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Abstract 
 

 

 Suspension feeding bivalves are described as key species in many aquatic 

ecosystems, where they can influence primary productivity and nutrient dynamics, 

are food for higher trophic levels, and may be harvested in commercial or 

recreational fisheries. In many areas where bivalve populations have declined, 

substantial changes to ecosystem structure and function have occurred. High-

density beds of the infaunal suspension feeding bivalve, Austrovenus stutchburyi, 

are a dominant feature on intertidal flats in many New Zealand estuaries, but 

populations are declining in some areas, likely due to anthropogenic stressors such 

as overharvesting and sedimentation. This thesis examines the influence of 

Austrovenus on estuarine ecosystem function using laboratory, field and 

modelling studies. 

 The effects of bed density and flow speed on boundary layer dynamics and 

Austrovenus clearance rates (CR) were investigated in annular flumes. Bed shear 

stress increased with increasing bivalve density, and under certain conditions was 

also increased when Austrovenus were feeding, compared to when they were not. 

The bed roughness and siphonal currents generated by the bivalves may therefore 

influence food supply to the bed. Both individual and bed CR were significantly 

greater at the high flow speed. Bed CR did not scale proportionally with density, 

in part because individual CR decreased with increasing density, but also because 

the proportion of bivalves actively feeding decreased at high densities. Thus, 

scaling up individual CR obtained from animals at low densities will significantly 

overestimate population filtration capacity. 

 The effect of Austrovenus on ecosystem function was examined at two 

sites, one sandy, the other composed of muddy-sand, to determine whether 

sedimentary environment alters this key species’ role. Gross primary production 

(likely corresponding to microphytobenthos production) and ammonium uptake 

were significantly increased, and denitrification potential was also elevated, when 

Austrovenus was added, relative to removed, at the sandy site. In contrast, there 

was no effect of Austrovenus on any of these variables at the muddy-sand site. 

These results reveal the importance of considering sedimentary environment when 
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examining the effect of key species on ecosystem function, and suggest that even 

moderate levels of sedimentation may reduce the positive effect of Austrovenus 

on primary productivity. 

 A food-web model was used to quantify the interactions between 

Austrovenus and other estuarine species, and to determine the effect of reducing 

Austrovenus biomass on ecosystem properties. The model revealed an estuarine 

system dominated by benthic species, characterised as a developing, rather than a 

mature ecosystem. Detritus production and export were high, while transfer 

efficiency and internal recycling were low. Decreasing Austrovenus biomass 

decreased system maturity, suggesting that reductions in Austrovenus populations 

may decrease ecosystem stability. The model also confirmed that within these 

estuarine systems Austrovenus and microphytobenthos are key species which 

impact greatly on all other trophic levels. 

 This thesis demonstrates that Austrovenus populations exert considerable 

influence on benthic communities and processes, and play a key role in the 

functioning of estuarine ecosystems. Reductions in Austrovenus populations will 

likely negatively impact on microphytobenthos and higher trophic levels, and may 

also reduce ecosystem maturity and stability. 
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CHAPTER 1 

 

General Introduction 
 

 

1.1 Motivation 

 The link between biodiversity and ecosystem functioning has been well 

established in many systems (e.g. Tilman et al. 1997, Loreau et al. 2001, Naeem 

2002, Hooper et al. 2005). However, often it is certain functional groups or key 

species, rather than biodiversity per se, which have a disproportionate effect on 

ecosystem structure and function (e.g. Widdicombe & Austen 1998, Lohrer et al. 

2004, Norling et al. 2007). The pervasive influence of humans on nearly every 

ecosystem on Earth is also well-known, and anthropogenic stressors can lead to 

declines in both biodiversity and the abundance of key species (e.g. Chapin et al. 

1997, Vitousek et al. 1997, Pauly et al. 1998). This has generated considerable 

interest in the influence of biodiversity and key species on ecosystem function, in 

order to understand the potential consequences of their loss (e.g. Solan et al. 2004, 

Thrush et al. 2006).  

 Suspension feeding bivalves are often highly abundant in aquatic 

ecosystems, and can play a major role in ecosystem structure and function (Dame 

1993, Newell 2004). They have been described as key species in many systems 

(e.g. Dame & Prins 1998), although their dominance tends to preclude them from 

being true “keystone species” as defined by Power et al. (1996), i.e. a species 

whose effect is both large, and disproportionately large relative to its abundance. 

Nonetheless, suspension feeding bivalve populations have been shown to exert 

substantial top-down control on phytoplankton, thus reducing the effects of 

eutrophication (e.g. Cloern 1982, Officer et al. 1982). By clearing seston from the 

water column, suspension feeding bivalves also reduce turbidity, which increases 

light penetration to the sediment surface, and may increase macroalgae and 

microphytobenthos productivity (Newell 2004, Porter et al. 2004). Furthermore, 

transfer of inorganic and organic material in faeces and pseudofaeces, collectively 

known as biodeposits, from the water column to the sediment surface enhances 

benthic-pelagic coupling (e.g. Dame 1993, Giles & Pilditch 2004). Nitrogen 

contained in biodeposits can be buried in underlying sediment, and under certain 
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conditions, coupled nitrification-denitrification removes nitrogen from the system; 

therefore, the bivalves may also exert a bottom-up control on phytoplankton 

populations by reducing nutrient loads (Kaspar et al. 1985, Newell et al. 2002, 

Newell et al. 2005). Moreover, consumption of pre-settlement macrofauna larvae 

by suspension feeders can be an important structuring influence on benthic 

macrofaunal community composition (e.g. Woodin 1976, Dittmann 1990, Troost 

et al. 2009a).  

 Loss of suspension feeding bivalves from some systems has resulted in 

substantial changes to ecosystem structure and function. For example, in 

Chesapeake Bay (USA), loss of eastern oyster (Crassostrea virginica) beds has 

increased the incidence of phytoplankton blooms, sometimes resulting in the 

occurrence of deep-water hypoxia (Jackson et al. 2001, Kemp et al. 2005). In 

Great South Bay (USA), declining clam (Mercenaria mercenaria) abundance has 

altered both phytoplankton and zooplankton dynamics, likely leading to the 

appearance of “brown tides” of the phytoplankton Aureococcus anophagefferens 

(Lonsdale et al. 2007). Suspension feeder loss can also affect higher trophic 

levels; a reduction in both the abundance and quality of cockles (Cerastoderma 

edule) in the Dutch Wadden Sea due to shellfish dredging has been linked to the 

loss of red knots (Calidris canutus islandica) from the area (van Gils et al. 2006). 

Conversely, invasion of aquatic systems by non-native suspension feeding 

bivalves, such as by the Asian clam (Potamocorbula amurensis) in San Francisco 

Bay and the zebra mussel (Dreissena polymorpha) in many freshwater systems in 

the USA, has resulted in reduced phytoplankton biomass (e.g. Alpine & Cloern 

1992, Barbiero et al. 2006). 

 A substantial proportion of research into the ecosystem services provided 

by suspension feeding bivalves has focused on epibenthic species, which can 

create substantial reef structures (e.g. Dame 1993, Smaal & Zurburg 1997, 

Manzouni et al. 1998, Asmus & Asmus 2005, Newell et al. 2005, Hewitt et al. 

2006). The influence of infaunal species on ecosystem function may not 

necessarily be the same as for epifaunal species, however. Infaunal species do not 

create reefs, but tend to bioturbate surficial sediments, which increases both 

oxygen penetration into the sediment, and sediment resuspension, facilitating the 

dispersal of nutrient-rich biodeposits (e.g. Widdows et al. 1998b, Ciutat et al. 

2007). Moreover, many issues considered in previous research (and reviewed by 
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Newell 2004), such as occurrence of deep-water hypoxia after a phytoplankton 

bloom and organic matter remineralisation in the sediment around bivalves, were 

in deep, frequently stratified systems. However, deep-water hypoxia is unlikely in 

shallow, well-mixed estuaries. In this type of system, biodeposits are likely to be 

carried away from bivalve beds by tidal and wind driven currents, and may even 

be advected into the open coastal environment. Thus, there is a need to focus 

attention on the precise role of infaunal bivalves in shallow estuarine systems.  

 Worldwide, infaunal suspension feeding bivalves dominate intertidal areas 

in many estuaries, although populations have declined in a number of these 

systems in recent decades (e.g. Piersma et al. 2001, Peterson 2002, Kraeuter et al. 

2008). Infaunal bivalves, such as Ruditapes philippinarum and Corbicula 

japonica in Japan, Mercenaria mercenaria in North America, and Cerastoderma 

edule in Europe, have been shown to play a major role in benthic nutrient 

regeneration and stimulation of microphytobenthos production (e.g. Doering et al. 

1986, Doering et al. 1987, Swanberg 1991, Yamamuro & Kioke 1993, Magni et 

al. 2000, Rossi et al. 2008). These animals also provide an important food source 

for higher trophic levels, such as shorebirds, and may be part of commercially or 

recreationally valuable fisheries (e.g. Norris et al. 1998, Wolff 2005). 

 In many New Zealand estuaries the dominant feature on intertidal flats are 

high-density beds (c. 1000 ind. m
-2

) of the infaunal suspension feeding bivalve, 

Austrovenus stutchburyi (Hewitt et al. 1996, Cummings et al. 2007). Commonly 

known as the cockle, little-necked clam or tuangi, Austrovenus is shallow-

burrowing (lives within 5 cm of the sediment surface), has very short siphons, and 

can grow up to 60 mm in length (although < 35 mm is more common in estuaries 

near urbanised areas, Hewitt & Norkko 2007). Austrovenus has been shown to 

influence solute fluxes and enhance microphytobenthos production (Sandwell et 

al. 2009, Lohrer et al. 2010a), and a study into the effects of the loss of this 

species from tidal flats clearly showed the potential for functional changes to 

occur to the ecosystem (Thrush et al. 2006).  

 Estuaries in New Zealand, as elsewhere, are under increasing pressure 

from coastal and catchment development, causing problems such as habitat loss of 

fringing wetlands, excessive nutrient and sewage inputs, accumulation of 

chemical contaminants, over-fishing and altered freshwater flows (reviewed by 

Kennish 2002). Furthermore, land-use change in surrounding catchments can 
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cause accelerated sedimentation rates, which may alter habitat and biological 

communities (Thrush et al. 2004). Increased levels of suspended sediment can 

damage or clog the feeding structures of suspension feeders, and decrease the 

nutritional value of seston (e.g. Turner & Miller 1991, Cheung & Shin 2005). 

Austrovenus has been shown to be sensitive to repeated exposure to high levels of 

suspended sediments (Norkko et al. 2006), and Austrovenus abundance tends to 

decline with increasing estuarine mud content (Thrush et al. 2003b). Chemical 

contaminants, originating from inputs such as stormwater runoff, can accumulate 

in estuarine sediments and affect benthic animal behaviour, mortality and 

community structure (e.g. Nipper et al. 1998, Morrisey et al. 2003). Even if 

contamination levels are not high enough to cause mortality, sublethal stress may 

reduce reproductive potential and growth in bivalves such as Austrovenus (e.g. De 

Luca-Abbott 2001, Peake et al. 2006). In addition to the adverse effects of 

sedimentation and pollution, over-harvesting has caused a steady decline in 

Austrovenus populations in some areas (Cummings et al. 2007, Marsden & 

Adkins 2010). As Austrovenus has been, and is likely to be further impacted by 

these pressures, it is important to understand the role of this key species in 

estuarine ecosystems. 

 The role of suspension feeding bivalves in maintaining or enhancing 

estuarine water quality is often estimated by scaling up individual clearance rates 

to ecosystem level (e.g. Hily 1991, Smaal & Prins 1993, Dame & Prins 1998). 

However, published clearance rate data for Austrovenus is limited (McClatchie 

1992), and it is generally accepted that laboratory derived clearance rates 

overestimate in situ rates because they do not incorporate environmental 

variability, such as flow speed, and seston quality and quantity (e.g. Wildish & 

Saulnier 1993, Cranford 2001, Newell et al. 2001). Bivalve growth rates tend to 

decline in high density beds (e.g. Vincent et al. 1994, Taylor et al. 1997, Zhou et 

al. 2006), but the effect of con-specifics on clearance rates has largely been 

ignored. There is a need therefore to investigate the effect of bed density and flow 

speed on Austrovenus clearance rates, which may be an important step towards 

deriving better estimates of population grazing pressure for ecosystem models.  

 The influence of Austrovenus on estuarine ecosystems is likely to be 

related to more than just their ability to exert top-down control on phytoplankton 

populations. New Zealand estuaries are typically shallow and have high water 
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clarity; microphytobenthos production is almost certainly more important than 

pelagic phytoplankton production in these systems (e.g. Miller et al. 1996, Safi 

2003). Previous research has established that microphytobenthos productivity 

increases with increasing Austrovenus density, (likely due to enhanced nutrient 

fluxes at high densities), but these experiments were limited in space and time 

(Thrush et al. 2006, Sandwell et al. 2009). The influence of key species on 

ecosystem function is likely to differ between habitat types (Needham et al. 2011), 

and although Austrovenus tends to be absent from very muddy sediments, high-

density beds exist across a range of sediment types. Furthermore, previous 

experiments have typically used small (≤ 1 m
2
) experimental plots, but results 

from these studies may be dominated by edge effects (Hewitt et al. 1997, Englund 

& Cooper 2003), as the estuarine intertidal is dynamic and subject to substantial 

bedload transport and sediment reworking rates (e.g. Grant et al. 1997). Large 

scale in situ experimental studies, replicated in time and in different habitat types, 

are therefore required to more comprehensively determine the effect of 

Austrovenus beds on nutrient dynamics and primary productivity.  

 Field and laboratory experiments can elucidate interactions between key 

species and biogeochemical processes (e.g. Widdicombe & Austen 1998, Thrush 

et al. 2006, Lohrer et al. 2010a), providing pieces of a bigger picture, but rarely 

include multiple trophic levels (but see Petchey et al. 2004). Modelling can 

provide a valuable quantitative tool with which to reveal interactions at ecosystem 

scales, describe system properties, identify gaps in current knowledge, and 

integrate the ‘pieces’ of information acquired in experimental studies (Jørgensen 

& Bendoricchio 2001). Process-based models tend to focus on lower trophic 

levels and require substantial spatially and temporally resolved datasets for 

calibration and validation; food-web models, however, can be used to explore the 

energy flow and interactions between multiple trophic levels, and can be 

parameterised using comparatively smaller datasets gathered for other purposes 

(e.g. Gaedke 1995, Fulton et al. 2003, Christensen et al. 2008). Ecopath is a mass-

balance food-web model that is widely used in fisheries management and has 

previously been used to model the interactions between species in a wide range of 

coastal systems, including estuaries (Christensen & Pauly 1992, Christensen et al. 

2008). There are no published Ecopath models for New Zealand estuaries 

however, despite the fact that these ecosystems are numerous and have high 
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ecological, recreational and cultural value.  Furthermore, a mass mortality event 

occurred recently (February 2009) on Austrovenus beds in Whangateau Harbour 

(North Island, New Zealand), with the loss of c. 60 of the population (C. Pilditch 

unpublished data; MFish 2009), but the effect of such an event on the wider 

ecosystem is largely unknown.  Construction of an Ecopath model is required to 

quantify the interactions between Austrovenus and other species in the estuary, 

and assess the potential effects of a decline in the Austrovenus population on 

ecosystem properties. 

 The aim of this thesis is thus to determine the ecological role of 

Austrovenus in estuarine ecosystems, i.e. the grazing pressure exerted by 

Austrovenus populations, the influence of Austrovenus on nutrient dynamics and 

primary productivity, and the interactions between Austrovenus and other 

estuarine species. 

 



7 

1.2 Thesis outline 

 The main body of this thesis comprises three research chapters (chapters 2 

– 4), in which I use a variety of methods, (i.e. laboratory and field experiments, 

and trophic modelling), to quantify the effect of Austrovenus populations on 

ecosystem structure and function. 

 I begin in chapter 2 by conducting laboratory experiments to investigate 

the influence of Austrovenus density and flow speed on clearance rates and near-

bed hydrodynamics. The effect of con-specifics on bivalve clearance rates has 

largely been ignored; quantification of bed clearance rates may be an important 

step towards deriving better estimates of population grazing pressure.   

 In chapter 3 I examine the influence of Austrovenus beds on benthic 

nutrient fluxes, primary productivity and sediment denitrification rates in differing 

sedimentary environments, in winter and summer. Previous studies have been 

limited in space and time, and in the size of experimental plots used. I use large 

experimental plots to reduce confounding edge effects and to determine whether 

habitat influences this key species’ role.  

 In chapter 4 I investigate the effect of Austrovenus on estuarine energy 

flow and ecosystem properties using a food-web model. This allows me to 

examine the impact of Austrovenus on other trophic levels, and the impact of a 

reduction in Austrovenus biomass on ecosystem properties. 

 In chapter 5 I scale the bed clearance rates obtained from my laboratory 

experiments up to ecosystem level, review the main findings from my research 

chapters, and end with some overall conclusions and suggestions for further 

research. 
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CHAPTER 2 

 

Effects of Austrovenus stutchburyi density and flow 

speed on clearance rates and near-bed 

hydrodynamics 
 

 

2.1 Introduction 

 Suspension feeding bivalves play a key role in aquatic ecosystems by 

controlling phytoplankton populations directly via grazing, contributing to 

benthic-pelagic coupling, and by providing a food source for higher trophic levels 

(see review by Newell 2004). Estimates of bivalve grazing rates are necessary to 

quantify effects on ecosystem processes and are often estimated by measuring 

individual clearance rates (CR; the volume of water cleared of seston per unit 

time), which are then scaled-up to ecosystem level (e.g. Hily 1991, Smaal & Prins 

1993, Dame & Prins 1998, Prins et al. 1998). However, it has long been accepted 

that this approach overestimates in situ population filtration rates because 

laboratory derived CR are often made using algal monocultures and do not 

incorporate environmental variability (Doering & Oviatt 1986). Environmental 

variables such as seston quantity and quality (e.g. Navarro & Widdows 1997, 

Hawkins et al. 2001) and flow speed (e.g. Wildish & Saulnier 1993, Sobral & 

Widdows 2000, Newell et al. 2001) have a significant effect on CR but are 

typically not included simultaneously in laboratory studies. Moreover, 

individually determined CRs ignore potential competitive intraspecific 

interactions that would occur in dense beds.  

 To my knowledge the interactive effects of bivalve density and flow speed 

on clearance rates have not been investigated simultaneously.  This is surprising 

because numerous studies have documented the density dependent effects of 

roughness generated by bivalve shells and siphonal jets on boundary layer 

dynamics, and on consequently food supply to the bed (e.g. Fréchette et al. 1989, 

O'Riordan et al. 1995, Green et al. 1998, van Duren et al. 2006, Ciutat et al. 2007). 

Furthermore, in high densities bivalve growth rate is reduced in both epifaunal 

(e.g. Taylor et al. 1997, Prins et al. 1998, Zhou et al. 2006) and infaunal (e.g. 

Peterson & Black 1987, Jensen 1992, Vincent et al. 1994) species, likely due to 
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intraspecific competition for seston.  In this study, I quantify the effects of bivalve 

density and flow speed on clearance rates for an infaunal clam, which may be an 

important step toward deriving better estimates of population filtration capacity 

for ecosystem models (e.g. Gerritsen et al. 1994, Bayne 1998, Cranford & Hill 

1999, Duarte et al. 2003, Dowd 2005, Spillman et al. 2009). 

 In suspension feeding bivalves the expected response of CR to flow speed 

is unimodal. Initially, individual CR increases with flow speed as increasing flow 

compensates for seston depletion around the animal. At high flow speeds 

however, pressure differences can pass water through the mantle too quickly, 

causing a reduction, and eventually complete suppression of feeding (Wildish & 

Kristmanson 1997). Studies investigating the effect of flow speed on individual 

CR have shown that the actual response can vary between and even within species 

for both epibenthic (e.g. Wildish & Miyares 1990, Wildish & Saulnier 1993, 

Pilditch & Grant 1999, Widdows et al. 2002) and infaunal bivalves (e.g. Cole et 

al. 1992, Sobral & Widdows 2000, Fernandes et al. 2007, Widdows & Navarro 

2007). Although conflicting data from CR studies have been explained as being 

the result of differing experimental set-ups (Jorgensen 1996, Riisgård 2001), or 

the effect of other variables such as food quantity and quality (Cranford 2001, 

Hawkins et al. 2001), the effect of con-specifics has largely been ignored. In a 

bivalve bed re-filtration occurs due to the formation of a concentration boundary 

layer (a seston depleted layer above a bivalve bed; Fréchette et al. 1989, 

O'Riordan et al. 1993, 1995, Dolmer 2000a, Jonsson et al. 2005), potentially 

reducing individual CR. Flow speed is likely to be an important factor influencing 

CR over dense beds as increasing flow speeds will replenish seston-depleted 

water and reduce re-filtration (Fréchette et al. 1989, Butman et al. 1994, Dolmer 

2000b). 

 Seston-depleted water above bivalves can also be replenished by vertical 

mixing, which can be enhanced due to bed roughness generated by both the 

physical structure of a bivalve bed and bivalve siphonal currents (Butman et al. 

1994, O'Riordan et al. 1995, Nikora et al. 2002). Although epifaunal species 

might have a greater impact on bed roughness height (Green et al. 1998, van 

Duren et al. 2006), infaunal species can also create roughness elements such as 

tracks and mounds by bioturbation activity, raising bed shear stresses compared to 

a smooth bed (Ciutat et al. 2007). Siphonal currents can also have a significant 
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effect on boundary layer dynamics generating turbulence and increasing bed shear 

stress, which may reduce re-filtration, especially when current velocities are low 

relative to the siphonal jet velocity (Monismith et al. 1990, van Duren et al. 2006). 

The effects of bed roughness and siphonal currents on boundary layer dynamics 

are thus likely to be density and flow speed dependent, and to influence food 

supply to the bed and CR.  

 In this study, laboratory annular flumes were used to estimate CR and 

measure near-bed hydrodynamics over beds of differing densities of an infaunal 

clam, Austrovenus stutchburyi, from New Zealand. The specific aims were: 1) to 

quantify the effect of bivalve bed density on CRs, and 2) to quantify the effect of 

bed density on boundary layer dynamics (separating the effects of morphological 

changes to the sediment surface from those due to bivalve feeding activity), both 

as a function of flow speed. I hypothesised that CR would increase with 

increasing flow speed, but decrease with increasing bivalve density, and that a 

seston-depleted layer would occur at high densities and low flow speeds (although 

I expected enhanced bed roughness and shear stress over high densities so 

increased vertical mixing might reduce this effect).  

 

2.2 Methods 

2.2.1 Study Species 

 Austrovenus stutchburyi, (hereafter referred to as Austrovenus), is an 

infaunal suspension feeding clam found on intertidal mud and sand flats, usually 

aggregated in high density beds (up to 1200 individuals m
-2

), in estuaries around 

New Zealand (Hewitt et al. 1996, Whitlatch et al. 1997). It has short siphons (< 1 

cm), feeds at the sediment water interface and exhibits an endogenous circatidal 

rhythm whereby feeding is restricted to the four hours around high tide (Beentjes 

& Williams 1986). Austrovenus populations can represent a large proportion of 

total estuarine biomass and play a key role in nutrient dynamics and primary 

productivity (Sandwell et al. 2009).  

 

2.2.2 Laboratory flumes 

 Austrovenus beds of differing densities were established in annular flumes 

to examine the effects on bed clearance rate (bed CR; L h
-1

 m
-2

), individual 

clearance rate (CR; L h
-1

 ind
-1

), and on near-bed hydrodynamics as a function of 
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flow speed.  I used two identical annular flumes built to the same specifications as 

those at Plymouth Marine Laboratory (Widdows et al. 1998a).  Briefly, the outer 

annulus has a diameter of 62 cm and the inner a diameter of 42 cm resulting in a 

channel width of 10 cm and a bed area of 0.17 m
2
.  The flumes have a maximum 

water depth of 30 cm (maximum vol. = 49 L) and water flow in the annulus is 

generated by a computer-controlled rotating lid.  

 

2.2.3 Experimental treatments and setup 

 I chose three flow speeds (2, 5 and 15 cm s
-1

) and seven Austrovenus 

density treatments (0, 29, 100, 247, 500, 747 and 1000 ind. m
-2

) to span in situ 

ranges. A maximum flow speed of 15 cm s
-1

 was chosen because it is close to the 

mean velocities observed above Austrovenus beds on intertidal sand flats 

(Sandwell et al. 2009) and, importantly, because it was just below the entrainment 

threshold of the sand bed in the flume.  I observed that once sand grains began to 

move, individuals ceased feeding.  The other two flow speeds were selected based 

on expected changes in boundary layer dynamics.  In a flume containing a smooth 

bed of sand without animals the flow was predicted to be fully turbulent at 15 cm 

s
-1

 with a Reynolds number of 5600 (Re = UR/ , where U = free-stream velocity, 

R = hydraulic radius and  = kinematic viscosity). In contrast, at 2 cm s
-1

 (Re ~ 

700) the flow should to be close to laminar and at 5 cm s
-1

 (Re ~ 1800) transitional 

between the two (600 < Re < 2400) (Boudreau & Jørgensen 2001). Because mean 

flow speed varied slightly with Austrovenus density due to changes in bed 

roughness (see results) I refer to flow treatments as low (2 cm s
-1

), medium (5 cm 

s
-1

) and high (15 cm s
-1

). Bed CR experiments were duplicated at 0, 100, 500 and 

1000 ind. m
-2

 at each flow speed, but for the other density treatments only one set 

of measurements were obtained.  The flow speed/density combinations were 

randomised during the six week study period (May/June 2009). 

 Prior to each experimental run, Austrovenus individuals were collected 

from Raglan Harbour (37º48’S 174º52’E), North Island, New Zealand, on a 

morning low tide and transferred to the laboratory within one hour. Individuals 

between 20 to 25 mm shell height were selected (a range that typifies mid to 

lower intertidal regions where Austrovenus densities are greatest; C. Pilditch 

unpublished data) and scraped clear of any epibiota (e.g. barnacles, anemones). 

Each flume was filled with wet, clean sand (median grain size diameter 500 µm) 
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to a depth of 5 cm and the surface smoothed.  Austrovenus were spread evenly 

around the flume with their posterior end pressed gently into the sediment to 

encourage burial.  A piece of ‘bubble wrap’ cut to the annulus dimensions was 

placed on the sediment surface and filtered artificial saltwater was carefully 

pumped onto the sheet which floated off without disturbing the sediment.  The 

final water depth in the flume was 20 cm.  The animals were left in the flume 

overnight to bury, at a flow speed of 5 cm s
-1

 and gentle aeration was provided by 

air stones. The following morning the flume was carefully drained without 

disturbing the sediment surface, animals that had failed to bury (usually only two 

or three in the high density treatments) were removed and the flume refilled with 

fresh seawater in preparation for the clearance rate measurements (by which time 

the animals had been starved for 24 h).  Throughout the experiments natural light 

cycles were supplemented during the day with low level fluorescent light, and 

mean water temperature (14. 8  1.7 C) and salinity (31) in the flumes were 

maintained at a range similar to that observed at the collection beach (T = 13.1 - 

15.9 C, S = 31.4 - 31.6). 

 

2.2.4 Bed clearance rate measurements 

 Bed CRs were determined by measuring the decline in phytoplankton 

chlorophyll a (chl a) concentration at regular intervals in the flumes. Based on 

preliminary measurements I varied the duration and sampling frequency of each 

experiment with Austrovenus density.  For the high density (  500 ind. m
-2

) 

treatments chl a samples were collected every 5 min for a total of 30 min; for the 

mid density treatment (247 ind. m
-2

) every 10 min for 60 min and for the low 

density treatments (  100 ind. m
-2

) every 15 min for 90 min. The advantage of 

taking time series measurements, as opposed to start and end points only, was that 

any fluctuation in bed CR due to reduced phytoplankton concentrations would 

have been readily apparent. To accommodate the circatidal rhythm in Austrovenus 

(Beentjes & Williams 1986) the midpoint of each experimental run coincided with 

the expected high tide in Raglan Harbour. 

