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Abstract

When presented with multiple batches of data, one can either combine them into a
single batch before applying a machine learning procedure or learn from each batch
independently and combine the resulting models. The former procedure, data com-
bination, is straightforward; this paper investigates the latter, model combination.
Given an appropriate combination method, one might expect model combination to
prove superior when the data in each batch was obtained under somewhat different
conditions or when different learning algorithms were used on the batches. Empiri-
cal results show that model combination often outperforms data combination even
when the batches are drawn randomly from a single source of data and the same
learning method is used on each. Moreover, this is not just an artifact of one par-
ticular method of combining models: it occurs with several different combination
methods.

We relate this phenomenon to the learning curve of the classifiers being used.
Early in the learning process when the learning curve is steep there is much to gain
from data combination, but later when it becomes shallow there is less to gain and
model combination achieves a greater reduction in variance and hence a lower error
rate.

The practical implication of these results is that one should consider using model
combination rather than data combination, especially when multiple batches of data
for the same task are readily available. It is often superior even when the batches
are drawn randomly from a single sample, and we expect its advantage to increase
if genuine statistical differences between the batches exist.

Keywords: model combination, data combination, empirical evaluation,

learning curve, near-asymptotic performance.
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Figure 1: Model combination vs. data combination

1 Introduction

When different batches of data for the same machine learning task are available, the nat-
ural approach is to combine them into a single data set and use it to produce a single
classifier. This seems intuitively to conform to the conventional wisdom that “the more
data the better.” However, this paper challenges that notion. We investigate an alterna-
tive strategy: to use each batch of data individually to learn a classifier—using the same
learning algorithm—and then combine the predictions from these separate classifiers. We
call this method “model combination” to distinguish it from the traditional “data com-
bination” approach. Figure 1 illustrates the difference: data combination combines the
individual data sets before learning, whereas model combination combines the individual
models that have been learned.

It seems clear that this new approach is likely to outperform the old one in certain
situations. First, if there is some fundamental difference between the individual data
batches, combining them would blur the statistical properties of each batch and perhaps
confound the ability to learn regularities that they exhibit. In this case one would expect
the advantage of model combination to be more marked as the difference between batches
increased—although it may be hard to quantify such differences. Second, if different
learning algorithms were used for the batches, there might be an advantage in model
combination provided it was done in a way that allowed the superior model to dominate
the combination. Third, if a particularly clever method of model combination were used,
along with a particularly naive method of learning from the individual batches, the model
combination operation might counteract deficiencies in the learners and thereby produce
good results.

Surprisingly, we find that model combination can outperform data combination even



in situations where the batches are drawn at random (without replacement) from a single
source of data, and even when the same learning algorithm is used for each batch, and
even when different methods of model combination are used. This counter-intuitive result
is strongly supported by the experimental results reported in this paper.

While research on methods of combining multiple models has been widely reported
(e.g., Brodley, 1993; Breiman, 1996a, 1996b; Freund & Schapire, 1996; Perrone & Cooper,
1993; Krogh & Vedelsby, 1995), the combination of models of the same type, induced by
a single learning algorithm from completely disjoint sets of data, has received much less
attention. Most work shows that combining multiple models induced using either a single
learning algorithm or different learning algorithms from a single dataset outperforms a
single model induced from that dataset.

This paper examines the situation where multiple batches of data are available for a
classification task. The data might have been collected from a family of separate sources,
or from the same source in consecutive years, or it might result from different, but related,
events, as long as they are for the same task. Alternatively, it might be generated by
randomly sampling a single data set. We expect this last condition to be the most
challenging for the model combination methodology, for in the other circumstances results
will depend on the degree of variation between the batches. Consequently our goal is
to determine the conditions under which model combination performs better than data
combination in the random-batch scenario.

Our focus here is not on the relative merits of different methods for model combination.
Specifically, we address the question of whether model combination, in the multiple-data-
batches scenario, is a viable option as compared to data combination in classification
tasks. If the answer is yes, when should one use it? In order that the results do not
depend on a particular model combination method, we describe three different ones and
perform experiments with all of them.

The intuition behind this work is that different batches of data—even if they are
produced by random sampling—exhibit some variation of data representation in the de-
scription space. Models, or theories, induced separately from these independent batches
become “specialists” in different regions of the space. Model combination allows cooper-
ation between these specialists. Combining the specialists, if done in a plausible manner,
can smooth over the variation that the individual models represent and form a represen-
tation that is robust and valid globally.

Combining models in this way applies very naturally to an incremental batch learning
scenario where a model is derived from each batch of data as it arrives. Alternatively, if
a large database of examples is already available, the multiple-data-batches scenario may
be simulated using sampling, random or otherwise.

Some researchers have investigated the combination of independently-learned multiple




models which are formed by varying the induction bias of the learning algorithm to gener-
ate models with uncorrelated errors. For example, one might either vary the parameters of
a single learning algorithm, or use different types of learning algorithm. Other researchers
use sampling methods to create multiple overlapping data subsets from a given dataset.
Section 2 reviews this work on the use of multiple models to enhance performance.

In Section 3 we describe three different ways of combining models. The first and sim-
plest, majority vote, is used in most of the previous work. The second involves the use
of an a priori “measure of characterization” that is used to estimate a model’s predictive
accuracy, the quantitative relationship between the two being calibrated using a cross-
validation technique on the training data. The third, stacked generalization, involves a
meta-level learner that learns the circumstances under which each model’s output should
be used. The results in this paper show that all three methods of model combination
can, under certain circumstances, outperform data combination. This follows from our
central hypothesis, presented in Section 4, that the relative performance of model combi-
nation and data combination can be explained with reference to the learning curve of the
algorithm used. This hypothesis gives, in qualitative terms, the conditions under which
model combination outperforms data combination for randomly-chosen batches. Section 4
also describes the parameters of an experiment designed to test this hypothesis. The ex-
perimental results are reported in Section 5, and discussed in the following section. In

Section 7 we briefly consider some further issues; Section 8 summarizes our conclusions.

