouple measurements using 

20 channel multiplexer. T-type thermocouples with 3 mm probe diameter 
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embedded in a VSTC with the help of compression fittings (Figure 3.15). The depth 

of thermocouple probe into the annulus selected to avoid contact with tube wall. 

 

 

Figure 3.15: Thermocouples mounting in VSTC. 

Thermocouples were calibrated carefully before actual use for accuracy purpose, 

based on isothermal check the error associated with thermocouples was 0.2%. All 

thermocouples calibrated by putting them into boiling water and water/ice mixture 

before mounting on the system (Figure 3.16). Individual thermocouples were then 

corrected based on this initial calibration. The maximum thermocouple correction 

was 0.44°C. 
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Figure 3.16: Calibration of thermocouples with Agilent 34970A (data logger on the 

right side in picture). 

3.3.2 Pressure 

Mechanical pressure gauges, which are two vacuum gauges, and two above 

atmospheric pressure gauges as shown in Figure 3:17 used to measure the system 

pressure. These vacuum pressure gauges at the inlet of VSTC, and top of the water 

tank, displayed vacuum pressure in kPa and in Hg, while atmospheric pressure 

gauge at similar location read in kPa and psi.  

 

  

Figure 3.17: Pressure gauges. 
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3.3.3 Flow Measurement 

Flow meters from Endress+Hauser, Promag 50 measured the flowrate entering the 

tube-side of VSTC, and the condensate coming out from tank, which is equivalent 

to the total steam mass flowrate (Figure 3.18).  

 

Figure 3.18: Flowmeter. 

For the experiment, the Promag 50 measured flowrate in L/min. Adjustment of a 

ball valve at the entry of tube-side of the VSTC controls the cold-water flow rate 

and a needle valve control the condensate flowrate to the drain exiting the tank. The 

condensate flow was also logged. Flow meter programed such that it can read flow 

rate of water for range of 0-5 L/min. using 4-20 mA loop with the logger.   

 

3.4 Investigations Made on VSTC 

3.4.1 Experiment 1: Vacuum Steam Condensation 

First experiment was about inspecting vacuum steam condensation for various 

steam pressures. Each experiment took about 40 minutes to attain steady state. It 

was essential while running the experiments to ensure 1) enough water level inside 

tank, 2) to set required shell-side system pressure, flowrate of water at set value 

through tubes of condenser, and the pressurised steam to the system. In the case of 

measurements from test facility, except PID feedback, and pressure gauge 
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measurements, all other parameters noted with help of data logger.  Table 3.2 enlists 

the fixed and variable parameters for experiment.  

Table 3.2: List of parameters for running the experiment 

Parameters Units Range 

A) Constant Parameters   

Water flowrate through tubes of condenser  𝒎͘𝒘 L/min 15 

Pressure inside tank, 𝑷 kPaabs 21 

Water inlet temperature, 𝑻𝟐 °C 49 

   

B) Variable Parameters   

Superheated steam pressures, 𝑷 kPaabs 31-101 

Superheated steam temperatures, 𝑻𝟏 °C 100-140 

Water outlet temperature, 𝑻𝟒 °C 55-75 

Condensate temperature, 𝑻𝟑 °C 65-120 

Steam temperatures along the VSTC, 𝑻𝟓 −  𝑻𝟏𝟓 °C 70-120 

Condensate flowrate, 𝒎𝒄𝒐𝒏𝒅 L/min 
2 

 

There were certain alterations carried out in test facility over time. The changes 

have done for effective cooling of water to the required temperature.  
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3.4.2 Experiment 2: Vacuum Steam Condensation at Reduced 

Steam Flowrate 

The second part of the experiment was to vary the steam flowrate entering the shell-

side. Suitable bypass arrangement made to steam main that diverted certain amount 

of steam to the coil arrangement, which immersed inside cold-water tank as seen in 

Figure 3.19. Opening the ball type valve caused splitting of steam stream and 

reduction in the steam flow to the VSTC. Rest all other parameters were same. 

 

Figure 3.19: Steam flowrate reduction arrangement. 

3.4.3 Experiment 3: Investigating Dry Heat Transfer Mechanism 

for Vacuum Steam Condensation (T2 ≥ Tsat) 

Third experiment particularly performed to examine dry heat transfer. The cooling 

water through tubes heated up to saturation temperature of steam so that wall of the 

tubes would dry. To perform this experiment, changes made with existing test 

facility as seen in Figure 3.20. The shell-side and tube-side of VSTC were separated. 

The hot water from open tank pumped to the tube-side and returned to the same 

tank. The saturated steam from shell-side returned to the existing tank, the tank was 

under vacuum and initially filled by cold water. The water from tank has circulated 

through two heat exchangers (HEX 1 and HEX 2) to maintain the tank water 

temperature.
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Figure 3.20 Experimental setup for investigating vacuum steam condensation at high tube wall temperatures (T2 ≥ Tsat).
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In the present work, Excel-spreadsheets with Microsoft visual basics enabled used. 

Different heat exchanger equations coded. The Excel-macros workbook contains 

steam table stored that makes easier to get all properties of steam at different 

conditions. 

3.5 Experimental Procedure 

The steps in carrying out the experiments were as follows: 

Steam, normal water, and compressed air were used for the experiments. 

1. The boiler was started for steam generation.  

2. The design has been pressure tested and made suitable for vacuum system 

by isolating from atmosphere and injecting compressed air through the 

system for leak detection. This step performed at initial stage of building of 

a rig, and after replacement or change in position of any part of test facility. 

3. A Bench link data logger was switched on and Agilent IO libraries suite was 

started to ensure the connectivity of all measuring devices like 

thermocouples, and flowmeter to computer. 

4. At first, the water level in the tank adjusted and initially noted using 

differential pressure transmitter. 

5. Water flow inside the tubes of VSTC initiated by switching the water pump 

on. 

6. PID loop initiated by tuning the Altivar 61 variable speed drive, to start the 

secondary water pump (EBARA I-38023). 

7. The steam trap valve shut off and vacuum pump started. Required vacuum 

pressure maintained inside the water tank. 

8. After achieving steady state of require pressure in tank, steam introduced to 

the rig by opening main steam valve. Steam trap valve also adjusted 

simultaneously to maintain the vacuum established in the system. 

9. The temperature of water in the tank maintained by passing it through plate 

heat exchanger, and fin and tube heat exchanger driven by fan. 

10. Data acquired from system after the steady state achieved. 

Pressure of the system changed through PRV for sets of reading. 
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3.6 Error Analysis 

Present topic involved wide range of experimental testing under different operating 

conditions. Moreover, the test apparatus changed several times to overcome 

operational problems, replacement of some individual pieces of equipment. The 

following section discusses the various sources of error associated with experiment 

as well as the reproducibility of the results. 

3.6.1 Heat Balance 

The energy balance based on the amount of steam entering the VSTC, condensate 

collected from the outlet of the VSTC and the cooling water flowrate through tubes. 

Since present system is a closed system, the cooling water after passing through 

tubes mixed with the mixture of saturated vapour and liquid condensate from shell-

side. As steam did not condensed completely in VSTC, a part of saturated vapour 

along with condensate mixed with water and entered the tank. The steam flowrate 

therefore calculated based on the energy balance on the tube-side cooling water. 

3.6.2 Leakages of Test Equipment 

Over the time, different experiments run through apparatus. Due to high 

temperatures, loosening of hose clamps and other fittings cause leakages. Every 

joint of apparatus has tightened at time interval and after any change in setup and 

air leakage test performed to maintain the desired vacuum pressure of an apparatus. 

3.6.3 Temperature Sensors 

Thermocouples calibrated before installing them on VSTC as mentioned earlier. 

The offset value gained from calibration of each thermocouple added to the 

respective channel in data logger to get corrected temperature. The temperature 

profile of steam condensing at shell of the VSTC showed waviness, temperature for 

every alternate thermocouple was increasing or decreasing. The desuperheating 

section in result chapter will be discussing about it. To ensure thermocouples are 

not in contact with any metal part of VSTC, thermocouple positions were changed, 

and thermocouples were switched and pattern of variation was similar. 

3.6.4 Pressure 

Less error associated with pressure measurement in the experiment. Pressure gauge 

was reading test pressure decently of VSTC for first experiment. Pressure drop 

along the length of hose that connects tank and VSTC was foremost concern during 
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building a rig. About 10 kPag drop in pressure observed in VSTC. For second 

experiment due reduction in flowrate of steam to the VSTC, pressure variation 

occurred. For heat transfer analysis, saturation pressures for respective temperatures 

considered.  

3.6.5 Re-testing 

Although experiment of each test pressure has done distinctly on a separate day, to 

check the effect of ambient conditions such as temperature, the experiments 

repeated again. Figure 3.21 shown below illustrates two temperature profile of 33 

kPaabs pressure (–66 kPag) for same experiment examined on different days. 

