

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

UNIVERSITY OF WAIKATO

594 Dissertation
Development of a map service

Student: Xiaotie Huang
Supervisor: Annika Hinze

A DISSERTATION SUBMITTED TO

COMPUTER SCIENCE DEPARTMENT

MARCH 2007

P a g e | 3

Acknowledgements

I give my sincerest thanks to a number of people without whom this

dissertation could not have been completed.

Firstly, to my supervisor, Annika Hinze, for your kind support, interests, precise

advice and patience with me through the whole dissertation process. Secondly,

to all the members of Information Systems and Databases Group at the

Department of Computer Science at the University of Waikato for participating

my presentations and giving valuable comments and suggestions. Thirdly, to my

friends, Aya, Teresa and David, who have helped me with the stress of carrying

out this study, I sincerely appreciate your support and encouragement. Lastly,

to my parents, who have supported me in many ways during my stay in New

Zealand. I am grateful to you.

P a g e | 5

Abstract

Geographic Information Systems (GIS) a computerized mapping system for

capturing, storing, retrieving, analysing, and displaying spatial data (the type of

data that has a geographic location). It is one of the fastest growing high tech

fields and has been widely used in my areas where analysis of spatial referenced

data is needed.

In this paper we developed and implemented a GIS-based personalized Travel

Planning application. Our goal is to provide a map based information system

that gives recommendation information (e.g. closeby sights, must-see sights) to

travellers according to their destinations, locations and preferences.

Furthermore, the TP application was developed as a client-side service under

the Tourist Information Provider System. It runs on client machines and uses the

spatial referenced data stored at the TIP server-side database.

P a g e | 7

Contents

Acknowledgements .. 3

Abstract .. 5

Chapter 1 Introduction .. 1-1

1.1 Tourist Information Provider (TIP) .. 1-3

1.2 Limitations of TIP ... 1-4

1.3 Travel Planning (TP) Application ... 1-6

1.4 Structure of this Report .. 1-7

Chapter 2 Background ... 2-9

2.1 Development History of TIP .. 2-9

2.2 System Architecture of TIP 2.0 ..2-12

2.3 Summary ...2-14

Chapter 3 Requirement Analysis ...3-15

3.1 Travel Behaviour Analysis ...3-15

3.2 System Requirements ...3-16

3.2.1 Functional Requirements ...3-16

3.2.2 Non-functional Requirements..3-18

3.3 Summary ...3-19

Chapter 4 Related Work ..4-21

4.1 Related GIS Mapping Applications ..4-21

4.1.1 Traditional GIS Applications ...4-21

4.1.2 Web-based GIS Applications ..4-26

4.2 Comparison ...4-32

4.3 Summary ...4-34

P a g e | 8

Chapter 5 System Design and Implementation ..5-35

5.1 OpenMap Architecture ...5-35

5.2 System Architecture ..5-40

5.3 Structural Model ...5-42

5.4 Class Diagrams & Internal Relationship between Classes5-45

5.5 Design and Implementation of the Three Layer Beans5-47

5.5.1 Map Layer ...5-47

5.5.2 Sight Layer ..5-68

5.5.3 Route Layer ..5-74

5.6 Interact with TIP ..5-82

5.6.1 Form TP Application to TIP ...5-83

5.6.2 From TIP to TP Application ...5-85

Chapter 6 System Evaluation ..6-89

6.1 Performance Test 1: Sight Layer ...6-90

6.2 Performance Test 2: Route Layer ..6-92

6.3 Performance Test 3: Map Image Layer ...6-94

6.4 Summary ...6-96

Chapter 7 Conclusion & Future Work ...7-97

7.1 Conclusion ...7-97

7.2 Future Work ..7-97

Bibliography ... 99

Appendix A: Database Structure of TIP .. 101

Appendix B: TP Application Conf File Example .. 103

P a g e | 1-1

Chapter 1 Introduction

There is no doubt that mobiles have become the centre communication tools in

many people’s lives. It is hard to imagine living in

the modern world without having a mobile.

Nowadays, mobile manufacturers focus on

improving performance and adding exclusive

functions to their mobile devices. Recent mobile

devices have a fast CPU, massive memory and

storage, a lightweight operating system (WinCE,

Symbian, etc), a digital camera, wireless internet,

Bluetooth, integrated GPS receiver and so on. With

these new features, Geographic Information

Systems (GIS), which require a lightweight hardware, a positioning system and

wireless internet, are able to run on mobiles devices. GIS is a computer-based

system that is used to capture, storage, retrieval, analysis and display

geographic information. In a more generic sense, GIS is a tool that provides

users with a graphical view of geographic information. It allows users to create

interactive queries (user created searches), analyzes the geographic information.

The use of GIS on mobile devices is called Mobile GIS. Mobile GIS is a fast

growing technology. By the time this paper is written, various applications that

use mobile GIS technology will have been published ([11], [12]). However, the

most commonly used GIS applications are the Digital Map systems. A Digital

Map system is a computer system that displays and links map images and

P a g e | 1-2

spatial data (location defined), such as sightseeing places, travel routes and

airports. The GIS-based map system can provide the user with a map view

based on his/her real location.

The aim of this paper was to develop an application that makes use of mobile

GIS and Digital Map technologies to assists tourists in planning their vacations.

While there are already a number of travel planning systems, such as travel web

sites and airline-specific web sites, in most cases such systems are limited to

only specifying means of travel and routes. In this paper, our focus is on

location-based recommendations. In a Location-based recommendation tourists

are provided with recommendations based on their location. This might include

nearby sight-seeing locations, the nearest accommodations and information

about a specified geographical location. The geographical location would be

either the real-time position of the tourist detected by the GPS receiver or a

virtual location on the earth where a user assumes he/she is visiting.

Furthermore, our application is developed as part of the Tourist Information

Provider System originally proposed by A. Hinze and A. Voisard in [3]. Detailed

information about the Tourist Information Provider System will be given later in

this section.

The remainder of this section introduces the TIP system and its system

architecture (Section 1.1), describes limitations of the TIP system (Section 1.2),

and outlines the basic design principles of the Travel Planning application as a

functional enhancement to the TIP system (Section 1.3), followed by a general

description of the structure of this document (Section 1.4).

P a g e | 1-3

1.1 Tourist Information Provider (TIP)

The Tourist Information Provider (TIP) is a location-based mobile tourist

information system. TIP was introduced by Hinze and Voisard in [3]. It was

designed to provide users with sight-related information based on their current

location (location-aware) in combination with the user’s profile (pre-defined

personal preferences stored in a database). For example, a TIP user can acquire

information about sights to see which are relevant to his/her personal interests

on the go. The architecture of the TIP system is illustrated on Figure 1: TIP

system architecture.

Internet

Spatial Data User Profiles

TIP Web Service
(Page Generator)

TIP Server

ID / User-profileLoc. / content

Tagged URL

Page output

GPRS / GMS

Serial

Connection

Client PC

Client Mobile

Device

Figure 1: TIP system architecture

The TIP system contains a web service that runs on a web server. It provides

users with content (i.e. HTML webpage) that contains travel information (such

as accommodation, transport, activities, events, tours, adventure, and

recommended sight-seeing destinations) related to their location area and

personal interests. In order to connect to the TIP web service, clients must have

internet access on their mobile devices through either GPRS or through a serial

P a g e | 1-4

connection via a PC. When a client requests information from TIP via a web

browser, a URL containing ID tags (e.g. location tag, client_id tag) will be

automatically created and sent to the TIP web server. When the TIP web server

receives a request from a client, it knows not only the client_id of the

requesting client, but also the location of the client at the time the request was

sent. Through the client_id, the system can find the profile of the client which

specifies his/her personal interests. Through the known location the system can

locate the spatial data which is related to the client’s location. Therefore, the

TIP web service can dynamically generate a user-specified page and output it to

the client.

The TIP system contains several information services specially tailored to meet

different aspects of tourists’ information need; this differentiates it from other

mobile information systems. For example, TIP Recommendation Service is a

recommendation system which provides dynamic and personalized travel

recommendations to the tourists based on analyzing the other tourists’ histories

and comments [7]. TIP Greenstone Service queries and extracts useful

information from the Greenstone [8] digital library and displays the information

in the TIP system. (Greenstone is digital library software for building and

distributing digital library collections.) More TIP services are described in [1].

1.2 Limitations of TIP

As mentioned in the above section, the TIP system is a location-based tourist

information system. It is able to provide sight-related information according to

the travellers' interest and position. Although the TIP system is able to deliver

many different kinds of information to tourists, as a tourist information system

it still has some limitations:

P a g e | 1-5

 All information provided to users is in the form of text-based webpage.

There are two types of information that would appear in a webpage

provide by the TIP system, which are geographic information and non-

geographic information. Geographic information refers to any

information that identifies a geographic location on a map. For example,

physical address and latitude/longitude coordinates. Non-geographic

information, on the other hand, refers to any kind of information

defining some non-geographical aspects of an object. For example, a

name of a sightseeing place and history of a city. There is no problem

with displaying non-geographic information on a webpage. However, for

geographic information, it would be more appropriate to presents the

information visually on a map. For example, for the nearby sights

recommendation, the system could show the nearby sights on a map in

reference to a user’s current position. This is especially helpful to those

users who are unfamiliar with the place where they are visiting.

 The system does not support tourists to locate their own positions in

unknown areas, to find the position of their destinations, and to get

route from where they are to where they want to go. When tourists visit

a new place, they often need to orient themselves in that place.

Therefore, it would be very helpful if the system could provide tourists

with an electronic map of the surround area.

 The system only provide information about an actual trip, which means

that TIP users can only obtain the information that is related to their

current locations from the TIP database. For example, if a user plans to

visit Tokyo, he/she cannot get travel-related information about Tokyo

from the TIP system until he/she arrives there. For this reason, the

system cannot be used as a travel planning tool for tourists to make

actual travel plans.

P a g e | 1-6

To overcome the above three limitations of the TIP system, we proposed and

implementation a travel planning application as an extension to the TIP system.

1.3 Travel Planning (TP) Application

To overcome the limitations of the current TIP system described in section 1.2,

the system need to have an alternative way for delivering travel-related

information to TIP users, by providing users with a graphical view of the

information stored in the TIP server-side database. Moreover, the system

should provide information both for the trip planning phase and the actual trip.

With this goal in mind, we developed a GIS-based application called the Travel

Planning (TP) Application as a new service for the TIP system. It offers the

possibility of delivering travel-related information (e.g. sights, map, and popular

travel routes) to tourists based on their actual moves or planed routes.

Internet

Spatial Data

TIP Web Service
(Page Generator)

Client PC

Client Mobile

Device

query

data

Tagged URL

Location event

TP Application

Figure 2: TP application system architecture

The above figure illustrates the system architecture of the TP application.

Different from other TIP services, the TP application runs on client-side

machines (desktop PC and mobile device). It directly queries the spatial data

P a g e | 1-7

stored on the TIP remote database, concerning on geographical locations, and

displays the result set to users on an electronic map. Furthermore, the TP

application has the ability to cooperate with other services on the TIP system.

For example, if a user clicks on a displayed sight on the electronic map, the

system will navigate to the recommendation webpage of the corresponding

sight. On the other hand, the application also listens to event messages sent

from the other services and brings up the map of the specific location specified

in the event message.

1.4 Structure of this Report

The rest of the paper is organised into seven chapters. A brief description of

each chapter is summarised below:

Chapter 2: Background

This chapter presents an overview of the development history of TIP and

introduces the system architecture and the existing information services.

Chapter 3: Requirement Analysis

This chapter includes an analysis of tourists' travel behaviour, which is followed

by a discussion upon the system requirements.

Chapter 4: Related Work

This chapter presents an overview of related work in the area of mobile

Geographical Information System and compares them to our proposed system.

Chapter 5: System Design and Implementation

This chapter presents describes the implementation details of our TP

application.

P a g e | 1-8

Chapter 6: System Evaluation

This chapter presents the evaluation of the system and our findings.

