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Abstract 

Mangroves provide a unique habitat for many species.  In addition to being 

biologically significant ecosystems, mangroves help protect coastal areas through the 

dissipation of tidal currents and wave energy.  However, mangroves are unpopular 

with some communities in New Zealand and removal of them is often considered in 

management strategies.  In order to effectively manage these vegetated coastal areas 

and predict growth and/or decline of mangrove systems, it is necessary to have a 

detailed understanding of how the hydrodynamic processes within forests influence 

sediment transport and deposition.   

 

A 6-day long experiment was conducted in the Firth of Thames mangrove forest to 

examine hydrodynamic processes that influence sediment transport from the intertidal 

mudflat across the fringing region of the mangrove forest into the forest itself.  A 

unique deployment system was utilised to minimise environmental disturbance during 

the data collection process at 5 sites.  Site 1 was located on the mudflat and site 2 was 

in the fringe area (i.e. the boundary between flat and forest).  Sites 3 to 5 were located 

at increasing distances inside the forest.  Results indicate wave activity causes a net 

offshore flux of sediment at site 1 (approximately 850 kg/m over the duration of the 

experiment), contrary to expectations.  However, at all other sites, there was a net 

onshore flux of sediment from the fringe into the forest (maximum at site 4 of 113.3 

kg/m).  Minimal scour in the experiment area indicates that sediment is primarily 

supplied by advection from other regions of the system.  

 

Flocculation is a key process in cohesive sediment transport.  One of the aims of the 

study was to understand the controls on flocculation within this vegetated system. 

Despite difficulties inherent in measuring flocs, floc images were successfully 

collected from some sites.  An initial qualitative analysis performed on images from 2 

sites (1 and 3) over 2 tides revealed a greater quantity of large flocs on the mudflat 

than in the forest and that in general, flocs were larger on the ebb tide.  These results 

imply that settling velocities on the mudflat are larger than within the forest and 

settling velocities are larger during ebb than flood tides.   
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1 Chapter 1 

Introduction 

1.1 Background 

Mangroves are halophytic trees or shrubs typically found in low energy coastal 

environments such as estuaries (Morrisey, 2007).  Mangroves account for 75% of 

tropical and sub-tropical coastal forests, mainly existing between 25o N and 25o S 

(Yang et al., 2013).  New Zealand mangroves are at the southern-most limit of their 

growth at 38o S (Yang et al., 2013).  These salt-tolerant trees are valuable 

ecosystems that supply numerous ecosystem services, such as providing a unique 

habitat for many species, including crabs, insects and reptiles, amphibians, birds 

and mammals, (Kathiresan & Bingham, 2001; Reef et al., 2010).  Moreover, these 

ecosystems also offer physical services by for example, the protection of coastal 

areas through the dissipation of tidal currents and wave energy (Furukawa et al., 

1997; Horstman et al., 2014; Vo-Luong & Massel, 2008).   

 

Mangroves have an aerial root system that enables respiration.  One of the more 

common root types are pneumatophores (pencil roots), which, along with the trunks 

and the vegetation canopy, create the drag that attenuates currents and waves 

(Horstman et al., 2017b).  As a consequence of this removal of energy from the 

system, vegetation can often trap sediment within the mangrove system (Furukawa 

et al., 1997; Wolanski, 1995).  These processes enable the mangroves to advance 

when hydrodynamic conditions are suitable for seedling recruitment (Balke et al., 

2013).  If sedimentation can keep pace with rising mean sea level, mangroves may 

help mitigate against future climatic changes (Alongi, 2008).  The overarching aim 

of this thesis is to investigate how mangroves influence sediment transport. 

 

New Zealand mangroves are monospecific, comprising Avicennia marina subsp. 

Australasica (Morrisey, 2007).  Mangroves in New Zealand are expanding in 

contrast to the dominant global trend of a decline in mangrove coverage: at least 

35% of the world’s mangrove forests have been lost over the past two decades 

(Feller et al., 2010).  Expansion in New Zealand is thought to be because of land-

use change, resulting in large inputs of terrestrial sediment and nutrients into the 
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waterways, and transportation to the coast, creating ideal conditions for mangroves 

to develop (Lovelock et al., 2007; Stokes et al., 2010).  Despite their benefits, there 

is often a negative public perception of mangroves in New Zealand because they 

can alter habitats; decrease biodiversity and block views and waterways used for 

recreational activities (Harty, 2009).   

 

Sediment input is a key stressor in New Zealand’s estuaries because terrestrial 

sediments can affect the function of ecosystems through smothering of shellfish 

beds (Rodil et al., 2011; Thrush et al., 2004), altering the biogeochemistry of the 

seabed (Gilbert et al., 2003; Tang & Kristensen, 2007), killing infauna (Woodin et 

al., 2012) and reducing water clarity and subsequently phytoplankton productivity 

(Morrison et al., 2009).  However, mangroves are able to trap this sediment.  In 

order to predict growth and/or decline of mangrove systems, it is necessary to have 

a detailed understanding of how the hydrodynamic processes within forests 

influence sediment transport and deposition. This thesis explores how 

hydrodynamic processes in the Firth of Thames mangrove swamp affect 

flocculation and sediment fluxes between the inter-tidal mud flat and the forest. 

 

1.2 Hydrodynamics in vegetated regions 

Flow in mangrove areas is mainly influenced by friction induced by the vegetation.  

Both mean and turbulent flows are altered by vegetation at different scales (from 

individual stems or blades to the canopy itself).  Mean flow is reduced by the drag 

force from the plants and the presence of vegetation damps turbulence at canopy 

scales but induces turbulence at the stem scale (Nepf, 2012).  Emergent canopies 

(Figure 1.1.a) occupy the entire water depth and vegetation protrudes above the 

water surface.  In these cases, flow is driven by pressure gradients (Nepf & Vivoni, 

2000).  The shear layer is minimal in emergent systems and turbulence occurs in 

the wakes of individual roots, stems or trunks of the plants and is a function of 

canopy drag.  The scales of eddies in vegetated areas where the plants are rigid, are 

dependent on the smallest stem diameter or the distance between the stems, whereas 

in unvegetated areas, the scale of eddies is dependent on water depth or larger-scale 

bathymetric features (Nepf, 2012).  Relative to unvegetated areas, turbulent 

diffusivity is reduced because of the small length scale of the wake turbulence (Nepf 

& Vivoni, 2000).  In general, within-canopy flow speeds decrease with vegetation 
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density.  Turbulence initially increases with increasing canopy density; however, 

above a critical threshold of canopy density, turbulence decreases with increasing 

density.  This change in turbulence is due to the opposing effects of reduction in 

flow speeds and the production of stem wake turbulence within the canopy.  In 

submerged canopies (Figure 1.1b), processes depend on the depth of submergence 

in the water.  If deeply submerged, within-canopy flow is dominated by the stress 

caused by turbulence at the top of the canopy.  If shallowly submerged, flow is 

driven by both turbulent stress and potential gradients, shear is generated in the 

fluid layer above a submerged canopy and decays into the canopy itself (Nepf & 

Vivoni, 2000).  Mangrove forests tend to be emergent but their associated 

pneumatophores can be submerged through periods of tidal inundation.  

 

 

Figure 1.1: Velocity profiles for two depth ratios, H/h where H is water depth and h 

is canopy height, and dP/dx is the pressure gradient which is comparable to the 

turbulent stresses in figure b whereas in a, dP/dx is smaller than the turbulent stresses.  

From Nepf and Vivoni (2000). 

 

Mangrove forests dissipate the energy of waves and currents. Significant 

mechanisms of wave attenuation are interactions of the tree trunks and roots with 

wave motion, and wave breaking (Vo-Luong & Massel, 2008).  Vo-Luong and 

a) 

b) 
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Massel (2008) produced a numerical model validated against field data collected in 

Can Gio Mangrove Biosphere Reserve, South Vietnam.  The model indicates that 

interaction between waves and vegetation is the primary means of attenuation in 

dense forests, whereas in sparse areas, wave breaking is more significant.  The 

greater dissipation of energy is a result of wave-trunk interactions, which in denser 

forests, act to dampen wave height and therefore reduce wave breaking.  The 

authors concluded that wave height and energy attenuate very quickly with distance 

from the mangrove front into the forest, as do mean vertical and horizontal 

velocities.  A study across two transects of an estuary in the Southern Andaman 

region of Thailand by Horstman et al. (2014) found significant wave height 

decreased through the forest as a result of vegetation drag.  However, the mean 

wave period increased slightly into the forest, which the authors attributed to longer 

period swell waves not losing much energy, whereas shorter period waves, are 

preferentially dissipated.  Breaking waves were not often observed due to the wave 

heights being too small; however, shoaling was observed resulting in an increase in 

wave height.  Conversely, a reduction in water depth enhances bottom friction 

effects, which reduces wave height.  The rate at which attenuation occurs, depends 

primarily on the mangrove characteristics (for example, trunk diameter and type of 

root system), density of the forest, and the intertidal flat topography (Horstman et 

al., 2014). 

 

The direction of flow can change from the fringe to the mangrove forest.  Horstman 

et al. (2013) showed that in sparsely vegetated areas such as the fringe area, flow 

direction and velocity are influenced by the prevailing flow outside of the 

vegetation.  Whereas, in more densely vegetated areas at higher elevations (with 

respect to MSL), flows can become oriented perpendicular to the vegetation edge 

and flow speeds decrease significantly.  Mullarney et al. (2017b) also observed this 

rotation of the flow in a study over two seasons in the Mekong Delta, Vietnam.  

 

1.3 Sediment transport 

Vegetation effects on flows will also have consequences for the transport and 

deposition of sediment.  In vegetated regions a reduction in near-bed stresses in the 

zones of slow flow can result in sediment accumulating (Nepf & Vivoni, 2000).  An 

investigation of sediment transport in the mangrove system of Middle Creek, 
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Cairns, Australia by Furukawa et al. (1997), supported the observation of  Nepf and 

Vivoni (2000).  In the field study at Middle Creek, measurements were taken across 

a transect from the creek through the forest to a salt marsh.  Velocities, sediment 

accumulation and suspended sediment concentrations (hereafter, SSC) were all 

measured.  A numerical model was also used to further analyse flows, including 

turbulence around the vegetation.  Results indicated that approximately 80% of the 

sediment brought into the mangroves on a spring tide, remained trapped in the 

mangrove forest.   

 

In general, mangroves facilitate a net transport of sediment into the forest system.  

