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Abstract 

An aqueous prehydrolysate (or prehydrolysis liquor) was produced during a mild 

hot-water prehydrolysis (90 minute ramp to 175°C) of commercial radiata pine 

wood chips.  Oligosaccharide and polysaccharide material was separated from the 

concentrated prehydrolysate using solvent precipitation after most of the non-

carbohydrate material was removed. 

 

These polymeric carbohydrates were fractionated based on charge and molecular 

weight by size-exclusion chromatography (SEC). The fractions were each 

analysed by a number of methods including MALDI-ToF mass spectrometry, and 

NMR.  A number of different types of carbohydrate polymer structures were 

found that were produced due to the partial de-polymerisation of the wood 

hemicelluloses during the prehydrolysis process.  

 

The O-acetylated (galacto)glucomannans were the most extensively characterised. 

These partially-acetylated hexose-based polymers were the main type found and 

accounted for approximately 54% by mass of the polymeric carbohydrates. Most 

appeared to contained between 5 and 79 hexose units with differing degrees of 

acetylation. The average mol ratio of components in these polymers was 

calculated to be approximately 3.7 : 1.3 : 1 : 0.2 (D-mannosyl : acetyl : D-glucosyl 

: D-galactosyl).  They had a structure consistent with a linear backbone of β-1,4-

linked D-mannopyranosyl and β-1,4-linked D-glucopyranosyl units with acetyl 

groups attached at C-2 and C-3 positions of some D-mannopyranosyl units.  The 

terminal D-galactopyranosyl units were likely to be attached at 1,4,6-linked D-

mannopyranosyl branch points. Of the neutral (non-anionic) polysaccharides, this 

type was most prevalent in the higher molecular weight fractions. 
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Anionic pentose-based polymers with a backbone of β-1,4-linked D-xylopyranosyl 

units were also characterised. Identified as (arabino)glucuronoxylans, they 

featured uronic acid groups consistent with 4-O-methyl-α-D-glucopyranosyluronic 

acids attached to the C-2 position of some D-xylopyranosyl units. Smaller 

amounts of terminal α-L-arabinofuranosyl units likely to be attached at β-1,3,4-

linked D-xylopyranosyl branch points were also detected. These polymers 

appeared to mostly contain between 5 and 40 pentose units with between 1 and 4 

uronic acid groups attached.  

 

The anionic fractions (approximately 30% by mass) also contained large amounts 

of D-galactopyranosyl and L-arabinosyl units along with some D-glucuronic and 

D-galacturonic acid residues. This suggested the presence of carbohydrates 

produced from the partial hydrolysis of arabinogalactans and pectins. 

 

The smaller molecular weight fractions of non-anionic polysaccharides were 

enriched in both 1,4-linked D-galactopyranosyl units and non-acetylated hexose-

based polymers that contained between 5 and 30 hexose units; this suggested that 

significant amounts 1,4-galactan derived carbohydrates were present.  Small 

amounts of oligomers containing only pentose units were detected in these smaller 

molecular weight fractions along with what appeared to be other uncharged 

fragments of the polysaccharide-types that were present in the anionic fractions. 
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1 Chapter 1  Introduction & Background 

1.1 Introduction 

Radiata pine (Monterey pine, Pinus radiata) is New Zealand‟s principal 

plantation forests species covering approximately 1,500,000 ha in 2006 [1]. 

Radiata pine wood is processed into a number of different products, including 

those manufactured by the pulp and paper industry. The industrial-scale facilities 

and processes used in pulp and paper mills have the potential to act as 

biorefineries in the future, producing renewable wood-derived chemicals and 

reducing the reliance on petrochemical-based products [2].     

 

Hemicelluloses are a diverse group of polysaccharides that are found in structural 

plant materials such as wood.  Lignocellulosic biomass such as wood is primarily 

composed of three general types of organic polymers, cellulose, lignins, and 

hemicelluloses. As they account for approximately 30% of the dry weight of 

radiata pine wood,  hemicelluloses are a large sustainable resource [3, 4]. 

 

In the normal kraft pulping process the alkaline pulping liquor is added directly to 

the wood chips and the mixture heated to 160-170˚C, and held at that temperature 

until the target amount of lignin has been extracted out of the chips.  During this 

stage more than half of the hemicelluloses and a small amount of the cellulose are 

also extracted and pass to the pulping liquor along with the lignin.  The spent 

liquor at the end of pulping is sent to the recovery boiler where the extracted 

organic material is burnt to provide energy for the process [3]. 
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A variation of the kraft process is the prehydrolysis-kraft process where a steam 

or hot-water hydrolysis stage is inserted prior to the main kraft pulping stage.  The 

reason for including the prehydrolysis stage is to increase the extraction of 

hemicelluloses in order to produce a cellulose-rich final pulp with a low 

hemicellulose content. These pulps are called dissolving pulps and are often not 

used for paper manufacture, but for manufacturing textiles along with cellulose 

derivatives such as cellulose esters and cellulose ethers. The water heated to over 

100˚C under pressure, will cause hydrolysis of some glycosidic linkages within 

the hemicelluloses. This causes the extracted hemicellulose-derived material in 

the resulting prehydrolysis liquor to be mainly a mix of polysaccharides, 

oligosaccharides, and monosaccharides. The prehydrolysis liquor (or 

prehydrolysate) is traditionally combined with the main kraft pulping liquor and 

sent to the recovery boiler [2, 3]. 

 

The prehydrolysis stage may offer an opportunity to extract and recover 

potentially valuable hemicelluloses from wood provided the conditions during the 

prehydrolysis stage are sufficiently mild to minimise degradation of the 

hemicelluloses. 

 

This study aimed to characterise the water-soluble polymeric carbohydrates 

present in such a prehydrolysis liquor (or prehydrolysate). The prehydrolysate 

used for the study described in this thesis was produced by heating water up to 

175°C over 90 minutes while circulating it through P. radiata woodchips in a 

sealed digester. Once the water reached 175°C, the prehydrolysis process was 

completed by passing the hot process water through a condenser to yield the 

prehydrolysate solution.  The elucidation of polysaccharide structures contained 

within this solution are the subject of this thesis.     
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1.2 Literature Review 

This section gives a brief overview of previous research and established 

knowledge on hemicelluloses. The composition, distribution, biosynthesis, 

function, and structures of hemicelluloses will be covered with a focus on those 

found in softwoods, especially radiata pine.  Literature methods for the extraction, 

purification, fractionation, analysis, and structural characterisation of plant 

derived polysaccharides will also be covered in some detail. 

1.2.1 General Wood Composition and Structure 

1.2.1.1 Composite and Cellular Structure 

Wood is a composite material that has evolved over millions of years to provide 

trees with a number of important functions needed for their survival. These 

functions include transporting water from roots to the leaves, structural support of 

plant, and the long-term storage of chemicals required for the plants metabolism 

[5, 6].  

 

Through the cross-section of a tree‟s trunk an outer layer of bark is followed by a 

sapwood zone, and finally a heartwood zone around the tree‟s core. Sapwood 

contains metabolically active parenchyma cells that allow the conduction of sap, 

shorter-term storage, and synthesis of biochemicals. The heartwood is generally 

comprised of cell walls which do not contain a protoplast or metabolically active 

cell. These empty or dead cells provide the functions of structural support, 

transport of water and the long-term storage of some biochemicals [5]. 

 

In softwoods such as P. radiata, long tracheid cell structures make up a large 

proportion of the wood‟s volume. They provide support and a pathway for water 

flow. The walls of wood cells are comprised of a number of microscopic layers. 

These include the middle lamella, primary wall, and three layers of secondary 

wall. Each layer of the wall is a composite material consisting of the polymers: 

cellulose, lignin, hemicelluloses, and pectic polysaccharides [5, 6].       

 



  

4 

 

1.2.1.2 Cellulose 

Cellulose typically makes up 40-50% of wood‟s dry weight. Cellulose is a very 

long homopolymer containing only repeating monomer units of anhydro D-

glucose (or more specifically, β-(1→4)-D-glucopyranosyl units). Due to the 

regular linear structure of cellulose, polymers tend to aggregate and form strong 

inter-molecular hydrogen-bonds. Multiple cellulose polymers will form crystalline 

and fibre structures that are very difficult to dissolve. The degree of 

polymerisation (or DP) of cellulose molecules is estimated to be ≈ 10,000 on 

average and represents a chain length of approximately 5 µm [6]. 
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Figure 1: Polymer structure of cellulose 

1.2.1.3 Lignin 

Lignin is a complex three-dimensional polymer composed of many different 

linkages between a diverse range of substituted phenolic units [6]. Lignin acts as a 

matrix in cell walls to hold fibre components such as cellulose in a rigid structure. 

The aim of most pulp & paper processing is to remove lignin from wood in order 

to obtain cellulose–rich fibres. Lignin is known to be covalently linked to some 

hemicelluloses [6-10]. The existence and/or extent of covalent linkages between 

lignin and cellulose in native wood is currently in dispute [6, 11]. 
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1.2.1.4 Hemicelluloses 

In contrast to the homogeneous cellulose polymer chain, hemicelluloses are a 

diverse group of different polymer types, most of which are heterogeneous in 

composition. They are polymers of the monosaccharide sugars D-glucose, D-

galactose, D-mannose, D-xylose, and L-arabinose. Other common components of 

hemicelluloses include: acetyl groups, D-glucuronic acid, D-galacturonic acid, and 

4-O-methyl-D-glucuronic acid [3, 6].  The structural diversity of hemicelluloses is 

discussed later in this chapter. Hemicelluloses generally function in cell walls by 

assisting with binding cellulose fibres and other components such as lignin 

together at a molecular level [12]. 

1.2.1.5 Pectic Polysaccharides 

Pectic polysaccharides are another class of carbohydrate polymers that occur in 

plants. A higher content of uronic acids (usually galacturonic and glucuronic acid) 

tends to distinguish pectic polysaccharides from hemicelluloses [3, 6]. However 

most non-cellulose wood polysaccharides exist somewhere on a continuum 

between what are considered pectins and what are considered hemicelluloses. On 

one extreme is homogalacturonan [13], a polymer that is entirely composed of 

galacturonic acid and esterified galacturonic acid [14] which is definitely 

considered a pectin. On the other extreme, galactoglucomannans are a major type 

of softwood polymer that usually contain no attached uronic acids and are 

definitely considered hemicelluloses. A grey area can exist near the middle of this 

continuum where polymers such as some arabinogalactans [13] are considered to 

be both pectins due to their high uronic acid content and hemicelluloses due to the 

rest of their structure and properties. Pectins and other carbohydrates with high 

uronic acid content are what is sometimes referred to in the pulp and paper 

industry as “anionic trash” [15]. 
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1.2.1.6 Extractives 

Extractives are usually the more non-polar substances in wood that may be 

extracted from the wood using organic solvents. They can include resin acids, 

fats, terpenes, waxes, oleoresin, tannins, flavonoids, and pitches. There is a great 

deal of diversity in the compounds generally consider as extractives [3, 6]. For the 

scope of this thesis, extractives are only relevant as softwoods contain significant 

levels and some polysaccharides can help solubilise these extractives in aqueous 

solutions [15-17].  

1.2.1.7 Inorganics (Ash) 

As most of wood is comprised of compounds that contain only carbon, oxygen, 

and hydrogen, other elements usually make up a very small percentage of wood 

weight. Ash contains the inorganic elements that remain after the combustion of 

wood. Calcium, magnesium, potassium, silicon, sodium, and boron are elements 

which are often abundant in wood ash [6].  

 

1.2.1.8 Variations in Wood Composition 

The chemical composition of wood is likely to be influenced by a number of 

factors including the genetics of the tree, the environment in which it has grown, 

which part of the tree the wood comes from, the age of the tree and its life history 

[4]. 

 

Softwoods contain much higher levels of glucomannan hemicelluloses when 

compared to hardwoods, and P. radiata tends to contain higher glucomannan 

levels compared to many of the other softwoods,  including Norway spruce (Picea 

abies) [3, 6]. At a microscopic level the distribution of lignin, cellulose, pectin 

and hemicellulose components changes across the different layers in the cell wall 

[6].  
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The influence of genetics, environment, and life history, on chemical composition 

is demonstrated in compression wood. Compression wood often forms as a 

localised response to structural stresses and involves an increase in β-(1→4)-D-

galactosyl-based hemicelluloses and changes in lignin composition [18-20]. 

Compression wood content tends to be higher in early stages of a tree‟s life [6].  

1.2.2 The Structural Diversity of Softwood Hemicelluloses 

1.2.2.1 O-Acetylated galactoglucomannans (AcGGMs) 

This type of mannan or glucomannan, is the main type of hemicellulose present in 

most softwoods, including P. radiata. It is a hexose-based polymer with a linear 

backbone of (1→4)-linked β-D-mannopyranosyl and β-D-glucopyranosyl units [3]. 

Attached almost exclusively to some D-mannosyl units on the backbone are acetyl 

groups at positions C-2 & C-3, and terminal α-D-galactopyranosyl units at 

position C-6 (Figure 2) [17, 21].  

 

The degree of acetylation (or DSAc ) for these polymers is ≈ 0.3 which means there 

is on average one acetyl group attached per 3 or 4 hexoses in the backbone. 

Attached D-galactosyl units are rare compared to acetyl groups, meaning that most 

mannosyl units in the backbone bear no attached groups [17, 22, 23].  
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Figure 2: Example of structural features of softwood O-acetylated galactoglucomannan.  

Dashed lines represent the bonds that can attach side groups to some backbone D-mannosyl 

units. 
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The (1→6)-linkage between α-D-galactopyranosyl branches and the D-

mannopyranosyl backbone is especially vulnerable to acid hydrolysis [3]. In 

softwoods, „native‟ galactoglucomannans were thought have a DP of 

approximately 100 [3, 6]. However, recent evidence has suggested molecular 

weights as high as 60,000 Da may well be present and this corresponds to a DP 

well over 300 [17, 21]. 

1.2.2.2 Arabino-4-O-methylglucuronoxylans 

This type of xylan is the second most abundant type of hemicellulose found in 

softwoods. It is predominantly pentose-based with a linear backbone of (1→4)-

linked β-D-xylopyranosyl units [3]. It is known to contain some 4-O-methyl-α-D-

glucopyranosyluronic acid groups attached to the C-2 position [4, 24-30] and 

fewer α-L-arabinofuranosyl units at C-3 positions along the D-xylopyranosyl 

backbone (Figure 3) [21]. 
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Figure 3: Example of structural features of softwood arabino-4-O-methylglucuronoxylans. 

Dashed lines represent the bonds that can attach side groups to some backbone D-xylosyl 

units. 

 

The (1→3)-linkage between α-L-arabinofuranosyl branches and the D-

xylopyranosyl backbone is especially vulnerable to acid hydrolysis [3]. In 

softwoods, „native‟ arabino-4-O-methylglucuronoxylans are thought have a DP of 

approximately 100 [3, 6]. 
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1.2.2.3 Arabinogalactans 

With the exception of larch species, most softwoods contain only minor amounts 

of arabinogalactans. Considered to be a highly branched polymer with a backbone 

of (1→3)-linked β-D-galactopyranosyl units and with many branches at the C-6 

position [3]. Branches of (1→6)-linked β-D-galactopyranosyl units along with 

both terminal and (1→5)-linked L-arabinofuranosyl units have been reported [31]. 

Arabinogalactans in softwood have been reported to contain 3-8 times more D-

galactosyl residues than L-arabinosyl residues and some attached D-glucuronic 

acid [4, 29].  

1.2.2.4 Galactans 

Compression wood contains high levels of a galactan polysaccharide found to 

have a linear backbone of (1→4)-linked β-D-galactpyranosyl units and in some 

cases attached D-glucuronic acid and D-galacturonic acid [6, 19]. 

1.2.2.5 Arabinans 

There is uncertainty about the structures of L-arabinosyl-rich hemicelluloses.  

Some research on softwoods has attributed L-arabinose residues and evidence of 

(1→5)-linked L-arabinofuranosyl units as belonging to arabinans [32, 33].  The 

name “arabinans” suggests that these polysaccharides are mostly comprised of L-

arabinosyl units.   Questions remain as to the existence and extent of any 

polysaccharides in softwoods that are primarily L-arabinose-based. Arabinans 

might not exist as a type of „native‟ softwood hemicellulose. However other 

„native‟ hemicelluloses such as arabinogalactans [29] could undergo partial 

hydrolysis during their extraction and create “arabinans” as the small proportion 

of fragments that happen to be L-arabinose-rich and D-galactose-poor. 

1.2.2.6 Other Xylans 

Oligomers containing only pentose units have been identified as originating from 

softwoods such as  P. radiata and could be composed of D-xylosyl and/or L-

arabinosyl units [32]. As with arabinans there is uncertainty as to the existence of 

any pure xylan polymers in the original wood. Oligomers containing only D-

xylosyl units might only form due to partial hydrolysis of arabino-4-O-

methylglucuronoxylans during the extraction process.  
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1.2.2.7 Pectic Polysaccharides 

Galacturonan, a polymer of  D-galacturonic acid units have been found in both 

softwoods and hardwoods [14]. (1→4)-linked β-D-galactpyranosyluronic acid 

backbones with some attached methyl esters are the general structural features of 

these pectins [6]. Other polysaccharides with high uronic acid content including 

arabinogalactans are sometimes considered pectins [13].  

 

1.2.3 Hemicelluloses from Other Plant Sources 

1.2.3.1 Hardwoods 

Hardwoods are known to contain large amounts of an acetylated type of 4-O-

methylglucuronoxylan [3]. These have been extensively characterized and found 

to have similar structures to the softwood xylans (page 8), with  the main 

differences being that they have far fewer uronic acid groups and some of the D-

xylopyranosyl units are acetylated at positions C-2 and C-3 [25, 34, 35].  

 

Small amounts of glucomannans (2-5% by mass) are present in hardwoods, they 

differ from those in softwoods as they usually contain increased D-glucosyl levels 

and no D-galactopyranosyl branches [3, 6, 36].  

1.2.3.2 Agricultural Residues & Herbaceous Vegetation 

A variety of different hemicelluloses have been characterised in non-tree plants 

[37, 38]. Agricultural residues have attracted attention due to their abundance, 

accessibility, and because their utilisation can solve waste disposal issues [39]. 

 

4-O-methylglucuronoxylans have been identified in sugar beet pulp [40] along 

with other hemicelluloses classed as xyloglucans and glucomannans [41, 42]. 

Xylans have been extracted from parts of flax and kenaf plants, some of these 

xylans have 4-O-methyl-α-D-glucopyranosyluronic acid groups attached to the C-

2 position of the backbone [37, 43-45]. 
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1.2.3.3 Seeds and Fruits 

A galactoglucomannan has been extracted from Acrocomia aculeate and differs 

from softwood galactoglucomannans because the D-galactopyranosyl branches are 

attached at the C-3 position on the D-glucosyl units of the backbone [46]. 

 

A galactoglucomannan has been extracted from kiwifruit (Actinidia deliciosa) that 

has more branching and higher D-glucosyl levels when compared to those found 

in softwoods. A large proportion of its backbone was found to be alternating D-

glucosyl and D-mannosyl units [47]. 

 

1.2.4 The Biology of Hemicelluloses 

1.2.4.1 Biosynthesis of Hemicelluloses 

A number of enzymes have been discovered that are involved in the biosynthesis 

of hemicelluloses in biosynthetic pathways that involve different sugar-

nucleotides and the Golgi apparatus [13]. β-(1,4)-Galactosyltransferase has been 

discovered as being involved in the formation of compression wood in pines [18].  

1.2.4.2 Biological Functions of Hemicelluloses 

The primary biological function of hemicelluloses is as a structural component of 

the cell wall where they help hold cellulose fibrils together using hydrogen 

bonding. Other functions include acting as long-term carbohydrate storage [13, 

48]. Hemicelluloses and pectins also function along with celluloses and lignin to 

create physical barrier structures that protect parts of the plant from the wider 

environment and attack from other organisms [49]. 

1.2.4.3 The Attachment of Hemicelluloses to Lignin, Cellulose and 

Proteins 

Hemicelluloses are attached to cellulose mainly through extensive hydrogen 

bonding[13, 50]. Attachment to lignin is known to occur through ester and ether 

covalent linkages [7]. Uronic acids form esters with the hydroxyl groups on some 

lignin structures [51]. Arabinogalactan-protein complexes are also present in P. 

radiata and other softwoods [31, 52]. 
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1.2.5 Current and Potential Industrial Utilisation of Hemicelluloses 

1.2.5.1 The Integrated Forest Biorefinery Concept 

A forest biorefinery would be industrial facility that converts biomass, such as 

wood chips, into a range of material, chemical and energy products, analogous to 

a petroleum refinery [53, 54]. A number of pulp and paper industry processes that 

have been operating for over 150 years would be called a biorefinery by the 

current definition [2, 55]. Recent interest around forest biorefineries has been 

driven by the realisation that petroleum is a finite resource and that we will 

increasingly have to use renewable resources to create products to replace those 

currently produced from petrochemicals [2]. Hemicelluloses make up a large 

proportion of forest biomass, so alongside cellulose and lignin they are a key 

target for research and development towards industrial conversion into value-

added products [55]. 