Chapter 7 Conclusion & Future Work

This chapter provides general discussion, conclusion and possible extension to

the current work.

P a g e | 2-9

Chapter 2 Background

The Tourist Information Provider (TIP) system is an advanced mobile tourist

information system. It consists of an event

notification service (ENS) and a location-based

service (LBS). The main purpose of the TIP

system is to deliver various kinds of travel-

related information to the user according to

their location and personal preferences. The

TIP system has been through three major

versions which include: TIP 1.0, 2.0 and 3.0. TIP

1.0 is the first system prototype. TIP 2.0 is the current stable version. TIP 3.0 is

still under development at the time of writing this paper.

This chapter is focused on the implementation detail of TIP. We firstly give an

overview of the development history of the TIP system in Section 2.1. Then, we

describe in detail the core architecture of TIP in Section 2.2. Finally, a Summary

of this chapter is given in Section Summary 2.3.

2.1 Development History of TIP

The concept of the TIP system was first proposed in [3] and implemented as a

first prototype at the University of Berlin in [4]. It was designed to deliver sight-

P a g e | 2-10

related information to mobile devices such as mobile phones or Personal Digital

Assistants (PDA), based on their locations, personal interests, and/or travel

routes. Though the system, users can acquire information such as places of

interest and recommended sights. We refer to the first prototype of TIP as TIP

1.0.

TIP 1.0 was implemented using client-server architecture, with both the client

and server written in Java. A PostgreSQL1 object-related database was used as a

central database accessed via PostgreSQL JDBC interface. The database was

extended by PostGIS2 spatial library in order to store and retrieve geo-spatial

data. The core of the system is a filter engine cooperating with a location engine.

The filter engine filters information (that is potentially interesting to the user)

according the user’s profile (which includes personal interests) and the location

engine provides the user’s location.

Furthermore, in the TIP database, sight objects are stored in different semantic

groups, such as museum, historical buildings, art and so on. Each sight belongs

to one or more semantic groups. The TIP 1.0 system contains a simple

recommendation mechanism which recommends other sights in a semantic

group if a user has visited at least two of the sights in the same group [7]. For

example, if a user has visited two museums in a certain area, the system will

inform the user about other museums in the same area.

The first system prototype was extended by Ottlinger [6]. He restructured the

system architecture based on J2EE (Java 2 enterprise edition), using Apache’s

Struts3 framework. We refer to this release as TIP 2.0. The new system provides

a web-based interface which is accessible from any desktop computer or hand-

held device that is internet-connected and has a web browser.

1
 http://www.postgresql.org/

2
 http://postgis.refractions.net/

3
 http://struts.apache.org/

P a g e | 2-11

Since the completion of TIP 2.0, TIP has been continually enhanced. A number

of new services have been or are being implemented and integrated into TIP 2.0.

A TIP service is an add-on application for TIP which adds new features and

extras that allow TIP to deliver various types of travel-related information to

users. E.g. Advanced recommendation service [7] extends the existing simple

recommendation function in TIP 1.0. The service enables TIP to provide

recommendations to a user based on other users’ information (e.g., preferences,

feedback). TIP Greenstone service [8] enables TIP to extract information that is

related to a user’s travel from Greenstone4 digital libraries. We refer TIP 2.0 plus

the add-on services as TIP 2.5. Basically, TIP 2.5 can be seen as an enhanced

multiple-purpose version of TIP 2.0. It is the current stable version of TIP. In this

dissertation, the TP application is implemented as one of the add-on services for

TIP 2.5. More detailed information about TIP services and TIP 2.0 system

architecture are described in next section.

At the time of writing this paper, TIP 3.0 prototype is being developed by Y.

Michel [5]. The new architecture of TIP 3.0 is designed to achieve two goals:

firstly to optimise the network performance using pre-fetching and caching

mechanisms and secondly to extend the service availability which allows the

system to connect to multiple information providers as well as peer-to-peer

communication. Since our TP application is designed and implemented under

TIP 2.0 framework, we will not go into the details of TIP 3.0 in this paper.

4
 http://www.greenstone.org/

P a g e | 2-12

2.2 System Architecture of TIP 2.0

TIP Server running on Tomcat Servlet

User Data

(profile,

 feedback)

Spatial Data

(sight,

 travel route)

Event Data

Data

Collection

Information

Dissemination

Request:

Current Location

Request:

Specified location

Information Services

Filter

Engine

Location

Engine

U
s
e

r
In

te
rf

a
c
e

 (
J
S

P
 W

e
b

 p
a

g
e

s
)

Central DB

Figure 3: TIP Core Architecture (Adopted and modified from [5])

Figure 3 above illustrates the system architecture of TIP 2.0. The client side can

be a desktop computer, or any other type of computer or hand-held device.

Internet access and a web browser are required in order to view the JSP web

pages generated by the TIP server. A client sends a request which contains

location information to the TIP server asking for information about his/her

current position. The location can be either the current position as detected by

the GPS receiver connecting to the user’s device or a virtual location specified

by the user when using a desktop computer. The TIP server first parses the

request, then it looks for the available information from the database according

to the given location and the user’s profile, finally, the server generates a

dynamic webpage (JSP) containing the located information and sends it back to

the client.

P a g e | 2-13

The TIP server side is a J2EE web application that runs on a Tomcat Servlet5

container. It contains the following components:

 Data Storage: TIP 2.0 is implemented using a central database approach.

The system uses a PostgreSQL object-relational database (version 7.3.4)

with a postgis extension (version 0.75) as its central database. There are,

in general, three types of data stored in the TIP central database: user

data, spatial data, and event data. The user data includes user profiles,

feedback, travel history, and user history. The spatial data refers to data

items which associated with location information. i.e. sights and travel

routes. Additionally, external events from other information providers

can be provided by the TIP system. These events are handled similarly to

the way that the system handles location events, e.g. weather alerts.

These events are stored separately.

 Location Engine: The location engine is used to detect the current

location of the user and provide the corresponding information from

spatial and event data storage to the filter engine or other server-side

components. The location engine can be triggered in two ways: by user

or by the system. In the first way, the location engine is triggered by user

interaction with the system interface. E.g. the user specifies a location

(coordinates or name of the location) and presses a button to retrieve

information about the location. This is mainly used when a user is

accessing the system on a desktop computer. Secondly the location

engine can be trigger automatically by the system when certain

conditions are met, such as a time interval expires or a user moves more

than a certain distance. This requires the client’s device to automatically

send updates of the current location to the server.

5
 http://tomcat.apache.org/

P a g e | 2-14

 Filter Engine: The filter engine receives an information requirement

message from the client request. In responding to the request, it firstly

requests the available location-based information (e.g., places of

interest within a certain distance of the client’s current position) from

the location engine. Then, the retrieved information is filtered by the

filter engine according to the client’s profile and history before

forwarding to the client.

 Information Service: In TIP 2.0, an information service is a functional

extension to the system. Every service uses data from the TIP central

database depending on the purpose of the service. For example, the

trust-based recommendation service [9] uses the user’s trust ranking

level and feedback data to judge if a sight should be recommended to

the user. Therefore, a service can be seen as a special filter engine which

filters information according to its own purpose. All services may use

basic functions provided by the filter engine and location engine. A client

can access an information service through its interface.

2.3 Summary

In this chapter, we have introduced the TIP development history and explained

the basic principles of the TIP 2.0 system architecture. In the next chapter, we

firstly give an analysis of people’s travel behaviour (Section 2.1). Based on the

result, we propose the system requirements for our TP Application (Section

2.23.2).

P a g e | 3-15

Chapter 3 Requirement Analysis

In this section, we will firstly analyse tourists travel behaviours (Section 3.1) and

then present the requirements that must be fulfilled in order to satisfy the

traveller’s information need (Section 3.2).

3.1 Travel Behaviour Analysis

We leave aside the technological issues and focus on the tourists’ needs. In

general, there can be two types of tourists: individuals and groups. Since our

service is designed to be used by single users who equipped with mobile devices

supporting GPS, we are only interested in the individuals. To gather information

we carried out a small survey asking “how do you travel”. By analysing the

answers, we concluded that tourists can be divided into two groups. One group

of people try to plan everything in detail (e.g. where to go, hotel, and

transportation) before they start travelling. The other group of people do not

plan their trips ahead and prefer to plan their travel activities on the move.

Obviously, the people of the second group are the potential (main) users of our

service. Therefore we focused on analyzing the behaviours of people belong to

the second group. Of course, it depends on the person, but all the answers can

be generalized to the following scenario: When a traveller arrives at a place, he

or she would usually go to the “must see” sights of that place. For example, if

P a g e | 3-16

one travels to Paris, he or she would firstly visit the Eiffel Tower, the Notre

Dame, the Arch of Triumph, and the Louvre.

Besides the must see sights, if the traveller still has time, he or she would visit

some other places of interest. There are two factors that decide if the traveller

would visit a place of interest: distance (while visiting these “must see” sights,

the traveller might visit some places of interest that are close by the travel

routes of the must see sights) and personal preferences (tourist’s personal

interests e.g., history, arts or friends’ recommendations). Since the core of our

service is location-aware, we focus on dealing with information from the

‘distance’ aspect. The other aspect is related to the content-based

recommendation and it has already been implemented for the TIP system ([7],

[9]).

3.2 System Requirements

Based on the tourists’ travel scenario described above, we identified the

following requirements that should be met in order to fulfil the system’s

purpose.

3.2.1 Functional Requirements

1. The system should provide a map-based GUI for presentation

geographical information stored at the TIP server-side database. In other

words, the system should be able to display variety of graphic items on

the map. Such as, sightseeing places, tourist’s current position, text,

travel routes, and so on. The system should allow users to customize

how each item should be displayed (e.g. colour, size, and visibility). All

P a g e | 3-17

the user’s customized settings should be stored automatically on exit

and loaded on start up.

2. The system should provide map navigation functions, including zooming

and panning on the map. By panning, we mean that users may scroll the

map horizontally and vertically to view the place they wish to see. By

zooming, we mean that users may change the view of the map to a

closer or wider perspective. Moreover, the system should also support

map navigation bookmark. By map navigation bookmark, we mean that

users can save or restore a view of the map which they have navigated.

3. The system should operate in two modes: actual trip and virtual travel.

The actual travel mode, as its name suggests, is to be used when users

are already at their destinations. In the actual travel mode, the system

should dynamically change the centre location of the map to be

consistent with the users’ current location. In other words, the system

should update the map display along with the user’s movement and

provide relevant information about the location. The virtual travel mode

is to be used when users plan their trips at home. In the virtual travel

mode, the user can manually navigate the map to look to find out the

information about their destinations.

4. The system should display all the “must see” sights of a place on the

map as fixed information. Other sights should be displayed based upon

the current location of the user. Furthermore, by clicking at a point on a

sight (or another kind of operation), the system should open a window

which displays the detailed information related to this sight, such as

sight description, other users’ ratings and comments are displayed.

5. The system should allow users to create/define virtual travel routes on

the map. A virtual travel route can be defined by specifying a series of

P a g e | 3-18

waypoints on the map. The system should be able to locate and display

sights which are within a certain distance (specified by the users) of a

virtual travel route. This function would be very useful for users to plan

their trips. Additionally, the system should allow users to store the

virtual travel routes to their local disks or upload them to the TIP server-

side database for further use. The virtual travel routes stored in the

database can be accessible to the public or viewable only to the owner.

This allows users to plan their trips based on other travellers’ travel

routes.

6. The system should allow users to print the map view currently displaying

in the system including map image, graphic for sightseeing places, and

planed travel routes.

7. As an extension service to the TIP system, the system should be able to

interact with other TIP services. Another TIP service which runs on the

service-side can remotely control system’s map view. On the other hand,

users to execute information services running at the TIP server from the

client-side application.

3.2.2 Non-functional Requirements

 The system should operate on both PC based machines (desktops and

laptops) and portables that have Java2-compliant virtual machine

installed (version 1.4 or higher).