Similarly, remaining test pressures tested again. (See Appendix F) 

 

Figure 3.21: Temperature profiles of 33 kPaabs pressure (–66 kPag). 

As seen in the figure good reproducibility was achieved with the greatest difference 

in temperatures occurring in the desuperheating section.  
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3.6.6 Re-testing Test Pressures after Replacement of Equipment  

During the latter part of the experimental programme, the replacement of the tank 

became necessary due to it being required elsewhere. A re-purposed 100 L 

compressed air receiver was used as a replacement tank in vertical alignment 

(Figure 3.22). The suction sides of pump were made big enough to ensure minimum 

pressure drop at discharge.  

 

 

Figure 3.22: New setup of a tank. 

After discharge from the pump- A, (see Figure 3.2) previously water used to pass 

through flowmeter and tubes directly, but due building up temperature inside tank 

it was necessary to cool the tank temperature. Therefore, small quantity of water 

after discharge from pump-A bypassed and it mixed with hot water that was coming 

from tube exit (Figure 3.23). It reduced hot water temperature and further drop in 

temperature by a HEX 1. The new setup of the experiment has showed similar 

results like previous setup (Figure 3.24)  
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Figure 3.23: Mixing cold water with hot water that is coming from tube exits. 

 

Figure 3.24: Plot of results of 0.41 kPaabs pressure (–50 kPag) before and after 

change in setup. 
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3.7 Summary 

This chapter has described the VSTC setup and other equipment used for this study. 

Detailed installation of used equipment and their purpose described in this chapter. 

Detailed steps for operations have explained in procedure section. Changes in the 

test facility have been made as research progressed. The next chapter presents and 

discusses analysis of the data recorded from experiments. Desuperheating section 

of VSTC and respective averaged heat transfer coefficients will be examine in detail. 
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Chapter Four 

Experimental Results and Discussion 

4.1 Overview 

This chapter presents and discusses results of the experimental programme. A total 

of 32 individual tests at different pressures were conducted on the vertical shell and 

tube condenser (VSTC) for the first part of the experimental programme. The 

results for a single experiment will be presented first to demonstrate what data 

collected and the detail analysis was performed for each condition. Later all 

experimental results will be presented together using averaged desuperheating and 

condensation sections of VSTC to show important effects.  

The second set of experiments consisted of reducing steam flowrate entering the 

VSTC. Existing test equipment altered for four reduced steam flowrate experiments 

for same test pressures. Finally, to investigate and remove any effect from 

condensation during the desuperheating section due to the tube wall temperature 

less than steam saturation temperature, the tube-side inlet water temperature was 

raised above the steam saturation temperature. Four test pressures were tested for 

these experiments. 

4.2 Temperature and Flowrate Scrutiny of 51 kPaabs 

Pressure (-42 kPag) 

Temperatures and flowrate data were logged at 5-second intervals throughout each 

experimental run. Figure 4.1 shows the recorded temperature over time for a test 

condition of 51 kPaabs pressure (-42 kPag). The tube-side water temperatures (T2 

and T4) were constant during experiment but shell-side temperatures (T5 and T15) 

slightly fluctuated. As illustrated in the Figure 4.1, a start-up time to reach steady 

state was required, which was about 40 minutes in some cases. Individual 

thermocouple readings were averaged over a 90 minutes period to be used for 

further analysis. Figure 4.2 describes steam flowrate entering in the VSTC recorded 

over time for the same test condition of 51 kPaabs pressure (-42 kPag). The variable 

nature of the condensate flowrate was due to PID feedback of a tank level to 

variable speed drive (VSD) and respective discharge of condensate from water 

pump (B) (see Figure 3.2).  
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Figure 4.1: Temperatures during a typical trial. {51 kPaabs pressure (-42 kPag)} 

 

 

Figure 4.2: Flowrate of the condensate during a typical trial. {51 kPaabs pressure  

(-42 kPag)} 

 

Figure 4.3 shows averaged temperatures of the shell-side steam at 51 kPaabs pressure 

along the length of VSTC, and cooling water temperatures for the tube-side. For 51 
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about 132°C, starts cooling to a saturation temperature of 82°C, then partially 

condenses at constant temperature. The cooling water enters at 49°C and heated to 

an exit temperature of 59°C. The temperature profile of the cooling water is 

assumed linear as a first approximation. There are two distinct temperature regions 

for the shell-side. The overall duty of the VSTC for 51 kPaabs pressure was 10.1 kW.    

 

Figure 4.3: Temperature profile along the length of VSTC.  

{51 kPaabs pressure (-42 kPag)} 

 

The VSTC temperature profile can be divided into two distinct sections as 

illustrated in the Figure 4.4: 

 Desuperheating section: the steam is desuperheated with a decreasing 

temperature along the length, the measured temperature profile in this 

section is variable, but has a general decreasing trend to the saturation 

temperature; 

 Condensation section:  once the vapour has reached the saturation 

temperature, the steam is condensed.  For all test cases, only a portion of 

the steam was condensed and there is two-phase flow from exiting the shell-

side of the VSTC. 

The temperature profile of each experimental test is presented in Appendix D. The 

variation in the temperature profile during the desuperheating section appeared to 

be greater at lower absolute pressures (e.g. 0.41 barabs).  
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Due to variation in vapour properties such as velocity and density of steam, each 

test pressure has slightly different temperature profiles and rate of condensation.  

 

Figure 4.4: Heat transfer sections of VSTC. {51 kPaabs pressure (-42 kPag)} 

 

On average, about 60% of VSTC length was desuperheating steam and the rest is 

condensation of steam at the corresponding saturation temperature for pressure 

tested.  Only a portion of the steam condensed during the trial and two-phase flow 

existed out of the shell-side outlet of VSTC.  Typically only about 44% of the mass 

of the steam actually condensed in the shell of VSTC for a test condition of 51 

kPaabs pressure (-42 kPag). 

The uniqueness of the condensation region is similar with normal steam 

condensation process at constant steam saturation temperature.  

Figure 4.5 shows the variability of the heat flux along the length of VSTC. Due to 

the variation of temperatures along VSTC, heat flux per unit area between two 

thermocouples shows deviation including negative flux for some section. The local 

heat transfer coefficient (h") for the same section was also calculated and shown in 

Figure 4.6. Once again both positive and negative heat transfer coefficients 

occurred along the length.  The right hand side secondary axis in both Figure 4.5 

and Figure 4.6 shows scale for respective condensation section value. Clearly, this 

is not feasible because heat transfer will be one-directional from the shell-side to 

the tube-side, along the entire length of the VSTC due to the temperature difference.  
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The irregularity is because during the desuperheating section, the measured shell-

side temperatures alternate with a decrease and then an increase in temperature. If 

an energy balance were performed, based only on the measured shell-side 

temperatures, then the heat transfer appears to be form the cold side to the hot side, 

which is infeasible. 

 

Figure 4.5: Heat flux along the VSTC. {51 kPaabs pressure (-42 kPag)} 
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Figure 4.6: Local heat transfer coefficient along the VSTC. 

{51 kPaabs pressure (-42 kPag)} 

The variation in the temperature of the desuperheating section could be due to 

number of reasons. Initially, it was supposed that it might occur due to contact 

between the thermocouple and the tube wall. The tube wall is expected to be 

somewhat less than the saturation temperature due to the relatively low temperature 

of the tube-side fluid compared to the superheat temperature. The shell-side tube 

wall temperature (Twall) estimated using the correlation of Minkowycz et al. (1966) 

as shown in Eq. 5-1 where T1 is the temperature of the bulk hot side fluid and T2 is 

the bulk temperature of the cold side fluid. 

 𝑇𝑤𝑎𝑙𝑙 = 𝑇2 + 0.31 × (𝑇1 − 𝑇2) (5-1) 

Shell-side tube wall temperatures were less than saturation temperature of steam for 

tested pressures and for a test condition of 51 kPaabs pressure; the shell-side tube 

wall temperature would follow the profile shown in Figure 4.7. Furthermore, the 

thermocouples were mounted such that they were 2 mm away from the tube wall.   
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Figure 4.7: Shell-side tube wall temperatures along the VSTC. {51 kPaabs pressure (-

42 kPag)} 

 

It was further postulated that there could be condensate bridging the gap between 

the tube wall and the thermocouple via capillary action and becoming subcooled 

thus giving the lower temperatures. Using the method suggested by Kirkbride 

(1934), average condensate film thickness was calculated and estimated to be in the 
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In order to make the temperature profiles feasible several models of the profiles in 
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Figure 4.8: Vacuum steam condensation mechanism.  

