Working Paper Series
ISSN 1170-487X

Internationalising a Spreadsheet
for Pacific Basin Languages

by Robert Barbour and Alvin Yeo

Working Paper 97/17
July 1997

© 1997 Robert Barbour and Alvin Yeo
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand



Internationalising a Spreadsheet for Pacific Basin Languages

Robert Barbour
Science, Mathematics and Technology Education Research Centre
University of Waikato, Hamilton, New Zealand

Email: r.barbour@waikato.ac.nz

Alvin Yeo
Department of Computer Science
University of Waikato, Hamilton, New Zealand.

Email: awy @cs.waikato.ac.nz

Abstract

As people trade and engage in commerce, an economically dominant culture tends to migrate
language into other recently contacted cultures. Information technology (IT) can accelerate
enculturation and promote the expansion of western hegemony in IT. Equally, IT can present a
culturally appropriate interface to the user that promotes the preservation of culture and
language with very little additional effort. In this paper a spreadsheet is internationalised to
accept languages from the Latin-1 character set such as English, Méori and Bahasa Melayu
(Malaysia’s national language). A technique that allows a non-programmer to add a new
language to the spreadsheet is described. The technique could also be used to internationalise

other software at the point of design by following the steps we outline.

Keywords
Internationalisation, spreadsheet, cultures, Pacific languages, human computer interaction,

western hegemony, culturally appropriate.

1. Introduction

In this paper, we explore techniques for providing information technology (IT) for markets that
are small or culturally-distant from Europe and North America. As the nations of the world
join in trade and commerce, smaller and culturally-distant nations are at risk of being engulfed
in the head start acquired by the developed world. We have selected the electronic spreadsheet
as the focus of our research because it is the computing tool of choice for business and
commerce. In the search for techniques to promote the adoption of information technology, we
are aware that without culturally appropriate software, the languages and cultures of minority
groups may not survive the adoption of IT. We hold this view because modern societies
support trade and commerce by using information technology in the form of the spreadsheet for

managing monetary transactions.



In the first section, we describe the dual processes of internationlisation and localisation in

general terms. Techniques for modifying a simple MS DOS spreadsheet are then described in
section two. The limitations and results of these techniques are identified to exemplify current
strategies for internationalising software in sections three and four. Further work is suggested

prior to a conclusion which sketches some implications of the new techniques.

1.1 Internationalisation and Localisation

Software internationalisation refers to the “process of making a system or application software
independent of, or transparent to, natural language. If a system can support any language, then
it is fully internationalised; if it supports only a limited subset of languages, then it is partially
internationalised” (Unicode,1995). Once an application has been internationalised, it may then

be localised to meet the needs of particular cultures.

1.2 Why internationalise for the Pacific Basin?

The Pacific Basin is a vast ocean-dominated saucer-shaped area dotted with one or two larger
islands and thousands of smaller ones. This huge area has a low overall population density but
a great number and diversity of languages and cultures. The richness and variety of cultures
represents a pool of cultural experiments from which the rest of humanity may wish to draw at
some time in the future. Thus, there are purely selfish human reasons for promoting a range of
culturally appropriate software solutions that contribute to ensuring the survival of the linguistic
and cultural variety in the Pacific Basin. Without the medium of language, distinctive cultures
will disappear. Griffiths, Heppell, Millwood and Mladenova (1994) believe that by creating
software for the minority communities, we are preserving the cultures and indirectly preserving
potential solutions to future problems. For example, if China did not create software which
uses Hanyi Pinyin, all the innovative input methods and output mechanisms (Huang,1985;
Becker, 1985; Walters,1990; Hsu,1991) may not have materialised. These input methods are
required to key in the 50,000 characters in the Chinese script using the American keyboard.
These input methods can be categorised into input by: whole characters, phonetic values of the
characters, the arrangement of the radicals within a character and the partitioning of characters
into radicals or similar patterns (Huang, 1985). In exploring the issues of providing IT across
cultures we are aware that the ‘traffic’ can be both ways, that is majority and minority cultures
can contribute to the growth of IT solutions. While current solutions, such as those discussed
below, depend upon benevolence or the commercial necessities faced by western companies,

we would argue that the interaction can be mutually rewarding if mechanisms are provided that



enable the two-way flow of IT. Just as monetary transactions and trade advantage both

partners we argue that agreed mediums of exchange for IT should be developed.

There are, not unsurprisingly, clear economic rewards for internationalising software. Savings
are identified by O’Donnell (1994) as: fewer code revisions, less delay in reaching users,
reduced operational inconsistencies, simplified extension model, simplified program

management, cost savings potential for expanded markets and simplified maintenance.