 The system architecture should be optimized to reduce internet traffic

and minimum the memory requirement. This requirement is to ensure

that the system can run on portable devices with low memory and slow

internet bandwidth.

P a g e | 3-19

3.3 Summary

In this chapter we analysed the people’s travel behaviour and defined the

potential users of our system. We then proposed a number of system

requirements according to results of the analysis. In the following chapter, we

will take a look at some of the similar applications and examine if these

applications fulfil the system requirements we proposed in this chapter.

P a g e | 4-21

Chapter 4 Related Work

A number of GIS mapping applications provide similar functionalities to our

proposed Travel Planning application. In this chapter, we first introduce some of

the most commonly used GIS mapping applications which are related to our

work and then examine these applications to see if they fulfil the requirements

discussed in Section 3.2. The purpose of this related work is to find a system

which can be used as a basis to implement our proposed TP application.

4.1 Related GIS Mapping Applications

GIS applications can be generally divided into two categories: traditional GIS

applications or web-based GIS applications. In this section, we explain the

concepts of the two types of applications and introduce six GIS applications

which include three traditional GIS applications and three web-based GIS

applications.

4.1.1 Traditional GIS Applications

Traditional GIS applications are installed and run on a user’s computer (e.g.

laptops) or mobile devices. They are designed to be used by a single user.

Typically, the installation of the traditional GIS applications also includes a set of

geographical data which is needed for GIS. For example, traditional GIS

applications normally come with a set of map image data. The advantage of the

P a g e | 4-22

traditional GIS applications is that they can directly listen to the GPS signals

received by the hardware device on which they are running, and provide

information according to the real locations of users.

 GARMIN’s Que6

GARMIN is the world leader in GPS technology. It has a diverse product line that

includes GPS receivers, GIS software and a number of different GPS navigators

(e.g. car navigators). GARMIN’s Que is a GIS mapping application. It can be

installed on PDAs running the Pocket PC and Windows Mobile for Pocket PC

operating systems. A GARMIN-made GPS receiver (which uses GARMIN’s GPS

protocol) is required by the system to analyse the location information.

(a) Map view (b) Turning instructions

Figure 4: GARMIN’s Que System Screenshots [13]

GARMIN’s Que system can be used on a PDA. It enables users to see where they

are, location a street address, point of interest, or even to know where the next

6
http:// www.garmin.com/

P a g e | 4-23

turn is via visual and voice guidance. Figure 4 shows two screenshots of the Que

system. The left screenshot shows the map navigation view. The right

screenshot shows a combination of turning instructions. As can be seen from

the screenshot on the left, the map view provided by GARMIN’s Que is a vector

image created by computer program based on the geographical data of the

displayed area. The system does not use raster graphic images scanned from

maps, photographs, or satellite data. This mechanism is designed to reduce the

source device storage and memory requirements (which are the shortcomings

of PDAs).

 OziExplorer7

OziExplorer is GIS Mapping software produced by Newman. It is very similar to

GARMIN’s Que software. The main difference between OziExplorer and

GARMIN’s Que is that OziExplorer uses raster map images (scanned images) to

display map, whereas Que uses vector map images (geographical land-base

such as AutoCAD DWG, DXF and ESRI SHP, etc).

Figure 5: Screenshot of OziExplorer [14]

7
 http://www.oziexplorer.com/

P a g e | 4-24

OziExplorer is available in three different versions: OziExplorer, OziExplorerCE

and OziExplorer3D. OziExplorer is the full version which runs on PC or laptop

with Windows OS later than 95. (Figure 5 is a screenshot of the PC version of

OziExplorer.) It allows users to use digital maps they purchased form internet or

scanned themselves. By using these maps, users can plan their trips on the map

by defining waypoints, routes and tracks and upload these to their GPS.

OziExplorer can be running in moving map mode when using a laptop

connecting to GPS- receiver. In moving map mode, the system automatically

updates map according to the geographical location of a user.

OziExplorerCE is a GIS mapping software which runs on a PocketPC and Window

CE PDA's. It allows users to track their position based on a GPS signal then

display their position on a map. However OziExplorerCE cannot work on its own.

It requires the full PC version of OziExplorer to calibrate maps, plan trips by

adding waypoints etc. Therefore it can be seen as an add-on to the full PC

version of OziExplorer software.

Figure 6: Screenshot of OziExplorer CE [14]

P a g e | 4-25

OziExplorer3D is 3D map viewer software. It allows map images to be viewed in

3D mode with the ability to rotate in all directions and zoom in and out of the

view. We will not discuss it further as it is not related to our project.

 OpenMapTM Package8

BBN Technologies' OpenMapTM package is a free JavaBeans based programming

toolkit for building GIS mapping applications that allow users to view and

manipulate geographical spatial data. Moreover, OpenMap is primarily for data

viewing and offers very little in the way of analysis functionality. Earth surface

distance measurement is the only supported analysis function in OpenMap.

Figure 7: Screenshot of OpenMap Software [2]

The OpenMapTM distribution comes with a sample application that can be used

to view and manipulate geographical spatial data. Figure 7 is a screenshot of the

OpenMap sample application. Programmers can use the sample application as a

basis for their own applications.

8
 http://openmap.bbn.com/

P a g e | 4-26

The core of OpenMap package is a set of Swing components that understand

geographic coordinates. Using these components, programmers can write

applications and applets that access data from legacy databases and

applications. More detail information about the OpenMap architecture is

described in Section 5.1. By the time this paper is written, there will already

exist many published applications that are developed using OpenMap. A list of

these applications can be found at: http://openmap.bbn.com/whoelse.html.

4.1.2 Web-based GIS Applications

Web-based GIS applications, as the name suggests, are designed to run inside a

web browser. They enables users to view or query geospatial data provided by a

specific information provider. Recently, there has been a new trend in

developing web-based GIS applications. Unlike the traditional GIS applications,

web-based GIS applications are platform independent as they do not require

users to install software. The only requirement is a web browser and an internet

connection. With the increasing speed of the internet connections, web-based

GIS applications are becoming more and more prevalent. In the following

section, we will introduce three web-based GIS mapping applications.

 Google Maps Beta9

Google Maps is a web-based mapping service, which provides Internet browser-

based, door-to-door directions as well as maps of a particular location. It is one

of Google’s latest products. Google Maps allows users to search a map for a

particular location by specifying a location name or a zip number. The map

image used in Google Maps can be displayed in two modes: either hybrid mode

(Figure 8), which displays vector images constructed by a computer using spatial

9
 http://maps.google.com

http://openmap.bbn.com/whoelse.html

P a g e | 4-27

data, or satellite mode (Figure 9), which display raster map images acquired

from satellite radar. Both modes can display very detailed maps. Furthermore,

Google Maps gives users full control over map navigation, including panning,

zooming and centring by zip code, city and state.

Figure 8: Google Maps – Normal Mode [15]

Figure 9: Google Maps – Satellite Mode [15]

P a g e | 4-28

Besides the Goole Maps application, Google also introduced an API that enables

developers to create their own applications that interact directly with the

Google Maps service. For example, you can create a picture view program that

shows where your photos were taken and displays them on Google Maps.

However, the Google Maps API is still in beta phase and it is only available for

implementation on website using JavaScript. When we first started this project,

the Google Maps API did not support geocoding (which is the process of

assigning geographic identifiers to map features and other data records, such as

street addresses) and routing capability (which allows users to create custom

routes on the map). However, at the time we are writing this report, both

features are being added to Google Maps.

 Yahoo Local Maps Beta10

Yahoo Local Maps Beta (also known as Yahoo Maps) is a web-based mapping

service provided by Yahoo as a competitor to Google Maps. It not only provides

all the functions available in Google Maps (e.g. search, satellite view,

navigation), but also many new features, including:

1) Flash interface, Yahoo Local Maps is coded in Flash, so the interface

is much more visual and attractive when compared to Google Maps.

2) Browse-based search, which allows user to search without typing

anything. For example, users can drag an address from the map into

the search forms.

3) Live-Traffic, which displays traffic trouble spots on the map

4) Multi-point routing, which allows people to plot driving directions for

multiple locations.

5) Local directory service, which helps users find a location and things

to do in a certain place.

10

 http://maps.yahoo.com/

P a g e | 4-29

Figure 10: Yahoo Local Maps Beta [17]

Like Google Maps, Yahoo Local Maps also introduced an API which allows

developers to pull a map onto their own web site and overlay their own content

on the map. The Yahoo Maps API is more advanced than the Current Google

Maps API. It not only supports geocoding, but also includes downloadable

source code that allows developers to add interesting hacks to maps, such as

distance measuring tools, a freehand drawing tool or other interesting widgets.

As the Yahoo Local Maps beta is unfinished, it still has some shortcomings. For

example, Yahoo's satellite view mode does not zoom in as closely as those on

Google Maps and current maps only cover the US and Canada. Moreover, Yahoo

Local Maps API does not offer as much in the way of tech support as the Google

Maps API does.

P a g e | 4-30

 Windows Live Local Beta11

To ensure not being left behind by Google and Yahoo, Microsoft recently

realised its own online web service called Windows Live Local (WLL). WLL is

built on Microsoft Virtual Earth SDK which is free to the public and supported in

Microsoft Developers Network (MSDN) website.

Figure 11: Windows Live Local [16]

Like other online mapping services, Windows Live Local also allows text-based

map search, map navigation and map routing. However the map routing

function is much more advanced than routing functions on Google Maps and

Yahoo maps. It does not have the concept of end point, which means users can

define an arbitrary number of waypoints on the map. For example, users can

define a route from point A to point B, from point B to points C and beyond.

11

 http://maps.live.com

P a g e | 4-31

Based on a set of way points, Windows Live Local is able to come out with a best

driving direction (shortest distance) and displays the route on the map. In Figure

11 above, the three red dots are user defined waypoints. The blue path is the

recommended driving direction given by Windows Live Local.

Besides the common features, Windows Live Local provides a new feature

called “Local me”. It enables users to locate their positions on a map based on

one of two parameters:

1) Local IP address. In this case, Windows Live Local will try to calculate a

location by using a computer IP address.

2) Wi-Fi hotspots. Windows Live Local will try to determine a location

from nearby Wi-Fi networks.

Another advantage of Windows Live Local is that it can be integrated with other

Microsoft Live services. For example, the integration of Live Messenger and Live

Local enables users to find the position of the people which they are chatting

with on a map.

P a g e | 4-32

4.2 Comparison

In this section, we compare the six related GIS mapping applications previously

described. We compare these applications on terms of the functional

requirements proposed in Section 3.2.1 .

Table 1: Requirements VS Related Works

Garmin

Que

Ozi

Explorer
OpenMap

Google

Maps

Yahoo

Maps

Beta

Windows

Live Local

Requirement 1

Display geographical

information stored in TIP

Requirement 2

Map navigation

Requirement 3

GPS Location analysis

Requirement 4

Sight recommendation

Requirement 5

Routing / Travel Planning

Requirement 6

Printing

Requirement 7

Connect to TIP

: The function is supported on the system.

: The function is not supported on the system.

: The function is not supported, but it can be implemented when needed.

P a g e | 4-33

Form the above table we can see that Garmin’s Que and Ozi Explorer meet most

requirements (4 out of 7) proposed in section 3.2.1, such as display map

according to GPS signals, routing and so on. However, both of the two systems

are commercial software and don’t allow third-party development. Therefore,

we have no opportunity to implement extensions in order to fulfil the remaining

requirements.

BBN Technologies' OpenMap appear to be the worst among the six systems. It

only supports basic map navigation functions and its maps are simply the maps

that only show the outlines of continents. However, OpenMap is not a ready to

use system, but a framework which allows developers to quickly build GIS

applications according to their own needs. As can be seen from Table 1, even

though six out of seven requirements are not met in OpenMap, it is possible to

implement them within the OpenMap framework. For this project, we chose to

use OpenMap framework to implement our Travel Planning application. More

information about the OpenMap framework will be covered in later sections.