1.2.5.2 Kraft Pulp and Paper Mills 

Alkaline degradation during the kraft pulping process causes a peeling reaction 

that coverts much of the hemicelluloses and some of the celluloses into monomers 

then acidic degradation products. Composed largely of glucoisosaccharinic acids 

these sugar degradation products, along with the bulk of the lignin, are sent as 

black liquor to the recovery furnace for combustion [3].  

 

Some hemicelluloses survive the kraft process in polymeric form. Xylans have 

been found to dissolve in the kraft pulping liquor during the early stages of the 

kraft cook then re-bind to the cellulose pulp fibres towards the end of the cook [3]. 

The hemicelluloses left in pulp contribute to the pulp yield (mass) and properties 

of final products [55-59]. 

1.2.5.3 Emulsifying Agent in Thermo-mechanical Pulping (TMP)  

O-Acetylated (galacto)glucomannans (or AcGGMs) extracted from spruce have 

been studied with regard to their ability to help keep hydrophobic extractives 

soluble in thermo-mechanical process water. This utilisation appears to be 

serendipitous as the AcGGMs released from the wood during the pulping process 

act as an emulsifier for the wood resins reducing pitch deposition problems that 

are costly in paper making [17, 50]. 
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1.2.5.4 Monomers as Feedstocks 

Hemicelluloses can be converted into their sugar monomers by hydrolysis 

treatments catalysed by acids, bases, or enzymes. The monomers may then be 

processed further, usually fermented by fungi and bacteria in order to produce a 

range of products.  Xylose, usually hydrolysed from hardwood xylans can be used 

as a feedstock to produce xylitol by chemical reduction [3]. Xylitol can also be 

produced by the fermentation of D-xylose and has applications as a sweetener 

suitable for diabetics [60]. 

 

Hexose sugars, such as D-glucose, D-mannose and D-galactose produced from the 

total hydrolysis of hemicelluloses and cellulose have been used to produce ethanol 

by fermentation [3]. A large amount of research between 1995 and 2010 has 

focused on improving the conversion of lignocellulosic materials into 

monosaccharides for the production of fuel ethanol by fermentation [57, 61-67]. 

The conversion of the pentose monomers (D-xylose and L-arabinose) into ethanol 

has proven to be more challenging [55, 68].  

 

A promising use for monosaccharides produced from hemicelluloses, is in the 

production of lactic acid by fermentation. Fermentation organisms exist that can 

convert both the pentoses and hexoses found in hemicellulose hydrolysates into 

lactic acid with reasonably high yields. Examples of suitable fermentation 

organisms might include Rhizopus oryzae [69, 70] and Lactobacillus pentosus 

[71]. Lactic acid is the monomer building block for producing polylactide (PLA) 

plastics that have experienced strong market demand which is expected to grow in 

the foreseeable future [69, 72]. 
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1.2.5.5 Additives for Pulp, Paper or Textile Products and 

Processes  

Mannans of various types have been utilised for many centuries as additives in the 

paper and textile industries. Non-wood mannans such as guar gum and locust 

bean gum have been used as beater and wet-end additives in the pulp and paper 

industry, often to lower operating costs and improve product strength [50]. Wood-

derived galactoglucomannans and the galactomannans from guar gum have been 

compared for their sorption to pulp and paper products and the improvement in 

tensile strength that they can provide [58, 73]. 

 

Polymers containing backbones of 1-4 linked β-D-mannopyranosyl units 

(mannans) have a tendency to line up parallel to 1-4 linked β-D-glucopyranosyl 

chains in cellulose polymers and form a great number of hydrogen bonds. This 

sorption is very strong, and if the mannan is free of branches, that is no acetyl 

groups or galactose side chains, it can result in complete crystallisation [50]. 

Using this sorption tendency, applications for O-acetylated 

(galacto)glucomannans have been suggested involving their modification and 

sorption to cellulose fibres for abrasion-resistant clothing and functionalised 

medical bandages [17].   

1.2.5.6 Emulsifiers, Thickeners, and Stabilizers 

Polysaccharides such as guar gum and gum arabic are already used as thickeners, 

emulsifiers, and stabilisers in the food and beverage industry and softwood 

hemicelluloses have been investigated for these applications [17, 74, 75]. 

Although softwood hemicelluloses have shown some potential in this area [74], 

they would have to compete commercially with well-established products that 

likely have the advantage of more economical production.  
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1.2.5.7 Hydrogels and Thin Films. 

Softwood hemicelluloses like many polysaccharides can be used to create thin 

films and hydrogels [17, 76, 77]. Thin films have applications such as edible 

oxygen barriers on foods and pharmaceuticals [78]. Hydrogels are basically 

polymer materials that can absorb large amounts of water and form gels. These 

gels also have applications in slow release drug delivery, and tissue engineering 

[79, 80]. Hemicelluloses in any of these potential applications are likely to be 

used as a blend along with other polymers (natural or synthetic) to adjust the 

properties of the final products [81, 82]. 

1.2.5.8 Bioactivity 

Hemicellulose-derived polymers and oligomers can induce changes in living cells 

exposed to them. 4-O-Methylglucuronoxylans with an estimated DP of 200 

extracted from Spanish chestnut (Castanea sativa) have been shown to inhibit the 

proliferation, migration and invasion of certain aggressive cancerous tumors in 

human cell cultures [83]. Influencing plant growth regulation have also been 

suggested as possible applications for some hemicellulose-derived products such 

as de-acetylated galactoglucomannan oligosaccharides [17]. 

1.2.5.9 Flocculating Agents 

Hemicelluloses such as mannans can have the ability to bind onto many different 

types of particle and act as flocculating agents. This property leads to potential 

applications in water cleaning and mineral extraction processes [50]. 

1.2.5.10 Niche Biotechnology and Nanotechnology Applications 

Arabinogalactan hemicelluloses have been used to aid the formation of metal 

nanoparticles [84]. Micelles can be assembled using derivatised xylans [85].  
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1.2.6 Extraction of Hemicelluloses from Wood 

Hemicelluloses occurring within wood are entangled with, hydrogen bonded and 

covalently linked to the other components of the wood, thus in order to extract 

large amounts of hemicelluloses from wood, breaking some of these bonds is 

required. The intermolecular hydrogen bonding between hemicelluloses and other 

carbohydrates such as cellulose may need to be broken and the covalent bonds 

(often ester or ether) between hemicelluloses and lignin or those between lignin 

units may also need to be broken allowing release of hemicelluloses. The covalent 

linkages within the hemicellulose polymer itself can be broken by hydrolysis, 

which releases the hemicelluloses as shorter partially de-polymerised 

carbohydrates. In most extraction methods heat and/or catalysts are required to 

facilitate the breaking of these bonds. In some situations, advantage may be taken 

of differences in solubility between hemicelluloses, lignins and cellulose 

components in order to extract one type of component from the others [3, 6, 86].  

1.2.6.1 Hot Water Hydrolysis 

Treatment with hot water is a convenient process for extracting hemicelluloses. A 

wide range of processing conditions have been used and this has resulted in many 

different terms being used to describe this process.  However, the principal 

reaction taking place in all the variations of the process is the partial hydrolysis of 

the hemicelluloses allowing the degraded fragments to be dissolved, or colloidally 

suspended, in the hot water. The hydrolysis reaction is an acid catalysed reaction, 

but in many instances no additional catalyst needs to be added to the process 

water because the acidity is sufficient to initiate the hydrolysis.  In such cases the 

process is often called autohydrolysis.  The source of the catalytic acid is probably 

a combination of the increased dissociation (ionic product) of water at higher 

temperatures [68] along with the acidic groups found on the  pectins, 

hemicelluloses and sometimes the extractives [3].  

 

Thermo-mechanical pulping (TMP) represents one of the more mild hot water 

hydrolysis processing conditions. The mildly acidic conditions present during 

processing solubilises and hydrolyses the hemicelluloses to some extent, although 

the extracted polymers are relatively large (20-60kDa for spruce AcGGM) [15] 

due to limited hydrolysis under mild conditions.  
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The hot water prehydrolysis used to extract polysaccharides for this thesis was 

carried out under moderate conditions. The chips and water were heated from 

ambient to 175°C over 90 minutes, reaching a maximum pressure of ≈ 7 x 10
2 

kPa. Similar prehydrolysis/autohydrolysis conditions have been used to extract 

hemicelluloses from southern pine [87] and spruce [88]. 

 

Steam explosion [28, 62] and microwave initiated hydrolysis [34, 89, 90] are 

other procedures that have been used to extract hemicelluloses from wood using 

hot water. Generally steam explosion tends to be a more severe hydrolysis, thus 

resulting in the extraction of smaller polymeric carbohydrates, more sugar 

monomers, but also an increase in losses due to sugar degradation [87]. 

 

Supercritical water represents an extreme form of hot water hydrolysis at 

temperatures above 374°C and pressures above 22.1 x 10
3
 kPa. Under these 

conditions even cellulose is quickly hydrolysed into oligomers, monomers and 

large quantities of sugar degradation products [68]. 

1.2.6.2 Catalysed Hydrolysis 

Higher amounts of hemicelluloses may be removed from the wood if the 

hydrolysis reaction is catalysed by the addition of acids, bases, or enzymes.  The 

type of catalyst used influences the size and composition of the carbohydrates 

extracted. The applications of catalyzed hydrolysis are best suited to situations 

where the primary aim of the treatment is to obtain large amounts of 

monosaccharides for fermentation into products such as ethanol [59, 65-67, 86, 

91]. Sulfuric acid and sulfur dioxide gas are acidic catalysts commonly used for 

this purpose. For example, treatment of P. radiata wood chips with sulfur dioxide 

followed by steam explosion converts most of the hemicelluloses and some of the 

cellulose into monosaccharides or disaccharides that are easily separated from 

remaining insoluble wood components [28].      
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Addition of acid catalysts aids hydrolysis of most glycosidic linkages but at 

different rates [92], whereas basic catalysts tend to catalyse the removal of acetyl 

groups from hemicelluloses [26]. Generally, basic conditions produce a higher 

proportion of polymeric material in the hydrolysate in comparison with acidic 

conditions [59]. Enzymes hydrolyse only the linkages between specific monomers 

depending on the type of enzyme used [91, 93, 94]. The specific action of 

enzymes offers scope to control the amount, type, structure and molecular size of 

hemicelluloses extracted from wood.  

 

1.2.6.3 Other Extraction Methods 

Traditionally, hemicelluloses used for research purposes were often extracted after 

conversion of the wood to holocellulose which is a term used to describe wood 

after the removal of the extractives and lignin components.  Holocellulose is 

prepared by using delignification reagents such as sodium chlorite to degrade the 

lignin allowing it to be washed easily out of the wood matrix [35, 83, 95].  

 

On an industrial scale the pulp and paper industry uses many different processes 

to remove considerable amounts of lignin and hemicelluloses from wood with the 

aim of producing cellulose-rich fibres. Kraft processes use strong alkali that 

causes peeling reactions that degrade many types of polysaccharide.  However, 

some xylans are solubilised in a polymeric form in the kraft processes [3]. 

Organosol processes, i.e. treatment of the wood with organic solvents such as 

organic acids or alcohols, can also be used to remove hemicelluloses and lignin 

from lignocellulosic biomass [96, 97].   
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1.2.7 Recovery and Purification of Hemicelluloses 

In most cases, aqueous extraction of wood produces an extraction liquor, often 

called a hydrolysate, or a prehydrolysate if the treatment is followed by a pulping 

operation. This hydrolysate is a complex mixture comprising water and 

hemicelluloses together with a range of contaminants that could include lignin, 

extractives, sugar degradation products, proteins, salts, monosaccharides, organic 

acids, alcohols and degraded cellulose polymers as contaminants. Thus recovering 

the hemicelluloses in a pure form from such a complex mixture may be a difficult 

assignment. At both analytical and industrial scale, various techniques for 

separating either the contaminants, or the polysaccharides, from the complex 

mixture are required.      

1.2.7.1 Precipitation 

Precipitation techniques are useful for separating carbohydrates into different 

fractions based on molecular weight and structural features. The technique takes 

advantage of the differences in solubility of carbohydrates based on their size and 

structure in order to isolate and concentrate target carbohydrates from a solution. 

For example, a series of precipitations from solutions comprising combinations of 

acetone, methanol, acetic acid, water, and barium hydroxide was used to 

fractionate the carbohydrates from a prehydrolysate of southern pine chips [87]. 

Ethanol can also be used to precipitate and purify polymeric hemicelluloses [17]. 

1.2.7.2 Microfiltration, Ultrafiltration and Dialysis 

Microfiltration, ultrafiltration and dialysis are ideal techniques for separating and 

concentrating the polysaccharides based on their molecular size and would 

probably be the preferred methods on a commercial scale. A combination of 

techniques, including filtration and ultrafiltration allowed O-acetylated 

galactoglucomannans to be isolated from thermo-mechanical process waters at the 

kilogram scale [17].  
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1.2.7.3 Ion Exchange 

As most prehydrolysates contain both charged and neutral components, ion 

exchange resins may be used for separating the components on a charge basis.   

For example, ion exchange resins were used to deionise a prehydrolysate prior to 

characterisation of the polysaccharides [87] and acidic polysaccharides can be 

also be removed by anion exchange chromatography [17]. Treatment with 

different types of ion exchange resins can also be effective at removing many of 

the contaminants in a prehydrolysate, including phenolics, furfural, and organic 

acids [66].   

1.2.7.4 Adsorption Treatments 

Activated carbons, charcoal, and other solid phase extraction techniques can be 

used to remove some non-carbohydrate contaminants such as furfural and lignin 

fragments from wood hydrolysates [87, 98, 99]. 

1.2.7.5 Chemical Cleaning  

Isolated hemicellulose fractions may still require further purification before they 

can be a useful product. Bleaching with peroxide is one way of accomplishing this 

as the peroxide reacts with lignin-derived contaminants and changes the chemical 

structures responsible for colour resulting in a hemicellulose preparation with 

higher brightness. [100]. The lignin-derived contaminants are likely to still be 

physically present in the hemicelluloses but their colour contribution is removed. 

 

Solvents such as methyl ethyl ketone, chloroform, supercritical CO2 and ethyl 

acetate have all been used to remove contaminants such as lignin fragments and 

furfural from lignocellulosic hydrolysates [66, 87, 101, 102].   

1.2.7.6 Concentration techniques 

Large quantities of water are often required to extract hemicelluloses efficiently 

from wood chips during a wood hydrolysis operation and this results in the 

hemicelluloses being at low concentration in the wood hydrolysate. Spray drying, 

lyophilisation, and evaporation can all be used to reduce the amount of water in 

the hydrolysate and concentrate the polysaccharides [17, 87].  
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1.2.8 Methods for Fractionating and Characterising 

Polysaccharides  

1.2.8.1 Size Exclusion Chromatography (SEC) 

Size exclusion chromatography (SEC) or gel permeation chromatography (GPC) 

can be used to fractionate carbohydrates based mainly on their hydrodynamic 

volume. Hydrodynamic volume is usually based on the size and molecular weight 

of the carbohydrate molecules. The term “apparent molar mass” has been used to 

describe estimates of polysaccharide molecular weight using calibration with 

standards of similar polymers [17]. SEC columns operated using eluents with very 

low ionic strength (usually de-ionised water), often results in anionic 

polysaccharides being excluded from the column and therefore separated from the 

neutral polysaccharides due to an “ion exclusion effect” [34, 103]. Fractionating 

polysaccharides using SEC is often carried out prior to characterisation of the 

fractions by other techniques such as mass-spectrometry, linkage analysis, sugar 

compositional analysis and NMR [25, 32, 34-36, 43].     

1.2.8.2 Ion Chromatograpy 

Ion chromatography using pulsed amperometric detection has been used to 

quantify both the neutral sugar monomers and uronic acids from hydrolysed 

hemicelluloses [27, 89].  Ion exchange chromatography has also been employed 

to separate acidic (anionic) polysaccharides and neutral polysaccharides [43, 104].  

1.2.8.3 Matrix Assisted Laser Desorption Ionisation – Time of 

Flight-Mass Spectrometry (MALDI-ToF-MS) 

MALDI-ToF-MS has been used extensively in determining the size and structure 

of many oligosaccharides and polysaccharides extracted from plants [25, 34-36, 

43, 105-107]. For example, this technique has been used to determine the 

distribution of uronic acid groups and pentose units in arabino-4-O-

methylglucuronoxylans extracted from spruce wood [25, 26], to study the degree 

of acetylation on spruce-derived AcGGM, and to characterise the acetylated 

hemicelluloses in hardwoods [26, 35, 36, 106]. 2,5-Dihydroxybenzoic acid (DHB) 

and 2,4,6-trihydroxyacetophenone (THAP) have been established as being 

suitable matrix compounds to aid the ionisation of neutral polysaccharides from a 

variety of plant sources as Na
+
 and K

+
 adducts [108, 109].   
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When attempting to analyse the average molecular weight of neutral polymers, 

MALDI-ToF-MS will often have a bias toward lower molecular weight polymers 

[110].  The other main limitation is that the mass spectrum does not allow 

different structural components with the same molecular weight to be 

distinguished.  Therefore MALDI-ToF-MS will provide evidence of hexose-based 

polymers or pentose-based polymers, but will not indicate if the pentoses are D-

xylosyl units or L-arabinosyl units or a mix of both [26].  

1.2.8.4 Electrospray Ionisation Mass spectrometry 

Electrospray Ionisation Mass Spectrometry has been applied to polysaccharides to 

determine molecular masses, degree of acetylation and to distinguish hexose-

based polymers from the pentose-based polymers [32]. Generally, the techniques 

will provide similar kinds of information to MALDI-ToF-MS methods.  

 

Tandem mass spectrometry and electrospray ionisation after derivatisation with 

ferrocene boronic acid can allow detailed structural characterisation of low 

molecular weight carbohydrates such as monosaccharides and disaccharides 

through analysing their fragmentation patterns under collisionally induced 

dissociation [111]. 

1.2.8.5 Nuclear Magnetic Resonance (NMR) Spectroscopy  

 One-dimensional proton and 
13

C NMR analysis along with two-dimensional 

techniques such as NOESY, COSY, DEPT, HSQC, HMBC, and TOCSY have 

been used to provide detailed information about the structural features of 

hemicelluloses [21-23, 89] .  

 

Proton NMR is very effective at detecting CH3 groups attached to polysaccharides 

such as the methyl groups on 4-O-methylglucuronoxylans [35, 90], and the acetyl 

groups on AcGGM [21, 22, 89]. NMR is an important tool for determination of α 

or β anomeric linkages between hexose and pentose units [21, 22]. 
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Signals tend to broaden and lose intensity when larger polysaccharides are 

analysed using NMR. To minimise this problem polysaccharides can be reduced 

in size using partial hydrolysis and/or the spectra can be acquired at an elevated 

temperature  [21].  

 

1.2.8.6 Degradation and Hydrolysis Techniques. 

Acid catalysts are used to hydrolyse polysaccharides into oligosaccharides and 

monosaccharides. Often the goal is to carry out a complete hydrolysis of the 

polymer, releasing all its components as monomer units so these can be analysed 

by other techniques. A number of different acids may be used including sulfuric, 

hydrochloric, acetic, and trifluoroacetic acid (TFA). The choice of acid catalyst 

and the concentration used is influenced by how resistant the target 

polysaccharide is to hydrolysis and the steps required to remove the acid after the 

hydrolysis process. Volatile organic acids such as trifluoroacetic acid are often 

preferred over mineral acids because they may be easily removed by evaporation 

whereas mineral acids require neutralisation and/or extensive washing steps. In 

acid catalysed hydrolysis targeting complete hydrolysis of the polymer there is a 

need to find a balance in reaction conditions in order to minimise the formation of 

undesirable products. This balance is to be found between a too severe hydrolysis 

that will degrade the released monosaccharides (especially uronic and aldonic 

acids which may de-carboxylate in severe conditions), and a too mild hydrolysis 

that will leave a high proportion of resistant linkages unhydrolysed. Generally, 

increasing the acid concentration, reaction temperature, and/or reaction time will 

lead to a more severe hydrolysis [92]. A partial hydrolysis can be applied in order 

to generate smaller oligomers for a further analysis and gain detailed information 

on the structure of the original polysaccharide [23].  

 

Alkaline degradation may also be used for structural elucidation of 

polysaccharides. The degradation products are often oligomers and 

metasaccharinic acid residues and can be analysed with techniques such as NMR 

[112]. 
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Enzyme catalysis can be used to selectively hydrolyse certain linkages in the 

hemicelluloses. The released oligomers may be purified and analysed allowing the 

original structure to be deduced in greater detail [45, 113, 114]. 

 

1.2.8.7 Alditol Acetates and Gas Chromatography 

Reduction and acetylation of monosaccharides to form alditol acetates allows for 

their qualitative and quantitative analysis using gas chromatography with flame 

ionisation or mass spectrometry detection [39, 97, 115].  

1.2.8.8 Partially Methylated Alditol Acetates (PMAAs) 

Linkage analysis can allow the points of attachment and ring form of each sugar 

monomer present in a sample of oligomers or polymers to be deduced. The 

formation of partially methylated alditol acetates (PMAAs) from a polysaccharide 

usually involves the following steps; (i) reduction of the reducing end of the 

polysaccharide to an alditol, (ii) methylation of the hydroxyl groups,  (iii) 

complete hydrolysis of the partially methylated polymer, (iv) reduction 

(deuterium labelling) of the partially methylated monosaccharides to alditols, and 

finally (v) acetylation of the new hydroxyl groups (i.e. those that were involved in 

linkages between monosaccharide units, or within the monosaccharide unit such 

as part of pyranose and furanose ring structures). The resulting PMAAs may then 

be separated by gas chromatography and identified using mass spectrometry[115].   