Flood tides transport suspended sediment into the area and enhanced micro-scale 

turbulence around vegetation, maintains the sediment in suspension.  Near slack 

tide, the suspended sediment starts to settle out and the ebb currents are too weak 

to re-suspend or transport the sediment back out into the estuary (Furukawa & 

Wolanski, 1996).  There is therefore a build-up of sediment in the mangroves.  An 

examination of trapping efficiency of two different mangrove forests in Palau, 

Micronesia was conducted by Victor et al. (2004).  Mangroves covered a similar 

percentage of each catchment (about 3.8%), but one of the forests had a sparsely 

developed catchment with an input of sediment of 1.9 tons km-2 yr-1 whereas the 

other was highly developed with a sediment input of 150 tons km-2 yr-1.  It was 

found that both systems trapped a similar percentage of sediment, indicating that 

the sediment trapping efficiency is determined by changes in hydrodynamics rather 

than the SSC. 

 

Observations of flows around different densities of vegetation illustrated that there 

are simple flows around trunks, which can produce large wakes when velocities are 

high enough.  In high density root systems, there are complex flows, displaying 

eddies, jets and stagnation zones in which sediment can settle out.  The reason that 

very fine particles are able to settle out of the water column so quickly (for example, 

Furukawa and Wolanski (1996) found settling occurred within 30 minutes) is that 

they flocculate (Furukawa & Wolanski, 1996). 

 

Flocculation is a key process in cohesive sediment transport.  Flocculation is a 

process whereby fine particles in suspension, aggregate to form a larger particle 

called a floc (Eisma, 1986).  These flocs have a larger settling velocity than their 
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component particles, but a smaller settling velocity than an equivalent single 

particle (non-floc) of the same size.  In general, the two main factors that control 

floc size are turbulence intensity and SSC (Dyer & Manning, 1999).  However, 

there have been few studies examining flocculation within vegetated environments 

(Mullarney & Henderson, 2017a).  One such study by Wolanski (1995) found that 

flocculation is strongly dependent upon the mangrove extent and characteristics, for 

example, a sparse mangrove site has a smaller effect on flocculation then a dense 

site.  Secondary factors such as sediment composition also influence floc formation 

as silt produces weaker flocs that disaggregate easily, whereas clay particles form 

strong bonds.  Wolanski (1995) also concluded that flocculation is significant, 

particularly the size of flocs because flocs have minimal light scattering effects and 

therefore effect primary production in areas of high flocculation and turbidity.   

 

1.4 Knowledge gaps and study aims 

Flow in vegetated areas such as seagrass beds and saltmarshes, has been well 

studied (Nepf, 2012; Nepf & Vivoni, 2000); however, the effects of flow on 

sediment transport in vegetated areas, are not so well understood.  Many previous 

studies took a numerical modelling approach (Temmerman et al., 2005; Wu et al., 

2001), or used vegetation analogues in a laboratory setting (Struve et al., 2003).  

Although a number of field studies have taken place in mangroves, many of these 

were in systems incised by tidal creeks to determine exchange between the 

mangrove forest and the channel (Furukawa & Wolanski, 1996; Furukawa et al., 

1997; Mazda et al., 1995).  Horstman et al. (2015) suggest that more research is 

required in to how different environmental settings affect the routing of tidal flow 

and sediments through mangroves.  The present study is focussed on a flat-fronted 

mangrove forest without large creeks (although small drainage channels exist).  The 

aim of the study is to determine the dominant hydrodynamic processes controlling 

sediment transport in mangrove forests of this type.  Specifically, the aim is to 

quantify changes in sediment fluxes in the different environments (mudflat, 

mangrove fringe and inside the forest) and with distance into the forest. To achieve 

the aim of this study we conducted a process-based field experiment in the 

mangrove forest located at the southern end of the Firth of Thames, New Zealand. 
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1.4.1 The study site: background 

The mangrove forest located at the southern end of the Firth of Thames is 

approximately 11 km2 and has colonised the intertidal flats since the 1950s.  Early 

aerial photography from the mid-1940s shows that mangrove trees were only 

located in the delta deposits at the river mouths.  From the 1950s, the mangrove 

forest developed in ‘waves’ as a result of 4 or 5 recruitment events (Figure 1.2).  

These events are likely to coincide with prolonged calm weather, as high rates of 

seedling mortality occur during periods of wave-driven erosion (Swales et al., 

2007).  Sediment load into the Firth was substantially increased when land 

clearance began occurring in the mid-1800s with the beginnings of the timber-

felling and gold mining industries in the area.  It has been further exacerbated by 

extensive conversion of land to pastoral farming in the Hauraki Plains (Swales et 

al., 2007).  At present, the Piako and Waihou Rivers input approximately 190,000 

t yr-1 of suspended sediment into the system (Swales et al., 2015).  The estuary is 

approximately 800 km2, mesotidal, and experiences semi-diurnal tides with an 

average tide range of between 2.2 - 2.9 m (Swales et al., 2015).  The Firth shoals 

from 35 m deep at the northern inlet towards the south.  Tidal currents on the 

intertidal flats are typically < 0.2 m s-1 but regional wind patterns can generate faster 

currents (Swales et al., 2007).  The prevailing southern and westerly winds produce 

an anti-clockwise large-scale circulation, whereas a clockwise residual rotation of 

currents is caused by northerly to easterly winds.  In the central Firth (approximately 

9.7 m deep), mean significant wave height (Hsig) is 0.41 m and the maximum 

average wave period (Tm) is 8.6 s (Swales et al., 2007).  The predominant directions 

of wave energy are from the NNW and the N (Swales et al., 2007).         
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Figure 1.2: Mangrove coverage in the Firth of Thames, showing multiple seedling 

recruitment events.  From Swales et al. (2007). 

 

1.4.2 Hypotheses 

The main hypothesis is that SSC and flow speeds will decrease into the mangroves 

and there will be a net flux of sediment into the forest.  A secondary hypothesis is 

that flocculation will be enhanced at the fringe of the forest owing to turbulence at 

the scale of the pneumatophores, but flocculation will decrease further into the 

forest as flow speeds and turbulence intensities decrease.   

 

1.4.3 Thesis layout 

Chapter 2 details the study site and presents the methodology used in data collection 

and analysis phase of the study.  Chapter 3 provides key results and observations 

from the field experiments.  Chapter 4 presents a discussion of the hydrodynamic 

and sediment transport processes in the mangrove forest and summarises the key 

findings.  Future research questions are posed at the end of Chapter 4. 
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2 Chapter 2 

Field and laboratory measurements 

2.1 Introduction 

A field experiment was conducted to elucidate how vegetation induced changes in 

hydrodynamics, effect sediment transport in a mangrove forest.  Field work was 

followed by laboratory analysis to calibrate instruments and to provide information 

on bed-sediment grain size.   

 

2.2 Study site 

Field observations were collected in the mangrove forest located at the southern end 

of the Firth of Thames (Figure 2.1).  The mangrove forest is approximately 1 km 

wide and has a distinctive fringe area, grading into dense mangrove forest, set in an 

extremely muddy environment.  A detailed description of the study site was given 

in section 1.4.1.  Measurements were focussed around the transition zone from the 

intertidal mudflat, across the fringe region into the forest.  We define a N-S transect 

with x = 0 m at the fringe indicating the boundary between mudflat and forest.  

There were 5 measurement sites with the outermost site (x=-50 m) located on the 

intertidal mudflat, one just inside the fringe at x=5 m and three extending into the 

forest (at x=35 m, x=65 m and x =115 m) (Figure 2.2-2.3).  Site 5 experiences the 

least inundation due to elevation changes (Figure 2.2).     
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Figure 2.1: Field site location. a) New Zealand with the Firth of Thames highlighted 

in red, b) The Firth of Thames with the field site and weather station locations. 

 

Figure 2.2: Elevation profiles of the Firth of Thames field site, showing distance from 

the mudflat in the forest along the x-axis and elevation (m+MSL) on the y-axis. a) is 

the topography of the entire mangrove forest, b) shows the elevation profile of the 5 

measurements site.  Data provided by Dr Erik Horstman (University of Waikato). 

a) b) 
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Figure 2.3: Google Earth Image from 20/01/2017 showing sites 1 to 5.  Arrows indicate 

components of velocity discussed in the text, with E-W representing the u-velocities 

and N-S, the y-velocities.  South and west are negative and north and east are positive. 

 

2.3 Experimental design and measurements 

The main field experiment took place over a 1-week period (12th December 2016 – 

19th December 2016).  The aim of the fieldwork was to collect hydrodynamic data, 

suspended sediment concentration data and images of flocs to ascertain in-situ 

particle size (Table 2.1).  Due to the muddy substrate, it is extremely difficult to 

deploy frames and obtain measurements without significant disturbance of the 

seabed.  To overcome this difficulty, a raised boardwalk was constructed to help 

facilitate the experiment.  Building of the boardwalk took place in January 2016 

and the experiment was carried out in December 2016, so the bed-sediment had 

sufficient time to return to an undisturbed state before the experiment took place. 

In addition to the main trunk line of the boardwalk, five side arms were also 

constructed at each of the measurement locations.  Each side arm had a retractable 

cantilevered bridge, which was pushed out above the sediment (Figure 2.4), 

allowing the deployment of equipment away from the main structure and with 

minimal disturbance of the bed.  Bridges are retracted when experiments were 

underway thus minimising any adverse effects the boardwalk may have on the flow, 

sediment dynamics and floc formation.  Instruments were typically deployed 4-5 m 

away from the end of each side arm.   

64 m 
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Table 2.1: Equipment details and variables measured at each site. SPB = Samples Per 

Burst, HAB = Height above the bed 

Site  Variables measured Equipment Notes 

1,2,3,

4 

Flocs 

Current velocities  

(45 cm profile) 

 

 

 

Current velocities 

(single-point) 

Conductivity,  

temperature and  

depth 

SSC (backscatter) 

 

 
 

Camera 

Nortek Aquadopp 

 

 

 

 

Nortek Vector 

 

RBR Concerto 

 

 

 

Campbell  

Scientific OBS3+s.  

 

Seapoint  

turbidity sensor 

 
 

2 Hz 

8 Hz, 4096 SPB, 3 secs 

between bursts, vertical 

resolution = 25 cm  

HAB (cm) = 0.38, 0.29, 0.37, 

0.44 sites 1 – 4 respectively.  

16 Hz, continuous, 8192 SPB 

 

6 Hz, continuous, 3600 SPB 

 

 

Input to Vector, HAB (cm) 

=3, 6, 20, 14 (sites 1-4 

respectively) 

Input to Concerto, HAB (cm) 

=27, 26, 38, 39 (sites 1-4 

respectively) 

5 Flocs 

Current velocities 

(single-point) 

Current velocities 

(45 cm profile) 

 

 

Conductivity,  

temperature and depth 

SSC (backscatter) 

 

 
 

Camera 

Vector 

 

Nortek Aquadopp 

 

 

 

RBR Concerto 

 

Campbell  

Scientific OBS3+s.  

