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Abstract 12 

The FTIR spectra, SEM-EDXA and copper adsorption capacities of the raw plant materials, 13 

alkali treated straws and cellulose xanthogenate derivatives of Eichhornia crassipes shoot, 14 

rape straw and corn stalk were investigated. FTIR spectra indicated that of the three plant 15 

materials, the aquatic biomass of Eichhornia crassipes shoot contained more O-H and C=O 16 

groups which accounted for the higher Cu
2+ 

adsorption capacities of the raw and alkali treated 17 

plant material. SEM-EDXA indicated the incorporation of sulphur and magnesium in the 18 

cellulose xanthogenate. The Cu
2+ 

adsorption capacities of the xanthogenates increased with 19 

their magnesium and sulphur contents. However more copper was adsorbed than that can be 20 

explained by exchange of copper with magnesium. Precipitation may contribute to the 21 

enhanced uptake of copper by the cellulose xanthogenate.  22 

mailto:zhudw@mail.hzau.edu.cn
http://ees.elsevier.com/bite/viewRCResults.aspx?pdf=1&docID=17363&rev=2&fileID=431886&msid={70CFDD27-9DEE-483B-8BE1-765FE0C08343}
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1. Introduction 24 

Plant fiber generally has a low adsorption capacity for metal ions in aqueous solution and 25 

furthermore the fiber readily degrades. However, chemical modification of fiber has the 26 

potential to both increase adsorption capacity and improve stability of fiber (Kamel et al., 27 

2006; O’Connell et al., 2008). Fiber may be modified by low molecular weight organic 28 

compounds such as acrylic acid (Wei et al., 2005), high molecular weight substances such as 29 

polyacrylonitrile (Okieimen et al., 2005), and many inorganic substances, including CS2 (Tan 30 

et al., 2008). The introduction of functional groups, such as -CS-S- and carboxyl, on the 31 

cellulose backbone can enhance the heavy metal binding capacities of modified fibers. Due to 32 

their high heavy metal chelation capacity and the intrinsic advantages of low cost, availability, 33 

biodegradability and easy handling, there has been much recent research interest in adsorbents 34 

derived from biomass resources. Studies have included their preparation, application 35 

(Chakraborty and Tare, 2006; Chauhan and Sankararamakrishnan, 2008; Tan et al., 2008), 36 

structural characterization and adsorption mechanisms (Panda et al., 2008; Zhou et al., 2009).  37 

This paper focuses on differences in the structural characteristics of terrestrial and aquatic 38 

sourced plant materials, their corresponding alkali-treated straws (intermediate products) and 39 

cellulose xanthogenates (products), and the relationship between structural characteristics and 40 

heavy metal adsorption capacities of these materials. Plant straws from aquatic Eichhornia 41 

crassipes (E. crassipes) shoot were compared with terrestrial biomasses of rape straw and corn 42 

stalk. E. crassipes biomass was of particular interest because of its nuisance factor in 43 

eutrophic waters (Malik, 2007), and the relevance that chemical modification and utilization 44 
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of E. crassipes biomass as a cellulose based adsorbent for water remediation or other purposes 45 

would have to the economic viability of large scale harvesting of this nuisance plant. 46 

Favorable results would provide a basis for its selection as an appropriate raw plant material 47 

for biomass adsorbents.  48 

2. Methods 49 

2.1. Collection and pre-treatment of raw plant materials 50 

Plant samples of E. crassipes were collected from a pond near Huazhong Agricultural 51 

University (E114°23′，N30°33′) in Wuchang, Wuhan City of China. The shoot and the root 52 

were separated. Rape straw and corn stalk were also collected from fields near Huazhong 53 