4.2.1 Modelling Temperature Profiles of Desuperheating Section 

of VSTC 

In this section, the temperature profile of steam for desuperheating section is 

analysed. The desuperheating section was determined to be from the inlet of steam 

to the point where the steam temperature becomes constant, which assumed to be 

the saturation temperature. Due to the variation in temperatures along the length, 

the following models were developed for desuperheating section to simplify 

analysis.  

Three methods for modelling the temperature profile, based on the temperature 

measurements are described below. These profiles are illustrated in Figure 4.9; 

linear models are developed for 51 kPaabs pressure. Appendix D shows generated 

models for remaining test pressures. 

 Model 1: Low– represents the practical case that divide desuperheating and 

condensation sections from the sensed temperature by thermocouple probe 

at 0.77 m from top of VSTC.  

 Model 2: High– generated by computing the point that has a chance of 

saturation temperature by reducing the area of desuperheating regime.  
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 Model 3: Ave– is the model generated by averaging the Model 1: Low, and 

Model 2: High. This model will be representing overall results of each test 

pressure. Model 1: Low and model 2: High are the actual boundary 

conditions, in between there is strong chance of steam saturation.  

 

 

Figure 4.9: Developed condensation models. {51 kPaabs pressure (-42 kPag)} 

 

Table 4.1 lists the temperature of steam, the corresponding amount of superheat and 
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Desuperheating 
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4.2.2 Heat Transfer Analysis of 51kPaabs Pressure (-42 kPag) 

Both the heat flux and characteristic heat transfer coefficient are recalculated by 

model temperature profiles. Figure 4.10 shows the effect of superheat on the heat 

flux for the desuperheating and condensing regions at 51 kPaabs pressure and shows 

the effect of superheat on the heat flux for the desuperheating section and on the 

right hand side secondary axis condensation region at 51 kPaabs pressure. There is 

a marginal increase in the heat flux in the desuperheating section until condensing 

commences when there is almost an order of magnitude change in the heat flux due 

to the phase change and latent heat of the vapour. In Figure 4.10, the vertical bars 

indicate the span of heat flux for Model 1: Low (negative vertical bar), and Model 

2: High (positive vertical bar). The horizontal uncertainty bars Model 1: Low 

(negative horizontal bar), and Model 2: High (positive horizontal bar) are estimated 

from respective change in length of sections. The change in heat flux for linear 

models are noticeable.  
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Figure 4.10: Heat flux of desuperheating and condensing section of VSTC. 

{51 kPaabs pressure (-42 kPag)} 

Figure 4.11 illustrates the characteristic heat transfer coefficients for these two 

sections of VSTC. As seen in the Figure 4.111, a significant rise occurs in the 

characteristic heat transfer coefficient, as steam is desuperheated. Characteristic 

heat transfer coefficients also follow the same trend as the heat flux with a gradual 

increase in the desuperheating section followed by a large increase in the 

condensing section (right side vertical secondary axis).  The characteristic heat 

transfer coefficient increased from around 90 W/m2°C to 300 W/m2°C in the 

desuperheating section to approximately 5500 W/m2°C in the condensing section. 

This value of 5500 W/m2°C is in good agreement with recommended design values 

for condensing steam (Sinnott, 2005). 
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Figure 4.11: Characteristic heat transfer coefficient along the length of VSTC of two 

sections of condensation. {51 kPaabs pressure (-42 kPag)}  

Reynolds number of the shell-side vapour were calculated and values were in the 

order of 21,000 to 25,000 indicating turbulent flow. Figure 4.12 shows overall heat 

transfer coefficient versus Reynolds number for 51 kPaabs test pressure.      
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Figure 4.12: Plot of calculated Reynolds number and characteristic heat transfer 

coefficient across length of VSTC. {51 kPaabs pressure (-42 kPag)} 

The result section of each test pressure is same as describe above for 51 kPaabs 

pressure (-42 kPag). Figure 4.13 clarifies the analysis of measured temperatures of 

shell and tube-side VSTC. Temperature profiles of each test pressure analysed by 

dividing desuperheating section in to 10 divisions.  Table 4.2 and Table 4.3 below 

summarised the averaged results of 51 kPaabs pressure of complete desuperheating 

section and condensation section respectively. In upcoming overall result section, 

similar averaged results are used to analyse overall desuperheating and 

condensation of VSTC of each test pressure. 
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Figure 4.13: Analysis of measured temperatures. {51 kPaabs pressure (-42 kPag)} 

 

Table 4.2: Summary of averaged desuperheating section 

 {51kPaabs pressure (-42 kPag)} 

Region Desuperheating 

Model Low High Ave 

Twater in °C 49 49 49 

Twater out 50 50 50 

Tsteam in °C 132 132 132 

Tsat  81.9 82.5 82.1 

ΔTsuperheat °C 50 49 49 

A m2 0.092 0.056 0.074 

Q kW 0.6 0.6 0.6 

Qmax kW 1.1 1.1 1.1 

q'' kW/m² 7 11.3 8.6 

LMTD °C 53 54 53 
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ɛ  0.60 0.60 0.60 
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Region Desuperheating 

Model Low High Ave 

Re(shell)  22,519 22,499 22,512 

Pr(shell)  0.99 0.99 0.99 

 

Table 4.3: Summary of condensation section {51kPaabs pressure (-42 kPag)} 

Region Condensation 

Model Low High Average 

Twater in °C 50 50 50 

Twater out 59 59 59 

A m2 0.044 0.08 0.062 

Q kW 9.5 9.5 9.5 

Qmax kW 33.4 34.1 33.7 

q'' kW/m² 214.5 118.6 152.7 

LMTD °C 27 28 27 

U” W/m²°C 7893 4256 5566 

ɛ  0.28 0.28 0.28 

NTU  0.33 0.33 0.33 

hshell W/m²°C 15,213 23,522 19,367.5 

Re(shell)  24,267 24,220 24,249 

Pr(shell)  1.02 1.02 1.02 

 

4.3 Overall Experimental Results at Shell-side Tube Wall 

Temperatures Less than Steam Saturation 

Temperatures and at Reduced Steam Flowrate 

To relate the total results of remaining test pressures, it is appropriate to consider 

total desuperheating section and condensation section. Therefore, similar analysis 

executed like 51 kPaabs pressure and averaged heat transfer results are presented for 

both desuperheating and condensation sections. Parametric relations are developed 

between the averaged heat transfer coefficient of steam desuperheating and steam 

condensation and factors affecting condensation process. Effect of reduced steam 

flowrate at same test pressure examined on desuperheating and condensation of the 

steam in the second experiment. To reduce the amount of steam to the VSTC, valve 
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settings were changed as described in section 3.4.2. A total of four pressures were 

retested at reduced steam flowrates.  Unfortunately due to limitations of the testing 

apparatus and also time constraints further tests at higher absolute pressures could 

not be performed.   

4.3.1 Temperature Profiles and Rate of Heat Transfer 

Figure 4.14, shows shell-side steam temperature profile for each test pressure. Each 

test pressure has a different amount of superheat and different saturation 

temperatures involved. At high vacuum steam pressures, the temperature fluctuates 

for every alternate thermocouple probe and the fluctuation reduces as vacuum steam 

pressure decreased. 

Figure 4.15 shows the inlet and outlet tube-side water temperatures for all tested 

pressure including a linear approximation of the temperature profile. The shell-side 

tube wall temperatures for each test pressure were less than respective steam 

saturation temperatures.   The target inlet temperature of the tube-side water was 

49°C, which was achieved within ± 0.5°C. As absolute steam pressure increased, 

the overall duty of the VSTC increased resulting in a higher outlet water 

temperature as seen in the Figure 4.16. After reduction in steam flowrates, the 

desuperheating section of the VSTC has reduction of about 0.1m that elevated heat 

transfer duty for same test pressures. Approximately 15% increase in the overall 

duty of VSTC seen after reduction in the steam flowrate. 
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Figure 4.14: Temperature profiles of steam condensation along the length of VSTC 

at tested pressures. 

 

Figure 4.15: Temperature profiles of cooling water loop along the length of VSTC at 

tested pressures. 
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Figure 4.16 Overall duty of VSTC. 

4.3.2 Steam and Condensate Mass Flowrate  

The steam flowrate to the VSTC was typically between 0.005 kg/s to 0.015 kg/s as 

illustrated in Figure 4.17, although it was up to 0.026 kg/s at above ambient pressure. 

The condensate flowrate (i.e. the amount of steam condensed in the condensing 

section of the VSTC) is also shown in the figure along with the associated vapour 

fraction (on the secondary axis) leaving from the shell-side of the VSTC. The 

generated trend between measured mass flowrates and saturation pressure shows 

similarity with operating curve of Pressure Reducer Valve (PRV). Low mass 

flowrates obtained at high vacuum steam pressures due to partially opened 

diaphragm of PRV, Figure 4.17 also shows relevant values of reduced mass 

flowrates, condensate flowrates and vapour fractions for second test conditions. 