2 Related work

The use of multiple models generated from training sets that were derived from a single
dataset by different sampling methods is a popular topic of current research. For ex-
ample, in bagging, training sets are generated by sampling the dataset with replacement
(Breiman, 1996a). In boosting, a sequence of training sets is generated and successive clas-
sifiers are built for them (Freund & Schapire, 1996; Quinlan, 1996; Breiman, 1996b). The
first training set is formed by equal-weighted sampling but subsequent ones are weighted
in favour of instances that are misclassified by the classifiers built so far; the process is
repeated iteratively in an attempt to improve performance. The general approach has
been called “adaptive resampling and combining” by Breiman (1996b). Ali and Pazzani
(1996) use k-fold partitioning to generate k models by training on all but the ith partition
k times. In all these approaches the models that are generated are combined using the
method of voting or weighted voting. Ali and Pazzani (1996) also investigate other com-
bination methods such as Bayesian combination, distribution summation, and likelihood
combination. They all differ from the approach taken in the present paper in that each

sample dataset contains most, or all, of the total instances.



Breiman (1996¢) investigates boosting models derived using small bites of the entire
dataset. In this formalism, like ours, the multiple models are produced from a single
learning algorithm. However, we do not use the adaptive resampling that lies at the heart
of boosting.

An alternative way of producing multiple models is to vary the parameters of a single
learning algorithm. For example, multiple neural networks can be generated by using
different initial random weight configurations and/or orders of training data (Hansen &
Salamon, 1990; Perrone & Cooper, 1993). Multiple decision trees can be generated by
selecting different tests at each node, generating option trees, or pruning a tree in different
ways (Kwok & Carter, 1990; Buntine, 1991; Oliver & Hand, 1995). Multiple rules can
be generated by stochastic search guided by heuristics (Kononenko & Kovaci¢, 1992).
These models are combined by averaging—possibly using different weights—the outputs
of neural networks or the class probabilities of trees, or by using a Bayesian combination
of different rules.

Chan and Stolfo (1995, 1997) investigate various methods for combining models, e.g.
(weighted) voting, Bayesian combination and stacked generalization (Wolpert, 1992).
They show that models learned from disjoint partitions of a dataset can sometimes be
combined to outperform a single model learned from the entire dataset. While this work
overlaps to some extent with ours, it is only tested on two datasets. Moreover, Chan and
Stolfo do not address the conditions under which a combination model is better than a
single model learned from the entire dataset.

Many researchers have investigated how to partition the description space. Some use
the information gain criterion (Utgoff, 1989), user-provided information (Tcheng et al.,
1989), or hand-crafted rules (Brodley, 1993) to guide the recursive partitioning process in
a tree structure. Others employ a confidence measure provided by one particular learned
model to decide at classification time which of two different models shall be used for the
final prediction (Ting, 1994; Wettschereck, 1994). Most of the former methods apply
different types of learning algorithm for each of the mutually exclusive partitions, and the
latter methods derive different types of model independently using the entire dataset.

Baxt (1992) describes a situation where the data is pre-sorted manually into two
groups according to some criterion (e.g. high- and low-risk groups in a medical diagnostic
task). He trains separate neural networks on each group of data. During classification,
the network trained using the low-risk group is used if its output falls below a certain
threshold, otherwise the high-risk network is used. This method is only applicable when
appropriate information about the sorting criterion is available.

Provost and Hennessy (1996) describe a distributed approach to learning a single
ruleset from rulesets induced from disjoint partitions of a dataset. They ensure that the

ruleset is a superset of the rules induced from the entire dataset, and achieve this by



maintaining the invariant-partitioning property during the rule-learning process. This
property guarantees that any rule that is satisfactory over the entire dataset will be
satisfactory over at least one subset. The goal is to accelerate the process of learning a
set of rules that cover the entire dataset, rather than to enhance the performance of the
rule set. Brazdil and Torgo (1990) also consider how to convert different models into one.

Most of this work assumes that a single dataset is used to generate models which are
then combined. Exceptions are Chan and Stolfo (1997), Provost and Hennessy (1996),
Breiman (1996¢) and Baxt (1992). Only the first two share our assumption that multiple
batches of data for the same task are available without any prior information about them.

3 Combining multiple models

The central phenomenon reported in this paper, that models built from individual batches
of data can be combined into one that outperforms a single model built from the whole

data set, has been observed using three distinct methods of model combination.

3.1 Majority vote

The simplest way of combining models is by majority vote, where the output of the
combined model for a particular example is the majority class predicted by the individual

models. This method is used in most of the work reported above.

3.2 Model combination using a measure of characterization

We have previously investigated the use of an a priori measure that characterizes pre-
dictive accuracy as a basis for model combination (Ting, 1996). The measure we choose
depends on the particular learning algorithm used to produce the models. In this paper,
we consider both the NB* (Naive Bayes) learning algorithm and the IB1* (instance-based)
learning algorithm. For NB*, the measure of predictive accuracy is simply the posterior
probability. For IB1*, the measure—which we call “typicality”—is the inter-concept dis-
tance divided by the intra-concept distance. For an instance with class p, the inter-concept
distance is defined to be its average distance to instances of classes other than p; and the
intra-concept distance is its average distance to other instances of the same class.

In this procedure for model combination, we first calibrate the measure of charac-
terization of each learning algorithm in terms of its observed predictive accuracy on the
training set. The aim of the calibration procedure is to find an empirical function relating
classification accuracy to the characterization measure, so that the accuracy for a new

test example can be predicted from its measure. Cross-validation is used to provide a
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Figure 2: Transforming individual test points to a function that predicts accuracy

reliable estimate of accuracy. A separate empirical function is found for each class in each
model, that is, for each batch of data.