 

Linkage analysis using PMAAs has been carried out on a number of softwood 

derived hemicelluloses [19, 22, 23, 30-32] to establish many of the linkages 

described earlier (pages 7, 8, 9, 10). 
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1.2.8.9 Other Derivatisation Techniques and Applications 

Methanolysis involves the reaction of the polysaccharide with methanol and 

hydrogen chloride under anhydrous conditions. Methanolysis is a particularly 

useful technique for structural elucidation of polysaccharides such as 

hemicelluloses and pectins because the analysis of neutral and acidic fragments 

can be performed in a single step. The acid hydrolysis releases both neutral and 

acidic monosaccharide fragments from the polymer and the neutral 

monosaccharides and uronic acids are then converted into their corresponding 

methyl glycosides and methyl esters, respectively, which may be analysed by gas 

chromatography [27, 88] or HPLC [92].  

 

Silylation is often required to make monosaccharides and oligosaccharides 

sufficiently volatile to allow analysis by gas chromatography. Methyl glycosides 

produced by methanolysis often require silylation prior to gas chromatography 

[27].  

 

1.2.8.10  Solvent/Reagent Precipitation Techniques 

Fractional precipitation using combinations of solvents such as ethanol, methanol 

and acetone, sometimes together with reagents such as barium hydroxide, enables  

polysaccharides to be fractionated based on differences in solubility [87]. These 

precipitation techniques have been used to separate galactans from 

galactoglucomannans in extracts of P. radiata compression wood [19].  

 

1.2.8.11 Light Scattering 

Light scattering detection has been used for determining the molecular weight of 

polysaccharides, often used coupled to an SEC chromatography system.  For 

example, the average molar mass of Norway spruce AcGGMs isolated from 

thermomechanical pulping water was estimated to be 21.5 kDa using multiangle 

laser light scattering [116]. 
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1.2.8.12 Measuring Uronic Acid Content 

Uronic acid content of lignocellulosic materials may be determined by several 

different techniques, including combinations of methods such as acid 

methanolysis, anion exchange chromatography, gas chromatography, capillary 

electrophoresis and ion chromatography using pulsed amperometric detection 

[27]. It may also be determined with methods that use various reagents such as 3-

phenylphenol [117] and m-hydroxydiphenyl with detection involving colorimetric 

assays [118]. The uronic acid content can also be estimated using NMR [101]. 
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2 Chapter 2  Experimental  

2.1 Prehydrolysis and Isolation of Polymeric Carbohydrates  

2.1.1 Aims 

This mild prehydrolysis method was chosen because the low severity of the 

conditions would maximise polymeric carbohydrates at the expense of 

monosaccharides sugars. Lower severity conditions were also chosen with the aim 

of  minimising any negative impacts on the kraft pulp [55, 59].  

 

The isolation and clean-up method was aimed at efficiently separating and 

concentrating gram-scale amounts of the polymeric carbohydrates present in this 

prehydrolysate. Ideally the isolation method should remove the non-carbohydrate 

contaminants and monosaccharides and produce a high-yield representative 

sample of the polymeric carbohydrates in the prehydrolysate.  

2.1.2 Methodology  

Commercial Pinus radiata wood chips were treated with water using a 90 minute 

ramp to 175°C in the prehydrolysis stage of a prehydrolysis-kraft cook as detailed 

in Lloyd et. al.[59]. Woodchips (1168 g, from top logs and thinning of younger 

radiata pine, 42.8% dry matter content) were placed in a stainless steel digester 

with liquor recirculation capability (M/K, 6 L) and tap water added (1830 mL) 

giving a ratio of  5 : 1 (liquor : wood). When the temperature in the digester 

reached 175°C, the free prehydrolysis liquor (approximately 1600 mL) was 

collected by draining through a condenser. 
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Figure 4: M/K 6 L digesters (left) and P. radiata woodchips (right).  

 

The hemicelluloses in this prehydrolysate were isolated using an extensively 

modified version of the method used by Sears et. al. to fractionate prehydrolysates 

from Southern pine [87]. Free prehydrolysis liquor (860 mL) was mixed with 

activated charcoal powder (7.4 g BDH Chemicals, UK) and concentrated to 200 

mL by rotary evaporation at 60°C. The concentrate was centrifuged at 2000 rpm 

for 20 minutes and the supernatant filtered through a 0.45 μm Nylon membrane 

(Millipore, USA). The filtrate was further concentrated to 50 mL and then added 

dropwise with stirring into acetone/methanol (9:1, 650 mL). 

  

The precipitate containing oligosaccharides and polysaccharides was separated by 

centrifugation (2000 rpm for 20 min) and the supernatant containing 

monosaccharides and other contaminants was discarded. The precipitate was re-

suspended and washed in acetone/methanol (9:1, 450 mL) before a final 

separation by centrifugation and discarding of the supernatant. This precipitate of 

crude polymeric carbohydrates was re-dissolved in distilled water, lyophilised and 

weighed (yield of 2% based on the oven dry weight of original woodchips).  

 

250 mm 100 mm 
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2.2 Fractionation by Size Exclusion Chromatography 

2.2.1 Aims 

The use of high pressure size-exclusion chromatography (SEC) was aimed at 

fractionating the polymeric carbohydrates based on their charge and molecular 

weight [26, 103]. Fractions were collected for the purpose of further analysis by a 

wide range of different methods. The SEC method was calibrated using standards 

with the aim of estimating the apparent molecular weights [17] of the uncharged 

polymeric carbohydrates isolated from the prehydrolysate. 

2.2.2 Methodology  

Size-exclusion chromatography was carried out with three Shodex columns (KS-

805, KS-804 and KS-803) linked in series at 50°C and preceded by a KS-G guard 

column (Showa Denko, Japan). This combination of three columns was suited to 

the size range of the neutral components in the crude sample and gave sufficient 

separation of acidic and neutral components at the large loading volume. Injection 

was made with a 50 μL loop (Rheodyne, USA) and detection was by refractive 

index (Waters Assoc., USA). The eluent was de-ionised distilled water at a flow 

rate of 1.0 mL/min. The signal from the RI detector was recorded and processed 

by Empower Pro software (Waters Assoc., USA).  

 

Molecular weight calibration of this system was achieved using, sucrose (BDH 

Chemicals Ltd., UK), glucose (Aldrich, USA), and a set of fractionated dextran 

standards (1200 Da, 4,440 Da, 9,890 Da, 43,500 Da, and 70,000 Da, Pharmacia 

Biotech, Sweden).  Each molecular weight standard was mixed with a small 

amount of 2,000,000 Da dextran, dissolved in de-ionised water, and injected into 

the SEC system. The 2,000,000 Da dextran was used to check consistence of the 

retention time (18.53 ± 0.06 min) from a complete excluded polysaccharide. 

Refractive index (RI) chromatograms were recorded and the retention times of 

these standards were used to construct an apparent molecular weight calibration 

plot.  The term „apparent molecular weight‟ is used with reference to standards 

like dextrans, because in reality the hydrodynamic behaviour of hemicelluloses 

during SEC could be different thus adding additional uncertainty [29].  
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Approximately 1.2 mg of the crude polymeric hemicelluloses was dissolved in de-

ionised water and injected into the SEC system on each run. Seven 3.0 mL 

fractions (A1, A2, A3, N1, N2, N3, and W1) were collected at three minute 

intervals from the outlet of the RI detector, covering the entire chromatogram as 

shown in Figure 6. The equivalent fractions from fourteen independent runs were 

pooled, lyophilised, and weighed. A small sub-sample of each fraction was 

separated and used for MALDI-ToF analysis, the remainder was used for NMR 

analysis. A second set of equivalent fractions from another 24 independent runs 

were later collected under the same conditions, pooled as two batches and 

lyophilised. One batch of this second set was used for determination of monomer 

composition and the other batch was used for further MALDI-ToF analysis with 

most of the N1 fraction used for methylation linkage analysis. 

 

Another fourteen independent runs were used to collect two composite fractions, 

an acidic fraction (A1, A2, and A3 combined) and a neutral fraction (N1, N2, and 

N3 combined). These were used in methylation linkage analysis. 

 

Nine smaller fractions of the neutral polysaccharides (three for each of N1, N2, 

and N3) were collected in one minute intervals from the SEC system on a single 

run. Each fraction was re-injected independently and RI chromatograms were 

recorded.  Retention times from the peaks for each of the nine fractions were 

measured. The SEC calibration formula (Figure 5) was used to estimate apparent 

molecular weights from the nine fraction‟s retention times. These MW estimates 

were graphed against the retention time of peak tops for each fraction (Figure 11, 

page 49).  
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Figure 5: Size-exclusion chromatography calibration curve. 

Constructed using standards of various sized dextrans, sucrose, and glucose.  

 

 

 

Figure 6: Chromatogram of SEC fractionation of hemicelluloses polymers. 
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2.3 Matrix Assisted Laser Desorption Ionisation – Time of 

Flight-Mass Spectrometry (MALDI-ToF-MS) Analysis 

2.3.1 Aims 

These methods were aimed at analysing the molecular weights of the polymeric 

carbohydrates in each fraction. MALDI-ToF mass spectrometry was also utilised 

to provide information about which monomer units are present in the isolated 

polymers. Pentose or hexose based polymers can be distinguished along with the 

distribution and types of other groups attached to the backbone. This is revealed 

by patterns in the various masses detected [25, 26, 35, 36]. 

2.3.2 Methodology  

2.3.2.1 Equipment and Calibration  

Matrix-assisted laser desorption ionisation-time of flight (MALDI-ToF) mass 

spectra were acquired with an Autoflex II LIFT-ToF/ToF mass spectrometer using 

FlexControl and FlexAnalysis software. (Bruker Daltonics, Germany).  

Calibration was carried out using peptide and protein calibration standards 

(Bruker Daltonics, Germany) co-crystallised with S-DHB (2,5-dihydroxybenzoic 

acid/ 2-hydroxy-5-methoxybenzoic acid) and spotted adjacent to each sample on 

the MALDI plate. 
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2.3.2.2 Trials for Choice of Matrix and Conditions 

4-HCCA (α-cyano-4-hydroxycinnamic acid), S-DHB, 4-aminophenol, and THAP 

were trialled as matrix compounds in both positive and negative ion modes. Trials 

were also made by varying polysaccharide dilution, plate type, matrix solvents, 

ion suppression/gating conditions, laser power and pulse rate, and addition of 

NaCl. These variations were trialled using mainly S-DHB as a matrix due to it 

being well established in the literature for use on polysaccharides [25, 26, 35, 

110]. Both linear and reflectron modes on the time of flight detector were trialled 

on each sample that was analysed. These trials were guided and adapted from 

methods in the literature [25, 26, 35, 109, 119] and were used in the development 

of the following methods used to analyse the polymeric carbohydrates isolated 

from this prehydrolysate. This was not intended to be a complete and thorough 

systematic study of polysaccharide ionisation and MALDI-ToF-MS response 

designed to find the optimum conditions, but rather a series of checks of which 

available combination of conditions and matrix appeared to provide adequate 

mass spectra, and which did not.  

 

2.3.2.3 General Conditions and Sample Preparation  

Small sub-samples from each of the seven SEC fractions were dissolved in de-

ionised water to give solutions of concentrations less than 0.5 mg/mL. Equal 

volumes (1.00 μL) of the sample and saturated matrix solution (S-DHB or THAP) 

were then mixed together and spotted onto the surface of a MALDI-ToF plate and 

allowed to co-crystallise with evaporation of the solvent. Mass spectra were 

obtained using pulsed ion extraction at 130 ns unless stated otherwise. Each mass 

spectrum represents the sum of 300 laser shots obtained from 10 different 

crystalline locations on the sample spot. 
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2.3.2.4 Analysis of Anionic (Acidic) Polysaccharides 

Saturated Super-DHB (2,5-dihydroxybenzoic acid / 2-hydroxy-5-methoxybenzoic 

acid) dissolved in de-ionised water was found to be effective as a matrix for 

detecting acidic polysaccharides in negative ion mode. Negative ions were likely 

to be de-protonated uronic acid groups attached to the polysaccharides [25].  Laser 

power at 45% of maximum was usually used because ionisation often became 

inadequate when laser power was drastically increased or decreased. In cases in 

which linear mode did not detect many ions with m/z values larger than 5000, 

reflectron mode was used to increase resolution.  

 

2.3.2.5 Analysis of Neutral Polysaccharides 

Saturated THAP (2,4,6-trihydroxyacetophenone) dissolved in acetonitrile: de-

ionised water (3: 1) was used as a matrix to ionise neutral polysaccharides. Laser 

power at 95% of maximum was usually used, although adequate spectra could be 

obtained at most laser powers above 50%. Neutral hemicelluloses were detected 

in positive ion mode and had m/z values consistent with mainly Na
+ 

adducts.  

Another series of ions was often observed that had m/z values consistent with K
+
 

adducts. 

2.3.2.6 Alkaline De-acetylation of Neutral Polysaccharides 

Alkaline de-acetylation, similar to that described by Jacobs et. al. [34], was 

carried out on sub-samples of fractions N1, N2, and N3. A small amount of each 

lyophilised fraction was dissolved in de-ionised water (200 μL) and an aliquot (50 

μL) from each solution transferred to a separate vial. NH4OH solution (10 μL, ≈ 2 

mol L
-1

) was added to each vial before they were covered and heated in an oven 

(90°C, 16 min). Vials were cooled in ice before small aliquots (0.5 μL) were 

removed, mixed with saturated THAP solution (0.5 μL) and spotted onto a 

MALDI-ToF plate and allowed to co-crystallise.  
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Small aliquots (0.5 μL) from the original 200 μL solutions of each fraction were 

also mixed with saturated THAP solution (0.5 μL) and spotted onto a MALDI-

ToF plate and allowed to co-crystallise as pre-de-acetylation controls.  Mass 

spectra were obtained from the control and de-acetylated samples for each fraction 

using pulsed ion extraction at 400 ns. Each mass spectrum represents the sum of 

300 laser shots obtained from 10 different locations on the sample spot and was 

obtained in linear mode. 

 

2.3.2.7 Polytool  Calculations 

Peaks were picked manually for the distinct higher abundance ions in the mass 

spectra of anionic polysaccharides and de-acetylated neutral polysaccharides. 

These mass list and peak area data were further analysed using Bruker Polytools 

1.08g software.  

  



  

36 

 

 

2.4 Nuclear Magnetic Resonance Spectrometry (NMR) Analysis  

2.4.1 Aims 

NMR was used with the aim of identifying and quantifying the O-acetyl groups. It 

also provided evidence for the presence of O-methyl groups in some fractions. 

Another aim of NMR was to provide supporting evidence for the presence of 

various structural features and linkages through comparison with hemicelluloses 

analysed in the literature [21, 35, 36] and results obtained from other methods 

used in this study. 

 

2.4.2 Methodology  

Samples of the seven SEC fractions (0.2 mg - 5.0 mg) were dissolved in 1.0 mL 

of D2O (99.9 atom %D, Aldrich, USA), lyophilised, and re-dissolved in 

approximately 0.5 mL of D2O.  Spectra were obtained using either a Bruker 

300MHz or 400MHz spectrometer and processed using Bruker Topspin software. 

Early spectra were acquired with a probe temperature of 27°C.  However, a probe 

temperature of 70°C gave sharper signals and was used for subsequent NMR 

acquisition. 

 

Standards of acetic acid, t-butanol, and acetone were run in D2O at 27°C and 70°C 

and their chemical shifts were used for initial referencing.  However, the sharp 

≈1.9 ppm peak present to some extent in all fractions was often used as a 

reference point for calibrating the proton spectra for comparison. This 1.9 ppm 

peak is assigned as acetate in a number of literature 
1
H NMR spectra of wood 

hemicelluloses [35, 36, 90], and using it as a reference point assisted with 

assigning and comparing various peaks with those in the literature. 

 

Basic one-dimensional 
1
H spectra were acquired on all seven fractions.  

Basic one-dimensional 
13

C experiments such as DEPT135 were attempted on 

some fractions. However these spectra often took over 12 hours to collect and 

tended to provided adequate results only in a few high-yield fractions such as N1. 
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2.5 Acid Hydrolysis and Monomer Composition Analysis  

2.5.1 Aims 

With the aim of finding out the proportions of different monomer components that 

constitute the crude polysaccharides and each SEC fraction, samples were 

subjected to severe acid hydrolysis before the acidic and neutral components were 

separated for quantification by different methods.  

2.5.2 Methodology  

2.5.2.1 Severe Acid Hydrolysis  

Three samples of the crude polysaccharides and samples of the six fractions from 

SEC (A1, A2, A3, N1, N2 and N3) were each dissolved in de-ionised water (400 

μL) and TFA (400 µL, 99%, Acros) was added. The solution was recapped under 

N2 in a vial and placed in a heating block (120°C, 120 min). The hydrolysed 

samples were evaporated to dryness under a stream of N2 at 40°C, re-dissolved in 

de-ionised water (2.00 mL), evaporated to dryness under a stream of N2 at 40°C 

for a second time, and re-dissolved in de-ionised water (2.00 mL).   

2.5.2.2 Separation of Acidic and Neutral Components  

Liquid chromatography was carried out with a packed column (≈25×1000 mm) of 

Bio-Gel
®
 (P-2 Gel, Bio-Rad Laboratories, USA) kept at approximately 20°C. The 

eluent was de-ionized distilled water at a flow rate of 0.5 mL/min. Injection was 

made with a 2.000 mL loop (Rheodyne, USA) and detection was by refractive 

index (Shodex, Japan). The signal from the RI detector was recorded and 

processed by Empower Pro software (Waters Assoc., USA).  Fractions were 

collected using an automated fraction collector (Waters Assoc., USA).   

 

Each of the TFA hydrolysis solutions (2.00 mL) of the samples were injected into 

the above chromatography setup.  A clear separation was obtained between the 

acidic components (likely to be uronic acids, aldobiouronic acids [24], acetic acid, 

and residual TFA) and the neutral components (mainly monosaccharides). This 

separation was likely to be due to an ion exclusion effect [103], and was 

confirmed by the injection of standards (glucuronic acid, lactose, and glucose). 
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Two fractions (acidic components and neutral components) were collected from 

each hydrolysed sample injected onto the Bio-Gel column. The acidic component 

fractions were lyophilised, re-dissolved in de-ionised water (3.000 mL) and 

analysed using ion chromatography (Page 40). The neutral component fractions 

were lyophilised, converted to alditol acetates, and analysed by GC-MS. 

 

In addition, four narrower acidic fractions were collected from the Bio-Gel system 

from a single injection of hydrolysed crude sample.  Although there was little 

apparent separation of different acidic components in the chromatogram, when 

samples of these four narrower fractions were analysed by ion chromatography 

and NMR they showed differing relative enrichment and depletion of various 

components.  

 

2.5.2.3 Analysis of Neutral Components by Conversion to Alditol 

Acetates and Gas Chromatography 

The lyophilised samples (neutral components) of each of the six SEC fractions 

(0.2 mg - 5.0 mg) were dissolved in de-ionised water (250 µL).  Aqueous NaBH4 

solution (6 mg in 250 µL) was stirred into to each sample and they were left to 

stand (room temperature, 120 minutes). Washed IRC-50  resin (Amberlite) was 

added until the sample stopped effervescing. The resin was then removed by 

filtration (glass filter paper GC-50, Advantec
®
) under vacuum.   

 

The reduced samples were evaporated to dryness under a stream of N2 at 40°C. 

Methanol (1.0 mL)  was added to each sample and then evaporated to dryness  

under a stream of N2 at 40°C; this was repeated an additional 5 times. The dry 

samples were each re-dissolved in pyridine (2.00 mL).  Acetic anhydride  

(2.00 mL) was added and the samples capped, stirred, and left to stand at room 

temperature. After approximately 15 hours standing, de-ionised water (5.00 mL) 

was mixed into each sample.  
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The aqueous phase was extracted with chloroform (3 × 1.00 mL). The combined 

chloroform extracts for each sample were placed in freezer (-20°C) until any 

aqueous residue had frozen. Part of the chloroform phase (≈1.5 mL) was then 

transferred to a GC vial for analysis. In the case of some too concentrated 

samples, the chloroform phase was later diluted 1/100 with chloroform and the 

GC-MS analysis repeated.   

 

The above derivatisation method was also applied to standards of D-galactose, D-

glucose, D-xylose, D-mannose, and L-arabinose, and some known mixes of these 

standards. These known mixes of sugar standards were used to estimate relative 

response factors (Equation 1). These response factors were used to calculate 

mol% and mole ratios of different monosaccharides from relative peak areas  

 

Equation 1: Molar and mass response factors between different monosaccharide alditol 

acetates.  