Agricultural University. All of the plant materials were washed with tap water, cut into small 54 

pieces (3~5 mm), air-dried, oven-dried, ground into fine powder, passed through a 40 mesh 55 

sieve and kept desiccated at 25
o
C. 56 

2.2. Preparation of cellulose xanthogenate 57 

A 5 g sample of dried plant biomass was treated with 50 ml 200 g/L NaOH for 90 min, 58 

and thoroughly washed with deionised water to obtain alkali-treated straw. The alkali-treated 59 

straw was then esterified with 0.15 ml CS2 and 50 ml 100 g/L NaOH for another 90 min, and 60 

finally treated with 10 ml 50 g/L MgSO4 for 10 min to prepare cellulose xanthogenate, 61 

according to the method of Tan et al. (2008). The nine materials studied included E. crassipes 62 

shoot, rape straw, corn stalk, their corresponding alkali-treated straws and cellulose 63 

xanthogenates. All of the samples were oven-dried and ground into fine powder, passed 64 

through a 100 mesh sieve and kept desiccated at 25
o
C until used.  65 

2.3. Structural characterization 66 
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FTIR spectra of the different materials were obtained with a FTIR spectrophotometer 67 

(Nexus-470, USA) using KBr discs containing 2.5% finely ground sample (2.00 mg dried 68 

sample mixed with 80.0 mg KBr). They were recorded as absorption spectra in the range 69 

4000–400 cm
-1

 with an accumulation of 32 scans and a resolution of 4 cm
-1

.  70 

Surface element concentration of the samples was investigated using a JSM-6390LV 71 

scanning electron microscope (SEM) equipped with energy dispersion X-ray spectroscopy 72 

analysis (EDXA). The samples were coated with platinum in a JFC-1600 sputter coater before 73 

observation.  74 

2.4. Cu
2+

 adsorption experiments 75 

Cu
2+

 was selected as a model heavy metal for the adsorption experiments. The stock 76 

solutions of 1000 mg/L and 3000 mg/L Cu
2+

 were prepared in deionized water using the 77 

sulphate salt. To determine the adsorption capacity of raw plant materials and alkali-treated 78 

straws, 0.20 g samples were slurried in a 20-mL solution of 1000 mg/L Cu
2+

 initially at pH 4.5, 79 

stirred for 24 h and filtered prior to determination of the residual concentration of Cu
2+

. In the 80 

case of cellulose xanthogenate a concentration of 3000 mg/L Cu
2+

 was used. Adsorption 81 

studies were carried out at 25 ± 1 ºC and Cu
2+

 concentration was determined by AAS. 82 

2.5. Determination of sulphur and magnesium content of cellulose xanthogenate 83 

Sulphur was determined by iodimetry. Magnesium was determined by EDTA titration 84 

after samples were dry ashed, and dissolved in 1 mol/L HCl solution. 85 

3. Results and discussion 86 

3.1. IR functional group changes caused by chemical modification of plant materials   87 
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The IR spectra of all the raw plant materials contained the same main absorbance bands, 88 

including bands at 3383cm
-1

, 1643cm
-1

 and 1027cm
-1 

representing O–H stretching, aromatic 89 

ring C=O stretching, and symmetric C–O stretching (Viera et al., 2007), respectively. The 90 

absorbances of the three main bands were the highest for E. crassipes shoot, followed by those 91 

of rape straw with the bands for corn stalk being the lowest, indicating that the aquatic 92 

biomass of E. crassipes shoot contained more active O-H and C=O groups than the other two.  93 

In the alkali-treated materials, the intensity sequence of absorbances at 1504 cm
-1

 and 94 

1229 cm
-1

, representative of lignin content (Viera et al., 2007), was rape straw > corn stalk > E. 95 

crassipes shoot consistent with literature reports (Tan et al., 2008). Compared with the 96 

alkali-treated straws, bands of O-H stretching in the vicinity of 3407 cm
-1

 and C=O stretching 97 

in the vicinity of 1637 cm
-1

 of the three cellulose xanthogenates all had diminished 98 

absorbances. The aromatic ring C=C stretching (lignin) absorbance in the vicinity of 1523 99 

cm
-1

 became invisible, and symmetric CH2 bending absorbances near 1454cm
-1

 all increased 100 

significantly. These results are consistent with the reduction or disappearance of hemicellulose 101 

and lignin, and a relative increase in cellulose content and its chemical modification by the 102 

formation of cellulose xanthogenate.  103 

3.2. Incorporation sulphur and magnesium in modified materials 104 

Table 1 Surface element atomic percentages determined by EDXA 105 

Surface element atomic percentages of the nine samples determined by EDXA are shown 106 

in Table 1. The main elements of the raw plant materials and alkali-treated straws are C and O, 107 

and there are no obvious changes in elemental composition between raw plant materials and 108 