 

Seapoint  

turbidity sensor 

 
 

2 Hz  

16 Hz, continuous, 8192 SPB 

 

16 Hz, continuous, 8192 SPB, 

3 secs between bursts, 

vertical resolution = 25 cm 

HAB = 0.22 cm 

6 Hz, continuous, 3600 SPB 

 

Input to Aquadopp, HAB 

(cm) =4 

Input to Concerto, HAB (cm) 

=23  

 



 

13 

  

Figure 2.4: a) Cantilevered bridge extended from the boardwalk with frame and 

attached instruments being set-up at site 1 on the intertidal mudflat, b) Programming 

floc cameras at site 1, without disturbing the sediment. 

 

At all sites Nortek Acoustic Doppler Velocimeters (ADVs) were used to measure 

the 3-dimensional velocity field.  At sites 1-4 each ADV was integrated with the 

optical backscatter sensors (OBS), which was deployed near the bed.  Also, at each 

site, a second OBS was integrated with an RBR Concerto to measure optical 

backscatter, the OBS on the concerto was deployed higher in the water column than 

the OBS interfaced to the ADV.  Optical backscatter was used to estimate SSC.  An 

OBS works by emitting infrared light and then measuring the backscattered light 

intensity (I) that has been reflected back from a suspension of particles.  Since I is 

proportional to SCC a linear relationship can be used to convert I into estimates of 

SSC (MacDonald, 2009).  In addition to the ADV velocity measurements, 2 MHz 

Nortek Aquadopps (Acoustic Doppler Current Profilers (ADCPs)), operating in 

pulse-to-pulse coherent mode, were used to measure the 3D velocity components 

over a short profile (~ 30 cm), with a vertical resolution of 2.5 cm. The Aquadopps 

were deployed above the bed and downward-facing to capture measurements very 

close to the bed. The Aquadopp at site 5 was integrated with a near-bed OBS sensor.  

Temperature and salinity were measured using the RBR Concerto CTDs 

(Conductivity Temperature Depth), where salinity values are derived from 

conductivity and temperature measurements.   

 

a) b) 
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Photographs of two of the frames and instrumentation are shown in (Figure 2.5). 

Additional information about the experiment setup and sampling strategy are 

provided in Figure 2.5.  

 

 

Figure 2.5: Frame with attached equipment: a) front view (site 3), note minimal 

disturbance by footprint of the frame b) side view (site 2). 

 

Atmospheric pressure, rain-fall, wind speeds and direction were obtained from a 

weather station (Firth of Thames Ews), which is located at 1817420.0 E and 

5878439.0 N (NZTM) (Figure 2.1).  Wind speed and direction measurements were 

collected 10 m above the ground.  Sediment samples were collected from the seabed 

at each site and analysed in the laboratory to provide estimates of the bed sediment 

grain size distribution. 

 

2.4  Data quality control and processing 

The data collected by the ADCPs, ADVs, OBSs and Concertos were processed 

using MATLAB.  All velocity data was converted to ENU coordinates and was 

burst-averaged over 8.53 minutes with an interval between bursts of 10-minutes, 

furthermore, data were interpolated onto the same time interval for comparison.  

Data points that were recorded when the sensors were out of the water, were 

removed for all analyses.  Additionally, low quality data was removed using a 

Camera 
batteries 

Camera 
control

s 

Camera 

a) 

b) 
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correlation threshold of <70% (ADCPs) and <90% (ADVs), with gaps filled by 

linear interpolation.  Aquadopp pressure data was also corrected for temperature 

dependence, and atmospheric fluctuations were removed.  Data collected using 

Concertos were processed similarly.  Data points that were recorded when the 

sensors were out of the water were removed and data were burst averaged with 

intervals between bursts of 10-minutes and interpolated on to the same time-scale 

as the velocities.  Bed sediment surface grab samples from each site were sub-

sampled for quality control.  20 ml of a 10% hydrogen peroxide solution was 

applied to each sample to remove organic material.  Hydrogen peroxide was 

reapplied daily for approximately 3 weeks until the sediment sample stopped 

reacting to the chemical, indicating the organics had been removed.  Calgon, a 

dispersal agent, was then added and a couple of hours later, the samples were 

sonicated for 30 minutes in order to disperse the particles.  A Malvern laser particle 

sizer was used to analyse sediment size.  Preliminary image analysis was carried 

out on the floc camera data using a qualitative approach. 

 

2.4.1 OBS calibration  

All instruments were calibrated in a laboratory using the same settings as in the 

field experiment.  Calibrations were performed in a 50-l steel tank (Figure 2.6).  

Four pumps were mounted on the bottom to ensure that sediment in the tank was 

well-mixed and that sediment remained in suspension during the measurement 

period.  Bed sediment samples from the five field sites were combined and sieved 

using a 62.5 μm mesh.  Sediment was mixed into the water and added in quantities 

to obtain nominal NTU (Nephelometric Turbidity Units) values, targeting values 

over the range observed in the field.  SSC was estimated from water samples 

collected at the start, halfway through and at the end of each calibration point.  The 

water samples were filtered using Whatman glass microfiber filters (GF/C diameter 

47 mm); which were weighed prior to washing and then dried for 24 hrs at 105oC.  

Each sample was sub-sampled for quality control and filtered.  The filters were then 

dried for 24 hours at 105 oC and weighed again.  To remove organics and therefore 

to obtain an accurate estimate of the SSC, the filters were put in a muffle furnace 

for 4 hours at 550 oC.  The filters were then weighed again.  SSC was calculated as 

mass/volume (mg/l).  Figure 2.7 shows a typical calibration curve for the ADV at 

site 4.  The linear fits to calibration data were all of a high-standard, for the 
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Concerto-OBSs the mean r2 value was 0.95544 (minimum = 0.9376), while for the 

Vector-OBSs the mean r2 value was 0.9914 (minimum = 0.9826).  For the OBS 

sensor attached to the Aquadopp at site 5 the r2 value was 0.9938. 

 

 

Figure 2.6: Tank and set-up used to calibrate OBS sensors. 

 

 

Figure 2.7: Example calibration result from a Campbell Scientific OBS3+ sensor (site 

4, sensor attached to Nortek Vector ADV).  
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2.4.2 Wave statistic calculations 

Wave statistics were calculated using linear wave theory following the method 

outlined in Green and Coco (2007).  Mean spectral period (T) in s is given by:  

𝑇 = 𝑚0/𝑚1, (2-1) 

where mn is the nth moment of the power spectrum of the time-series of pressure 

recorded at the instrument, h(t).  Significant wave height (Hsig) at the surface is 

obtained from the pressure time-series at depth, as 

𝐻𝑠𝑖𝑔 = 4ℎ𝑆𝐷
cosh⁡(𝑘ℎ)

cosh⁡[𝑘(ℎ−𝑧∗)]
, (2-2) 

where hSD is the standard deviation of h(t), k is the wave number corresponding to 

period T and mean of h(t), calculated using the linear wave dispersion relationship 

and z* is the depth below the surface of the pressure sensor.  From Hsig and T the 

significant orbital velocity at the bed (usigb) was estimated as: 

𝑈𝑠𝑖𝑔𝑏 =
4𝜋ℎ𝑆𝐷cosh⁡(𝑘ℎ)

𝑇𝑐𝑜𝑠ℎ[𝑘(𝑧∗+ℎ)]sinh⁡(𝑘ℎ)
. (2-3) 

 

2.4.3 Sediment flux calculations 

Fluxes of suspended sediment were calculated to determine if there is an influx of 

sediment into the mangrove forest from the intertidal mudflat.  Fluxes were 

calculated as, 

𝑄(𝑡) = ∫ 𝐶(𝑧, 𝑡)𝑉(𝑧, 𝑡)𝑑𝑧
ℎ

0

 (2-4) 

where c(z,t) is the SSC and v(z,t) is the velocity in the N-S direction, which is 

normal to the orientation of the mangrove fringe.  In case of an offshore directed 

current (N), the flux (Q) will be positive, alternatively negative Q corresponds to a 

flux into the mangrove forest.  In order to estimate fluxes, it was necessary to 

estimate profiles of both N-S velocity and SSC throughout the full water depth.  

Velocity in the upper water column (above the profile) was taken as uniform and 

equal to the value at the furthest measurement point from the bed.  To estimate near-

bed velocities, a simple linear interpolation was made from the value at the lowest 

measurement extrapolated to zero at the bed, representing no-slip conditions.  For 

SSC we tested four models, fitted based on the two measured values.  Model one is 

a linear interpolation of the two data points and is given by, 

𝐶(𝑧) = 𝑃(1)𝑧 + 𝑃(2), (2-5) 
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where the slope p(1) and intercept p(2) are fitted constants used to calculate 

concentration over the water column C(z). 

Model two assumes a constant diffusivity over the water depth: 

𝐶(𝑧) = 𝐶𝑅exp⁡(
−𝑊𝑠

𝜅𝑜
⁡𝑧), (2-6) 

where 𝐶𝑅 is a reference concentration, Ws is settling velocity and κo is diffusivity.  

To evaluate C(z) from Eqn 2-6, an equation of the form: 

𝐶(𝑧) = 𝐴(1)exp⁡(−𝐴(2)𝑧), (2-7) 

was fitted to the SSC values measured at the two heights.  The result of the fit yield 

parameters A(1)=CR, and A(2)=Ws/κ0. 

Model three assumes a linear profile of diffusivity with, 

𝐶(𝑧) = 𝐶𝑅 (
𝑧

𝑧𝑎
)
−𝑊𝑠/𝐾𝑈∗

, (2-8) 

where za is a reference height (assumed to be 0.01 m), K is the von Kármán constant, 

0.4 and U* is friction velocity.  To evaluate C(z) from Eqn 2-8, an equation of the 

form: 

𝐶(𝑧) = 𝐴(1)⁡(
𝑧

𝑧𝑎
)
−𝐴(2)

 (2-9) 

was fitted to the SSC values measured at the two heights.  The result of the fit yield 

parameters A(1)=CR, and A(2)=Ws/κ0. 

Lastly, model four assumes a parabolic profile of diffusivity of the form: 

𝐶(𝑧) = 𝐶𝑅 (
𝑧

ℎ−𝑧
⁡⁡
ℎ−𝑧𝑎

𝑧𝑎
⁡)
−𝑊𝑠/𝐾𝑈∗

, (2-10) 

where h is water depth. To evaluate C(z) from Eqn 2-10, an equation of the form: 

𝐶(𝑧) = 𝐴(1) (
𝑧

ℎ − 𝑧
⁡⁡
ℎ − 𝑧𝑎
𝑧𝑎

⁡)
−𝐴(2)

 (2-11) 

again was fitted to the SSC values measured at the two heights.  The result of the 

fit yield parameters A(1)=CR, and A(2)=Ws/κ0. 
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3 Chapter 3 

Results 

3.1 Introduction 

In this chapter results and observations from the measured data are presented.   