Most software companies internationalise their software to reach a bigger market and ultimately
to make more profit. For example, Microsoft Windows supports most spoken languages in the
major cultures of the world (Kano,1995). The Apple Macintosh operating system, which
covers more than 30 different localised versions, also supports most majority languages
(Apple,1992). However, languages of minority groups such as Méori, Bahasa Melayu
(Malaysia’s national language), Fijian and Samoan have been neglected. These languages have
been omitted as the markets in which they are located are not large enough to be economically

feasible and profitable to the software companies.

In countries where English is widely spoken in association with indigenous languages, there is
a high likelihood that the software in English will be made available and used because the
language of commerce is English. For example, in Malaysia, computer classes might be taught
in Bahasa Melayu and use a reference book in Bahasa Melayu but the software used is most
likely to have an English user interface. In New Zealand, little software is available in Méori,
partly because there is no institutional support and partly because of the hegemony of North
American software companies over the New Zealand software market. On the other hand, in
countries where English is not as widely used, software has been created for local
consumption. For instance, in China, Thailand, Korea and Japan, research and development
resulted in computer systems and software designed for those languages and cultures. Thus,
minority languages in countries where English is widely used are at risk of being left off the
technology bandwagon. Although steps have been taken in many countries such as Malaysia to
ensure that language keeps up with technology by translating computer terms into the minority
language, these steps will be unsuccessful if no language specific software is being created.
Furthermore, as suggested above, we see the move to promote the development of minority
software as essential for the growth of the IT industry. As the control over the industry
exercised by IT giants such as Microsoft and IBM grows, the variety of solutions generated by
those companies is reduced. An industry which is dominated by single solutions is vulnerable

to malicious activities.



1.3 Our reasons for internationalising

We decided to research the software internationalisation process to familiarise ourselves with
the internationalisation problems and techniques for solutions of these problems. Only by
internationalising a particular software package can we appreciate the complexity of the

process. In addition, we wanted to create a tool that could be used by a number of cultures in
the increasingly multicultural context of New Zealand schools. The cultures targeted are those
which have been identified as being at risk of being left behind by technology. Furthermore,
the internationalised software was designed as a research tool to support multi-cultural or cross-
cultural information technology research. Features of the software chosen for this research are
detailed in the Methods section to follow.

1.4 Approaches to internationalisation

Taylor (1992) describes three approaches to internationalisation:

compile time internationalisation
link-time internationalisation and

run-time internationalisation

We will use a simple program to illustrate the differences between these types of software
internationalisation. The example program has a module which will hold the messages such as
“Hello Jonah” (see below) and a module for printing messages to the screen. In addition to the

program that prints “Hello Jonah”, we would like a Méori and a Bahasa Melayu version.

Program printMsg;
Begin

print(“Hello Jonah™);
End;

Compile-time internationalisation simply means changing the text in the source code. To obtain
a Miori version, we change from “Hello Jonah” in the source code to “Téné koe Jonah”. The
source code is then recompiled, linked and run as an executable in the conventional way.
Likewise, to obtain a Bahasa Melayu version, we alter “Hello Jonah” to “Apa khabar Jonah?”,
compile and run the executable. Note that three executables are created, one executable for
English, Miori and Bahasa Melayu.

Link-time internationalisation means that the program is provided with a copy of the object file
of the printMsg program in Méori (maaori.obj), in English (english.obj) and in Bahasa Melayu
(bmelayu.obj). Thus, to obtain the messages in different languages, the corresponding object

file is linked with the object file of the printing module, print_mod.obj. To obtain the English



version, english.obj is linked with print_mod.obj, and then run as the final executable.
Similarly, to obtain the Miori version, the maaori.obj is linked with the print_mod.obj, and

then run as an executable. Note again, we end up with three executables.

There are two possibilities for software that has been designed for run-time internationalisation.
In Type I, according to Taylor (1992), the language set is provided by the supplier or
distributor, whereas in Type II the language is added, in a localisation process, by the enduser.
In Type I, a message such as “Hello Jonah” is placed into a text file, language.msg. When a
user has the program executed on a machine, a menu appears in which the available languages
are displayed. On the selection of a particular language, such as Méori, the program reads the
corresponding language message from the respective language files. For example, “Hello
Jonah” is read from the english.msg file, “Téné koe Jonah” is read from the file maaori.msg,
and “Apa khabar Jonah?” from the bmelayu.msg. These message files are external to the
source code. One of these message files is selected at run-time. For larger programs, the
language selection step initiates a process that subsequently displays accurate strings for all

other on-screen messages, from the message file, in that selected language.

The second type of run-time internationalisation is more flexible and convenient for localising
software by the enduser. In this approach, all user-interface-language-specific on-screen
messages are identified by tokens in the source code. A subprocess reads the message tokens
and relates these to other files which contain numeric indices relating string sets to the message
tokens. The files containing strings are editable ASCII code for common Latin-1 languages.
This approach allows the user to select messages in one language from those available at run-
time as described in the following sections on method. Localising an application to a new
locale is carried out by adding the strings for the words of the new language. Original text is

substituted with the new string set using the technique discussed in detail below.