The three competitors of web-based mapping services have the same score.

They all met requirement 2, 5 and 6. For the unsatisfied requirements, it is

possible to implement them using any of the three APIs. In fact, it is a better

solution to implement our proposed system using one of the three mapping

services than using OpenMap. That is because all the three web services have

built-in map image support which can greatly reduce programming time. Beside,

our Travel Planning system was implemented as an extension of the TIP system

which is a web service accessed through web browsers. It would be easier for

users to use our Travel Planning system within the same browsers than starting

a standalone application. However, when we first started this project, only

Google Maps had been published and its early versions do not support

geocoding and custom routing. Therefore, OpenMap was the only choice for us

at that time.

P a g e | 4-34

4.3 Summary

In this chapter, we firstly explained the concept of Traditional and Web-based

GIS Application, and then we reviewed six GIS Mapping applications. In section

4.2 we compared the six applications to the system requirements we proposed

in Section 3.2. According to the comparison result, we decided to use the

OpenMap framework to implement out Travel Planning application. In the next

chapter, we will present our system design and implementation.

P a g e | 5-35

Chapter 5 System Design and Implementation

In this chapter, we will present the system design details and implementation

issues of the map application. We firstly provide an overview of the OpenMapTM

GIS system based on which our Travel Planning application is implemented and

define some terms used in OpenMap that will be mentioned in later sections

(section 5.1). Secondly, we present the system architecture of the TP application

(section 5.2). Thirdly, we will provide and explain the structural module (section

5.3), followed by a representation of the main classes composing the Travel

Planning system (section 5.4). We will describe in detail the designs and

functions of the three major components contained in the application (section

5.5), which are the Sight layer, the Route Layer and the Map Layer. Lastly, we

will present the presentation of TP Application and TIP communication (section

5.6).

5.1 OpenMap Architecture

The OpenMap package is an Open Source JavaBeans based programming toolkit

by BBN Technologies. It is for building applications and applets needing

geographic information [2]. The core of OpenMap is a set of Swing components

that handle geographic coordinates. Programmers can use these Swing

components to display map data and handle user input events to manipulate

the data.

P a g e | 5-36

In our Travel Planning application, we used Openmap for geographical mapping

and display capabilities so that we can avoid reproducing existing basic GIS

mapping functions. There are two ways for programmers to use the Openmap

package. One is to develop applications as extensions to the OpenMap Viewer

application which is included in the package. The other is to incorporate the

OpenMap components in their own applications, which is what we did in

developing our TP application. The reason we chose the second way is that we

can reduce the memory requirement by only importing the necessary

components into the application.

Among the components of OpenMap, MapBean and LayerBean play central

roles. MapBean is a drawing canvas that derives from the Swing JComponent

class. It manages a hierarchy of Layer Beans which can paint themselves to the

canvas [2].

MapBean is associated with a Projection object that controls the view of the

MapBean canvas (e.g. panning, zooming, and resizing). The Projection object

specifies the view of the MapBean canvas from the following aspects:

 Geographical coordinate (latitude/longitude) of the centre point of the

MapBean canvas.

 Scale of the MapBean canvas.

 Height and width of the MapBean canvas.

 Projection type (Mercator, Orthographic, etc). In our Travel Planning

Application, the projection type is fixed at CADRG, which is an Equal Arc

Projection, meaning that the variations in latitude and longitude are

constant.

http://openmap.bbn.com/doc/api/com/bbn/openmap/MapBean.html
http://java.sun.com/products/jfc/swingdoc-api-1.1/javax/swing/JComponent.html
http://openmap.bbn.com/doc/openmap-arch-5.html#sec-layers

P a g e | 5-37

Figure 12: OpenMap Architecture (Adopted from [2])

LayerBean is the only component in the Openmap package that can be added to

MapBean. LayerBean is responsible for acquiring, creating, managing and

rendering its own spatial data on the MapBean. Figure 12 above illustrates the

relationship between MapBean and LayerBean. The MapBean shown in the top

part of the figure manages four LayerBean components. Every LayerBean

component is in charge of displaying a type of spatial data from the database.

(e.g., the first Layer displays highways on the MapBean. The second layer

displays minor roads information.) LayerBean components are added to

MapBean in a hierarchical stacking order, which means that first added

LayerBean is located at bottommost position. The MapBean is displayed by

painting the graphics of each LayerBean component starting with the

bottommost one and proceeding up the hierarchy. Successive LayerBean

component render their graphics on top of the graphics of lower ones.

When a LayerBean component is added to MapBean, it is automatically

registered to receive the projection change event from the MapBean (This is

P a g e | 5-38

one of JavaBeans features). A projection event is automatically generated by

MapBean when its projection has been changed. It contains information of the

new states of the MapBean projection. The LayerBean is an abstract class. Every

class that extends the LayerBean class must implement a function called

“projectionChange”. This function is invoked in responding to a projection

change event. Inside the function, a series of statements will be executed to

update the graphic displays on the layer based on the changing of the

projection. For example, redrawing the map or remapping graphical objects

according to the new project area displayed on the MapBean canvas.

Base MapBean Layer 3Layer 2Layer 1

Mouse Events

Figure 13: Mouse events in Openmap

In addition to the Projection Change events, Layer Beans can also be interactive,

by registering for mouse events the Map Bean. Figure 13 above illustrates the

principle of how mouse events are handled in the Map Bean. Different from a

projection change event, a mouse event is sent to the layers in the stack order.

When MapBean sends out a mouse event, the layer on top of the stack will first

receive the event. It can either consume the mouse event or pass it onto the

layer beneath it. Furthermore, every LayerBean can construct its own GUI

P a g e | 5-39

widget controls which allow users to easily customize its appearance. (e.g., drop

down lists for choosing background or foreground colour.) Once the GUI

controls of a LayerBean component are constructed, they will be automatically

added to the associated MapBean GUI control panel.

In this section, we have explained the basic architecture of the Openmap

framework. In the following section, we will propose the system architecture of

the TIP application and explain how OpenMap components are used in our

system.

P a g e | 5-40

5.2 System Architecture

Figure 14: TP System Architecture

P a g e | 5-41

Our system was implemented using J2SDK (Java 2 Standard Development Kit)

1.4.2 and the Openmap library. As mentioned in the previous section, there are

two ways the way to use the Openmap software package, and we chose to

incorporate the OpenMap components into our own application. The system

architecture of our Travel Planning system (shown in figure 14) is similar to the

structure shown in Figure 12. The MapBean component shown in the center of

the figure is the core of our system. It is shared by three LayerBean components,

which are SightLayer, RouteLayer and MapLayer. Each layer bean is responsible

for rendering a type of spatial data on the MapBean canvas.

MapLayer constructs and renders map images according to the location area

displayed in the MapBean canvas. Since it is the background layer, it must

always be placed at the bottom of layer stack in order to be painted first.

SightLayer is designed to locate and display sights from the TIP central database

on the MapBean canvas. Furthermore, it also provides a function which allows a

user to navigate from a sight displayed on the MapBean canvas to the

corresponding web page on the TIP website. Finally, RouteLayer loads and

displays users’ travel routes. It can also highlight sights from all of the existing

SightLayer instances according to a given travel route. More detailed

information about the functions and implementations of the three Layer Beans

will be described in section 5.4 .

The Travel Planning system provides three ways to control its MapBean (as

shown on top part of the figure):

1. The Map Bean’s projection can be automatically updated by GPS signals.

When the TP system receives a GPS signal from user’s mobile device, it

will update the center variable of the MapBean projection. This

projection will match the location specified in the GPS signal.

P a g e | 5-42

2. User input from GUI. The system provides the user with a number of GUI

components to control the MapBean projection, with options such as

move panel, zoom buttons, and scale field.

3. The Map Bean can also be changed by a location event sent from the TIP

server. Besides the Travel Planning system, we also implemented a TIP

server-side application (called TIP Map Service) which can send a

location event from the TIP server to a Travel Planning application

running on a client device.

5.3 Structural Model

This is the structural mode of our system. The package diagram illustrates the

relationship between all of the packages used in our system.

tip.client.map

tip.client.map.

basic

tip.client.map.

gui

tip.client.map.l

ayers

tip.client.map.

database

tip.client.map.

graphics

tip.client.map.

math

Figure 15: Package diagram

P a g e | 5-43

Package tip.client.map

This is the main package for the implementations of our Travel Planning

Application. It contains the executable class for the application. All other

packages are sub-packages of this package.

Package tip.client.map.gui

This package contains the GUI components which are used to control the Map

Bean. These components have been written following the conventions of the

OpenMap framework so that they can be connected automatically to the Map

Bean after being initialised.

Package tip.client.map.layers

This package contains implementations of the three OpenMap Layer Beans

which are MapLayer, SightLayer, and RouteLayer. Each Layer Bean reads and

displays a unique set of spatial data. The RouteLayer can also create its own

data for display.

Package tip.client.map.layers.graphics

This package provides a number of geographically based graphics classes which

can be displayed on the OpenMap Layer Bean. These classes are referred as

OMGraphics (OpenMap Graphics).

Package tip.client.map.layers.basic

This package defines the basic foundation classes for OMGraphics. These

foundation classes only describe the geometry of OMGraphics without any

reference to rendering attributes.

Package tip.client.map.database

This package contains several classes that are used to connect to the TIP central

database, execute queries and statements, and manage query results.

P a g e | 5-44

Package tip.client.map.math

This package encapsulates mathematical functions and methods for operating

on spatial data. e.g., ‘calculate surface distance between two sights or from a

route to a sight’.

P a g e | 5-45

5.4 Class Diagrams & Internal Relationship between Classes

BufferedMapBean

RouteLayerMapLayer SightLayer

0..1 0..* 0..1

0..*

OMRouteOMMapImage OMSight

0..*

0..*

Sight

Route<<interface>>

OMGraphicHandlerLayer

0..*

OMGraphic

Figure 16: Class Diagram

P a g e | 5-46

Figure 16 illustrates the representation of the main classes composing the

Travel Planning system. The classes BufferedMapBean, OMGraphic and the

interface OMGraphicHandler (shown with a darker colour) are imported from

the OpenMap library. The BufferedMapBean class is an extension of the

MapBean class. It uses the clipping mechanism to solve the flicker problem

caused by frequently repainting. The BufferedMapBean is associated with three

layer classes: MapLayer, SightLayer and Route Layer. Each of the layer classes

extends the OMGraphicHandler interface which describes a layer object that

manages OMGraphics. The interface provides a mechanism to filter which

OMGraphics should be displayed based on certain criteria (which in our case is

the projection area of the MapBean).

Among the three layer classes, the SightLayer is slightly different from other two

layers as there can be more than one SightLayer instance associated with a

MapBean. This mechanism allows the application to represent various sight

objects differently on the MapBean. For example, display parks as red squares

and buildings as blue triangles. More detailed information of this mechanism

will be provided in later section.

Each of the layer classes is capable of constructing and displaying a type of

graphical object. In our system, we implemented three types of graphical object:

OMMapImage, OMSight, and OMRoute. As can be seen from the class diagram,

these three graphical classes inherit the same abstract class OMGraphic, which

defines a vector graphic object and contains information about how the object

should be drawn.

P a g e | 5-47

5.5 Design and Implementation of the Three Layer Beans

The Map layer, Sight layer, and route layer are the three major components of

our Travel Planning applications. In this section, we will explain in detail the

design and functions of the three layers.

5.5.1 Map Layer

Map Layer, as its name suggests, is designed to display map images on the

MapBean according to its projection. The Map Image Layer can be seen as a

background layer as it remains at the bottom of the layer stack and always gets

rendered first. Figure 17 shows the effect when a Map Image Layer is added to

the system. Instead of just using a plain color (screenshot 1) for the background,

the corresponding map image is displayed in conjunction with other graphic

objects (screenshot 2).