Furthermore, each result section comprised particular results of reduced steam 

flowrates. Appendix C provides all mass flowrates and percentage condensation in 

tabulated form for all test pressures.  
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Figure 4.17: Steam, condensate flowrate and vapour fraction (secondary axis) for 

test pressures. 

4.3.3 Desuperheating Section 

This section focuses on the desuperheating section of the VSTC at different 

pressures tested. Due to change in vacuum steam pressures corresponding 

saturation temperature changed. Therefore, each pressure have different amount of 

superheat. Figure 4.18 shows the amount of superheat associated with each test 

pressure. At high vacuum steam pressures (e.g. 0.38 barabs), the superheat in the 

steam was more and it reduces as vacuum steam pressure decreases. After reduction 

in steam flowrate, amount of superheat varies by 1%. Figure 4.19 illustrates overall 

duty of the desuperheating section for each test pressures. Due to variation in the 

steam flowrates, entering VSTC and associated degree of superheat, the rate of heat 

transfer in the desuperheating section varied. Due to change in steam flowrate, 

about 50% and corresponding minor change in superheat for same test conditions, 

duty in the desuperheating section dropped approximately by 20%. 
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Figure 4.18: Plot of superheat for each test pressures. 

 

Figure 4.19: Heat transfer of desuperheating sections for test pressures. 
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coefficients increase with change in vacuum steam pressures. Averaged heat 

transfer coefficients presented are the averaged over the entire length of the 

desuperheating section of the VSTC. Some of the variation in the averaged heat 

transfer coefficients is mostly likely due to slightly differing steam mass flowrates. 

 

Figure 4.20: Averaged heat transfer coefficients versus saturation pressures of 

desuperheating section. 

Figure 4.21 shows experimental verification of reliability of Reynolds number on 

the steam flowrate. Steam viscosity was constant for all test pressures. Change in 

steam mass velocity occurred due to increasing steam flowrates. Thus, Reynolds 

number increased with reduction in Vacuum steam pressures.   
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Figure 4.21: Graph of Reynolds number for desuperheating section versus steam 

flowrate entering VSTC. 

Figure 4.22 shows the heat flux versus Reynolds number for the desuperheating 

section. Influence of desuperheating section area on the heat flux has seen as area 

of desuperheating section reduced corresponding to degree of superheat. The nature 

of plot is similar to duty of desuperheating section as seen previously. Figure 4.23 

shows the averaged heat transfer coefficient versus Reynolds number of the 

desuperheating section. Reynolds number varied from 10,000-70,000, indicating 

turbulent vapour flow under vacuum conditions. After reduction in steam mass 

velocity, Reynolds number of desuperheating section reduced by 15%. Averaged 

heat transfer coefficients reduced by approximately 20% by reducing steam 

flowrate by about 50%. 
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Figure 4.22: Heat flux versus Reynolds number of desuperheating section. 

 

Figure 4.23: Averaged heat transfer coefficients versus Reynolds number of 

desuperheating section. 
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4.3.4 Condensation Section 

The experimental results for the condensation section of VSTC are outlined in the 

following section. Rate of condensation increased as vacuum steam pressure 

lowered (degree of superheat decreased) as presented in Figure 4.24. Increase in 

condensation section of VSTC observed after steam flowrate reduction.  

 

Figure 4.24: Condensation section heat transfer for test pressures. 

Figure 4.24 shows the average condensation coefficients for experimental test 

pressures. It varies in the range of 4000-7000 W/m2˚C. No exact trend in 

condensation coefficients were observed due to influence of vacuum steam pressure 

and steam flowrates. Figure 4.26 presented averaged condensation coefficient 

versus condensate flowrate at shell exit of VSTC. The averaged condensation 

coefficients varied with increase in condensate flowrate.  Figure 4.27 shows graph 

of averaged condensation coefficient versus Reynolds number of condensation 

section. No significant change observed in condensation coefficients.  
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Figure 4.25: Averaged heat transfer coefficients of condensation Section versus 

saturation pressures.  
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Figure 4.27: Averaged heat transfer coefficients versus Reynolds number of 

condensation section. 
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4.4 Generated Correlation from Experimental 

Investigation for Vacuum Steam Desuperheating  

Figure 4.28 shows the developed relation between Nusselt number and Reynolds 

number of desuperheating section. The graph also shows the tested pressures at low 

steam flowrate (diamond markers), which are in agreement with the tests without 

reducing steam flowrate. Typically, Nusselt number varies from 150 to 580. Trend 

for developed Eq. 4-1 shows steady increase with Reynolds number for vacuum 

pressures, but it sinks as vacuum steam pressures reduced. 

 

Figure 4.28: Developed correlation between Nusselt number and Reynolds number. 
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4.5 Experimental Results of Vacuum Steam 

Condensation at T2 ≥ Tsat 

As discussed previously, it was thought that the main cause of the temperature 

fluctuations in the desuperheating region was due to tube wall temperatures being 

lower than the saturation temperature. This caused some steam to condense to its 

saturation temperature in the desuperheating section and exchange heat by alternate 

evaporation and condensation phenomenon. Therefore, temperature jump across 

every alternate thermocouple was significant. In order to investigate this further the 

temperature of the tube-side water was increased above (or close to) the saturation 

temperature of the steam entering the VSTC. 

Figure 4.29 shows shell-side steam temperature, tube-side water temperature and 

respective shell-side tube wall temperature outline of 37 kPaabs pressure. The tube 

wall temperature was raised above the saturation temperature of steam by rising 

tube-side water temperature. As explained in the method section, tube-side and 

shell-side of VSTC were separated, and separate hot water tank arrangement made 

to circulate hot water through tubes. 

If the tube wall temperature is greater than the saturation temperature then no 

condensation should occur and desuperheating will take place with the steam 

remaining completely dry (i.e. vapour fraction equal to 1). The tube wall should 

also be completely dry on the shell-side.  
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Figure 4.29: Steam, tube-side water, and tube wall temperature outline before rising 

wall temperature of tube. {37 kPaabs pressure (-58 kPag)} 

Figure 4.30 shows steam temperatures and wall temperatures outline of 37 kPaabs 

pressure where reduction in temperature variation across every alternate 

temperature probe during the desuperheating is observed. The shell-side tube wall 

temperature profile as seen in Figure 4.30 is also smoother than previous outline. If 

tube-side water temperature could raise above steam saturation temperature, the 

temperature profile across desuperheating section would be more flat. Due to the 

limitations of the heating source, higher inlet water temperatures were not 

achievable. Figure 4.31 illustrates condensation models generated of 37 kPaabs test 

pressure. From Figure 4.31, it appears no change in the length of desuperheating 

and condensation sections before and after rising tube-side water temperature. 
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Figure 4.30: Steam, tube-side water, and tube wall temperature outline after rising 

wall temperature of tube up to steam saturation temperature. {37 kPaabs pressure (-

58 kPag)} 
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A) Before 

 

B) After 

Figure 4.31: Measured temperature and model temperature profiles before (A), and 

after (B) increasing tube-side water temperature. {37 kPaabs pressure (-58 kPag)} 
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Figure 4.32 shows hypothesised condensation mechanism considering effect of two 

different tube wall temperatures. Normally surface condensation of vapour is done 

by directing vapour on the surface whose temperature is less than the saturation 

temperature. In the case of desuperheating, the superheat has to be removed by 

sensible cooling for it to reach its saturation temperature, before it will condense. 

A) Case 1: Tube Wall Temperature Less than Steam Saturation 

Temperature (Twall < Tsat) 

In present case of low tube wall temperature than steam saturation temperature, 

steam desuperheating has to overcome the interface effect where heat transfer 

occurred from subcooled vapour on the tube wall to the adjacent liquid molecules. 

Therefore, junction of superheated steam and saturated vapour formed next to 

condensate film. Steam velocity added swirling action around tubes that can be 

affecting the heat transfer mechanism. In this case, thermocouples are sensitive to 

their positioning for temperature measurement, due to steep temperature profile.  

B) Case 2: Tube Wall Temperature Equals to Steam Saturation 

Temperature (Twall = Tsat) 

On the other hand, if shell-side tube wall temperature is raised above steam 

saturation temperature, the vapour subcooling on the tube wall is diminished and 

no opposing trend of heat transfer from subcooled vapour to gas vapour and 

condensate film on shell-side are observed. In addition, no heat transferred from 

superheated steam to the tube-side. Thus, only sensible cooling of the steam is 

observed . 
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Figure 4.32: Condensation mechanism for different tube wall temperatures. 