 The microalga Nannochloropsis sp (cell dia. = 2 – 4 µm; Reed Instant 

Algae ) was added to the flumes at an initial chl a concentration of 25  3 µg L
-1

.  

This concentration is somewhat higher than typically found in New Zealand 
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estuaries (~ 2 - 8 µg L
-1

) but during phytoplankton blooms such concentrations are 

not uncommon (Vant 1990, Vant & Safi 1996). The algae were allowed to mix for 

5 min at a flow speed of 5 cm s
-1

 before setting the flow speed for the 

experimental run and collecting the first set of samples. Fifty mL water samples 

were taken from sampling ports in the flume wall located 1, 2.5, 5, 10 and 15 cm 

above the bed and prefiltered through a 40 m mesh to remove faeces and 

pseudofaeces before measuring in vivo fluorescence on a Turner Designs  Model 

10-AU Fluorometer. Samples collected from the 5 cm port were filtered through a 

Whatman GF/C filter, frozen and later analysed for chl a following the methods of 

Parsons et al. (1984). The resulting regression between extracted chl a 

concentration (µg L
-1

) and in vivo fluorescence (r
2
 = 0.89, n = 83) allowed me to 

express in vivo measurements at the other sampling heights in terms of chl a 

concentration.  Saltwater was added to the flume after each set of samples to 

replace the water removed and the dilution accounted for in CR calculations.  At 

the end of each run five clams were measured, dried at 60 ºC for 24 h, and then 

ashed at 550 ºC for 5 h to obtain an estimate of dry weight (g DW) and ash free 

dry weight (g AFDW).  

 

 Bed CR (L m
-2

 h
-1

) were calculated from the decline in chl a concentration 

using the following equation:  

 

N*t

ClnClnV*B
CR Bed 21  

 

where, B = treatment (i.e. bed) density (ind. m
-2

) , V = volume of water in the 

flume (L), C1 and C2 are the chl a concentrations at the start and end of each time 

increment respectively, t is the time (h) between measurements, and N is the 

number of animals in the flume (Widdows & Navarro 2007). Bed CR were 

corrected for phytoplankton settling/entrainment into the bed using data from runs 

without animals. I did not detect any variation in chl a concentration with height 

above the bed so readings were depth-averaged to derive C1 and C2. Chl a 

concentrations did not decrease below 7 µg L
-1

 and because successive bed CR 

estimates within a run did not decline I averaged the six readings.  Individual 

clearance rate (L h
-1

 ind
-1

) was obtained by removing B from the above equation. 
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At the beginning, middle and end of each run I counted the number of animals 

feeding (i.e. valves open and siphons extended); this allowed me to calculate 

individual CR as a function of the number of animals feeding (CRf) as well as the 

total number of animals in the flume (i.e. feeding and non-feeding individuals; 

CRb).  

 

2.2.5 Near-bed hydrodynamics 

 I used a Sontek micro-Acoustic Doppler Velocimeter (ADV) to quantify 

the effects of bivalve feeding currents, bed density and flow speed on benthic 

boundary layer dynamics.  Logistical constraints prevented me from making CR 

and hydrodynamic measurements concurrently; however the same experimental 

procedures were followed for both sets of measurements.  The number of bed 

density treatments was reduced slightly for the hydrodynamic measurements (0, 

29, 100, 500 and 1000 ind. m
-2

) and replicated once at each flow treatment (low, 

medium and high). In an attempt to quantify the effects of feeding currents on 

near-bed hydrodynamics I made use of the bivalves’ natural circatidal rhythm 

(Beentjes & Williams 1986).  Measurements were made first at the time of low 

tide on the home beach when most animals in the flume were inactive and again at 

high tide in the presence of algae when the majority of animals were feeding. 

Hereafter, ‘low tide’ and ‘high tide’ data refer to measurements taken at the time 

of low or high tide on the home beach. The number of animals open with their 

siphons extended was counted three times during the hydrodynamic 

measurements to confirm that the numbers feeding were comparable with the 

numbers recorded during the clearance rate experiments. 

 A downward looking ADV was mounted mid-channel through the base of 

the flume on a vertical racking system. Previously, the spatial dimensions of the 

sampling volume had been carefully mapped to allow accurate positioning near 

the bed (e.g. Finelli et al. 1999). A velocity profile was recorded (sampling for 20 

s at 25 Hz at nine elevations from 0.7 to 5 cm above the bed) and turbulence 

measurements (sampling at 25 Hz for 163 s) were made at 0.7 cm above the bed 

which was within the log layer (as determined by the velocity profiles), at the low, 

medium and high flow speeds. Turbulence measurements were used to calculate 

bed shear stress using the turbulent kinetic energy (TKE) method as described in 
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Kim et al. (2000) and Pope et al. (2006). TKE is the product of the absolute 

intensity of velocity fluctuations from the mean velocity 

 

222 'w'v'uρ
2

1
TKE  

 

where ρ is the density of the fluid, u  is the fluctuating part of the flow in the 

stream-wise direction, (and v and w denote the cross channel and vertical 

components of the flow, respectively). The ratio of TKE to bed shear stress (τ0) is 

constant   

 

TKECτ 10   

 

where C1 = 0.19 (Pope et al. 2006).  

  

2.2.6 Statistical analysis 

 The number of Austrovenus feeding, and bed and individual clearance 

rates were compared among flow speed treatments using analysis of covariance 

(ANCOVA), with density as a covariate. Homogeneity of the regression slopes 

was tested by fitting a model that related the response variable to flow speed, 

density and the interaction between flow speed and density. If the interaction was 

not significant I proceeded with the ANCOVA. The assumptions of homogeneity 

of variances and normality were tested with Levene’s and Kolmogorov-Smironov 

tests. Where the assumptions were violated variables were log10 transformed. 

Tukey post-hoc tests were performed for significant ANCOVA results on adjusted 

means of flow speed. All statistical analyses were conducted using Statistica 

(Version 8). 

 

2.3 Results 

2.3.1 Number of animals feeding 

 Typically, the number of Austrovenus feeding varied little (by 0 to 20 %) 

during the course of each experimental run so the mean of the three counts 

(beginning, middle and end) was used to calculate the number feeding per m
2
. 

Estimates of the number of animals feeding made during the hydrodynamic 
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measurements and clearance rate measurements were comparable during high tide 

at the home beach and so the data sets were combined for analysis. A positive 

linear relationship between density and number feeding was observed from low to 

medium bed densities (29 to 500 ind. m
-2

), but from medium to high bed densities 

(500 to 1000 ind. m
-2

) the number feeding remained approximately constant 

(Figure 2.1A). At bed densities > 500 ind. m
-2

 a greater proportion (50 to 90 %) of 

animals were feeding at the high flow speed than at the low and medium flow 

speeds (30 to 60 %). A test for homogeneity of slopes on log10 transformed data 

revealed no significant interaction (p > 0.05; Figure 2.1B). ANCOVA results 

indicated that there was a significant effect of density and flow speed (p < 0.001) 

on number of animals feeding (Table 2.1). Tukey post-hoc tests revealed that 

there was no significant difference between the low and medium flow speeds (p = 

0.953), but that number feeding was significantly greater at the high flow speed 

than at the low (p < 0.01) and medium flow speeds (p < 0.01). Adjusted means 

were 132, 138 and 186 ind. m
-2

 for the low, medium and high flow speed, 

respectively. During the hydrodynamic measurements the number of animals 

feeding at low tide was < 10 % of those feeding at high tide allowing me to 

potentially separate out the effects of bivalve induced changes to the bed 

morphology and their feeding currents on near-bed hydrodynamics. 

 

Table 2.1: Analysis of covariance (ANCOVA) results testing the effects of flow speed on 

response variables, with Austrovenus density or log10 density as a covariate  

Response variable Source df MS F p Tukey test
†
 

Log10 number feeding Log10 density 1 4.63 515 <0.001  

Flow speed 2 0.063 7.05 0.001 L = M < H 

Error 23 0.009    

       

Log10 bed clearance rate Log10 density 1 1.68 31.0 <0.001  

Flow speed 2 1.00 18.5 <0.001 L = M < H 

Error 23 0.054    

       

Individual clearance rate 

(CRf) 

Density 1 0.777 24.1 <0.001  

Flow speed 2 0.681 21.1 <0.001 L = M < H 

Error 23 0.032    
†
Tukey post-hoc test results for significant differences between flow speeds (L = low, M 

= medium and H = high) are shown at p < 0.05. 
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Figure 2.1: Number of Austrovenus feeding as a function of bed density and flow speed 

(circles = low, squares = medium, and triangles = high; closed symbols = data from 

clearance rate measurements and open symbols = data from high tide hydrodynamic 

measurements). In (A) the one to one relationship is indicated by the dotted line. The 

fitted lines in the log transformed data (B) are; low flow speed (dotted line) y = 0.77x + 

0.28 (r
2
 = 0.97, p < 0.001), medium flow speed (dashed line) y = 0.80x + 0.21 (r

2
 = 0.96, 

p < 0.001), and for high flow speed (solid line) y= 0.92x + 0.05 (r
2
 = 0.98, p < 0.001). 
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2.3.2 Near-bed hydrodynamics 

 Visual observations indicated that the scale of bed roughness (c. 1 cm) did 

not appear to alter with Austrovenus density, although the form of the roughness 

elements did. At low densities the clams created tracks in the sediment up to 20 

cm long and 1 cm deep before burying. At high densities, although tracks were 

short or nonexistent (because the animals typically buried where they had been 

placed) c. 20 % of the animals were partially exposed.  

 Comparison of velocity profiles revealed that with increasing density there 

was a reduction in both near-bed and free-stream velocity at the low, medium and 

high flow speeds, regardless of whether or not Austrovenus were feeding (Figure 

2.2). The height of the benthic boundary layer (BBL), as evidenced by a 

logarithmic velocity profile, decreased with increasing flow speed (low = 1.5 cm, 

medium = 1.25 cm, high = 1 cm) when measured over a smooth bed. There was 

little effect of Austrovenus density on BBL height at the low flow speed, but BBL 

height increased to 2 cm at the medium and high flow speeds at high Austrovenus 

densities. The effect of feeding on near-bed and free-stream velocity was minimal 

and inconsistent, except at the medium bed density (500 ind. m
-2

) when velocities 

were slightly reduced over feeding animals at low, medium and high flow speeds 

(Figure 2.2).  

 Over smooth sediment (i.e. without clams) bed shear stress increased with 

flow speed (low = 0.0007, medium = 0.0038, high = 0.0314 N m
-2

; Figure 2.3). 

Bed shear stresses also increased with Austrovenus density at low (regression r
2
 = 

0.91, p < 0.05), medium (r
2
 = 0.91, p < 0.05), and high (r

2
 = 0.69, p = 0.08) flow 

speeds (regressions used the average of the low and high tide shear stress 

estimates, n= 5). At low densities there was no clear effect of feeding activity on 

bed shear stress but at the highest density (1000 ind. m
-2

), and at all flow speeds, 

bed shear stresses were higher in feeding compared to non-feeding Austrovenus 

beds.  The relative magnitude of the increase in bed shear stress decreased with 

increasing flow speed. At the low flow speed bed shear stress increased by 78 % 

(from 0.00090 to 0.0016 N m
-2

) when Austrovenus were feeding, but only by 40 

% (from 0.0052 to 0.0073 N m
-2

) and 29 % (from 0.072 to 0.093 N m
-2

) at the 

medium and high flow speeds, respectively (Figure 2.3).   
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Figure 2.2: Flow speed as a function of height above the bed, for each treatment flow 

speed (left panel = low, middle panel = medium and right panel = high), and Austrovenus 

density (A - D). Measurements made when animals were feeding are represented by 

closed symbols and a solid black line and when not feeding by open symbols and a 

dashed line. Profiles recorded over a smooth bed (0 ind. m
-2

) are included for comparison 

as a grey line.  
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Figure 2.3: Bed shear stress as a function of Austrovenus density at low (A), medium (B) 

and high (C) flow speeds.  Measurements made when animals were feeding are 

represented by closed symbols and when not feeding by open symbols. Note y axis scale 

varies amongst plots. 
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2.3.3 Clearance rates 

 Bed CR ranged from 20 to 420 L hr
-1

 m
-2

 across the flow speed and 

density treatments (Figure 2.4A). Bed CR increased with bed density from 29 to 

500 ind. m
-2

, but remained relatively constant from 500 to 1000 ind. m
-2

 (i.e. a 

similar trend to that seen in the number of animals feeding). A test for 

homogeneity of slopes on log10 transformed data revealed no significant 

interaction effect (p = 0.10; Figure 2.4B). ANCOVA results indicated that there 

was a significant effect of density and flow speed (p < 0.001) on bed CR (Table 

2.1). Tukey post-hoc tests revealed a marginally significant difference between 

the low and medium flow speeds (p = 0.071), but bed CR was significantly greater 

at the high flow speed than at the low (p < 0.01) and medium flow speeds (p < 

0.001). Adjusted means were 73.5, 40.8 and 187.0 L hr
-1

 m
-2

 for the low, medium 

and high flow speed, respectively. 

 Individual clearance rate based on the number of animals in the bed (CRb) 

ranged from 0.03 to 1.3 L hr
-1

 ind.
-1

. As with number feeding and bed CR, CRb 

decreased rapidly with increasing bed density up to 500 ind. m
-2

 but remained 

relatively constant from 500 to 1000 ind. m
-2

 (Figure 2.5A). Individual clearance 

rate based on only the animals in the flume that were observed to be feeding (CRf) 

ranged from 0.07 to 1.4 L hr
-1

 ind.
-1 

and there was a linear relationship between 

CRf and density (Figure 2.5B). A test for homogeneity of slopes revealed that 

there was no significant density x flow speed interaction (p = 0.90). ANCOVA 

results indicated that there was a significant effect of density and flow speed (p < 

0.001) on CRf (Table 2.1). Tukey post-hoc tests revealed that there was a 

marginally significant difference between the low and medium flow speeds (p = 

0.062), and that CRf was significantly greater at the high flow speed than at the 

low (p < 0.01) and medium flow speeds (p < 0.001). Adjusted means were 0.54, 

0.34 and 0.88 L hr
-1 

ind.
-1

 for the low, medium and high flow speed, respectively. 
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Figure 2.4: A) Austrovenus bed CR as a function of density and flow speed (circles = 

low, squares = medium and triangles = high). The fitted lines in the log transformed data 

(B) are; low flow speed (dotted line) y = 0.41x + 0.87 (r
2
 = 0.78, p < 0.01), medium flow 

speed (dashed line) y = 0.32x + 0.82 (r
2
 = 0.24, p = 0.183), and for high flow speed (solid 

line) y= 0.75x + 0.42 (r
2
 = 0.90, p < 0.001). 
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Figure 2.5: Austrovenus individual CR estimated by dividing the bed CR by (A) the total 

number of animals in the flume (CRb) and (B) only the animals feeding (CRf), as a 

function of bed density and flow speed (circles = low, squares = medium and triangles = 

high). The fitted lines in (B) are for; low flow speed (dotted lines) y = 0.79 – 0.0005x (r
2
 

= 0.55, p < 0.05), medium flow speed (dashed line) y = 0.54 – 0.0004x (r
2
 = 0.47, p < 

0.05), and for the high flow speed (solid line) y = 1.08 – 0.0004x (r
2
 = 0.52, p < 0.05). 
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2.4 Discussion  

 As I hypothesised, the bed roughness generated by this infaunal species (c. 

1 cm) was less than that of an epifaunal species such as Mytilus edulis (c. 2.5 to 3 

cm; van Duren et al. 2006) and Atrina zelandica (c. 15 to 20 cm; Green et al. 

1998). However, it was still capable of reducing flow speeds, increasing the 

height of the benthic boundary layer, and increasing bed shear stress.  My 

hydrodynamic measurements also suggest that siphonal currents may be able to 

influence vertical mixing and food supply to the bed under certain conditions, i.e. 

high bivalve density and low flow speed. I showed that bed clearance rates (CR) 

were significantly greater at the high flow speed compared to lower current 

velocities, and that individual CR decreases with increasing bed density. The 

latter result suggests that bed filtration rates may be overestimated if scaled up 

from individual CR obtained using animals at low densities. Using the data from 

this study, bed CR at 1000 ind. m
-2

 estimated by scaling up individual CR 

obtained at low densities would be 700 to 1300 L hr
-1

 m
-2

, but I estimated bed CR 

to be two to three times less than that (i.e. 300 to 400 L hr
-1

 m
-2

) in my 1000 ind. 

m
-2

 treatment. Furthermore, I found that both density and flow speed affected the 

proportion of animals in the bed that were actively feeding. This appears to be the 

first time that a feeding parameter has been measured and incorporated into a CR 

study despite acknowledgement in previous research that not all individuals in a 

bed may be feeding at the same time (Dolmer 2000b, Strohmeier et al. 2009, 

Troost et al. 2009b).  

 The proportion of animals that were actively feeding decreased as bed 

density increased, so that only 28 to 61 % of individuals (dependent on flow 

speed) were feeding at high densities. In situ, Austrovenus bed densities 

commonly exceed my highest density treatment (1000 ind. m
-2

) (Hewitt et al. 

1996) and bed density at the collection beach was c. 1500 ind. m
-2

 (author’s 

unpublished data) so my density treatments are not unrealistic. If in high density 

beds Austrovenus cannot all feed at once, and because the animals only feed for c. 

4 hours per high tide, then the reduction in feeding time or missed feeding 

opportunity for an entire high tide is likely to have important implications for 

energy acquisition. 

 Consistent with my expectations I observed increased roughness and bed 

shear stress with increasing bivalve density, especially at high densities and when 
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Austrovenus were feeding. This will increase vertical mixing, thus enhancing food 

supply to the bed and perhaps compensate for the reduced feeding opportunity. 

However, my individual CR estimates suggest that Austrovenus does not derive 

any benefit in high density beds. I found that individual CR deceased with 

increasing density (at low densities individual CR was up to 3 times greater than 

at high densities), most likely due to high re-filtration rates at high densities 

(O'Riordan et al. 1995, Prins et al. 1998, Yu & Culver 1999, Zhou et al. 2006). 

Therefore, it is likely that other advantages are afforded to Austrovenus that exist 

in high density beds, compensating for the reduction in CR. Recent research has 

described the importance of mussel bed structure to food supply by increasing 

resuspension of microphytobenthos (Widdows et al. 2009), and for providing 

protection from predation and resistance to wave disturbance (Widdows et al. 

2002, van de Koppel et al. 2005). Microphytobenthos (MPB) are important 

primary producers in New Zealand’s shallow estuaries, and high densities of 

Austrovenus have been shown to increase MPB production (Sandwell et al. 2009). 

Bioturbation activity by the clams will resuspend MPB, potentially providing the 

bivalve bed with a substantial food source. 

 In addition I found that the number of Austrovenus feeding, and individual 

and bed CRs, were significantly greater at the high flow speed than at the low or 

medium flow speed. An increase in flow speed increases vertical mixing and 

seston supply to the bed (O'Riordan et al. 1993, Wildish & Kristmanson 1997, 

Newell et al. 2001), thereby allowing more animals to feed and CRs to increase. A 

similar effect was measured in situ for mussel (Mytilus edulis) beds – 39 to 66 % 

of mussels were filtering at flow speeds of 1.2 to 2.1 cm s
-1

, but at 3.9 to 6.5 cm s
-

1
 this increased to 75 to 83 % – attributed to an increase in food supply at the 

higher flow speeds (Dolmer 2000b). Although other studies have demonstrated a 

decline in bivalve CR at high flow speeds (e.g. Sobral & Widdows 2000, 

Fernandes et al. 2007), it has typically been observed at speeds much greater (up 

to 45 cm s
-1

) than my “high” flow speed (i.e. 15 cm s
-1

). It is possible that 

Austrovenus CR may decline at flow speeds > 15 cm s
-1

 but my intention was to 

measure the individual and population response in CR to flow speeds commonly 

experienced by these bivalves in situ.  

 In this study, individual CRs were marginally (p = 0.06) greater at the low 

flow speed compared with the medium flow speed, but the number of animals 
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feeding did not vary between the low and medium flow speeds. In a previous 

study with Austrovenus an increase in flow from 1.1 to 6.3 cm s
-1

 (i.e. similar to 

my low and medium flow speeds) also depressed CRs from c. 1.8 to 1.4 L hr
-1

 

ind.
-1

 (Heggie 2008). There is a complex relationship between bivalve siphonal 

currents and boundary layer flow. Previous research suggests that the relationship 

between the degree of re-filtration and flow speed may not be linear, but is related 

to the ratio between siphonal jet velocity and current velocity (Monismith et al. 

1990, O'Riordan et al. 1995, Jonsson et al. 2005). To confound the issue, 

roughness elements may increase turbulent mixing and shear stress (O'Riordan et 

al. 1993, van Duren et al. 2006), or may cause skimming flow, which reduces 

turbulent mixing in the boundary layer (e.g. Eckman 1983, Green et al. 1998, 

Friedrichs et al. 2000, Coco et al. 2006). Based on the rather limited number of 

hydrodynamic measurements made during this study I might speculate that 

siphonal jets can affect vertical mixing at the low flow speed, but not at the 

medium flow speed. As Austrovenus experience low flow speeds whilst feeding 

around slack water at high tide, enhanced vertical mixing rates caused by feeding 

activity during this period would be advantageous, especially as this species has a 

limited feeding opportunity. However, further measurements are needed to 

elucidate this, in particular measurements of the boundary layer dynamics over 

Austrovenus beds in situ.  

 My weight standardised CRs of 0.5 – 7 L hr
-1

 g DW
-1

 are very similar to 

those obtained for another infaunal bivalve species (Cerastoderma edule; 0 – 7 L 

hr
-1

 g DW
-1

) in a flume study (Fernandes et al. 2007). Previous CR studies have 

often incorporated flow but CR estimates obtained from laboratory experiments 

(which often use high food concentrations), are likely to be greater than in situ 

rates because seston quantity and quality can be significant factors affecting CR 

(e.g. Hawkins et al. 1999, Cranford 2001, Hawkins et al. 2001). For example, CRs 

based on laboratory experiments with algal cell diets were 320 to 1365 % higher 

than in situ rates (Cranford & Hill 1999). In my study the animals were starved for 

24 hours prior to running the experiments and were fed a relatively high 

concentration of pure phytoplankton, not the mix of inorganic and organic 

particles found in estuarine seston, so I accept that the CRs calculated in my study 

are also likely to be overestimates. In addition, other environmental variables such 

as salinity, temperature, and pollution can affect bivalve CR (e.g. Bayne 1998, 
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Widdows 2001), but the effect of these on Austrovenus CR were beyond the scope 

of my study.  

 The formation of a concentration boundary layer (i.e. a phytoplankton 

depleted region) over bivalve beds has been well documented in situ (Fréchette et 

al. 1989, Dolmer 2000a, Jonsson et al. 2005, Jones et al. 2009), and in laboratory 

studies (O'Riordan et al. 1993, Butman et al. 1994, O'Riordan et al. 1995) for both 

epifaunal and infaunal species. However, in this study vertical profiles of chl a 

concentration always showed the water column to be well mixed. Even at the low 

flow speed I did not observe a chlorophyll depleted layer over the bivalves, a 

feature described in some clearance rate studies using annular flumes (Sobral & 

Widdows 2000, Widdows & Navarro 2007), but not in others (Fernandes et al. 

2007). The reason why I did not detect such a layer is unclear. Current velocities 

< 2 cm s
-1

 (i.e. lower than my “low” flow speed) may have been required to 

produce a concentration boundary layer (in previous studies in which it was 

detected flow speeds were typically ≤ 2 cm s
-1

). Alternatively, my ability to detect 

that feature may have been limited because the bed roughness generated by my 

study species (1 cm) was similar to the height of the benthic boundary layer (1 to 

2 cm) and the height of my lowest sampling port (1 cm). It is also possible that the 

siphonal jets created enough vertical mixing to prevent the formation of a layer of 

chlorophyll depleted water, suggested by the increase in bed shear stress over 

feeding Austrovenus at high densities.  

 I recognise that annular flumes generate a benthic boundary layer that is 

vertically compressed compared with other types of flume (e.g. straight or 

racetrack; Jonsson et al. 2006, Fernandes et al. 2007). However, larger flumes are 

subject to measurement error due to the small test section area relative to total 

water volume, and so are less appropriate for feeding experiments. Also, as 

hydrodynamic conditions change constantly on intertidal flats due to tidal forces 

and wind driven currents, and as water depths are shallow (between 0 and 2 m) 

over Austrovenus beds in situ, flumes that produce a larger logarithmic boundary 

layer are not necessarily representative of field conditions. It is thought that field 

conditions are properly represented in laboratory studies when bed shear stress, 

mean flows and bottom roughness values are matched to field values (Monismith 

et al. 1990, Jonsson et al. 2006). A recent study has demonstrated that for a range 

of naturally occurring flow speeds the Plymouth annular flumes generate a similar 
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level of bed shear stress to that observed in situ on intertidal flats (Pope et al. 

2006).  

 Bed clearance rates at average Austrovenus bed densities, c.700 ind. m
-2

 

(Hewitt et al. 1996), were between c. 300 and 400 L m
-2

 h
-1

 at my high flow 

speed, and between c. 20 and 200 L m
-2

 h
-1

 at my low and medium flow speeds. 

Though I accept that my results are likely to overestimate actual CRs, these rates 

are of a similar magnitude to the population filtration rates calculated for a mussel 

(Mytilus edulis) bed in situ, i.e. 280 - 950 L m
-2

 h
-1

, at bed density of c. 470 ind. 

m
-2

 and velocities similar to my low and medium flow speeds (Dolmer 2000b). 

My results show that bed CR did not scale proportionally with density (i.e. bed 

CR at 1000 ind. m
-2

 were only 2 to 3 times those at 100 ind. m
-2

). Dolmer (2000b) 

also found that actual population filtration rates were a fraction (27 to 98 %) of 

population filtration capacity because not all mussels in the bed were feeding at 

the same time. However, I have provided evidence that it is the negative effect of 

density on individual CR, as well as on the percentage of animals feeding that is 

responsible for the disproportionate effect of density on bed CR.  

 The capacity of bivalve populations to control phytoplankton biomass in 

coastal ecosystems has often been estimated based on the assumption the bivalves 

filter continuously at a maximum rate (e.g. Officer et al. 1982, Hily 1991, Dame 

1993, Dame & Prins 1998). The problem with this approach is that there is a 

growing body of evidence to show that CRs are regulated in response to 

environmental variables such as changes in flow speed (e.g. Dolmer 2000b, 

Sobral & Widdows 2000, Fernandes et al. 2007), and seston quantity and quality 

(e.g. Navarro & Widdows 1997, Dolmer 2000a, Hawkins et al. 2001). Although 

most of these studies have been conducted in the laboratory, in situ studies have 

also shown that population filtration rates are often much less than population 

filtration capacity (Cranford & Hill 1999, Dolmer 2000b). My results support 

those studies by showing that bed density and flow speed can significantly affect 

CR and the proportion of bivalves in a bed that are actively feeding.  Both 

variables need to be considered when estimating the impact of Austrovenus 

populations on estuarine ecosystems. 
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CHAPTER 3 

 

Sedimentary environment influences the effect of 

Austrovenus stutchburyi on estuarine ecosystem 

function 
 

 

3.1  Introduction 

 Estuaries are highly productive ecosystems that play a major role in 

biogeochemical cycles, but are subject to multiple stressors that will likely be 

exacerbated by climate change and expanding human habitation of coastal areas 

(Gray 1997, Levin et al. 2001, Kennish 2002). Although the effects of 

contaminants, invasive species, coastal alteration and development might be 

restricted to estuaries near large population centres, enhanced sedimentation rates 

threaten many estuaries, even when there have been only moderate levels of 

catchment development (Kennish 2002). Deposition of large amounts of terrestrial 

sediments during storm events smother benthic communities, and elevated levels 

of suspended sediments reduce primary productivity and detrimentally affect 

suspension feeders (e.g. Ellis et al. 2002, Norkko et al. 2002, Norkko et al. 2006). 