Screenshot 2: with Map LayerScreenshot 1: no Map Layer

Figure 17: Effect of using Map Image Layer

P a g e | 5-48

There are two major issues in the design of the Map Image layer: storage size of

the map image and multi-scale representation. We will address these issues and

then explain the design of the Map Image Layer in the following sections.

Storage size of map image data

The storage size of map image data is substantial. For example, the small scale

(1: 1,000,000) roster map image of New Zealand (provided at Land Information

New Zealand) requires over 10 MB to store in compressed form. The storage

size gets much larger as the scale of the map increases. The storage size can

cause serious performance problems as larger size means longer transmission

time and more memory requirements. This problem is compounded because

the TP application was designed to run on portable devices with low memory

and slow internet bandwidth. Therefore, one of our main goals for the Map

Layer design is to minimize the storage size of map image data.

The storage size of a map image depends on the following three attributes:

1. Map scale: “Map scale means the ratio of units of linear measurement on a

map to units of measurement on the earth.” [11] It is normally expressed as a

ratio. (e.g. 1: 100,000) As map scale decreases, map image become less detailed

and the storage size of the map image decreases as well.

The scale of a map image is fixed when it is printed on paper since the

resolution of the map image remains the same. This map scale is what we refer

to as the original map scale. However in a GIS, the scale of a map image does

not need to be fixed, since the map image can be shrunk or enlarged to any size

to fit the scale of the screen display (as shown in Figure 18). We refer to the

scale of a map in GIS as ‘display scale’. There are three possibilities for display:

P a g e | 5-49

1) the original map scale is equal to the display scale;

2) the original scale is smaller than the display scale;

3) the original scale is larger than the display scale;

Figure 18: Same map image in different scales

When (a) applies, this map image looks exactly right and the storage size of the

map image will be considered as the standard size. If (b) applies, the storage

size of the map image is smaller than the standard size, but the detail of the

map will be lost.

Figure 19 below shows the effect when displaying a map image at a much

higher scale in the MapBean. The original scale of the map image (picture on

the top) is 1:25,000 and its display scale in the MapBean is 1:8,000. As you can

see, the details of the map are totally total lost.

P a g e | 5-50

Figure 19: Effect of displaying a map image at a much higher scale

On the other hand, when (c) applies, the map image is merged into a small area

and the map will become overwhelmed with detail. The storage size of the map

image is then larger than the ideal size. This requires more memory

requirement and longer transmission time.

Considering the above three conditions, we know that, using the map image

with the same scale value as the MapBean projection will gives the best result

for the map layer. However this is almost impossible as the scale of the

MapBean projection can be changed arbitrarily by the users according to their

need. Therefore the chance that the user preference will perfectly match the

original map scale of the map image is very small. A compromise solution would

be to make the map image scale as close as possible to the scale of the

MapBean projection. More detailed information will be given later.

P a g e | 5-51

Figure 20: Displaying a map image at the same scale

2. Map projection: a map projection is a portion of the earth surface in the

shape of rectangle. For a map image, if the map scale if fixed, the larger the map

projection is, the more earth surface is shown in the image, and as a result, the

storage size of the image increases.

If, when rendering a map image in the MapBean, the projection of the map

image is larger than the projection of the MapBean, then only part of the image

will be displayed on the screen. For example, in Figure 20 above, only the part

of the map image within the dark rectangle is displayed in the MapBean.

However in order to perform this display operation, the whole map image has

to be loaded into the application, resulting in extra data transmission and

memory requirement. On the other hand, when the projection of the map

image is smaller than the projection of the MapBean, it will leave a blank area

(an area not covered with the map image) on the MapBean. Again, the

probability of a map image matching the MapBean projection is small. The

closer the two projections are in size, the less data the system needs to deal

with.

P a g e | 5-52

3. The storage size of map images also depends on the file format in which the

images are saved. There are some approaches to minimizing storage size of map

images based on image compression. For example, see “Compression of map

images for real-time application” proposed by Pasi Franti in paper [10]. But this

is our concern in this project. Compression image format JPEG is the only file

format supported by the Map Image Layer.

Multi-scale representation

As mentioned above, in reality, the original scale and display scale of a map

image are always different. The incompatible map scales causes the map image

to lose detail and clarity. Other than that, maps of different scales represent the

same area differently. Figure 21 below illustrates the difference in display of a

map showing Nanjing (a city in China) at different scales. As can been seen from

the four map images, the same area are represented extremely different.

Therefore, it would not make sense to users if the original map image scale was

far different from the scale of the MapBean’s projection.

P a g e | 5-53

Figure 21: Example of a map shown in four different map scales in ascendant order

When a user uses the Travel Planning application, he/she may require maps at

different scales based on different tasks. For example, the user may require a

map at a relatively small scale for planning trips between cities or countries. The

same user, when visiting a place and browsing the nearby places of interest will

need a map which presents a larger scale. Therefore the Map Layer must have

the ability to store maps at different scales and switch display among the

different maps according to the scale specified by MapBean.

P a g e | 5-54

Multi-Brick Display

To solve the issues of storage size map image data and multi-scale

representation, we implemented an algorithm solution for storing, retrieving

and displaying map images, called, ‘Multi-Brick Display’. This solution is widely

used by many internet map providers (e.g. Google Maps, Yahoo Maps). The

basic principles are that a big map image is divided into many image fragments

where each image fragment is small in size. The map images fragments are

catalogued and stored into different groups according to the scale of the

original image. To obtain a map of an area at a certain scale, three steps have to

be taken: 1) locating the image group whose scale is the closest in value to the

specified scale; 2) Selecting all the image fragments which are necessary to

cover the required area for from the located group; 3) reconstructing the map

image for the area from the selected the image fragments.

An image composed of 4 image fragments An image composed of 56 image fragments

Figure 22: The use of Image Fragments in TP application

P a g e | 5-55

The two screenshots in Figure 22 above show how image fragments are

composed and displayed on in the Travel Planning application. The map image

shown in the screenshot on the left is composed of four image fragments. The

one on the right is made up of 56 images fragments. Note, that in the right hand

screenshot some blocks are not being rendered (while areas) with map images.

This is because the corresponding map image fragments are not available. In the

following part of this section, we will provide implementation details and

describe in detail how the algorithm is implemented in the Image Layer.

P a g e | 5-56

Image Group

In our system, map images (image fragments) are classified and stored into

different image groups. Map images that belong to the same image group have

the following attributes in common:

 Scale: The scale of the map image is determined by the amount of real-

world area covered by the map image. Map Layer is responsible for

determining the best-fit map image from a set of image groups

according to a given map scale. The term "best-fit" means to find the

value of the scale that minimizes the margin of the given map scale. The

benefit of using best-fit images is that zooming (which reduces the

display quality of the map images) can be minimized. For example, there

are two map image groups A and B. The scale of A is 200,000:1 and the

scale of B is 150,000:1. Suppose a user started the TP application. The

scale of the map application (referred to as C) is currently set to

100,000:1. In this case, Map Layer will choose to use map image

fragments from image group B to render maps on the application screen

because the margin between B and C (50,000) is smaller than the margin

between A and C (100,000). Furthermore, there cannot be two image

groups of the same scale at the same time, as the scale is the only key to

finding the best-fit image group.

 Span: This attribute specifies the distance coverage of a map image for

both latitude and longitude in decimal degrees. For example, a span of

value 1 means the latitudinal and longitudinal distances from the top left

point to bottom right point are both 1 decimal degree. All the map

images belonging to the same image group have an identical span value.

However the resolution of each map image can be different horizontally

P a g e | 5-57

and vertically since the Map Layer will automatically stretch the map

image for the best display.

 Decimal Places (d.p.): This attribute refers to the number of decimal

places displayed in the latitudinal and longitudinal coordinates of the

map. For example, if the d.p. value is “2” the coordinates (-37.788242,

175.31836) will be rounded to (-37.79, 175.32). This attribute is the key

for image storing and retrieving; which will be described next.

P a g e | 5-58

Image Storing

Map images data used in the Map Layer can be stored at two places: either TIP

server-side database or clients’ local storage. Map Layer allows users to specify

where map images should be loaded from. The advantage of loading images

from TIP server is that it ensures the map images used are the most up to date.

The disadvantaged is that but clients using low speed internet will suffer from

slow loading time. To solve this problem, we also allow users to download an

image package and place it in the resource folder of the Travel Planning

application. In either case, a map image is stored based on its scale and the

coordinates of the upper left corner.

In the TIP server, map images are stored in the central database, in table

‘map_scale’ and table ‘maps’. Table 2 below shows the structure relationship of

the two tables.

Table 2: Tables for storing map images

map_scale

PK scale

 span

 d.p.

maps

PK map_id

FK1 scale

 lat

 lon

 url

Table ‘map_scale’ stores all instances of image groups. It contains attributes

scale, span, and d.p. (scale is its primary key). Table ‘maps’ stores information of

all map image fragments. Its attribute scale is a foreign key referencing table

‘map_scale’. The attributes lat and lon hold the latitude and longitude

coordinates displayed at the upper left corner of each map image. The attribute

url holds the URL to which each image is stored at the server.

P a g e | 5-59

When map images are stored at the client side, all the existing image groups

must be firstly defined in the configuration file of the Travel Planning

application. The configuration file is loaded and parsed by Map Layer upon

execution of the system. Each map image group is encoded in the configuration

file in the following format:

<ScaleToMap#> = ’Map Scale’ ; ’Map Span’ ; ’Map Precision’

<ScaleToMap#> is a unique key for this record. The term ‘ScaleToMap’ is a

preserved word for Map Image Layer. It tells parser, the string that is about to

follow which represents a source image group. ‘#’ is the order in which the Map

Image Layer’s parse searches this record when looking for source image groups.

It does not matter what order an image group record is dealt, but each record

must have a unique number which starts from 1 and increment by 1 each time.

The section after the equal sign specifies the values of the three attributes of

the image group. Each value is followed by a semicolon to separate the clauses.

The following example defines three map image groups for Map Layer.

Declare Source Map Image Group Starts

image.scaleToMap1=1000000;1;1

image.scaleToMap2=30000;0.03;2

image.scaleToMap3=3000000;2;0

Declare Source Map Image Group Ends

Map images stored in the client side source folder follow the following naming

rule:

file_name = lat + “x” + lon + “.” + image_suffix

Lat: rounded latitude coordinate of upper left corner

Lon: rounded longitude coordinate of upper left corner

P a g e | 5-60

Figure 23: Image naming example

In the above example map, the image (JPEG format) belongs to an image group

whose d.p. value is 0. According to the image naming rule, the name of the

image will be: (-37x175.jpg).

P a g e | 5-61

Image Retrieving

TP ApplicationTP Application

Locating the best fit Image

group for scale 13,000

Display area X at scale 1:13,000

Server-side database /

Local storage

Retrieving image fragmens

Calcuation

Rendering

Select an image group

attributes of Group1

Load images

Image Fragments

Group1 -- 1:10,000

Group2 -- 1:25,000

Group3 -- 1:50,000

Group4 -- 1:100,000

Group5 -- 1:200,000

Image Groups

Figure 24: Processes for rendering a map image

Map Layer displays the map image according to the associated MapBean

projection. When the projection changes, it updates and repaints the map

image on the MapBean. Figure 24 shows the basic steps of retrieving and

displaying map images inside Map Layer.

1) Locating the best-fit map image group

This step is simple as Map Layer only needs to traverse though all the

existing map image groups (either defined in the database table or in the

configuration file) and select the one whose scale is the closest to the scale

of the MapBean projection. The formula below is used to calculate the

minimum margin (𝛼) between a given scale (𝑠) and a set of scale values

(𝑥1→𝑛).