alkali-treated straws. However, the Mg and S concentrations of cellulose xanthogenates are 109 
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significantly higher indicating incorporation of Mg and S into the surfaces of the 110 

modified materials. Of the three xanthogenates, Mg concentration of E. crassipes shoot and S 111 

concentration of corn stalk were the highest.  112 

3.3. The effect of chemical modification on Cu
2+

 adsorption capacities 113 

The Cu
2+

 adsorption capacities of the raw plant materials of E. crassipes shoot, rape 114 

straw and corn stalk were 39.2±0.2, 31.4±0.1 and 23.6±0.1 cmol/kg, respectively. Those of 115 

their alkali-treated straws were 62.7±0.5, 55.0±0.3 and 39.3±0.2 cmol/kg, and those of 116 

cellulose xanthogenates were 361.0±2.5, 303.1±3.8 and 334.5±4.3 cmol/kg, respectively. 117 

Compared to raw plant materials, alkali treatment followed by CS2 and Mg treatments 118 

produced successive 1.67 to 1.75 fold and 9.2 to 14.2 fold enhancements of the Cu
2+

 119 

adsorption capacity. The Cu
2+

 adsorption capacities of the three raw plant materials and their 120 

alkali-treated straws follows the trend: E. crassipes shoot > rape straw > corn stalk. This is 121 

also the order of the relative IR absorbances of the main functional groups, O-H and C=O, for 122 

these materials. For the xanthogenates however, the sequence of absorbance intensity of main 123 

characteristic functional groups, -O-CS2- and O-H, is corn stalk > E. crassipes shoot > rape 124 

straw, and is not completely consistent with the sequence of copper adsorption capacities 125 

which is E. crassipes shoot > corn stalk > rape straw. Other factors, such as sulphur and 126 

magnesium content, are likely to be involved in the copper adsorption process.  127 

3.4. The mechanism of Cu
2+

 adsorption  128 

Table 2 The sulphur and magnesium contents of cellulose xanthogenates prepared from 129 

different raw plant straws 130 

The sulphur and magnesium contents of the three cellulose xanthogenates are summarized 131 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

7 

in Table 2. The bulk sulphur and magnesium contents of Table 2 are not completely consistent 132 

with the surface sulphur and magnesium concentrations determined by EDXA given in Table 1. 133 

This indicates a non-uniform distribution of sulphur and magnesium in these materials. 134 

Comparison of surface sulphur and magnesium concentrations with copper adsorption data 135 

reveals that E. crassipes shoot derived xanthogenate with the highest surface magnesium 136 

concentration and the corn stalk derived xanthogenate with the highest surface sulphur 137 

concentration correspond to the materials with the highest and the second highest Cu
2+

 138 

adsorption capacities. This indicates an association between surface sulphur and magnesium 139 

content of the cellulose xanthogenate and copper adsorption.  140 

The sulphur contents of Table 2 allow calculation of the -O-CS2- contents which are also 141 

summarized in the table. When the calculated -O-CS2- contents are compared with the 142 

measured Mg contents, the expected stoichiometry is not observed. If, as according to Tan et 143 

al. (2008), the reaction of magnesium with sodium xanthogenate is: 144 

2Cell-OCS2Na + Mg
2+

 → (Cell-OCS2)2Mg + 2Na
+
          (1) 145 

the -O-CS2- : Mg mole ratio should be greater than or equal to 2:1. The ratios of the data are 146 

1.08, 2.48 and 1.28 for xanthogenates from E. crassipes shoot, rape straw and corn stalk, 147 

respectively (Table 2). Only the rape straw xanthogenate conforms. The other two samples 148 

contain more magnesium than can be accounted for by their sulphur contents. It is possible 149 

that hydrolysed magnesium species are involved in the magnesium treatment step and that 150 

magnesium reacts with sites other than sulphur sites: 151 

Cell-OCS2Na + MgOH
+
 → Cell-OCS2Mg∙OH + Na

+
        (2) 152 

Cell-ONa + MgOH
+
 → Cell-OMg∙OH + Na

+
               (3) 153 

javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
http://dict.cnki.net/dict_result.aspx?searchword=%e9%9d%9e%e5%9d%87%e5%8c%80%e5%88%86%e5%b8%83&tjType=sentence&style=&t=non-uniform+distribution
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2Cell-ONa + Mg
2+