There occurred a reduction in the heat flux for desuperheating section about 90% 

as well as condensation section by 85% as seen in Figure 4.33. There was hardly 

any heat transfer in the desuperheating section whereas heat transfer in 

condensation section lowered by 80%.  

Figure 4.34 shows averaged heat transfer coefficients of 37 kPaabs pressure before 

and after rising water temperature up to steam saturation temperature. Steam acted 

as a perfect dry gas in the desuperheating section after rising tube-side water 

temperature and has a sensible heat transfer along desuperheating section of the 

condenser, while average condensation heat transfer coefficient increased by 30%.  

It is clear that a complex process of condensation and evaporation during the 

desuperheating section causes variability in the measured temperature profiles and 

therefore, large reduction in the local heat transfer coefficient in the desuperheating 

section. 
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Figure 4.33: Heat flux before and after rising tube-side water temperature.  

{37 kPaabs pressure (-58 kPag)} 

 

Figure 4.34: Average heat transfer coefficients of before and after rising tube-side 

water temperature. {37 kPaabs pressure (-58 kPag)} 
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4.6 Conclusion 

This chapter has described several detailed investigation made on VSTC. Heat 

transfer mechanisms of vertical shell and tube condenser (VSTC) examined by 

dividing shell-side measured temperatures into desuperheating and condensation 

sections, and generating different VSTC temperature models. Effect of low steam 

flowrates on desuperheating and condensation is verified by testing four vacuum 

steam pressures. Detailed mechanism of influence of shell-side tube wall 

temperature on steam desuperheating has been also discussed in this chapter. In the 

next chapter, these results will be applied to a hypothetical milk evaporator, to 

demonstrate the adverse effect of superheated steam on milk evaporation process.  
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Chapter Five  

Industrial Application 

5.1 Introduction 

Several industries have active condensation mechanism going through heat 

exchangers to enhance throughput. This chapter presents application of vacuum 

steam desuperheating and condensation investigation to the milk powder plants. 

The effects of superheated vacuum steam condensation on the shell-side of 

evaporator are estimated in this chapter. Because of low heat transfer coefficients 

during desuperheating as demonstrated in the previous chapter, two significant 

problems may arise: 

1) Evaporation capacity/ duty reduction (for fixed heat exchanger area) or  

2) Larger evaporation area (for fixed heat transfer duty) to sustain desired 

throughput. These problems will be demonstrated ahead with consideration heat 

transfer parameters of milk evaporator. 

5.2 Industrial Application to Dairy Processing 

In the dairy industry, vacuum evaporation processes are used to remove water from 

milk. Typically falling film type evaporators/milk evaporators are utilised for 

evaporation. The milk feed flows uniformly as a thin film through vertical tube 

bundle and steam is passed through the shell-side of evaporator. Shell-side 

condensation of the steam plays a role of supplying heat to the tube-side feed. Milk 

evaporators boil the milk under vacuum pressure and at reduced temperature. 

Vacuum steam on shell-side of evaporator maintains the desired steam temperature 

at low pressure. The removal of water content requires multiple evaporation 

cycles/effects, thus saturated vapour may be mechanically (MVR) or thermally 

(TVR) compressed and used to improve steam economy. MVR is preferred over 

TVR due to advantages such as, minimum energy consumption, no additional 

requirement of steam or cooling water, and good capacity control. MVR operates 

similar to a heat pump, a centrifugal fan or compressor mechanically recompresses 

saturated vapour exiting from the tube side of the evaporator effects, to a higher 

pressure and temperature before reinjecting to the shell-side evaporator. In TVR, 

only a portion of vapour exiting from evaporator effect is recompressed using a 
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steam recompression nozzle, and as such require primary steam to provide the 

upgrading. 

 

 

A) Effect of Superheated Vacuum Steam Condensation on Rate of Milk 

Evaporation (Fixed Area of Evaporation) 

Figure 5.1 presents layout of general multi-effect evaporator system used in the 

dairy industry, incorporating both MVR and TVR stages. Most evaporators for milk 

powder process operate under vacuum pressure of 0.31 barabs with the boiling 

temperature of milk around 65˚C-70˚C. It is then passed through several 

effects/passes to increase percentage solid contents of milk typically from around 

13% to 50% solids. On other hand, saturated steam exiting tube-side is sent through 

the MVR, which has an isentropic efficiency typically of 80% and compressed, 

which increases the temperature of vapour (plus the addition of superheat) and sent 

to shell-side of evaporator for condensation (Jebson & Chen, 1997).   
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Figure 5.1: Mechanical Vapour Recompression (MVR) in dairy industry (Walmsley 

et al., 2015). 

In the evaporator, pasteurized milk at boiling temperature of 65˚C flows in tube 

bundles at 20 kg/s at 13% solid contents. The rate of evaporation of vapour from 

the tube bundle is approximately equal to the latent heat of steam condensing on 

the shell-side of evaporator. Saturated steam at 70˚C flows at shell-side of 

evaporator at 13.5 kg/s. Therefore, at the end of evaporation effect, 40% of the 

solids concentrated at the tube exit respectively reducing milk flow rate to about 

6.5 kg/s. High heat transfer coefficients of milk-side 2000 W/m2˚C and 

condensation side 5000 W/m2˚C achieved by overall heat transfer rate of about    

31,497 kW across evaporator area of 4500 m2.   

After introducing saturated steam to the MVR unit, the temperature of vapour 

recirculating for condensation in shell-side raised above steam saturation 

temperature, i.e. vapor is superheated. Presently, industries opt to use water spray 

to reduce the superheat associated with required pressure to maintain evaporator 

efficiency. If superheated steam is sent for condensation then heat transfer duty 

could be decreased, consequentially affecting evaporation rate. Present analysis of 

vacuum steam desuperheating and condensation gives amounts of superheat and 

different heat transfer coefficients for desuperheating section. By applying the 

present value of desuperheating section heat transfer coefficient, which has been 

found experimentally in chapter 4 (175.2 W/m2˚C), the percentage reduction in the 

evaporation rate can be estimated. Figure 5.2 presents temperature plot of shell-side 

condensation and milk evaporation inside tube bundle. Superheated temperature 

causes influence on maximum temperature potential of evaporator, which reduced 

overall heat transfer duty of the evaporator. 
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Figure 5.2: Temperature profile of milk evaporation. 

Table 5.1 presents the reduction in the milk flowrates and equivalent steam 

flowrates on the shell-side of evaporator, and overall heat transfer duty of milk 

evaporator. An increase in superheat of steam decrease the milk flowrate running 

through tube bundle. Figure 5.3 presents percentage reduction in milk flowrate by 

varying the vapour superheat. 
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Table 5.1: Effect of superheat on the rating of milk evaporator. 

Shell-side saturated steam condensation in milk evaporator 

mmilk (kg/s) 

msteam (kg/s) 

Aevaporation (m2) 

Qevaporation (kW) 

20 

13.5 

4410 

31,497 

Shell-side superheated steam condensation in milk evaporator 

Udesuperheat = 175.2 W/m2˚C 

ΔTsuperheat mmilk msteam 

milk 

flowrate 

reduction 

Qevaporation Adesuperheat Acond 

(˚C) kg/s kg/s % kW 
 

m2 

 

 
m2 

 

60 18.45 12.45 7.7 30508.65 353.78 4055.73 

50 18.49 12.48 7.5 30334.89 332.87 4076.65 

40 18.60 12.55 6.9 30281.04 307.44 4102.07 

30 18.75 12.65 6.2 30274.77 275.06 4134.46 

20 18.95 12.79 5.2 30351.1 230.67 4178.85 

10 19.27 13.00 3.6 30604.22 160.84 4248.68 

5 19.53 13.18 2.3 30889.88 103.20 4306.32 
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Figure 5.3: Effect of superheat on the milk flowrate in milk evaporator.  