𝛼 = min
1→𝑛

 𝑥𝑛 − 𝑠

P a g e | 5-62

2) Estimating the number of image fragments required to cover the MapBean

projection

Figure 25: Estimating the number of image fragments

After the best-fit map image group is being confirmed, the next step is to

calculate the total number of image fragments required to fully cover the

MapBean projection area (horizontally and vertically). In the example shown

Figure 25, in total 20 image fragments are required to render map image on

the MapBean projection. The total number of image fragments can be

calculated using the following formulas:

𝑁𝑣 =
𝑙𝑎𝑡2 − 𝑙𝑎𝑡1

𝑠𝑝𝑎𝑛
 + 1

𝑁ℎ =
𝑙𝑜𝑛2 − 𝑙𝑜𝑛1

𝑠𝑝𝑎𝑛
 + 1

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑣 × 𝑁ℎ

P a g e | 5-63

𝑁𝑣: The number of images required vertically.

𝑁ℎ : The number of images required horizontally.

𝑁𝑡𝑜𝑡𝑎𝑙 : The total number of images required.

lat1, lon1: The coordinates (latitude and longitude) of the upper left corner.

lat2, lon2: The coordinates of the bottom right corner.

Span: The map span value of the target image group.

[𝑛]: This means the the largest integer contained in the number n. For

example, 10.4 = 10, 112.9 = 112.

3) Retrieving map images

After the number of image fragments has been estimated, the system starts

retrieving images from the server or local source folder. In our system

implementation, a map image fragment is retrieved based on its latitude

and longitude coordinates of the upper left corner.

1

Figure 26: Retrieving map images

P a g e | 5-64

The coordinates of the upper left corner of the first image fragment (see

Figure 26) can be calculated using the following formula:

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒1 = 𝑅𝑜𝑢𝑛𝑑
𝑙𝑎𝑡

𝑠𝑝𝑎𝑛
 × 𝑠𝑝𝑎𝑛 𝑑. 𝑝.

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1 = 𝑅𝑜𝑢𝑛𝑑
𝑙𝑜𝑛

𝑠𝑝𝑎𝑛
 × 𝑠𝑝𝑎𝑛 𝑑. 𝑝.

𝑙𝑎𝑡, 𝑙𝑜𝑛: The coordinates of the upper left corner of the MapBean projection.

Span: The map span value of the target image group.

d. p.: The decimal place value of the target image group.

After the coordinates of the first image fragment has been calculated, the

rest can be easily calculated as follows:

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑛 = 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒1 + 𝑠𝑝𝑎𝑛 × 𝑛

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1 + 𝑠𝑝𝑎𝑛 × 𝑛

The following (simplified) SQL statements are used to query the database

for the corresponding URL address of the map image according its map scale

(scale) and upper left corner coordinates (lat, lon):

SELECT url FROM maps m

WHERE (

m.scale = scale AND

m.lat = lat AND

m.lon = lon

)

In addition, If Map Layer is set to use images stored in the resource fold of

the TP application, the local address of the same map image described in

the above case would be: app/src/lat + “x” + lon + “.” + suffix.

P a g e | 5-65

4) Rendering map images

Finally, Map Layer adjusts (cuts and stretches) and paints the retrieved map

images at the corresponding positions on the MapBean projection. Figure 27

shows the final result after the corresponding map image fragments have

been painted on the MapBean projection.

Figure 27: Final result after images been painted

P a g e | 5-66

Properties of Map Layer

Map Layer has three properties: load image from net, maximum images and

draw edges. Figure 28 below is a screenshot of the Map Layer property window

which allows users to modify the three properties at run time.

Figure 28: Properties window of Map Layer

The first property ‘load from net’ is a flag which tells the Map Layer where map

images should be loaded from. Map Layer can use images either from the TIP

server or from the resource folder of the TP application.

Property ‘maximum images’ sets a limit on the maximum number of image

fragments that can be used when rendering a map image on the MapBean. The

more image fragments are used, the longer the time required for processing

image fragments and the slower the system becomes. The Map Image Layer will

P a g e | 5-67

not function when the number of image fragments needed exceeds the

threshold value.

Figure 29: Outlines the Map Image Fragments

The third property ‘draw edges’ is a flag that controls whether the edges of the

image fragments are hidden or visible. As shown in Figure 29 above, each map

fragment is outlined with black lines to indicate how many image fragments are

used in the map.

P a g e | 5-68

5.5.2 Sight Layer

The main purpose of Sight Layer is to provide user with a graphical view of sight

data stored at TIP server-side database according to projection of the MapBean.

Furthermore, it has the ability to act as a gateway of sight data for other layers.

Sight Information stored in Database

In the TIP server-side database, each sight record contains the following fields:

 S_ID: the unique id that identifies the sight.

 Name: the name of the sight.

 Description: the description of the sight.

 Address: the physical address of the sight.

 Location: the geographical location of the sight which is defined as the

region within the sight area. It is stored in database in the form of

polygon which is one of the basic geometry data type. A polygon is

expressed as a sequence of points. e.g. 37.1, 175 ; 37.4, 175.1 ; 37.3,

175.2)

 Sight Rating: In TIP system, a sight can be rated by users who have

visited it. The rating value is from 1~10, 10 being the highest. One sight

can have many ratings from different users.

 Sightgroup: specifies a type of sight. (e.g. art, building, education, nature)

A sight can belong to several sightgroups. For example, a library belongs

to both building and education.

Note that there is other information associated with sights in the TIP database

(e.g. picture_url, creator). They are not listed because they are used in Sight

layer.

P a g e | 5-69

Sight Class

A Sight Class represents a sight (or a place of interest) stored in the TIP central

database. Figure 30 shows the structure of the Sight class. The class has eight

attributes which are directly associated with the data fields of a sight record,

except attributes, which are CenterLocation and AVGRating.

Figure 30: Structure of Sight Class

Attribute “CenterLocation” is calculated automatically by program according to

the geometry data (polygon) defined in the location data field. It represents the

geometrical center of the sight. Sights are display on the MapBean based on

their center locations.

The displaying result for sight objects depends on two things: (1) characteristic

of the sight objects, which means that different sight objects will be

represented differently on the map; (2) user’s preference, which means a user

can control the displaying result based on his/her personal interest.

Furthermore, the Sight Layer is also designed to be a gateway of sight data for

other components, since it is the only component which can directly access to

the sight and sight related data stored at the server-side database. All others

components gain sight data through Sight Layer.

P a g e | 5-70

Multi-layer Representation

The relationship between the Sight Layer and a map application is one-to-many

relationship. In other words, there can be more than one Sight Layer exist in a

Map Application. Each of them can be set to only display one type of sight

objects through the modifiable parameters of the Sight Layer. This architecture

allows the application to separate different types of sight objects. So that each

type of sight object can be represented on the screen in a different way. E.g.

Different sizes, colors and shapes

The Sight Layer has a number of properties which are used to control the

default operations and affect its performance. For the most part, these

properties deal with sight selection. Users can explicitly define how a Sight Layer

should work by modifying these parameters. The following list shows the most

important parameters of the Sight Layer:

 Displaying parameters: The parameters that are used to specify the how

sights should be represented on the layer.

 Sight Group parameter: This parameter defines a range of default sight

groups. Sights belong one of the groups will be shown on the layer,

otherwise they will be ignored.

 Sight rating parameter: This parameter defines the minimum rating

threshold. Only sights whose average sight rating is higher than the

threshold are visible on the layer.

 Performance parameter: The performance parameter decides the priority of

memory allowance and application running speed. It can be set to either

‘memory efficiency first’ or ‘speed first’, depending on the number of

records stored at database and the size of the main memory installed on the

client system.

P a g e | 5-71

Figure 31: Sight Layer Property Window

The settings for these parameters are recorded in system property file and

loaded at system execute time. It is possible to modify the values for sight rating

and the sight group parameters at run time through the sight layer property

window (as shown in above screenshot). Others are unable to change after the

system has started.

The following example illustrates how these parameters can be used to improve

the visibility of a Map Application. There are 20 sights objects within a fixed map

projection. Half of them belong to sight group ‘build’ and another half of the

sight objects belong to sight group ‘art’.

P a g e | 5-72

Figure 32: Example of Sight Layer

The first screenshot was taken from a map application which only contains one

sight layer and the sight layer is set to display all kinds of sight objects. As a

result, all sights are displayed using the same color and shape regardless the

different sight groups they belong to. This makes it difficult for the users to

distinguish different sights. On the other hand, under the same condition, we

set up another map application which uses to sight layers A & B. Sight layer A is

limited to only cope with sights which belong to sight group ‘Building’ and sight

layer B only cope with sight group ‘Art’. Each layer uses a unique color and size

to represent sights. As can be seen in the second screenshot, the two types of

sight objects now can be easily distinguished from their appearances. Compared

to the first application, the second one is more straightforward for the uses.

This example is just a simple case of using sight layers since only sight group

parameter was used. It can be more complicated when other parameters are

involved. For example, you can set three layers L1 L2 L3. L1 to display sights

which have rating level higher than 5 and sight group belong to ‘building’ and

P a g e | 5-73

‘art’, L2 to display sight group ‘education’ and L3 to display sights which have

rating level rating lower than 5.

The Performance parameter is very important to Sight Layer. It controls the way

Sight Layer retrieves and stores sight data from database. As mentioned early, it

can be set to either ‘memory efficiency first’ or ‘speed first’. In memory

efficiency mode, a sight layer will establish a connection to database and

retrieve sight data for those who are within the area of the current map

projection and instance sight objects from the retrieved data, every time the

map projection associated to it changes,. The advantage of this mode is that

only those sight information stored at database which is displayable on the map

projection is read into main memory. This is extremely important when the

database contains a great number of sight records and the system running the

map application does not have enough extra memory. However, frequently

accessing to the remote database will be resulting in more time being

consumed.

In the ‘speed first’ mode, a sight layer only access to database upon the first

projection change. Instead of partially retrieving, all sight records will be read

into the system main memory to be used for further projection change. Since all

the necessary data are stored inside main memory, the program can be much

faster in reacting to projection change event, except the first time projection

change. The disadvantage is that more memory consumed to stored sight data.

The difference of system performance in practical when applying two models

will be examined later in this document.

P a g e | 5-74

5.5.3 Route Layer

Route Layer is the key layer of the Travel Planning Application. It is designed for

use in planning travel routes and also gives recommendations of the nearby

places of interest according to the geographical position. It provides many

useful functions which are related to the concept of travel planning. For

example, it has a function for locating points of interest which are within a

certain distance of the user’s physical position or a virtual route planed by the

user.

Unlike the sight layer, there can be only one route layer existing inside a Travel

Planning application at any one time. Route Layer also has access to TIP

database to store or retrieve route data, however it does not retrieve sight data

directly from the database, but through sight layers. Any sight layer created for

an application will be automatically registered to the route layer (If there is one).

Similar to the other two layers, the route layer also has a number of properties

that control its behavior. Figure 33 below is a screenshot of the Route Layer

property dialog. It contains controls for the follow parameters:

P a g e | 5-75

Figure 33: Route Layer Property Window

 Closeby Distance threshold: This threshold value is used to judge if a sight is

a place of interest nearby. If the distance from the sight to a given location is

smaller than the threshold, it will be considered as a closeby sight. Users can

adjust the value of this parameter to meet their need.

 Mode parameter: The Route layer can run at two modes, ‘PLAN’ or ‘GPS’. It

is important to understand the difference between these two modes. By

default, it runs at ‘PLAN’ mode which allows users to plan their trips on the

layer. The ‘GPS’ mode should be used when a user is traveling in a certain

area. When running in ‘GPS’ mode, the route layer listens to location

change events from a GPS device attached to the same system. Based on

the received location events it searches for sights which are located within

the closeby distance threshold of the current position and displays them on

the map.

 Route Browsing: If this option is enabled, the route layer will display routes

stored at the TIP database which are plottable on the current map

P a g e | 5-76

projection. A route is composed of a series of route sections which are

defined by two way-points. The route layer considers a route plottable if at

least one of its route sections is within the projection. The figure below

shows a route that contains three route sections: S1, S2, and S3. The route

is plottable for Projection A, but not for Projection B as no route sections is

completely inside the rectangle area of Projection B.