The calibration procedure is as follows. Given a learning algorithm (in our case, one
of NB* and IB1*) and a batch of data, a k-fold cross-validation is performed. In k-fold
cross-validation, the data batch is partitioned into & equal-size subsets, and training is
performed using all subsets except the ith, which is used as the testing set. The procedure
is repeated for all values of 7, that is, & times. Thus by the end of the cross-validation,
there will be one (and only one) test result for each instance of the original data batch.
We set k to three in our experiments.

For each predicted class, the individual instances’ test results from the k-fold cross-
validation are sorted according to the values of the characterization measure. The left
part of Figure 2 illustrates the result. On the x-axis is the characterization value (i.e.,
posterior probability for NB*, or typicality for IB1*), and each data point corresponds
to a single training example. In order to produce a function that allows accuracy to
be estimated from characterization value, illustrated in the right part of the Figure, a
sliding window containing a fixed number of instances is used, and the average predictive
accuracy is calculated from the instances within the window and plotted on the vertical
axis. The process is repeated by sliding the window along, dropping the leftmost instance
and adding one in on the right.

Once calibration is complete, a model is induced for each batch of data from all the
instances in it. This, along with the accuracy prediction function for each class value, is
stored and used for future classification. The procedure is repeated for the other batches.

Now consider the classification process. Given an instance whose class is unknown, it
is fed into the model induced from each data batch. This model will predict a particular
class, and the likely accuracy of the prediction can be estimated from the prediction
function for that class value. Thus each model generates a suggested class and an accuracy

figure. The model which claims the highest accuracy is chosen for the final prediction.



3.3 Model combination using stacked generalization

The third method of model combination used in this work is the technique of “stacked
generalization,” which is a way of combining multiple models that have been learned for
a classification task by using a learning algorithm to arbitrate between their predictions
(Wolpert, 1992; Ting & Witten, 1997). In our case the models are formed from the indi-
vidual data batches; again, we conduct separate tests using different learning algorithms.
The first step in stacked generalization is to collect the output of each model into a
new data set. For each instance in the entire data set, we seek every model’s prediction
on that instance. The only snag is that the instance will lie in a batch of data from which
one of the models was formed, and the prediction of its class by that particular model is
suspect because it was one of the examples used to form the model. To eliminate this bias,
a cross-validation procedure is used for the instances that lie in the batch from which the
model was formed. For these instances, the batch is divided into £ folds and when finding
predictions from instances in the ith fold, a model formed from the other £ — 1 folds is
used. For the remaining instances—ones lying outside the batch from which this model
was formed—there is no need for cross-validation; the model’s output is used directly.
The result of the first step is a predicted output from each model for every instance.
In conventional stacked generalization this is used as data for the second step, which
is treated as another learning problem. However, in previous work we have found that
rather than using categorical predictions from the models as input to the second step, it is
better to use probabilistic outputs instead (Ting & Witten, 1997). Thus the output of a
particular model on a particular instance is not the predicted class as described above, but
a vector containing the prediction probability for each class. In the case of NB*, the Naive
Bayes learner, the prediction probability for a class is simply the posterior probability for
that class. For IB1*, the instance-based learner, we take an average value for the class over
p nearest neighbors (we use p = 3 in the experiments), weighted by distance in instance
space. Denote the nearest neighbors of instance z by {(ys,2s),s = 1,...,p}. Then the

prediction probability for the class € is

i f(ys)/d(i:,:l?s)‘

Pi(z) =
1) = = 1 d(w, )

where f(ys) = 1 if { =y, and 0 otherwise, and d is the Euclidean distance function.
Thus the final result of the first step is a vector of class probabilities, for each model
and for each instance in the entire data set. For a particular instance, if there are » models
and I classes, the vector will contain r/ real-valued probabilities. Since it is training data,
it will also contain the true class, a categorical value.
Now consider the second step: the higher-level learning task, whose input is the
(rl + 1)-component vectors just described, one for each instance. For this task we use a



multi-response linear regression algorithm, MLR. This is an adaptation of a least-squares
regression algorithm that Breiman (1996d) used for stacked generalization in regression
settings. Any classification problem with real-valued attributes can be transformed into a
multi-response regression problem. If the original classification problem has I classes, it is
converted into [ separate regression problems, where the problem for class ¢ has responses
equal to one for instances with class ¢, and zero otherwise.

During training, for each possible class, rI regression coefficients are chosen to mini-
mize the squared error for that class on the training data. The coefficients are constrained
to be non-negative, following Breiman’s (1996d) discovery that this is necessary for the
successful application of stacked generalization to regression problems. The non-negative-
coefficient least-squares algorithm described by Lawson & Hanson (1995) is employed to
derive the linear regression for each class. During testing, an instance of unknown class
is used to derive weighted linear sums for each class, and the class for which the sum is
greatest is chosen as the predicted one.

A formal statement of the stacked generalization procedure is given in the Appendix.

4 Hypothesis and experimental design

The central hypothesis of this paper is this: the relative performance of model and data
combination can be predicted from the operating point on the algorithm’s learning curve
as follows: data combination is superior in the early part of the learning curve and model
combination in the later part.

Consider first the data combination method. At the beginning of the learning curve,
when the training data size is small, the curve is steep and so this method will give a
large gain in performance. As the curve approaches the asymptote, however, additional
data only improves performance marginally. One can roughly define the near-asymptotic
region as the region where doubling the training data size yields only a small performance
gain (further quantification of this notion is not useful for our present purposes). The
effect of doubling the training data size in two different regions of a learning curve is
shown graphically in Figure 3.

The reverse is true for model combination. When little data is available, models have
very high variance (we quantify this notion precisely in Section 5.3). Combining models
together cannot reduce the variance enough to match the performance gain achieved
by data combination. However, as the training data size increases, model combination
reduces the variance faster than does data combination. Thus with large amounts of data,
model combination will achieve better performance gain than data combination.