 Peak area of mannose AA ÷  Peak area of glucose AA 

 Mass of mannose ÷  Mass of glucose  
= 1.0 

  Peak area of xylose AA ÷  Peak area of glucose AA 

 Mass of xylose ÷  Mass of glucose 
= 1.4 

 Peak area of mannose AA ÷  Peak area of glucose AA  

 Mol amount of mannose ÷  Mol amount of glucose 
= 1.0 

 Peak area of xylose AA ÷  Peak area of glucose AA  

 Mol amount of xylose ÷  Mol amount of glucose 
= 1.3 

 

Gas chromatography and mass spectrometry was carried out on 7890A GC 

System with a 7683B Series Injector and a 5975c inert MSD with Triple-Axis 

Detector (Agilent Technologies). 

  

A 15 m SP-2330 column (Supelco, USA) was operated under the following oven 

program: hold at 60˚C for 0.3 min, 20˚C/min ramp to 100˚C, 6˚C/min  

ramp to 230˚C an then held at 230˚C for 20 min.  
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Injection was carried out in splitless mode at 220˚C, helium was used as the 

carrier gas at 9.4973 psi, and 2.00 µL of sample was injected. The mass 

spectrometer source temperature was 220˚C and the MS Quad temperature was 

150˚C. MS monitoring was carried out in total ion mode with a solvent delay of 

4.50 min.  

 

2.5.2.4 Analysis of Acidic Components by Ion Chromatography 

and NMR 

Ion Chromatography was carried out on a DIONEX ICS2000 system using a 

hydroxide cartridge (EGC II KOH). Chromeleon Software (Version 6.80 SP4) 

was use to operate the system and record chromatograms. 

 

IonPac
®
 AS11-HC columns (one Analytical 4×250 mm column, preceded by a 

Guard 4×50 mm column) were operated at 30.0°C. The detector (DS6 Heated 

conductivity Cell) was maintained at 35.0°C and the suppressor (Type 6.0) current 

set to 23 mA. An injection loop (25 µL) was used to deliver samples and 

standards. 

 

At a constant flow rate (1.5 mL/min) and an isocratic eluent concentration (6mM 

NaOH in de-ionised water) the ICS2000 system was found to separate standards 

of acetic acid, TFA, D-galacturonic acid, D-glucuronic acid and some minor peaks 

associated with neutral sugar standards.  
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Each of the four narrower Bio-Gel fractions of acidic components (Page 37) was 

dissolved in D2O (1.0 mL, 99.9 atom %D, Aldrich, USA), lyophilised, and re-

dissolved in approximately 0.5 mL of D2O  One-dimensional proton NMR spectra 

were acquired with a probe temperature of 27°C using a Bruker 300 MHz 

spectrometer and processed using Bruker Topspin software. The integrals of the 

O-methyl signal (3.48ppm) were compared to integrals of carbohydrate signals to 

determine which of the four narrower fractions had the highest relative enrichment 

in O-methyl groups. This relative enrichment information from NMR was 

compared to relative enrichment information from the different ion 

chromatograms of the four narrower fractions to determine which ion 

chromatograph peaks could contain the O-methyl groups. A proton NMR 

spectrum was acquired of the acidic components isolated from the Fraction N2.  

 

A series of D-glucuronic acid standards of different concentration were run on the 

ICS2000 system and the peak areas recorded. D-Glucuronic acid had a retention 

time of approximately 4.7 min. Peak area was plotted against D-glucuronic acid 

concentration (Figure 7) to produce a linear calibration line (R
2
 = 0.9989). Two 

standards of D-galacturonic acid were run in order to confirm that their molar 

response was similar to D-glucuronic acid. D-Galacturonic acid had a retention 

time of approximately 3.9 min and had baseline resolution from D-glucuronic acid 

at the concentrations injected. 

 

A series of spiked samples were also in injected onto the ICS2000 system 

including hydrolysed (4M TFA) crude polysaccharides successively spiked with 

D-galacturonic acid, D-glucuronic acid, and finally the unhydrolysed crude 

polysaccharides. 
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Figure 7: Calibration plot for the quantification of uronic acid concentration using ion 

chromatography (using logarithmic scales).   

 

Samples (25 µL) of each of the acidic component solutions (3.000 mL) from each 

of the six fractions were injected onto the ICS2000 system and the concentration 

of uronic acid components were estimated using integrated peak areas and the 

uronic acid response calibration curve plot (Figure 7). 
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2.6 Linkage Analysis  

2.6.1 Aims 

Linkage analysis through the conversion of polymeric sugar residues into partially 

methylated alditol acetates, aims to allow the main linkage points of each 

carbohydrate unit to be deduced.  Separate samples of acidic and neutral fractions 

were analysed to determine if any linkages are more prevalent in the acidic or 

neutral fractions. A sample of Fraction N1 was also analysed due to it being a 

high-yield fraction and evidence (Table 6, page 77) suggesting it was mostly a 

single type of polymer.   

2.6.2 Methodology  

Two samples of the crude polysaccharides, one standard of lactose, one composite 

sample of acidic polysaccharides (fractions A1, A2, and A3 combined), one 

composite sample of neutral polysaccharides (fractions N1, N2, and N3 

combined), and one sample of Fraction N1 were each converted to partially 

methylated alditiol acetates (PMAAs) and analysed by GC-MS using repeats of 

the following method (adapted from a number of published methods [115]). 

 

The lyophilised sample was dissolved in de-ionised water (250 µL) before NaBH4 

(Aldrich, 99%) solution (6.0 mg in 250 µL de-ionised water) was stirred into to 

each sample. After 120 minutes washed IRC-50 resin (Amberlite) was added until 

the sample stopped effervescing. The resin was removed by filtration (glass filter 

paper, GC-50, Advantec
®
) and washing (≈ 5 mL, de-ionised water) under 

vacuum.  The reduced sample was concentrated then evaporated to dryness under 

a stream of N2 at 40°C.  

 

Methanol (1 mL) was added to the sample and then it was evaporated to dryness 

under a stream of N2 at 40°C. This was repeated an additional 5 times before the 

sample was dried under vacuum for ≈ 15 hours. 
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The sample was re-dissolved in dry DMSO (1.00 mL), powdered NaOH (≈100 

mg, Baker Chemical Co.) was added and this mixture vigorously stirred (40 min) 

in a capped vial while being cooled in a beaker of ice and water.  CH3I (250 µL, 

99%, Aldrich) was added, the vial recapped and the sample stirred (40 min) while 

being cooled in a beaker of ice and water. The vial was opened and a stream of N2 

was bubbled through the sample at 40°C for approximately 2 hours to remove 

excess CH3I. The vial was returned to cool in a beaker of ice and water, before de-

ionised water (2.00 mL) was added. Chloroform (2.00 mL) was added and the 

sample vigorously stirred and shaken before being left to stand. Once the aqueous 

and chloroform layers had separated, the chloroform phase was transferred to a 

clean vial and the aqueous phase discarded. 

 

De-ionised water (1.0 mL) was added to the chloroform phase, followed by 

vigorous stirring, centrifuging (≈1500 g, 10 min), and removal/discarding of the 

aqueous phase. This wash step was repeated two additional times before the 

sample was placed in the freezer (-20°C). Once the aqueous residue had frozen, 

the chloroform phase was transferred to a clean vial and blown dry under a stream 

of N2 at 40°C. 

 

The dry methylated sample was dissolved in TFA (200 µL, 99%, Acros). The vial 

was recapped under N2 and placed in a heating block (120°C). After heating for 10 

minutes the vial was removed and cooled under running water. Once cool, the vial 

was uncapped, de-ionised water (1.000 mL) added, and the vial recapped under 

N2. The vial was returned to the heating block (120°C) for a further 60 minutes. 

The vial was cooled to room temperature under running water before it was 

uncapped and the sample blown dry under a stream of N2 at 40°C. The dry sample 

was re-dissolved in aqueous NH4OH solution (100 µL, 1 M),  NaBD4 (99%, 

Aldrich) solution (0.02 mg/mL in dry DMSO) was add and the mixture stirred 

before being capped and placed in heating block (40°C) for approximately 3 

hours. 
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Glacial acetic acid (100 µL) was added to the sample with stirring followed by the 

sequential addition of 1-methylimidazole (100 µL) and acetic anhydride (2.000 

mL). The vial was capped, mixed and left to stand at room temperature. After 10 

minutes, de-ionised water (5.00 mL) was added to the vial and it was recapped 

and stirred. Once the sample had cooled, the aqueous solution was extracted with 

chloroform (3 x 1.00 mL). The combined chloroform extract was placed in a 

freezer (-20°C) until any aqueous residue had frozen and then a portion of the 

chloroform phase containing PMAAs (≈1.5 mL) was transferred to a GC vial for 

analysis.  

 

Each of the PMAA samples was injected and analysed using the same GC-MS 

system and methodology (including oven temperature program) detailed in 

section 2.5.2.3. 

 

The retention times of the alditol acetates of standards (D-xylose, L-arabinose, D-

glucose, D-galactose and D-mannose) along with that of the terminal-D-

galactopyanosyl PMAA from the lactose standard were plotted against literature 

relative retention times [115] to produce calibration plots and correction factors 

(Figure 8 and Figure 9). These calibration and correction factors were used to 

predict at what times PMAAs from the literature tables would elute on the 

Waikato University SP-2330 column and GC method. 
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Figure 8: Retention time correlation to literature SP-2330 column for known standards.  

Standards used were the alditol acetates prepared from D-xylose (1.811) , L-arabinose (1.65), 

D-glucose (2.191), D-galactose (2.134) and D-mannose (2.047), along with 1,5-di-O-acetyl-1-

deuterio-2,3,4,6-tetra-O-methyl-D-galactitol produced from a lactose standard (1.097). The 

retention time of each standard on the gas chromatography method used in this thesis, was 

plotted against the RT ratio in the literature for a 52m SP-2330 column [115].  

 

Figure 9: Retention time correlation to literature OV-275 column for known standards. 

Standards used were the alditol acetates prepared from D-xylose (2.551), L-arabinose (2.092), 

D-glucose (3.485), D-galactose (3.186) and D-mannose (2.985), along with 1,5-di-O-acetyl-1-

deuterio-2,3,4,6-tetra-O-methyl-D-galactitol produced from a lactose standard (1.14). The 

retention time of each standard on the gas chromatography method used in this thesis, was 

plotted against the RT ratio in the literature for a 25m OV-275 column [115].  
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The mass spectrum of each peak was checked against the equivalent spectrum in 

the CCRC database [120] to provide evidence for the identity of the PMAA. 

Predicted fragmentation patterns were also deduced and used especially when the 

CCRC database lacked the mass spectrum (e.g. for the PMAA derived from 1,4-

linked D-xylopyranosyl). Peaks present in the GC-MS chromatogram of the 

PMAA samples had their identity confirmed based on matching converted 

retention times to those in a literature table [115] using the correction formulas 

from the graphs (Figure 8 and Figure 9).  
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3 Chapter 3  Results and Discussion 

3.1 Fractionation by Size Exclusion Chromatography 

The crude polysaccharide preparation that was isolated from the prehydrolysate 

separated into two broad groups when fractionated by SEC (Figure 10). A similar 

separation into acidic and neutral polysaccharides has been reported for spruce 

hemicelluloses [34].  

 

Figure 10: Chromatogram of SEC fractionation of hemicelluloses polymers.  

Blue lines indicate where each fraction was collected.  

 

The first group, comprising fractions A1, A2, and A3 which eluted between 12 

and 23.5 minutes (Figure 10), contained acid (anionic) functional groups and 

accounted for approximately 30% of the total dry mass injected (by weight). 

Acidic polysaccharides elute early and separate based on charge as well as size, 

due to an ion-exclusion effect when using low ionic strength eluents in SEC [103]  

 

The second group, comprising fractions N1, N2, and N3 that eluted between 23.5 

and 32.5 minutes (Figure 10), was considered to contain only neutral molecules 

with no charged groups. These neutral fractions accounted for approximately 70% 

of the dry weight injected.    

15 20 25 30

R
e
fr

a
c
ti

v
e
 i
n

d
e
x
 r

e
s
p

o
n

s
e

Retention time (minutes)

A1 W1

A2

A3

N1

N2

N3



  

49 

 

 

The last fraction eluting from the columns, Fraction W1, accounted for less than 

2% of the dry weight injected. This fraction may comprise non-carbohydrate 

contaminants, carbohydrate degradation products, or monosaccharides, but 

retention times for standards of D-xylose and hydroxymethylfurfural run on this 

SEC system did not match the major peak in Fraction W1, so their identity is still 

unknown.

 

Figure 11: Apparent molecular weights of neutral fractions by SEC.  Blue divisions indicate 

where each fraction was collected. These nine smaller fractions were each re-injected and 

retention times of peak tops measured.  

 

As the acidic components are excluded from the SEC beads when using pure 

water as the eluent, their molecular weight cannot be calculated using the dextran 

calibration curve (Figure 5).  Use of a higher ionic strength eluent might cause the 

acidic components to behave more like the neutral components [103]. However 

the calibration curve would need to be repeated due to change of operating 

conditions and the behaviour of eluent ions in SEC might cause additional 

problems. 
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The molecular weight estimates from re-injections of the nine smaller neutral 

fractions are graphed over the section of the chromatogram from which they were 

collected (Figure 11). If these polysaccharides produced from the partial de-

polymerisation of hemicelluloses have a similar hydrodynamic behavior to 

dextrans on the SEC columns, then most of the neutral polysaccharides in the 

crude sample have molecular weights between 30,000 Da and 1,000 Da. 
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3.2 Matrix Assisted Laser Desorption Ionisation – Time of 

Flight-Mass Spectrometry (MALDI-ToF-MS) Analysis 

3.2.1 Anionic (Acidic) Polysaccharides 

The mass spectra of acidic fractions (A1, A2, and A3) contained repeating 

patterns of 132 mass units with abundances in bell-curve shaped populations. This 

is consistent with polymer populations with a distribution of different numbers of 

pentose units. Different populations, each with the 132 mass unit repeats, overlap 

in the mass spectra of the acidic fractions (Figure 12-Figure 14).The difference 

between these populations is ≈ 190 mass units and produced a pattern consistent 

with different numbers of attached 4-O-methylglucuronic acid (MeGlcA) groups 

as found in other softwood hemicelluloses [19, 29]. Below m/z of 1200, matrix 

clusters caused interference. All major peaks above m/z of 1200 in these mass 

spectra may be attributed to [M-H]
-
 ions of pentose polymers of various DP 

values and different numbers of the ≈190 mass unit groups attached. Based on 

established softwood literature [24-30], these ≈190 mass unit groups were 

assumed to be 4-O-methylglucuronic acid (MeGlcA), however other O-

methylated hexuronic acids such as 3-O-methylgalacturonic acid would be 

indistinguishable as they would also appear on the MALDI-ToF spectra as a 190 

mass unit difference.  

 

The mass spectrum of Fraction A2 contained four overlapping populations of 

pentose polymers (Figure 13). The population with the most abundant ions are 

attributed to pentose polymers (DP of approximately 6 to 28), with two 4-O-

methylglucuronic acid groups attached to each polymer. The most intense ion at 

m/z 2115 is consistent with a (4-O-methylglucuronic acid)2(pentose)13 structure.  
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The next two most abundant populations observed in the spectrum of Fraction A2 

have lower and higher DP ranges, respectively. The lower molecular weight 

population has pentose polymers (DP of approximately 5 to 19) with a single 4-O-

methylglucuronic acid group attached, while the higher molecular weight 

population is distributed around the m/z  3228 ion and is consistent with pentose 

polymers (DP of approximately 10 to 28) with three 4-O-methylglucuronic acid 

groups attached.  The fourth population detected in Fraction A2 with very low 

abundance is consistent with pentose polymers of DP in the approximate range of 

21-31 with four 4-O-methylglucuronic acid groups attached to each polymer. 

 

No pentose-based polymers with attached 4-O-methylglucuronic acid groups were 

detected in fractions N2, N3 and W1 using this method, which is expected given 

the fractions are supposedly neutral. However, the mass spectrum of Fraction N1, 

a supposedly neutral fraction, contained a small amount of pentose polymer (DP 

of approximately 5 to 19) with one attached 4-O-methylglucuronic acid group 

(Figure 15). The presence of this acidic material is likely to be due some overlap 

of neutral and acidic polysaccharides as they elute near to the point where the 

collection of Fraction N1 commenced. 

 

Polytools was used to analyse the major acidic pentose series that were detected in 

the MALDI-ToF spectra of Fractions A1, A2, A3, and N1 in negative ion mode. 

Polytools calculated a number of average values for the major pentose populations 

found in the four fractions (Table 1). 
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Figure 12: MALDI-ToF mass spectrum of Fraction A1 (S-DHB matrix, negative ion mode).  

 

 

Figure 13: MALDI-ToF mass spectrum of Fraction A2. (S-DHB matrix, negative ion mode). 
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Figure 14: MALDI-ToF mass spectrum of Fraction A3. (S-DHB matrix, negative ion mode).  

 

Figure 15: MALDI-ToF mass spectrum of Fraction N1. (S-DHB matrix, negative ion mode). 
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Table 1: Average MW values for major acidic pentose polymers (calculated using Polytools). 

Fraction 

Number of 

attached 

MeGlcA Mn (Da)
a
 Mw (Da)

b
 pd

c
 DP

d
 

Pentose   : 

MeGlcA
e
 

N1
f
 1 1696.4 1775.2 1.04643 12.85 12.9:1 

        A3 1 1748.2 1831.8 1.04783 13.24 13.2:1 

 

2 2177.5 2270.9 1.04288 16.50 8.25:1 

 

3 2240.9 2365.2 1.05549 16.98 5.6
g
:1 

        A2 1 1698.2 1753.4 1.03251 12.86 12.9:1 

 

2 2336.3 2440.4 1.04453 17.70 8.85:1 

 

3 3066.1 3121.8 1.01819 23.22 7.74:1 

 

4 3938.9 3999.6 1.01539 29.69 7.42:1 

        A1 2 2458.7 2523.1 1.02621 18.67 9.34:1 

 

3 3087.3 3144.2 1.01843 23.40 7.80:1 

 

4 3853.9 3897.9 1.01142 29.00 7.25:1 

a. Mn  = number-average molecular weight. 

b. Mw = weight-average molecular weight. 

c. pd = polydispersity. 

d. DP = mean degree of polymerization. 

e. Average pentose: MeGlcA ratio in the polymer population analysed. 

f. The predominantly neutral Fraction N1 was contaminated with a small amount of 

acidic polysaccharides.  

g. The population with 3 MeGlcA groups in Fraction A1 was of very low abundance 

ions and a number of ions could have been lost in the baseline noise. 
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These calculated values for average molecular weights (Mn and Mw) were 

reasonably consistent when considering the population with one attached 4-O-

methylglucuronic acid group across three different fractions (Table 1). This 

suggests that the SEC is separating the acidic hemicelluloses based on the number 

of acidic groups more than on the molecular weight of polymers. Populations with 

more attached 4-O-methylglucuronic acid groups would of course have higher 

average molecular weights. 
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3.2.2 Neutral Polysaccharides 

In contrast to the mass spectra of acidic polysaccharides, the neutral 

polysaccharides gave spectra with low signal to noise ratios. This poor ionisation 

was likely due to the need for neutral polysaccharides to form Na
+
 or K

+
 adducts. 

In general the populations of these neutral polysaccharides appeared skewed 

towards the lower mass range. 

 

Figure 16: MALDI-ToF mass spectrum of Fraction N3. (THAP matrix, positive ion mode).  

Shows a dominant population of non-acetylated hexose polymers and smaller abundance 

populations of partially-acetylated hexose polymers around an m/z of 1600. 

 

Figure 17: MALDI-ToF mass spectrum of Fraction of N2. (THAP matrix, positive ion mode). 
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The MALDI-ToF mass spectra of neutral fractions N2 and N3 were consistent 

with a mix of non-acetylated and partially-acetylated hexose polymers. Hexose 

polymers had repeating units of approximately 161 mass units, with each attached 

O-acetyl group adding approximately 42 mass units (Figure 16-Figure 17).  

The most abundant series of ions in the spectrum of N3 (Figure 16) was Na
+
 

adducts of non-acetylated hexose polymers with DP range of approximately 4 to 

22. Less abundant populations were present and were consistent with Na
+
 adducts 

of hexose polymers with 1, 2, and 3 acetyl groups. A low abundance series of K
+
 

adducts of non-acetylated hexose polymers was also detected in fraction N3. 

 

The mass spectra of N2 (Figure 17) showed more acetylated hexose polymers 

than non-acetylated hexose polymers. Series with 0, 1, 2, 3, and 4 acetyl groups 

were detected with DP range of approximately 4 to 36 hexose units.  The m/z 

1625 value of the most abundant ion in the mass spectrum was consistent with 

Na
+
 adducts of (hexose)9(acetyl)3 molecules with a DSAc value of 0.33. DSAc or 

degree of acetylation = (Number of acetyl groups)/ (Number of sugar units). 

 

Higher DP polymers were more abundant in the spectra of N2 compared to N3. 

However, the difference between the spectra of Fractions N2 and N3 in terms of 

molecular weights was not as large as expected from the SEC estimates (Figure 

11, Page 49). Possible reasons for this smaller than expected difference are that 

MALDI preferentially ionises smaller polymer molecules, fragmentation at the 

higher laser power setting, or that some overlap has occurred in SEC fraction 

collection. All three factors could be contributing to the small difference that is 

observed. 
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The large increase in the amount of completely de-acetylated hexose polymers in 

spectra of N3 compared to that of N2 appears to be more than can be explained by 

the concept that larger polymers are more likely to contain more acetyl groups 

(Figure 16 and Figure 17). Potential causes of this difference might include: 

 

1. That N3 has undergone more de-acetylation than N2 after collection 

from the SEC system.  Lower DP hexose polymers may perhaps be 

more vulnerable to de-acetylation than higher DP hexose polymers. 