More pervasive and perhaps less obvious is the long term degradative change in 

the form of increasing muddiness that alters estuarine habitats and communities 

(Thrush et al. 2003b, Thrush et al. 2004).  

 If habitat change does lead to decreasing biodiversity, then that alone may 

cause shifts in ecosystem structure and function (Loreau et al. 2001, Naeem 2002, 

Hooper et al. 2005). However, in many cases it has been shown in estuarine 

systems that certain key species, rather than biodiversity per se, can have a 

disproportionate effect on indicators of ecosystem functioning such as nutrient 

cycling and productivity (e.g. Widdicombe & Austen 1998, Lohrer et al. 2004, 

Thrush et al. 2006). Although the loss of key species likely has important 

implications, many estuarine species exist across a range of sediment types 

(Thrush et al. 2003b). Habitat change may not necessarily then cause species loss 

but might more subtly affect ecosystem function by alteration of a species’ 

functional role. For example an estuarine bioturbating crab (Austrohelice crassa) 

displays functional plasticity, acting as a bioturbator in sandy sediments and as a 
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bioirrigator in muddy cohesive sediments (Needham et al. 2010). Thus, the 

influence of this species on biogeochemical exchange and microbial communities 

is likely to differ between habitat types (Needham et al. 2011). However, most 

studies to date are restricted temporally and spatially making it difficult to 

understand the effects of habitat change on a key species’ influence on ecosystem 

function. In this study I examined the effect of a suspension feeding bivalve on 

ecosystem function at two sites with contrasting sediment properties, in winter 

and in summer. As sedimentation alters estuarine habitats by increasing sediment 

mud content I used a site with muddy-sand sediments as a proxy for habitat 

change, to compare with a site comprising only sandy sediment. 

 Suspension feeding bivalves can act as key species in estuarine ecosystems 

by exerting top-down control on phytoplankton populations, affecting rates of 

nutrient regeneration, contributing to benthic-pelagic coupling, and providing an 

important food source for higher trophic levels (reviewed by Newell 2004). 

Furthermore, accumulation of biodeposits and altered redox environments in 

sediments underlying bivalve beds may enhance sediment denitrification rates, the 

microbial reduction of NO3
- 
to N2 gas, which permanently removes fixed nitrogen 

from an ecosystem; thus, suspension feeding bivalves can also exert a bottom-up 

control on phytoplankton populations (e.g. Newell et al. 2002). Loss of 

suspension feeding bivalve populations has resulted in large shifts in ecosystem 

structure and function. For example, in Chesapeake Bay, USA, loss of eastern 

oyster (Crassostrea virginica) beds has substantially increased the incidence of 

phytoplankton blooms, sometimes resulting in the occurrence of deep-water 

hypoxia (e.g. Jackson et al. 2001, Kemp et al. 2005). Conversely, invasion of 

aquatic systems by non-native suspension feeding bivalves, such as by the Asian 

clam (Potamocorbula amurensis) in San Francisco Bay and the zebra mussel 

(Dreissena polymorpha) in many freshwater systems in the USA, has resulted in 

reduced phytoplankton biomass (e.g. Alpine & Cloern 1992, Barbiero et al. 2006). 

 In New Zealand estuaries the dominant suspension feeding bivalve is the 

native clam Austrovenus stutchburyi (hereafter Austrovenus), which commonly 

exists in high-density beds covering large areas of intertidal flats; typical bed 

densities average c. 1000 ind. m
-2

, although peak densities may be 2000 - 3000 

ind. m
-2

 in some areas (Hewitt et al. 1996, Whitlatch et al. 1997). Austrovenus is 

an infaunal species that bioturbates surficial sediments through vertical and 
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horizontal movement, but has very short siphons and so lives close to the 

sediment surface (< 5 cm). Austrovenus beds are found across a range of sediment 

types, although very high levels of sedimentation adversely affect abundance 

(Thrush et al. 2003b). Austrovenus has been shown to be a key species influencing 

sediment stability, solute fluxes and macrofauna community structure as well as 

enhancing microphytobenthos productivity (Thrush et al. 2006, Sandwell et al. 

2009). However, populations are declining in some areas likely due to chronic 

sedimentation, pollution and over-harvesting (De Luca-Abbott 2001, Norkko et al. 

2006, Cummings et al. 2007). 

 In this study I manipulated the presence or absence of Austrovenus in situ 

at two estuarine sites, both with nearby high-density Austrovenus beds, but with 

contrasting sediment properties. My aim was to see if the role of this key species 

in ecosystem functioning was the same at a sandy site (a proxy for a habitat 

unimpacted by sedimentation) and at a muddy-sand site (a proxy for a habitat 

affected by a moderate level of sedimentation). In winter and summer, light and 

dark benthic chambers were used to quantify the effect of Austrovenus on O2 and 

nutrient (NH4
+
, NO3

-
, NO2

-
, PO4

3-
) fluxes, and to estimate gross primary 

production and nutrient uptake rates. Additionally, denitrification enzyme activity 

(DEA) assays were used to quantify the effect of Austrovenus on maximum 

sediment denitrification potential. Previously, high Austrovenus densities have 

been shown to enhance ammonium efflux which supported higher rates of 

microphytobenthos (MPB) production (Sandwell et al. 2009). Additionally, I 

expected increased rates of primary production and nutrient cycling in summer 

compared to winter due to increases in macrofaunal, microbial and photosynthetic 

activity (Thrush et al. 2003b). Greater retention of bivalve biodeposits was 

predicted for the more sheltered muddy-sand site. Microbial decomposition of 

biodeposits may result in enhanced nutrient regeneration and a stimulation of 

primary production (Giles & Pilditch 2006). Alternatively, biodeposit 

decomposition can elevate denitrification rates through coupled nitrification-

denitrification, thus reducing primary production (Newell et al. 2002). The use of 

large experimental plots (16 m
2
) to reduce confounding edge effects (e.g. Thrush 

et al. 2006, Sandwell et al. 2009) will enhance our understanding of the relative 

importance of the dynamics of these different habitat types. 
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3.2 Methods 

3.2.1 Study site and experimental set up 

 Tauranga Harbour is a large (200 km
2
) barrier-enclosed estuary on the 

north-eastern coast of New Zealand. I manipulated the presence or absence of 

Austrovenus at two sites with differing sedimentary characteristics on lower-mid 

intertidal flats in the harbour (Figure 3.1). The sandy site (37°27.77’S 

175°57.90’E) was located near the northern harbour entrance and was composed 

of medium sands with no mud content (defined as the silt/clay fraction < 63 µm 

grain size). The muddy-sand site (37°29.20’S 175°56.73’E) was located 3 km up 

the estuary in the entrance of a small inlet and was composed of fine sands with c. 

13 % mud content. Mean tidal currents at the sandy site were 13.2 cm s
-1

 (peak 

flow was 35 cm s
-1

), and at the muddy-sand site were 7.2 cm s
-1

 (peak flow was 

18 cm s
-1

), as determined by deployment of a FSI current meter that included a 

spring and a neap tidal phase. Tides in the harbour are semi-diurnal and the mean 

immersion period at each site is 8 h. Water temperature in Tauranga Harbour 

typically fluctuates between 13 °C in mid-winter (July/August) and 22 °C in mid-

summer (January/February) (Greig et al. 1988).  

 

 

 

Figure 3.1: Location of sites (indicated by a star) in Tauranga Harbour, New Zealand.  

Sd = Sandy site, Ms = Muddy-sand site. 
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 In June 2009, at both sites, six 4 m × 4 m plots separated by 1 m were 

established in a line parallel with the channel. Austrovenus addition and removal 

treatments were alternated along the transect. The experimental plots were 

established on areas of sandflat where ambient Austrovenus densities were low (c. 

300 ind. m
-2

), but were within 20 m of in situ high-density Austrovenus beds. 

Preliminary observations indicated that densities in the natural beds were c. 600 - 

1200 ind. m
-2

 at the sandy site, and c. 2000 - 3000 ind. m
-2

 at the muddy-sand site. 

I noted however that Austrovenus individuals were larger at the sandy site. I 

intended to raise the density in addition plots so that so that densities were 

comparable with natural densities for the sites, and so that biomass (and therefore 

first order excretory and respiration contribution to solute fluxes) was comparable 

between sites. Therefore, to create the addition treatments (+AS) Austrovenus 

were collected from the nearby natural beds and transplanted to the plots during 

the same low tide to raise the density to c. 700 ind. m
-2

 at the sandy site and c. 

2000 ind. m
-2

 at the muddy-sand site. Almost all the animals had buried into the 

sediment by the following day’s low tide, and I observed no obvious Austrovenus 

mortality in the days and weeks following the transplants. To create the removal 

treatments (-AS) all Austrovenus were manually removed by finger plowing the 

sediment, minimising the impact of the manipulation on ambient macrofauna 

(Thrush et al. 2006), which was repeated the following day to ensure almost total 

removal. Plastic mesh fences (15 cm in height) were buried 10 cm into the 

sediment around the perimeter of each plot to prevent the migration of adult 

Austrovenus. The large mesh size (1 cm) and short height (5 cm above sediment) 

of the fencing was used to minimise effects on water flow (Miller & Gaylord 

2007) and restrictions on the movement of smaller sized macrofauna. The 

Austrovenus manipulation was undertaken 6 weeks prior to the winter (August 

2009) and summer (February-March 2010) benthic chamber incubations (see 

below) to allow the sediment and resident macrofauna to recover from the effects 

of the manipulation (Thrush et al. 2006). 

 

3.2.2 In situ chamber incubations 

 To measure the response of the soft-sediment systems to the Austrovenus 

manipulations, O2 and nutrient fluxes were measured in light and dark benthic 

chambers. One light and one dark chamber was deployed to each of the six plots 
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per site on two consecutive days in both winter and summer. Chambers were 

placed at least 1 m inside each plot’s fence to avoid edge artefacts (e.g. Hulberg & 

Oliver 1980, Hall et al. 1990). The four incubations per plot (1 light plus 1 dark 

on 2 consecutive days) came from four distinct locations so that the same 

sediments were never resampled. Benthic chamber incubations took place during 

midday high tides when benthic algal activity was expected to be high. 

 The incubation chambers (square chambers with domed lids enclosing 

0.25 m
2
 sediment and 35 L of mechanically-stirred overlying water) have been 

described previously (Lohrer et al. 2004). Chamber bases were deployed during 

the low tide just prior to the incubation, and lids were attached during the 

incoming tide when water depth was c. 0.5 m. Measurements commenced 2 h 

before high water and continued for 4 h; Austrovenus exhibits a circatidal rhythm 

whereby feeding is limited to this period (Beentjes & Williams 1986). Initially, 

and once per hour during the incubation, a 60 mL water sample was carefully 

collected from each chamber using a Luer Lok syringe, without allowing any air 

bubbles to enter the syringe. O2 concentration was measured immediately with a 

hand held dissolved O2 probe (PreSens Fibox 3 PSt3) and the water was then 

filtered through a Whatman GF/C filter, stored on ice in the dark and frozen that 

day for later analysis of nutrients (NH4
+
, NO3

-
, NO2

-
, PO4

3-
) on a Thermo 

Scientific Aquakem 200 discrete analyzer. Water column effects on O2 and 

nutrient concentrations were found to be negligible based on incubation of 

ambient water in light and dark water bottles (1 L) for the same length of time and 

at the same depth as the chamber incubations. O2 and nutrient fluxes were 

calculated from the slope of the regression between concentration and incubation 

time, corrected for dilution of chamber water that occurred during each of the five 

60 ml samplings. Additionally, HOBO
 
light meters and TidBit  temperature 

loggers were fitted to the outside of randomly selected chambers during the 

experiments. 

 After chamber deployment 16 surface sediment samples (1 cm depth) were 

taken from within each chamber footprint using a small syringe core (2.5 cm 

diameter). Samples were pooled and frozen for later analysis of pigments, grain 

size, organic matter, nitrogen and organic carbon content. One large core (13 cm 

diameter, 15 cm depth) was collected for macrofauna analysis, sieved on a 0.5 

mm mesh and preserved in 70 % isopropyl alcohol with Rose-Bengal stain. A 
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second large core was collected for sediment denitrification and DEA assays (see 

below) and an additional estimate of Austrovenus density (sieved on a 1 mm 

mesh). For light chamber cores only, the surficial 5 cm of sediment was placed in 

airtight bags, kept cool and transported to the laboratory that evening for 

denitrification assays. 

 

3.2.3 Sediment denitrification assays 

 Sediment denitrification rates were quantified within 24 h of collection 

using the chloramphenicol-amended acetylene (C2H2) inhibition technique 

(Knowles 1990, Inwood et al. 2005, Bruesewitz et al. 2006). Although this 

technique results in underestimation of actual denitrification rates due to blocking 

of nitrification by the C2H2, it has proven reliable for comparison of 

denitrification activity between treatments, sites and seasons as well as measuring 

nutrient limitation of denitrification (e.g. Bernot et al. 2003, Bruesewitz et al. 

2009). For each sediment sample (5 cm depth core from light chambers) 30 mL of 

homogenized sediment was combined with 25 mL unfiltered site water in 

preserve jars modified with an n-butyl rubber septa in the lids (n = 6 per 

treatment, per site, per season). Chloramphenicol was added to the jars to suppress 

de novo enzyme production and the jars were purged with ultra-pure helium for 

10 min to ensure anoxic conditions. Pure C2H2 was added to the jar headspace to 

prevent the conversion of N2O to N2 and gas samples were collected hourly 

beginning 10 mins after the addition of the C2H2 for 4 h. To maintain a constant 

pressure the headspace was replaced with a mixture of helium and C2H2 after each 

sample. The gas samples were analysed for N2O using a Varian CP 3800 gas 

chromatograph equipped with a HayeSep D column and electron capture detector. 

Denitrification rates were calculated from the linear increase in N2O concentration 

over time, normalized to the sediment surface area. To determine whether 

sediment denitrification was limited by nitrate or carbon additional jars, prepared 

identically to those above, were amended with additional nitrate (as potassium 

nitrate 10 mg N L
-1

), carbon (as glucose 12 mg C L
-1

) or both nitrate (10 mg N L
-

1
) and carbon (12 mg C L

-1
). The DEA measurements were determined from the 

rates measured in the samples amended with nitrate and carbon (+N+C). DEA 

provides a measure of maximum denitrification potential by providing optimized 
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conditions in anoxic, +N+C-amended slurries, valuable for making across-site 

comparisons (Groffman et al. 2006, Bruesewitz et al. 2011). 

 

3.2.4 Laboratory analyses 

 Sediment chlorophyll a (chl a) and phaeopigment content were determined 

by extraction in 90 % acetone and measurement of fluorescence before and after 

acidification on a Turner Designs 10-AU fluorometer (Arar & Collins 1997). 

Organic matter content (OM) was determined from dried (60 ºC for 24 h) and 

ashed (550 ºC for 4 h) sediment samples. Sediment grain size was measured on a 

Malvern Mastersizer-S after preparing the samples with 10 % hydrogen peroxide 

to remove OM, removal of the >1 mm fraction, and addition of calgon to disperse 

the particles (Singer et al. 1988). Organic carbon (OC) and total nitrogen (N) was 

measured on a LECO CHN analyser after removal of carbonate carbon from the 

samples by acidification with 1M hydrochloric acid (Ryba & Burgess 2002). 

Macrofauna samples were sorted into six broad taxonomic groups; Austrovenus, 

other bivalves, mudflat anemones (Anthopleura aureoradiata), annelids, 

crustaceans and gastropods counted and weighed (blotted wet weight). The weight 

of the bivalves included their shells. Austrovenus density and biomass in each 

chamber was estimated from the mean of the two large sediment cores. 

 

3.2.5 Data analysis 

 To eliminate pseudo-replication, one representative value for each 

chamber type per plot was obtained prior to statistical analysis by averaging the 

data from the two light and two dark chambers deployed per plot. Sediment O2 

and nutrient fluxes in the light and dark chambers were analysed separately. Net 

primary production (NPP) and sediment oxygen consumption (SOC) were defined 

as the O2 flux in light and dark chambers respectively, and gross primary 

production (GPP) was estimated from NPP-SOC.  GPP was standardised by the 

sediment chl a content to account for variations in microphytobenthos biomass. 

Nutrient uptake rates were estimated, (the difference between dark chamber flux 

and light chamber flux), to quantify usage by microbes and microphytes living in 

surficial sediments. 

 The response variables (NPP, SOC, GPP, nutrient fluxes and uptake, and 

sediment DEA) were analysed using 3-factor analysis of variance (ANOVA), with 
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treatment (+AS, -AS), site (sandy, muddy-sand), and season (winter, summer) all 

considered as fixed factors. Any non-significant interaction terms of the highest 

order were removed and the analysis repeated. When the overall ANOVA was 

significant at α = 0.05, pairwise comparisons were performed using Tukey post-

hoc tests. For sediment denitrification, 2-factor ANOVA by presence or absence 

of nitrate (N) or carbon (C) was used to identify the limiting nutrient. Single 

nutrient limitation by N or C is identified with a significant result for that 

treatment, and co-limitation is identified by a significant interaction term (Tank & 

Dodds 2003). One-factor ANOVA were used to compare sediment properties, 

Austrovenus density and biomass between sites, seasons and treatments 

separately. In all tests, normality and homogeneity of variances were evaluated 

with Kolmogorov-Smironov tests and by plotting of residual versus predicted 

values. Variables were log or square root transformed where required. All 

statistical analyses were performed using Statistica (Version 8, Statsoft Inc., 

2008). 

 

3.3 Results 

3.3.1 Macrofauna abundance and biomass 

 Austrovenus density in +AS plots ranged from c. 500 to 1000 ind. m
-2

 at 

the sandy site and from c. 1800 to 2500 ind. m
-2

 at the muddy-sand site (Figure 

3.2). Small-scale spatial heterogeneity in Austrovenus density is characteristic of 

natural Austrovenus beds, as the adults tend to be aggregated rather than randomly 

or uniformly distributed (e.g. Hewitt et al. 1996). However, I expected the large 

size of my experimental plots (16 m
2
) to affect the sediment biogeochemical 

environment at a scale larger than the chamber footprints (0.25m
2
). Although I did 

not achieve total removal in -AS plots, Austrovenus density and biomass were at 

least an order of magnitude less than in the +AS plots. 

 Regardless of site or season, Austrovenus density and biomass were 

significantly greater in +AS compared to -AS plots (1-factor ANOVA, p < 0.001). 

Densities in +AS plots were equivalent to planned densities, i.e. mean 

Austrovenus density in +AS plots was significantly lower at the sandy site (700 

ind. m
-2

) compared to the muddy-sand site (2000 ind. m
-2

, p < 0.001). Mean 

Austrovenus shell length (± SD) was significantly greater at the sandy site, 23.3 (± 

1.0) mm, compared to the muddy-sand site, 17.7 (± 1.1) mm, (p < 0.001). Thus, as 
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expected, mean biomass in +AS plots (c. 2300 g ww m
-2

) was not significantly 

different between the two sites (p > 0.05). There was no significant seasonal 

difference in Austrovenus density, size or biomass at either site (p > 0.05). 

 

 

 

Figure 3.2: Mean (+ 1 SD; n = 3) Austrovenus abundance (A) and biomass (B) in 

Austrovenus addition (+AS; grey fill) and removal (–AS; no fill) plots as a function of 

site and season. 

 

 Abundance of other macrofaunal groups was dominated by annelids, 

Anthopleura aureoradiata (mudflat anemones, attached to the Austrovenus shells) 

and crustaceans (mostly barnacles, also attached to the Austrovenus shells) at the 
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sandy site; annelids and other bivalves dominated at the muddy-sand site (Figure 

3.3A). Austrovenus comprised c. 90 % of the mean total macrofaunal biomass in 

the +AS plots. Other than Austrovenus the biggest contributors to macrofaunal 

biomass were Anthopleura in +AS plots at the sandy site, other bivalves in -AS 

plots at the sandy site, and other bivalves in both +AS and -AS plots at the 

muddy-sand site (Figure 3.3B).  

 

 

 

Figure 3.3: Mean (+ 1 SD; n = 3) macrofauna abundance (A) and biomass (B) in 

Austrovenus addition (+AS) and removal (–AS) plots as a function of site and season. 



42 

3.3.2 Environmental variables 

 There were large differences in water temperature and photosynthetically 

active radiation (PAR) between winter and summer, but little difference between 

sites in either season. Conversely, there were large differences in sediment 

properties between sites, but not between winter and summer (Table 3.1). Water 

temperature was greater in summer (c. 22 °C) than in winter (c. 14 °C). Levels of 

PAR were also much greater in summer (c. 1370 µmol photons m
-2

 s
-1

) than in 

winter (c. 80 µmol photons m
-2

 s
-1

). Regardless of season or Austrovenus 

treatment, median grain size was significantly lower at the muddy-sand site (c. 

220 µm), compared to the sandy site (c. 420 µm, 1-factor ANOVA, p < 0.001). 

Mud, OM, OC, N, chl a and phaeopigment content were all significantly greater 

at the muddy-sand site (p < 0.001). I did not detect a significant effect (α = 0.05) 

of Austrovenus treatment on any sediment properties at the sandy site. However, 

at the muddy-sand site, in both winter and summer, grain size was greater (p < 

0.05) and mud content was lower (p < 0.05) in +AS than -AS plots. Also at the 

muddy-sand site, OM content was lower in +AS plots than in -AS plots, although 

the effect was only marginally significant (p = 0.088 in winter, p = 0.075 in 

summer). 
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Table 3.1: Environmental variables as a function of site, season and treatment  

Environmental variable Treatment Sandy Site Muddy-sand site 

  Winter Summer Winter Summer 

Median grain size (µm) +AS 447 (38) 393 (20) 222 (8) 262 (14) 
 –AS 463 (50) 389 (62) 195 (15) 221 (14) 

Silt/clay (%) +AS 0.0 (0.0) 0.0 (0.0) 10.8 (0.4) 9.1 (1.2) 

 –AS 0.0 (0.0) 0.6 (1.0) 17.0 (2.0) 13.6 (2.1) 

Organic matter (%) +AS 1.1 (0.1) 1.0 (0.1) 3.7 (0.3) 3.2 (0.1) 

 –AS 1.2 (0.2) 1.1 (0.3) 4.2 (0.3) 3.4 (0.1) 

Chlorophyll a (µg g dw
-1

) +AS 8.4 (0.5) 8.5 (1.9) 23.7 (1.3) 17.7 (0.7) 

 –AS 8.6 (0.6) 8.2 (3.6) 22.0 (1.6) 14.5 (1.8) 

Phaeopigment (µg g dw
-1

) +AS 2.5 (0.2) 1.4 (0.5) 14.3 (0.4) 7.3 (0.4) 

 –AS 2.5 (0.2) 1.6 (1.0) 15.9 (1.9) 6.0 (0.7) 

Organic carbon (%) +AS 0.15 (0.00) 0.17 (0.01) 0.37 (0.02) 0.31(0.01) 

 –AS 0.16 (0.01) 0.18 (0.02) 0.45 (0.07) 0.34(0.04) 

Nitrogen (%) +AS 0.08 (0.00) 0.09 (0.00) 0.14 (0.01) 0.12(0.01) 

 –AS 0.08 (0.01) 0.09 (0.01) 0.14 (0.01) 0.12(0.01) 

OC:N +AS 2.0 (0.1) 2.0 (0.2) 2.6 (0.2) 2.7 (0.1) 

 –AS 2.1 (0.2) 2.1 (0.0) 3.2 (0.4) 2.8 (0.2) 

Water temperature (°C)  13.9 (13.5 – 14.2) 21.4 (21.0 – 21.6) 14.7 (14.2 – 15.0) 22.6 (22.0 – 23.1) 

PAR (µmol photons m
-2

 s
-1

)  82 (58 – 105) 1330 (560 – 2100) 81 (68 – 93) 1410 (1330 – 1490) 

+AS = Austrovenus addition, –AS = Austrovenus removal, PAR = photosynthetically active radiation, OC:N = organic carbon 

to nitrogen ratio. For water temperature and PAR data represent mean with range measured during chamber incubations in 

parentheses. For sediment properties data represent mean (n = 3) with SD in parentheses. 
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3.3.3 O2 fluxes and GPP 

 In dark chambers there was always an influx of O2 into the sediments, 

indicating sediment oxygen consumption (SOC), however, in light chambers there 

was always an efflux of O2 from the sediments which indicated that net primary 

production (NPP) was greater than zero (Figure 3.4A). There was a significant 

treatment effect on SOC which was 1.5 × higher in +AS plots compared to -AS 

plots (3-factor ANOVA, p < 0.001, Table 3.2). Post-hoc analysis of the 

site*season interaction (p < 0.001) revealed that SOC was significantly greater (by 

2.5 ×) in summer than in winter at the sandy site but that there was no significant 

difference between seasons at the muddy-sand site. Comparisons between sites 

within seasons demonstrated that SOC was significantly higher (by 1.7 ×) at the 

sandy than at the muddy-sand site in summer only (in winter there was no 

significant difference). For light chamber O2 fluxes, there was a marginally 

significant site*treatment interaction (p = 0.086).  Closer examination suggested 

that NPP could be greater in +AS plots (compared to -AS plots) at the sandy site 

in summer. There was no indication of treatment effects on NPP in winter at the 

sandy site or at the muddy-sand site in either season. The site*season interaction 

was significant (p < 0.05) with NPP greater (by 2.4 ×) in summer than in winter at 

the sandy site.  There was no significant seasonal effect on NPP at the muddy-

sand site and no significant difference between the sites in either season. 

 Mean GPP ranged from 2.1 to 7.4 mmol O2 m
-2

 h
-1

 at the sandy site, but 

the range was much smaller at the muddy-sand site (3.1 to 3.8 mmol O2 m
-2

 h
-1

). 

When normalised by sediment chl a content (a proxy for primary producer 

biomass), GPP at the sandy site was consistently greater (0.24 to 0.90 mmol O2 µg 

chl a g
-1

 m
-2

 h
-1

) than at the muddy-sand site (0.13 to 0.22 mmol O2 µg chl a g
-1

 

m
-2

 h
-1

, Figure 3.4B). There were significant site*season and site*treatment 

interaction effects on normalised GPP (3-factor ANOVA, p < 0.05, Table 3.2). 

Post-hoc analysis showed that normalised GPP was higher in +AS plots compared 

to –AS plots at the sandy site, (by 1.4 × in winter and by 1.5 × in summer), but 

there was no significant difference between the treatments at the muddy-sand site 

in either season. Between sites within season comparisons demonstrated that 

normalised GPP was greater at the sandy site in both winter (by 2.1 ×) and 

summer (by 3.4 ×). Comparison between seasons within sites demonstrated that 

normalised GPP was greater at the sandy site in summer compared to winter (by 
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2.6 ×), but there was no significant difference between winter and summer at the 

muddy-sand site. 

 

 

 

Figure 3.4: (A) Mean (+ 1 SD; n = 3) O2 fluxes in light (no fill) and dark (black fill) 

chambers in Austrovenus addition (+AS) and removal (–AS) plots, as a function of site 

and season. Positive values represent an efflux out of the sediment, and negative values 

represent an influx into the sediment. (B) Mean (+ 1 SD; n = 3) normalised GPP (light 

minus dark chamber O2 flux) in +AS (grey fill) and –AS (no fill) plots, as a function of 

site and season. 