We have designed experiments to illustrate the learning curves of different learning

algorithms and model combination methods for a selection of standard datasets.
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Figure 3: Performance gain that results from doubling the training data in two different

regions of a learning curve

Number of models We chose to use the minimum viable number of models, three
for the majority vote method and two for the other methods, in order to investigate the
simplest possible situation. Our intention is only to provide an understanding of the
basic phenomenon, not to quantify the trade-offs involved when data is split into different
numbers of batches. Moreover, some empirical studies indicate that, other things being
equal, a combination of two classifiers outperforms combinations of larger numbers (Chan
& Stolfo, 1995; 1997)—a result that also holds when the combination models are stacked
up to form a tree, i.e., binary trees are better than higher-order trees (Chan & Stolfo;

1997).

Model combination methods We employ the three model combination methods re-
viewed in Section 3. For comparison we also use an “oracle” combination method which
always makes the correct prediction from the constituent models if one exists. For noisy
datasets, the oracle can perform better than the best possible realizable model combina-
tion method. For example, given a random dataset with two equally probable classes, the
oracle can achieve an accuracy of 0.75 in the limit; while the optimal Bayes accuracy for

this data set is 0.5.

Learning algorithms We use three inductive learning algorithms in our experiments:
[B1* and NB* (Ting, 1994; 1997) and C4.5 (Quinlan, 1993). IB1* is a variant of IB1
(Aha, Kibler & Albert, 1991) that incorporates the modified value-difference metric (Cost
& Salzberg, 1993). NB* is an implementation of the Naive Bayes algorithm (Cestnik,
1990). These two algorithms include a method for discretizing continuous-valued at-
tributes during a preprocessing stage (Fayyad & Irani, 1993), a procedure that improves
their performance in most of the continuous-valued attribute domains studied by Ting

(1994). In IB1* we use the class of the nearest neighbor as the predicted class, and the




default parameter settings are the same as those used by Aha’s implementation.! No

parameter settings are required for NB*. C4.5 is used with default settings.

Data sets We use standard data sets from the UCI repository (Merz & Murphy, 1996).
Two artificial domains are chosen, waveform and LFED2j, along with four real-world
datasets, euthyroid, nettalk(stress), splice junction, and protein coding.

The artificial domains were introduced by Breiman et al. (1984) and exhibit controlled
amounts of noise. Waveform has three uniformly distributed classes, and each instance
contains twenty-one relevant and nineteen irrelevant continuous-valued attributes. Each
class consists of a random convex combination of two of the three waveforms, with Gaus-
sian noise added. The class in LED2{ is one of the ten digits and there are seven boolean
attributes indicating whether or not each segment of a seven-segment display is illumi-
nated. Each attribute value is inverted with a probability of 0.1.

The euthyroid dataset is one of the sets of thyroid examples from the Garvan Institute
of Medical Research in Sydney described by Quinlan ef al. (1987). It contains 3163 case
data and diagnoses for euthyroidism, one of the many thyroid disorders. Eighteen binary
attributes and seven continuous-valued attributes are involved. The task is to predict
whether a patient suffers euthyroid or not.

The goal of the NETtalk task is to learn to pronounce English words by studying a dic-
tionary of correct pronunciations (Sejnowski & Rosenberg, 1987). Each letter is presented
to the classifier together with a context of three preceding and three succeeding letters.
The goal is to produce the phoneme and stress values that constitute the pronunciation of
the letter. The nettalk(stress) dataset of 5438 instances is for the prediction of one of five
levels of stress, and forms part of the NETtalk corpus of the 1000 most common English
words.

The splice junction dataset contains 3177 instances of sixty sequential DNA nucleotide
positions (Towell et al. 1990). Each position can have one of four base values. The task is
to recognize for a particular a DNA sequence two types of the splice junction or neither.

The protein coding dataset also contains DNA nucleotide sequences; here the classi-
fication task is to differentiate the coding sequences from the non-coding ones (Craven
& Shavlik, 1993). Each sequence has fifteen nucleotides with four different values each.

This dataset contains 20,000 sequences.

1IB1 stores all training instances. It uses maximum differences for attributes that have missing values,

and computes the Euclidean distance between any two instances.
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5 Experimental results

In order not to become overwhelmed with experimental results we focus attention on one
of the three methods of model combination introduced in Section 3, model combination
using a measure of characterization (Section 3.2). (We have chosen this because it is the
one that we have done most work on ourselves.) We begin by reporting the experiments
using the artificial domains. Next we show that the same phenomena are observed with
the real-world datasets. Following that we examine the difference between data and model
combination in terms of the bias and variance of the individual classifiers. Finally we look
more briefly at the two other methods of model combination: majority vote and stacked
generalization. These exhibit the same characteristics as before. For the sake of variety
we present bias and variance results for majority vote, and learning curves for stacked
generalization. Moreover, for these two methods we also show the effect of using C4.5 as
the base method, as well as IB1* and NB*.

5.1 Artificial domains

To simulate different batches of data, different seeds were used to generate the data in
the artificial domains. We use two equal batches for training, varying the batch size from
200 to 2000 in order to operate at different points of the learning curve. A fixed number
of 5000 independently-generated instances are used for testing.

For each batch size, the training data is used to generate models for both IB1* and
NB*. With model combination, two models are produced, one for each data batch. With
data combination, the batches are concatenated into one training set, which is used to
produce a single model. The procedure is repeated ten times, using different random
number seeds, for each batch size; and the average error rate is reported along with its
standard error.

Figures 4 and 5 show the learning curves that result from these experiments. Plots
(a) and (b) in each figure show the results using IB1* and NB* respectively. As noted
above, the model combination method used is based on the measure of characterization
as discussed in Section 3.2. Note that in these (and other) graphs, the vertical scales are
chosen to maximize use of space and are different in each figure: care should be taken
when comparing the graphs with each other.