 

2. That non-acetylated hexose polymers have different hydrodynamic 

behaviour on the SEC and tend to elute later than the partially 

acetylated polymers of similar DP. Thus fraction N3 is enriched in 

non-acetylated hexose polymers of higher DP.  Acetyl groups are 

known to disrupt  hydrogen bonding [50] and could change the shape 

of a polysaccharide molecule in solution. This hypothesis might also 

help explain the appearance of two „humps‟ in the neutral section of 

the SEC chromatogram (Figure 10).  

 

3. In addition to the effects noted in hypothesis „2.‟ above, there is the 

possibility that the non-acetylated hexose polymers are a completely 

different type of hemicellulose with different types of hexose units 

and/or linkages than those of the partially acetylated hexose polymers. 

Results from the monomer and linkage analysis tend to support this 

hypothesis as Fraction N3 was enriched in a D-galactosyl, especially 1-

4 linked D-galactopyranosyl. The non-acetylated hexose polymers that 

were enriched in the MALDI-ToF mass spectra of Fraction N3 could 

be due the non-acetylated β-(1,4)-galactan known to be present in P. 

radiata compression wood [18, 19]  
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3.2.3 Alkaline De-acetylation of Neutral Polysaccharides 

The de-acetylation method gave effective de-acetylation and produced results 

similar to those reported in the literature for the de-acetylation of O-acetylated-

glucogalactomannans (AcGGM) [36]. The acetylated hexose series were removed 

and the non-acetylated hexose series became clearer and in some cases more 

abundant when compared to control spectra (Figure 18 and Figure 19). The de-

acetylation also allowed higher DP hexose polymers to be distinguished from the 

baseline noise.   

 

De-acetylated hexose polymers with a large range of DP could be observed in the 

mass spectra of Fraction N2 (Figure 20). When the region above an m/z of 6000 in 

the mass spectra of Fraction N2 was observed closely the hexose repeating pattern 

became indistinguishable from baseline noise at a point corresponding to a DP of 

approximately 47. 

 

Before and after de-acetylation, the mass spectrum of N3 had a very low 

abundance population of peaks consistent with neutral pentose polymers. These  

pentose polymers had DPs as high as 11 and became more obvious after de-

acetylation (Figure 19).  
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Figure 18: MALDI-ToF mass spectrum of Fraction N3 control before de-acetylation (THAP 

matrix, positive ion mode). 

 

Figure 19: MALDI-ToF-MS Fraction N3 after de-acetylation with NH4OH (THAP matrix, 

positive ion mode). 
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Figure 20: MALDI-ToF-MS of Fraction N2 after de-acetylation with NH4OH (THAP matrix, 

positive ion mode). 

 

Figure 21: Ion gating changes on N1 after de-acetylation with NH4OH (THAP matrix, 

positive ion mode). 

Green spectrum used standard ion gating to suppress (mainly matrix) ions below m/z 700. 

Black spectrum had ion gating set to suppress ions with m/z less than 2000. Blue spectrum 

had ion gating set to suppress ions with m/z less than 6000 and the detector set to monitor a 

higher mass range at increased electronic gain. 

 

The spectra of fraction N1 was clear enough to observe hexose polymer patterns 

after de-acetylation.  Hexose polymers with a DP range of approximately 6 to 55 

were initially detected with the most abundant ions below m/z 3000 (green 

spectrum, Figure 21).  
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The gating settings on the MALDI-ToF were modified to suppress ions with m/z 

smaller than 2000 and another 300 laser shots were acquired (black spectrum, 

Figure 21).  This ion gating change appeared to increase the sensitivity and 

improve the detection of higher DP ions, to a point where polymer ions as high as 

DP 79 (m/z ≈12850) could just be observed above the baseline noise. A further 

increase in the gating settings to suppress ions with m/z smaller than 6000, 

together with an increase in the electronic gain on the detector that was the 

focused on a higher mass range with another 300 laser shots acquired, improved 

the detection of the higher molecular weight hexose polymers in the 7000 to 

14000 Da range (blue spectrum, Figure 21).  Increasing the ion gating settings 

further did not appear to provide significant improvement in the detection of 

polysaccharides above 10,000 Da.  

 

The detection of abundant hexose polymer ions below m/z 3000 in fraction N1 

was not expected from the SEC apparent molecular weight results and indicates a 

number of potential problems could be occurring in the MALDI-ToF method 

used. These potential problems might include: 

1. The separation on the SEC is poor with large overlaps causing some 

smaller polymers (≈1500Da) that should elute in Fraction N3 to mix and 

elute in Fraction N1 where only polymers in an 80,000Da to 8,000 Da 

range are expected. Column overload could be the cause of this huge loss 

of resolution. However, evidence against this explanation was obtained 

from re-injections of the nine smaller fractions of neutral polysaccharides 

(Figure 11, page 49) which each gave relatively sharp chromatogram 

peaks. This suggests that a large contamination of Fraction N1 with 

smaller polymers (≈1500 Da) does not appear to have occurred. 

 

2. The tendency of MALDI to preferentially ionise smaller carbohydrates in 

polydisperse samples at the expense of larger ones is greatly amplifying a 

trace contamination of smaller polymers while the larger polymers that 

make up the bulk of Fraction N1 by weight are suppressed in the mass 

spectrum.   
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3. Larger polymers might make up most of the sample if measuring weight, 

non-end-group NMR integrals or RI response. However, each molecule of 

a smaller polymer weighs less and therefore smaller molecules could still 

constitute most of the sample if measuring the number of molecules 

present. The mass spectrometer detector counts the abundance of each ion, 

which should be somewhat proportional to the number of molecules in the 

original sample. This concept is demonstrated in a hypothetical sample 

containing only 4 different sizes of hexose polymers (Table 2). 

 

Table 2: Simplified hypothetical hexose polymer sample 
a
  

DP 

MW of hexose 

polymer 

 (g/mol or Da) 

Amount 

(µg) 

Composition 

by mass 

Amount 

(mol) 

Composition 

by number of 

molecules 
b
 

6 991 0.05 6% 5.0x10
-5

 30% 

7 1153 0.05 6% 4.3x10
-5

 26% 

53 8774 0.4 50% 4.6x10
-5

 27% 

62 10071 0.3 38% 3.0x10
-5

 18% 

a. Hypothetical sample contains higher molecular weight hemicelluloses with a small 

amount of contamination by lower molecular weight hemicelluloses. 

b.  Because MALDI-TOF-MS will count ions it is likely spectra peak areas and 

heights will reflect composition of sample by number of molecules. 

 

4. The MALDI method (especially at 95% laser power) is fragmenting larger 

polymers from the sample and causing them to appear in the mass spectra 

as much smaller fragmentation ions.  Fragmentation is known to occur 

with polysaccharides as they move between the MALDI plate and the 

detector [109] but it is claimed that this fragmentation will not be a 

significant problem when using a „cooler‟ matrix like THAP or 2,5-DHB 

[109]. However, literature reporting of MALDI mass spectra of 

polysaccharides (free carbohydrates, not glycoconjugates) larger than 

about 10,000Da is rare [106, 109] and a „cooler‟ matrix like DHB is 

known to cause significant fragmentation of some synthetic polymers such 

as poly(tetrahydrofuran) [121]. So this explanation cannot be discounted. 
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Table 3: Average MW values for de-acetylated neutral hexose polymers (calculated using 

Polytools). 

Fraction 

Ion gating 

(m/z) Mn (Da)
a
 Mw (Da)

b
 Pd

c
 DP

d
 

DP 

range
e
 

N3  700 1755.08 1898.58 1.08176 10.77 17 

       N2  700 2577.4 3469.5 1.34613 15.91 45 

       N1  700 2304.51 2763.69 1.19925 14.20 56 

 

2000 4012.08 4734.18 1.17998 24.71 53 

 

6000 9157.88 9361.26 1.02221 56.53 39 

a. Mn  = number-averaged molecular weight. 

b. Mw  = weight-averaged molecular weight. 

c. pd = polydispersity. 

d. DP = mean degree of polymerization. 

e. DP range = range in the numbers of hexose units contained in polymers. 

 

Analysis of MALDI-ToF spectra mass lists with Polytools was also carried out on 

the major neutral hexose series that were detected in de-acetylated samples of 

fractions N1, N2, and N3 in positive ion mode. Polytools calculated average 

values for the hexose polymer distribution found in each fraction (Table 3).  The 

mass lists of N1 spectra where ion gating suppression settings had been increased 

were also analysed with Polytools, although the calculated values (Table 3) should 

not be compared directly with  the values for the other fractions as the method had 

been radically changed to ignore lower mass ions.   

 

These averages generated by Polytool software do depend on choices made by the 

programs user. These choices include the accuracy of the peak picking and 

whether peak heights or peak areas were used for the calculation. The rise in the 

baseline under the hexose series appeared to distort both peak height and peak 

area values. Calculations using peak heights generally gave higher average values 

than calculations using peak areas. For consistency peak area (integral) was used 

to calculate all values listed in Table 1 and Table 3.  
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The mass list peaks were all picked manually from the spectra to reduce the 

chances of the Polytool software getting confused by the excess of data in the 

computer picked mass lists. The mass accuracy limit was set to 30 mass units. 

This mass accuracy limit was very high but allowed the software to count Na
+
 and 

K
+
 adducts in the same series for the neutral polysaccharides. 

 

The Na
+
 adducts were generally the dominant peaks in hexose polymers below 

m/z 5000. At around m/z 5000 Na
+
 and K

+
 adduct peaks were at about equal 

intensity, and above m/z 5000 the K
+
 adducts appeared to dominate. Na

+
 and K

+
 

adduct peaks for each hexose polymer size appeared to start blending together at 

higher m/z values, likely to be due to loss of resolution and isotope variations at 

higher masses.  
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3.3 Nuclear Magnetic Resonance Spectroscopy (NMR) Analysis 

3.3.1 Anionic (Acidic) Fractions  

 

 

Figure 22: 
1
H NMR of Fraction A2 in D2O (70°C probe temperature). 

 

1
H NMR analysis of Fractions A2 and A3 provided additional evidence for the 

presence of 4-O-methyl-α-D-glucuronic acid groups attached to the pentose 

polymers. Sharp singlets at approximately 3.48 ppm were observed rising above 

the carbohydrate envelope region (Figure 22) in the spectra of both fractions and 

are at a similar shift to literature values for the –OCH3 groups of 4-O-

methylglucuronic acid attached to xylans [90]. A weak 4-O-methyl signal was 

also observed in Fraction N1 (Figure 24), but any 3.48 ppm signal present in the 

N2 and N3 spectra were not discernable above the carbohydrate signals in 

Fractions N2 and N3. This is consistent with MALDI-ToF evidence (Table 1, 

page 55) that shows most of the acidic polysaccharides are eluted during the SEC 

before Fraction N1 was collected but that there is a small amount of acidic 

polymers contaminating N1. 

    1.9 ppm (-CH3) free acetate 

≈ 3.48 ppm (O-CH3) MeGlcA 

 (HOD)  
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Figure 23: Anomeric region of 
1
H NMR of Fraction A2 in D2O (70°C probe temperature) 

Some signals in the anomeric region of the proton NMR of Fraction A2 (Figure 

23) were very similar to those published for a softwood and hardwood 4-O-

methylglucuronoxylans [21, 83]. The doublet at ≈ 4.63 ppm (
3
JH,H ≈ 7.2 Hz) was a 

very close match to the signal assigned to the H-1 proton on 1,2,4-linked β-D-

xylopyranosyl units where 4-O-methyl-α-D-glucopyranosyluronic acids are 

attached [83, 105].  

 

The signals around 4.48 ppm (Figure 23) might be a doublet with an 
3
JH,H  of 

approximately 7.5Hz, and is a very close match to the signal assigned to H-1 

protons of 1,4-linked β-D-xylopyranosyl backbone units [21, 83, 105]. If this is a 

doublet then it has been distorted by overlapping signals. The overlapping signals 

would likely be due to the H-1 signal of 1,6 linked β-D-galactopyranosyl at 

4.47ppm, [21].  The acidic fractions were found to be enriched in 1,6-linked D-

galactopyranosyl units (Figure 30) and Fraction A2 was found to contain very 

high levels of  D-galactosyl (Table 7, page 83).  

 

≈ 4.63 ppm (≈ 7.2 Hz)  

≈ 4.48 ppm (≈ 7.5 Hz)  

≈ 5.27 ppm (≈ 4 Hz)  

≈ 5.18 ppm  

≈ 5.28 ppm  
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There is more uncertainty about assigning the signals (Figure 23) at shifts around 

5.28 ppm, 5.26 ppm, and 5.18 ppm based on literature examples. Some literature 

assigns signals around 5.27 ppm as being from the H-1 signal of 1-linked α-L-

arabinofuranosyl branches [21]. Others assign a broad singlet somewhere between 

5.2 ppm and 5.3 ppm as the H-1 signal of 4-O-methyl-α-D-glucopyranosyluronic 

acids linked to a xylan backbone [21, 35, 90]. Based on the literature assignments 

and information about the composition of Fraction A2 (Table 7, page 83 and 

Table 9, page 91) a tentative assignment of these signals would be that the doublet 

around 5.26 ppm is from H-1 signal of terminal α-L-arabinofuranosyl units, that is 

superimposed over a less intense broader signal that extends out towards 5.28 

ppm from the H-1 of 4-O-methyl-α-D-glucopyranosyluronic acids linked to the  

C-2 position of the xylan backbone. 

 

This NMR evidence from the acidic fractions is consistent with these fractions 

containing a 1,4-linked β-D-xylopyranosyl backbone with 1,2,4 linked β-D-

xylopyranosyl branch points and 4-O-methyl-α-D-glucopyranosyluronic acids 

attached to these branch points.  1-linked α-L-arabinofuranosyl units are likely to 

be present, but it is uncertain if they are attached to the D-xylopyranosyl backbone 

or separate arabinogalactan polymers. Some correlations found in monomer 

composition across the fractions (page 85), suggested that most of the L-

arabinosyl units are not associated with D-xylosyl units, but could be associated 

with D-galactosyl units. 
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3.3.2 Neutral Fractions 

 

Figure 24: 
1
H NMR of Fraction N1 in D2O. (27°C probe temperature) 

Most signals consistent with partially-acetylated hexose polymers [89]. Some evidence of 

trace 4-O-methylglucuronic acid (MeGlcA) contamination [90]. 

 

 

Figure 25: 
1
H NMR of Fraction N2 in D2O. (70°C probe temperature) 

Assignments based on literature [21, 36, 90]. 

 (HOD)  

≈ 2.2 ppm (-CH3) 

 O-acetyl groups 

1.9 ppm (-CH3) free acetate 

≈ 5.4 ppm (H-2)                        

2-O-acetylated  

mannopyranosyl  

 (HOD)  

≈2.2 ppm (-CH3) 

 O-acetyl groups 

≈3.5 ppm (O-CH3) MeGlcA 

≈ 4.7 ppm  (H-1)                        

β-D-mannopyranosyl  

≈ 4.1 ppm  (H-2)                        

β-D-mannopyranosyl  
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A large broad group of overlapping signals around 2.2 ppm were observed in the 

1
H spectra of Fractions N1, N2, and N3 (Figure 24 and Figure 25) that is 

consistent with literature shift values for O-acetyl groups attached to xylans [35] 

or galactoglucomannans [89]. Only very low intensity signals were observed 

between 2.1 and 2.3 ppm in fractions A1, A2 and A3. This is consistent with 

earlier MALDI-ToF results (pages 54 and 53) where no acetyl groups were 

detected attached to the acidic polysaccharides, and the literature reports of 

softwood xylans that are generally free of acetyl groups [26]. 

 

Figure 26: 
1
H NMR of Fraction N2 in D2O acquired two weeks after Figure 25.  

(70°C probe temperature) Assignments based on literature [21, 89]. 

 

 (HOD)  1.9 ppm (-CH3) free acetate 

≈ 2.2 ppm (-CH3) O-acetyl 

groups 
≈ 5.1 ppm (H-3)                        

3-O-acetylated  

mannosyl units 
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A sharp singlet signal at 1.9 ppm was a major presence in most proton NMR 

spectra (Figure 22 to Figure 26). This shift has been attributed to acetate in the 

literature [36, 90]. When present in the neutral fractions its present is likely due to 

de-acetylation after the SEC step. This is because free acetate ions would carry a 

charge, so should elute with the acidic polysaccharide fractions during SEC if it is 

formed during prehydrolysis or isolation steps.  In Fraction N2, the 1.9 ppm signal 

appeared to increase in relative intensity when further NMR experiments were 

carried out on the same sample after two weeks of storage in D2O at room 

temperature. In addition the relative intensity of O-acetyl signals around 2.2 ppm 

was reduced after storage (Figure 26). These changes during the storage, 

processing, or analysis of the polysaccharides will increases the uncertainty when 

estimating the degree of acetylation of the polymers. 

 

Initial attempts to estimate the average degree of acetylation from NMR spectra 

involved integration of carbohydrate signals between 4.2 ppm and 3.0 ppm, O-

acetyl signals around 2.2 ppm, and the free acetate signals around 1.9 ppm.  The 

integral values for O-acetyl and acetate were each divided by 3(number of protons 

in each acetyl group) to give N values (number of acetyl groups). The integral 

values for carbohydrate signals between 4.2 ppm and 3.0 ppm were divided by 6 

(this assumed that neutral fractions were mostly hexoses and that each hexose unit 

contributes 6 protons to this region: H-2, H-3, H-4, H-5, H-6a and H-6b, [36]) to 

give  N values (number of hexose groups).  The O-acetyl and acetate N values 

were then each divided by the N values for the hexose to produce NMR average 

DSAc values (Equation 2, Equation 3, Table 4).  

Equation 2: Estimating Observed DSAc 

DSAc (observed) ≈
 

 integral of 0-acetyl signals around 2.2 ppm
3 (protons)

 

 
 integral of signals between 4.2ppm and 3.0 ppm

6 (protons)
 
 

Equation 3: Estimating ‘Original’ DSAc 

DSAc  ′original′ ≈ DSAc  observed +  
 

 integral of free acetate  signals around 1.9 ppm
3 (protons)

 

 
 integral of signals between 4.2ppm and 3.0 ppm

6 (protons)
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The separate DSAc values for O-acetyl and acetate were then added together to 

give an „Original DSAc‟ value (Table 4). „Original DSAc‟ is based on the 

assumption that all free acetate detected in the neutral fractions was originally 

attached to hemicelluloses as O-acetyl groups when the neutral polymers eluted 

from the SEC system, and that further handling, storage in aqueous solution at 

room temperature, and during acquisition of the NMR spectra at 70°C  has caused 

de-acetylation of the hemicelluloses. In Table 4 „Observed DSAc‟ refers to the O-

acetyl groups still attached to the polysaccharide when the NMR spectrum was 

recorded; it is therefore based on fewer assumptions than the „Original DSAc‟ 

values.   
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Table 4: Estimated degrees of acetylation for neutral fractions and comparison to literature 

values. 

Fraction 

NMR 

spectrum  

Observed 

DSAc
a
 

‘Original’ 

DSAc
b
 

N1 Figure 24 0.19 0.28 

N2 Figure 25 0.16 0.20 

N2 after 2 weeks of storage Figure 26 0.13 0.22 

N3  0.04 0.07 

N2 (anomeric method)
c
 Figure 25 0.15 0.18 

Literature values of DSAc for O-acetylated hexose polymers from water 

extracts of wood 

Hemicellulose source Analysis method DSAc   

Spruce AcGGMs from 

microwave heat 

fractionation (water, 190°C, 

5 min) [106] 

Obtained by de-

acetylation and acetic 

acid analysis by HPLC 

0.31 

Birch O-acetyl 

glucomannans from process 

water (mechanical pulping) 

[36] 

NMR 0.2 

Aspen O-acetyl 

glucomannans 

from  two water extractions 

(80°C, 30 min ) after DMSO 

extraction [36] 

NMR 0.3 

Spruce AcGGMs from 

microwave heat 

fractionation (water, 200°C, 

2 min) [89] 

 

NMR 0.28  

(higher MW fraction) 

0.25 

(lower MW fraction) 

a. Observed DSAc refers to the acetyl groups attached when the NMR was acquired.   

b. ‘Original’ DSAc was calculated based on the assumption that all the free acetate 

detected was attached to the carbohydrates when eluted from the SEC system 

then de-acetylated before the NMR was acquired. 

c. Used integrals of hexose H-1 signals instead of H-(2 to 6) carbohydrate signals for 

calculating DSAc values. 
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A second set of DSAc values was calculated for N2 by integrating and using the 

anomeric H-1 signals around the HOD peak (Figure 25) to estimate the relative 

number of hexose units. This second set of values was compared to the values 

from the other method. The two sets were close, but differed by ≈0.02 (12%). This 

provides an indication of the error in these methods.  The main source of error in 

the H-1 method is likely to be due to the HOD peak overlap interfering with some 

of the H-1 signals.  