B) Effect of Superheated Vacuum Steam Condensation on Area of 

Evaporation (Fixed Duty of Evaporation) 

Another possible approach to confront involved superheat is to size the evaporator 

for desired evaporation rate accordingly. In this example, the milk flowrate going 

in to the tube bundle is kept the same, the steam flow also constant. Therefore, the 

area requirement of evaporator changes as the amount of superheat varies to achieve 

desired duty. Different amount of superheat associated with respective additional 

desuperheating areas while condensation area remains same. Table 5.2 shows 

percentage change in area of evaporator to maintain the desired rate of evaporation 

for different superheated vacuum steam temperatures, which is condensing on the 

shell-side of evaporator. Figure 5.4 shows percentage oversizing of milk evaporator 

with increase in superheated vacuum steam temperature. 
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Table 5.2: Effect of superheated steam condensation on sizing of evaporator  

mmilk (kg/s) 

msteam (kg/s) 

Acondensation (m2) 

Qevaporation (kW) 

20 

13.5 

4410 

31,497 

ΔTsuperheat Adesuperheat area of Oversize 

(˚C) (m2) % 

60 384.6 8.7 

50 360.1 8.2 

40 330.5 7.5 

30 293.3 6.7 

20 243.4 5.5 

10 167 3.8 

5 105.7 2.4 

 

 

Figure 5.4: Influence of superheat on the area of milk evaporator. 
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5.3 Conclusion 

Influence of present vacuum steam desuperheating and condensation heat transfer 

analysis on the industrial milk evaporation has been described in this industrial 

application section. Milk evaporators in dairy industries are equipped with 

mechanical vapour recompression (MVR) and Thermal vapour recompression 

(TVR) for effective utilisation of energy (steam utility system). These systems 

generate superheated steam, which is inefficient for milk evaporation. Thus, after 

superheated steam generation, desuperheating sprays are used to desuperheat the 

steam and then saturated steam sends to the evaporator. However, desuperheating 

spray increases mass flowrate of saturated vapour due to extra mass of sprayed 

water added in it, which can affect condensation significantly. This chapter 

estimated reduction in the milk and vapour flowrates if superheated steam uses for 

evaporation. Superheated steam therefore is not useful in the milk evaporation.  
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Chapter Six  

Conclusion and Future Work 

6.1 Conclusion 

About 60% of the shell-side area of total vertical shell and tube condenser (VSTC) 

involved desuperheating of steam and the remaining area was steam condensation. 

Degree of superheat varies with vacuum steam pressure; it is more for high vacuum 

steam pressure (e.g. 0.3 barabs) and shows approximately linear decrease towards 

low vacuum steam pressure (e.g. 0.8 barabs), therefore the area required for 

desuperheating reduced as vacuum pressure lowers. The probability of steam 

flowrate influencing the averaged heat transfer coefficient is significant. Averaged 

heat transfer coefficients varied between 140 W/m2 °C (at vacuum steam pressure 

about 0.8 barabs) and 287 W/m2 °C (at vacuum steam pressure about 0.32 barabs) in 

the desuperheating section. Out of total heat transfer, approx. 0.70 kW average 

sensible heat transfer was attained across the desuperheating section. Nearly 45% 

of the vacuum steam condensed in the shell-side VSTC, and two-phase flow of 

saturated vapour and condensate was observed at the shell outlet of VSTC.  

A dry tube wall facing shell-side steam promotes smooth increase in sensible heat 

transfer without change in steam phase in the desuperheating section. Temperature 

fluctuations along the length of VSTC during desuperheating section is due to low 

tube wall temperature that are below saturation temperature of steam, which 

promotes localised condensing and evaporating vacuum steam. Reduction in steam 

flowrate by 20% to 40% entering shell-side of VSTC reduces desuperheating 

section by 10%. About 20% to 50% reduction in Reynolds number observed after 

steam flowrate reduction due to decrease in steam mass velocity. 

On an average 10 kW heat transfer achieve in the remaining condensation section 

of VSTC, and the averaged condensation heat transfer ranges from 4000-7000 

W/m2 ˚C. No significant change in Reynolds number of condensation section 

observed after desuperheating section. Decrease in the steam flowrate increases the 

condensation section by approximately 30% of VSTC, therefore increases the duty 

of VSTC by 10%. Increasing tube-wall temperature reduces condensation section. 
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Use of superheated steam in the milk evaporator for milk powder production:  

a) for fixed area of evaporation- reduces the overall evaporation duty by 

dropping milk flowrates inevitably lowering percentage milk powder at 

evaporator exit; and  

b) for fixed evaporation duty (constant milk and steam flowrates) - increases 

area of evaporator to achieve steam desuperheating and then condensation on 

shell-side of milk evaporator.   

6.2 Recommendations for Future Work 

A number of areas for future research have been identified based on the 

experimental work presented in this thesis. 

6.2.1 Advancement in Test Facility and Experimentation 

The present investigation of vacuum steam desuperheating and condensation was 

limited to vertical tube geometry. The orientation and geometry can greatly affect 

the performance of the condenser. For example, condensate flow patterns on 

horizontal tube bundles are different for vertical tubes. Similar vacuum steam 

desuperheating and condensation investigations can performed by changing 

geometries of condenser such as horizontal and inclined condensers, and flow 

arrangements. Different fluids can be used as a coolant instead of cold water to see 

consecutive effect on rate of vacuum steam condensation. The constant parameters 

in the current experiments such as flowrate of cooling water through tubes, 

condensate flowrate can be changed to see their effect on desuperheating.  

6.2.2 Combination of Different Parameters 

The influence of non-condensable gas (NCG) for low vacuum steam 

desuperheating and condensation could be investigated. Minkowycz and Sparrow 

(1969) investigated involvement of NCG with superheated steam condensation, 

however at sub-ambient pressures and on flat vertical plate. Therefore, influence of 

NCG on desuperheating at tested vacuum steam pressures can affect the 

performance and condensation mechanism. Temperature profile of desuperheating 

and condensation section can be analysed with different models.  
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Appendix A: Heat Transfer Correlations  

Following formulae used to calculate the averaged heat transfer coefficient of shell-

side vertical shell and tube condenser (VSTC). 

Heat Transfer areas, 

 Area of tube VSTC, 

 𝐴𝑐𝑡
= ((𝜋

4⁄ ) × 𝑑𝑖
2 × 𝑁𝑡) (6-1) 

 Area of Shell VSTC, 

 𝐴𝑐𝑠
= {[(𝜋

4⁄ ) × 𝑑𝑖𝑠
2

] − [(𝜋
4⁄ ) × 𝑑𝑖

2 × 𝑁𝑡]} (6-2) 

Hydraulic diameter of shell VSTC, 

 𝐷ℎ =
4 × 𝐴𝑐𝑠

((𝜋
4⁄ ) × 𝑑𝑖 × 𝑁𝑡)

 (6-3) 

Velocity, 

 
𝑉𝑠 = (

𝑚𝑠𝑡𝑒𝑎𝑚
𝜌𝑠

⁄

𝐴𝑐𝑡

) (6-4) 

Reynold number, 

 𝑅𝑒𝑠 = (
𝜌𝑠 × 𝑉𝑠 × 𝑑𝑖

𝜇𝑠
) (6-5) 

  

Prandtl number, 

 𝑃𝑟 =
𝜇𝑠 × 𝑐𝑝

𝑘𝑠
 (6-6) 

Nusselt number of VSTC, 

 𝑁𝑢 = 0.023 × 𝑅𝑒0.8  × 𝑃𝑟0.4 (6-7) 

Heat transfer coefficient for VSTC, 

 ℎ𝑠 =
(𝑁𝑢 × 𝑘𝑠)

𝑑𝑖
 (6-8) 
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Rate of Heat transfer in VSTC, 

 𝑄𝑠 =  𝑚𝑐𝑜𝑛𝑑 × 𝛥ℎ𝑠 (6-9) 

 𝑄𝑤 =  𝑚𝑤 × 𝛥ℎ𝑤 (6-10) 

Averaged heat transfer coefficient, 

 𝑄 =  𝑈 × 𝐴 × 𝛥𝑇𝐿𝑀𝑇𝐷 (6-11) 

Mass of steam condensate at shell of VSTC, 

 𝑚𝑐𝑜𝑛𝑑 =  
𝑄𝑤

𝛥ℎ𝑠
 (6-12) 

Where,  

ℎ = 𝑓( 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)  At saturated vapour or liquid phase. 

Percentage steam condensation in VSTC, 

 𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 =  
𝑚𝑠

𝑚𝑐𝑜𝑛𝑑
% (6-13) 

Amount of superheat in steam, 

 𝛥𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡 = 𝑇𝑠 − 𝑇𝑠𝑎𝑡 (6-14) 

 

Vapour fraction at shell exit of VSTC, 

 𝑉𝑎𝑝𝑜𝑢𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (1 −
𝑚𝑐𝑜𝑛𝑑

𝑚𝑠
) (6-15) 

Nusselt number of desuperheating section, 

 
𝑁𝑢 = (

ℎ × 𝐿𝑐

𝑘
) (6-16) 
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Appendix B: Temperature and Flow-rate of Test Pressures  

Table 6.1: Temperature profile for different test pressures along the length of VSTC (Test: 2) 

Length of 

VSTC (m) 
0 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97 1.07 1.14 0 1.14 

Pressures Steam temperatures (˚C) 

Water 

Temperatures 

(˚C) 

barabs kPag T1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T3 T2 T4 

0.3 -68.0 131.8 102.0 114.0 78.2 104.4 71.6 89.0 70.8 70.2 69.4 69.7 69.8 73.5 48.6 54.5 

0.3 -66.0 132.3 101.5 115.1 80.5 107.0 73.3 92.6 73.0 71.3 70.7 71.0 71.1 72.0 49.1 55.3 