Figure 34: plottable route

This route browsing option should be only enabled when the map

application is running in an environment that has an internet connection,

otherwise the route layer will become extremely slow as it attempts to

connect to the database for 10 seconds every time the map projection

changed.

 Unit of measure: A Unit of measure is the actual unit in which the distance

values are measured. It can be selected from one of three options:

kilometer ‘KM’, nanometer ‘NM’ and mile.

P a g e | 5-77

Functions of Route layer

As mentioned at the beginning, the route layer provides many useful functions

for users planning their trips. Next, we will give details of the most important

functions of the route layer.

 Creating Travel Routes

This is the fundamental function upon which all other functions of the route

layer are based. It allows users to create virtual travel routes on the map

projection by clicking on the position corresponding to their travel plan.

Figure 35: Creating a virtual route

As shown in the figure above, a virtual travel route consists of a series of

waypoints (marked as red rectangles), it is displayed as a dashed polygon line.

P a g e | 5-78

An arrow is place at the last route point to indicate the direction. Similar to the

sight layer, a set of parameters can be used to control the displaying of routes

on the map. E.g. Colors, Dashed, Width.

Figure 36: Property window of a virtual route

After a virtual route is created on the application map palette, users can click on

it to open its property window. Figure 36 shows an example of a route property

window. The top part of the window shows the detailed information of the

route and two buttons. Button ‘Update’ is used to confirm the changes and

button ‘Upload’ will start the procedure of uploading the route to the TIP

database. There will be tables listing all the information about sights which are

currently displayed on the map, including sight name and distance to the route.

The number of tables depends on the number of sight layers registered at the

route layer, one for each sight layer. Users can simply tick the ‘Mark’ column of

a particular row to highlight the associated sight object on the map.

P a g e | 5-79

 Storing Routes

Routes can be stored to local hard drive for the further use or uploaded to the

TIP database so that they can be viewed by other clients. Uploading routes to

database requires a valid username and password.

Figure 37: Upload route window

 Closeby Sight Recommendation

In the Route Layer, sight recommendation means to recommend sights to

clients based on their geographical locations. This is one of the main goals for

developing this map application. The route layer provides two types of sight

recommendation functions.

Recommendations based on a virtual route

The first recommendation function is used to give sight recommendation to the

users according to the distance from a virtual route. Figure 38 below shows a

simple example to illustrate how this works. We firstly set the sight rating

parameter of the sight layer to 6, this means only the sights which have sight

rating level greater than 6 will be directly shown on the application screen. As

shown in the first screenshot, there are only three sights (Art0, Art4 and Art7)

P a g e | 5-80

that match the sight rating condition. These are shown on the screen. We then

defined a virtual travel route which starts at sight ‘Art 4’ and ends at sight ‘Art7’.

The closeby threshold of the route layer is 2 km, which means that any sight

with a distance of less than 2 km from the route is considered as a “closeby

sight”. Based on this setting, we applied the recommendation function to the

route we created before.

Figure 38: Sight Recommendation for Route

The results are shown in the second screenshot. There are two noticeable

changes from the first screenshot. The first change is that some sights are

displayed at a larger scale using a different color. These are the places of

interest considered to the defined route. Sight ‘Art 0’ does not meet the closeby

threshold condition, so it is displayed the same as in the first screenshot. The

second difference is that three more sights have appeared on the screenshot.

This is based on the rule of closeby sight recommendation defined in the route

layer which is: All closeby sights should be displayed to users regardless what

sight rating levels they got.

P a g e | 5-81

The main calculation involved in recommendations for a virtual route is to find

the distance between a sight and the route. The above case is simple because

the route was one path segment (a straight line), so the distance from the route

to the sight is the distance from the center point of sight to the perpendicular

extension with the route (illustrated in Figure 39). When a route contains more

than one path segment, the distance from a sight to the route is measured as

the distance from the sight to the closest path segment. Therefore the more

path segments are involved in a route, the more calculations are required to

find the distance between the sight and the route.

Point of

Interest

Route

Segemnt

d1 d3d2

End A End B

Figure 39: Distance from a sight to a route

Recommendations based on the GPS location

The second type of recommendation function is designed to give

recommendations based on a user’s real location, so that he or she can be

aware of the nearby sights in relation to current position. When the route layer

is running under GPS mode, the user’s location will be displayed at the center of

the screen. Based on this location, the route layer considers sights within the

radius determined by the closeby threshold value property as closeby sights.

P a g e | 5-82

Figure 40: Recommendation for real locations

Figure 40 above is a screenshot taken from the route layer running under GPS

mode, we added some marks to illustrate the principle of sight

recommendation under GPS mode. A filled circle is positioned at the center of

the screen which showing the user’s current location. The dashed empty circle

which center is the user’s location and radius equals to the closeby threshold

value is a marker we added to indicate the valid closeby area. All sights within

the circle area are considered as closeby sights to the user’s current location. As

can be seen from the screenshot, sights that are within the dashed circle are

labeled as closeby sights.

5.6 Interact with TIP

As mentioned in section 1.3, the TP application is proposed as a client-side

service of the TIP system. In functional requirement 7, we analyzed that the TP

application should be able to interact with other TIP services. In this section, we

will describe how this is achieved in our implementation.

P a g e | 5-83

5.6.1 Form TP Application to TIP

In our current implementation of TP application, users can click on a sightseeing

place mark to open up its detail information window. In the following example

(see Figure 41), we first clicked at the ‘Education Library’ and opened up its

information window. As can be seen from the image on the right, the

information displayed in the window is limited.

Figure 41: Link from TP Application to TIP Screenshot 1

If a user wants to see more information about this sight, he/she can click on the

‘Visit TIP’ button located at the bottom of the information window. After the

button is clicked, TP application will fire up a browser and navigate to the

corresponding TIP webpage of the sightseeing place. The following screenshot is

the result we got from the above example. On the webpage, users can acquire

P a g e | 5-84

more detailed information on the sightseeing place, or access to other TIP

server-side services. E.g. recommendation service.

Figure 42: Link from TP Application to TIP Screenshot 2

Linking from TP application to TIP website is not complicated. As described in

section 5.2, the base sight class contains a private attribute filed called ‘ID’

which represents the unique id associated with the corresponding sight record

in TIP database. In TIP, each sight record has a unique URL which contains its ID.

When required to link the corresponding webpage of a sight class instance, the

P a g e | 5-85

TP application uses the ID attribute to build the URL and send it to TIP server

though a browser. Once the TIP server receives the request, it will parse the URL

and display the related information on the sight in the browser.

5.6.2 From TIP to TP Application

Linking from TIP to TP application is more complicated. Our TP application

contains implementations of network communication. When TP application

executed, it create a ServerSocket bound to port 6666 on the local IP address of

the client machine. After a client log on the TIP website (see Figure 43), his local

IP address is stored in HttpSession. We can program to get the IP address from

the HttpSession.

Figure 43: Link from TIP to TP Application Screenshot 1

As can been seen from the screenshot shown in Figure 44, there is a link

‘Display on Map Service’ on the webpage of every sight. When a user click on

the link, TIP server will create a message which specifies the centre location

(written in latitude and longitude coordinates) of the sight and send it to the

client location IP address through port 6666. Once the TP application receives

the message from TIP server, it parses the message and re-projects the map

projection of its MapBean according to the parsed location.

P a g e | 5-86

Figure 44: Link from TIP to TP Application Screenshot 2

The screen shot below shows the result after clicking on the link ‘Display on

Map Service’. The corresponding sight is displayed at the centre location of the

TP application.

P a g e | 5-87

Figure 45: Link from TIP to TP Application Screenshot 3

P a g e | 6-89

Chapter 6 System Evaluation

In this chapter, we present the evaluation of the three layers implemented in

the TP system and our finds.

After the implementation of the system, a series experiments had been

conducted to evaluate the system performance. According to the layer

architecture of the OpenMap framework, our system can be seen as a

combination of a MapBean component and three customized layer components

(sight layer, route layer and map layer). Each of the three layers is responsible

for mapping and rendering one type of Geospatial data on the MapBean

component. The performance of our TP system depends mainly on how fast the

three customized layer components map and paint Geospatial data on the

MapBean component. Therefore, we measure the system performance in the

following three aspects:

1. How does the number of display graphics which represent sight-seeing

places affect the system performance? (Section 6.1)

2. How does the route graphics displayed on route layer affect the system

performance? (Section 6.2)

3. How does the number of map image fragments which are used cover the

projection area of the MapBean instance affect the system performance?

(Section 6.3)

P a g e | 6-90

In our performance tests, we do not consider the network impact such as

network delay and the delays with which clients attend to connect to server-

side database are factors that influence in the overall system performance. All

the performance tests were performed the follow system environment:

 Processor Speed - Intel Pentium 1.66GHz

 Memory(RAM) - 512 Mbytes

 Hard Disk - 60G (30G free)

 Graphic Card - Intel GMA 950

 Operation System: Windows XP Professional SP2

 Java Virtual Machine (JVM) 1.5

 OpenMap Library 4.6.2

6.1 Performance Test 1: Sight Layer

Performance Test 1 illustrates the effect of increasing number of sight graphics

(NS) on the rendering performance of the MapBean component.

Hypothesis 1: We predict a linear increase in the time the system takes to

rendering the projection of the MapBean upon a projection change event, along

with the increasing number of displayed sight graphics. This is because that

when Sight Layer receives a projection change event from its associated

MapBean component, it firstly loads all the projectable from text-based source

data and then constructs a list of OMSight instances (see Section 5.4) where

each one represents a sight-seeing place. After the list is created, Sight layer

maps and paints the OMSight instances from the list one by one on the

MapBean’s projection area. Since Sight Layer does not constructs and paints

OMSight instances in parallel, but one after another and the time required to

perform construction and painting operations for every sight instance should be

P a g e | 6-91

constant, therefore the total rendering time should increase in linear with the

number of sight instances.

To prove hypothesis 1, we preformed the following test. First, we created a

group of random data sets. Each data set contains a different number of sight

instances, from 100 to 1,000. We let the system run with these data sets in turn

and recorded the total time it took the system to render each data set. We run

each test three times and took the average as the final result. The following

graph shows our test results. The horizontal axis represents the number of

displayed sight instances, and the system rendering time is show on the vertical

axis. Line ‘series1’ represents our test results. The dashed line swings through

line ‘series’ is the trend line derived from hypothesis 1.

Figure 46: Performance Test 1 - Sight Layer

As you can see, our results indicate that the hypothesis 1 is basically correct.

The growth rate of the rendering time for MapBean is close to linear. One

100 200 200 400 500 600 700 800 900 1000

Series1 703 734 745 797 813 896 911 953 968 974

0

200

400

600

800

1000

1200

R
e

n
d

e
rr

in
g

Ti
m

e
 (

m
ill

i s
e

co
n

d
s)

Number of displayed sights

Sight Layer Evaluation

P a g e | 6-92

noticeable observation regarding the above figure is that the result line is

somewhat fluctuated. It could be caused by measurement error. In java, the

minimum time unit is one millisecond, which means the time below one second

is ignored. The ignored time would have an influence the test results.

6.2 Performance Test 2: Route Layer

In Performance Test 2, we are going to show how Route Layer affects the

system performance. Route Layer is more complex than Sight Layer as a route is

defined by a series of waypoints. When rendering routes data on the

MapBean’s projection, not only the number of displayed routes (NT), but also

the number of waypoints contained in the routes (NW) will have influences on

the system performance.

Hypothesis 2: if NW is fixed, we expect a linear increase in the overall rendering

time as NT increases. The structure of Route Layer is very similar to Sight Layer.

In responding to a ProjectionChange event, it first builds a list of graphics from

source data, and then paints them one by one on the MapBean’s projection.

The only difference is that the graphics built by Route Layer are OMRoute (see

section 5.5.3).

Hypothesis 3: We predict that the lager Nw of a route, the longer the systems

takes to construct OMRoute and paint it on the MapBean’s projection. As

described in section 5.5.3, in our system a route is defined by no less than 2

waypoints. It is drawn as a rubber-band from the first waypoint to the last

waypoint. The more waypoints contained in a route, the more line needs to be

drawn, and the more time it takes the system to render the route.