In types I and II “run-time internationalisation” applications, only one executable is created.
Instead of three executables, three text files are used to contain the messages of the different
languages. The main difference between Type I and Type II “run-time internationalisation”
applications is that in Type II, the enduser can add another language to the software, whereas in
Type I, the enduser is limited to the languages provided by the supplier. Note also that we can
make corrections to the message files at run-time in the run-time internationalisation executable

without having to recompile and relink the program.

In the compile-time internationalisation, corrections can only be made in the source code, which
needs to be compiled, linked and then run. In the link-time internationalisation, corrections
would need to be made in the object files (in which case, the source code would need to be

corrected, compiled, linked and then run).



Currently, Microsoft Excel is available in many (separate) languages such as French, German,
Dutch and Swiss. From our understanding of Kano (1995), Microsoft uses compile-time
internationalisation. We believe Lotus 123 also uses compile-time internationalisation because
the language is determined at installation time and is dependent on the Windows operating

system.

A comprehensive list of factors that need to be addressed in the internationalisation and
localisation process can be found in articles and books on internationalisation and localisation
such as Apple(1992); Russo and Boor(1993); Uren, Howard and Perinotti, (1993); O’Donnell,
(1994); Chris Miller, (1994); Kano, (1995); Belge, (1995). Accommodating all these aspects
presents a daunting task. Current spreadsheet vendors such as Microsoft Excel and Lotus 123
avoid these issues by exploiting internationalised versions of the Macintosh and Windows
operating systems rather than designing custom interfaces. We focussed on the language

aspects of internationalising FIRST as detailed below in the Methods section

2. Method

This section describes the goals that were established for the research. Software, which meets
the specifications derived from the goals, is described next. How the original source code for
the research project was modified, and the steps taken to achieve the internationalisation of the
spreadsheet are detailed. During exploratory trials, the spreadsheet (Te Ripanga) was localised
to accept Miori user interface messages using the compile—time technique. The same source
code was later internationalised to accept English and Bahasa Melayu simultaneously with the

Maiori language. Run-time versions are currently under test with users.

2.1 FIRST Goals

With the goal of an internationalised version of a spreadsheet, we used the following
specifications to develop FIRST (First Internationalised Research Spreadsheet Tool).

FIRST should be able to accommodate a number of Pacific Basin languages simultaneously,
for instance, English, Mdori, Samoan, Fijian and Tongan. A keystroke combination is used to
select the various languages, e.g. ALT-E for English, ALT-M for Méori, ALT-S for Samoan,
ALT-F for Fijian and ALT-T for Tongan. Changing the selected language was required while
the software was running. A further goal was to provide end-user facilities that would allow
the addition of messages in other languages (whose alphabets are based on the Latin 1 character
set). Thus, a user with no programming skills should be able to add a new language (localise
the software) because no modifications are required to the source code of FIRST during the

localisation process.



2.2 Resources
The spreadsheet used for the research is called TCALC. The source code library of TCALC

was bundled as an example program with Borland’s Turbo C++ compiler. Permission was
sought and obtained from Borland to use and modify their code. TCALC, which has a Lotus
1-2-3-type interface, was chosen as it was a compact spreadsheet that had most of the basic
features and functionalities of commercial spreadsheet programs. Like any other spreadsheet,
TCALC accepted text, values and formulas. TCALC’s functionalities included load, save, and
print. TCALC saves the spreadsheet into its own format which is not compatible with other
spreadsheets such as Excel or Lotus 1-2-3. However, the print functionality allows the user to
print the existing spreadsheet to a text file. Other features include insert rows and columns,
delete rows and columns, formula display, automatic recalculation, and use of mathematical
functions such as sin(), cos() and tan(). The sum-of-a-range-of-cells function is also provided.
TCALC was selected because of the availability of the source code, which meant that we could
modify the spreadsheet to suit our research needs. The spreadsheet was modified in various
versions using Borland Turbo C++ (DOS Version 3.0) on a Pentium machine running
Windows NT and Windows 95. The ensuing sections will describe the steps that were taken to
develop FIRST, the internationalised version of TCALC.

2.3 Compile Time Internationalisation

A Miori version of the spreadsheet TCALC, known as Te Ripanga, was used to explore
compile-time localisation (Barbour, 1996). That process required that any occurrence of the
language sensitive text in the source code user interface was translated to Méori. A person
literate in the discipline of computing and also the Méori language provided the translation.
With this form of internationalisation, Te Ripanga could only use one language. To alter the
language, the user interface strings in the source code would have to be modified for a different
language and the localised source code recompiled. Several important lessons, learned during

this process, are described in the next five sections.