Along the horizontal axis is the size of the training data. The single model induced
from a batch containing half this training data is designated as “1/2 Data Size”—there
are, of course, two such models, but they perform so similarly that just one is chosen
for display. The single model induced from the whole training data is labeled “Data
combination”. The result of the oracle, which makes an incorrect prediction only if both

models predict incorrectly, is also shown.
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Figure 4: Learning curves (average error
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We summarize the results depicted in Figures 4 and 5 as follows. When using IB1*,
model combination performs significantly better than data combination in both the wave-
Jormand LEDZ2/ domains at almost all the training data sizes used. We regard two average
error rates as being “significantly” different if they differ by more than two standard er-
rors (that is, with > 95% confidence). Similar performance is observed for NB* in the
waveform domain. Note that in these three cases, the performance improvement of data
combination over the single model induced from half of the training data is small.

We expect the performance improvement of model combination over data combination
to increase as the asymptotic region of the learning curve is approached. For the one situ-
ation in which data combination sometimes outperforms model combination, namely NB*
in the LED24 domain (Figure 5(b)), data combination performs significantly better than
model combination when using small amounts of training data, and becomes marginally
worse as the data size increases. In all cases, both model combination and data combi-
nation uniformly outperform the constituent models used for model combination. The
oracle bounds the optimal performance for model combination and is always by far the
best of the four curves.

It is interesting that in the LED2/ domain IB1* seems to reach near-asymptotic perfor-
mance from 800 training instances onwards (Figure 5(a)). But combining models learned
from half this much data can nevertheless significantly improve performance. Results
for the oracle show that the two models differ significantly, because the oracle improves
performance over its constituent models by as much as 15%. We will return to this point

in Section 6.

5.2 Real-world datasets

For each of the four real-world datasets, two different batches are simulated by randomly
sampling the training data into disjoint subsets of equal size. The size of the training
data is varied from 10% to 90% of the entire dataset. Experiments for each data size are
repeated over 20 trials, except in the case of the protein coding dataset for which only 10
trials are used because of its enormous size. The testing data is the remaining part of the
dataset that is not used for training.

Figures 6 to 9 show the results for each dataset. In the first three, euthyroid, nettalk(stress)
and splice junction, the performance trends of model combination and data combination
generally accord with the results observed in the artificial domains. In all three datasets,
model combination performs worse than data combination at the beginning of the learning
curve. As the asymptotic region of the euthyroid dataset is approached, model combina-
tion performs better using NB* and comparably using IB1*; as the asymptotic region of

the other two datasets is approached, model combination performs better using IB1* and
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comparably using NB*.

For the protein coding dataset using IB1*, shown in Figure 9(a), the trends seem to
suggest that the near-asymptotic region of the learning curve does not appear in the
figure because even the biggest batches are insufficiently large. Model combination is
significantly better than data combination when the training set contains between 10% to
50% of the available data, a trend that is reversed when the training data sizes are 80%
and 90%. Although this appears to contradict our central hypothesis, we attribute it to
initial transient behaviour: insufficient data is available to reach the asymptotic region.
When NB* is used (Figure 9(b)), data combination outperforms model combination at

the beginning of the curve, and they perform comparably in the near-asymptotic region.

5.3 Error decomposition

This section examines the phenomenon uncovered in the previous two subsections in
terms of the bias and variance of the individual classifiers. Breiman (1996b) has shown
how the expected prediction error of a classifier C' can be decomposed into three parts:
the expected prediction error of an ideal classifier C*, PE(C'), the bias of the classifier C,

and the variance of ('
PE(C) = PE(C™) + Bias(C) + Var(C). (1)

The ideal classifier C* is chosen to be the optimal Bayes classifier. This decomposition
is prompted by a well-known decomposition of prediction error in regression, extended to
encompass classification problems.

For present purposes, the key notions are the definition of bias and variance for classi-
fiers that lead to the decomposition above. In order to explain these, we first imagine that
the training set contains instances (y,2), where x is a vector of attribute values and y is
the classification of that instance, that are independent, identically distributed, samples
of some underlying probability distribution. We denote by X and Y the random variables
that represent attribute vectors and classifications respectively. For the purposes of this
discussion, a “classifier” is a function €' that takes a training set £ and a vector x of at-
tribute values and produces a predicted class value y = C'(z, L). We are really interested
in results that are independent of the particular training set chosen, and this is achieved
by taking the expectation over all training sets L.

Now we can turn to the bias and variance of an arbitrary classifier C. First we
define the bias set B to be the set of instances z for which C is biased, that is, for
which an aggregated classifier C'y gives a prediction that differs from that of the optimal
Bayes classifier, C4(x) # C™(x). C4 is aggregated by voting over 50 classifiers C' in our
experiments. U/, the complement of B, is the set of instances = for which the classifier C

14
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is unbiased, that is, C'4(z) = C*(z). Now the bias and variance of C' are defined as
Bias(C) = P(C*(X)=Y,XeB)— E[P(C(X,L) =Y, XeB)],

Var(C) = P(C*(X) =Y, XeU) — E[P(C(X, L) =Y, XeU)).

The probabilities P in each expression average over the distributions of X and Y, while the
expectations F average over training sets £. Breiman (1996b) contains a more extensive
discussion of these notions; our aim here is to employ them to provide insight into the
behavior of the model and data combination methods.

In our experiments, we compare the error decomposition for data and model combi-
nation for different amounts of training data. As in Section 5.1, the two models IB1* and
NB* are used for the model combination method, and as before we show results for the
combined model using the measure of characterization scheme. We employ the two artifi-
cial datasets waveform and LED2/, for which the optimal Bayes error rates are estimated
to be 14.86% and 24.88% respectively, using 5000 testing instances. Each experiment
is repeated over 50 trials in order to produce a more accurate estimate of the bias and
variance.

Tables 1 and 2 show the error decomposition for data and model combination using
IB1* or NB* in the two domains, for different training set sizes. In each case the data
combination method uses a training set of the given size N, while the model combination
method combines two models each derived from a training set of size N/2.