 

In the first integration method the six non-H-1 protons for each hexose present in 

an O-acetylated (galacto)glucomannan were all assumed to be integrated between 

4.2 ppm and 3.0 ppm. A significant source of error in this use of integrals is 

caused by each 3-O or 2-O acetyl group attached to a hexose shifting a single 

hexose proton out of the area that was integrated (between 4.2 ppm and 3.0 ppm) 

[36, 89]. This means that each hexose with a single attached acetyl group will 

only contribute 5 protons instead of 6 protons to this area (between 4.2 ppm and 

3.0 ppm) and any hexose that is acetylated at both 3-O and 2-O positions should 

only contribute 4 protons to the area integrated between 4.2 ppm and 3.0 ppm. 

Potential improvements to the accuracy of the DSAc estimates could be obtained 

by adding in the integrals of the H-2 and H-3 signals that are outside the area 

between 4.2 ppm and 3.0 ppm, if they are free of interference and can be correctly 

assigned. Another approach to mitigate this error could be a mathematical 

adjustment of Equations 2 and 3 using the DSAc estimates in Table 4 to account 

for 'hexose protons with signals between 4.2 ppm and 3.0 ppm' = (6 – DSAc) 

instead of 6. This would generate a new adjusted set of DSAc estimates which 

could have greater accuracy. 
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Figure 27:
  13

C   DEPT135 of Fraction N2 in D2O. (37°C probe temperature)  

The signals of the most abundant hexopyranosyl repeating unit are assigned and are likely to 

be from the β-(1 → 4)-linked D-mannopyranosyl backbone of the AcGGM polymers [21, 

122]. 

 

Trials of one dimensional 
13

C NMR on various fractions generally produced poor 

signal/noise ratios and were time consuming to collect making them of little value 

for assigning signals. However, the DEPT135 of Fraction N1 recorded on the 300 

MHz machine showed six dominant signals of similar intensity (Figure 27). These 

signals were consistent with a single major hexose repeating unit as assigned. 

These six hexose carbon shifts were very similar to those reported in the literature 

for β-(1→4)-linked D-mannopyranosyl dominated oligosaccharide fragments of 

acetylated-GGM from aloe gel [122]. They also followed a similar pattern to 

those assigned to the β-(1 →4)-linked D-mannopyranosyl backbone of spruce 

AcGGM [21], although the shifts were each approximately 1 ppm less in Figure 

27 which could be due to differences in referencing. O-acetyl groups gave weak 

signals around 20 ppm, but these were not easy to discern above baseline noise.  

A number of less intense carbohydrate signals were also observed.  

 

  

70.1 ppm (C-2)  

 

60.7ppm (C-6) 

 

71.1 ppm (C-3)  

 75.2 ppm (C-5) 

 
76.7 ppm (C-4)  

 

100.3 ppm (C-1)  
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3.4 Acid Hydrolysis and Monomer Composition Analysis  

3.4.1 Analysis of Neutral Components by Conversion to Alditol 

Acetates 

 

Table 5: Monosaccharide components by mol ratio relative to D-mannose 

 D-galactose D-glucose D-xylose D-mannose L-arabinose 

Crude  0.31 0.27 0.48 1.00 0.15 

A1  n.d. n.d. n.d. n.d.  n.d. 

A2 2.91 0.87 1.08 1.00 0.88 

A3 1.96 0.77 5.26 1.00 0.74 

N1 0.06 0.25 0.05 1.00 0.00 

N2 0.24 0.27 0.08 1.00 0.09 

N3 0.80 0.35 1.11 1.00 0.42 

 

Table 6: Monosaccharide composition of samples in mol% 

 D-galactose D-glucose D-xylose D-mannose D-arabinose 

Crude  14% 12% 22% 45% 7% 

A1  n.d. n.d. n.d. n.d.  n.d. 

A2 43% 13% 16% 15% 13% 

A3 20% 8% 54% 10% 8% 

N1 5% 18% 4% 73% 0% 

N2 14% 16% 5% 59% 6% 

N3 22% 9% 30% 27% 11% 

 

Monosaccharide composition after acid hydrolysis was obtained for the crude 

samples and for five of the fractions from SEC (Table 5 and Table 6). The GC-

MS analysis of Fraction A1 showed no clear results for alditol acetates, which 

could have been due in part to it being the least concentrated fraction and more 

susceptible to losses during handling. 
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The relative proportions of D-galactosyl, D-xylosyl, and L-arabinosyl residues 

increased in the neutral polysaccharides as their apparent molecular weight 

decreased. This meant that larger polysaccharides in Fraction N1 contained the 

highest proportion of D-mannosyl residues while, the smaller polysaccharides in 

Fraction N3 contained higher proportions of D-galactosyl, D-xylosyl, and L-

arabinosyl residues, and Fraction N2 was part way between. 

 

Unexpectedly high amounts of D-galactosyl units were found in Fraction A2 and 

to a lesser extent Fraction A3.  This indicates that there is a significant amount of 

hexose-based polymers in the acidic fractions that was not evident in the MALDI-

ToF-MS spectra (Figure 13 and Figure 14). This could be due to poor ionisation 

of the D-galactosyl-based polymers or that there is such a large diversity in size 

and structure of these polymers that very few molecules ever have the same 

molecular weight. Another possibility is that these D-galactosyl-based polymers 

could be extremely large and gave only a few low intensity peaks in the high mass 

range and thus were missed during the observations of the MALDI-ToF mass 

spectra. 

 

The possibility of the D-galactosyl-based polymers containing varying sized lignin 

and/or protein fragments covalently bound cannot be ruled out, given evidence of 

lignin-hemicellulose-complexes in softwoods [9, 17, 123] and arabinogalactan-

proteins compounds reported to be present in P. radiata [31]. The fact that the 

mass spectra (Figure 12, Figure 13, and Figure 14) appeared completely free of 

any hexose-based polymers shows that although MALDI-ToF-MS can provide 

detailed qualitative information, any attempt at quantifying different polymers 

present should be treated with caution.  
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3.4.2 Analysis of Acidic Components by Ion Chromatography and 

NMR 

 

Figure 28: Estimated uronic acid content of the fractions as a proportion of fraction 

dryweight. 

 

A single peak eluting at approximately 3.9 min was detected in all acidic fractions 

and was assumed to be D-galacturonic acid based on the retention time being 

similar to that of D-galacturonic acid standards. This peak assigned to D-

galacturonic acid was not present in the neutral fractions, except for an 

insignificant trace amount detected in Fraction N2. The integration of this peak 

eluting at 3.9 min along with the calibration formula (Figure 7) were used to 

calculate the D-galacturonic acid content of the six SEC fractions (Figure 28). 
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Estimating the D-glucuronic acid content was made more complicated by the 

presence of two peaks eluting with retention times close to that of the D-

glucuronic acid standard (4.7 min).  These two peaks with poor resolution were 

observed in the chromatograms of the crude polysaccharides and the Fractions 

A1, A2, and A3. In contrast, only a single peak (with a retention time that 

appeared closer to the latter of the two peaks) was observed in the chromatograms 

from the neutral Fractions N1, N2, and N3. This indicates the presence of two 

types of molecules with retention times close to D-glucuronic acid in the acidic-

polymer-derived fractions, but only a single type of molecule in the neutral-

polymer-derived fractions.  

 

The sample of acidic components from fraction N2 was analysed using proton 

NMR.  No clear O-methyl signal around 3.48 ppm could be observed rising above 

the other carbohydrate signals in the spectrum. This result suggested that the 

uronic acid produced from acid hydrolysis of the Fraction N2 is the un-methylated 

glucuronic acid.  
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In order to narrow down the possibilities of where the O-methylated hexuronic 

acid (tentatively assumed to be 4-O-methylglucuronic acid) is eluting on the ion 

chromatography system, the four narrower Bio-Gel fractions of acidic 

components (from the complete hydrolysis of the crude sample) were each 

analysed by proton NMR and the ion chromatography method. Each of these four 

fractions was found to be a complex mixture of different components. However, 

relative enrichment or depletion of various components was observed across the 

four fractions, in both the NMR spectrum and ion chromatogram. In these four 

fractions, enrichment in O-methyl NMR signals (integral relative to the integrals 

of other carbohydrate signals) was observed to occur when the first of the two 

peaks that eluted around 4.7 minutes in the ion chromatogram was enriched 

(relative to the other peaks in the ion chromatogram). This evidence suggests that 

4-O-methyl D-glucuronic acid and un-methylated D-glucuronic acid nearly co-

eluted from the column.  However, it does not rule out the possibility that the 

MeGlcA is eluting somewhere else and enrichment is being hidden by unknown 

factors such as other components in the samples. In the present situation the lack 

of a verified 4-O-methylglucuronic acid standard means that conclusively proving 

exactly how 4-O-methylglucuronic acid behaves on this ion chromatography 

system is still unresolved. 

 

When estimating the uronic acid content, the D-glucuronic acid peak and the 

slightly earlier peak suspected to be 4-O-methylglucuronic acid were integrated 

together due to their poor resolution and referred to as (methyl)glucuronic acid. 

 

The possibility of some uronic acids still having neutral sugars attached as 

aldobiouronic acids [24] adds further uncertainty to this method.  It was 

tentatively assumed in the absence of standards that any aldobiouronic acids 

would have a similar retention time and molar detector response, and simply 

cause broadening of the corresponding uronic acid peak. 
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When estimating the uronic acid content, a further assumption was made. 4-O-

methylglucuronic acid was assumed to have the same peak area to mol responses 

(molar detector response) as D-glucuronic acid and D-galacturonic acid.  

 

This method for estimating uronic acid content was developed rapidly from some 

previous work [124] and is unlikely to be optimised. The method also was not 

validated against other existing methods for estimating uronic acid content [27, 

35, 42, 125]. Identification and quantification of uronic acids from lignocellulosic 

sources is often very difficult and unreliable across many different methods as 

indicated by an inter-laboratory comparison study [27].   

 

The determined uronic acid contents in the SEC fractions showed some distinct 

trends (Figure 28). Total uronic acids present in acidic fractions decreased with 

elution time with fractions A1, A2 and A3 containing 0.47, 0.36 and 0.19 mol/kg 

uronic acids, respectively. This pattern supports the theory that polysaccharides 

with more anionic groups are ion excluded to a greater extent under the of SEC 

conditions used in the separation [26]. In contrast, total uronic acid content in the 

neutral fractions increased with elution time and, as expected, the levels were 

lower than in the acidic fractions. This suggests that the neutral fraction 

polysaccharides containing these (methyl)glucuronic acid residues are likely to be 

smaller in molecular weight and relatively independent of the dominant O-

acetylated galactoglucomannans. 

 

Only glucuronic acid was detected in the neutral fractions and results so far 

indicate a lack of O-methyl groups. The fact that polysaccharides containing 

glucuronic acid are not „ion excluded‟ [26, 103] and appear in the neutral 

fractions, can be explained if the glucuronic acid is ester linked, therefore losing 

its anionic behaviour. In other lignocellulosic materials, evidence of 4-O-

methylglucuronic acids on hemicelluloses being ester-linked to lignin has been 

documented [51]. These results suggested that the un-methylated glucuronic acid 

is ester linked and present in these neutral fractions.  
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3.4.3 Interpretation of Monomer Composition Information 

Table 7: Estimated mol% of monomer components 

Component  N1  N2  N3 A2 A3 

D-galactosyl 
a
 3.5% 11.9% 19.8% 43.1% 20.1% 

D-glucosyl 
a
 14.3% 13.0% 8.6% 12.9% 7.9% 

D-xylosyl 
a
 3.1% 4.1% 27.5% 16.1% 54.1% 

D-mannosyl 
a
 56.6% 48.8% 24.8% 14.8% 10.3% 

L-arabinosyl 
a
 0.0% 4.5% 10.4% 13.1% 7.7% 

acetyl 
b
 21.8% 16.8% 6.9% 0.0% 0.0% 

D-galacturonic acid 
c
 0.0% 0.0% 0.0% 0.9% 0.3% 

(Methyl) 

 D-glucuronic acid 
c
 0.7% 0.9% 2.0% 4.9% 2.5% 

a. Neutral monosaccharide mol% were taken from the alditol acetate GC-MS 

results with the assumption that these monosaccharides made up most of the 

fraction dryweight not attributed to acetyl or uronic acid content. Fraction 

dryweights used were based on measurements of the first fourteen SEC runs. 

b. Acetyl group mol% was estimated from NMR integrals with adjustments made 

using the hexose/pentose ratio in each neutral fraction produced from alditol 

acetate results.  

c.  
Uronic acid contents were calculated as un-methylated units based on ion 

chromatography results.  

 

 

Table 7 is the results from Table 6 adjusted to include estimated contents of 

uronic acids and acetyl groups.  As these values come from different experiments 

each with their own set of uncertainties, errors, and assumptions it is unlikely that 

the mol% composition values in Table 7 are an accurate representation of the 

absolute composition of each fraction. However, these values provide a tool for 

comparing different fractions and for understanding how different components are 

related in terms of behaviour on the SEC column and/or being linked to each 

other.      
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In an attempt to understand the relationships between different components, when 

all the fractions likely contain some level of mixing of polysaccharide types, a 

number of correlation plots were generated. These involved plotting the mol% 

data for one component against another component and generating a linear “least 

squares” line of best fit and an R
2
 correlation coefficient. This was repeated across 

many combinations of the different components.  The entire dataset (A2, A3, N1, 

N2, and N3) and the neutral fraction dataset (N1, N2, and N3) were both used to 

generate lines in order to assess how relationships between different components 

could change due to the different SEC behaviour in the acidic fractions. An 

example of the plots generated is shown in Figure 29.  The linear regression 

equations linking the components, together with their respective R
2
 values are 

shown in Table 8 (full table in Appendix page 111). The R
2
 values can then be 

used to compare the strength of different linear correlations to test which 

components are likely to be linked together in which polymer types.  The slopes 

of these lines of best fit could give insight into the average ratio of different 

components especially when forced through the origin (zero point). 

 

Figure 29: Plot of correlations between estimated content of D-galactosyl and L-arabinosyl 

Three linear correlations shown: dataset of only neutral fractions (N1, N2 and N3) with an 

R
2
 = 0.9916, dataset of only neutral fractions (N1, N2 and N3) zero forced with an R

2
 = 

0.8408, and the total dataset (A2, A3, N1,  N2 and N3) with an R
2
 = 0.8375  

y = 2.6437x + 0.0078
R² = 0.8375

y = 1.5510x + 0.0398
R² = 0.9916

y = 2.0103x
R² = 0.8408
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Table 8: Useful linear correlations between mol % estimates of different components 

Y axis, Mol%  X axis, Mol%  Linear Formula, 

Full Dataset 

Linear Formula, 

 Neutral Dataset 

Linear 

Formula, 

Zero forced
a
 

D-Mannosyl D-Glucosyl y = 5.0797x - 0.2647 

R² = 0.5028  

y = 5.601x - 0.2358 

R² = 0.9999  

y = 3.7069x 

R² = 0.8809  

D-Mannosyl Acetyl y = 2.076x + 0.122 

R² = 0.9896  

y = 2.1696x + 0.105 

R² = 0.9893 

y = 2.765x 

R² = 0.9023  

D-Galactosyl L-Arabinosyl y = 2.6437x + 0.0078 

R² = 0.8375  

y = 1.551x + 0.0398 

R² = 0.9916  

y = 2.0103x 

R² = 0.8408  

D-Xylosyl (Methyl) 

glucuronic 

acid 

y = 3.7397x + 0.1272 

R² = 0.0898  

y = 19.711x - 0.124 

R² = 0.9819  

y = 11.352x 

R² = 0.7667  

D-Galactosyl Galacturonic 

acid 

y = 33.08x + 0.1123 

R² = 0.8407  

y = 98.019x + 0.116 

R² = 0.0002
b
  

y = 47.466x 

R² = 0.355  

D-Glucosyl Acetyl y = 0.1884x + 0.0961 

R² = 0.4183  

y = 0.387x + 0.061 

R² = 0.9877  

y = 0.7315x 

R² = 0.0736  

D-Xylosyl L-Arabinosyl y = 1.7332x + 0.0858 

R² = 0.1775  

y = 2.4225x - 0.005 

R² = 0.8417  

y = 2.3612x 

R² = 0.8408  

L-Arabinosyl (Methyl)gluc

uronic acid
c
 

y = 2.6172x + 0.0137 

R² = 0.7445  

y = 7.252x - 0.0381 

R² = 0.9267  

y = 4.6754x 

R² = 0.7841  

a. Zero forced linear formula used the neutral fraction datasets. 

b. Very little or no galacturonic acid was detected in neutral factions. 

c. (Methyl)glucuronic acid represents the content of glucuronic acid in addition to 

estimated content of what was tentatively assigned  as methylglucuronic acid. In 

the neutral fractions only the un-methylated glucuronic acid appeared to be 

present.  
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Discerning the strongest associations between components involved first rejecting 

all linear formula with negative slopes (Table 12, page 111). Comparing the R
2
 

values from both the neutral and full datasets allowed the strongest associations to 

be found. The zero (origin) forced linear formula slopes (most from the neutral 

fraction dataset) were used to estimate average ratios of different components. 

The findings from this analytical process follow below: 

 D-mannosyl content, acetyl content, and D-glucosyl content all have 

very strong associations to each other (R
2 

= 0.9893, 0.9999) over the 

neutral fractions indicating that a single polymer type accounts for 

close to all the D-mannosyl, acetyl, and D-glucosyl residues found in 

the neutral fractions. The average mol ratio of components in this 

polymer is estimated to be   3.7 : 1.3 : 1 (D-mannosyl : acetyl : D-

glucosyl) based on the relative gradients of the zero forced linear 

formulas and appears reasonably consistent across Fractions N1, N2, 

and N3. This ratio is close to ratios reported for a type of water-soluble 

O-acetylated galactoglucomannan isolated from Norway spruce and 

radiata pine [4, 17, 21, 30, 106].  

 

 The strong association between D-mannosyl content and D-glucosyl 

content becomes inconsistent and weaker (R² = 0.5028) when the 

acidic fractions are included in the dataset.  This indicates that a large 

proportion of the D-glucosyl in the acidic fractions is not associated 

with the same glucomannan polymer that dominates the neutral 

fractions. Another type of high-glucosyl glucomannan, glucan or 

cellulose could be soluble only when attached in some way to an 

anionic group. The presence of (cellulose or glucomannan)-lignin-

(anionic galactan or xylan) type complexes [9, 11, 126], could be 

potential explanations for this D-glucosyl enrichment in the acidic 

fractions. 
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 D-galactosyl content and L-arabinosyl content have a very strong 

association to each other (R
2 

= 0.9916) in the neutral fractions which 

weakens slightly (R
2 

= 0.8375) when the acidic fractions are added. 

These associations are much stronger than the ones between L-

arabinosyl and D-xylosyl contents (R
2 

= 0.8417, 0.1775) and indicates 

that the majority of D-galactosyl and L-arabinosyl residues found 

across all fractions are likely to be attached together in similar polymer 

types. This does not discount the hypothesis that some L-arabinosyl 

units are attached to xylans or that some D-galactosyl units are attached 

to the glucomannan polymers, it only indicates that the majority of D-

galactosyl and L-arabinosyl residues are not attached to xylans and 

glucomannans. The average mol ratio of these components is estimated 

to be 2 : 1 (D-galactosyl : L-arabinosyl), which represents a 

significantly higher proportion of L-arabinosyl residues than normally 

reported for softwood arabinogalactans [4, 29].  

 

 D-xylosyl content and glucuronic acid content have a stronger 

association (R
2 

= 0.9819) in the neutral fractions than D-galactosyl 

content and glucuronic acid (R
2 

= 0.8713). This indicates that the 

glucuronic acid detected in the neutral fractions could be linked to 

xylan-based polymers.  

 

The strong associations detailed above provide evidence that the majority of the 

two specified components are travelling together in consistent proportions when 

fractionated on the SEC system. The causes of these associations could have a 

number of different potential explanations. The most likely explanation for a 

strong association is that most of the two components are covalently linked in the 

same type of polymer and also that the polymer type keeps similar proportions of 

different components regardless of the polymer‟s size. However, alternative 

explanations such as the two components each being part of two or more 

independent polymer types which all happen to have very similar SEC behaviour 

cannot be discounted based on this evidence. 
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3.5 Linkage Analysis  

The method used is unlikely to be effective for detecting the points where the 

uronic acids are attached to the polysaccharides due to the difficulty experienced 

with reducing the carboxylic acid groups and the resistance of the uronic acid 

linkages to acid hydrolysis [115]. Alternative reduction methods involving 

esterification and/or activation of the acid, often in conjunction with the use of 

stronger reducing agents are reported in the literature [41, 44, 115]. However, due 

to time and material constraints these methods were not successfully applied to 

these samples. These methods are recommended if a more complete picture of 

uronic acid attachment is a focus of any future research. 

 

The two most abundant PMAAs detected in the crude polysaccharide samples 

were consistent with 1,4-linked D-xylopyranosyl and 1,4-linked D-

mannopyranosyl units.  The 1,4-linked D-xylopyranosyl PMAA was dominant in 

the acidic fractions and the 1,4-linked D-mannopyranosyl PMAA was dominant in 

the neutral fractions, especially the sample from Fraction N1.   