2.4 Extract All Culturally Sensitive Components

The objective of this stage was to identify the components in the source code that were either
language specific or likely to be culturally sensitive. The language specific components are part
of the user interface. Examples of these items include: the menu names, the menu item names,
status bar displays of cell contents (text, value, formula), error messages, instructions,
commands and dialogue messages. The currency symbol was also identified as culturally
specific because it reflected the currency of target cultures each of which used different
symbols.

In TCALC, almost all the language-specific components were defined as constants and placed
in a header file. Extracting these components was straightforward. However, the more tedious

task was to discover the other components that were “hidden” in the source code. These



components included the user-computer interactions such as the selection of Yes or No in
response to a requester. Bahasa Melayu and English are used in the following discussion
which illustrates the multiple languages used in FIRST. Bahasa Melayu was selected as one of
the authors was fluent in Bahasa Melayu and English. Once all the language-sensitive
components were isolated, the message tokens (for language sensitive components) of a
particular language were placed in a text file. This type of text file is also referred to as a
resource file in some literature (Kano (1995); Pugh and Lalonde,(1992)). Appendix A
provides examples of message files comprising English, Bahasa Melayu and Miori message

tokens.

2.5 Translate the culturally sensitive components

After the source code was modified, the original message tokens (in English) were translated to
Bahasa Melayu. Transliteration of the messages is strongly discouraged as the meaning
conveyed may be altered. The translation was carried out by two computer literate speakers of
Bahasa Melayu with reference to the Istilah Komputer (Dewan Bahasa dan Pustaka, 1993) (a
glossary of computer terms in Bahasa Melayu) and a Lotus 1-2-3 reference tutorial (Yong,
1995). Computer literate translators proficient in the target language were used because
translation of computing concepts may also be required. Furthermore, a translated command
may be grammatically correct but may contain offensive nuances or connotations, which can
only be picked up by first language speakers of the target language. During the translation
process, the Bahasa Melayu translators collaborated with other speakers who have had
spreadsheet training in Bahasa Melayu. This collaboration process was carried out as a
precaution in case the principal translators were “led astray” by their contact with English

speakers.

In the translation of the message tokens to Bahasa Melayu, the problem of non-existing words
did not arise because reference was made to the Istilah Komputer text. Almost all the English
computer terms or words used had an equivalent word in Bahasa Melayu. If the word was not
found in the Istilah, the Lotus 1-2-3 tutorial book had some alternatives. Slang, humour and
jargon were omitted in the translation. Translation of the text from English to another language
usually increased the number of characters in the message string. This increase was
exemplified in the following instance. There were 974 characters in the English message
tokens. The Bahasa Melayu translation had 1169 characters, an increase of about 20%.
However, it must be noted that, in some instances, translation may shorten the length of the
message string as for example formula (English) to rumus (Bahasa Melayu). The increase in
text length caused changes to the text display on the screen in FIRST. Consequently, the fit of

the text on the screen had to be checked. This step is described in Section 2.7 below.



TCALC users select commands from screen menus by pressing the uppercase letters (shortcut
keys) of the commands. For example, the list of commands in English is “Spreadsheet,
Format, Delete, Goto, Col, Row, Edit, Utility, Auto, Quit”. To choose the Delete command,
the user presses the D key. After translation however, these shortcuts will be altered. The
Bahasa Melayu list of commands became “hamparaN, Format, Hapus, Goto, Lajur, Baris,
Sunting, Utiliti, Auto, Keluar”. A separate and different list of shortcut keys had to be
determined for the Bahasa Melayu version of TCALC. Notice not all the first letters of the
commands are used. The N in hamparaN (spreadsheet) is used, as opposed to H, to avoid a
clash with Hapus (delete). The shortcut key H was selected to ensure consistency as Hapus

(delete) also appears in the delete row and delete column commands.

Once the translation of the message tokens has been carried out, TCALC had to be altered to
accommodate other languages besides English. The following section details the steps taken to
internationalise TCALC.

2.6 Modify the software to accept and add other languages

The next step in the internationalisation process is to modify the spreadsheet so that it can be
used with different languages. In the original TCALC, all the message tokens were strings or
characters, and declared as constants. In FIRST (the internationalised version of TCALC), all
these strings were replaced as variables. By doing so, these variables would contain the
messages (of different languages) that were loaded. For example, the variable msgOverWrite
will contain the string “The file exists. Do you want to overwrite it?”” when the English version
is used, and the variable will contain the string “Fail tersebut wujud. Mahukah anda
menulisgantikan fail lama?” in the Bahasa Melayu version. Functions such as
LoadMsgDb(language) were added to FIRST. Depending on which language was selected, the
LoadMsgDb(language) function will read all the message tokens of a particular language into

the corresponding message variables. These message tokens can be seen in Appendix A.