Examination of the trend for PE(C) in these tables shows that while both data com-
bination and model combination improve as N increases, model combination improves
more. For example, in the top half of Table 1, PE(C) decreases from 26.20% to 21.97%
for data combination, and from 27.82% to 18.60% for model combination. Examination
of the Bias(C') and Var(C) figures shows that, in general, it is improvement in variance
rather than bias that accounts for the superior performance of model combination as N
increases. Using the same example, the main contribution to the decrease in PE(C) for
[B1* is Var(C') in both cases, which decreases from 10.90% to 6.90% for data combination
and from 11.78% to 3.57% for model combination. The same trends can be observed in
the other results in Tables 1 and 2.

The results can be summarized as follows. When little data is available, model combi-
nation has higher bias and higher variance than data combination, and, in this situation,
a higher error rate. However, model combination achieves a larger variance reduction
than data combination as the training data size increases. As a result, given sufficient

data model combination achieves a lower error rate than data combination.
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Table 1: Error decomposition in the waveform domain (all figures in Tables 1, 2, and 3

are percentages)

N

PE(C)= PE(C*)+ Bias(C) + Var(C)

Data combination

Model combination

IB1*

100
200
400
600
800
1000
1200
1600
2000

26.20 = 14.86 + 0.45 + 10.90
24.37 = 14.86 + 0.23 + 9.28
23.40 = 14.86 + 0.19 + 8.34
22.93 = 14.86 + 0.27 4+ 7.79
22.71 = 14.86 + 0.18 + 7.67
22.49 = 14.86 + 0.25 + 7.38
22.45 = 14.86 + 0.38 + 7.20
22.19 = 14.86 + 0.00 + 7.33
21.97 = 14.86 + 0.21 4 6.90

27.82 = 14.86 4+ 1.18 4 11.78
23.84 = 14.86 + 0.49 + 8.49
21.40 = 14.86 + 0.22 + 6.32
20.40 = 14.86 + 0.20 + 5.34
19.76 = 14.86 + 0.13 + 4.77
19.54 = 14.86 + 0.14 + 4.54
19.08 = 14.86 + 0.21 + 4.01
18.91 = 14.86 + 0.08 + 3.97
18.60 = 14.86 + 0.17 4 3.57

NB*

100
200
400
600
800
1200
1600
2000

22.75 = 14.86 + 2.47 4 5.41
20.76 = 14.86 + 2.46 + 3.43
19.93 = 14.86 + 2.57 + 2.50
19.52 = 14.86 + 2.51 + 2.15
19.43 = 14.86 + 2.57 + 2.00
19.17 = 14.86 + 2.64 + 1.68
19.20 = 14.86 + 2.92 + 1.42
19.14 = 14.86 + 3.06 + 1.21

23.33 = 14.86 + 2.95 4 5.51
20.02 = 14.86 + 2.21 + 2.95
18.48 = 14.86 + 1.99 + 1.63
17.96 = 14.86 + 1.78 + 1.32
17.82 = 14.86 + 1.88 + 1.09
17.54 = 14.86 + 1.92 + 0.76
17.57 = 14.86 + 1.98 + 0.74
17.57 = 14.86 + 2.01 + 0.70

18




Table 2: Error decomposition in the LED2/ domain

N PE(C)= PE(C*)+ Bias(C) 4 Var(C)
Data combination Model combination

IB1* | 100 | 38.52 = 24.88 + 1.00 + 12.65 40.55 = 24.88 4+ 1.03 + 14.64

200 | 37.59 = 24.88 + 0.98 4+ 11.74 33.41 = 24.88 4+ 0.81 + 7.72

400 | 36.77 = 24.88 + 0.97 + 10.92 30.43 = 24.88 + 0.73 + 4.81

600 | 36.55 = 24.88 + 0.93 + 10.74 29.51 = 24.88 4 0.83 + 3.80

800 | 36.65 = 24.88 + 0.81 + 10.96 29.00 = 24.88 + 0.68 + 3.43

1000 | 36.64 = 24.88 + 1.03 + 10.73 28.68 = 24.88 + 0.56 + 3.24

1200 | 36.58 = 24.88 4+ 0.85 + 10.85 28.54 = 24.88 + 0.60 + 3.06

1600 | 36.52 = 24.88 + 0.70 + 10.93 28.40 = 24.88 + 0.46 + 3.06

2000 | 36.45 = 24.88 + 0.66 + 10.90 28.27 = 24.88 + 0.58 + 2.81
NB* 100 | 46.01 = 24.88 + 1.24 + 19.88 53.42 = 24.88 + 1.52 4 27.01
200 | 35.18 = 24.88 + 0.87 + 9.43  38.29 = 24.88 4 0.98 + 12.43

400 | 28.68 = 24.88 + 0.41 + 3.39  30.06 = 24.88 + 0.63 + 4.54

600 | 26.81 = 24.88 + 0.64 + 1.29  27.35 = 24.88 + 0.45 + 2.02

800 | 26.07 = 24.88 + 0.43 + 0.76  26.40 = 24.88 + 0.29 + 1.23

1000 | 25.77 = 24.88 + 0.51 + 0.39  25.91 = 24.88 + 0.24 4 0.78

1200 | 25.67 = 24.88 + 0.44 4+ 0.34  25.69 = 24.88 4 0.56 4 0.25

1600 | 25.66 = 24.88 + 0.50 + 0.27  25.54 = 24.88 + 0.36 + 0.30

2000 | 25.63 = 24.88 + 0.49 + 0.27  25.48 = 24.88 + 0.43 + 0.17

Table 3: Error decomposition using C4.5 combined with majority vote

N

PE(C) = PE(C*) + Bias(C) + Var(C)

Data combination

Model combination

waveform

50
150
450

1350
4050
12150

37.73 = 14.86 + 1.37 + 21.50
33.05 = 14.86 + 1.27 + 16.92
29.50 = 14.86 + 0.44 + 14.20
26.99 = 14.86 + 0.58 + 11.55
25.04 = 14.86 + 0.38 + 9.80
23.88 = 14.86 + 0.27 + 8.74