 

3.2 Environmental conditions 

A wind rose for the experimental period and for the entire 7-year period that the 

weather station has been operating (10/11/2010-27/07/2017) are shown in Figures 

3.1a and 3.1b, respectively.  From Figure 3.1a and 3.1b it is apparent that the winds 

experienced over the deployment period are typical of the long-term wind climate.  

During the experiment, wind speeds were variable with a maximum speed of 11.4 

m/s and a mean of 4 m/s.  The wind directions were from the south-south-west to 

north.  These conditions were similar to the overall trends visible in the 7-year 

record: the wind direction was predominantly from the south-south-west and north-

north-west.  Wind speeds varied between 0-14 m/s with a mean of 3.5 m/s.   

 

Time-series of the wind data for the duration of the experiment are shown in Figure 

3.2, in addition to water depths, salinity and temperature across all five sites.  

Maximum water depths decreased from site 1 on the mudflats (1.33 m), to site 5 in 

the mangrove forest (0.5 m) (Table 3.1).  Water temperatures were similar between 

sites during the night but exhibited some differences in daytime temperature with 

temperatures decreasing into the forest.  This temperature change into the forest is 

likely to be from the heating of the intertidal mudflats and water column that occurs 

during the day.  Within the mangroves, the substrate is not heated to the same extent, 

hence temperatures inside the forest are lower.  The night-time minimum water 

temperature was 10.5 oC (site 1) and the daytime maximum was 24.5 oC (site 1).  

Salinity did not vary greatly between each site; however, the innermost site (Site 5) 

had the highest values in general.  Figure 3.3 shows that there were no significant 

rain events during the experiment, but there was some rain prior to the deployment 

(5 mm) and a smaller event (4 mm) shortly after retrieval.  
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Figure 3.1: Wind rose created using hourly wind data from a NIWA weather station at Firth of Thames (-37.21522, 175.4503) a) during the experimental 

period, 12/12/2016-19/12/2016, b) over the period: 10/11/2010-27/07/2017.  Colours indicate wind speeds, bars indicate direction from and the length of the 

bars indicates the frequency of occurrence of the wind conditions.   

 

a) b) 
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Figure 3.2: Measured conditions at the Firth of Thames study site (12th December 2016 – 19th December 2016).  (a) water depths, (b) wind speeds, (c) wind 

directions (direction from), (d) temperature and (e) salinities.  Numbers above refer to tide number, referenced in the text.  Red numbers = no wave conditions, 

black numbers = wave conditions.
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Figure 3.3: Hourly rainfall (mm) from NIWA weather station at Firth of Thames Ews 

(-37.21522, 175.4503), 10/11/2010-27/07/2017. 

 

3.3 Waves 

Table 3.1 shows the maximum and mean values of h, Hs, Usigbed and Tm (s) at each 

site.  h, Hs and Usigbed all decrease into the mangrove forest from the intertidal mud 

flat.  Tm were similar across sites with mean values of around 3 s.   

Table 3.1: Maximum and mean wave statistics for each site 

Site h (m) Hs(m) Usigbed (m/s) Tm(s) 

 Max Mean Max Mean Max Mean Max Mean 

1 1.33 0.70 0.29 0.09 0.36 0.13 8.87 3.03 

2 1.16 0.55 0.23 0.06 0.32 0.10 9.65 3.17 

3 0.99 0.48 0.16 0.04 0.21 0.08 9.37 3.24 

4 0.75 0.35 0.11 0.02 0.17 0.05 8.99 3.39 

5 0.50 0.25 0.05 0.01 0.11 0.03 8.80 3.21 

 

Wave statistics and water depth are plotted against wind speed and direction in 

Figure 3.4.  Several observations can be made from this data.  Firstly, Hs and Usigbed 

are greatest when the wind blows from the west or north.  Larger waves would be 
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expected during a northerly wind owing to the larger fetch (See figure 2.1).  In 

general, times with small Hs correspond to times of slow wind speeds and 

minimum-fetch aligned wind-directions.  However, this relationship did not always 

occur.  For example, waves with a Hs of up to 0.2 m were present during tide 5, 

despite average winds for the period, with wind speeds slightly greater than 

experiment mean at 5 m/s and a wind direction from the west, suggesting that during 

this time waves were not locally generated.  As expected, during a southerly wind, 

Hs and Usigbed are small.  Hs and Usigbed are generally greatest either at the beginning 

of the flood tide or end of ebb tide as opposed to at high tide.  However, during 

northerly winds Hs and Usigbed can remain large throughout the tide.  An example of 

these conditions are tide 6, which corresponds to a period when the wind direction 

was from the NW.  Hs and Usigbed decrease into the forest, whereas Tm values are 

relatively similar across all sites and do not exhibit a clear trend with distance into 

the forest. 
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Figure 3.4: Wave statistics from all sites shown with wind conditions (b, c), (a) water depth h (m), (d) significant wave height Hs (m), (e) significant orbital 

velocity at the bed, Usigbed (m/s) and (f) mean wave period Tm (s).  Numbers above refer to tide number, referenced in the text.  Red numbers = no wave 

conditions, black numbers = wave conditions.
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Figure 3.5 shows a wave spectra from a 10-minute period that occurred during a 

period of large waves.  A Hanning window with a 70 % overlap was applied.  The 

spectra has 32 degrees of freedom and a 95 % confidence interval.  The main peak 

of the spectra corresponds to locally generated short-period wind waves of 2.8 

seconds.  There are also two smaller peaks corresponding to energy at 2-s periods 

and longer periods of 12.5 s, likely indicating swell wave energy.   

 

 

Figure 3.5: Example pressure data from tide 6 (15th December) from site 1. a) shows 

a short 2-min time series of pressure data. b) is the corresponding wave power spectral 

density from the full 10-min burst.  The grey shading are the 95 % confidence 

intervals and the spectrum has 32 degrees of freedom. 

 

To observe the effects of waves more clearly in further analyses, tides have been 

split into two categories, those with greater wave activity defined as Hs > 0.1 m 

(tides 1, 3-8 and 12) and those with low wave energy (Hs < 0.1 m), at site 1 on the 

mudflat (see figure 3.4).   
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3.4 Current velocities 

Velocities were measured at each site using Nortek Aquadopps operating in high-

resolution pulse to pulse coherent mode.  When interpreting these velocities, 

consideration needs to be made for the fact that the instruments were downward 

facing and only the lower, approximately 40 cm of the water column was measured, 

missing what is occurring above that level.  Velocities were burst-averaged, and 

therefore averaged out wave-induced currents.  Due to the orientation of the forest, 

the fringe is essentially E-W oriented (Figure 2.3) so that N-S velocities correspond 

to off- and onshore flows.   

 

Figure 3.4 shows that the hydrodynamics at the field site are strongly influenced by 

winds.  With this in mind we firstly examine the hydrodynamics at the field site 

during calm periods, and then secondly during periods of increased winds. 

 

3.4.1 Hydrodynamics during calm periods 

During periods of minimal winds (tides 2 and 9-11), which generally corresponded 

to winds from the south and wind speeds < 3 m/s (Figure 3.4), mean current 

velocities at site 1 were ~0.049 m/s.  Direction of flow was south on the flood tide 

and north on the ebb tide (at all sites, Figures 3.6-3.10).  With southerly winds, the 

E-W current was directed to the west and there was generally little variation in 

magnitude and direction (e.g. tide 10).  Maximum N-S currents usually occurred at 

the beginning to mid-flood tide and at the end of the ebb tide.  Currents did not 

reduce monotonically into the forest, but sites in the forest did have smaller 

velocities than at site 1 on the mudflats (Table 3.2).   

 

3.4.2 Hydrodynamics during windy periods 

During periods of higher wind energy (tides 1, 3-8 and 12), with wind speeds >4 

m/s and blowing from more westerly and northerly directions (Figure 3.4), mean 

current velocities were ~0.054 m/s at site 1.  As with calm periods, currents did not 

reduce monotonically into the forest, but sites in the forest did have smaller 

velocities than at site 1 on the mudflats (Table 3.2).  Direction of flow was generally 

north throughout these higher wave energy tides at site one.  At all other sites, 

currents were south on the flood tide and north on the ebb tide (Figures 3.6-3.10).     
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Figure 3.6 shows that during times of strong winds, the N-S velocity component 

can set in a constant offshore direction throughout the entire duration of the tide at 

site 1 (e.g. tide 1 and 3-5).  Tides 6 and 7 are almost entirely in an offshore direction 

too.  At site 1, during westerly winds the E-W current is typically directed towards 

the east.  Whereas for a northerly wind, the E-W current is directed to the west (e.g. 

tide 6).  To verify these seemingly unusual observations, the N-S component of 

velocities were compared to the N-S component of the velocity measurements 

collected by the Nortek Vector (Figure 3.11).  The magnitude and direction of the 

velocities agree well, thus providing confidence in the measured velocities from the 

Aquadopp.  Entirely positive N-S components of currents are shown in a tidal stage 

diagram for a single tide (tide 4) at site 1 (Figure 3.12a) and compared to Figure 

3.12b, which shows a tidal stage graph that has a more ‘typical’ pattern, with flood 

(southerly) and ebb (northerly) currents, from tide 10 (during calm periods) at site 

1.  As with calmer periods, maximum N-S currents usually occurred at the 

beginning to mid-flood tide and at the end of the ebb tide.   

 

At site 2 (Figure 3.7), the E-W currents are typically directed to the east, and have 

increased magnitude and variability in comparison to times with minimal waves.  

For example, throughout tide 3, during a period of increased wind speed, there is 

more variability in the magnitude of the currents, whereas during tide 2, which has 

minimal waves, the wind velocities were small and the currents showed little 

variability in speed.  All except two of the tides are ebb dominant (moving in the 

offshore direction).  Tide 5 and 6 are only slightly dominant in a southerly direction 

(approximately 0.01 m/s faster than the northerly directed current).  None are 

entirely northward directed as they are at site 1.  The southerly currents tend to be 

strongest before high tide in the middle of the measured profile, often the currents 

are near zero at the top of the profile and at the bed on the flood tide.  The northward 

currents tend to be stronger at the end of the ebb tide or after high tide until the end 

of the ebb, and always strongest at the top of the water column. 