 

 



 

Table 3.2: 3-factor ANOVA (analysis of variance) results for sediment oxygen consumption (SOC; dark chamber O2 flux), net primary production (NPP; 

light chamber O2 flux) and gross primary production normalised by sediment chl a content (GPP/chl a) 

Variable Source d.f. MS F p Significant Tukey post-hoc test 

      Site Season Treatment 

SQRT SOC Site 1 0.170 12.9 0.002    
 Season 1 1.02 78.2 < 0.001    
 Treatment 1 0.422 32.2 < 0.001   +AS > –AS 
 Site*Season 1 0.482 36.8 < 0.001 Su: Sd > Ms Sd: Wi < Su  
 Site* Treatment 1 0.0287 2.19 0.157    
 Season* Treatment 1 0.0455 3.47 0.080    
 Error 17 0.0131      
         
NPP Site 1 0.364 0.800 0.383    
 Season 1 2.65 5.83 0.027    
 Treatment 1 0.205 0.451 0.511    
 Site*Season 1 2.96 6.51 0.021  Sd: Wi < Su  
 Site* Treatment 1 1.51 3.32 0.086    
 Season* Treatment 1 0.917 2.02 0.174    
 Error 17 0.455      
         
SQRT GPP/chl a Site 1 0.457 86.3 < 0.001    
 Season 1 0.246 46.4 < 0.001    
 Treatment 1 0.024 4.61 0.047    
 Site*Season 1 0.071 13.5 0.002 Su & Wi: Sd > Ms Sd: Wi < Su  
 Site* Treatment 1 0.035 6.60 0.020 +AS & –AS: Sd > Ms  Sd: +AS > –AS 
 Season* Treatment 1 0.006 1.17 0.295    
 Error 17 0.005      
         
Factors are site (Sd = Sandy, Ms = Muddy-sand), season (Wi = Winter, Su = Summer) and treatment (+AS = Austrovenus addition, –AS = Austrovenus 

removal). Values in bold are significant at p < 0.05. Tukey post-hoc tests for significant differences between site, season and treatment are shown at α = 0.05. 

SOC and GPP/chl a were square root (SQRT) transformed. 

4
6
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3.3.4 Nutrient fluxes and uptake 

 In dark and light chambers there was nearly always a net efflux of 

ammonium (NH4
+
) from the sediment, the only exception being some light 

chambers in the +AS plots at the sandy site in summer, when there was a small 

influx (Figure 3.5A). There was a significant treatment effect on dark chamber 

NH4
+
 flux which was 2.6 × greater in +AS plots compared with –AS plots (3-

factor ANOVA, p < 0.001, Table 3.3). Post-hoc analysis of the site*season 

interaction (p < 0.05) showed that dark chamber NH4
+
 flux was greater in summer 

than in winter at both sites (by 1.8 × at the muddy-sand site, and by 3.6 × at the 

sandy site). Comparisons between sites within seasons demonstrated that dark 

chamber NH4
+
 flux was greater (by 2.3 ×) at the muddy-sand site than at the sandy 

site in winter only (in summer there was no significant difference). The effect of 

Austrovenus treatment on light chamber NH4
+
 flux was not consistent across sites 

and seasons (3-factor ANOVA, p < 0.05, Table 3.3).  Post-hoc analysis of the 

site*season*treatment interaction revealed that light chamber NH4
+
 flux was 

significantly greater (by 11.8 ×) in +AS compared to -AS plots at the muddy-sand 

site in summer, but there was no significant difference between treatments in 

winter or at the sandy site in either season. Comparison between sites within 

seasons and treatments revealed that in +AS plots in summer light chamber NH4
+
 

flux was significantly greater at the muddy-sand site; at the sandy site NH4
+
 flux 

was negative (-0.52 µmol m
-2

 h
-1

) indicating a small influx into the sediment, but 

at the muddy-sand site NH4
+
 flux was positive (74.6 µmol m

-2
 h

-1
) indicating a 

large efflux out of the sediment. In contrast, in +AS plots in winter and in -AS 

plots in both seasons, there was no significant difference between the sites. 

 NH4
+
 uptake exhibited a far greater range at the sandy (6 to 105 µmol 

NH4
+
 m

-2
 h

-1
) compared to the muddy-sand site (-9 to 49 µmol NH4

+
 m

-2
 h

-1
; 

Figure 3.5B). The effect of Austrovenus treatment on NH4
+
 uptake was 

inconsistent across sites and seasons (3-factor ANOVA, p < 0.05, Table 3.3). 

Post-hoc analysis of the site*season*treatment interaction demonstrated that NH4
+
 

uptake was significantly increased (by 8 ×) in +AS compared to -AS plots at the 

sandy site in summer, but there was no significant difference between treatments 

in winter. At the muddy-sand site there was no treatment effect in either season. 

Comparison between seasons within treatments and sites revealed that in +AS 

plots at the sandy site NH4
+
 uptake was significantly greater (by 10 ×) in summer 
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compared to winter, but there was no significant difference between the seasons in 

-AS plots. At the muddy-sand site there was no significant difference between the 

seasons in +AS or -AS plots. Comparison between sites within treatments and 

seasons revealed that NH4
+
 uptake was significantly greater (by 3.4 ×) at the 

sandy site in +AS plots in summer, but there was no significant difference 

between the sites in +AS plots in winter.  There was also no significant difference 

between the sites in -AS plots in either season. 

 NH4
+
 is the form of dissolved inorganic nitrogen (DIN) most readily taken 

up by microphytobenthos (MPB) and, as is typically the case in New Zealand 

estuaries, comprised the majority (c. 80 %) of DIN in my samples (Thrush et al. 

2006, Sandwell et al. 2009, Lohrer et al. 2010a). I measured high variation in 

NO3
-
 and PO4

3-
 fluxes (Figure 3.6). Additionally, chamber nutrient concentrations 

were often near instrument detection limits, particularly for NO2
-
 (0.005 µmol L

-

1
), and this led to uncertainty in flux estimates (mean r

2
 < 0.3). There were no 

obvious treatment effects and no further analyses were conducted for NO3
-
, NO2

-
 

or PO4
3-

 fluxes. 
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Figure 3.5: (A) Mean (+ 1 SD; n = 3) NH4
+
 fluxes in light (no fill) and dark (black fill) 

chambers in Austrovenus addition (+AS) and removal (–AS) plots, as a function of site 

and season. Positive values represent an efflux out of the sediment, and negative values 

represent an influx into the sediment. (B) Mean (+ 1 SD; n = 3) NH4
+
 uptake (dark minus 

light chamber NH4
+
 flux) in +AS (grey fill) and –AS (no fill) plots, as a function of site 

and season. 

 



 

 

Table 3.3: 3-factor ANOVA (analysis of variance) results for dark and light chamber NH4
+
 flux and NH4

+
 uptake 

Variable Source d.f. MS F p Significant Tukey post-hoc test 

      Site Season Treatment 

Log10 Dark NH4
+
 Site 1 0.464 16.4 < 0.001    

 Season 1 1.24 44.0 < 0.001    
 Treatment 1 1.52 53.7 < 0.001   +AS > –AS 
 Site*Season 1 0.161 5.70 0.029 Wi: Sd < Ms Sd & Ms: Wi < Su  
 Site* Treatment 1 0.105 3.72 0.071    
 Season* Treatment 1 0.078 2.75 0.116    
 Error 17 0.028      
         
Light NH4

+
 Site 1 7190 15.3 0.001    

 Season 1 172 0.366 0.554    
 Treatment 1 3850 8.19 0.011    
 Site*Season 1 58.7 0.125 0.728    
 Site* Treatment 1 3470 7.39 0.015    
 Season* Treatment 1 2.55 0.005 0.942    
 Site*Season*Treatment 1 2290 4.88 0.042 +AS Su: Sd < Ms  Ms Su: +AS > –AS 
 Error 16 470      
         
NH4

+
 uptake Site 1 1430 2.28 0.151    

 Season 1 13400 21.4 < 0.001    
 Treatment 1 2950 4.69 0.046    
 Site*Season 1 66.0 0.110 0.749    
 Site* Treatment 1 3980 6.32 0.023    
 Season* Treatment 1 1320 2.09 0.168    
 Site*Season* Treatment 1 4990 7.92 0.012 +AS Su: Sd > Ms +AS Sd: Wi < Su Sd Su: +AS > –AS 
 Error 16 629      
         
Factors are site (Sd = Sandy, Ms = Muddy-sand), season (Wi = Winter, Su = Summer) and treatment (+AS = Austrovenus addition, –AS = Austrovenus 

removal). Values in bold are significant at p < 0.05. Tukey post-hoc tests for significant differences between site, season and treatment are shown at α = 0.05. 

Dark NH4
+
 flux was log10 transformed. 

5
0
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Figure 3.6: Mean (+ 1 SD; n = 3) NO3
-
 (A) and PO4

3-
 (B) fluxes in light (no fill) and dark 

(black fill) chambers in Austrovenus addition (+AS) and removal (–AS) plots, as a 

function of site and season. Positive values represent an efflux out of the sediment, and 

negative values represent an influx into the sediment. 

 

3.3.5 Sediment denitrification rates 

 Non-amended denitrification rates (0 to 30 µmol N m
-2

 h
-1

) were lower 

than the sediment denitrification potential (38 to 164 µmol N m
-2

 h
-1

), which was 

determined from samples amended with nitrate and carbon (DEA). Two-way 

ANOVA revealed a significant effect of nitrate addition at both sites in winter and 
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in summer, indicating that denitrification was always N limited, regardless of site 

or season (Table 3.4). 

 As with GPP and NH4
+
 uptake, the range in sediment denitrification 

potential was greater at the sandy site (55 to 164 µmol N m
-2

 h
-1

) compared to the 

muddy-sand site (38 to 48 µmol N m
-2

 h
-1

; Figure 3.7). Denitrification potential 

did trend towards an increase in +AS compared to -AS plots at the sandy site, 

especially in summer, although the treatment effect was only marginally 

significant (3-factor ANOVA, p = 0.078, Table 3.5). There was a significant 

site*season interaction (p < 0.001) and post-hoc analysis demonstrated that 

denitrification potential was significantly greater (by 2.4 ×) in summer compared 

to winter at the sandy site, but there was no significant seasonal effect at the 

muddy-sand site. Also, denitrification potential was significantly greater (by 3 ×) 

at the sandy site than at the muddy-sand site in summer, but there was no 

significant difference between the sites in winter. 

 

 

 

Figure 3.7: Mean (+ 1 SD; n = 3) sediment denitrification assay (DEA), i.e. sediment 

denitrification potential, in Austrovenus addition (+AS; grey fill) and removal (–AS; no 

fill) plots as a function of site and season. 
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Table 3.4: 2-factor ANOVA (analysis of variance) results determining whether nitrogen, carbon or both nutrients are limiting denitrification 

rates 

Site/Season Source d.f. MS F p Significant Tukey post-hoc test 

      Nitrogen Carbon 

Sandy site in winter Nitrogen 1 189 193 < 0.001   
 Carbon 1 8.05 8.23 0.009   

 Nitrogen*Carbon 1 6.74 6.89 0.016 +C & –C: +N > –N –N: –C > +C 

 Error 20 0.980     

        

Sandy site in summer Nitrogen 1 92000 97.8 < 0.001 +N > –N  

 Carbon 1 548 0.582 0.454   

 Nitrogen*Carbon 1 548 0.582 0.454   

 Error 20 942     

        

Muddy-sand site in winter Nitrogen 1 256 447 < 0.001 +N > –N  

 Carbon 1 5.61 9.77 0.005  –C > +C 

 Nitrogen*Carbon 1 0.226 0.394 0.537   

 Error 20 0.574     

        

Muddy-sand site in summer Nitrogen 1 8640 291 < 0.001 +N > –N  

 Carbon 1 56.5 1.90 0.183   

 Nitrogen*Carbon 1 56.5 1.90 0.183   

 Error 20 29.7     

        

Factors are nitrogen (N) and carbon (C). Values in bold are significant at p < 0.05. Tukey post-hoc tests for significant differences between presence/absence 

(+/–) of nitrogen and carbon are shown at α = 0.05. 



 

Table 3.5: 3-factor ANOVA (analysis of variance) results for log10 transformed DEA (denitrification enzyme activity; i.e. sediment 

denitrification potential) 

Variable Source d.f. MS F p Significant Tukey post-hoc test 

      Site Season Treatment 

Log10 DEA  Site 1 0.486 34.8 < 0.001    

 Season 1 0.145 10.4 0.005    
 Treatment 1 0.049 3.52 0.078    
 Site*Season 1 0.242 17.3 < 0.001 Su: Sd > Ms Sd: Wi < Su  
 Site* Treatment 1 0.004 0.310 0.585    
 Season* Treatment 1 0.023 1.62 0.220    
 Error 17 0.014      
         
Factors are site (Sd = Sandy, Ms = Muddy-sand), season (Wi = Winter, Su = Summer) and treatment (+AS = Austrovenus addition, –AS = Austrovenus 

removal). Values in bold are significant at p < 0.05. Tukey post-hoc tests for significant differences between site, season and treatment are shown at α = 0.05. 

 

5
4
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3.4 Discussion 

 At the sandy site, there were significant increases in many response 

variables (i.e. SOC, NPP, GPP, NH4
+
 uptake and denitrification potential) in 

summer, compared to winter.  In contrast, for the same variables at the muddy-

sand site, there was no significant difference between winter and summer 

measurements. Similarly, the effect of Austrovenus treatment on response 

variables was inconsistent between sites and seasons. Although both SOC and 

dark chamber NH4
+
 fluxes increased significantly in +AS plots regardless of site 

and season, GPP (and NPP to a lesser extent) were increased in +AS plots only at 

the sandy site. An increase in GPP indicates increased MPB productivity as water 

column primary production was negligible. My results suggest that increased 

availability of NH4
+
 drives this increase in MPB productivity as NH4

+
 uptake was 

higher in +AS plots at the sandy site, especially in summer. There was also a trend 

for greater denitrification potential in +AS sandy site plots in summer. At the 

muddy-sand site there was no significant effect of Austrovenus on GPP, NH4
+
 

uptake or denitrification potential. Furthermore, GPP and denitrification potential 

were both significantly lower than at the sandy site. 

 As for other suspension feeding bivalves in coastal systems worldwide, 

resuspended MPB are an important component of Austrovenus’ diet, especially as 

water column primary productivity is typically low in New Zealand estuaries 

(Kang et al. 1999, Safi 2003, Kang et al. 2006). Previous research with 

Austrovenus and other large bioturbating macrofauna has also observed an 

increase in MPB productivity even though MPB are often a major food source for 

the animals (Lohrer et al. 2004, Thrush et al. 2006, Sandwell et al. 2009). 

However, this study suggests that the positive effect of Austrovenus on MPB 

productivity is not consistent across habitat types, and that there can be substantial 

temporal variability in GPP. At both sites, the lower rates of GPP in winter are 

likely to be caused by limited MPB and bivalve activity. MPB photosynthetic 

activity was likely limited by wintertime water temperatures and reduced levels of 

PAR, while the reduced dark chamber NH4
+
 fluxes in the wintertime Austrovenus 

addition treatments provided evidence of reduced metabolic rates (i.e. less NH4
+
 

excretion during the colder winter period). More surprising are the low rates of 

GPP in summer, and lack of an effect of Austrovenus on GPP, at the muddy-sand 

site. As dark chamber NH4
+
 fluxes in +AS plots were similar between the two 
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sites it seems unlikely that the reason for low MPB productivity at the muddy-

sand site was nutrient limitation.   

 Muddy sediments, despite often having higher microalgal biomass, can be 

less productive (in terms of rates of photosynthesis and oxygen evolution) than 

sandy sediments (Billerbeck et al. 2007). Resuspension of fine sediments, causing 

light limitation at the benthos, is more likely in muddy sediments, but I did not 

observe higher levels of turbidity at my muddier site on the days that I sampled. 

However, productivity can be enhanced in sandy sediments because light can 

penetrate further into the sediment column (as there is greater interstitial space 

between sediment grains). This increased sediment permeability can enhance 

solute flux (by permitting pore-water advection), and more frequent resuspension 

can cause a higher turnover of algal biomass (Middelburg et al. 2000, Blanchard 

et al. 2001, Billerbeck et al. 2007). Furthermore, sediment grain size can affect 

microbial composition and activity, and thus organic matter remineralisation, 

nutrient availability and MPB productivity (Middelburg et al. 2000). In fact, I 

found normalised GPP was significantly increased at the sandy site compared to 

the muddy-sand site even in -AS plots, although the effect was enhanced in +AS 

plots.  

 At the sandy site other macrofaunal abundance and biomass in +AS plots 

was dominated by mudflat anemones (Anthopleura aureoradiata). Previous work 

has described a mutualistic relationship between Austrovenus and A. aureoradiata 

whereby the anemones use the living bivalves as hard substrate for attachment and 

the bivalves gain protection from parasitic infection (Mouritsen & Poulin 2003). 

The anemones may also benefit from greater NH4
+
 availability in Austrovenus 

beds as endosymbiotic zooxanthellae can uptake NH4
+
 from surrounding water 

(Morar et al. 2011). It is probable that mudflat anemones significantly contribute 

to, and complicate, nutrient recycling and productivity at the sandy site, by both 

excretion and uptake of NH4
+
, but further work is needed to determine whether 

this species is a net source or sink of NH4
+
, and its effect on system productivity. 

Barnacles were also supported on Austrovenus shells at the sandy site. It is 

therefore possible that the positive effect on productivity measured in +AS plots 

at the sandy site is not attributable to Austrovenus alone, but to the combination of 

Austrovenus and the macrofaunal communities they support. 
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 In contrast, at the muddy-sand site other macrofaunal abundance and 

biomass was dominated by other bivalves (mostly the deposit feeders Nucula 

hartvigiana and Macomona liliana). I expected OM content to increase in +AS 

plots at this site, due to retention of biodeposits in the lower energy environment, 

but instead found the reverse to be true. Deposit-feeder abundance and biomass 

was higher in +AS plots and they may have utilised the increased supply of OM. 

Alternatively, decreased mud content and increased grain size in +AS plots 

suggests that Austrovenus bioturbation enhanced fine sediment and OM transport 

by destabilising the sediment (Davis 1993, Ciutat et al. 2007). Furthermore, there 

was no difference in sediment C, N and C:N ratio between +AS and -AS plots. 

Typically, these parameters are found to increase under epifaunal bivalve beds, 

particularly so under longline mussel farms (Stenton-Dozey et al. 2001, 

Bruesewitz et al. 2006, Giles et al. 2006). Although biodeposition rates would 

almost certainly be lower for an infaunal bivalve bed than for a three dimensional 

epifaunal bed/longline my results suggest that Austrovenus biodeposits do not 

accumulate at either site. It is probable that OM is dispersed by currents at the 

sandy site, and quickly utilised by deposit feeders and/or resuspended by bivalve 

bioturbation at the muddy-sand site. 

 Unamended sediment denitrification rates were nil or low, likely because 

sediment nitrification may be a major source of NO3
-
 for denitrification and 

coupled nitrification-denitrification is inhibited by the  method used here (e.g. 

Seitzinger 1988). This is further reinforced by the low measured NO3
-
 fluxes into 

the sediment. My expectation was that increased N from Austrovenus biodeposits 

(at the more sheltered muddy-sand site especially) would fuel coupled 

nitrification-denitrification but I found that OM content was not increased in +AS 

plots, and denitrification remained N limited regardless of site, season or 

addition/removal of Austrovenus. However, sediment denitrification potential (as 

measured with excess nitrate and carbon) did trend towards an increase in +AS 

plots at the sandy site in summer. Although Austrovenus biodeposits may not 

accumulate at the sandy site, bivalve bioturbation and excretion may have 

enhanced NH4
+
 availability, thus providing a source of nitrogen for nitrification 

(Gardner et al. 2001, Bruesewitz et al. 2008). NH4
+
 uptake was significantly 

increased in +AS plots at the sandy site in summer, which may have been partly 

due to increased nitrification. Without measuring sediment nitrification rates, 
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however, it is not possible to separate uptake by nitrifiers from that by MPB (and 

perhaps anemones also). Nitrifiers are known to be poor competitors for nitrogen 

(Sundback et al. 2000, Risgaard-Petersen 2003), but oxygen production by 

benthic photosynthesis may enhance rates of coupled nitrification-denitrification 

when NH4
+
 is not limiting (An & Joye 2001). My results suggest that increased 

availability of NH4
+
 at the sandy site in summer as a result of Austrovenus activity 

likely increases both MPB productivity and sediment denitrification, though 

concurrent measurements of GPP, nitrification and denitrification would be 

needed to confirm this.  

 A possible confounding factor influencing the interpretation of my results 

is the difference in Austrovenus size between the two sites. Individuals were 

significantly larger at the sandy site (c. 23 mm shell length) than at the muddy-

sand site (c. 18 mm shell length). Previous research has indicated that Austrovenus 

condition is enhanced in sandy compared to muddier sediments (Norkko & 

Thrush 2006), and the bivalves in my experimental plots had been transplanted 

from nearby beds at each site so represented a natural size for the habitat type. As 

biomass was comparable between sites I would not expect first order excretion 

rates to be substantially different between sites. However, the size difference 

might affect the degree to which Austrovenus bioturbation alters sediment 

chemistry. Bioturbation by macrofauna that mix surficial sediments, such as 

Austrovenus, can facilitate the release of solutes from sediment porewater (Lohrer 

et al. 2010a). Previous experiments have shown that Austrovenus tend to be 

retained in unfenced high-density plots, i.e. individual bivalves display minimal 

horizontal movement through surface sediments when in high-density beds 

(Whitlatch et al. 1997, Sandwell et al. 2009). The main effect of Austrovenus 

bioturbation in bivalve beds is therefore likely to be small-scale (< 2 - 3 cm) 

vertical movement as the bivalves move to the sediment-water interface to feed 

around high tide, and thereafter retreat to just below the sediment surface. The 

larger bivalves at the sandy site may have reworked sediment to a greater depth 

than the smaller individuals at the muddy-sand site. However, solute gradients are 

likely to be steeper in sediments at the muddy-sand site, potentially offsetting the 

size difference, and making it difficult to speculate on size-specific bioturbation 

effects on solute fluxes. 
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 It is well documented that denitrification is often highly variable over 

small spatial and temporal scales in estuaries, due to variable O2 profiles, nitrate 

and OM availability in the sediment (Groffman et al. 2006, Seitzinger et al. 2006). 

This is caused by a variety of processes such as frequent wetting/drying due to the 

tides or macrofauna activity (especially bioturbation and burrow building) which 

create denitrification microsites and make collection of a large number of 

replicates crucial (Seitzinger et al. 2006). More sophisticated (but more 

expensive) techniques, such as isotope-pairing techniques using Membrane Inlet 

Mass Spectrometry, can quantify denitrification rates without blocking 

nitrification, which may help to resolve the complicated interactions among 

macrofauna, such as Austrovenus, MPB and microbial communities (e.g. Kana et 

al. 1998, An et al. 2001). My work shows that these interactions are likely to be 

further complicated by context (i.e. spatial and temporal variability), so future 

studies should be mindful of this. 

 There is typically a trade-off between the size of experimental plots and 

the number of replicates that can be established. I recognise the low levels of 

replication (n = 3 per treatment) inherent in my experiments, but my efforts were 

focused on using relatively large plots as the estuarine intertidal is dynamic and 

subject to substantial bedload transport and sediment reworking rates (e.g. Grant 

et al. 1997); consequently results from experiments using smaller-scale 

manipulations may be dominated by edge effects (Hewitt et al. 1997, Englund & 

Cooper 2003). Furthermore, modifications of sediment stability associated with 

the addition or removal of macrofauna are often scale and/or density dependent 

(Thrush et al. 1996, Friedrichs et al. 2000, Coco et al. 2006). I recognise also that 

there are limitations associated with using benthic chambers to measure solute 

fluxes, such as stirring-induced pressure gradients that affect rates of porewater 

exchange (Glud et al. 1996), or altered boundary layer dynamics (Tengberg et al. 

2004). However, in sediments colonised by large bioturbating or bioirrigating 

macrofauna and by patchy MPB communities (as in this study) there is 

considerable small-scale spatial and temporal heterogeneity in solute distribution. 

Benthic chambers have the advantage of integrating fluxes over a large sediment 

surface area, and in this study my intention was to identify any differences in 

relative fluxes between the sites, seasons and treatments, rather than quantifying 

absolute fluxes.  
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 In summary, Austrovenus enhanced primary productivity and sediment 

denitrification potential at the sandy site, whereas there was no effect of 

Austrovenus on these variables at the muddy-sand site, leading me to hypothesise 

that increasing estuarine mud content may limit the influence of this key species 

on ecosystem function. However, there is a need to sample across a gradient of 

increasing muddiness to further explore these relationships. Similarly, there is a 

need for more comprehensive sampling to better resolve temporal variability. 

Previous research has established that high levels of sedimentation are likely to 

reduce Austrovenus populations (Thrush et al. 2003b), but my results indicate that 

moderate levels of sedimentation may reduce the positive effect of this species on 

system productivity even when they persist. Furthermore, my results suggest that 

denitrification potential is lower in muddy-sand compared to sandy sediments so 

moderate levels of sedimentation may also limit the system’s ability to counteract 

the effects of eutrophication. These experiments reveal that it is important to 

consider context, i.e. the range of conditions inhabited by a particular species, in 

order to assess the effect of key species on ecosystem function. It appears that it is 

not just the loss of key species, but alteration of those species’ habitats (even 

without substantial changes in biomass), that has the potential to alter ecosystem 

function. 
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CHAPTER 4 

 

Modelling the effect of Austrovenus stutchburyi on 

energy flow and ecosystem properties in a shallow 

estuary 
 

 

4.1 Introduction 

 Suspension feeding bivalves can act as key species in estuarine ecosystems 

by contributing to benthic-pelagic coupling and affecting rates of nutrient 

regeneration, but also due to their position in the food web, by exerting 

considerable top down control on phytoplankton populations and providing a 

substantial food source for higher trophic levels (reviewed by Newell 2004). In 

many systems, previous research has often emphasised the role of suspension 

feeding bivalves as a ‘natural eutrophication control’ because estimates of grazing 

pressure have shown that populations may be capable of filtering the entire 

volume of a system within a few days (Cloern 1982, Hily 1991, Smaal & Prins 

1993, Dame & Prins 1998). Indeed, the loss of suspension feeders has resulted in 

an increased incidence of phytoplankton blooms for some ecosystems, e.g. 

following reductions in eastern oyster (Crassostrea virginica) beds in Chesapeake 

Bay, USA (Jackson et al. 2001, Kemp et al. 2005), or clams (Mercenaria 

mercenaria) in Great South Bay, NY, USA (Lonsdale et al. 2007). However, in 

shallow systems with short water residence times, it is likely that even large and 

dense aggregations of suspension feeders will have little effect on phytoplankton 

populations (e.g. Dame & Prins 1998). In shallow estuaries with large areas of 

intertidal flats then, these bivalves may not then be important as an eutrophication 

control, but may impact primarily on the ecosystem as a food source for higher 

trophic levels, such as shorebirds. For example, a reduction in both the abundance 

and quality of cockles (Cerastoderma edule) in the Dutch Wadden Sea due to 

shellfish dredging has been linked to the loss of red knots (Calidris canutus 

islandica) from the area (van Gils et al. 2006).  

 Estuarine systems are dynamic and complex habitats subject to increasing 

pressure from expanding coastal populations; however, understanding the 

consequences of anthropogenic or natural impacts often requires knowledge of the 
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functioning of the entire system (e.g. Levin et al. 2001, Kennish 2002, Hooper et 

al. 2005). Although field and laboratory experiments may elucidate interactions 

between estuarine species and biogeochemical processes (e.g. Widdicombe & 

Austen 1998, Thrush et al. 2006, Lohrer et al. 2010a), providing pieces of a bigger 

picture, they rarely included multiple trophic levels (but see Petchey et al. 2004). 

Modelling can provide a valuable quantitative tool with which to reveal 

interactions at ecosystem scales, describe system properties, identify gaps in 

current knowledge and integrate the ‘pieces’ of information acquired in 

experimental studies (Jørgensen & Bendoricchio 2001). Here we adopted a 

modelling approach to understand the role of a suspension feeding bivalve in the 

food web of a shallow estuary.   