37.87 = 14.86 + 3.39 + 19.62
31.24 = 14.86 + 1.33 + 15.04
26.49 = 14.86 + 1.26 + 10.37
23.99 = 14.86 + 0.42 4 8.71
22.13 = 14.86 + 0.56 + 6.72
20.84 = 14.86 + 0.39 + 5.59

LED2/

50
150
450

1350
4050
12150

47.07 = 24.88 + 1.97 4 20.02
37.33 = 24.88 + 1.47 + 10.78
30.86 = 24.88 + 0.96 + 4.82
28.02 = 24.88 + 1.10 + 1.83
27.04 = 24.88 + 0.85 + 1.11
26.42 = 24.88 + 0.48 + 0.86

61.59 = 24.88 + 3.33 + 33.17
39.51 = 24.88 + 1.76 + 12.67
31.93 = 24.88 + 1.35 + 5.50
27.96 = 24.88 4 0.77 + 2.11
26.64 = 24.88 + 0.97 + 0.59
26.22 = 24.88 + 0.68 + 0.46
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5.4 Model combination using majority vote

We now examine whether model combination using majority vote (Section 3.1) also ex-
hibits the phenomenon described above. Table 3 shows, for the two artificial domains, the
average error rate, bias and variance of data combination, and majority vote using three
models derived by C4.5. In all other respects the experimental conditions are as before.
The trends described above can be observed in these results. In both domains model
combination eventually outperforms data combination (only very marginally for LED24),
although it takes a much larger number of instances for this to become apparent. And
in both domains it is the reduction in variance, rather than bias, that is principally

responsible for the edge that model combination achieves as N becomes large.

5.5 Model combination using stacked generalization

To assess results for the third method of model combination, stacked generalization (Sec-
tion 3.3), Figures 10 and 11 show learning curves for IB1*, NB, and C4.5 for the two
artificial domains. Experimental conditions are exactly as in Section 5.1. Each graph
contains three learning curves. The first shows the behavior of the model derived from a
single batch of half the data size. The second shows the model derived from data com-
bination, that is, using the full data size. The third shows the model derived by using
stacked generalization on two models, each formed from half the data.

The results are just as reported in Section 5.1 for model combination using the measure
of characterization. With IB1*, model combination using stacked generalization performs
significantly better than data combination in both domains. Similar performance is ob-
served for NB* in the waveform domain, while for the LED2/ domain the two methods

converge to the same near-asymptotic performance.

6 Discussion

We have observed in the experiments that the relative performance of model combination
and data combination can be predicted from the position on the learning curve of the
learning algorithm used, which is exactly the hypothesis of Section 4. If combining the
data yields only a small performance improvement, model combination generally gives
results which are comparable to or better than those of data combination. This is a
common feature of all the learning curves shown in Section 5. As Section 5.3 also reveals,
this effect is caused by the faster variance reduction of model combination when compared
with data combination, as the training data size increases.

Our empirical findings on the expected performance of model combination seem to

be even more striking than a theoretical result based on the same working assumption
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(Kearns & Seung, 1995). This theoretical work investigates “...the possibility of somehow
combining the independent hypotheses in a way that considerably outperforms any single
hypothesis,” where this “single hypothesis” refers to any the constituent models that are
combined. Our work indicates that model combination can significantly outperform not
only the constituent models, but the model learned from aggregating the available data.
This is even more surprising considering that we have only investigated the base-line
behavior of model combination, i.e. combinations of just two models.

One might assume that, because they exhibit the same level of performance, models
learned in the near-asymptotic region would be very similar to each other. However, our
experimental findings suggest that two models learned from separate data batches are sub-
stantially different even though they lie in the near-asymptotic region and demonstrate
the same performance. This occurs in most of the experimental datasets, because the ora-
cle performs significantly better than its constituent models, even in the near-asymptotic
region. This indicates that the assumption is incorrect.

What surprises us is that near-asymptotic performance can be improved significantly
by combining multiple models generated by the same learning algorithm. This can only
occur because the constituent models are substantially different and they capture different
regularities that can be exploited by combination methods. Figure 5(a) shows an example
of performance improvement as a result of model combination’s exploitation in the near-
asymptotic region. This empirical evidence of further significant improvement on the near-
asymptotic performance of a learning algorithm using multiple models is new. Previous
work (e.g., Hansen & Salamon, 1990; Perrone & Cooper, 1993; Oliver & Hand, 1995; Chan
& Stolfo, 1995; Breiman, 1996a, 1996b; Freund & Schapire, 1996; Ali & Pazzani, 1996)
shows only that performance can be improved using multiple models for some datasets,
without considering the (near-)asymptotic performance.

One might assume that the above phenomenon is due to the fact that model combina-
tion increases the representation power of the base model, enabling it to perform better
in the (near-)asymptotic region. For example, the expressive power of a learning system
that can only induce a single conjunctive rule can be increased by combining several rules
with disjunction. However, this explanation does not apply to the learning algorithms
and model combination methods employed here. For example, combining several decision
trees using majority vote is equivalent to a single, more complex, decision tree that sub-
sumes them all. In this case, the combination adds no extra representation power. Our
explanation is rather different: the whole process of combining multiple models is tanta-
mount to another algorithm that has a different search bias than the one that generates
the base models. The new bias allows more exploration in a search space that consists of
multiple models, instead of a single search exploration to derive the base model. Thus it

is not surprising that model combination and data combination display different learning
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behavior.