Given that FIRST can accommodate a number of languages at any one time, code was added to
prompt the user to select a language from a list of languages displayed on the screen at the start
of the FIRST session. Once the user had selected the language, other languages can be selected
using the ALT-key combination. Figure 1 below shows the LangList.txt which lists the
message token files to be used and the designated ALT key to be used. In this instance,
pressing ALT-B at run-time will load the Bahasa Melayu version, ALT-E the English version,
and ALT-M the Mori version. When ALT-B is pressed, the message tokens in the message
file “bmelayu.msg” are loaded into the message token variables in FIRST. Appendix B shows

the different versions of FIRST at run-time.



1 "B" "bmelayu.msg"

2 Uil " engliSh .ms gll Bahasa Melayu: Hamparan

3 "M'  "maaori.msg" English: Spreadsheet

Maori: Te Ripanga
Tekan B untuk Bahasa Melayu
Press E to select English

Patotchia M kia Méori

Figure 1: LangList.txt containing three Figure 2: Prompt screen with three

message files languages

The number of entries in the file LangList.txt determines the languages that are available. The
LangList.txt in Figure 1 will determine the prompt screen in Figure 2, likewise, LangList.txt in
Figure 3 will determine the prompt screen in Figure 4. The prompt screen messages are
message token 1 and 2 of the message files as dictated by the LangList.txt

1 "E" "english.msg"
2 "M"  "maaori.msg" )
English: Spreadsheet
Maéori: Te Ripanga
Press E to select English
Patotchia M kia Méori
Figure 3: LangList.txt containing two Figure 4: Prompt screen with two
message files languages

2.7 Ensure text fits the screen

Microsoft SDK (in Chris Miller,1994) predicts that translation of messages from English into
another language will increase the length of the message. In FIRST, the messages did increase
the length of the strings as described in section 2.5 above. The main concern related to the
length increase is the effect on the screen, that is, some of the longer messages may not fit onto
the screen. Thus, all the message tokens in each language were tested during run-time to
ensure they could fit onto the available screen real estate. All the Bahasa Melayu translation
fitted the screen except for PerhitunganAuto which wrapped down to the next line. -The
message PerhitunganAuto is stored as msgAutoCalc (see message 12 in Appendix A) and is
used to indicate whether -automatic recalculation is on. This message token is displayed at the
top right of FIRST (see Appendix B for a screen dump of FIRST). When the Miori version
was used, the same problem arose, that is KaMahi Tdtai (msgAutoCalc) wrapped to the next
line. This wrap problem occurred as the message token msgAutoCalc occupied exactly eight
spaces from the edge of the screen. As the length of the Miori and Bahasa Melayu translations

was greater than the English word, the words wrapped to the next line. We solved this




problem by displaying the msgAutoCalc (justified to the right) only if there is enough space left
after displaying the other message tokens such as msgMemory and msgCommand. If there is
not enough space left, the msgAutoCalc is written after the other message tokens. If the word
wrapped problem still exists, another alternative would be to shorten or abbreviate the message
token involved. The abbreviation should contain the meaning intended in the original message
token. Again, the translators need to ensure that the abbreviation is acceptable in the target
community and would not offend anyone. The message tokens of all the languages in FIRST

were tested to ensure the tokens fitted the available screen real estate.

2.8 Test with target groups

After ensuring that all the message tokens of all the languages could fit the screen, FIRST was
ready for testing with users of the target community. At present we are carrying out the user
evaluation of FIRST. The users may detect any problems missed by the developer. By testing
FIRST, we can ensure a higher chance of acceptability by target cultures. Outcomes of enduser

testing will be reported in a subsequent paper.

3. Limitations

In FIRST, we can add as many languages as we want, the only limitation being the number of
languages that can be displayed on the prompt screen. There exists a more rigid restriction on
the number of message tokens we can have also exists. Memory has to be allocated for each
of the message token variables. The number of message tokens we can have will depend on
the amount of memory available, given that memory is also required for data entered into the

spreadsheet.

FIRST can accept languages with alphabets that are Roman characters from the Latin-1
specification. However, languages that are pictographic or script-like such as Chinese,
Japanese, Korean, Arabic or Hebrew require a total rewrite of FIRST. The spreadsheet would
have to run in a graphics mode instead of a text mode, which it currently does. New input
techniques will need to be coded to allow the input of more complicated characters. Techniques
for bi-directionality (Arabic and Hebrew) will also be required. It would seem much more
economical to design and develop the global internationalised spreadsheet from scratch. That

work falls outside the scope of the current research.