0.3 -64.0 133.1 103.9 117.1 81.4 108.8 73.9 94.3 74.5 72.2 71.6 71.9 72.0 72.0 48.9 55.5 

0.4 -62.0 129.4 102.4 115.3 82.3 108.4 74.9 94.6 75.9 73.3 72.9 73.1 73.3 73.2 48.8 55.8 

0.4 -60.0 126.5 101.0 113.8 83.2 108.0 75.3 87.8 76.2 73.8 73.7 73.8 74.0 73.8 49.1 56.4 

0.4 -58.0 127.1 101.4 114.1 83.8 108.1 75.8 85.7 76.8 74.3 74.1 74.2 74.4 74.2 48.8 56.3 

0.4 -56.0 128.7 105.6 114.6 86.1 109.5 76.5 86.3 78.4 75.1 75.1 75.1 75.3 75.0 48.6 56.5 

0.4 -54.0 129.4 102.7 110.6 85.4 110.2 77.7 84.5 78.5 76.2 76.2 75.8 76.3 76.2 49.2 57.7 
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Length of 

VSTC (m) 
0 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97 1.07 1.14 0 1.14 

Pressures Steam temperatures (˚C) 

Water 

Temperatures 

(˚C) 

barabs kPag T1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T3 T2 T4 

0.4 -52.0 130.2 106.0 118.6 106.6 113.6 78.3 83.8 79.3 76.6 76.7 76.7 76.8 76.5 48.6 57.1 

0.4 -50.0 131.2 104.5 103.1 91.0 112.9 78.7 79.9 79.2 76.7 76.9 76.4 76.9 76.6 49.2 58.1 

0.5 -48.0 130.0 102.3 119.0 89.4 114.2 81.8 88.1 81.9 80.7 80.7 80.5 80.8 80.8 48.0 57.5 

0.5 -46.0 130.8 104.5 119.6 92.8 115.4 82.5 87.3 82.5 81.2 81.2 81.1 81.3 81.2 48.8 58.4 

0.5 -44.0 131.2 105.4 120.3 93.9 116.2 83.3 86.8 83.3 82.0 82.1 81.8 82.1 82.0 49.0 58.8 

0.5 -42.0 131.6 106.3 121.2 95.0 117.1 83.3 85.1 83.4 81.8 81.9 81.7 82.0 81.8 49.3 59.0 

0.5 -40.0 133.7 107.3 118.8 96.8 119.0 83.0 83.4 83.2 80.5 80.8 80.3 81.0 80.4 49.2 59.4 

0.5 -38.0 132.8 107.9 122.5 98.0 118.8 84.9 85.7 85.0 83.3 83.5 83.3 83.6 83.3 49.6 59.7 

0.6 -36.0 133.2 107.3 122.9 98.9 119.4 85.8 86.4 85.9 84.2 84.4 84.1 84.5 84.2 49.0 59.5 

0.6 -34.0 133.4 104.6 123.0 99.7 119.7 86.3 86.8 86.4 84.7 84.9 84.7 85.0 84.7 49.1 59.7 

0.6 -32.0 133.8 105.3 123.4 100.3 120.4 87.4 87.9 87.5 85.7 85.9 85.7 86.1 85.7 49.7 60.5 

0.6 -30.0 134.0 110.6 122.7 99.8 120.4 87.9 88.4 88.1 86.1 86.3 86.1 86.5 86.1 49.3 60.4 
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Length of 

VSTC (m) 
0 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97 1.07 1.14 0 1.14 

Pressures Steam temperatures (˚C) 

Water 

Temperatures 

(˚C) 

barabs kPag T1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T3 T2 T4 

0.6 -28.0 131.6 108.6 121.5 93.6 119.2 86.9 87.4 87.2 84.0 84.4 84.0 84.6 83.8 49.1 60.7 

0.6 -26.0 131.3 108.6 121.5 94.4 119.1 87.6 88.1 87.9 84.6 85.1 84.7 85.3 84.5 49.2 61.0 

0.6 -24.0 131.5 110.9 120.2 92.6 117.9 88.0 88.4 88.3 85.0 85.5 85.2 85.7 84.9 49.3 61.2 

0.6 -22.0 131.6 113.8 121.1 92.6 117.2 88.0 88.5 88.3 85.1 85.5 85.2 85.8 84.9 48.9 60.3 

0.6 -20.0 130.5 105.8 121.6 95.9 117.6 88.9 89.3 89.2 85.9 86.3 86.1 86.6 85.7 49.0 60.8 

0.8 -7.5 132.2 115.8 123.2 98.3 117.1 94.7 95.0 94.8 92.9 93.2 92.3 93.4 92.9 49.4 62.4 

0.8 -5.0 132.3 116.6 124.1 98.9 117.8 95.2 95.6 95.4 93.5 93.7 92.8 93.9 93.4 48.9 62.2 

0.9 0.0 132.4 113.0 123.0 100.8 120.5 96.8 97.2 96.8 95.4 95.5 94.4 95.7 95.4 49.5 63.3 

1.3 25.0 133.3 119.0 126.3 108.8 122.2 107.0 107.4 106.9 106.4 106.3 104.7 106.5 106.4 48.5 65.3 

1.4 50.0 133.6 121.3 128.8 113.2 121.8 109.6 109.9 109.8 107.9 108.2 107.9 108.5 107.8 49.0 66.8 

1.6 75.0 134.7 123.8 130.0 117.6 120.0 114.3 114.7 114.6 112.3 112.7 112.6 112.9 112.1 49.7 69.0 

1.9 100.0 135.9 129.4 131.1 121.7 122.5 119.2 119.5 119.4 117.3 117.6 117.1 117.9 117.3 48.7 70.8 
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Appendix C: Steam Flowrate and 

Condensation in VSTC 

Steam flow rate for each run of experiment.  

Table 6.2: Steam flow-rate and condensation inside shell-side VSTC 

Pressures msteam Percentage 

condensation 

in VSTC 

kPag Psat kg/s % 

Experiment 1: Vacuum steam 

condensation at different steam 

pressures (Test 2) 

-68 0.33 0.007229 8 

-66 0.34 0.006394 8 

-64 0.36 0.006373 8 

-62 0.37 0.009054 10 

-60 0.37 0.008877 10 

-58 0.39 0.007743 12 

-56 0.40 0.006736 12 

-54 0.41 0.007882 13 

-52 0.41 0.009218 15 

-50 0.49 0.009916 15 

-48 0.50 0.009589 17 

-46 0.51 0.009444 16 

-44 0.52 0.008463 17 

-42 0.50 0.008992 18 

-40 0.55 0.009160 20 

-38 0.57 0.009590 22 

-36 0.59 0.010061 21 

-34 0.61 0.010779 22 

Pressures msteam Percentage 

condensation 

in VSTC 

kPag Psat kg/s % 

-32 0.61 0.010677 22 

-30 0.56 0.009976 21 

-28 0.59 0.008528 25 

-26 0.59 0.009591 29 

-24 0.60 0.010094 33 

-22 0.77 0.014518 20 

-20 0.79 0.012423 31 

-7.5 0.80 0.015276 25 

-5 0.82 0.014890 23 

0 0.87 0.014756 24 

25 1.27 0.017587 26 

50 1.37 0.021407 32 

75 1.60 0.021661 38 

100 1.87 0.026795 40 

Experiment 2: Reduced steam 

flowrate 

-66 0.33 0.003273 51 

-64 0.34 0.005564 89 

-62 0.36 0.005564 57 

-52 0.41 0.005522 60 
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Appendix D: Generated Condensation Models 

for Test Pressures 
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Figure 6.7: -58 kPag 
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Figure 6.13: -46 kPag 
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Figure 6.19: -34 kPag 

 

 

Figure 6.20: -32 kPag  

 

 

Figure 6.21: -30 kPag 

 

Figure 6.22: -28 kPag 

 

 

Figure 6.23: -26 kPag 

 

 

Figure 6.24: -24 kPag 

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam
Temperatures
water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam Temperatures

water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam Temperatures

water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam Temperatures

water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam Temperatures

water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T[
˚C

]

L [m]

Steam Temperatures

water Tempertures

Model 1: Low

Model 3: Ave

Model 2: High



 

112 

 

Figure 6.25: -22 kPag 

 

 

Figure 6.26: -20 kPag 

 

 

Figure 6.27: -18 kPag 

 

Figure 6.28: -16 kPag 

 

 

Figure 6.29: -14 kPag 

 

 

Figure 6.30: -12 kPag 
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Figure 6.31: -10 kPag 

 

 

Figure 6.32: -7.5 kPag 

 

 

Figure 6.33: -5 kPag 

 

Figure 6.34: 0 kPag 

 

 

Figure 6.35: 25 kPag 

 

 