In performance test 2, we firstly create three groups of random data sets. The

three groups are divided by Nw, which means all routes belong to a group has

P a g e | 6-93

the same Nw value. Nw of group one equals to 2, Nw of group two equals to 3,

Nw of group three equals to 4. Each data set contains a different number of

route instances, from 100 to 1,100. Similar to what we did in performance test 1,

we let the system run with the different data sets in three times and take took

the average as the final result.

Figure 47: Performance Test 2 - Route Layer

Figure 47 illustrates the test results from performance test 2. The horizontal axis

represents NT, and the system rendering time is show on the vertical axis. Three

different kinds of lines represent our test results from the three different groups.

As can be seen, all these result lines are close to linear with only minor

100 200 300 400 500 600 700 800 900 1000 1100

NW=2 93.6 120 140. 172 193 219 234. 260. 344 369. 406.

NW=3 109. 151 188 229. 266 359 396 432. 495 525. 547

NW=4 125 177. 229. 286 396 463. 484. 542 609. 635 692.

50

150

250

350

450

550

650

750

R
e

n
d

e
ri

n
g

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Routes

Route Layer Evaluation

P a g e | 6-94

fluctuations. It proves that that our hypothesis 2 is correct. Furthermore, when

dealing the same amount of routes, it took more time to render the group

which has a higher Nw value. This result matches our hypothesis 3. Also note

that the higher the NW value is, the faster the linear growth rate becomes.

6.3 Performance Test 3: Map Image Layer

In the following performance test, we will exam how Map Image Layer affects

the system performance. According to the rendering mechanism of Map Image

Layer, maps are painted using map image fragments. Thus, in this test, we will

focus on testing the effect of the increasing number of map image fragments

(NF) on the rendering performance of the MapBean component.

Hypothesis 4: We expect that the time needed for rendering map image is

depending on the number of the map image fragments used to compose the

map. The more map image fragments are used, the longer time becomes. The

plot of rendering time versus NF should be a linear line. As mentioned in section

5.5.1 , it takes three steps to render map image on a given MapBean’s

projection: 1) Choose a best map image group which fits the scale of the

projection; 2) Calculate the total number of image fragments required to cover

the whole projection area and the start location of the upper left corner image

fragment. 3) Load and paint the image fragments at the corresponding position

on the projection one by one. The time it takes to perform the first and second

step should be constant. However, the time spend on the third step is

depending on the value of NF. If all image fragments have the same size, then

the time consumed for rendering each image fragment is the same. Thus the

total rendering time should increase linearly with NF.

To prove our hypothesis 4, we preformed the following test. We let the system

run with 11 different scales. Each scale requires a different number of map

P a g e | 6-95

image fragments. We run each test three times to calculate and record the

average rendering rime. During the test, the screen resolution of the MapBean’s

projection is fixed at 320x400. To eliminate effect of different image size, we

chose to use the same image fragment for all images fragments. The result of

the test is shown in the figure blow. The horizontal axis represents NF, and the

system rendering time is show on the vertical axis. Line ‘series1’ is plotted by NF

versus rendering time.

Figure 48: Performance Test 3 - Map Image Layer

As can been seen from result line, the growth trend is nearly linear. It proves

that that our hypothesis 4 is correct. One again, the result line is fluctuated due

to the measurement error described in performance test 1.

1 12 24 36 48 60 72 84 96 108 120

Series1 140.3 140.6 140.3 145.6 145.6 146 151 156.3 156 161.3 166.6

120

130

140

150

160

170

180

R
e

n
d

e
ri

n
g

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of image blocks

Image Layer Evaluation

P a g e | 6-96

6.4 Summary

In the evaluation, we have performed three performance tests. In the first and

second test, we have examined the impact on the system performance with

different amount of sights and router displayed on the MapBean’s projection. In

the last performance, we have compared the map rendering speed of Image

Layer when different numbers of map image fragments are used. In general, our

TP system has done a good job of mapping and rendering the three different

types geospatial data on the MapBean component. All the three layers have fast

rendering speed.

P a g e | 7-97

Chapter 7 Conclusion & Future Work

7.1 Conclusion

This thesis presents an implementation of a travel planning system using GIS

technology. The system was implemented based on the Openmap GIS

framework and Java runtime environment (JRE) 5.0. It will run on any platforms

which java 5.0 or later. Our system was implemented as a client-side service of

the Tourist Information Provider (TIP) system (see section 1.2). It allows TIP

users to edit, view, and upload geographical data to the TIP server-side

database. Furthermore, the system also provides functions which allow users to

plan their trips by defining a series of waypoints on the map and give travel

recommendations based the planed waypoints.

An evaluation of the systems is presented in Section 6. We individually tested

the effect of the sight, route, and image layer to the system rendering

performance. In general, all the three layers have a linear increase of the

rendering time with increase number of displayed graphical objects.

7.2 Future Work

The current implementation can be improved in several aspects. First, in the

current system was implemented using Openmap GIS library as when we first

P a g e | 7-98

stated implementing the system, Google Maps API was just published and has a

number of limitations. e.g. No geocoding support. But there had been a lot of

improvements in the functions of Google Maps API during the time we were

implementing the system. Now Google Maps API seems to be a much better

choice as: 1) it contains implementation similar to our map image layer and the

map images used in Google Maps are way better than any of the map image

resources that can be found on internet; 2) the web-based GIS architecture

makes it possible to integrate map functions into TIP webpage; Secondly, the

administrator functions are not implemented in the current system. For

example, add or modify public data stored at the TIP server-side database.

Lastly, the Openmap library requires Java 1.4 or later version. It is ok for

desktop PC, but for mobile devices, the higher version available nowadays is

Java 1.2. Therefore we could not run and test our system on any mobile devices.

The purpose of implementation of the system is to prove that the travel

planning model we proposed would work. We hope in the future, when java 1.4

is supported on mobiles devices, someone could run and test the system again

on mobile devices.

P a g e | 99

Bibliography

1. A. Hinze, P. Malik, R. Malik. Interaction Design for a Mobile Context-Aware

System Using Discrete Event Modelling. University of Waikato, Hamilton.

2006.

2. BBN. OpenMap Developer's Guide. OpenMap(tm). [Online] BBN

Technologies, 2006. http://openmap.bbn.com/. Last Accessed (2006.8).

3. A. Hinze, A. Voisard. Combining Event Notification Services and Location-

based Services in Tourism. Freie Universitat, Berlin. 2003. Technical Report

tr-b-03-06.

4. K. Loeffler. User Adapted Information Delivery in Context-Aware Systems.

Freie Universitat, Berlin. 2004. Master Thesis.

5. Y. Michel. Location-aware Caching in Mobile Environments. Department of

Computer Science, Waikato University. 2006. Master Thesis.

6. P. Ottlinger. Design and Implementation of an extensible Software

Architecture for Distributing Context-sensitive Information. 2004. Master

Thesis.

7. S. Junmanee. Design, Implementation And Evaluation of Advanced

Recommendation Models in The Mobile Tourist Information System TIP.

Department of Computer Science, Waikato University. 2006. Master Thesis.

8. X. Gao. Design and Implemetation of a Greenstone Service in a Mobile

Tourist Information System. Department of Computer Science, University of

Waikato. 2005. PGDipCS Project Report.

9. Q. Qiu. Trust-based Recommendations in a Mobile tourist Information

System. Department of Computer Science, University of Waikato. 2006.

Master Thesis.

http://openmap.bbn.com/

P a g e | 100

10. P. Firanti, E. Ageenko, P. kopylov, S. Grohn, F. Berger. Compression of map

images for real-time application. Department of Computer Science,

University of Joensuu. 2001. Report A-2001-1.

11. M. Hussain. Explore Hyderabad - An Interactive Web-based GIS application

Prototype. Department of Computer and Information Science, Linkopings

University. 2006. Master Thesis.

12. C. Streng. Mobile GMaps. [Online] 2006. http://www.mgmaps.com/. Last

Accessed (2006.8).

13. GARMIN. GARMIN QUE. GARMIN ON THE ROAD. [Online] 2006. http://

www.garmin.com/. Last Accessed (2006.4).

14. Newman. Des Newman's OziExplorer. Des Newman(tm). [Online] 2006.

http://www.oziexplorer.com/. Last Accessed (2006.4).

15. Google. Google Maps. [Online] 2006. http://maps.google.com/. Last

Accessed (2006.8).

16. Microsoft. Windows Live Local. Live Search. [Online] 2006.

http://maps.live.com. Last Accessed (2006.8).

17. Yahoo. Yahoo Maps Beta. [Online] 2006. http://maps.yahoo.com/. Last

Accessed (2006.8).

http://www.garmin.com/
http://maps.google.com/
http://maps.yahoo.com/

P a g e | 101

Appendix A: Database Structure of TIP

Figure 49: Entity-relationship-model of the TIP

P a g e | 103

Appendix B: TP Application Conf File Example

#--

Start of properties file for TravelPlanning Application

#--

MapBean settings

Scale of the MapBean (1:scale)

scale=8000f

Center latitude(float degree)

latitude=-37.788f

Center longitude(float degree)

longitude=175.319f

Background color

bgcolor=FFFFFF

Layers to load and show on the map

layers=route sight1 sight2 scale image political

Political layer settings

political.class=com.bbn.openmap.layer.shape.ShapeLayer

political.prettyName=Political Solid

political.visible=true

political.shapeFile=data/shapes/dcwpo-browse.shp

political.spatialIndex=data/shapes/dcwpo-browse.ssx

political.lineColor=ff0000

political.fillColor=BDDE83

Scale layer settings

scale.class=com.bbn.openmap.layer.ScaleDisplayLayer

scale.prettyName=Scale Layer

scale.lineColor=ff777777

scale.textColor=ff000000

scale.unitOfMeasure=km

scale.locationXoffset=-10

scale.locationYoffset=-20

scale.width=100

scale.height=10

P a g e | 104

Route layer settings

route.class=nz.ac.waikato.isdb.tip.client.map.layer.RouteLayer

route.prettyName=Route layer

The unit of measurement.

Possible values are km, nm, mile.

route.unitOfMeasure=km

route.closeByThreshold=5

route.localRouteColor=007A00

route.dbRouteColor=660066

route.tempRouteColor=FFFFFF

route.selectColor=FFFF00

Sights layer settings

sight1.class=nz.ac.waikato.isdb.tip.client.map.layer.SightLayer

sight1.prettyName=SightLayer1

sight1.resourceFile=data/sights.dat

sight1.feedbackRating=0

sight1.basicScale=8000

sight1.basicRadius=5

sight1.maxRadius=10

sight1.loadFromFile=false

sight1.fastMode=false

sight1.fillColor=CC0000

sight1.lineColor=000000

sight1.selectColor=FFFF00

sight1.highlightColor=3366FF

#sight1.sightgroups=building

sight1.sightgroups=

sight1.closebyRadius=10

sight2.class=nz.ac.waikato.isdb.tip.client.map.layer.SightLayer

sight2.prettyName=SightLayer2

sight2.resourceFile=data/test_sights.dat

sight2.feedbackRating=0

sight2.basicScale=8000

sight2.basicRadius=5

sight2.maxRadius=10

sight2.loadFromFile=true

sight2.fastMode=false

sight2.fillColor=00C864

sight2.lineColor=000000

sight2.selectColor=FFFF00

sight2.highlightColor=3366FF

sight2.sightgroups=art

sight2.closebyRadius=10

Map image layer settings

image.class=nz.ac.waikato.isdb.tip.client.map.layer.MapImageLayer

image.prettyName=Map Image Layer

image.resourceFolder=data/maps/

image.renderringThreshold=64

image.displayEdge=true

image.imagesFormNet=false

image.scaleToMap1=1000000;1;0;

#--

End of properties file for TravelPlanning Application

#--