 Process-based models tend to focus on lower trophic levels and require 

substantial spatially and temporally resolved datasets for calibration and 

validation; food-web models, however, can be used to explore the energy flow 

and interactions between multiple trophic levels, and can be parameterised using 

comparatively smaller datasets gathered for other purposes (e.g. Gaedke 1995, 

Fulton et al. 2003, Christensen et al. 2008). Ecopath is a mass-balance food-web 

model that is widely used in fisheries management and has previously been used 

to model the interactions between species in a wide range of coastal systems, 

including estuaries (Christensen & Pauly 1992, Christensen et al. 2008). Output 

from Ecopath can be used to quantify certain ecosystem properties, (e.g. the 

degree of internal recycling, food web complexity, or realised growth and 

development), which can characterise ecosystem maturity (sensu Odum 1969) and 

may be related to ecosystem stability (e.g. Vasconcellos et al. 1997).  

  Worldwide, infaunal suspension feeding bivalves dominate intertidal areas 

in many estuaries, although populations have declined in a number of these 

systems in recent decades (e.g. Piersma et al. 2001, Peterson 2002, Kraeuter et al. 

2008). In New Zealand estuaries, a dominant feature on intertidal flats is large, 

high-density (c. 1000 ind. m
-2

) beds of the infaunal suspension feeding bivalve, 

Austrovenus stutchburyi (Dobbinson et al. 1989, Whitlatch et al. 1997). 

Austrovenus is known to be a key species in these systems, capable of influencing 

microphytobenthos productivity and nutrient cycling, as well as providing a food 

source for shorebird and ray species (Thrush et al. 1991, Thrush et al. 2006, 

Sandwell et al. 2009, Jones et al. 2011a). Austrovenus populations are declining in 
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some areas, however, likely due to adverse effects associated with sedimentation, 

pollution and over-harvesting (De Luca-Abbott 2001, Norkko et al. 2006, 

Cummings et al. 2007).  

 I constructed an Ecopath model for a shallow estuary (Whangateau 

Harbour, North Island, New Zealand) which is representative of a relatively 

unimpacted (in terms of nutrient enrichment) system with high water quality 

(typically low nutrient, chlorophyll a and suspended sediment concentrations, and 

high dissolved oxygen concentration (Scarsbrook 2008)) and containing an 

abundant Austrovenus population (Pawley 2011). The objectives were to gain an 

overview of the functioning of the entire system, in terms of energy flow between 

species, and to assess the potential effects of a decline in the Austrovenus 

population on the ecosystem. I hypothesised that Austrovenus would be a key 

species in the system, exerting considerable influence on both higher and lower 

trophic levels. I also aimed to determine the sensitivity of the model to changes in 

Austrovenus biomass, and the implications of changes in Austrovenus biomass for 

other species in the system and for ecosystem maturity and stability. 

 

4.2 Methods 

4.2.1 Model description 

 Ecopath with Ecosim (EwE v 6.1 (Christensen et al. 2008)) is derived 

from the Ecopath program of Polovina (1984) to estimate the biomass and food 

consumption of species or groups of species in an ecosystem. It has since been 

modified to base parameterization on an assumption of mass-balance over an 

arbitrary period (typically one year), and combined with approaches from 

theoretical ecology for the analysis of flow (i.e. transfer of energy) between 

species or groups of species (Ulanowicz 1986, Christensen & Pauly 1992, 

Christensen et al. 2008). Parameterization is based on two governing equations; 

the first describes production for each group i (which may be a single species, or a 

group of species that share a functional role), whereby prey mortality equates to 

consumption for a predator: 

 

Pi = Yi + Bi 
. 
M2i + Ei + BAi + Pi 

.
 (1 – EEi) 
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where Pi is production, Yi is total fishery catch, Bi is biomass, M2i is total 

predation, Ei is net migration (emigration – immigration), BAi is biomass 

accumulation, and EEi is ‘ecotrophic efficiency’, which is the proportion of 

production that is utilized in the system. The term given by Pi 
.
 (1 – EEi) is also 

described as ‘other mortality’ (M0i). 

 Ecopath consists of linear equations for each group in the system, which it 

solves for one of the following four parameters: biomass (Bi), production/biomass 

ratio (Pi/Bi), consumption/biomass ratio (Ci/Bi), or ecotrophic efficiency (EEi). 

The other three parameters, along with catch, net migration, biomass 

accumulation, assimilation and diet composition, must be entered for each group. 

After ensuring mass balance between groups the energy balance within a group is 

ensured using the second governing equation: 

 

Ci = Pi + Ri + UAi 

 

where Ci is consumption, Pi is production, Ri is respiration and UAi is 

unassimilated consumption. A balanced model is defined as one in which EE < 1 

for all model groups. If EE ≥ 1 for one or more groups, the model is deemed 

unbalanced (because consumption of a group cannot be greater than its 

production), and the input parameters must be adjusted to obtain a balanced 

solution (Christensen & Walters 2004). Abbreviations used for model parameters, 

groups and ecosystem indices are listed in Table 4.1. 
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Table 4.1: List of abbreviations 

Abbreviation Denotes Units 

Model parameters 
B Biomass g C m

-2
 

P Production g C m
-2

 yr
-1

 

C Consumption g C m
-2

 yr
-1

 

R Respiration g C m
-2

 yr
-1

 

A Assimilation g C m
-2

 yr
-1

 

EE Ecotrophic efficiency  

UA Unassimilated consumption  

   

Model groups 

Bir Birds  

Ray Rays  

FPi Piscivorous fish  

FIn Invertebrate feeding fish  

FPl Planktivorous fish  

FHe Herbivorous fish  

BCa Carnivorous benthic invertebrates  

Aus Austrovenus stutchburyi  

BSu Benthic suspension feeding invertebrates  

BDe Benthic deposit feeding invertebrates  

Zoo Zooplankton  

Mac Macrophytes  

MPB Microphytobenthos  

Phy Phytoplankton  

Det Detritus  

   

Summary statistics and ecosystem indices 

TPP Total primary production g C m
-2

 yr
-1

 

TR Total respiration g C m
-2

 yr
-1

 

TB Total biomass g C m
-2

 

TST Total system throughput g C m
-2

 yr
-1

 

TL Trophic level  

TE Transfer efficiency % 

MTI Mixed trophic impact  

A Ascendency flowbits 

Ca Development capacity flowbits 

O Overhead flowbits 

A/Ca Relative ascendency % 

CI Connectance index  

SOI System omnivory index  

FCI Finn’s cycling index % 

 

4.2.2 Study area 

 Whangateau Harbour is located on the north-east coast of New Zealand 

(36°19’S, 174°46’E), 60 km north of the city of Auckland (Figure 4.1). It was 

chosen as the model system because it is representative of a common estuary type 

in New Zealand (Hume et al. 2007), and has been the focus of a relatively large 

number of studies, which provide a substantial amount of data suitable for model 
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parameterisation (see reviews by Kelly 2009, Townsend et al. 2010). Whangateau 

is a small barrier-enclosed lagoon (area 7.5 km
2
, mean depth 1.6 m), which has 

extensive intertidal sandflats (comprising 85 % of total estuary area), is well-

flushed (the tidal prism is 81 % of total estuary spring-tide volume), and receives 

little freshwater input (Hume et al. 2007). Substrate transitions from sand in the 

main body to mud in the sheltered parts of the arms, and the resulting complex 

and varied habitat supports diverse benthic macrofauna and fish communities (e.g. 

Francis et al. 2005, Alfaro 2006). A recent (February 2009) mass mortality event 

resulted in the loss of c. 60 % of the Austrovenus population on shellfish beds in 

the harbour (MFish 2009; C. Pilditch unpublished data). The event was attributed 

to a combination of infection by a coccidian parasite and a mycobacterium, and 

high temperatures coinciding with midday low tides (MFish 2009; K. 

Tricklebank, pers. comm.). Surveys conducted on the shellfish beds before and 

after the event provided an opportunity to compare the observed changes in 

Austrovenus biomass with the Ecopath model sensitivity. 

 

 

Figure 4.1: Whangateau Harbour, New Zealand. Land is shaded dark grey, intertidal flats 

are white, and subtidal areas are light grey.  
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4.2.3 Model groups and input 

 The food web of Whangateau Harbour was defined as having 15 groups, 

based on available information on functional role and diet composition for species 

known to inhabit the estuary (Appendix 1). Austrovenus was placed in a group 

separate from other benthic suspension feeders; previous research has established 

that Austrovenus impacts greatly on estuarine ecosystem function, and dominates 

benthic macrofaunal biomass over large areas of intertidal flats (Jones et al. 

2011a, Thrush et al. 2006, Sandwell et al. 2009, Lohrer et al. 2010a). All available 

information on biomass, P/B and C/B ratios, and diet composition for each of the 

model groups were assembled from scientific articles, reports, theses and 

unpublished data, and converted into the model currency, i.e. g carbon m
-2

 for 

biomass and g carbon m
-2

 yr
-1

 for production and consumption. Quantitative data 

on diet composition for each of the species/groups in this model were extremely 

scarce. Where only qualitative estimates were available it was assumed that the 

proportion of prey in the diet of a group was proportional to the fraction that its 

biomass contributed to the total biomass of all the prey items for the group. 

Unassimilated consumption (i.e. the fraction of food that is egested and directed to 

detritus) was assumed to be 0.4 for zooplankton, 0.3 for herbivores, and 0.2 for 

carnivores (Christensen et al. 2008). Recreational Austrovenus harvest was also 

included as a fishery in the model, but there are no data available for harvest of 

other species. The origin of the input data and the methods used to convert 

biomass (often reported as wet weight or dry weight) to carbon are given in 

Appendix 1.  Input parameters and diet composition are summarised in Table 4.2. 

  



 

Table 4.2: (a) Balanced model input and output (in bold) parameters, and diet matrix (b) where numbers represent percentage prey (rows) taken by predators 

(columns). 

Group 
a) Input and output parameters b) Diet Matrix 

TL B P/B C/B EE P/C UA R/A P/R R/B Bir Ray FPi FIn FPl FHe BCa Aus BSu BDe Zoo 

Bir 3.035 0.00457 0.2 35 0.000 0.006 0.2 0.993 0.007 27.8            

Ray 3.006 0.128 0.35 2.40 0.000 0.146 0.2 0.818 0.223 1.57            

FPi 3.748 0.017 0.33 2.99 0.000 0.110 0.2 0.862 0.160 2.06            

FIn 3.001 0.132 0.75 5 0.383 0.150 0.2 0.813 0.231 3.25 1.9  68.7         

FPl 3.000 0.010 1.07 7.87 0.247 0.136 0.2 0.830 0.205 5.23   5.2         

FHe 2.050 0.031 1.61 11.38 0.164 0.141 0.3 0.798 0.253 6.36   16.1         

BCa 2.986 0.11 1.60 9 0.083 0.178 0.2 0.778 0.286 5.60 1.7 0.5  1.6        

Aus 2.001 3.38 2.18 10 0.160 0.218 0.3 0.689 0.452 4.82 49.5 85.0  49.0   50.1     

BSu 2.001 0.17 2.18 10 0.050 0.218 0.3 0.689 0.452 4.82  0.7  1.0   1.0     

BDe 2 3.20 3 13 0.095 0.231 0.3 0.670 0.492 6.10 46.9 13.8 8.0 46.8 20.0  47.4     

Zoo 2 0.022 20 80 0.268 0.250 0.4 0.583 0.714 28.0   2.0 0.1 80.0 5.0  0.1 0.1   

Mac 1 0.186 18  0.100           95.0      

MPB 1 3.00 53.3  0.237             80.0 80.0 20.0 65.0 

Phy 1 0.11 260  0.130             10.0 10.0  10.0 

Det 1 151   0.196         1.5   1.5 9.9 9.9 80.0 25.0 

TL = trophic level, B = biomass (g C m
-2

), P = production (g C m
-2

 yr
-1

), C = consumption (g C m
-2

 yr
-1

), EE = ecotrophic efficiency, UA = unassimilated consumption, R = 

respiration (g C m
-2

 yr
-1

), A = assimilation (g C m
-2

 yr
-1

). For group name abbreviations see Table 4.1.  

6
8
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4.2.4 Diagnostic tests 

 Prior to balancing the model several diagnostic tests were performed to 

evaluate the validity of the input data. These pre-balancing tests (Link 2010) 

allow identification of issues with model structure and data quality by examining 

the conformity of input data to simple ecological and physiological rules. 

Biomass, “vital rates” (i.e. production, consumption and respiration), vital rate 

ratios and biomass to total primary production (TPP) ratios were plotted against 

the model groups in order of decreasing trophic level (Figure 4.2). Although not a 

required Ecopath input parameter, respiration is useful in diagnostic tests and was 

estimated as 65 % of assimilated consumption for each functional group (Link et 

al. 2006). 

 Biomass, vital rates and vital rate ratios should increase with decreasing 

trophic level and be within acceptable limits, i.e. Pi/Ci should be less than 0.5, 

Pi/Ri < 1, Bi/TPP < 1 and Ci > Pi (Link 2010). When these rules were not met 

parameters were corrected by increasing or decreasing by a multiple of 0.2, 0.5, or 

1.333 until the parameter conformed to the expectations of the diagnostic test 

(Byron et al. 2011). The tests revealed that P/C values for bird and fish groups 

were too low, and so the initial estimates for P/B and C/B were adjusted 

accordingly. Reasonable P/C ratios for fish groups range from 0.1 for piscivorous 

fish to 0.15 for herbivorous and invertebrate feeders; P/C ratios for birds are 

typically less than 0.1 (Christensen et al. 2008, Byron et al. 2011).  
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Figure 4.2: Input parameters adjusted after pre-balancing diagnostic tests. Groups 

arranged on x-axes in order of decreasing trophic level to depict trophic decline in  (a) 

biomass, (b) vital rates, (c) vital rate ratios, (d) P/C, (e) biomass and production relative 

to primary production, and (f) P/R. For group name and parameter abbreviations see 

Table 4.1.  

 

4.2.5 Model balancing 

 The input parameters for biomass, P/B and C/B did not need adjusting to 

balance the model as ecotrophic efficiency (EE) was less than one for all groups 

(Table 4.2). Ecopath provides output for predation mortality, showing which 

predators contribute most to a prey’s mortality, and electivity, a selection index 

describing a predator’s preference for prey. Both were examined to ensure the 

predation pressures and preferences were reasonable. The diet compositions for 

two fish groups (planktivores and herbivores) were adjusted slightly to bring the 

preferences into line with what was expected based on available literature 
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(Appendix 1). Ecopath also provides output for consumption, respiration and 

assimilation, allowing the user to check that ratios are within acceptable limits. A 

number of these rates had already been checked during pre-balance diagnostic 

tests, but examination of model output was necessary to ensure the balanced 

model values were within realistic ranges. Ratios of P/C < 0.3, and P/R < 1. 

Ratios of respiration to assimilation (R/A) were also less than one, and decreased 

with trophic level. Ratios of respiration to biomass (R/B), which are an expression 

of the activity level of a group, were also within the ranges reported in the 

literature (Bradford-Grieve et al. 2003, Jiang & Gibbs 2005, Christensen et al. 

2008).  

  

4.2.6 Model outputs 

 Ecopath provides a number of outputs that can be used to characterise the 

trophic structure and energy flow in a modelled system. Fractional trophic levels 

(TLs) are assigned to each model group; producers and detritus have, by 

definition, a TL of 1 and TL for consumers is calculated as 1 + the weighted 

average of the preys’ TLs (Christensen et al. 2008). The components of the 

modelled system are also aggregated into discrete trophic levels, allowing 

calculation of trophic transfer efficiencies, i.e. the fraction of throughput at each 

trophic level that is transferred to the next trophic level (Lindeman 1942). 

Summary statistics provide overall measures of consumption, respiration, export 

and flows to detritus, as well as total and primary production, and gross efficiency 

of any fisheries (i.e. catch / net primary productivity). Ecosystems have a 

tendency to internalise flows, and to increase control system feedback, 

compartment specialisation and diversity as they develop and mature (Odum 

1969). Some of these attributes of ecosystem development are quantified by 

Ecopath using indices such as total system throughput, ascendency, system 

omnivory index, Finn’s cycling index and mean path length (Christensen et al. 

2008). 

 Total system throughput (TST) is a measure of the size of a system, and is 

calculated as the sum of all flows through each group. Ascendency (A) is a 

measure of system organisation, scaled by system size (i.e. TST), and is measured 

in “flow bits” (where bit is an information unit and flow in this model is g C m
-2

 

yr
-1

). The upper limit on A is the development capacity (Ca); the difference 
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between A and Ca is system overhead (O), which is the energy in reserve with 

which a system can deal with perturbations. The A/Ca ratio quantifies a system’s 

realised growth, organisation and development (Ulanowicz 1986). The 

connectance index (CI) compares the number of actual links between groups in 

the system to the number of possible links; mature systems tend to have more 

web-like food chains, whilst developing systems are more linear (Christensen & 

Walters 2004). An omnivory index for each consumer is calculated as the 

variance in the trophic level of its prey groups, (a value of 0 indicates specialised 

feeding, a large value indicates the consumer feeds on many trophic levels); the 

system omnivory index (SOI) is the average omnivory index of all consumers 

weighted by the biomass consumed (Christensen 1995). Finn’s cycling index 

(FCI) is the proportion of total system throughput that is recycled, and the mean 

path length is the average number of groups that an inflow or outflow passes 

through (Finn 1976). A, SOI, FCI and path length have all been shown to be 

correlated with ecosystem stability (Vasconcellos et al. 1997, Morissette 2007) ,, 

which is consistent with Odum’s theory that greater internal cycling is a feature of 

a mature system.  

 Ecopath provides a form of “uncertainty analysis” in the mixed trophic 

impact (MTI) routine, which evaluates the impact that a very small increase in 

biomass of one group will have on other groups in the system (Christensen et al. 

2008). Also, the “keystoneness” of each group in the system is calculated from the 

total impact of a group on all the others (based on MTI analysis) and the group 

biomass (Libralato et al. 2006). Finally, an overall measure of model quality is 

provided by the pedigree index, which is calculated based on categorisation of 

input data sources. Input parameters estimated from local data sources are scored 

higher than those derived from elsewhere or other models. The overall index 

scales from 0 (data not derived from local data) to 1 (data fully derived from local 

sources). As the index is partly a function of the number of groups in a system 

then a measure of fit, t*, is also provided (Pauly et al. 2000). Examining the 

quality of input data is crucial when building ecosystem models as the pedigree 

has been shown to be correlated with system stability (when expressed as the 

resilience of a system, i.e. the speed and degree of recovery to perturbations 

(Morissette 2007)). 
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4.2.7 Calculating minimum and maximum possible Austrovenus biomass 

 Using the original balanced Ecopath model the effect of a reduction of 

Austrovenus biomass on the ecosystem was investigated by adapting a process 

that has previously been used to calculate ecological carrying capacity for 

harvested shellfish in other systems. In these instances, shellfish biomass is 

increased in consecutive models until the model is no longer balanced (i.e. EE for 

one or more groups is greater than 1), and the point just prior to this is defined as 

the ecological carrying capacity (Jiang & Gibbs 2005, Byron et al. 2011). For this 

study, Austrovenus biomass was instead decreased in consecutive models until the 

model was no longer balanced. Two scenarios were defined.  In the first scenario, 

recreational Austrovenus harvest (0.022 g C m
-2

 yr
-1

) was maintained at levels 

measured in 1999, i.e. before the 2009 mass mortality event (Kearney 1999). The 

second scenario simulated the closure of the shellfish beds by reducing harvest to 

zero. Austrovenus biomass after the mass-mortality event was estimated to be 1.58 

g C m
-2

 (see Appendix 1), which can be compared with the minimum Austrovenus 

biomass required to keep the model balanced.  

 Historical Austrovenus populations in estuaries around New Zealand were 

likely to have been greater than they have been in recent decades, due to habitat 

degradation, sedimentation and over-fishing (e.g. Cummings et al. 2007, Marsden 

& Adkins 2010). Therefore, as a third scenario, ecological carrying capacity was 

calculated by increasing Austrovenus biomass in consecutive models to quantify 

the maximum Austrovenus biomass the system might be able to support. 

Furthermore, summary statistics and network analysis indices were compared 

between the three scenarios and the original model to investigate the effect of this 

key species’ biomass on energy flow and ecosystem properties.  

 

4.2.8 Sensitivity analysis 

 A sensitivity analysis was employed to examine the degree to which 

biomass of model groups could vary without unbalancing the model (i.e. by 

pushing EE ≥ 1), over a range in Austrovenus biomass. Austrovenus biomass (g C 

m
-2

) was changed by a factor of 0.001, 0.1, 0.2, 0.5, 2, 5, 10 and 100 of the 

original value and for each of these models, one at a time, biomass for each of the 

other groups (g C m
-2

) was changed by a factor of 0.001 to 100 of its original 

value (Byron et al. 2011). Colour maps (plots of EE for Austrovenus biomass vs. 
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biomass of each other group) were used to assess the sensitivity of the model to 

changes in the biomass of other groups across a range in Austrovenus biomass.  

 

4.3 Results 

4.3.1 Model description and summary statistics 

 The trophic model of Whangateau Harbour is depicted in Figure 4.3. In 

terms of biomass, detritus was by far the largest group in the system with 151 g C 

m
-2

; in contrast the total biomass of all living groups was 10.5 g C m
-2

 (Tables 4.3 

and 4.4). The largest living groups were Austrovenus (3.38 g C m
-2

), deposit 

feeding benthic invertebrates (3.20 g C m
-2

) and microphytobenthos (MPB; 3.00 g 

C m
-2

), and the smallest was shorebirds (0.005 g C m
-2

). The benthic groups made 

up 96 % of total living biomass and the pelagic groups only 4 %. Of the primary 

producers, MPB were by far the largest group, making up 91 % of total primary 

producer biomass, (macrophytes made up 6 % and phytoplankton 3 %). Total 

primary production (192 g C m
-2

 y
-1

) made up 91 % of all production (210 g C m
-2

 

yr
-1

; Table 4.4). Microphytobenthos also accounted for the majority of primary 

production (160 g C m
-2

 yr
-1

; 83 % of total), whereas phytoplankton production 

was 29 g C m
-2

 yr
-1

 (15 % of total) and macrophyte production was only 3.3 g C 

m
-2

 yr
-1

 (2 % of total). Consumption by the benthic groups (78 g C m
-2

 y
-1

) far 

outweighed that of the pelagic groups (3 g C m
-2

 y
-1

). Consumption by 

Austrovenus totalled 33.8 g C m
-2

 y
-1

, which was exceeded only by that of deposit 

feeding benthic invertebrates (41.6 g C m
-2

 y
-1

). Consumption of Austrovenus 

totalled 1.2 g C m
-2

 y
-1

, split between birds (7 %), rays (22 %), invertebrate 

feeding fish (28 %) and carnivorous benthic invertebrates (43 %).  

 Ecotrophic efficiencies (EE) were low (< 0.4) for all groups, indicating 

high flows to detritus (total 190 g C m
-2

 y
-1

) , and the low EE for detritus indicated 

that much more flow was entering the detritus compartments than leaving it 

(Table 4.3, Figure 4.3). Closer examination of model output revealed that of the 

total flow into detritus, 37.1 g C m
-2

 yr
-1

 was consumed and 152.9 g C m
-2

 yr
-1

 

exported from the system. The only other export from the system was the 

Austrovenus harvest which was far smaller at 0.022 g C m
-2

 yr
-1

. Total system 

throughput was 463 g C m
-2

 yr
-1

 (235 g C m
-2

 yr
-1

 from primary producers and 228 

g C m
-2

 yr
-1 

from detritus), 18 % of which was consumed, 8 % respired, 41 % 

flowed to detritus, and 33 % exported (Table 4.3).  
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4.3.2 Trophic levels and transfer efficiency 

 Fractional trophic levels ranged from 1 for primary producers to 3.7 for 

piscivorous fish (Table 4.2). When aggregated into five discrete trophic levels, 

transfer efficiencies (TE) between the trophic levels ranged from 2.8 to 1.1 %, and 

overall TE was 2 %. The greatest proportion (65 %) of living biomass was in level 

II (herbivores), level I (the primary producers) accounted for 31 % of biomass, 

and only 4 % of total living biomass was in levels III and above (Figure 4.4). 

Input into level II was split almost equally between primary producers (41.9 g C 

m
-2

 y
-1

) and detritus (37.3 g C m
-2

 y
-1

). 

 

4.3.3 Ecosystem indices 

 Ecosystem indices are summarised in Table 4.3. Briefly, the system 

omnivory index (SOI) was low (0.009) indicating that feeding for most groups 

was focused on a single trophic level, and the connectance index (CI) was 0.205. 

Finn’s cycling index (FCI) was also low at 5.03 % of TST, and mean path length 

was 2.42.  Ascendency (A) was 36 % of the total capacity (Ca). 

 

 



 

 

Figure 4.3: Trophic model for Whangateau Harbour. Box size is proportional to the square root of the group biomass (except for detritus). Flows are in g C m
-

2
. For group name abbreviations see Table 4.1.  
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Table 4.3: Ecosystem properties for balanced models representing: original model for Whangateau Harbour; the estuary at minimum Austrovenus biomass, 

with harvest maintained at 0.022 g C m
-2

 yr
-1

, and with no harvest; the estuary at ecological carrying capacity. 

Parameter 
Original balanced 

model 

Min. Austrovenus 

biomass 

Min. Austrovenus 

biomass, no harvest 

Ecological carrying 

capacity 
Units 

Sum of all consumption 81.5 53.5 53.1 234 g C m
-2

 year
-1

 

Sum of all exports 153 166 167 79.6 g C m
-2

 year
-1

 

Sum of all respiratory flows 38.9 25.4 25.2 112 g C m
-2

 year
-1

 

Sum of all flows into detritus 190 201 201 132 g C m
-2

 year
-1

 

Total system throughput (TST) 463 446 446 557 g C m
-2

 year
-1

 

Sum of all production 210 204 204 243 g C m
-2

 year
-1

 

Mean trophic level of the catch 2.001 2.001 2.001 2.001  

Gross efficiency (catch/net primary production) 0.000115 0.000115 0 0.000631  

Total primary production (TPP) 192 192 192 192 g C m
-2

 year
-1

 

Total primary production/total respiration (TPP/TR) 4.93 7.55 7.61 1.71  

Net system production 153 166 167 79.6 g C m
-2

 year
-1

 

Total primary production/total biomass (TPP/TB) 18.3 24.9 25 7.46 year
-1

 

Total biomass/total throughput (TB/TST) 0.0227 0.0173 0.0172 0.0461  

Total biomass (excluding detritus) 10.5 7.70 7.66 25.7 g C m
-2

 

Total catches 0.0220 0.0220 0 0.121 g C m
-2

 year
-1

 

Connectance index (CI) 0.205 0.205 0.205 0.205  

System omnivory index (SOI) 0.00871 0.00921 0.00923 0.00834  

Finn’s cycling index (FCI) 5.03 4.78 4.78 8.65 % of TST 

Finn’s mean path length 2.42 2.33 2.33 2.91  

Ascendency (A) 509 490 490 724 flowbits 

Overhead (O) 889 662 657 1030 flowbits 

Capacity (Ca) 1398 1152 1147 1753 flowbits 

A/Ca 0.364 0.425 0.427 0.413  

Ecopath pedigree index 0.353 0.353 0.353 0.353  

Measure of fit, t* 1.31 1.31 1.31 1.31  



 

 

Figure 4.4: Lindeman spine showing flows between discrete trophic levels (I to V) in Whangateau Harbour. Biomass is in g C m
-2

 and flows are in 

g C m
-2

 y
-1

. TL = trophic level, TST = total system throughput, TE = transfer efficiency. 

7
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4.3.4 Mixed trophic impacts and keystoneness 

 The mixed trophic impact analysis shows the impact a small increase in 

the biomass of one group has on all other groups (Figure 4.5). Of the top 

predators, birds and rays had little impact on any other group (except for a small 

negative impact on carnivorous benthic invertebrates and Austrovenus). 