4. Results
The internationalised spreadsheet FIRST can be localised by a user without a programming
background. Trials indicate that the modified spreadsheet compiled and ran as expected. The

new functionality enables another language to be added by translation of the message token



files, and the addition of the relevant ALT-key combination and the message file name into the
LangList.txt file. The new functionality means that communities can make use of these
language-adding features without having to modify the source code of the spreadsheet. Given
that the software will then be available in the native tongue of the enduser, we expect users will
learn faster as observed by Griffiths (1994). With the different languages available
simultaneously, FIRST could be used to teach basic spreadsheet concepts in a number of

languages in multilingual contexts.

5. Further work

A number of minor technical details need further work to enhance the usefulness of the
software. Commas are used to separate thousands in numbers in the UK and US. However, in
Europe, the thousand separators is a full stop or a space. Similarly the full-stop is used as a
decimal indicator in US and UK, but in Europe, the comma is used instead. Thus, the comma
may need to be extracted as a message token and the various conventions stored in a message
file.

Although DOS uses code page 437, which includes characters with diacritics (e.g. &, €), these
characters can be displayed on screen but not entered via the keyboard in FIRST. In Miori, the
i can be substituted with aa. Another alternative would be to modify the input module of
FIRST such that diacritics can be inputted. With the use of diacritical, FIRST could use
French, German and most European languages using the DOS code page 437.

The colours in FIRST could also be extracted as message tokens. The colours can then be
altered to suit the target community. For example, some colours are considered bad luck in
certain countries and thus could be omitted from the user interface. We can also extract the
mathematical functions such as cos(), sin() and cos () as message tokens.

A further project could extend to creating a tokenised programming language for particular
subsets of communication domains. Given that the content and concepts are shared in a
number of target cultures, efficient software development may require the specification and
implementation of tools for managing tokenised programming functionality. Interface

components would then be made available Lego™-like on a user definable basis following the
model of FIRST.

6. Conclusion

We have suggested that the current trend in IT towards increased western hegemony leaves the
industry vulnerable. We have argued that promoting the acceptance of diversity in IT solutions
and generating mechanisms for generic solutions will increase the adoption of IT. We
believe process of empowering minority groups through placing the responsibility for creating
interface details in the hands of the enduser should bring about better user-directed learning



about Information Technology. Against a background of an inevitable increase in the business
use of information technology within and between cultures we have shown that the task of
internationalising software in a narrow domain of character sets is easily accomplished.
Furthermore, FIRST also allows new Latin-1 based languages to be added without having to
modify the source code. Given that the modified files are in extended ASCII text, all a user
needs to do is type the translation text into the FIRST without the need or use of other
programs or utilities. With this flexibility, FIRST may be the first spreadsheet in which
minority languages can be seen used. For example, Iban, the language of an indigenous
community in Sarawak may now be able to record financial transactions created in the mother
tongue. We have also drawn attention to the difficulty of internationalising software intended
for markets in which the language does not have a Latin-1 alphabet. The next human computer
interface programming challenge will be to find programming mechanisms that integrate

ideographic and Latin-1 languages in the same spreadsheet user interface.

Acknowledgments

The authors are indebted to Eunice Yeo, for the Bahasa Melayu translation, and Te Taka
Keegan, for the Miori translation of the message tokens. The authors would also like to thank
the referees of the New Zealand Journal of Computing for their critique on an earlier version of

this paper.

Biographical Data

Robert Barbour

Bob Barbour has a background in Social Sciences, Education and Computer Science. He is
interested in researching software tools which preserve human rights while promoting

international communication.

Alvin Yeo

Alvin Yeo is a DPhil computer science student at the University of Waikato. His research
interests include software internationalisation and localisation, and culture’s effects on human
computer interaction. Alvin is also a tutor currently on study-leave from the Faculty of

Information Technology, Universiti Malaysia Sarawak.



References
Apple (1992) : Guide to Macintosh Software Localization, Addison Wesley, Reading, Mass.

Barbour, R.H. (1996): Te Ripanga: the Spreadsheet. Proceedings of the New Zealand
Computers in Education Society 6™ Biennial Conference Hamilton, New Zealand, pp66-76.

New Zealand Becker, J. D. (1985) : Typing Chinese, Japanese and Korean, IEEE, January
1985, pp27-34.

Belge, M. (1995) : The Next Step in Software Internationalization, interactions, 2(1), pp21-
25.

Chris Miller, L. (1994) : Transborders Tips and Traps, BYTE, 19(6), pp93-102.

Dewan Bahasa dan Pustaka (1993) : Istilah Komputer. Dewan Bahasa dan Pustaka, Kuala
Lumpur, Malaysia.

Griffiths, D., Heppell, S., Millwood, R. and Mladenova, G. (1994) : Translating Software:
What It Means and What It Costs for Small Cultures and Large Cultures, Computers in
Education, 22(1/2), pp9-17.