Figure 6.36: 50 kPag 
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Figure 6.37: 75 kPag 

 

Figure 6.38: 100 kPag 
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Appendix E: Calculated Factors from Heat Transfer Analysis of Model 3 – Low 

Desuperheating and Condensation Sections of VSTC 

Pg Psat ∆T 

superheat 

Tsat mcond Vapour 

fraction 
LMTD 

desup 

LMTD 

cond 

A 

desup 

Acon

d 

Q 

desup 

Q 

cond 

U 

desup 

Ucond Re 

desup 

Re 

cond 

Pr 

desup 

Pr 

cond 

Nu 

desup 

Experiment 1: Different vacuum steam pressures  

-68 0.33 61 71 0.0023 0.68 45 19 0.08 0.07 0.7 5.4 205 4717 19531 21418 0.98 1.02 397 

-66 0.34 61 72 0.0027 0.58 47 19 0.09 0.05 0.6 6.3 151 6463 17207 18869 0.98 1.02 289 

-64 0.36 56 73 0.0029 0.54 47 20 0.09 0.05 0.6 6.8 139 6611 17218 18740 0.98 1.02 266 

-62 0.36 53 74 0.0029 0.67 46 21 0.09 0.05 0.7 6.9 190 6626 24543 26573 0.99 1.02 368 

-60 0.37 53 74 0.0030 0.66 46 21 0.09 0.05 0.7 7.1 183 6657 24026 26019 0.99 1.02 354 

-58 0.39 54 75 0.0032 0.58 48 22 0.09 0.05 0.6 7.6 156 6866 20883 22640 0.99 1.02 300 

-56 0.40 51 76 0.0034 0.50 48 23 0.09 0.06 0.5 7.9 140 6126 18181 19646 0.99 1.02 268 

-54 0.41 54 77 0.0036 0.55 50 23 0.09 0.06 0.7 8.2 164 6257 21167 22943 0.99 1.02 316 

-52 0.41 54 77 0.0037 0.60 49 22 0.09 0.06 0.8 8.6 196 6773 24714 26826 0.99 1.02 379 

-50 0.48 49 81 0.0040 0.60 53 27 0.09 0.06 0.8 9.2 177 5959 26489 28528 0.99 1.02 341 

-48 0.49 50 81 0.0040 0.58 53 27 0.09 0.06 0.8 9.2 172 6077 25568 27545 0.99 1.02 331 

-46 0.51 49 82 0.0041 0.56 53 28 0.09 0.06 0.7 9.4 166 6125 25140 27069 0.99 1.02 320 
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Pg Psat ∆T 

superheat 

Tsat mcond Vapour 

fraction 
LMTD 

desup 

LMTD 

cond 

A 

desup 

Acon

d 

Q 

desup 

Q 

cond 

U 

desup 

Ucond Re 

desup 

Re 

cond 

Pr 

desup 

Pr 

cond 

Nu 

desup 

-44 0.51 49 82 0.0041 0.51 53 27 0.08 0.06 0.6 9.5 162 5566 22512 24249 0.99 1.02 311 

-42 0.49 51 81 0.0040 0.55 53 27 0.08 0.07 0.7 9.2 179 5622 23929 25843 0.99 1.02 346 

-40 0.54 49 83 0.0043 0.53 55 28 0.08 0.07 0.7 10 169 5608 24273 26131 0.99 1.02 325 

-38 0.56 50 84 0.0045 0.53 56 30 0.08 0.06 0.7 10 171 5580 25367 27286 0.99 1.02 328 

-36 0.58 48 85 0.0046 0.55 57 30 0.05 0.09 0.7 10 257 3984 26573 28553 0.99 1.02 503 

-34 0.61 47 86 0.0046 0.57 57 31 0.05 0.09 0.8 11 270 4009 28413 30502 0.99 1.02 530 

-32 0.61 47 86 0.0048 0.55 57 31 0.08 0.06 0.8 11 180 5654 28132 30206 0.99 1.02 347 

-30 0.56 47 84 0.005 0.50 55 29 0.08 0.06 0.7 11 164 7092 26461 28415 0.99 1.02 315 

-28 0.58 46 85 0.0051 0.40 56 30 0.08 0.06 0.6 12 145 6360 22596 24210 0.99 1.02 277 

-26 0.58 46 85 0.005 0.49 56 30 0.09 0.05 0.7 11 140 7482 25405 27233 0.99 1.02 268 

-24 0.60 44 86 0.0051 0.49 56 31 0.09 0.05 0.7 12 141 7628 26746 28591 0.99 1.02 271 

-22 0.76 42 92 0.005 0.63 61 36 0.05 0.09 0.97 12 297 3942 37941 40398 1 1.02 587 

-20 0.79 42 93 0.005 0.56 62 37 0.05 0.09 0.8 13 247 3960 32411 34492 1 1.02 482 

-7.5 0.80 39 94 0.0056 0.63 61 37 0.05 0.09 0.9 13 287 3966 39979 42354 1 1.02 566 

-5 0.82 38 94 0.0057 0.61 62 38 0.05 0.09 0.8 13 272 3988 38938 41220 1 1.02 535 

0 0.87 37 96 0.0060 0.59 62 39 0.05 0.09 0.8 13 256 4090 38494 40654 1 1.02 500 
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Pg Psat ∆T 

superheat 

Tsat mcond Vapour 

fraction 
LMTD 

desup 

LMTD 

cond 

A 

desup 

Acon

d 

Q 

desup 

Q 

cond 

U 

desup 

Ucond Re 

desup 

Re 

cond 

Pr 

desup 

Pr 

cond 

Nu 

desup 

25 1.27 27 106 0.0074 0.57 70 49 0.05 0.09 0.7 17 194 4017 45209 47055 1 1.03 376 

50 1.37 25 109 0.0080 0.62 71 50 0.06 0.08 0.7 18 215 4170 54848 56923 1 1.03 419 

75 1.59 22 113 0.0088 0.60 73 53 0.05 0.09 0.7 19 179 4255 55106 56889 1 1.04 345 

100 1.87 18 118 0.0101 0.62 78 57 0.05 0.09 0.7 22 171 4536 67645 69455 1 1.02 329 

Experiment 2: Reduced steam flowrate 

-66 0.34 59 72 0.0029 0.11 47 20 0.08 0.06 0.3 6.8 87 4721 8833 9661 0.98 1.01 164 

-64 0.33 58 71 0.0029 0.49 45 19 0.08 0.06 0.5 6.6 151 4916 15086 16453 0.98 1.01 289 

-62 0.36 54 73 0.0031 0.43 45 20 0.08 0.06 0.5 7.3 138 5331 14974 16242 0.99 1.02 265 

-52 0.41 50 76 0.0037 0.32 49 23 0.08 0.06 0.5 8.6 1331 5444 16692 17996 0.99 1.02 255 

Experiment 3: Shell-side tube wall temperatures greater than steam saturation temperatures 

-60 0.37 53 74 0.0004 0.59 18 2 0.09 0.05 0.08 1.0 56 8673 2754 2985 0.99 1.02 105 

-50 0.43 52 78 0.0004 0.81 20 3 0.09 0.05 0.20 1.1 120 6117 6792 7344 0.99 1.02 228 

-42 0.52 44 82 0.0006 0.78 15 2 0.09 0.05 0.2 1.4 141 13995 7364 7868 0.99 1.02 270 

-36 0.56 45 84 0.0006 0.84 15 2 0.09 0.05 0.2 1.3 186 14982 9356 10004 0.99 1.02 359 
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Appendix F: Re-testing of Test Pressures 

 

Figure 6.39:  -70 kPag reinspection 

 

 

Figure 6.40:  -68 kPag reinspection 

 

 

Figure 6.41:  -66 kPag reinspection 

 

Figure 6.42: -64 kPag reinspection 

 

 

Figure 6.43: -62 kPag reinspection  

 

 

Figure 6.44: -60 kPag reinspection 
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Figure 6.45: -58 kPag reinspection 

 

 

Figure 6.46: -56 kPag reinspection 

 

 

Figure 6.47: -54 kPag reinspection 

 

Figure 6.48: -52 kPag reinspection 

 

 

Figure 6.49: -50 kPag reinspection 

 

 

Figure 6.50: -48 kPag reinspection 
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Figure 6.51: -46 kPag reinspection 

 

 

Figure 6.52: -44 kPag reinspection 

 

 

Figure 6.53: -42 kPag reinspection 

 

Figure 6.54: -40 kPag reinspection 

 

 

Figure 6.55: -38 kPag reinspection 

 

 

Figure 6.56: -36 kPag reinspection 
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     Figure 6.57: -34 kPag reinspection 

 

 

      Figure 6.58: -30 kPag reinspection 

 

 

      Figure 6.59: -32 kPag reinspection 
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