Piscivorous fish, however, had a large negative impact on their prey, and a 

positive impact on carnivorous benthic invertebrates, zooplankton and 

macrophytes. Negative impacts on prey species were obvious, e.g. on zooplankton 

by planktivorous fish, on macrophytes by herbivorous fish, and on phytoplankton 

and MPB by Austrovenus. Microphytobenthos had a positive impact on most 

groups, especially Austrovenus, other benthic-suspension feeders, and the 

Austrovenus harvest. Austrovenus had relative large impacts (either negative or 

positive) on most other groups. All groups had a negative impact on themselves, 

except for the Austrovenus harvest, which was so small as to have little impact on 

itself or any other groups. 

 The keystoneness index shows highest values for piscivorous and 

invertebrate feeding fish, Austrovenus and MPB (Figure 4.6). Austrovenus had the 

highest total impact, but due to its large biomass its keystoneness index was 

reduced compared to that for groups with lower biomass (i.e. the piscivorous and 

invertebrate feeding fish). In contrast, phytoplankton, birds and rays had low 

values for the keystoneness index, despite the low biomass of these groups.  
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Figure 4.5: Mixed trophic impact analysis of Whangateau Harbour model. Direct and 

indirect impacts of a small increase in the biomass of one group (vertical axis) on all 

other groups (horizontal axis) are shown. Positive impacts are shown in black and 

negative in white. Impacts are relative and circle size is proportional to the size of the 

impact. See Table 4.1 for group name abbreviations.  
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Figure 4.6: “Keystoneness” for the groups in the Whangateau Harbour model. 

Keystoneness is plotted against total impact (which is relative to the maximum impact 

and thus scaled between 0 and 1). The groups are numbered in order of decreasing 

keystoneness and circle size is proportional to group biomass. See Table 4.1 for group 

name abbreviations.  
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4.3.5 Austrovenus 

 Austrovenus biomass was decreased in small increments from the original 

model value of 3.38 g C m
-2

 until the model became unbalanced (i.e. EE greater 

than one), to calculate the minimum possible biomass (Table 4.4). Under the first 

scenario (with harvest pressure left as it was before the mass mortality event) 

biomass needed to be decreased by 83 % to 0.58 g C m
-2

 before predation pressure 

on Austrovenus was too great. With the fishery closed (i.e. zero harvest) the 

biomass could be decreased a little further (to 0.54 g C m
-2

) before the model was 

unbalanced. Austrovenus biomass following the 2009 mass mortality event (i.e. 

1.58 g C m
-2

; Appendix 1) was nearly three times greater than the minimum 

possible biomass, as determined in this analysis. 

 Increasing Austrovenus biomass in small increments suggests that the 

biomass could increase 5.5 times to 18.6 g C m
-2

 without exceeding the ecological 

carrying capacity of Whangateau Harbour (Table 4.4). When biomass was 

increased further than this the grazing pressure on MPB was too great, with EE 

exceeding one. Under this scenario, Austrovenus harvest was also increased 5.5 

times to 0.121 g C m
-2

 yr
-1

, which is the equivalent of 154 tonnes wet weight 

(Appendix 1). 

 Total system throughput decreased slightly (by c. 4 %) when Austrovenus 

biomass was reduced to the minimum possible, but increased by 20 % when 

Austrovenus biomass was increased to ecological carrying capacity (Table 4.3). 

The sum of all exports increased by c. 10 % at minimum Austrovenus biomass, 

but decreased by c. 50 % at ecological carrying capacity (mostly due to the 

increased value for EE for detritus). Ratios of total primary production to 

respiration, and to total biomass, increased at minimum Austrovenus biomass, and 

decreased at ecological carrying capacity; the reverse was true for the ratio of total 

biomass to total throughput, Finn’s cycling index and mean path length. 

Ascendency increased slightly at both minimum and maximum Austrovenus 

biomass compared to the original model.   
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Table 4.4: Effect of changes in Austrovenus biomass on Whangateau Harbour model 

under three scenarios: (1) decreasing biomass whilst maintaining harvest at 0.022 g C m
-2

 

yr
-1

, (2) decreasing biomass with no harvest to represent closure of the fishery, (3) 

increasing biomass (and harvest) to calculate ecological carrying capacity.  

Multiplier Biomass Harvest Mass-balance changes 

 g C m
-2

 g C m
-2

 yr
-1

  

Original model representing estuary before mass mortality event 

1 3.38 0.022  

    

Scenario 1: biomass decreased and harvest maintained at 0.022 g C m
-2

 yr
-1

 

0.8 2.70 0.022 Balances 

0.6 2.03 0.022 Balances 

0.467 1.58* 0.022 Balances 

0.2 0.68 0.022 Balances 

0.18 0.61 0.022 Balances 

0.17 0.58 0.022 Balances 

0.16 0.54 0.022 Austrovenus EE = 1.002 

0.15 0.51 0.022 Austrovenus EE = 1.069 

0.1 0.34 0.022 Austrovenus EE = 1.604 

    

Scenario 2: biomass decreased and no harvest 

0.2 0.68 0 Balances 

0.18 0.61 0 Balances 

0.17 0.58 0 Balances 

0.16 0.54 0 Balances 

0.15 0.51 0 Austrovenus EE = 1.049 

0.1 0.34 0 Austrovenus EE = 1.574 

    

Scenario 3: biomass (and harvest) increased to calculate ecological carrying capacity 

2 6.76 0.044 Balances 

5 16.90 0.110 Balances 

5.5 18.59 0.121 Balances 

6 20.28 0.132 MPB EE = 1.082 

7 23.66 0.154 MPB EE = 1.251 

10 33.80 0.220 MPB EE = 1.759, Phytoplankton EE = 1.194 

Minimum and maximum Austrovenus biomass are highlighted in bold and Austrovenus 

biomass after 2009 mass mortality event is indicated by *. 
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4.3.6 Sensitivity analysis 

 Colour maps show the possible range in biomass for each model group 

over a range in Austrovenus biomass (Figure 4.7). The greyscale indicates the 

maximum EE for each model run (and thus whether or not the model was 

balanced), with black/grey indicating EE < 1, and therefore the possible biomass 

range. In contrast, white indicates EE ≥ 1, and therefore that the biomass was 

outside of the possible range. The plots show that with Austrovenus biomass left 

unchanged (i.e. at its original value) the model was robust to small (2-fold) 

changes in biomass of all groups, and was robust to large (100-fold) changes in 

detritus, decreases in apex predators and increases in primary producers. The 

model was most sensitive to changes in the biomass of Austrovenus and 

planktivorous fish as only a moderate (10-fold) change in the biomass of those 

groups unbalanced the model.  

 At minimum Austrovenus biomass the model was most constrained by 

invertebrate feeding fish, as a small increase or a moderate decrease in the 

biomass of that group unbalanced the model (Figure 47). In contrast, when at 

maximum Austrovenus biomass, the model was constrained by decreases in MPB, 

phytoplankton and zooplankton, but was very robust to changes in biomass of 

birds and rays.  

 

4.3.7 Parameter quality 

 The overall pedigree index for the Whangateau Harbour model was 0.35 

and the measure of fit was 1.3 (Table 4.3). Highest confidence was placed in 

biomass estimates, most of which had been derived from local data sources, 

reflected in their relatively high index values (c. 0.7). Ratios of P/B and C/B ratio 

were mostly derived from empirical relationships or other models so confidence 

in these estimates was lower (index values: 0.2 - 0.5). Diet compositions were 

mostly estimated from general knowledge about the groups/species, and so 

confidence in these estimates was also low (index values: c. 0.2).  
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Figure 4.7: Results of sensitivity analysis. Colour maps depicting the effect of 

Austrovenus and other groups’ biomass on ecotrophic efficiency (EE). Biomass for each 

group was multiplied by a factor of 10
-2

 to 10
2
. White indicates EE ≥ 1 (i.e. unbalanced 

model). Grey/black indicates EE < 1 (i.e. balanced model) and thus the possible biomass 

range for each group.  
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4.4 Discussion 

 The Ecopath model for Whangateau Harbour shows a system dominated 

by the benthic groups, particularly Austrovenus, deposit feeding benthic 

invertebrates and microphytobenthos (MPB). The latter group was the most 

important primary producer, in terms of biomass and productivity, and 

Austrovenus and deposit feeding benthic invertebrates were responsible for the 

vast majority of total consumption. The model shows a system characterised by 

high flows to detritus for all groups, high detritus export, low trophic transfer 

efficiency and limited internal recycling. Other coastal lagoon systems overseas 

show similar characteristics, e.g. high MPB productivity, and significant export of 

organic material to the open ocean from Wilson Inlet, Western Australia (Haese & 

Pronk 2011), and high flows to detritus and dominance of benthic groups in 

Laguna de Rocha, Uruguay (Milessi et al. 2010). Whangateau shows 

characteristics of a shallow, oligotrophic system, with low water column biomass 

and primary production dominated by MPB. The model suggests that in this type 

of estuary suspension feeding bivalves are not important as a “natural 

eutrophication control”, but do play an important role facilitating the transfer of 

energy from MPB to other species such as invertebrate feeding fish and birds. 

 Estuaries such as Whangateau Harbour, barrier-enclosed lagoons with 

extensive intertidal flats and a tidal prism that makes up a large proportion of total 

volume, are widespread in New Zealand (Hume et al. 2007). The model highlights 

the important role of MPB, as opposed to pelagic phytoplankton, in these systems. 

Removal of MPB from the model reveals that phytoplankton and detrital 

production alone are not enough to sustain the consumer groups (i.e. a balanced 

solution was not obtained with benthic invertebrates and zooplankton feeding only 

on phytoplankton and detritus). It seems that the short residence time and shallow 

nature of these estuaries limits the importance of pelagic phytoplankton to benthic 

consumers, but high water clarity and large areas of intertidal flats allow high 

MPB productivity and biomass (Cahoon & Safi 2002). Previous research has 

shown that resuspended MPB may be an important food source for benthic 

suspension feeders such as Austrovenus (Safi 2003, Kang et al. 2006), which in 

turn enhance MPB productivity through excretion of ammonium (Sandwell et al. 

2009, Jones et al. 2011a). High values for the keystoneness index and relatively 

large impacts on numerous other groups for both MPB and Austrovenus confirm 
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that these groups are important components of the system, sustaining higher 

trophic levels. Reductions in MPB productivity and/or Austrovenus populations 

are therefore likely to impact greatly on the entire estuarine system. In particular, 

long-term degradation in sediment composition, in the form of increasing mud 

content, is likely to reduce MPB productivity by enhancing turbidity in the water 

column, as well as reducing the photic zone within the sediment and reducing 

pore-water nutrient fluxes due to decreased sediment permeability (Middelburg et 

al. 2000, Blanchard et al. 2001, Billerbeck et al. 2007). As well as other stressors 

such as pollution and over-harvesting (De Luca-Abbott 2001, Cummings et al. 

2007), increasing mud content can also directly adversely affect Austrovenus 

populations; abundance is decreased in very muddy sediments and increased 

suspended sediment concentrations reduce feeding efficiency (Thrush et al. 

2003b, Norkko et al. 2006). 

 The impact of Austrovenus harvesting on the Whangateau Harbour 

ecosystem appears to be relatively minor as mixed trophic impacts analysis 

suggests that it has little effect on other model groups. Furthermore, the gross 

efficiency of the harvest (ratio of catch to primary productivity) is very low 

(0.0115 %), indicating that the majority of ecosystem production is not removed 

from the estuary by harvesters. It should be noted however, that quantification of 

recreational shellfish harvesting is notoriously difficult (Hartill et al. 2005) and 

the input data used in this model was based on only one study (Kearney 1999). 

Furthermore, recreational harvest of other species, such as pipi (Paphies 

australis), occurs in the estuary but could not be incorporated into the model due 

to lack of data. The model output therefore likely underestimates recreational 

harvest pressure and its effect on other groups. Currently, shellfish beds in 

Whangateau Harbour are closed to harvesting to allow recovery from the mass 

mortality event (MFish 2009), but if/when harvesting resumes more effort may be 

needed to quantify and limit harvest pressure to prevent over-exploitation of this 

key species (Hartill et al. 2005). 

 The model produced low EE values for all model groups and flows to 

detritus made up 41 % of total system throughput, suggesting that a significant 

fraction of production is not consumed directly but enters the detrital pool. This is 

not uncommon in Ecopath models of coastal systems, especially well-flushed 

lagoons (Tomczak et al. 2009, Byron et al. 2011). Furthermore, the low EE 
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calculated for detritus suggests that a large proportion (c. 80 %) is not used by the 

system components included in the model. This ‘detritus export’ (153 g C m
-2

 yr
-

1
) includes detritus that is buried in the sediment, decomposed by bacteria, and 

physically exported out of system. Reliable estimates of microbial biomass, 

production and respiration are scarce so bacteria were not included explicitly in 

the model, but were assumed to be part of detritus (Christensen et al. 2008). 

Therefore microbial activity will account for some of the ‘detritus export’. It is 

also possible that some detritus is buried as the estuary is infilled by catchment-

derived sediment. Sedimentation rates in Whangateau Harbour are likely to be 

relatively low across most of the estuary due to the small size and limited 

development of the catchment, and the well flushed nature of the estuary (Kelly 

2009). However, mangrove expansion indicates that sedimentation is occurring in 

the more sheltered reaches of the estuary, and suggests that detritus burial is likely 

in these areas at least (Townsend et al. 2010). It is not possible to quantify, with 

the present model, the relative importance of microbial activity, burial in the 

sediment and physical export to the ‘detritus export’, but it may be that the latter 

is particularly significant in well-flushed estuaries such as Whangateau.  

 The tidal prism in Whangateau Harbour is 80 % of the total estuary 

volume, indicating that a substantial amount of detritus produced in the estuary 

may be advected to the coastal environment. The estuary is ebb-dominated (Grace 

1972), also suggesting that the system conforms to the “outwelling hypothesis” 

(Odum et al. 1979), acting as a source of material to the coastal ocean (Childers et 

al. 2000). The flux of organic matter from Whangateau has not been measured 

directly, but comparison with studies from other estuaries reveals that an export of 

c. 150 g C m
-2

 yr
-1

 (as determined by this Ecopath model application and 

equivalent to 1100 tonnes yr
-1

) is not unreasonable. In Manukau Harbour (80 km 

south of Whangateau), net export was estimated to be between 50 and 80 g C m
-2

 

yr
-1

 from the inner to the outer estuary (Vant et al. 1998). In the few studies that 

have directly measured material flux at the estuarine-ocean interface the net 

export, although dependent on a number of biological and hydrological factors, 

has been calculated to be of a similar order of magnitude to this study, e.g. 453 g 

C m
-2

 yr
-1

 for North Inlet, South Carolina (Dame et al. 1986), and c. 320 g C m
-2

 

yr
-1

 for Swartkops Estuary, South Africa (Baird et al. 1987). This export of 

organic material to the coastal ocean is likely to provide an energy source for 
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plankton and benthic consumers, which may significantly influence coastal 

productivity in some systems (Dame & Allen 1996, Schlacher et al. 2009). 

 Trophic transfer efficiencies (TE) decreased with increasing trophic level, 

due to increased respiration at higher trophic levels, but average TE (2 %) was 

well below the value of 10 % that is generally considered to be the case for most 

ecosystems (Lindeman 1942, Christensen & Pauly 1993). Values of TE vary 

widely in other Ecopath models, however, dependent on the type of ecosystem, 

and even the model configuration; for example, high P/C ratios lead to high TE 

(Christensen & Pauly 1993). Furthermore, estuarine systems tend to have TE < 10 

%, and in other highly flushed lagoons TE has been reported to be 5 %, due to the 

high production and low utilisation of detritus in these types of systems (e.g. 

Manickchand-Heileman et al. 1998, Wolff et al. 2000, Rybarczyk & Elkaim 2003, 

Christian et al. 2005, Taylor et al. 2008, Tomczak et al. 2009, Byron et al. 2011). 

The low TE is in agreement with the low value (5 %) calculated for the Finn’s 

cycling index (FCI), which indicates limited internal cycling, but is within the 

range reported in the literature for this type of ecosystem. Both TE and FCI tend 

to be higher in models of estuarine systems that include bacteria (Byron et al. 

2011).  

 Other indices are also suggestive of the Whangateau Harbour as a 

developing, rather than a mature system. The total primary production to total 

respiration ratio (TPP/TR) was high at 4.93, although respiration was likely 

underestimated due to omission of bacteria from the model. This ratio tends to be 

close to 1 in mature systems (Christensen & Pauly 1993, Christensen 1995). The 

connectance (CI) and system omnivory indices (SOI) suggest only a moderate 

number of links between groups, and that consumers tend to feed only on a single 

trophic level. The relative ascendency, at 36 %, suggests that the system has 

realised a moderate level of growth and development. Other models also tend to 

suggest that many estuary and bay systems are not mature (e.g. Rybarczyk & 

Elkaim 2003, Tomczak et al. 2009), but estuaries are by their very nature likely to 

be maintained in an early stage of ecosystem development, due to the repeated 

replenishment of nutrients by tidal or fluvial input (Odum 1969). Other research 

suggests that several of the indicators of ecosystem development, especially FCI 

and ascendency, reflect eutrophication status rather than maturity; for example, 

FCI will be low in less stressed estuaries, and high in polluted estuaries (Baird & 



90 

Ulanowicz 1993). The low FCI and moderate ascendency for Whangateau 

Harbour could therefore reflect the relatively pristine nature (i.e. high water 

quality) of the system (Kelly 2009). It seems that these indices are, to some 

degree, system specific and so may be best used to assess the effect of change on 

ecosystem properties within a particular system (as in e.g. Heymans et al. 2007, 

Baird 2009), rather than as a comparative measure across estuaries.  

 In this study, a possible range for Austrovenus biomass was established to 

assess the effect of this key species on ecosystem properties and other 

species/groups.  I found that Austrovenus biomass was able to be substantially 

decreased, to 17 % of its original value, without unbalancing the model. The 

minimum biomass (0.54 g C m
-2

) was less than the Austrovenus biomass 

estimated for the estuary after the mass-mortality event (1.58 g C m
-2

), suggesting 

that the system is able to tolerate such a reduction in the biomass of a key species. 

Closure of the shellfish beds to harvesting after the mass mortality event may 

have been prudent, however, to enable the bivalve populations to recover, as 

another mortality event or overharvesting could reduce the biomass further to the 

critical minimum level of 0.54g C m
-2

 identified in this Ecopath model 

application. However, as the sensitivity analysis shows, the model is fairly 

insensitive to changes in biomass of all groups, and incorporating spatial and 

temporal dynamics into the modelling process (e.g. using Ecosim and Ecospace) 

might reveal that the system is more sensitive than the current results suggest.  

 The high MPB biomass in the system allowed the maximum Austrovenus 

biomass (i.e. ecological carrying capacity) to be 5.5 times greater than the pre-

mass mortality event level, perhaps supporting anecdotal evidence of historically 

larger individual bivalves and bivalve populations (Marsden & Adkins 2010). In 

other systems detritus has been shown to make up a significant proportion of 

suspension feeding bivalves’ diet (Kang et al. 1999, Decottignies et al. 2007). If 

detritus were to be a more important component in Austrovenus diet (than is 

assumed in this model) then there is the potential for even greater ecological 

carrying capacity due to the current low utilisation of detritus. However, as a 

substantial amount of detritus, phytoplankton and resuspended MPB is likely to be 

removed from the estuary by tidal flushing ecological carrying capacity 

calculations should be viewed with caution.   
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 Comparison of the ecosystem indices across the original, minimum and 

maximum Austrovenus biomass models indicates that maturity increases as 

Austrovenus biomass increases. At minimum Austrovenus biomass, TPP/TR and 

TPP/TB increased, and TB/TST and FCI decreased. The reverse occurred at 

ecological carrying capacity; for example TPP/TR was close to 1 and FCI 

increased. Ratios of TPP/TR are considerably greater or less than 1 in developing 

ecosystems and close to 1 in mature ecosystems, TPP/TB is high in immature 

systems and diminishes as they mature, and TB/TST tends to increase as a system 

matures (Christensen 1995). Also, FCI is positively correlated with ecosystem 

maturity and stability (Vasconcellos et al. 1997). The results of this study 

therefore suggest that reductions in Austrovenus biomass may decrease the 

stability and resilience of the ecosystem.  

 Ecosystem complexity has also been shown to be correlated with stability, 

thought to be due to the increased numbers of linkages between species in 

complex or highly diverse systems affording a degree of resilience to 

perturbations (e.g. Eklof & Ebenman 2006, Thebault & Loreau 2006, Morissette 

2007). CI, SOI and ascendency provide measures of complexity, but comparison 

of these indices across the original, minimum and maximum Austrovenus biomass 

models reveals little. This is because in Ecopath, ecosystem complexity is largely 

a function of model complexity, i.e. the number of model groups, aggregation of 

species into those groups, and links between groups as defined in the diet matrix. 

Model pedigree has also been found to be correlated with system stability, i.e. 

higher quality models tend to perform better at predicting changes in biomass than 

poor quality ones (Morissette 2007) . The pedigree index for the Whangateau 

model (0.35) indicates that the input data was of moderate quality, although there 

is considerable scope for improvement (Morissette 2007). Thus, it may be 

sensible to focus future effort on improving data quality, and increasing model 

complexity, before more detailed scenario testing is undertaken with a temporally 

dynamic simulation such as Ecosim (Walters et al. 1997, Walters et al. 2000).  

 The sensitivity analysis revealed that the original model could withstand 

moderate changes in the biomass of all groups, suggesting that the system is fairly 

robust to perturbations (although incorporating temporal dynamics into the model 

would be necessary to confirm this). As would be expected, the model is most 

constrained by increases in predators (rays, invertebrate feeding fish, carnivorous 
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benthic invertebrates), or decreases in prey (microphytobenthos, phytoplankton), 

at minimum and maximum Austrovenus biomass, respectively. A sensitivity 

analysis can also reveal for which groups it is critical to obtain high quality input 

data (Christensen & Walters 2004). The relatively narrow range of possible 

biomass values for the fish groups (particularly the planktivores) suggests that as 

the model is sensitive to changes in these parameters, accurate biomass estimates 

are important for these groups. Quantitative data on fish abundance/biomass in 

New Zealand estuaries is very scarce and the abundance data for this model were 

mostly taken from one study (Morrison & Carbines 2006) conducted in 

Mahurangi Harbour (located 20 km south of Whangateau Harbour). Fish usage of 

Mahurangi Harbour may be quite different to Whangateau, as Mahurangi is a 

larger and deeper estuary; Mahurangi Harbour area at high tide is 24.6 km
2
, of 

which 51 % is intertidal, and mean depth is 2.74 m cf. Whangateau Harbour area 

of 7.46 km
2
, of which 85 % is intertidal, and mean depth is 1.56 m (NIWA 2011). 

The sensitivity analysis seems to highlight the uncertainty around the input 

parameters for the fish groups and the need for input data derived from the 

modelled system. 

 Finally, as this model suggests that a large proportion of system 

throughput is exported (as detritus) it may be advantageous to increase the 

modelled area to include the open coast. Systems modelled using Ecopath need to 

be fairly self-contained, i.e. the interactions occurring within the system should 

exceed the import and export from a system (Christensen et al. 2008). Although 

this was the case in this study, (export was less than half TST), there is substantial 

exchange between estuaries and connected environments. Apart from export of 

organic matter, a number of fish species migrate to and from estuaries, or use 

estuarine habitats as nursery grounds before dispersing to open coast 

environments (Morrison et al. 2002, Francis et al. 2005). However, a model of this 

complexity would require much more data, especially on fish usage and 

abundance, and the exchange of detrital material between the estuary and the 

coast, than is currently available.  

 In summary, the Ecopath model application to Whangateau Harbour 

reveals that it is a developing, rather than a mature system, with low trophic 

transfer efficiencies, high flows to detritus and high detritus export. The model 

confirms that Austrovenus is a key species in these systems, which represents a 
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large proportion of total biomass and impacts greatly on all other trophic levels. 

Furthermore, the model reveals that phytoplankton and detritus production alone 

are not sufficient to support consumers, highlighting the important role of MPB in 

these systems. Previous research has established that Austrovenus enhance MPB 

productivity by increasing nutrient availability (Sandwell et al. 2009, Jones et al. 

2011a). Thus, reductions in Austrovenus biomass will likely impact on MPB, and 

most other groups (e.g. birds and rays) in the estuary. Moreover, ecosystem 

indices calculated by the model suggest that reductions in Austrovenus biomass 

will reduce ecosystem maturity, which will likely reduce stability and resilience.  
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CHAPTER 5 

 

General discussion and conclusions 
 

 

 The overall aim of this thesis was to quantify the effect of Austrovenus 

populations on ecosystem structure and function, i.e. the influence of Austrovenus 

on nutrient cycling and primary productivity, the interactions between 

Austrovenus and other species in estuarine systems, and the potential effects of a 

decline in Austrovenus population on ecosystem properties.  Additionally, I aimed 

to quantify Austrovenus clearance rates (CR) at bed densities and flow speeds 

equivalent to in situ conditions, so that I could scale up Austrovenus grazing rates 

to ecosystem level. The bed CR obtained from the experiments in chapter 2 allows 

me to ascertain the grazing pressure exerted by Austrovenus in Whangateau 

Harbour (the same estuarine system modelled using Ecopath in chapter 4).  

 

5.1  Austrovenus grazing pressure in Whangateau Harbour 

 Suspension feeding bivalves have long been described as a ‘natural 

eutrophication control’ as they are thought to be capable of exerting considerable 

top-down control on phytoplankton populations (Officer et al. 1982). Estimates of 

bivalve grazing pressure, typically calculated by scaling up individual clearance 

rates (CR) to the ecosystem level, have shown that in some cases the suspension 

feeders are capable of filtering the entire volume of a system within a few days 

(Cloern 1982, Hily 1991, Smaal & Prins 1993, Dame & Prins 1998). However, 

this approach may overestimate grazing pressure as laboratory derived CR tend to 

overestimate in situ rates, which are affected by environmental variables such as 

seston quantity and quality (e.g. Navarro & Widdows 1997, Hawkins et al. 2001) 

and flow speed (e.g. Wildish & Saulnier 1993, Sobral & Widdows 2000, Newell 

et al. 2001, Jones et al. 2011b).  

 In chapter 2 I showed bivalve bed density also has a significant effect on 

CR, and quantified Austrovenus CR over a range of densities and flow speeds. 

Austrovenus density has been surveyed in Whangateau Harbour for a number of 

years, allowing me to use my CR data to estimate the grazing pressure exerted by 

Austrovenus in that system. Scaled up grazing rates can be used to calculate 
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bivalve clearance time (CT; days), which is the theoretical time needed for the 

bivalve population of a system to clear seston from a volume of water equivalent 

to the total system volume (Dame & Prins 1998). This can be compared with two 

other ecosystem scale parameters, water residence time and phytoplankton 

production time, to assess the potential for the bivalve population to control 

phytoplankton biomass (Dame & Prins 1998, Duarte et al. 2005). Water residence 

time (RT; days) is the theoretical time is takes for the water volume of a system to 

be exchanged with water from outside the system. Phytoplankton production time 

(PT; days) is the ratio of phytoplankton biomass to phytoplankton primary 

production. 

 Bivalve grazing pressure in Whangateau Harbour was calculated by 

dividing the Austrovenus population into two areas, high-density shellfish beds 

and low-density areas covering the rest of the intertidal, which were then 

combined to calculate total population CR (Table 5.1). Methodology used to 

calculate mean density in these areas was consistent with the Ecopath study in 

chapter 4. Ministry of Fisheries survey data was used to estimate mean density 

and size for the high-density beds, and the mean density for the rest of the 

intertidal area was assumed to be 50 ind. m
-2

 (Walshe et al. 2006, Pawley & Ford 

2007, Pawley 2011). Also, the data was split into two periods, before and after the 

2009 mass mortality event to quantify its effect on the population CR.  