In a regression setting, Meir (1994) undertakes a theoretical analysis of the effect of
linearly combining several least-squares linear estimators according to their expected per-
formance, under the same working assumption as ours. While his general result agrees
with ours—model combination can significantly outperform data combination in some
situations—the two results differ significantly in detail. Meir finds that model combina-
tion outperforms data combination even for small training sets, and that it can be worse
for intermediate sample sizes. This result is based on analyzing the bias/variance de-
composition; however, this decomposition is quite different in classification tasks (Kohavi
& Wolpert, 1996). It also assumes, for tractability, that the data batches are indepen-
dent; but our empirical result has no such assumption. Relaxing the non-overlapping
and independence assumptions, Sollich and Krogh (1996) show analytically that model
combination can improve substantially on data combination by optimizing the weights
of the linear combination for intermediate sample sizes. This latter result is based on a

slightly different working assumption from ours.

7 Other issues

When more than two batches are available, one possibility is to stack up the combinations
in a binary tree structure, as investigated by Chan and Stolfo (1997). Nevertheless, more
evidence is required to show that this is generally applicable. On the other hand, one
need not necessarily use the same learning algorithm for all batches of data. A model
selection technique such as cross-validation (Schaffer, 1993) may be applied to each batch
to choose between several learning algorithms, prior to model combination. However, this
incurs multiple folds of computation.

Model combination has three advantages over data combination: learning can be faster
as discussed below, less memory is required because less data is used for each learned
model, and the process can run in parallel on multiple processors. These advantages
make model combination well suited to large datasets. Catlett (1991) studied a variety
of sampling techniques to extract a subset from a large dataset for decision tree learning,
but concluded that they do not solve the problem of scaling up to very large datasets.
Our experiments with real-world datasets indicate that sampling together with parallel
processing is a promising way to approach this problem.

The extra computation that model combination requires differs from one method to
the other, and with the type of learning algorithm used. For the principal method used
in our experiments, combination using a measure of characterization, the main additional
computational load is the estimation of predictive accuracy during training. As Section 3.2

described, this involves a cross-validation step on the training data. Assume that the
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learner has linear time complexity (as NB* does) of T'(n,m) = n + km where n and m
are the training and testing data sizes and k& is a constant that reflects the different costs
of training and testing. Because three-fold cross-validation is used, model combination
induces a single model in time Ts(n,m) = 4n + km. Data combination, on the other
hand, requires Ty(2n,m) = 2n + km. For example, in the LED24 domain NB* requires
Ty(n,m) = 6 seconds and Ty(2n,m) = 2.5 seconds on a Sun SPARCserver 1000 machine,
where n = 1000 and m = 5000. Clearly model combination is not going to win for a linear-
time learner. However, in the nonlinear case the situation is different. For example, IB1*,
whose learning time is O(mn?), requires Ts(n,m) = 6.5 minutes and Ta(2n,m) = 12
minutes for the same example. Parallel processing can indeed speed up the computation
in such cases, even with this relatively expensive model combination method. Using a
simpler and less expensive model combination method such as majority vote guarantees
that a speed-up will be obtained from parallel processing. In our experiment reported in
Section 5.4, for models induced from C4.5, Ty(n,m) = 0.8 seconds and Ty(3n,m) = 1.2

seconds, where n = 450 and m = 5000.

8 Conclusions

A comparison of the base-line behavior of model combination and data combination using
randomly-drawn disjoint data batches reveals that model combination compares favorably
when the performance gain achieved by increasing the training set size is small, which
occurs in the near-asymptotic region of the learning curve. This is because model com-
bination achieves a larger variance reduction than data combination as the training data
increases. The empirical evidence presented in this paper shows that this result is not
sensitive to the particular learning algorithm or model combination method employed.
Moreover, we have shown empirically that the near-asymptotic performance of a learn-
ing algorithm can often be improved significantly by combining multiple models generated

by the same algorithm.
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Appendix: The stacked generalization procedure

The stacked generalization process for the two-batch case is as follows. The original data
set L consists of two batches LA = {(y4,2s),a = 1,...,N} and LB = {(yp,2s),b =
l,...,M}. Randomly split the first batch into J almost equal parts LA;,...,LA;, and
define LA; and LAY = LA — LA; to be the test and training sets respectively for the
jth fold of cross-validation. Using the data in the training set, induce a model M7
using some learning algorithm. Use the same learning algorithm on all of the data in LB
to derive a single model, which we call Mp.

(=)
A

Given a data instance x, in LA;, denote by z4;, the probability that M assigns to

the ¢th class. For the same instance, denote by zg;, the probability that the model Mpg



assigns to the ¢th class. Using this procedure, form one set of “level-1” data as
)CA(.'-'V = {(yaa ZAlay- -y ~Alas ZBlay- - zBIrl)a = J-'s ey N}a

where [ is the number of classes.
A second set of level-1 data is obtained by randomly splitting £B into J almost equal
parts and deriving a cross-validation set of models M{B“j' ) for use on the test sets LB; and

a single model M 4 from LA:
LBev-= {(UsiZmpscevs2amm Zomyscsiznm)s D=1 v05:M}s

Now concatenate the two data sets LAqy and LBey to form the joint level-1 data:

‘CCV = {(ycazﬂlca ceeyZAfcy ZBley - - ".!zch_)'s = 11 ey N + M}

We now use the MLR learning strategy on this training data to give a “level-1” model

M. The linear regression for class ¢ is simply

I
LR)(z) = Z(Gmezm + aBiezBi)-

k]

The level-1 model is formed by choosing the linear regression coefficients o to minimize

N+M 1 2
Z (Ye — Z(GAwZAic + agiezBic)|
c=1 i

for each class {, constraining the coeflicients e to be non-negative.

The final classification process uses models M 4, Mp and M to classify an instance of
unknown class. First, the instance is presented to models M 4 and M. Each model yields
I class probabilities that reflect the probability it assigns to the instance being in each of
the I possible classes. These probabilities are assembled into a vector which constitutes
the level-1 data for the unknown instance. This vector is presented to M, which comprises
a set of I linear regression models LR;. The value of LR,(z) is computed for all I classes

and the instance is assigned to that class ¢ with greatest value:

LRi(x) > LRp(z) for all ¢ # L.