Hsu, S. C. (1991) : A Flexible Chinese Character Input Scheme, UIST ‘91, (Hilton Head,
South Carolina 11-13 November), pp195-200.

Huang, J. K. (1985) : The Input and Output of Chinese and Japanese Characters, IEEE,
January 1985, pp18-24.

Kano, N. (1995) : Developing International Software for Windows 95 and Windows NT,
Microsoft Press, Redmond, Washington.

O’Donnell, S. (1994) : Programming for the Whole World: A Guide to Internationalization,
Prentice Hall, Englewood Cliffs, New Jersey.

Pugh, J. and Lal.onde, W. (1992) : Internationalizing your application, Journal of Object-
oriented Programming, 4(8), pp59-62.

Russo, P. and Boor, S. (1993) : How Fluent is your Interface? Designing for International
Users, INTERCHI ‘93 Conference on Human Factors in Computing Systems: INTERACT
‘93 and CHI’93, (Amsterdam, 24-29 April), ACM Press. pp342-347.

Taylor, D. (1992) : Global Software: Developing Applications for the International Market,
Springer-Verlag, New York.

Unicode (1995) : Unicode and Internationalisation Glossary.
http://www.stonehand.com/unicode/glossary.html.

Uren, E., Howard, R. and Preinotti, T. (1993) : Software Internationalization and Localization:
An Introduction, Van Nostrand Reinhold, New York.

Walters, R. F. (1990) : Design of a Bitmapped Multilingual Workstation, J/EEE, Feb 1990.
pp33-41.

Yong, S. H. (1995) : Siri Literasi Komputer Fajar Bakti: Lotus 1-2-3, Penerbit Fajar Bakti
Sdn. Bhd., Shah Alam, Malaysia.



APPENDIX A
Message Tokens in English

1 "English: Spreadsheet"

2 "Press E to select English"

3 "Can't open the file"

4 "Press / for the list of commands"

5 "Memory Available:"

6 "ERROR"

7 "Not enough memory to allocate cell"

8 "Empty"

9 “Text"

10 "Value"

11 "Formula"

12 "AutoCalc"

13 "Formula"

14 "Enter the file name of the spreadsheet:"

15 "Press any key to continue"

16 "Enter the new column width:"

17 "The file exists. Do you want to overwrite it?"
18 "Not enough memory for entire spreadsheet"
19 "That is not a FIRST spreadsheet"

20 "The file does not exist"

21 "Enter the cell to go to:"

22 "You must enter a number from %d to %d."
23 "That is not a legal cell"

24 "Enter the first cell to format:"

25 "Enter the last cell to format:"

26 "The row or the column must be the same"
27 "Do you want the cell right-justified?"

28 "Do you want numbers in a dollar format?"
29 "Do you want commas in numbers?"

30 "How many decimal places should the number be rounded to?"
31 "Do you want to print in 132 columns?"

32 "Enter the file name to print to, or press ENTER to print on the printer"

33 "Print the border?"
34 "Loading..."

35 "Saving..."
36 "Save current spreadsheet?"
37 "Parser stack overflow."

38 "Spreadsheet, Format, Delete, Goto, Col, Row, Edit, Utility, Auto, Quit"
39 "SFDGCREUAQ"
40 "Load, Save, Print, Clear"

41 "LSPE"

42 "Insert, Delete, Width"

43 "IDW"

44 "Insert, Delete"

45 IYIDIF

46 "Recalc, Formula display”
4’? HRF”

48 I|YN"

49 " $tl



Message Tokens in Bahasa Melayu

1 "Bahasa Melayu: Hamparan"

2 "Tekan B untuk Bahasa Melayu"

3 "Fail tidak dapat dibuka"

4 "Tekan / untuk senarai perintah"

5 "Memori yang sedia ada"

6 "Ralat"

7 "Tidak cukup memori untuk memperuntukkan sel"

8 "Kosong"

9 "Teks"

10 "Nilai"

11 "Rumus"

12 "PerhitunganAuto"

13 "Rumus”

14 "Taipkan nama fail untuk dimuatkan"

15 "Tekan mana-mana kekunci untuk menjalankan hamparan"
16 "Taipkan lebar lajur baru:"

17 "Fail tersebut wujud. Mahukah anda menulisgantikan fail lama?"
18 "Memori tidak mencukupi untuk seluruh hamparan”

19 "Itu bukan fail hamparan FIRST"

20 "Fail tersebut tidak wujud"

21 "Masukkan sel yang diingini:"

22 "Anda mesti masukkan nombor dari %d hingga %d"

23 "Sel tersebut tidak sah"

24 "Masukkan sel pertama untuk diformat:"

25 "Masukkan sel terakhir untuk diformat:"

26 "Baris atau lajur mestilah yang sama"

27 "Adakah anda inginkan semua sel diselaraskan ke kanan?"
28 "Adakah anda ingin semua nombor dalam format RM?"
29 "Adakah anda ingin semua nombor berkomma?"