 Bed CR was calculated for each area, using the equations derived in 

chapter 2, for three flow speeds (2, 5 and 15 cm s
-1

, i.e. “low”, “medium” and 

“high”, respectively), which are representative of in situ flow speeds. Other 

environmental variables are also likely to affect CR, and my calculations are 

likely to overestimate grazing pressure because of the relatively high 

concentration of phytoplankton used in the CR experiments, not the mix of 

inorganic and organic material found in estuarine seston (Cranford 2001). Bivalve 

size can also affect CR; unsurprisingly, larger animals tend to have higher 

absolute CR (e.g. Sylvester et al. 2005). The mean size (shell length) of 

Austrovenus before the mass mortality event (23.4 mm) was equivalent to the size 

of the animals used in the CR experiments in chapter 2, so the equations are likely 

to be valid for this period. After the mass mortality event, however, mean size in 

the high-density beds was reduced to 20.5 mm. Individual CR is known to be an 

allometric function of individual biomass, and biomass is an allometric function 
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of shell length (Bayne 1998). The relationship between shell length and biomass 

for Austrovenus is given by: 

 

M = a · L 
b
 

 

where M is ash free dry weight (g AFDW), L is shell length (cm), and a and b are 

coefficients determined to be 6 × 10
-7

 and 3.788, respectively (author’s 

unpublished data; r
2
 = 0.93 , n = 140 ). Though there are no data available for 

Austrovenus, the relationship between CR and biomass for the European cockle, 

Cerastoderma edule, is given by: 

 

CR = c · M 
d
 

 

where CR is clearance rate (m
3
 d

-1
 ind

-1
), M is g AFDW, and c and d are 

coefficients determined to be 0.041 and 0.61, respectively (Smaal et al. 1997). 

Using these relationships for Austrovenus in Whangateau Harbour suggests that 

the mean size (shell length) decrease from 23.4 mm to 20.5 mm results in a 22 % 

decrease in CR. Bed CR in the high-density beds after the mass mortality event 

was thus reduced by 22 % to account for the reduction in bivalve size. To 

calculate population CR, bed CR were scaled by the area, (641,500 m
2
 for the 

high-density beds, 4,780,000 m
2
 for the low-density area), and converted to the 

volume of water cleared per tidal cycle, based on the assumption that the bivalves 

feed for 4 hours per tide (Beentjes & Williams 1986).  

 My calculations indicate that before the mass mortality event the total 

volume of water cleared by Austrovenus per tidal cycle was between 565,100 and 

1,653,300 m
3
, depending on flow speed (Table 5.1). After the mass mortality 

event, the population CR was reduced slightly to between 529,600 and 1,391,500 

m
3
. Averaged across the three flow speeds the water cleared by Austrovenus 

before the mass mortality event (1,055,100 m
3
) was equivalent to c. 9 % of total 

harbour volume (i.e. 11,663,589 m
3
; Table 5.2). After the mass mortality event 

this was reduced to 931,300 m
3
 (or c. 8 % of total harbour volume). 



 

Table 5.1: Whangateau Harbour Austrovenus population clearance rates calculated for three flow speeds (2, 5 and 15 cm s
-1

, i.e. 

“low”, “medium” and “high”, respectively) 

Harbour area Density  

(ind. m
-2

) 
Size Bed clearance rate (L hr

-1
 m

-2
)

†
 Population clearance rate per tidal cycle (m

3
)‡ 

 (ind. m
-2

) (mm) Low Medium High Low Medium High Average 

Before mass mortality event          

High-density beds 495 23.4 94.4 48.1 276.0 242000 123400 707700 357700 

Low-density areas 50 23.4 36.9 23.1 49.5 704800 441700 945600 697400 

Total   131.2 71.2 325.5 946800 565100 1653300 1055100 

After mass mortality event          

High-density beds* 372 20.5 65.5 34.3 173.8 168000 87900 445900 233900 

Low-density areas 50 23.4 36.9 23.1 49.5 704800 441700 945600 697400 

Total   102.3 57.4 223.2 872800 529600 1391500 931300 
†
 Bed clearance rate (BCR) at each flow speed calculated from equations derived in chapter 2, i.e. at low flow speed, log10(BCR) = 

0.41(log10(bed density)) + 0.87; at medium flow speed, log10(BCR) = 0.32(log10(bed density)) + 0.82; and at high flow speed, 

log10(BCR) = 0.75(log10(bed density)) + 0.42. 

‡ Population clearance rate calculated by scaling BCR by area (641,500 m
2
 for high density beds and 4,780,000 m

2
 for low density 

areas) and assuming Austrovenus feed for 4 hours per tidal cycle.  

* BCR reduced by 22 % for high-density beds after mass mortality event to account for reduction in mean size. 

 

9
8

 



99 

 Individual CR for Austrovenus has previously been estimated to be c. 1 L 

hr
-1

 (Heggie 2008, Kainamu 2010) and at low densities (i.e. ≤ 100 ind. m
-2

) I 

found individual CR to be c. 0.7 L hr
-1 

(averaged across the three flow speeds). 

Using this individual CR to scale up grazing rates for Whangateau Harbour yields 

a population CR of c. 1,643,000 m
3
 per tidal cycle (based on the pre- mass 

mortality event Austrovenus population of 557 million individuals, i.e. 495 ind. m
-

2
 over 641,500 m

2
 and 50 ind. m

-2
 over 4,780,000 m

2
). This is 55 % greater than 

that calculated using bed CR and illustrates the degree to which bivalve grazing 

pressure can be overestimated using CR derived at low densities. 

 

Table 5.2: Ecosystem scale parameters for Whangateau Harbour 

Physical characteristics and turnover rates Value Units 

Estuary volume at spring tide
†
 11663589 m

3
 

Spring tidal prism
†
 9491105 m

3
 

Austrovenus population clearance rate per tidal cycle   

Before mass mortality event 1055000 m
3
 

After mass mortality event 961200 m
3
 

Clearance time (estuary volume / volume of water cleared)   

Before mass mortality event 5.54 days 

After mass mortality event 6.07 days 

Residence time (estuary volume / volume of water exchanged) 0.61 days 

Phytoplankton production time (biomass / primary production) 1.40 days 
†
 Source: http://wrenz.niwa.co.nz/webmodel/coastal (NIWA Coastal Explorer) 

 

 The volume of water cleared by the Austrovenus population each tidal 

cycle is much less than the tidal prism (9,491,105 m
3
), and the ecosystem scale 

parameters reveal that the bivalve clearance time (c. 6 days) is much greater than 

both the water residence and phytoplankton production times (0.61 and 1.4 days, 

respectively; Table 5.2). This suggests that Austrovenus do not exert a top-down 

control on phytoplankton in the harbour.  

 In systems where pelagic phytoplankton populations are low (as in this 

system), but there is limited top-down control, then bottom-up control on 

phytoplankton productivity may be more important (Prins et al. 1998). Bottom-up 

controls include light and nutrient availability, and it is highly likely that 

phytoplankton growth is limited by the latter in Whangateau Harbour. Nutrient 

concentrations in estuaries similar to Whangateau tend to be low (NH4
+
 and NO3

-
 

concentrations are typically < 0.01 mg/L), and it is unlikely that light is limiting 
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pelagic phytoplankton growth in such a shallow estuary with a highly abundant 

and productive microphytobenthos (MPB) community (see chapter 4). This 

highlights the functionally important link between benthic macrofauna, such as 

Austrovenus, and MPB. The macrofauna provide a source of nutrients, which 

would otherwise be limiting, to the MPB, directly by excretion of NH4
+
, or 

indirectly by facilitating the release of pore-water nutrients through bioturbation 

(e.g. Thrush et al. 2006, Sandwell et al. 2009, Lohrer et al. 2010a). Therefore, in 

this type of system suspension feeding bivalves are not a ‘natural eutrophication 

control’; rather they perform the opposite function by stimulating primary 

production. 

 

5.2  Summary 

5.2.1  Austrovenus clearance rates and grazing pressure 

 In chapter 2 of this thesis I showed that bivalve bed density and flow speed 

are significant factors affecting Austrovenus CR, and even the proportion of 

animals in the bed that are actively feeding. Furthermore, the bed roughness 

generated by Austrovenus is capable of influencing near-bed flow speeds and bed 

shear stress, and their siphonal currents appear to influence near-bed 

hydrodynamics under certain conditions, (i.e. at high bivalve densities and low 

flow speeds).  

 Both individual CR and the proportion of animals feeding were depressed 

at high densities. This suggests that other advantages, such as protection from 

predation or wave disturbance, may be afforded to Austrovenus in high-density 

beds, compensating for the reduction in CR and feeding opportunity (Widdows et 

al. 2002, van de Koppel et al. 2005). Additionally, the enhanced bed roughness 

over Austrovenus beds is likely to increase resuspension of microphytobenthos, 

potentially providing the bed with a substantial food source (Widdows et al. 

2009). 

 Bed filtration rates can therefore be substantially overestimated if scaled 

up using CR obtained from animals at low densities, but may also be affected by 

assumptions made about in situ flow speeds. My experiments showed that 

individual and bed CR, and the proportion of animals feeding, were increased at a 

relatively high flow speed, compared to lower flow speeds. An increase in flow 

speed increases vertical mixing and seston supply to the bed (O'Riordan et al. 
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1993, Wildish & Kristmanson 1997, Newell et al. 2001), thereby allowing more 

animals to feed and CRs to increase.  

 Calculation of population grazing rates therefore requires data on in situ 

bivalve density and the current velocity, but other environmental variables can 

significantly affect CR (e.g. Bayne 1998, Hawkins et al. 1999, Hawkins et al. 

2001, Widdows 2001). The accurate scaling up of bivalve filtration rates to 

ecosystem level is thus reliant on a large amount of bivalve- and system-specific 

information. Taking into account the effect of density and flow speed, my 

population CR calculations for Whangateau Harbour reveal that Austrovenus 

populations are unlikely to exert a top-down control on pelagic phytoplankton. 

But chapters 3 and 4 of this thesis show that Austrovenus have a significant effect 

on benthic communities and processes.  

 

5.2.2  Effect of Austrovenus on nutrient cycling and primary productivity 

 Previously, Austrovenus has been shown to be a key species in estuarine 

ecosystems, which enhances MPB productivity, and influences nutrient fluxes and 

macrofauna community structure (Thrush et al. 2006, Sandwell et al. 2009, Lohrer 

et al. 2010b). However, my experiments suggest that the positive effect of 

Austrovenus on primary productivity is not consistent across habitat types, and 

that there is substantial temporal variability in primary production (chapter 3). 

Whilst Austrovenus enhanced primary productivity and sediment denitrification 

potential at a sandy site, there was no effect of Austrovenus on these variables at a 

muddy-sand site. Furthermore, at both sites primary productivity was low in 

wintertime, likely caused by reduced water temperatures, PAR, and bivalve 

metabolic rates. 

 Accelerated sedimentation rates are considered a major threat to estuarine 

communities and ecosystem function (e.g. Ellis et al. 2002, Thrush et al. 2003a, 

Thrush et al. 2004, Norkko et al. 2006). Increasing estuarine mud content is likely 

to reduce Austrovenus populations (Thrush et al. 2003b), but my results show that 

it may also reduce the positive effect of this species on system productivity and 

denitrification potential even when they persist. Moreover, these experiments 

highlight the importance of considering context, i.e. the range of conditions 

inhabited by a particular species, when attempting to assess the effect of key 

species on ecosystem function. 
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 A substantial proportion of research into the ecosystem services provided 

by suspension feeding bivalves has focused on epibenthic species, such as mussels 

and oysters (see review by Newell 2004). High biodeposition rates for these three 

dimensional structures, particularly for longline mussel farms, result in substantial 

nitrogen enrichment of underlying sediments, significantly affecting nutrient 

recycling (Stenton-Dozey et al. 2001, Bruesewitz et al. 2006, Giles et al. 2006). 

However, my study suggests that biodeposits do not accumulate in the sediments 

around Austrovenus beds, thus the effect of these infaunal bivalves on ecosystem 

services cannot be directly inferred from studies of epibenthic species. Increased 

sediment denitrification potential in the Austrovenus beds at the sandy site 

indicate that although nitrogen enrichment from biodeposits is negligible, 

enhanced NH4
+
 availability may provide a source of nitrogen for nitrification 

(Gardner et al. 2001, Bruesewitz et al. 2008). 

 

5.2.3  Effect of Austrovenus on ecosystem properties and other trophic levels 

 An Ecopath model for Whangateau Harbour revealed that the system is 

dominated by benthic groups, and is characterised by high detritus production and 

export, low transfer efficiency and limited internal recycling. Austrovenus and 

MPB biomass accounted for c. 60 % of total living biomass and the model 

highlighted the important role of MPB, as opposed to pelagic phytoplankton, in 

these systems (i.e. phytoplankton and detrital production alone were not sufficient 

to sustain the benthic groups). High values for the keystoneness index and 

relatively large impacts on numerous other groups for both MPB and Austrovenus 

confirmed that these are important components of the system, underpinning 

higher trophic levels. 

 The model was fairly robust to changes in biomass for all groups and 

Austrovenus biomass was able to be reduced to 17 % of its original value without 

unbalancing the model. The minimum biomass was less than the Austrovenus 

biomass estimated for the harbour after the 2009 mass mortality event, indicating 

that the system is able to tolerate such a reduction in the biomass of a key species. 

However, incorporating spatial and temporal dynamics into the modelling process 

might reveal that the system is more sensitive than these results suggest. 

 Ecosystem property indices suggest that, as with other estuarine systems, 

Whangateau Harbour is a developing, rather than a mature ecosystem (e.g. 
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Rybarczyk & Elkaim 2003, Tomczak et al. 2009, Byron et al. 2011). However, 

with decreasing Austrovenus biomass, maturity also decreases, suggesting that 

reductions in Austrovenus populations may decrease the stability and resilience of 

the ecosystem (Christensen 1995, Vasconcellos et al. 1997). 

 

5.3  Conclusions and recommendations for future research 

 In summary, I have shown that Austrovenus is a key species in estuarine 

ecosystems, but its influence is different to that of suspension feeding bivalves in 

overseas systems (reviewed by Newell 2004). In New Zealand’s shallow estuaries 

Austrovenus populations are unlikely to exert considerable grazing pressure on 

pelagic phytoplankton, but instead enhance MPB productivity by increasing 

nutrient availability. In turn, MPB are highly likely to be an important component 

of Austrovenus’ diet and enhanced turbulence over high-density bivalve beds may 

increase resuspension of MPB, thus providing the bivalves with a substantial food 

source. Austrovenus populations represent a large proportion of total biomass in 

these systems and impact greatly on all other trophic levels.  Reductions in 

Austrovenus biomass will therefore likely impact not only on MPB, but most 

other groups in the estuary, and may also reduce ecosystem maturity and stability.  

 Results from this thesis indicate that increasing estuarine mud content, 

caused by accelerated sedimentation rates, may be a considerable threat to 

estuarine ecosystem functioning. The Ecopath model highlights the very 

important role of MPB and Austrovenus in these systems, but previous research 

has shown that both are adversely affected by sedimentation. MPB productivity is 

reduced in muddy sediments compared to sandy sediments, and is likely to be 

light limited during inundation if turbidity is enhanced due to increased suspended 

sediment concentrations (e.g. Billerbeck et al. 2007). Although Austrovenus are 

found in areas with moderate levels of sedimentation, Austrovenus beds tend to be 

absent from very muddy sediments (Thrush et al. 2003b). Furthermore, my 

experiments suggest that the positive effect of Austrovenus on MPB productivity 

and sediment denitrification rates are limited at sites with moderate levels of 

sedimentation. Thus, even small increases in estuarine mud content have the 

potential to impact on system productivity, with further increases in mud content 

likely to have multiple and cumulative effects. 
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 Further research is needed to quantify the effect of Austrovenus bed 

density on sediment stability and resuspension of MPB. Bioturbators such as 

Austrovenus tend to enhance resuspension of sediment (and associated MPB), 

thus reducing stability of surficial sediments, but effects may be scale- or habitat- 

dependent. In the large (16 m
2
) plots constructed for my experiments in chapter 3 

Austrovenus appeared to enhance sediment stability at the sandy site; sediment 

level was raised in Austrovenus addition plots compared to removal plots and sand 

ripples were clearly visible in removal plots, but not in addition plots (author’s 

pers. obs.). High-density beds are a dominant feature on intertidal flats but are 

particularly likely to be targeted by harvesters, or affected by mass mortality 

events, thus reductions in Austrovenus populations are likely to manifest primarily 

in these large structures. Recent research has identified spatial self-organisation in 

mussel (Mytilus edulis) beds that affects sediment dynamics and ecosystem 

productivity (van de Koppel et al. 2005, van de Koppel et al. 2008, Widdows et al. 

2009). The effect of spatial self-organisation on ecosystem structure and 

functioning is likely to be different for infaunal bivalves, however, and future 

studies should address the role of Austrovenus beds in sediment dynamics.  

 Future work could also focus on improving the complexity of ecosystem 

modelling, which should improve the accuracy of predictions on the effect of 

declining Austrovenus populations on estuarine ecosystems. Spatial and temporal 

dynamics can be incorporated into the Ecopath model using Ecosim and Ecospace 

(Christensen & Walters 2004). Alternatively, a process-based ecological model 

could be linked to a 3D hydrodynamic model to investigate the coupling of 

physical and biological processes in estuarine environments (e.g. Spillman et al. 

2008). Both methods require more, and higher quality, input data than is currently 

available but are a logical next step in elucidating the role of Austrovenus, and the 

impact of declining Austrovenus populations, on ecosystem function.  
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APPENDIX 1 

 

Data collation for Whangateau Harbour Ecopath 

model 
 

 

 The species and groups considered in the Whangateau Harbour Ecopath 

model are listed in Table A1.1 and the origin of input data (biomass, production 

and consumption rates, and diet composition) for each of the groups are described 

in the following sections. 

 

A1.1  Shorebirds  

 Whangateau Harbour provides feeding, roosting and breeding habitat for 

many shorebirds (c. 25 species), including populations of nationally vulnerable 

and declining species such as the New Zealand dotterel (Charadrius obscures) 

and banded dotterel (Charadrius bicinctus) (Kelly 2009). The shorebird biomass 

estimate was based on the species thought to be the most numerous, based on 

observations made around the harbour and knowledge of common species in 

nearby estuaries.  

 Mangatawhiri Spit which encloses Whangateau Harbour is an important 

breeding and flocking site for the New Zealand dotterel, with a post-breeding 

flock arriving in January and maximum numbers occurring in February to March. 

Non-resident birds leave for their breeding grounds from April to September, with 

a small number of birds (c. 10 pairs) staying resident and breeding at the spit 

(Dowding & Chamberlin 1991). Variable oystercatchers (Haematopus unicolor) 

are resident year round; gulls (black-backed Larus dominicanus and red-billed 

Larus scopulinus) and pied shag (Phalacrocorax varius varius) are also likely to 

be common in the harbour. Banded dotterels, South Island pied oystercatchers 

(Haemotopus ostralegus finschi) and pied stilt (Himantopus himantopus) winter in 

the harbour, returning to their breeding grounds in summer. Bar-tailed godwits 

(Limosa lapponica baueri) spend the summer in the harbour, returning to Alaska 

to breed (Thrush et al. 1994). 
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Table A1.1: Species and groups considered in Whangateau Harbour model 

Group name  Common name Scientific name 

Shorebirds New Zealand dotterel Charadrius obscurus  

 Banded dotterel Charadrius bicintus 

 Pied oystercatcher Haematopus ostralegus 

 Variable oystercatcher Haematopus unicolor 

 Bar-tailed godwit Limosa lapponica baueri 

 Pied stilt Himantopus himantopus 

 Black-backed gull Larus dominicanus 

 Red-billed gull Larus scopulinus 

 Pied shag Phalacrocorax varius varius 

Rays Short tailed stingray Dasyatis brevicaudata 

 Eagle ray Myliobatis tenuicaudatus 

Piscivorous fish Kahawai Arripis trutta 

 Spotted stargazer Genyagnus monopterygius 

 Kingfish Seriola lalandi 

 Barracouta Thyrsites atun 

 John dory Zeus faber 

Invertebrate feeding fish Rock cod Acanthoclinus fuscus 

 Yellow eyed mullet Aldrichetta forsteri  

 Red moki Cheilodactylus spectabilis 

 Red gurnard Chelidonichthys kumu 

 Hiwihiwi Chironemus marmoratus 

 Common triplefin Forsterygion lapillum 

 Variable triplefin Forsterygion varium 

 Spotty Notolabrus celidotus  

 Banded wrasse Notolabrus fucicola 

 Snapper Pagrus auratus  

 Leatherjacket Parika scaber 

 Small bastard red cod Pseudophycis breviuscula 

 Yellow belly flounder Rhombosolea leporina  

 Sand flounder Rhombosolea plebeia  

 Clingfish Trachelochismus melobesia 

 Goatfish Upeneichthys lineatus 

Planktivorous fish Koheru Decapterus koheru  

 Trevally Pseudocaranx dentex 

 Blue maomao Scorpis violacea  

Herbivorous fish Parore Girella tricuspidata  

 Piper Hyporhamphus ihi 

Carnivorous benthic invertebrates Whelks Cominella spp. 

 Oyster borer Lepsiella scobina 

Austrovenus Clam Austrovenus stutchburyi 

Suspension feeding benthic invertebrates Pipi Paphies australis 

Deposit feeding benthic invertebrates Mud crab Austrohelice crassa 

 Wedge shell Macomona liliana 

 Nut shell Nucula hartvigiana 

 Polychaete worms  

 Amphipods  

 Benthic copepods  

 Echinoderms  

Zooplankton   

Macrophytes Flapjack Carpophyllum flexuosum 

 Sea lettuce Ulva sp. 

 Neptune’s necklace Horomosira banksii 

 Coralline algae Corallina spp. 

Microphytobenthos   

Phytoplankton   

Detritus   
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Observations made around Whangateau Harbour from 1998 to 2002 and 

published by the Ornithological Society of New Zealand (OSNZ) provide 

population estimates for several of these species: 70 NZ dotterels, 80 banded 

dotterels, 400 pied oystercatchers, 50 variable oystercatchers and 400 bar-tailed 

godwits (Parrish 2000, 2001, 2002, 2006). It is hard to obtain estimates for other 

species, most likely because the observations made by the OSNZ were focused on 

the spit and not on the intertidal flats in the estuary. In Manukau Harbour (80 km 

south of Whangateau Harbour) shorebird densities range from c. 90 to 120 ind. 

km
-2

 through the year (Thrush et al. 1994), suggesting than in a harbour the size of 

Whangateau (i.e. 7.5 km
2
) total population size is likely to be c. 800 shorebirds. 

Accounting for the fact that a number of the species for which there are data are 

only resident for half the year, other species (i.e. pied stilt, gulls, etc) were 

expected to make up approximately 250 individuals. To estimate the biomass of 

birds in a study region Lunquist and Pinkerton (2008) used the following 

equation: 

 

B = ((N
. 
W

. 
C)/A)

 . 
(S/100) 

.
 (M/12)  

 

where B = effective biomass (g C m
-2

), N = number of birds in local population, 

W = average wet weight of bird (g WW), C = carbon:wet weight ratio  (g C g
-1

 

WW), A = study area (m
2
), S = proportion of foraging area covered by the study 

region (%), and M = months spent in the foraging area per year. Average bird 

weights were obtained from Heather and Robertson (2000). Carbon biomass of 

birds is approximately 10% of wet weight (Lundquist & Pinkerton 2008). 

Biomass was estimated for each species and total shorebird biomass was 

estimated to be 0.00457 g C m
-2

 (Table A1.2). 

 In previous Ecopath models for New Zealand coastal systems P/B for bird 

groups is typically 0.1 – 0.3 yr
-1

 and C/B is 35 – 90 yr
-1

 (Bradford-Grieve et al. 

2003, Jiang & Gibbs 2005, Pinkerton et al. 2008), so initial estimates were be 

taken to be in the middle of these ranges.  
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Table A1.2: Shorebird abundance and biomass estimates for Whangateau 

Harbour 

Common name 

Average 

individual 

wet weight 

(g) 

No. of 

months 

in 

harbour 

Population 

estimate 

Biomass  

(g C m
-2

) 

NZ dotterel (resident) 160 12 20 0.0000363 

NZ dotterel (non-resident) 160 6 50 0.0000453 

Banded dotterel 60 6 80 0.0000272 

South Island pied 

oystercatcher 
550 6 400 0.00125 

Variable oystercatcher 725 12 50 0.000411 

Bar-tailed godwit 325 6 400 0.000737 

Pied stilt 200 6 200 0.000227 

Black-backed gull 950 12 50 0.000538 

Red-billed gull 300 12 50 0.00017 

Pied shag 2000 12 50 0.00113 

 

 Shorebirds feed mostly on small fish and benthic invertebrates but 

quantitative estimates of the relative importance of the different groups to diet are 

rare. Oystercatchers in the Firth of Thames (North Island, New Zealand) are 

known to feed on pipi, whelks, wedge shells, Austrovenus, polychaetes and mud 

crabs (Battley et al. 2007). Dotterels feed mostly on benthic invertebrates, 

especially crabs, and small fish; red-billed gulls feed on plankton during summer, 

and benthic invertebrates and small fish; black-backed gulls are opportunistic 

feeders that will take a wide range of food including carcasses, invertebrates and 

fish; pied stilt and bar-tailed godwits feed mainly on benthic invertebrates; and 

pied shags feed mostly on live fish, such as flounder and mullet (Heather & 

Robertson 2000, Medway 2000). 

 

A1.2  Fish 

 Approximately 40 species of fish are known to live in Whangateau 

Harbour; rare species were excluded from the model and data were collected on 

the 20 to 25 species that are classed as common or frequent (Grace 1972, Kelly 

2009). Data on diet composition are available for many of these species from 

studies conducted nearby (Russell 1983, Le Port 2003, Usmar 2010), and 

elsewhere in New Zealand (Webb 1973, Curtis & Shima 2005). Both the short 

tailed stingray (Dasyatis brevicaudata) and the eagle ray (Myliobatis 

tenuicaudatus) are common in New Zealand estuaries, moving from channels to 
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the intertidal flats at high tide where they feed on shellfish beds and other 

invertebrates (Thrush et al. 1991, 1994, Le Port 2003). Austrovenus stutchburyi 

likely comprise a substantial proportion of the eagle rays’ diet in Whangateau 

Harbour as in the rays’ foraging grounds Austrovenus has been found to comprise 

85 % of total bivalve population (Le Port 2003). As important predators of 

Austrovenus, rays were placed in a separate group in order to better facilitate the 

examination of the effect of Austrovenus populations on energy flow in the 

system. Although adults tend to emigrate offshore, estuaries are likely to be 

particularly important to juvenile snapper (Pagrus auratus), which tend to feed on 

crustaceans and polychaetes, rather than hard shelled molluscs (Usmar 2010). Fish 

(other than rays) were placed into one of four functional groups primarily based 

on feeding mode: invertebrate feeders, herbivores, planktivores, piscivores. For 

some species, however, feeding mode is not limited to one type. For example, 

kahawai (Arripis trutta) are known to feed on fish, zooplankton and benthic 

invertebrates (Russell 1983). In these cases, the species were assigned to the 

group which accounted for the largest proportion of their diet.  

 Although stock assessments are carried out for species targeted by 

recreational and commercial fisheries in coastal areas, estimates of fish biomass in 

New Zealand estuaries are very scarce. Several studies have quantified the relative 

abundance of estuarine fish using beach seine and outrigger trawl but converting 

these data to absolute abundances is not possible as these methods catch only 

small species and juveniles of larger species (e.g. Morrison et al. 2002, Francis et 

al. 2005). However, a recent study in Mahurangi estuary, just south of 

Whangateau, obtained population estimate and size-frequency data for snapper 

and several other species using dropped underwater video (Morrison & Carbines 

2006). Population size for those same species in Whangateau Harbour was 

estimated by scaling the population estimates from Mahurangi, based on the size 

(i.e. estuary area at high tide) of Whangateau compared to Mahurangi. Length-

weight relationships allowed conversion of mean length (L) from Morrison and 

Carbines (2006) to mean weight (W): 

 

W = a 
.  