 

The PMAAs which were detected and identified, their retention times, and the 

deduced linkages from which they were likely produced are displayed in  

Table 10. Approximate proportions of total-ion peak areas are displayed in Table 

9 along with deduced linkages. Caution is recommended in interpretation of these 

proportions as large variations were observed between the duplicates of the crude 

samples. The ratios between 1,4-linked D-mannopyranosyl PMAA and 1,4-linked 

D-glucopyranosyl PMAA peak areas were also very different from that which 

would be expected, given the D-mannosyl and D-glucosyl ratios from the 

monomer composition analysis (Table 7, page 83).  
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The linkages deduced from the PMAA indicate that Fraction N1 was the closest to 

containing a single type of polysaccharide and that the polysaccharide is 

structurally consistent with a typical softwood (galacto)glucomannan [17, 21, 30]. 

It likely contains a 1,4-linked backbone of  D-mannopyranosyl and D-

glucopyranosyl with a small amount of 1-linked terminal D-galactopyranosyl 

branches linked to the C-6 oxygen of some backbone D-mannopyranosyl units. 

(Table 9). Smaller amounts of other linkages were detected which often increase 

in relative abundance in the composite neutral fraction sample.  This is evidence 

for an increase in structural diversity in the smaller molecular weight neutral 

polysaccharides. 

 

The smaller molecular weight neutral polymers (Fractions N2 and N3) appear to 

be shorter (galacto)glucomannan fragments and a mixture of other types of 

polysaccharide.  These other types of polysaccharide could include pentose based 

arabinan, xylan, and/or arabinoxylan.  Some of the D-galactosyl enrichment  in 

Fraction N3 (page 77) is likely due to 1,4-linked D-galactopyranosyl based 

polymers which is consistent with them being fragments of a compression wood 

galactan from P. radiata [19]. 

 

Evidence for some branching of the 1,4-linked D-xylopyranosyl backbone at the 

C-3 oxygen was found in the acidic fractions (and to a lesser extent in the neutral 

fractions).  The literature [25] suggests that these branches should be terminal L-

arabinofuranosyl units. However, only very small amounts of terminal L-

arabinofuranosyl PMAAs were detected. Possible reasons for this include (i) that 

the L-arabinofuranosyl units are more vulnerable to decomposition in the severe 

acid hydrolysis step [92],  (ii) that some of the uronic acid branch points are 

unexpectedly being detected by this method, or (iii) that another group is attached 

to this branch point.  
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A number of other PMAA were detected in very small abundance and had shorter 

retention times than anything listed in the primary literature source [115]. Some of 

the mass spectra of these PMAA were consistent with what was expected to be 

produced from the reducing end monomer, especially 4-linked hexoses. However, 

the absence of standards of these PMAAs or relative retention times from 

literature limits the confirmation of their identities. One of the more prominent 

PMAA peaks of this type had a mass spectrum that was very similar to the 4-O-

acetyl-1,2,3,5,6-penta-O-methyl-D-glucitol PMAA produced from the lactose 

standard, yet had a slightly shorter retention time suggesting that it could be from 

another reducing-end 4-linked hexose. One possibility could be 4-O-acetyl-

1,2,3,5,6-penta-O-methyl-D-mannitol.  

 

Major contaminant peaks were present in the gas chromatograms of all PMAA 

samples and they did not have mass spectra consistent with PMAAs. The m/z 149 

ion found in the mass spectrum of these peaks indicates phthalate ester type 

contaminants [127], perhaps due to the use of plastic vial lids during steps such as 

acid hydrolysis. 
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Table 9: Linkages deduced from detected partially methylated alditol acetates, approximate proportions represented as percentage of total indentified PMAA peak 

area within each sample. 

Deduced Linkage Crude Acidic Fractions (A1, 

A2 and A3 combined) 

Neutral Fractions(N1, 

N2 and N3 combined) 

Fraction N1 

1,4 linked D-mannopyranosyl 32% 12% 36% 41% 

1,4 linked D-xylopyranosyl 17% 24% 8% 2% 

1,4 linked D-glucopyranosyl 17% 15% 23% 32% 

Terminal D-galactopyranosyl 6% 15% 7% 7% 

Terminal D-mannopyranosyl  and/or   Terminal D-

glucopyranosyl 

7% <1% 7% 3% 

1,5 linked L-arabinofuranosyl and/or   

1,4 linked L-arabinopyranosyl 

4% 15% 4% <1% 

Terminal L-arabinofuranosyl 4% <1% 1% <1% 

1,4,6 linked D-mannopyranosyl 3% 0% 4% 7% 

Terminal D-xylopyranosyl 1% 1% 0% 2% 

1,4 linked D-galactopyranosyl 2% <1% 5% <1% 

1,3 linked D-galactopyranosyl 4% 3% 1% 2% 

1,4,6 linked D-galactopyranosyl 3% 3% 3% 4% 

1,3,4 linked D-xylopyranosyl <1% 8% 1% <1% 

1,6 linked D-galactopyranosyl 1% 4% 0% 0% 
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Table 10: Partial methylated alditol acetates detected and identified. 

Partially Methylated Alditol Acetate  

(Identified by comparison of mass spectrum and retention times) 

Deduced Linkage(s) Retention 

time (min) 

1,4,5-tri-O-acetyl-1-deuterio-2,3,6-tri-O-methyl-D-mannitol 1,4-linked D-mannopyranosyl 17.82 

1,4,5-tri-O-acetyl-1-deuterio-2,3-di-O-methyl-D-xylitol 1,4-linked D-xylopyranosyl 16.54 

1,4,5-tri-O-acetyl-1-deuterio-2,3,6-tri-O-methyl-D-glucitol 1,4-linked D-glucopyranosyl 18.46 

1,5-di-O-acetyl-1-deuterio-2,3,4,6-tetra-O-methyl-D-galactitol Terminal-D-galactopyranosyl 15.82 

1,5-di-O-acetyl-1-deuterio-2,3,4,6-tetra-O-methyl-D-(mannitol/glucitol) Terminal-D-(manno and/or gluco)pyranosyl  15.02 

1,4,5-tri-O-acetyl-1-deuterio-2,3-di-O-methyl-L-arabinitol 1,5-linked L-arabinofuranosyl and/or 

1,4-linked L-arabinopyranosyl 15.95 

1,4-di-O-acetyl-1-deuterio-2,3,5-tri-O-methyl-L-arabinitol Terminal-L-arabinofuranosyl 12.32 

1,4,5,6-tetra-O-acetyl-1-deuterio-2,3-di-O-methyl-D-mannitol 1,4,6-linked D-mannopyranosyl 20.20 

1,5-di-O-acetyl-1-deuterio-2,3,4-tri-O-methyl-D-xylitol Terminal-D-xylopyranosyl 13.42 

1,4,5-tri-O-acetyl-1-deuterio-2,3,6-tri-O-methyl-D-galactitol 1,4-linked D-galactopyranosyl 18.26 

1,3,5-tri-O-acetyl-1-deuterio-2,4,6-tri-O-methyl-D-galactitol 1,3-linked D-galactopyranosyl 17.38 

1,4,5,6-tetra-O-acetyl-1-deuterio-2,3-di-O-methyl-D-galactitol 1,4,6-linked D-galactopyranosyl 20.82 

1,4,3,5-tetra-O-acetyl-1-deuterio-2-O-methyl-D-xylitol 1,3,4-linked D-xylopyranosyl 19.21 

1,5,6-tri-O-acetyl-1-deuterio-2,3,4-tri-O-methyl-D-galactitol 1,6-linked D-galactopyranosyl 19.38 

4-O-acetyl-1,2,3,5,6-penta-O-methyl-D-(mannitol/glucitol) 4-linked reducing end D-(mannosyl/glucosyl) 11.43 
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Figure 30:Relative enrichment and depletion of detected linkages 

All points calculated by dividing the linkage composition proportion in the fraction by the linkage composition proportion in the crude(unfractionated) sample. 

Enrichment in a linkage is indicated by the fraction’s point falling between the 100% and 1000% lines. Relative depletion in a linkage is indicated by the fraction’s 

point falling between the 100% line and the centre. The 100% line represents the relative composition of the crude (unfractionated) sample.  Scale is logarithmic. 
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The composite sample of all the neutral fractions had a far greater diversity of 

linkages than those detected in Fraction N1 (Figure 30). This along with the 

monomer composition results (Table 7, page 83) indicates that the lower 

molecular weight polymers in Fraction N3 (and to a lesser extent Fraction N2) are 

a mixture of many different polymer types. From the linkage analysis results it 

can be deduced that these non-mannan polymers are composed of mainly of: 1,4-

linked D-xylopyranosyl, 1,4-linked D-galactopyranosyl, and 1,5-linked L-

arabinofuranosyl units with indication of some branching at 1,3,4-linked D-

xylopyranosyl  and 1,4,6-linked D-galactopyranosyl units. 

 

The composite sample of the acidic fractions also indicates a high diversity of 

linkages and polymer types (Figure 30). These minor  polymers are likely to be 

composed of: terminal-D-galactopyranosyl, 1,4-linked D-glucopyranosyl, 1,4-

linked D-mannopyranosyl, 1,6-linked D-galactopyranosyl, 1,4,6-linked D-

galactopyranosyl, and  1,3-linked D-galactopyranosyl linkages. A PMAA 

consistent with 1,5-linked L-arabinofuranosyl was detected, however the same 

PMAA (1,4,5-tri-O-acetyl-1-deuterio-2,3-di-O-methyl-L-arabinitol) would be 

produced from 1,4-linked L-arabinopyranosyl. Literature often assigns this PMAA 

as 1,5-linked L-arabinofuranosyl [31, 32].  Further NMR work, possibly after 

partial hydrolysis and fractionation is recommended to deduce if these L-

arabinosyl units are in the furanose or pyranose ring forms. 
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4 Chapter 4 Summary and Conclusions 

4.1 Types of Polysaccharides in the Prehydrolysate 

Table 11: Estimated yields of different polymer types identified 

 

% by mass of crude 

polymeric 

carbohydrates 

isolated
a
 

g/kg dry woodchips
a
 

Neutral O-acetylated
 

(galacto)glucomannans
b
 54% 10.9 

Neutral 

(arabinoglucurono)xylans
c
 6% 1.1 

Neutral galactans, 

arabinogalactans & 

arabinans
d
 8% 1.6 

Anionic  glucans and/or 

glucomannans
e
 7% 1.4 

Anionic 

(arabino)glucuronoxylans
f
 12% 2.3 

Anionic galactans, 

arabinogalactans & 

arabinans
g
 11% 2.1 

a. These values were estimated based on evidence from throughout the results section 

and are based on a number of assumptions. They are presented to give rough 

proportions of the different types of polysaccharides found in this prehydrolysate. 

b. All glucosyl, mannosyl and acetyl units in the neutral fractions were assumed to be 

part of these polymers along with 1 galactosyl unit per 5 glucosyl units (based on 

N1 ratios). 

c. All (methyl)glucuronic acid groups and xylosyl units in the neutral frations are 

assumed to be part of this polymer. The carboxylic acid group is assumed to be 

ester linked making it neutral. 

d. All arbinosyl and galactosyl units in the neutral fractions are assumed to be part of 

these polymers with the exception of the small amount of galactosyl attached to 

AcGGMs
b
.    

e. This is the glucosyl and mannosyl units present in the acidic fractions. It is 

unknown what else these components are attached to. 

f. All xylosyl units were assumed to be part of these polymers along with 1 MeGlcA 

residue per 10 xylosyl units. 

g. All galactosyl and arabinosyl units in acidic fractions assumed to be part of these 

polymers along with all uronic acids not assumed to be attached to the xylans 
f
. 
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Figure 31: Estimated distribution of different types of polymer across the major fractions. 

Used similar assumptions to those listed in Table 11. 

4.1.1 O-acetylated (galacto)glucomannans (AcGGMs) 

The ratios of components attributed to this polymer type in the neutral fractions 

N1, N2 and N3 were approximately 3.7 : 1.3 : 1 : 0.2 (D-mannosyl : acetyl : D-

glucosyl : D-galactosyl) and this appears to account for close to all the D-

mannosyl, acetyl, and D-glucosyl units in these fractions. However the majority of 

D-galactosyl units present in this prehydrolysate are not attached to this polymer 

type.   

 

A backbone of β-1,4-linked D-mannopyranosyl and β-1,4-linked D-glucopyranosyl 

units were found along with terminal α-D-galactopyranosyl units likely to be 

attached at 1,4,6-linked D-mannopyranosyl branch points. 

Evidence of variation in O-acetyl group attachment was found with NMR signals 

consistent with literature examples [21] of acetyl groups at C-2 and C-3 positions 

of some mannosyl units. 
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These neutral O-acetylated (galacto)glucomannan hemicellulose fragments were 

the only polysaccharides that could be recovered from the prehydrolysate at a 

yield representing greater than 1% of original wood dry weight.  In total they 

comprise approximately 54% of the dry weight of the crude polysaccharide 

isolated from the prehydrolysate (calculated based on D-mannosyl content). These 

AcGGMs dominate the neutral fractions and can be recovered in greater purity in 

the higher molecular weight fractions such as Fraction N1.  

 

A great variation in apparent molecular weight, from disaccharides through to 

polymers as high as 62,000 Da were observed for this polymer-type. MALDI-

ToF-MS average molecular weights of the de-acetylated polymers were Mn ≈ 

2600, Mw ≈ 3500. This corresponds to an average DP of ≈ 16 hexose units. The 

average molecular weight could actually be much higher as the MALDI-ToF-MS 

method appears biased towards lower molecular weight polysaccharides and the 

method had difficulty detecting neutral carbohydrates larger than about 10,000 

Da.  

 

The average degree of acetylation DSAc was around 0.3 across all size ranges of 

these AcGGMs. However, there was a slight trend was towards a higher DSAc for 

higher molecular weight (N1) polymers, and a lower DSAc for smaller molecular 

weight (N3) polymers (Table 14, page 114). 

 

A postulated structure for a typical O-acetylated (galacto)glucomannan in this 

prehydrolysate with a molecular weight of ≈ 2780 Da is presented in Figure 32. 

The proposed structure is based on the results of this thesis study and the 

comparison of NMR signals obtained with those reported in the literature [21].  

Given that the ratio of D-galactosyl units to D-mannosyl units in these polymers 

was calculated to be very low, a majority of polymer molecules of this molecular 

weight may contain no D-galactosyl units. Uncertainty also exists over the 

distribution (random, evenly spaced, or clustered) of the acetyl and D-glucosyl 

groups along the polymer backbone. 
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Figure 32: Postulated structure of a typical O-acetylated (galacto)glucomannan molecule ≈ 

2780 Da that could be found in the prehydrolysate.  
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4.1.2 (Arabino)4-O-methylglucuronoxylans 

Estimated to account for ≈12% (by dry weight) of the of the polysaccharides 

isolated from the prehydrolysate (Table 11), these polymers identified as 

(arabino)4-O-methylglucuronoxylans exhibit anionic behaviour. They have a 

backbone of β-1,4-linked D-xylopyranosyl units and some evidence was obtained 

from this study for terminal α-L-arabinofuranosyl being attached at β-1,3,4-linked 

D-xylopyranosyl branch points. There is evidence from NMR spectra of 1,2,4-

linked D- xylopyranosyl branch points consistent with 4-O-methyl-α-D-

glucopyranosyluronic acids that are attached at the O-2 position. A large 

proportion of the polymeric D-xylosyl content present in this prehydrolysate 

appears to be contained within this type of polysaccharide. However, the results 

indicate that the majority of L-arabinosyl content present in the prehydrolysate is 

not attached to this type of polysaccharide.   

 

Evidence presented in this thesis is consistent with the attachment of 4-O-

methylglucuronic acid groups but there is not enough evidence in this thesis alone 

to completely eliminate the prospect of another hexuronic acid containing a single 

O-methyl group being present instead. However, information in the literature on 

softwood composition and identified hemicellulose structures [24-30] indicates 

that significant quantities of another O-methylated hexuronic acid is unlikely to 

occur.  

 

These anionic xylan-based polymers, detected in Fractions A1, A2, A3, and as a 

contaminant in Fraction N1, usually consisted of between 5 and 40 pentose units, 

and gave very clear MALDI-ToF mass spectra. Each polysaccharide molecule 

usually contained between 1 and 4 attached groups that are consistent with 4-O-

methylglucuronic acid.   The average mol ratio of (pentose : 4-O-

methylglucuronic acid) trends from ≈13 : 1 in small polymers with a single uronic 

acid group towards ≈ 7 : 1  for the larger polymers with four attached uronic acid 

groups. This 7 : 1 ratio is getting closer to those reported the literature for samples 

considered to be „native‟ softwood (arabino)4-O-methylglucuronoxylan [25, 30]. 
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A postulated structure for a typical kind of (arabino)4-O-methylglucuronoxylan 

found in this prehydrolysate with a molecular weight of ≈ 2511 Da is presented in 

Figure 33. Uncertainty exists over the distribution (random, evenly spaced, or 

clustered) of the 4-O-methylglucuronic acid groups along the polymer backbone 

and how common the small L-arabinofuranosyl branches are. A potential site for 

an ester linkage to lignin complexes is also indicated in Figure 34 (page 105).  
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Figure 33: Postulated structure of a typical (arabino)4-O-methylglucuronoxylan molecule ≈ 

2511 Da that could be found in the prehydrolysate.  
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4.1.3 (Arabino)xylans 

Evidence for a small amount of purely pentose oligomers with sizes less than 10 

pentose units was found in the MALDI-ToF mass spectra of some neutral 

fractions. These could be parts of (arabino)4-O-methylglucuronoxylans that have 

been hydrolysed between two uronic acid groups during the prehydrolysis process 

and thus contain no acidic groups and are size-limited based on the uronic acid 

spacing on xylan backbones in the native polysaccharide.  The evidence of 1,4-

linked D-xylopyranosyl units detected in the neutral fractions supports their 

presence.  

4.1.4 Galactans 

A backbone of 1,4-linked D-galactopyranosyl was detected in the neutral 

fractions. Such structures have been reported to be enriched in the compression 

wood of radiata pine trees [18, 19]. Their presence could explain the D-galactosyl 

enrichment in Fraction N3 (and to a lesser extent Fraction N2) and the 

corresponding neutral non-acetylated hexose polymers that show up clearly in the 

MALDI-ToF-MS of those fractions. These polymers appear to mostly contain 

between 5 and 30 hexose units. Other D-galactosyl-based polymers could also be 

present and might have some of the linkages noted below in the arabinogalactans 

section. 

4.1.5 Arabinogalactans 

The acidic fractions and the lower-molecular-weight neutral fractions were 

enriched in both L-arabinosyl and D-galactosyl residues. Evidence of 1,5 linked L-

arabinofuranosyl(and/or 1,4 linked L-arabinopyranosyl), 1,3 linked D-

galactopyranosyl, 1,6 linked D-galactopyranosyl, 1,4,6 linked D-galactopyranosyl, 

and terminal D-galactopyranosyl was found in the linkage analysis and this is 

consistent with polysaccharides described in the literature as arabinogalactans [15, 

29, 31, 128].  
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There appears to be a strong association between L-arabinosyl and D-galactosyl 

content across all the fractions analysed. This could mean that most L-arabinosyl 

and D-galactosyl units are linked together in the same polymer type, or that 

separate galactan and arabinan polymers behave in a very similar way during SEC 

fractionation.  If arabinogalactans account for the bulk of L-arabinosyl and D-

galactosyl content detected then the D-galactosyl : L-arabinosyl unit ratio is 

calculated to be approximately 2:1. Both D-galacturonic and (methyl) D-

glucuronic acid also showed the strongest correlations in the acidic fractions to D-

galactosyl content, suggesting that the majority of uronic acids present in the 

acidic fractions are attached to types of D-galactosyl-based polymers. With the 

evidence indicating that the methylated glucuronic acids are attached to xylan-

based backbones, it is likely that the non-methylated glucuronic acids are the ones 

causing the apparent association to the D-galactosyl-based polymers 

 

Despite the presence anionic groups (that should be attached to these polymers) 

and the high D-galactosyl content of the acidic fractions (especially A2), no clear 

MALDI-ToF mass spectra of hexose-based anionic polymers were obtained from 

the acidic fractions. This could be due to extremely high structural diversity in 

these arabinogalactans that causes very few polymer molecules to ever have 

exactly the same molecular weight. This structural diversity might be partially 

caused by covalent bonds to lignin [126] or protein derived structures [31]. 

4.1.6 Glucans 

Evidence for D-glucosyl enrichment in the acidic fractions compared to the 

(galacto)glucomannans in the neutral fractions was discovered. Relative 

enrichment in 1,4-linked D-glucopyranosyl PMAA compared to 1,4-linked D-

mannopyranosyl PMAA was also found in the acidic fractions. Glucans, high-

glucosyl-content-glucomannans, or cellulose fragments bound [10] to anionic 

complexes could explain this enrichment. 
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4.1.7 Arabinans 

It is uncertain how much of the L-arabinosyl residues detected could exist as 

independent polymers free of attachment to D-galactosyl or D-xylosyl backbones. 

If they do exist they will contain some of the linkages noted under the 

arabinogalactan heading (page 101). 