 

At sites 3 (Figure 3.8), 4 (Figure 3.9) and 5 (Figure 3.10) the velocity structure is 

more ‘typical’ over all tides, with southward and northward directed currents on the 

flood and ebb tides, respectively.  Currents become increasingly flood dominant 

(moving in the onshore direction) towards site 5, where all tides are flood dominant.  

Variability in the flow speeds decreases slightly into the forest, particularly in the 



 

28

E-W and vertical (z) direction.  Peak horizontal flow velocities were largest at site 

1, followed by site 4, 5, 3 and the slowest at site 2 (Figure 3.13 and Table 3.2).  N-

S currents also did not monotonically decrease with distance into the forest, with 

strongest currents occurring at sites 1, 5, 4, 2 and the slowest velocities are found 

at site 3.   

 

Table 3.2: Maximum horizontal flow velocities (m/s) for all sites over the period of the 

experiment 

Site Max (m/s) 

1 0.0665 

2 0.0110 

3 0.0156 

4 0.0272 

5 0.0213 
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Figure 3.6: Water depths (a) and velocities (m/s) at site 1, Firth of Thames, b) u (E/W) c) v (N/S) d) w-direction (vertical).  Numbers above refer to tide 

number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.7: Water depths (a) and velocities (m/s) at site 2, Firth of Thames, b) u (E/W) c) v (N/S) d) w-direction (vertical).  Numbers above refer to tide 

number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.8: Water depths (a) and velocities (m/s) at site 3, Firth of Thames, b) u (E/W) c) v (N/S) d) w-direction (vertical).  Numbers above refer to tide 

number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.9: Water depths (a) and velocities (m/s) at site 4, Firth of Thames, b) u (E/W) c) v (N/S) d) w-direction (vertical).  Numbers above refer to tide 

number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.10: Water depths (a) and velocities (m/s) at site 5, Firth of Thames, b) u (E/W) c) v (N/S) d) w-direction (vertical).  Numbers above refer to tide 

number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.11: Burst-averaged N/S velocities from downward-facing Aquadopps at the point nearest the height above the bed of the Vectors (averaged over 

profile length, red lines) and Vectors (single point measurements, black lines) velocities (m/s) for sites 1 to 5 (a to e, respectively).  Numbers above refer to 

tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.12: Tidal stage graphs showing N/S component of velocities at site 1 for a) tide 4 (waves) and b) tide 10 (no waves).  Negative values correspond to 

flood dominant (southward) velocities and positive values correspond to (northward) or ebb dominant velocities. 

a) b) 
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Figure 3.13: Water depths (a) and horizontal flow velocities (m/s) for sites 1 to 5 (b to f, respectively). Note different axes values.  Numbers above refer to 

tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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In summary, velocities over the five sites do not show a monotonic decrease with 

distance into the forest from the intertidal mudflat into the mangrove forest.  Site 1 

often had offshore dominant currents with some tides entirely offshore directed 

throughout. Further into the forest, the currents become increasingly flood 

dominant, and at site 5, all tides are flood dominant.  The tidal flows are strongly 

modulated by wind-driven processes (i.e. waves) and the pattern of current 

velocities has important implications for sediment transport.    

 

3.5 Suspended Sediment Concentration 

SSC (mg/l) was observed at two heights above the bed in the water column (Table 

3.3) and is plotted in Figure 3.14.  For most tides, SSC at sites 1 and 2 generally 

exhibit a u-shaped pattern, indicating that there is more sediment in the water 

column early in the flood and later in the ebb tides (i.e. at low water depths) than at 

high-tide.  However, this pattern is less pronounced at sites 3-5.  In particular, at 

sites 4 and 5, maximum concentrations are most often observed around high tide.  

This u-shaped pattern also matches the current velocities (m/s), which were 

observed to be largest at the beginning of the flood and end of the ebb (Figures 3.6-

3.10).  SSC being in phase with current speed, possibly indicates resuspension of 

local sediments.  Maximum SSC at site 1 coincided with periods of large Hs and 

Usigbed, during these times flow is directed offshore.  

Table 3.3: Height above the bed of SSC measurements 

Site Upper OBS 

(m) 

Lower OBS 

(m) 

1 0.27 0.03 

2 0.26 0.06 

3 0.38 0.20 

4 0.39 0.14 

5 0.23 0.04 

 

Near-bed values of SSC were greater than those measured at ~30 cm above the bed.  

In general sites 1 and 2 had similar concentrations.  Overall site 1 had the greatest 

SSC near the bed over the course of the experiment with a mean of 1383 mg/l.  The 

maximum SSC recorded at sites 1 and 2 over the entire experiment were 5736 mg/l 

and 5894 mg/l respectively.  For the measurements recorded near the bed, mean 

SSC values decreased with distance into the forest (i.e. from site 1 to site 5), 
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whereas ~30 cm above the bed, mean SSC were greatest at site 2, followed by 3 

then sites 1, 4 and 5 (Table 3.4).   

 

Table 3.4: Maximum and mean SSC (mg/l) at sites 1-5 over the entire experimental 

duration. 

Site Max  

Upper 

(mg/l) 

Max  

Lower 

(mg/l) 

Mean  

Upper 

(mg/l) 

Mean  

Lower 

(mg/l) 

1 1455 5736 229 1383 

2 1024 5894 358 999 

3 985 2496 330 915 

4 944 2772 198 788 

5 900 2250 109 821 
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Figure 3.14. (a) Water depths and SSC (mg/l) from all sites (b-f correspond to sites 1 -5).  In b-f, near-bed SSC are shown in black, and SSCs higher up in 

the water column are shown in red. Heights of measurements are given in Table 3.3.  Numbers above refer to tide number, referenced in the text.  Red 

numbers = no wave conditions, black numbers = wave conditions. 
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To observe the effects of waves more clearly on SSC at each site, SSC 

concentrations were split into the same categories as for the hydrodynamics, with 

tides with greater wave activity (defined as Hs>0.1 m) (tides 1 and 3-8 and 12) and 

those with low wave energy (Hs <0.1m) at site 1 on the mudflat.   

 

3.5.1 SSC during calm periods 

In Figures 3.15-3.19, SSC data from all sites are plotted as a function of time 

relative to high water and coloured by Usigbed.  SSC generally decreased during non-

wavy periods, however, there are periods with large SSC but lower wave activity 

e.g. site 2 (Figure 3.16), however, these periods also don’t correspond to times of 

high currents.  In these cases, sediment may be transported into the region rather 

than locally resuspended. 

 

 

Figure 3.15: SSC (~30 cm above the bed) over days with less wave energy (Hs = 0.0445 

m at site 1 for tides 2 and 9-11). Lines are coloured by the significant orbital velocities 

at the bed. 
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Figure 3.16: SSC (~30 cm above the bed) over days with less wave energy (Hs = 0.0243 

m at site 2 for tides 2 and 9-11). Lines are coloured by the significant orbital velocities 

at the bed. 

 

 

Figure 3.17: SSC (~30 cm above the bed) over days with less wave energy (Hs = 0.0226 

m at site 3 for tides 2 and 9-11). Lines are coloured by the significant orbital velocities 

at the bed. 
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Figure 3.18: SSC (~30 cm above the bed) over days with less wave energy (Hs = 0.0159 

m at site 4 for tides 2 and 9-11). Lines are coloured by the significant orbital velocities 

at the bed. 

 

 

Figure 3.19: SSC (~30 cm above the bed) over days with less wave energy (Hs = 0.0079 

m at site 5 for tides 2 and 9-11). Lines are coloured by the significant orbital velocities 

at the bed. 
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3.5.2 SSC during windy periods 

Figures 3.20-3.24, show that overall, SSC were greater during the wavy periods, 

particularly at site 1 (Figure 3.20).  At sites 3-5 during wavy periods (Figures 3.22-

3.24), SSC is still relatively high despite small Usigbed indicating advection of 

sediment as opposed to local resuspension by waves. 

 

 

 

Figure 3.20: SSC (~30 cm above the bed) over days with greater wave energy (mean 

Hs = 0.1139 m at site 1 for tides 1 and 3-8 and 12). Lines are coloured by the significant 

orbital velocities at the bed.  
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Figure 3.21: SSC (~30 cm above the bed) over days with greater wave energy (Hs = 

0.0720 m at site 2 for tides 1 and 3-8 and 12). Lines are coloured by the significant 

orbital velocities at the bed. 

.  

 

Figure 3.22: SSC (~30 cm above the bed) over days with greater wave energy (Hs = 

0.0549 m at site 3 for tides 1 and 3-8 and 12). Lines are coloured by the significant 

orbital velocities at the bed. 
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Figure 3.23: SSC (~30 cm above the bed) over days with greater wave energy (Hs = 

0.0320 m at site 4 for tides 1 and 3-8 and 12). Lines are coloured by the significant 

orbital velocities at the bed. 

 

 

Figure 3.24: SSC (~30 cm above the bed) over days with greater wave energy (Hs = 

0.0150 m at site 5 for tides 1 and 3-8 and 12). Lines are coloured by the significant 

orbital velocities at the bed. 
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3.6 Bed sediment grain size 

Bed sediment grain size was analysed to determine if there was a change in particle 

size from site 1 to site 5.  Figure 3.25 shows median grain sizes (d50) and indicates 

that there were no significant differences across the measurement transect.  The 

maximum d50 was 9.83 µm at site 4 and the minimum, 6.17 µm at site 1.  The mean 

d50 across 2 sets of sub-samples of all sites was 8 µm, which is classed as silt. 

 

 

Figure 3.25: d50 (m) of bed-sediment grain size at each measurement site in the Firth 

of Thames, a) sub-sample 1, b) sub-sample 2 

 

3.7 Sediment transport 

Figures 3.26-3.29 show example velocity, SSC and concentration velocity (v*C) 

profiles from site 1 for four bursts during two tides.  Figure 3.26 and Figure 3.27 

show a high wave case during the flood and ebb phase of the tide (tide 4).  Similarly, 

Figure 3.28 and Figure 3.29 show data measured during a tide characterised as low 

wave energy (tide 10).  Tide 4 was chosen to analyse the model fits (described in 

section 2.4.3) further because it is one of the tides with N-S currents that were set 

in a constant offshore direction.  Tide 10 was chosen as an example in which the 

current direction reversed.  Figures 3.26-3.29 show that in general, the maximum 

contributions of SSC to sediment flux occurs within the first 0.1 m of the bed.  

Although SSC increase toward the bed, the contribution to the sediment flux tends 

to decrease as a result of a reduction in the flow speed in the near bed region.  