→ (Cell-O)2Mg + 2Na
+
                 (4) 154 

From the sulphur and magnesium contents in Table 2 and the Cu
2+

 adsorption capacities, 155 

it is clear that there is no close relationship between the sulphur contents of the xanthogenate 156 

products and their Cu
2+

 adsorption capacities. There is a better relationship between the 157 

magnesium contents of the products and their Cu
2+

 adsorption capacities but this is not 158 

consistent with stoichiometric exchange of Mg
2+ 

by Cu
2+

. The greater than expected Cu
 

159 

retention capacities might be due to mildly alkaline conditions produced by hydrolysis of the 160 

xanthogenate products. When the xanthogenate samples were added to deionised water the pH 161 

was observed to rise to 8.0. Given that the solubility product of Cu(OH)2 is 2.2 × 10
-20

 162 

(mol/L)
3
 and the concentration of Cu

2+
 in the adsorption solution was 3000 mg/L, i.e. 0.047 163 

mol/L, precipitation of copper hydroxide can be expected while the pH remains above 164 

approximately 5.0. Thus a further possible mechanism for the high uptake of copper by 165 

xanthogenate might be: 166 

        Cu
2+

 + 2OH
-
 → Cu(OH)2 (adsorbed)             (5) 167 

4. Conclusion  168 

Compared to the terrestrial rape straw and corn stalk, the aquatic E. crassipes shoot 169 

contain more active O-H and C=O groups. Cu
2+ 

adsorption capacity of the raw and 170 

alkali-treated straw increased with the relative contents of the O-H or C=O groups, 171 

respectively. Due to the incorporation of sulphur and magnesium, the Cu
2+ 

adsorption capacity 172 

of quasi-xanthogenate products increased significantly. Cu
2+ 

adsorption capacity of 173 

quasi-xanthogenate products increased with magnesium and sulphur contents in products. 174 

Besides cation exchange between Mg
2+

 and Cu
2+

, copper precipitation mechanism may be 175 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%b0%b4%e8%a7%a3&tjType=sentence&style=&t=hydrolysis
http://dict.cnki.net/dict_result.aspx?searchword=%e6%b2%89%e6%b7%80&tjType=sentence&style=&t=precipitation
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present.  176 
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Table 1  

Surface element atomic percentages determined by EDXA 

 

 

 

 

 

 

 

 

— means no detection of the element.  

Element 

type 

Raw plant materials Alkali-treated straws Cellulose xanthogenates 

E. crassipes 

shoot 

Rape 

straw 

Corn 

stalk 

E. crassipes 

shoot 

Rape 

straw 

Corn 

stalk 

E. crassipes 

shoot 

Rape 

straw 

Corn 

stalk 

C 51.85 67.07 58.37 54.30 56.92 55.88 17.79 15.37 17.99 

O 43.92 29.36 40.79 44.88 41.85 43.61 61.85 65.63 60.84 

Si — — 0.20 — — 0.21 0.25 — 1.07 

Na 0.52 0.44 — 0.33 0.11 — 0.27 0.61 1.16 

Mg 0.30 0.13 — 0.23 0.22 0.16 15.69 13.65 12.72 

P 0.38 — — — — — — — — 

S — 0.34 0.15 — 0.08 — 4.09 4.64 6.21 

Cl 1.26 0.80 — — — — — — — 

K 1.53 1.07 0.12 — — — — — — 

Ca 0.24 0.79 0.38 0.27 0.83 0.13 0.07 0.10 — 



  

 

Table 2  

The sulphur and magnesium contents of cellulose xanthogenates prepared from different 

raw plant straws 

Cellulose xanthogenate 
E. crassipes 

shoot 
Rape straw Corn stalk 

Sulfur content (%) 4.99±0.05 4.93±0.06 4.15±0.11 

-OCS2
-
 (cmol/kg) 77.7±1.6 76.8±2.0 64.6±2.1 

Mg content (cmol/kg) 73.0±1.9 31.0±1.3 49.9±1.4 

The ratio of -OCS2
-
 to Mg

2+
 1.08 2.48 1.28 

 