4.1.8 Other Polysaccharides  

The content of D-galacturonic and D-glucuronic acid appeared to be associated to 

some extent with D-galactosyl content. This could be in the form of galactans or 

arabinogalactans with attached uronic acid groups. Some pectin-derived 

polysaccharides with a very high uronic acid content could also be present in the 

acidic fractions.  

 

The neutral fractions contained quantities of glucuronic acid which appeared to be 

associated with the smaller molecular weight polysaccharides. The hypothesis that 

these glucuronic acids are ester-linked would explain how they avoided “ion 

exclusion” during SEC fractionation. It is unknown exactly what type of 

polysaccharide these glucuronic acid/ester groups are attached to but results 

suggest xylan or galactan type polymers. The lack of O-methyl groups in some 

neutral fractions indicates that these ester-linked glucuronic acids are un-

methylated. If these neutral glucuronic acid containing polysaccharides are 

produced from the partial hydrolysis of native arabino-4-O-methylglucuronoxylan 

(Figure 34), then all the glucuronic acids would need to be methylated except 

those involved in ester-linkages in order for it to be consistent with these results. 

A less convoluted explanation would be that these neutral polysaccharides 

containing glucuronic acid are produced from some polymer-type other than 

arabino-4-O-methylglucuronoxylans, such as arabinogalactans. 
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4.2 Causes of the Diversity and Complexity of Polysaccharides 

in this Prehydrolysate 

There are two main reasons for the great diversity of polymer types in this 

prehydrolysate. The first reason is the variations from the biological construction 

of the hemicelluloses within the original wood material. The second cause of 

diversity is the way hemicelluloses partially de-polymerised during the 

prehydrolysis process. Both of these causes interact to influence the size, 

structure, charge, and composition of the water-soluble polymeric carbohydrates 

that exists in this prehydrolysate. When the native O-acetylated 

(galacto)glucomannan in the original wood partially depolymerises during the 

prehydrolysis process, the resulting polysaccharide fragments appear as neutral 

partially-acetylated  hexoses of various sizes. 

 

The presence of carboxylic groups adds additional complexity to the different 

types of polysaccharides formed when native hemicelluloses such as xylans are 

partially de-polymerised during prehydrolysis.  For these hemicelluloses, the 

distribution of the uronic acid groups along the backbone influences the types of 

polysaccharide fragments formed during the prehydrolysis. A model native 

arabino-4-O-methylglucuronoxylan is used to demonstrate how this diversity 

could be generated (Figure 34). Similar processes could be occurring to galactans.  

 

When the native xylan is hydrolysed twice between two uronic acid groups a 

neutral (arabino)xylan oligomers can form that contains only pentose units. Due to 

the resistance of the xylosyl-glucuronic acid linkage to acid hydrolysis [92], the 

size of the pentose-only oligomers is likely to be limited by the maximum spacing 

between two glucuronic acid groups on the xylosyl backbone. Only small neutral 

pentose-only oligomers were observed in the MALDI-ToF mass spectrum of the 

neutral fractions (Figure 19, page 61).  

 

When the polysaccharide fragments formed during the prehydrolysis of the native 

xylans include one or more glucuronic acid groups, then the polymeric fragment 

can have anionic charges and will behave very differently on the SEC columns or 

the MALDI-ToF-MS.   
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Figure 34: Ways that the native softwood xylan could fragment during prehydrolysis.  

(-OH groups not shown) Native softwood xylan structures postulated based a number of 

literature sources [3, 6, 10, 25, 30] and evidence obtained in this study.  

D-xylopyranosyl  backbone  

Likely to hydrolyse in a random 

way  producing a range of 

different sized fragments. 

4-O-methyl-D-glucuronic acid 

(MeGlcA) branch  

Linkage to the D-xylopyranosyl 

backbone is resistant to acid 

hydrolysis. Spacing along 

backbone likely to be random, 

but averages out to about one 

MeGlcA for every seven 

pentoses.  

L-arabinofuranosyl  

branch  

Many could be 

removed due to their 

linkage being 

vulnerable to acid 

hydrolysis. 

Lignin 

Structures 

Neutral pentose polymers, 

(Arabino)xylans  

Size of neutral fragments 

limited by spacing between 

MeGlcA groups. 

Acidic pentose polymers, 

(Arabino)4-O-

methylglucuronoxylans 

MeGlcA : pentose ratios 

influenced by spacing between 

MeGlcA groups. 

Neutral polymers 

containing glucuronic acids 

Glucuronic acid is not anionic 

due to ester linkage to 

something else (e.g. lignin 

structures). Might have a 

xylan or galactan backbone 

(xylan backbone used as an 

example in this diagram). 

Some glucuronic groups 

ester linked to lignin-based 

structures which might be 

covalently linked to other 

polysaccharides. 

Evidence indicates that these uronic 

acids might not be methylated.  
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4.3 Future Research Suggestions 

4.3.1 NMR  

Mainly one-dimensional 
1
H NMR was used to identify methylation, quantify 

acetylation and to provide limited supporting information to complement the 

results from other methods such as linkage analysis by GC-MS. This NMR work 

was often reliant on comparison with literature assignments for similar 

polysaccharides. There is scope to use additional NMR analysis to obtain much 

more information about the polysaccharides in the prehydrolysate.  

4.3.1.1 Whole Polymer NMR Assignment 

A combination of one-dimensional 
1
H and 

13
C NMR along with a series of two-

dimensional experiments could be carried out in an attempt to assign all signals 

from the polymers in order to gain more information and greater certainty about 

fine structural details.  Such determinations have been carried out on spruce 

AcGGMs [21]. Polysaccharides might need to be partially hydrolysed prior to 

analysis to reduce problems with signal broadening and low signal intensity 

common with analysing large polymers [21]. Standards of well characterized 

and/or synthetic oligomers could reduce the reliance on literature assignments to 

confirm signal identities.  

4.3.1.2 Quantification of Linkages and Components by NMR  

The integration of NMR signals could provide an alternative to derivatisation 

techniques for analysing the proportions of different monosaccharides and 

linkages present in samples of these polysaccharides. The advantages of using 

NMR would be in observing the polymer in its intact form and eliminating the 

problems of losses and/or changes in components during derivatisation and 

hydrolysis methods [115]. However, NMR integration also has disadvantages 

such as a need to select key diagnostic signals free from interference. 
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4.3.1.3 O-Acetyl Group Stability, Migration, and Kinetics. 

During the 
1
H NMR analysis of Fraction N2 in multiple experiments over a 

number of weeks the proportion of O-acetyl groups attached to the 

polysaccharides decreased along with a similar magnitude increase in free acetate 

signal. This change suggests that the O-acetylated (galacto)glucomannans were 

gradually de-acetylating when dissolved in D2O and stored for weeks at room 

temperature or while they were heated up to 70°C for NMR analysis. Due to the 

clear separation of the O-acetyl signals from the free acetate signals and the fact 

are both signals are well separated from the carbohydrate or HOD signals,
 1

H 

NMR could provide a convenient way of studying this de-acetylation process. 

 

The extent of O-acetylation can influence properties of (galacto)glucomannans 

such as their solubility, emulsifying abilities and sorption to cellulose [17, 50, 74, 

76, 129]. Studying the stability of these acetyl groups and the mechanisms that 

will remove them could be relevant to any potential applications where the degree 

of acetylation is considered important. 

 

An investigation to aid understanding of the mechanisms involved and the 

kinetics of the de-acetylation, would likely involve isolated acetylated 

(galacto)glucomannans dissolved in either polar protic or polar aprotic solvents at 

a range of acidity/basicity conditions at different time/temperature conditions and 

monitoring de-acetylation by observing the change in NMR signal intensities. The 

H-2 and H-3 signals on the D-mannopyranosyl backbone could also be monitored 

in order to find out if 3-O-acetylation is more stable than 2-O-acetylation, or the 

extent of O-acetyl migration that has been reported to occur [17]. 
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4.3.2 Enzyme Hydrolysis 

A variety of different enzymes could be used to selectively hydrolyse some of the 

linkages in these polysaccharides. The released oligomers could be separated by 

chromatography and further analysed by methods such as NMR.  Selective 

enzyme hydrolysis may well be a useful tool for assisting the isolation of 

desirable hemicellulose fragments from a complex mixture of hemicelluloses 

present in prehydrolysates like the one studied in this thesis.  Enzymes could be 

used to break down the less desirable/useful polysaccharides in the sample to low 

molecular weight oligomers thus allowing the desired polysaccharides to be more 

easily isolated based on them retaining higher molecular weights. 

 

An example of an analytical use of enzymatic hydrolysis, would in testing the 

hypothesis that the non-acetylated hexoses that appear in the MALDI-ToF mass 

spectrum of Fraction N3 are mostly galactan-based. Enzymes that specifically 

hydrolyse common galactosyl linkages [130] could be used prior to MALDI-ToF-

MS to drastically reduce the molecular weights of any galactans, thus confirming 

their prevalence.  

4.3.3 Ion Chromatography 

The use of a heated conductivity cell detector after ion chromatography to identify 

and quantify uronic acid content is not an established method for analysing 

polysaccharides from lignocellulosics. This study found that when the detector 

was calibrated using D-glucuronic acid and D-galacturonic acid standards it 

appeared to provide adequate quantification of these uronic acids over a wide 

concentration range. Given the problems reported for the established techniques 

for identifying and quantifying different uronic acids from plant biomass [27], the 

method that was partially developed for this thesis might be worthy of further 

development and optimisation. This would likely involve testing the repeatability 

of the method, testing a number of different types of plant samples, and 

comparing the results to those obtained by a number of different established 

techniques. The behaviour of uronic acids derivatives (MeGlcA and aldobiouronic 

acids) on the IC column and their detector response would also need to be studied 

further. However, authenticated standards of these uronic acid derivatives (or 

close analogues) would likely be required for such a study. 
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4.3.4 MALDI-ToF-MS 

One of the disadvantages of using the MALDI-ToF techniques when analysing 

polysaccharides is the difficulty experienced in detecting neutral polymers of 

higher molecular mass. Detection of these neutral polysaccharides may be 

improved if the polysaccharides are derivatised prior to analysis by MALDI-ToF-

MS. One approach might be to covalently bond a molecule containing a 

carboxylic acid group, or multiple carboxylic acid groups, to the reducing end of 

neutral polysaccharides so that they may ionise in a similar way to acidic 

polysaccharides in the MALDI-ToF. Alternatively, introducing an oxidising step 

that changes the reducing end aldehydes into carboxylic acids may also achieve 

the same result.    

 

4.3.5 Linkage Analysis 

Complete characterisation of the uronic acids and identification of their points of 

linkage was not possible in this thesis using the methods available. Alternative 

methods involving complete reduction of the uronic acid have been suggested 

(page 88).  The use of such methods on the polysaccharides from this 

prehydrolysate could allow the uronic acid attachments to be deduced and the 

NMR assignments to be confirmed. 
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4.3.6 Larger Scale Processing of Prehydrolysates 

Extraction of potentially useful hemicelluloses from prehydrolysates such as the 

type studied in this thesis will need to be done on a larger scale and be 

economically viable. The most relevant findings from this thesis for guiding any 

design of larger scale processing likely would involve the O-acetylated 

(galacto)glucomannans (AcGGMs) because they are the most abundant type of 

polysaccharide found in the prehydrolysate.  

 

The large quantities of AcGGMs could be possibly separated from most of the 

other carbohydrates by taking advantage of the two key differences that 

distinguishes the AcGGMs from most of the other types of polysaccharide found 

in the prehydrolysate.  These are (i) the observation that the vast majority of O-

acetylated (galacto)glucomannans in the prehydrolysate are non-anionic, and (ii) 

the higher the molecular weight a non-anionic polymer was, the more likely that 

polymer was an O-acetylated (galacto)glucomannan. Therefore targeting a non-

anionic high molecular weight fraction for separation should isolate a fraction 

containing a high proportion of AcGGMs. This separation, which would likely 

involve a combination of ion exchange and ultrafiltration steps [17]. Attempting 

to improve the isolation of AcGGMs by using galactan and/or xylan cleaving 

enzyme [130, 131] treatments prior to ultrafiltration (or other separation steps 

based on molecular weight), could be worth investigating.  
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5 Appendix 1 

Table 12: Extended table of linear correlations between mol % estimates of different 

components of correlation graphs between monomer components 

Y axis, Mol%  X axis, Mol%  Linear Formula, 

Full Dataset 

Linear Formula, 

 Neutral Dataset 

Linear 

Formula( Zero 

Forced). 

D-Mannosyl D-Glucosyl y = 5.0797x - 0.2647 

R² = 0.5028  

y = 5.601x - 0.2358 

R² = 0.9999  

y = 3.7069x 

R² = 0.8809  

D-Mannosyl Acetyl y = 2.076x + 0.122 

R² = 0.9896  

y = 2.1696x + 0.1054 

R² = 0.9893 

y = 2.765x 

R² = 0.9023  

D-Mannosyl (Methyl) 

glucuronic 

acid 

y = -9.6238x + 0.523 

R² = 0.6175  

y = -23.853x + 0.724 

R² = 0.996  

y = 25.06x 

R² = -4.108  

D-Mannosyl D-Xylosyl y = -0.7956x + 0.478 

R² = 0.657  

y = -1.178x + 0.5703 

R² = 0.9612  

y = 1.3465x 

R² = -7.663  

D-Mannosyl D-Galactosyl y = -1.0803x + 0.523 

R² = 0.5975  

y = -1.9443x + 0.662 

R² = 0.9111  

y = 2.3249x 

R² = -4.901  

D-Mannosyl L-Arabinosyl y = -3.4163x + 0.555 

R² = 0.716  

y = -3.1023x + 0.589 

R² = 0.9561  

y = 3.702x 

R² = -7.018  

D-Mannosyl Galacturonic 

acid 

y = -33.082x + 0.395 

R² = 0.4304  

y = 3617x + 0.4069 

R² = 0.0802  

y = 21671x 

R² = -5.916 

D-Galactosyl L-Arabinosyl y = 2.6437x + 0.0078 

R² = 0.8375  

y = 1.551x + 0.0398 

R² = 0.9916  

y = 2.0103x 

R² = 0.8408  

D-Galactosyl D-Xylosyl y = 0.1818x + 0.1586 

R² = 0.067  

y = 0.5174x + 0.0574 

R² = 0.7693  

y = 0.6009x 

R² = -0.576  

D-Galactosyl (Methyl) 

glucuronic 

acid 

y = 8.6268x + 0.0064 

R² = 0.9693  

y = 10.957x - 0.0158 

R² = 0.8719  

y = 9.8865x 

R² = 0.8618  

D-Galactosyl Galacturonic 

acid 

y = 33.08x + 0.1123 

R² = 0.8407  

y = 98.019x + 0.1164 

R² = 0.0002  

y = 47.466x 

R² = 0.355  

D-Galactosyl Acetyl y = -1.2351x + 0.309 

R² = 0.6842  

y = -1.0497x + 0.276 

R² = 0.9608  

y = 0.5106x 

R² = -1.52  

D-xylosyl L-Arabinosyl y = 1.7332x + 0.0858 

R² = 0.1775  

y = 2.4225x - 0.0053 

R² = 0.8417  

y = 2.3612x 

R² = 0.8408  

D-Xylosyl D-Glucosyl y = -6.6469x + 0.963 

R² = 0.8293  

y = -4.5774x + 0.663 

R² = 0.9642  

y = 0.7484x 

R² = -0.395  

D-Xylosyl (Methyl) 

glucuronic 

acid 

y = 3.7397x + 0.1272 

R² = 0.0898  

y = 19.711x - 0.1237 

R² = 0.9819  

y = 11.352x 

R² = 0.7667  
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D-Xylosyl Galacturonic 

acid 

y = 9.5729x + 0.1852 

R² = 0.0347  

y = -4958.1x + 0.153 

R² = 0.2176  

y = 1825.2x 

R² = -1.004  

D-Xylosyl Acetyl y = -1.6061x + 0.356 

R² = 0.5706  

y = -1.7335x + 0.378 

R² = 0.9117  

y = 0.4031x 

R² = -0.707  

L-Arabinosyl Galacturonic 

acid 

y = 8.6071x + 0.0495 

R² = 0.4749  

y = -306.18x + 0.052 

R² = 0.0058  

 

L-Arabinosyl (Methyl)gluc

uronic acid 

y = 2.6172x + 0.0137 

R² = 0.7445  

y = 7.252x - 0.0381 

R² = 0.9267  

y = 4.6754x 

R² = 0.7841  

L-Arabinosyl D-Glucosyl y = -0.8099x + 0.163 

R² = 0.2083  

y = -1.7234x + 0.256 

R² = 0.9529  

y = 0.3331x 

R² = -0.46  

D-Glucosyl Acetyl y = 0.1884x + 0.0961 

R² = 0.4183  

y = 0.387x + 0.061 

R² = 0.9877  

y = 0.7315x 

R² = 0.0736  

D-Glucosyl D-Galactosyl y = -0.03x + 0.1192 

R² = 0.0237  

y = -0.3463x + 0.160 

R² = 0.9066  

 

D-Glucosyl Galacturonic 

acid 

y = 0.4661x + 0.1121 

R² = 0.0044  

y = 662.63x + 0.1146 

R² = 0.0845  

y = 5748.7x 

R² = -14.84  

D-Glucosyl (Methyl)gluc

uronic acid 

y = -0.2369x + 0.119 

R² = 0.0192  

y = -4.2606x + 0.171 

R² = 0.9969  
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6 Appendix 2 

Table 13: Summary Table.  

Physical Measurements A1 A2 A3 N1 N2 N3 

Retention time at collection start (min) 14.5 17.5 20.5 23.5 26.5 29.5 

Dry weight of fraction, 1
st
 14 runs (mg) 0.5 1.7 3.1 5.1 5.8 2 

Dry weight of fraction (% by mass) 3% 9% 17% 28% 32% 11% 

       

Acidic Polysaccharides A1 A2 A3 N1 N2 N3 

MALDI-ToF-MS results       

Primary repeating unit, pentose (Da) 132 132 132 132 - - 

Attached group unit, MeGlcA (Da) 191 191 191 191 - - 

Numbers of MeGlcA found per polymer 2,3,4 1,2,3,

4 

1,2,3 1 - - 

≈DP range of polymers with 1 MeGlcA  - 5-19 5-19 5-19 - - 

≈DP range of polymers with 2 MeGlcA 9-22 6-28 5-25 - - - 

≈DP range of polymers with 3 MeGlcA 13-33 10-28 10-28 - - - 

≈DP range of polymers with 4 MeGlcA 21-39 21-31 - - - - 

       

Polytool  calculated mean values       

Mnof polymers with 1 MeGlcA (Da) - 1698 1748 1696 - - 

Mn of polymers with 2 MeGlcA (Da) 2458 2336 2178 - - - 

Mn of polymers with 3 MeGlcA (Da) 3087 3066 - - - - 

Mwof polymers with 4 MeGlcA (Da) 3853 3939 - - - - 

Mwof polymers with 1 MeGlcA (Da) - 1753 1832 1775 - - 

Mw of polymers with 2 MeGlcA (Da) 2523 2440 2271 - - - 

Mw of polymers with 3 MeGlcA (Da) 3144 3122 - - - - 

Mw of polymers with 4 MeGlcA (Da) 3898 3999 - - - - 

DP of polymers with 1 MeGlcA - 12.86 13.24 12.85 - - 

DP of polymers with 2 MeGlcA 18.67 17.70 16.50 - - - 

DP of polymers with 3 MeGlcA 23.40 23.22 - - - - 

DP of polymers with 4 MeGlcA 29.00 29.69 - - - - 
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Table 14: Summary Table (continued).  

Neutral  polysaccharides A1 A2 A3 N1 N2 N3 

MALDI-ToF-MS results       

Primary repeating unit, pentose (Da) - - - - - 132 

≈DP range of polymers - - - - - 5-11 

       

Primary repeating unit, hexose (Da) - - - 162 162 162 

Attached group unit, 0-acetyl (Da) - - - 42 42 42 

≈DP range of de-acetylated polymers - - - 5-79 5-47 5-36 

       

Polytool calculated mean values       

Mnof de-acetylated polymers (Da) - - - 2304
a
 2577 1899 

Mwof de-acetylated polymers (Da) - - - 2764
a
 3470 1755 

DP of de-acetylated polymers  - - - 14.2
a
 15.9 10.8 

SEC results       

SEC estimated Mw  upper  value(Da) - - - 80000 12000 1500 

SEC estimated Mw  lower  value(Da) - - - 10000 1300 180 

Mean Apparent Mw  sub-fraction 1 (Da) - - - 62000 8900 1200 

Mean Apparent Mw  sub-fraction 2 (Da) - - - 31000 4600 500 

Mean Apparent Mw  sub-fraction 3 (Da) - - - 22000 2300 340 

       

Estimated DSAc (Proton NMR Results) A1 A2 A3 N1 N2 N3 

Observed degree of acetylation DSAc Trace Trace Trace 0.19 0.16 0.04 

„Original‟ degree of acetylation DSAc N/A N/A N/A 0.28 0.20 0.07 

Calculated mean DSAc of AcGGMs
b
 N/A N/A N/A 0.31 0.27 0.21 

       

a. Much higher values were obtained when method was drastically altered.  

b. Assumes that only AcGGMs are acetylated. 
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