Conversely, although velocities higher in the water column are faster, 

concentrations are lower, hence contributions to the flux decreases with height 
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above the bed.  During tide 4 both flood and ebb profiles show positive values of 

velocity and v*C, indicating that currents and therefore sediment transport is 

directed offshore.  In contrast, tide 10 shows opposing profiles, with negative values 

on the flood tide and positive values on the ebb, indicating onshore and offshore 

movement, respectively.  The profiles show that the magnitude of v*C are different 

with each model.  However, the flux calculations from the different models were 

compared and they exhibit the same temporal pattern.  For the rest of the analysis 

present in this thesis the constant diffusivity model (Eq. 2-6)) was used.  
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Figure 3.26: Burst-averaged profiles of (a) v velocity, (b) SSC and (c) v*C profiles for site 1.  Data was taken from mid-flood tide during tide 4 which was 

characterised by northerly-directed v velocities throughout the tidal cycle.  Colours indicate the four models used to fit the SSC data.  SSC measurement 

heights were 0.27 m and 0.03 m (and are shown by the intersection of the four model fits in panel b). 

a) b)

)) 

c)

) 
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Figure 3.27: Burst-averaged profiles of (a) v velocity, (b) SSC and (c) v*C for site 1.  Data was taken from mid-ebb tide during tide 4 which was characterised 

by northerly-directed v velocities throughout the tidal cycle.  Colours indicate the four models used to fit the SSC data.  SSC measurement heights were 

0.27m and 0.03 m (and are shown by the intersection of the four model fits in panel b). 

a) b) c) 
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Figure 3.28: Burst-averaged profiles of (a) v velocity, (b) SSC and (c) v*C profiles for site 1.  Data was taken from mid-flood tide during tide 10 which was 

characterised by northerly-directed v velocities throughout the tidal cycle.  Colours indicate the four models used to fit the SSC data.  SSC measurement 

heights were 0.27 m and 0.03 m (and are shown by the intersection of the four model fits in panel b). 

a) b) c) 
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Figure 3.29: Burst-averaged profiles of (a) v velocity, (b) SSC and (c) v*C profiles for site 1.  Data was taken from mid-ebb tide during tide 10 which was 

characterised by northerly-directed v velocities throughout the tidal cycle.  Colours indicate the four models used to fit the SSC data.  SSC measurement 

heights were 0.27 m and 0.03 m (and are shown by the intersection of the four model fits in panel b).

a) b) c) 
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Differences across sites are easily discerned by considering Figure 3.30, which 

shows results for all sites combined.  During the flood phase of tide 4, the v*C at 

site 1 is directed in the opposite direction (offshore) to the other sites at which the 

v*C is directed onshore (except for a small portion of the profile near the bed at site 

3); whereas during ebb, all sediment transport is directed offshore.  For tide 10, all 

sites have onshore and offshore directed v*C during the flooding and ebbing tide, 

respectively.  Figure 3.31-3.35 show time-series of depth-averaged N-S current 

velocities and sediment flux data at each of the five sites.  All show that the 

sediment fluxes are closely related to the current velocities, with larger fluxes for 

faster flow speeds.  Figure 3.31 shows that at site 1, both the current velocities and 

sediment fluxes are mainly directed offshore for the majority of the time.  From site 

2 and into the forest (Figures 3.32-3.35), the time-series show onshore and offshore 

directed sediment fluxes that occur during flood and ebb tides, respectively. 
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Figure 3.30: v*C profiles for all sites at selected times during two different tides: tide 4 characterised by larger wave energy and tide 10 characterised by 

smaller wave energy. a) Mid-flood of tide 4, b) mid-ebb of tide 4, c) mid-flood of tide 10, d) mid-ebb of tide 10. 

a) b) c) d) 
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Figure 3.31: Time series of (a) water depths, (b) N-S velocities and (c) sediment fluxes (kg/m/s) at site 1.  Dashed lines show 0 values.  Numbers above refer 

to tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.32: Time series of (a) water depths, (b) N-S velocities and (c) sediment fluxes (kg/m/s) at site 2.  Dashed lines show 0 values.  Numbers above refer 

to tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.33: Time series of (a) water depths, (b) N-S velocities and (c) sediment fluxes (kg/m/s) at site 3.  Dashed lines show 0 values.  Numbers above refer 

to tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.34: Time series of (a) water depths, (b) N-S velocities and (c) sediment fluxes (kg/m/s) at site 4.  Dashed lines show 0 values.  Numbers above refer 

to tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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Figure 3.35: Time series of (a) water depths, (b) N-S velocities and (c) sediment fluxes (kg/m/s) at site 5.  Dashed lines show 0 values.  Numbers above refer 

to tide number, referenced in the text.  Red numbers = no wave conditions, black numbers = wave conditions. 
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3.8 Flocculation 

There are inherent difficulties in acquiring in-situ measurements of particle size in 

coastal environments: it is hard to deploy instrumentation without disturbing the 

environment or destroying the flocs, and conditions are often highly variable over 

both space and time, so finding a single set of camera settings suitable to obtain 

images over such a range of conditions is often not possible, often like with other 

optical instruments, the SSC is just too high.  In the present experiment, problems 

arising from disturbing the environment were minimised with the use of a 

boardwalk.  However, variable conditions were hard to control for, therefore, 

photos were often overexposed or too dark.  However, usable images were obtained 

from sites 1 and 3 over two tides (9 and 11) allowing for preliminary qualitative 

analysis of flocs to be conducted.  Quantity and size of flocs were categorised over 

each 10-minute burst by visual inspection.  Size categories were determined as 

small, medium and large (Figure 3.36).  Each size class was then assigned a number 

based on the quantity in each burst.  Each image was analysed for quantity, with 0 

corresponding to none, followed by (1) few ≤10 flocs, (2) some ≤30 flocs and (3) 

many >30 flocs and the overall value was averaged over the burst.  Results of the 

floc analysis are shown in Figures 3.37 and 3.38.  For tide 9, on the mudflat (site 

1), larger numbers of flocs were present early in the tide but the majority of flocs 

were ‘small’.  Around high-tide, numbers of all sizes decreased; however, during 

the ebb phase, the number of flocs appeared relatively consistent across all size 

classes.  Inside the forest, fewer large flocs were identified, with predominantly 

smaller flocs present on flood tide, but during ebb tide, the number of large flocs 

increased (as with site 1).  At site 1, there was a decrease in the overall number of 

flocs at high tide during both tide 9 and 11, in comparison to site 3 where floc 

numbers remained constant throughout most of the tide.   
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Figure 3.36: Example of qualitative size classes for analysing flocs, based on a visual 

analysis of two tides (9 and 11) at two different sites (1 and 3).  Large = ~350 µm, 

medium = ~150 µm and small = ~20 µm. 

 

Large 

Medium 

Small 
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Figure 3.37: Floc analysis using qualitative analysis for tide 9.  a) water depths at sites 1 (blue) and 3 (green), b) bar graph showing the number of flocs of 

each size in each burst at site 1, c) shows the same data for site 3.  Y-axis categories correspond to no flocs (0), few (1), some (2), many (3). See text for details. 
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Figure 3.38: Floc analysis using qualitative analysis for tide 11.  a) water depths at sites 1 (blue) and 3 (green), b) bar graph showing the number of flocs of 

each size in each burst at site 1, c) shows the same data for site 3.  Y-axis categories correspond to no flocs (0), few (1), some (2), many (3). See text for details.
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3.9 Summary 

The results indicate that current velocities at site 1 can be entirely offshore-directed 

throughout some of the tides, and ebb dominant for all the other tides.  Winds 

directed from the north and west are correlated with increased Usigbed and offshore 

directed currents.  The fetch for winds from the west is not very large and would 

not be expected to cause large waves and therefore the waves during tides that 

correspond to a westerly wind, are possibly coming from outside of the Firth of 

Thames.  Northerly winds have a large fetch and would be expected to create the 

largest waves.  Associated with the offshore oriented currents, is a significant net 

flux of sediment in the same direction.  Site 1 has a net offshore flux for every tide 

whereas all the other sites vary as to whether they are onshore or offshore, but tend 

to mainly be onshore, as summarised per tide in Figure 3.39.  Figure 3.40, shows 

the cumulative flux over the duration of the experiment.  All sites, except site 1, 

have a net onshore flux.  The flux at site 1 is much greater than at the other sites at 

about 849 kg/m over approximately 6 days.  Total flux onshore at the other sites 

were 27.2 kg/m, 2.56 kg/m, 113.3 kg/m and 57.5 kg/m over the 6 days for sites 2-5, 

respectively.  SSC is elevated, particularly near the bed and at sites 1 and 2.  There 

is a gradient in mean SSC in the lower water column from site 1 which has the 

greatest volume concentration (1383 mg/l) to site 5 with the least (821 mg/l).  

Flocculation analysis indicates larger flocs occur on the ebb tide and that in general 

site 1 had a larger number of big flocs than site 3 in the forest.
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Figure 3.39: Total sediment flux (kg/m2) for each tide at all sites. 
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Figure 3.40: Cumulative sediment fluxes (kg/m) over the experiment for all sites 
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4 Chapter 4 

Discussion 

Current velocities were expected to decrease monotonically with distance into the 

forest while the flood dominance of the currents was expected to become more 

prominent, as has been observed in other mangrove systems.  For example, Bryan 

et al. (2017) observed these effects in a numerical model of two contrasting sites at 

Cù Lao Dung within the Mekong Delta in Vietnam.  While the authors’ field 

observations supported the model, the change to flood dominant currents was not 

as clear in their field experiment, as in the modelled data.  Results show that the 

current velocities in the Firth of Thames field site, do not decrease monotonically 

into the forest either for N-S or E-W components of velocity (Figures 3.6-3.10).  

Horizontal flow speed also shows a non-linear pattern, with slowest flow speeds 

observed at sites 2 and 3 (Figure 3.13), corresponding to the front of the fringe (site 

2) and just inside the main forest (site 3) (Figure 2.2).  Strong drag forces act in the 

fringe area to significantly slow the flow.  A rotation of the currents occur, with the 

E-W component of the current diminishing slightly into the forest, so that flow 

direction is turning toward being fringe-perpendicular.  However, the currents do 

not reach a completely N-S direction and are closer to being NE-SW oriented.  

Similar changes in flow direction, to fringe-perpendicular in the forest, were also 

observed in the Mekong Delta mangroves by Mullarney et al. (2017b) and in a 

creek-incised mangrove system in Thailand by Horstman et al. (2013).  Increases 

in flow speeds at sites 4 and 5 may be due to the local heterogeneity of the 

vegetation and presence of runnels causing flow steering.  Flood dominance occurs 

in many intertidal systems whether vegetated or not, because of a lag in maximum 

ebb and flood currents creating an asymmetry that results in the upper reaches 

always being flood dominant (Bryan et al., 2017; Hunt et al., 2016).  The southern 

Firth of Thames system does become flood dominant into the forest, but on the 

intertidal flat just outside of the forest at site 1, the flows are strongly ebb-dominant 

in the lower portion of the water column as measured in the present experiment.   