30 "Berapa tempat perpuluhan yang perlu dibundarkan untuk setiap nombor?"
31 "Mahukah anda mencetak 132 lajur?"

32 "Masukkan nama fail untuk dicetak, atau tekankan ENTER untuk mencetak."
33 "Cetakkan border?"

34 "Dalam proses memuatkan fail ..."

35 "Dalam proses menyimpan ..."

36 "Simpan hamparan ini?"

37 "Tindanan penghurai melimpah atas"

38 "hamparaN, Format, Hapus, Goto, Lajur, Baris, Sunting, Utiliti, Auto, Keluar"
39 "NFHGLBSUAK"
40 "Muatkan, Simpankan, Cetakkan, Hapuskan"

41 "MSCH"

42 "Sisipkan, Hapuskan, Lebar"

43 "SHL"

4t "Sisipkan, Hapuskan"

45 "SH"

46 "Hitung semula, Tunjukkan rumus”
47 "HT"

48 "YTH

49 "RM"



Message Tokens in Maiori

"Miori: Te Ripanga"
"Patothia M kia Miori"
"Kiore e taea te whakatUwhera i taua konae."
"Patotohia / kia kitea ngd tono"
"Mahara witea:"

"KUA HEE"

"Kua pau ké te wihi mahara"
"Kore kau"

"He Korero"

10 "He Nama"

11 "He Titai"

12 "KaMahi Tétai"

13 "Whakatakotoranga"

OO0~ O B LI B =

14 "Tuhia te ingoa o te ripanga"

15 "Patotdhia tétehi pituhi kia haere tonu"

16 "Tuhia te whénui hou o te kapa"

17 "Kua whakatUngia kétia taua konae. Me whakakore i te kénae tawhito?"
18 "E kore e taea te katoa o ténei ripanga, ka pau ké te wihi mahara"

19 "Ehara ténei i te konae Ripanga FIRST"

20 "Kéore kau he kdnae e mau ana i taua ingoa"

21 "Ka haere ki téwhea pUtau?"

22 "Tuhia tétehi nama i waenganui i te %d me te %d"

23 "Kéore e pai ana t€nei nama pUtau"

24 "Tuhia te pUtau tuatahi hei whakarite"
25 "Tuhia te pUtau whakamutunga hei whakarite"

26 "Kia 0rite ai te rdrangi, te kapa ridnei"

27 "Kia whakataka te pUtau ki te taha katau?"
28 "Kia whakarite moni ngd nama?"

29 "He ..kei waenga i ngd nama?"

30 "Kia hia ngéd mati whaira?"

31 "Kia 132 ngi kapa i te mahi td?"

32 "Ka tukua ki t€éwhea konae (patotohia te ENTER anake hei td)"

33 "Me td hoki i ngd pae pUtau?"

34 "Taihoa, kei te whakatitea..."

35 "Taihoa, kei te tiaki..."

36 "Me tiaki i té€nei ripanga?"

37 "Kua pokea e te rihi o ngé tono."

38 "riPanga,Wh'rite,wh'Ngaro,Haere, Kapa,Rdrangi,wh'Tika,Mahi titai,Ahua,wh'Oti"
35 "PWNHKRTMAO"

40 "Huaki, Tiaki, Mahi T4, Whakangaro"

41 "HTMW"

42 "whakaUru, whakaKore, Whinui"
43 "UKW"

44 "whakaUru, whakaKore"

45 "UK"

46 "whakitu Tdtai, whakitu Nama"
47 "TN"

48 "AK"

49 lt$!l



APPENDIX B

Screen Dump of FIRST in English

Memory Available: 22020 Press! for listof commands AutoCalc
B G Bl e _ D HEe R S

P

20
B3 Empty English: Spreadsheet

Spreadsheet, Format, Delete, Goto, Col, Row, Edit, Utility, Auto, Quit

Screen Dumg of FIRST in Bahasa Melayu

Memori yang sedia ada: 22020 Tekan ! untuk senarai perintah PerhitunganAuto
Koo N b b Ee D G e F G

OO ND W N

B3 Kosong Bahasa Melayu: Hamparan

hamparaN, Format, Hapus, Goto, Lajur, Baris, Sunting, Utiliti, Auto, Keluar




Screen Dump of FIRST in Miori

Mahara witea:: 22020 Patotdhialkiakitea ngiitono KaMahi Tatai
e R b R e e G o) SRS F s e R

RN A N

10
i1

12

13

14

15

16

1?;:

18

19

20

B3 Kore kau Miori: Te Ripanga

riPanga, Wh'rite,wh'Ngaro,Haere, Kapa, Rarangi,wh'Tika Mahi titai,Ahua,wh'Oti