 

Site 1 was observed to have atypical velocity profiles which may have significant 

consequences for sediment transport (Figure 3.30).  Several of the tides measured, 

had an offshore-directed current throughout the entire duration of the tide over the 
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the measured profile length.  This pattern of offshore currents, is likely associated 

with a larger scale circulation system in the Firth of Thames, created by winds in 

the region.  In general, periods of higher wave activity correspond to north-westerly 

winds as the fetch is large in these cases.  However, not all tides that had entirely 

offshore currents were associated with a north-westerly wind, these currents 

sometimes occurred when the wind was westerly or even slightly south-westerly 

(for example, tide 3 at site 1).  The Firth of Thames has an open entrance and so it 

is possible that the field site was subjected to wave processes occurring in the 

Hauraki Gulf as the Firth is an embayment of the Hauraki Gulf, a semi-enclosed 

coastal sea, which is exposed to ocean waves (Figure 4.1) (Black et al., 2000).  

 

Figure 4.1: The Firth of Thames situated in the Hauraki Gulf, New Zealand.  From 

Google Maps (2017) 

 

Black et al. (2000) undertook 3D modelling of the Hauraki Gulf, including the 

Southern Firth of Thames and they concluded that interactions between the tides, 

winds and the morphology of the Hauraki Gulf are the main controls on the 

circulation patterns observed.  Given the topography of the area, it is possible that 

waves may be refracting around headlands or islands.  In modelling the Firth of 

Thames using a north-westerly oriented wind, Black et al. (2000) found that wind-

driven currents can be in the opposite direction to the wind as they are deflected by 

topographical features such as islands.  The authors also noted that depth-averaged 

currents can be directed up-wind in the central Firth of Thames, in response to an 

adverse wind-induced pressure gradient along the Firth (Figure 4.2).  Therefore, it 



 

68 

is possible that similar processes are acting at the field site to cause a current that is 

opposite to the wind direction, (although the wind in the modelled scenario was 

forced at 15 m/s was a little stronger than the maximum wind recorded during the 

field experiment of approximately 12 m/s).   

 

Figure 4.2: Model results for depth-averaged near steady state velocities from the 

Firth of Thames, New Zealand, for a north-west wind of 15 m/s.  From Black et al. 

(2000). 

 

Green et al. (1997) studied the interactions of currents and waves at different scales 

in the Manukau Harbour, New Zealand, to determine how these processes control 

estuarine sediment dynamics.  They concluded that on the intertidal flat, waves 

control turbidity, and that changes in fetch and small variations in the strength of 

the wind caused changes in the height of waves over the tidal cycle.  Ability of the 

orbital motions to reach the bed was controlled mainly by local water depth 
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associated with the variation of the tides, which is reflected in the u-shaped SSC 

pattern observed in the Firth of Thames.  The breaker index is relatively large at 

site 1 compared to other sites, so orbital velocities can penetrate to the bed.  The 

presence of vegetation at the bed may also reduce wave orbital motions at the other 

sites. 

 

The ability of the waves to penetrate to the bed and the presence of offshore oriented 

currents at site 1 has significant implications for sediment transport.  SSC (mg/l) 

was plotted against Usigbed (m/s) (Figures 3.15-24) to determine if there was a 

correlation between the presence of waves and SSC values.  During ‘wavy’ tides at 

site 1 (Figure 3.20), SSC is greatest on the flood tide and is associated with large 

significant orbital velocities at the bed.   Usigbed then diminishes towards high tide.  

SSC decreases an hour into the flood tide despite Usigbed remaining high.  Numerous 

variables including breaker ratio, water depth and wind direction were plotted 

against SSC (see appendix) to determine a possible cause for high Usigbed with low 

SSC but no satisfactory answer was identified. 

 

At site 1 during times with low wave energy (Figure 3.15), SSC is less than that 

observed during times of wave action.  Sites 1 to 3 generally show a classical u-

shape of SSC over the tidal cycle for both low wave energy and high wave energy 

tides (Figure 3.14), indicating larger shear stresses during periods of faster current 

velocities.  From sites 4 to 5 the shape of the SSC plots changes from u-shaped to 

more n-shaped with a slight skew toward SSC being larger on the flood for most 

tides, which aligns with the tidal currents being flood dominant in the forest.  SSC 

decreases toward site 5, especially during non-wavy tides.  Usigbed is highest at site 

1 but the waves attenuate into the forest and so Usigbed is very small at site 5 and the 

fact that SSC is highest near high tide when shear stresses are smaller indicates that 

advection into the forest is the primary mechanism for sediment transport into the 

back of the forest.  Similar processes were observed by Bassoullet et al. (2000), in 

a study of sediment transport over the Brouage intertidal mudflat within the Baie 

de Marennes-Olerona (France).  Bassoullet et al. (2000) took continuous 

measurements of turbidity, waves, tidal currents, changes in bed elevation, and 

additional sediment cores were collected to analyse sediment characteristics.  Two 

conclusions were reached by this study, firstly that under wave-dominant 

conditions, resuspension due to waves could be significant.  Secondly, that tidal 
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forcing controls the distribution of the sediment, particularly when spring tides 

occur in calm periods.  Overall, the authors found wave conditions resulted in a net 

offshore movement of sediment, as is seen at site 1 in the Firth of Thames, whereas 

tidally dominant currents, caused a net onshore flux.  When SSC is elevated during 

non-wavy conditions, for example the flooding tide at site 2 (Figure 3.16), either 

fast tidal currents are causing local erosion or sediment is being brought in from 

elsewhere.  As the fastest tidal currents do not occur at times of low wave energy 

and high SSC, the latter is probably true.  

 

The offshore wave-induced currents at site 1 result in a large net flux of sediment 

offshore (Figure 3.40).  It is noted that although the ADCPs only measured the 

lower water column, OBS measurements indicated that above the height of the 

ADCP profile, SSC were small, so the estimated contributions to the flux from the 

upper part of the water column are likely to be much smaller or negligible.  In total, 

approximately 850 kg/m was removed offshore over the duration of the experiment.  

All other sites had a net onshore flux of sediment with the largest onshore flux being 

from site 4 with 113.3 kg/m moving into the forest.  These sediment fluxes at each 

site are summarised in a conceptual diagram (Figure 4.3).  

 

If the sediment were removed locally, we would expect there to be areas of scour 

between sites 1 and 2 and between sites 3 and 4 with deposition everywhere else 

(Figure 4.3).  There was some evidence for scour on the intertidal flat around site 

one in the form of runnels (Figure 4.4).  Evidence of scour around pneumatophores 

is visible at site 2 in the fringe and just seaward of site 2 (Figure 4.5), which may 

also be contributing to the sediment flux measured at site 1.  Further into the forest 

at sites 3, 4 and 5, despite denser pneumatophores, no obvious signs of scour is 

present (Figure 4.6).  A study by Norris et al. (2017), in the Mekong Delta, Vietnam 

showed a similar pattern of scour at the fringe around pneumatophores and none in 

the mangrove forest.  The authors suggest that elevated turbulence within the fringe 

may influence the scour around pneumatophores.  In the situation described by 

Norris et al. (2017), highest dissipation rates are associated with the densest 

vegetation and largest wave energy at the fringe.  The distribution of 

pneumatophores from the study by Norris et al. (2017), contrasts with the present 

results from the Firth of Thames where the pneumatophores are more densely 

packed in the forest than they are at the fringe (Figure 4.6).  At the fringe region, 
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the interaction of the relatively fast flows (wave and tidal) with vegetation results 

in scour, whereas further into the forest, flows are less energetic and less turbulent 

(Mullarney et al., 2017b) and there is minimal scour (Figure 4.3).  If scour is 

occurring between sites 1 and 2, it would be expected that the bottom profile will 

steepen (see inset in Figure 4.3).  Our observations are therefore consistent with the 

mechanisms explored by Bryan et al. (2017), who found that in muddy, vegetated 

intertidal environments with a dense forest fringe, as at the Firth of Thames, a 

convex profile develops.  The development of a convex profile occurs when there 

is an elevation change where current velocities alter at the vegetation boundary 

(noting that in the Firth of Thames, peak horizontal flow velocities at site 1 are 

0.0665 m/s, in contrast to 0.0110 m/s at site 2).   

 

 

Figure 4.3: Conceptual diagram showing sediment fluxes in and out of the mangrove 

forest.  Arrows indicate sediment direction and the size of the arrow is indicative of 

the comparative amount of sediment moving in or out at each site, although arrows 

are not to scale.  Potential areas of scour and deposition are labelled.  Inset - Mudflat 

and mangrove elevation (m + MSL).  Elevation profile data provided by Dr Erik 

Horstman (University of Waikato). 

 

The quantity of sediment that is moving offshore is substantial and it is possible 

that the drainage channels and pneumatophore scour in the vicinity of the fringe do 
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not supply all of this sediment.  Alternatively, or in addition to local erosion, 

sediment may be being advected into the area near site 1 by E-W currents and then 

moved away by the waves.  Swales et al. (2007) write that the prevailing wind from 

the southwest sets up an anticlockwise circulation in the Firth of Thames, whereas 

when winds are persistently from the north and east, there will be a clockwise 

circulation cell.  During the experiment, the predominant wind direction was from 

the south-west and west (Figure 3.1a), which means that the larger-scale circulation 

was likely in an anti-clockwise direction, which may have advected sediment that 

that was discharged from the Waitakaruru River.  Of the three rivers entering the 

Firth, the Waitakaruru is the smallest and probably provides the smallest sediment 

input.  Therefore, when winds come from the north, it might be anticipated that the 

clockwise circulation combined with the sediment input from the two larger rivers 

east of the field site (the Waihou and the Piako rivers), could result in even more 

sediment transported to site 1.  Haughey et al. (2017) speculated that there may be 

two opposing circulation systems in the Firth of Thames, one on the eastern side 

and another on the western side (controlled by the bathymetry).  The model by 

Black et al. (2000) (Figure 4.2), is forced with a N-W wind, which results in 

currents travelling southward down the left and right edges of the Firth and being 

moved offshore up the centre of the Firth.  Further work would be required to 

identify and confirm the presence of one or multiple circulation systems, which may 

be transporting sediment around the Firth, depending on the dominant wind 

direction.   
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Figure 4.4: Photograph of runnels behind site 1, Firth of Thames, New Zealand 

 

  

Figure 4.5: a) Scour around pneumatophores seaward of site 2 and b) Site 2 

equipment deployment, showing scour around pneumatophores. 

 

Runnels 

a) b) 
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Figure 4.6: Site 3 instrument deployment, showing dense pneumatophores and no 

scour.  Water in the photograph is in a runnel.  Firth of Thames, New Zealand. 

 

The Firth of Thames mudflat is accreting and the mangrove forest is advancing 

(Horstman et al., 2017a; Swales et al., 2007; Swales et al., 2015).  The fringe area 

is accreting by an average of 34 mm/yr-1 (Swales, 2015) and the forest has advanced 

noticeably just in the past decade (Figure 4.7).  This accretion is at odds with the 

large offshore flux observed at site 1 in this study, which implies that there would 

be some scour between sites 1 on the intertidal flat, and site 2 at the beginning of 

the fringe (Figure 4.3).  Alternatively, these results are not inconsistent with 

sediment being transported to site 1 via a circulation system and then being 

advected offshore by wave action.  It is possible that in calm periods when waves 

are diminished and tidal currents are relatively more significant, that accretion is 

able to occur and that these tidal current dominant periods are more common than 

wave dominant ones.  For the long-term wind-data, the wind blows from between 

the west and north, 31.7% of the time, during which average wind speeds were 4.3 

m/s.  During the experiment, winds from the same direction (NW), occurred 42.4% 

of the time with an average wind speed of 4.6 m/s.  Despite the scour just offshore 
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of the forest, the results imply deposition just landward of the fringe region (Figure 

4.3).  These conclusions are in line with numerical modelling results from Bryan et 

al. (2017), who predicted slowing of N-S currents and deposition at the fringe of a 

mangrove forest in the Mekong Delta.  The results also imply scour or advection 

between site 3 and 4 (Figure 4.3), as estimated sediment fluxes at site 4 (c.111.3 

kg/m/6 days directed into the forest) were much larger than at site 3 (c.2.56 kg/m/6 

days, also landward directed).  Neither site 3 nor site 4 had large scour patches but 

there were runnels observed in both areas which may contribute to sediment 

transport.  Sediment may be advected in from elsewhere in the forest because the 

current does not become entirely N-S oriented in the forest area.  

 

 

Figure 4.7: Advancement of the mangrove forest in the Firth of Thames, New Zealand 

from 2007-2017.  Arrow indicates the same location and shows an advance in the 

forest area.  The scale represents 100 m and north is upwards.  From Horstman et al. 

(2017a). 

 

Measured SSC values are large, particularly in the near bed region (Table 3.4), with 

the highest concentration observed being approximately 6 g/l.  SSC values 

measured in the Firth of Thames are high in comparison to other mangrove forests, 

for example, a study of the mangroves at Cù Lao Dung, Vietnam by Fricke et al. 

(2017), showed a mean of 0.92 g/l during March 2015 and a maximum over all 

measurement periods of <2 g/l.   

 

Flocculation affects particle size and density which in turn influences a particles 

settling velocities, which has a large influence on sediment transport, (Fennessy et 

al., 1994).  At the Firth of Thames site, there appeared to be both temporal and 

spatial differences in floc sizes based on preliminary qualitative data analysis.  

Patterns in floc size over two tides (9 and 11) were similar between tides which 

were characterised by similar (wave/tidal) conditions.  However, floc sizes differed 

between sites (Figure 3.38 and 3.39).  The largest flocs occurred on the mid-ebb 

tide which coincided with low SSC relative to other times in the tides.  The 
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occurrence of larger flocs during the ebb tide when SSC are diminished, indicates 

that turbulent shear is at a level that promoted flocculation as opposed to 

disaggregation which occurs at high shear velocities (Fugate & Friedrichs, 2003).  

At high tide, the number of flocs at site 1 diminishes, possibly because turbulence 

is too low to cause the particle collisions, which promote floc formation (Fugate & 

Friedrichs, 2003) or the large flocs are settling out of suspension during these 

quiescent times.  Additionally, a greater number of large-sized flocs were observed 

at site 1 than were observed at the same tides at site 3, possibly because increased 

turbulence caused by shear at the length scale of the vegetation causes the flocs at 

site 3 to disaggregate (Nepf, 2012), alternatively turbulence is not sufficient to 

cause collisions.  Site 3 shows less variation in floc numbers and floc size than site 

1, with floc numbers remaining relatively high throughout most of the tide.  

Differences in the sediment dynamics at sites 1 and 3 is also evident in Figure 3.14, 

which shows greater variability in SSC concentrations at site 1 during both tides in 

comparison to site 3, which remained fairly similar in terms of floc size and 

concentration throughout the tides (Figures 3.38-39). 

 

4.1 Summary of findings 

Mangroves offer many ecological and physical benefits to an area. Of particular 

relevance to issues surrounding our changing climate, is the physical role these 

forests play in helping to reduce wave energy as it interacts with the vegetation.  

There is some evidence, though mainly observational, that mangroves in Indonesia 

helped to protect the coastline, during the catastrophic tsunami on 26th December 

2004 (Alongi, 2008).  While in New Zealand, mangroves are advancing and 

developing, they are in decline in many other countries where they have been 

removed for reasons such as expanding aquaculture (Stokes et al., 2016).  Growing 

recognition of the importance of mangrove habitats both biologically and physically 

has led to the desire to restore mangroves, primarily for coastal protection (Spalding 

et al., 2014).  This drive to restore the mangrove forests in the world is in contrast 

to the situation in New Zealand, with removal of forests being a primary 

management strategy (Horstman et al., 2017a).  However, it is necessary to 

understand the hydrodynamics and sediment inputs and transport pathways into an 

area before any removal takes place, as management should be site specific (Stokes 
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& Harris, 2015).  This thesis has aimed to contribute to the body of knowledge on 

hydrodynamics and sediment transport in the Firth of Thames mangroves. 

The major findings of the thesis are: 

 

1. The hydrodynamic conditions at the experimental location are significantly 

influenced by wind.  Winds set up circulation patterns in the Firth of 

Thames, which are variable depending on the wind direction and speed and 

interactions with the local topography. 

2. Contrary to the proposed hypothesis that there would be continuous flux of 

sediment into the mangrove forest, the results presented here show that the 

picture is a little more complicated.  At site 1 over the 6-day period there 

was a net sediment flux of 850 kg/m in the offshore direction, which is away 

from the forest.  At the remaining sites, there is a net sediment flux of 201 

kg/m in total (all sites combined) in the onshore direction. 

3. Point 2 is at odds with other studies which suggests that the mangrove 

system is accreting.  From this it is hypothesised that during periods of 

reduced wave energy conditions, the net flux of sediment is onshore and 

these calmer periods occur often enough that accretion dominates over 

erosion. 

4. Flow rotation appears to occur in the mangrove forest, becoming orientated 

toward perpendicular to the shoreline in the forest, as opposed to a dominant 

E-W orientation on the mudflat. 

5. Minimal scour is observed near site 1 on the mudflats.  From this it is 

hypothesised that sediment is being advected into the area of site 1 by the 

E-W component of the currents and strong wave activity removes it 

offshore.  The circulation system set-up by the winds, is probably the 

mechanism of transporting sediment into the region.  The main sediment 

sources are the Waihou and Piako Rivers or the smaller Waitakaruru River, 

depending on the direction of circulation, clockwise or anti-clockwise.  

6. SSC was hypothesised to decrease into the forest.  SSC decreases between 

sites 1 on the mudflat and site 2 at the fringe.  Levels within the forest are 

similar at each site with a slight decrease towards site 5.  

7. Near-bed SSC were much greater than at the upper measurement height 

(~20 cm above the bed).  
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8. The final hypothesis was that flocculation would increase in the fringe area 

before decreasing further into the forest.  It was not possible to determine 

from the data collected, whether flocculation increased at the fringe, but 

larger flocs were less apparent further into the forest at site 3 then they were 

at site 1.  The presence of many smaller flocs at site 3 does indicate that 

flocculation processes were still occurring in the forest and will have 

consequences for settling velocities.   

 

4.2 Further work 

Questions were raised during the analysis of the data that could not be answered 

without further research.  Qualitative analysis of floc images gave some preliminary 

insight into the distribution of flocs and floc sizes; however, further quantitative 

analysis is required to provide floc size distributions.  These distributions could be 

compared with other hydrodynamic variables such as turbulence intensity.  This 

work is currently underway and may shed light on the controls on the flocculation 

processes.  A more comprehensive array in the E-W direction may shed further light 

on the advective processes in the fringe region, in particular under different large-

scale circulation patterns which arise from variable wind speeds and directions.  

Additionally, it would be valuable to extend the array/measurement locations 

further in the offshore direction to determine the eventual fate of the sediment 

transported offshore from site 1.  As the water depths increase and the effect of 

waves becomes less important near the bed, it is reasonable to assume that this 

sediment is deposited further offshore.  Continuous bed-level monitoring along with 

hydrodynamic data collection along the transect from the mudflat into mangrove 

forest, would provide long-term information on how the bed is responding to 

different conditions.  Investigating flow rotation further will give more detailed 

information on how sediment is being transported between the mudflat and forest 

and how sediment is moving parallel to the shoreline.  Two points of measurement 

were taken to obtain SSC.  Near-bed SSC were much greater than at the upper 

measurement height (~20 cm above the bed).  Typically, SSC is measured at just 

one point, which may result in inaccurate sediment flux calculations.  Increased 

vertical resolution in both SSC and currents might help better resolve sediment 

fluxes in the future. 
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Appendix  

SSC plotted against other variables 

SSC from Site 1 (under wavy conditions) was plotted against several variables to 

try and determine why SSC diminishes but usigbed remains high (Figures A1-A4). 

 

Figure A.1:  SSC (~30 cm above the bed) over days with greater wave energy (mean 

Hs = 0.1139 m at site 1 for tides 1 and 3-8 and 12). Lines are coloured by the breaker 

ratio. 

 

Figure A.2:  SSC (~30 cm above the bed) over days with greater wave energy (mean 

Hs = 0.1139 m at site 1 for tides 1 and 3-8 and 12). Lines are coloured by current 

velocities (m/s).  
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Figure A.3:  SSC (~30 cm above the bed) over days with greater wave energy (mean 

Hs = 0.1139 m at site 1 for tides 1 and 3-8 and 12). Lines are coloured by Water depth 

(m). 

 

 

Figure A.4:  SSC (~30 cm above the bed) over days with greater wave energy (mean 

Hs = 0.1139 m at site 1 for tides 1 and 3-8 and 12). Lines are coloured by wind direction 

(degrees).  

 