L
b 
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where  a and b are constants available for many New Zealand fish species in 

Taylor and Willis (1998), Chubb et al. (1981), Francis (1988) and in Fishbase 

(Froese and Pauly, 2005). Where mean lengths were not available mean weight 

was estimated to be 33 % of maximum weight (calculated from maximum length), 

and biomass for each species was estimated assuming carbon was 8.3% of wet 

weight for fish (Lundquist & Pinkerton 2008). There is considerable uncertainty 

in these data as Mahurangi is larger and deeper than Whangateau (24.6 km
2
 in 

area compared to 7.5 km
2
, and 2.7 m mean depth compared to 1.6 m). Scaling 

based on estuary area therefore likely overestimates fish biomass for Whangateau. 

On the other hand, there were several species for which no biomass estimate could 

be obtained, potentially underestimating total group biomass. 

 Production for each fish species was estimated using an empirical 

relationship that relates maximum weight of the species to P/B: 

 

P/B = 2.4 
. 
M

-0.26 

 

where M is the maximum wet weight (g) of the species. M is taken to be 

equivalent to W∞ (asymptotic weight in g; i.e. the mean weight fish of a given 

stock would reach if it were to grow for an infinitely long period) (Haedrich & 

Merrett 1992). As for biomass, length-weight relationships allowed the 

conversion of asymptotic lengths to asymptotic weights. 

 Consumption for each fish species was estimated using an empirical 

relationship derived by Palomares and Pauly (1998) that relates C/B to mortality, 

food type, fish morphometrics and temperature: 

 

Log(C/B) = 5.847 + 0.280log Z – 0.152logW∞ – 1.360T’ + 0.062A + 0.510h + 

0.390d 

 

where Z is an estimate of total mortality (yr
-1

; equivalent to P/B), W∞ is 

asymptotic weight (g), T’ = 1000/(temperature in Kelvin), A = aspect ratio of tail 

(ratio of tail height to surface area), h expresses food type (1 for herbivores, 0 for 

detritivores/carnivores) and d also expresses food type (1 for detritivores, 0 for 

herbivores/carnivores). Average annual water temperature in Whangateau 

Harbour is approximately 17.5 °C (Kelly 2009). Table A1.3 summarises the 
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available data on food items, biomass, P/B and C/B for each fish species. For 

some species there was no data available to calculate P/B and/or C/B. In these 

cases data from other species in the group was used to provide an estimate for the 

initial input parameters. Data for C/B was lacking for both of the species in the 

ray group; as rays use their pectoral fins as the dominant means of propulsion C/B 

could not be estimated using Palomares and Pauly’s equation. Other models that 

have included a ray/shark group have typically used C/B values of between 2.8 

and 3.9 yr
-1

 (e.g. de Paula et al. 1993, Wolff et al. 1998, Jiang & Gibbs 2005). In 

groups with production and consumption data values were weighted by estimates 

of species abundance to obtain initial parameters. The initial P/B and C/B 

estimates for fish groups are within the ranges reported for similar species in other 

Ecopath models of New Zealand coastal systems (e.g. Jiang & Gibbs 2005, 

Pinkerton et al. 2008). 

 

 



 

Table A1.3: Fish species, food items, biomass (B; g C m
-2

), P/B (yr
-1

) and C/B (yr
-1

) estimates for Whangateau Harbour 

Ecopath group Species name Common name Food item
1
 B P/B  C/B  

Rays Dasyatis brevicaudata Short tailed stingray Austrovenus, other benthic inverts 0.038 0.10  
 Myliobatis tenuicaudatus Eagle ray Austrovenus, other benthic inverts 0.090 0.12  

Fish Arripis trutta Kahawai Fish, zooplankton, benthic inverts 0.016 0.31 5.02 
(piscivores) Genyagnus monopterygius Spotted stargazer Fish (demersal species)    

 Seriola lalandi Kingfish Fish 0.001 0.10 2.92 
 Thyrsites atun Barracouta Fish  0.27 3.83 

 Zeus faber John dory Fish e.g. koheru, triplefins, spotty, leatherjackets < 0.001 0.34 4.18 
Fish Acanthoclinus fuscus Rock cod Benthic inverts (crustaceans and molluscs)    

(invertebrate  Aldrichetta forsteri  Yellow eyed mullet Benthic invertebrates, detritus, algae 0.008 0.54 6.74 

feeders) Cheilodactylus spectabilis Red moki Benthic inverts  0.23 3.73 
 Chelidonichthys kumu Red gurnard Benthic crustaceans, zooplankton 0.006 0.40 4.84 

 Chironemus marmoratus Hiwihiwi Benthic inverts  0.43 6.04 
 Forsterygion lapillum Common triplefin Small benthic inverts (ispods, amphipods, polychaetes)  < 0.001 1.45 14.69 

 Forsterygion varium Variable triplefin Small benthic crustaceans, other benthic inverts < 0.001 1.27 13.14 

 Notolabrus celidotus  Spotty Benthic inverts  0.005 0.73 8.85 
 Notolabrus fucicola Banded wrasse Benthic inverts  0.40 5.48 

 Pagrus auratus  Snapper Benthic inverts, fish, zooplankton 0.095 0.22 3.99 
 Parika scaber Leatherjacket Benthic inverts, macroalgae 0.002 0.36 4.52 

 Pseudophycis breviuscula Small bastard red cod Benthic inverts  0.30 3.72 

 Rhombosolea leporina  Yellow belly flounder Benthic inverts, detritus 0.004 0.40 4.78 
 Rhombosolea plebeia  Sand flounder Benthic inverts, detritus < 0.001 0.33 4.09 

 Trachelochismus melobesia Clingfish Small benthic inverts    
 Upeneichthys lineatus Goatfish Small benthic inverts 0.02 0.50 8.82 

Fish Decapterus koheru  Koheru Zooplankton 0.003   
(planktivores) Pseudocaranx dentex Trevally Zooplankton, benthic inverts 0.005 0.36 7.23 

 Scorpis violacea  Blue maomao Zooplankton  0.003 0.44 6.74 

Fish Girella tricuspidata  Parore Macroalgae 0.031 0.34 13.48 
(herbivores) Hyporhamphus ihi Piper Macroalgae, zooplankton     
1
 If more than one item in diet the food contributing the greatest proportion is listed first. (Fields left blank where no input data available). 

1
4
2
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A1.3  Benthic invertebrates 

 Benthic invertebrates were split into functional groups based on feeding 

mode, i.e. carnivores, deposit feeders and suspension feeders (which was further 

split into two groups: Austrovenus stutchburyi and other suspension feeders). 

 

A1.3.1 Carnivorous benthic invertebrates  

 Feeding aggregations (c. 15 – 20 individuals) of predatory/scavenging 

whelks, (mostly Cominella glandiformis with smaller numbers of C. adspersa, C. 

virgata, C. maculosa and Lepsiella scobina), are common on intertidal flats in 

Whangateau Harbour (Stewart & Creese 2004). Cominella spp. are generally 

scavengers but are capable of drilling and/or chipping at the shells of their prey 

(mostly Austrovenus stutchburyi), whereas L. scobina is an active predator, 

particularly of smaller Austrovenus (Stewart & Creese 2004). Whelk abundance 

on shellfish beds on intertidal flats is c. 10 ind. m
-2

 (author's unpublished data; 

Ansell 2001, Hewitt 2008, Singleton 2010). Densities are likely to be less in areas 

where prey abundance is reduced, however. Based on the habitat map of 

Whangateau Harbour (which shows the extent of shellfish beds), density averaged 

over the whole harbour area is estimated to be 2.2 ind. m
-2

. There are no data to 

convert number to biomass for Cominella spp., but based on the biomass of a 

similar animal, Buccinulum sp. (a rocky shore predatory gastropod in the same 

family as, but slightly larger than Cominella), average individual AFDW of 

Cominella spp. was estimated to be 0.1 g (Lundquist & Pinkerton 2008). One g 

AFDW is equivalent to 0.489 g C (Brey 2001) so biomass of predatory gastropods 

averaged over total harbour area was estimated to be 0.11 g C m
-2

. Lundquist and 

Pinkerton (2008) estimated P/B and C/B for predatory gastropods to be 2.24 and 

8.95 yr
-1

, respectively; these values were used as initial input parameters in this 

study.  

 

A1.3.2 Austrovenus stutchburyi 

 Austrovenus stutchburyi surveys were carried out in Whangateau Harbour 

for the Ministry of Fisheries (MFish) on four occasions between 2001 and 2006  

(Walshe et al. 2006, Pawley & Ford 2007). The surveys took in 641,500 m
2
 of 

tidal flats located in the northern part of Whangateau Harbour, and adjacent to the 

channel in the southern arm.  Population estimates ranged from 2.53 × 10
8
 (SE: 
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2.8 × 10
7
) to 3.77 × 10

8
 (SE: 4.1 × 10

7
), equating to mean densities from 395 to 

587 ind. m
-2

, and mean individual shell length was from 22 to 24 mm.  

Measurements from Austrovenus gathered from Tauranga Harbour (author’s 

unpublished data) provide the following relationship between shell length (L; 

mm) and ash-fee dry weight (AFDW; g): 

 

AFDW = 0.0000006 
.
 L

3.788
 (r

2
 = 0.93, n = 140) 

 

 Based on average shell length of 23 mm, average individual biomass is 

0.09 g AFDW and 0.045 g C (based on Brey’s (2001) conversion for bivalves 

whereby 1 g AFDW is equivalent to 0.5 g carbon). Austrovenus biomass in the 

areas surveyed by MFish is therefore equal to 22.5 g C m
-2

, based on an average 

density of 500 ind. m
-2

. The area surveyed does include the largest Austrovenus 

bed in Whangateau Harbour (Hartill et al. 2000), but Austrovenus are present at 

varying densities (10 to 400 ind. m
-2

) throughout the estuary (Townsend et al. 

2010); average density in these areas was conservatively assumed to be 50 ind. m
-

2
 (equivalent to 2.25 g C m

-2
). Austrovenus are unlikely to be found in sediments 

with high mud content (Thrush et al. 2003), such as that found under mangroves. 

Mangroves cover c. 15% of total harbour area (Hartill et al. 2000) so Austrovenus 

are likely to be found over 5.42 km
2
 of intertidal flats. Combining the biomass 

estimates for the Austrovenus beds surveyed by MFish (22.5 g C m
-2

 over 0.64 

km
2
), and for the rest of the intertidal area that Austrovenus is likely to inhabit 

(2.25 g C m
-2

 over 4.78 km
2
), then Austrovenus biomass averaged over the whole 

estuary (i.e. intertidal and subtidal) area was estimated to be 3.38 g C m
-2

.  

 In an Ecopath model of Tasman and Golden Bays (South Island, New 

Zealand) Jiang and Gibbs (2005) calculated P/B and C/B ratios for Austrovenus to 

be 2.18 and 10 yr
-1

, respectively; the same values were used for initial input 

parameters in this model.  

 

A1.3.3  Other suspension feeding benthic invertebrates 

 Paphies australis (pipi) were also surveyed in Whangateau Harbour for 

MFish between 2001 and 2006 (Walshe et al. 2006, Pawley & Ford 2007). As for 

Austrovenus, the surveys took in 641,500 m
2
 of tidal flats located in the northern 

part of Whangateau Harbour, and adjacent to the channel in the southern arm. 
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Population estimates ranged from 0.48 × 10
6
 (SE: 0.08 × 10

6
) to 1.18 × 10

7
 (SE: 

2.37 × 10
6
), equating to mean densities from 0.75 to 18.46 ind. m

-2
, and mean 

individual shell length was from 25 to 49 mm. 

 The area surveyed was intertidal but pipi beds are often prevalent 

subtidally, and therefore are likely to be outside the sampling extent. The MFish 

surveys cannot, therefore, be taken as a reasonable estimate of harbour pipi 

population. Juvenile pipi occur in the intertidal, whereas adults are found at high 

densities (up to 4400 m
-2

) in main harbour channels. In addition, the MFish 

surveys show high inter-annual variability in intertidal pipi density in Whangateau 

Harbour, making it difficult to estimate average annual biomass from the limited 

data available. However, density of pipi in intertidal/subtidal beds in Whitianga 

Harbour was found to be c. 500 m
-2

 (Grant & Hay 2003). Assuming mean 

individual AFDW to be 0.045 g (i.e. similar to values for Austrovenus and 

Macomona (Cummings et al. 1997)), and that 1 g AFDW is equivalent to 0.5 g 

carbon in bivalves (Brey 2001), then pipi biomass in these high-density beds was 

estimated to be 11.25 g C m
-2

. 

 Assuming that pipi beds cover 10% of the subtidal area (equivalent to 

Austrovenus coverage of the intertidal area), then the pipi biomass of 11.25 g C m
-

2 
on the subtidal beds, averaged over total harbour area equals 0.17 g C m

-2
. Initial 

estimates for P/B and C/B were taken to be the same as for Austrovenus 

stutchburyi. 

 

A1.3.4  Deposit feeding benthic invertebrates 

 There are a number of deposit feeding invertebrate taxa known to inhabit 

New Zealand estuaries including bivalves, polychaetes, crabs, and amphipods. 

Available data on these taxa are described below:  

 Average density of the wedge shell (Macomona liliana) in Tauranga 

Harbour (North Island, New Zealand) was 30 and 400 ind. m
-2

 at a sandy and 

muddy site, respectively (author’s unpublished data). Based on a survey of 15 

intertidal sites covering a range of habitat types in the upper, mid and lower of 

Weiti Estuary (near Auckland, North Island, New Zealand) average density was c. 

55 m
-2

 (Hewitt 2008). Cummings et al., (1997) estimated the mean individual ash-

free dry weight (AFDW) for Macomona was 0.046 g, which is equivalent to 0.023 
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g C (Brey 2001). The average biomass of Macomona on intertidal flats was 

therefore estimated to be 1.27 g C m
-2

.  

 The nut shell (Nucula hartvigiana) is abundant (500 to 1500 ind. m
-2

) in 

sheltered muddy areas of New Zealand estuaries (Hewitt 2008, own unpublished 

data). As Whangateau is a relatively sandy estuary Nucula may be abundant over 

only 10 – 20 % of intertidal area (Kelly, 2009). The average size of adult Nucula 

is c. 5 mm, which is about one-tenth of the size of an adult Austrovenus, (based on 

approximate dimensions (W, H, D) of the two bivalves as follows: Nucula 5 x 5 x 

2.5 mm, Austrovenus 20 x 8 x 4 mm), consequently AFDW is estimated to be c. 

0.008 g ind.
-1

. Based on the assumption that 1 g AFDW is equivalent to c. 0.5 g C 

for benthic macrofauna (Brey 2001) then a Nucula density of 1000 m
-2

 over 15% 

of the harbour equates to 0.6 g C m
-2

 over the whole harbour area.  

 Polychaete worms are one of the most abundant macrofaunal groups in 

intertidal areas, with densities averaging c. 1000 - 1500 m
-2

; commonly occurring 

deposit feeding taxa include Boccardia syrtis, Cirratulidae, Cossura consimilis, 

Heteromastus filiformis, Magelona dakini, and Prionospio aucklandia (Hewitt 

2008). Median wet weight for polychaetes is c. 2.3 mg (Lundquist & Pinkerton 

2008). For polychaetes dry weight is approximately 20 % of wet weight and 

carbon is about 33 % of dry weight (Brey 2001). Based on the conversions a 

polychaete density of 1250 m
-2

 equates to a biomass of 0.19 g C m
-2

.  

 Intertidal crab species in New Zealand estuaries are dominated by the mud 

crab (Austrohelice crassa) which inhabits a range of sediment types from silt to 

coarse sand (Needham et al. 2010). The number of mud crabs living on estuarine 

intertidal flats in the North Island of New Zealand has been found to range 

between 35 - 55 ind. m
-2

 in sand and 150 - 550 ind. m
-2

 in mud, with average size 

(carapace width) being c. 7 mm (Morrisey et al. 1999, Needham et al. 2010). 

Sediments in the main body of Whangateau Harbour are mostly sandy, with high 

proportions (> 10%) of mud only present in small areas that are sheltered, often 

associated with mangroves. Consequently crab densities are likely to be low over 

most of the intertidal area, but substantially higher in the muddier areas. Average 

crab density over the whole intertidal area was therefore estimated to be 80 ind. 

m
-2

. The relationship between carapace width (CW) and dry weight (dw) has been 

described for Chasmagnathus granulatus (an Argentinean estuarine crab), a 

species similar to Austrohelice crassa, and is given by:  
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dw = 7.3045 
. 
10

-5
 
. 
CW

3.2094
 (César & Armendáriz 2007)  

 

and for Uca pugnax and U. minax (North Carolina salt marsh fiddler crabs):  

 

dw = 0.000067 
.
 CW

3.161
 (Cammen et al. 1984).  

 

 Based on the above two equations the dry weight of Austrohelice crassa 

individuals with carapace width of 7 mm is c. 0.035 g. Carbon is assumed to 

comprise c. 35% of dry weight in brachyurans (Brey 2001), therefore the biomass 

of Austrohelice crassa was estimated to be 0.98 g C m
-2

 (i.e. 80 ind. m
-2

 at 0.012 g 

C ind.
-1

). 

 Amphipods are also abundant, with densities c. 1000 ind. m
-2

, on intertidal 

flats across a range of sediment types (Stevens et al. 2006). Median wet weight of 

amphipods is c. 1 mg, AFDW is 19 % of wet weight, and carbon is 50 % of 

AFDW (Lundquist & Pinkerton 2008) so amphipod biomass was estimated to be 

0.095 g C m
-2

. Additionally, Hicks (1985) described the benthic copepod 

(Parastenhalia megarostrum) as being an important prey item for young flatfish 

and estimated the biomass in Pautahanui Inlet, Poirua Harbour (North Island, New 

Zealand) to be 0.059 – 0.242 g C m
-2

.   

 The total biomass of these six intertidal taxa (Macomona liliana, Nucula 

hartvigiana, polychaetes, Austrohelice crassa, amphipods and Parastenhalia 

megarostrum) in Whangateau estuary was estimated to be 3.20 g C m
-2

. 

Subtidally, echinoderms such as Echinoderm australe and Fellaster zelandiae are 

likely to be abundant (Hewitt 2008) but biomass data for subtidal estuarine 

benthic invertebrates is scarce. The subtidal comprises only a small proportion 

(14%) of estuary area and it is assumed that the biomass of deposit feeding 

macrofauna is similar for the intertidal and subtidal parts of the estuary. The initial 

biomass for this group was therefore set at 3.20 g C m
-2

.  

 P/B and C/B ratios for this group have varied between other Ecopath 

models, likely because the models span a range of climates, habitats and species 

in countries such as Mexico, France, Taiwan and New Zealand (Manickchand-

Heileman et al. 1998, Rybarczyk & Elkaim 2003, Jiang & Gibbs 2005, Lin et al. 

2007). Typically, the ratios tend to be higher for polychaete groups (P/B c. 4 – 9 

yr
-1

, and C/B c. 21 – 50 yr
-1

) than for crabs and molluscs (P/B c. 2 – 4 yr
-1

, and 
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C/B c. 13 – 15 yr
-1

), and estimates in New Zealand systems for benthic 

invertebrates typically have P/B at c. 2 yr
-1

 and C/B at c. 8 yr
-1

 (Jiang & Gibbs 

2005, Pinkerton et al. 2008). As the majority of the biomass in this group 

comprised crabs and molluscs the initial P/B and C/B values for this Ecopath 

model were set at 3 and 13 yr
-1

, respectively. 

 

A1.4  Zooplankton 

 A study of zooplankton abundance in Tauranga Harbour found that 

numbers peaked in late summer and early spring (< 250,000 ind. m
-3

) and annual 

average abundance inside the harbour was c. 50,000 ind. m
-3

.  Copepods were 

numerically dominant and the study also noted that estuarine zooplankton feed on 

detritus as well as phytoplankton (Giles 2002). Data on zooplankton biomass in 

New Zealand estuaries is scarce, but zooplankton biomass in Cook Strait 

(between North and South Islands, New Zealand) has been found to range 

between 15 and 31 mg dry weight (dw) m
-3

, with a mean of approximately 21 mg 

dw m
-3

 (Bradford-Grieve et al. 1993).  If 1 g dw zooplankton is equivalent to 

0.416 g C (Brey 2001), then mean biomass for Cook Strait zooplankton converted 

to units of carbon equals 8.74 mg C m
-3

. However, zooplankton biomass may be 

substantially greater in estuaries than coastal waters due to higher nutrient levels 

and primary production rates in the shallow semi-enclosed systems. For example, 

annual average zooplankton biomass in Fukuyama Harbor, Japan was 39.1 mg C 

m
-3

, and abundance was c. 110, 000 ind. m
-3

 (Uye & Liang 1998). This suggests 

that biomass in Tauranga Harbour would be equivalent to 17.78 mg C m
-3

 (i.e. 

approximately twice that of Cook Strait). Other studies indicate annual average 

estuarine zooplankton biomass tends to range between c. 8 mg C m
-3

 (Froneman 

2001, Leandro et al. 2007) and 20 mg C m
-3

 (Fulton 1984, Lara-Lopez & Neira 

2008). Taking an average value of 14 mg C m
-3

 and assuming mean depth in 

Whangateau Harbour to be 1.56 m (Hume et al. 2007), zooplankton biomass was 

estimated to be 0.022 g C m
-2

. That this estimate is substantially lower than in 

models of other New Zealand coastal systems (Bradford-Grieve et al. 2003, Jiang 

& Gibbs 2005, Pinkerton et al. 2008) is unsurprising due to the shallow nature of 

Whangateau Harbour  in comparison to the other coastal environments modelled, 

(where depth is 12 – 615 m).  
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 Production and consumption rates for zooplankton were taken from other 

Ecopath models of New Zealand coastal systems (Jiang & Gibbs 2005, Pinkerton 

et al. 2008), both of which split zooplankton into large and small groups, although 

there was a substantial range in the values for small zooplankton. For large 

zooplankton P/B ranged between 15 and 17.8 yr
-1

 and C/B between 50 and 51.3 

yr
-1

, whereas for small zooplankton P/B ranged between 20 and 200 yr
-1

 and C/B 

between 80 and 626 yr
-1

. Initial input parameters for this study were set to 20 yr
-1

 

for P/B and 80 yr
-1

 for C/B. 

 

A1.5  Primary Producers 

 Primary producers were split into 3 functional groups (macrophytes, 

microphytobenthos and phytoplankton). Mangroves and seagrass beds are also 

present in Whangateau Harbour, but contribute to the food web primarily through 

input to the detritus pool (Alfaro et al. 2006, Leduc et al. 2006), and so were not 

included as a separate group. 

 

A1.5.1  Macrophytes 

 As with mangroves and seagrass, macroalgae are likely to contribute to the 

estuarine food web primarily as a source of detritus. Thus EE for macroalgae are 

typically low, i.e. 0.01 - 0.2 (e.g. Ortiz & Wolff 2002, Pinkerton et al. 2008, 

Taylor et al. 2008, Tomczak et al. 2009, Byron et al. 2011). However, macroalgae 

are also a significant food source for parore, known to be abundant in Whangateau 

Harbour, and therefore have been given a distinct functional group in the model. 

Data on macrophyte biomass in the harbour are scarce, but on subtidal reefs dense 

Carpophyllum flexuosum forests exist, which are used by juvenile and adult 

parore. Horomosira banksii (Neptune’s necklace; also consumed by juvenile 

parore) and Ulva sp. are abundant throughout the harbour and coralline paint and 

turfing algae (Corallina spp.) are found on rocky substrates both intertidally and 

subtidally (Kelly 2009).  

 Pinkerton et al. (2008) split macroalgae into three functional groups 

(canopy, foliose and crustose) for their model of Te Tapuwae o Rongokako 

Marine Reserve (North Island, New Zealand). The P/B values in their balanced 

model were 2.84 yr
-1

 (canopy), 13.0 yr
-1

 (foliose) and 25 yr
-1

 (crustose) and 

ecotrophic efficiencies in the balanced model were very low (0.003 – 0.058). As 
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macroalgal species in Whangateau Harbour span these three groups the initial P/B 

estimate for this study was 12.5 yr
-1

.  Due to the lack of biomass data EE was set 

to 0.1 and Ecopath was used to calculate macroalgal biomass. 

 

A1.5.2  Microphytobenthos 

 Microphytobenthos biomass (chlorophyll a) in Manukau Harbour (North 

Island, New Zealand) ranged from 32.7 to 121.2 mg m
-2 

across a range of 

sediment types (mud to shelly sand), with the mean estimated to be at least 62.5 

mg m
-2

 (Cahoon and Safi, 2002). Estuarine monitoring programmes in various 

locations in North Island New Zealand have found that sediment chl a content 

typically ranges from 6 to 25 µg g
-1

 dw across a range of sediment types (e.g. 

Halliday & Cummings 2009, Singleton 2010).Without a measure of sediment 

bulk density, however, it is not possible to convert µg g
-1

 dw
 
to mg m

-2
. However, 

sediment density was measured to be 1.51 g cm
-3

 in a study of Tauranga Harbour 

where sediment chlorophyll a at an exposed site (comprised of sand with no mud 

content) and a sheltered site (fine sands with 10 – 15 % mud content) were c. 8 

and 20 µg g dw
-1

, respectively (author’s unpublished data). These values convert 

to 128 and 336 mg m
-2

. Based on these studies, average microalgal biomass was 

estimated to be 100 mg m
-2

 which, using a carbon to chl a mass ratio of 30: 1, 

converts to 3 g C m
-2

 (Gallegos & Vant 1996). This is almost double the estimate 

for benthic microphytes (1.6 g C m
-2

) used in a model of Te Tapuwae o 

Rongokako Marine Reserve, a coastal marine ecosystem, (Lundquist & Pinkerton 

2008), but benthic microalgal biomass is likely to be greater in the much 

shallower Whangateau Harbour. The model of Te Tapuwae o Rongokako also 

included ephiphytic algal biomass but data on the contribution of epiphytes to the 

estuarine food web or, even on biomass of epiphytes is limited, so have not been 

considered.  Microphytobenthos production in the southern region of Manukau 

Harbour has been estimated at 100 g C m
-2

 yr
-1

 (Vant & Budd 1993). When 

divided by the average biomass estimate for that harbour this produces a P/B 

value of 53.3 yr
-1

, similar to the value of 40 yr
-1

 given for benthic microphytes in 

Lundquist and Pinkerton (2008). Both biomass and production estimates are 

within the ranges indentified in a review of global microphytobenthos abundance 

and productivity (MacIntyre et al. 1996).  
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A1.5.3  Phytoplankton 

 There is little data available on phytoplankton biomass in Whangateau 

Harbour. Auckland Regional Council has a water quality site outside the harbour 

entrance at Ti Point, but that is of limited use as phytoplankton biomass at open 

water sites is typically lower than inside estuaries (Scarsbrook 2008). However, 

chlorophyll a (chl a) concentration  has been monitored at several sites in nearby 

Mahurangi Harbour, yielding an annual average of 2.35 mg m
-3

 (Wilcock & 

Kemp 2003). This is lower than the annual average for southern Manukau 

Harbour, 5.3 mg m
-3

, estimated by Vant and Safi (1996), but Manukau’s 

catchment is dominated by urban development and is subject to enhanced 

wastewater input compared to both Mahurangi and Whangateau harbours. Due to 

the close proximity of the two harbours and similar levels of development in their 

catchments the chl a concentration from Mahurangi is taken to be an appropriate 

estimate for Whangateau. Based on an average depth in Whangateau of 1.56 m 

and using a carbon to chl a mass ratio of 30: 1 (Gallegos & Vant 1996), 2.35 mg 

m
-3

 converts to 0.110 g C m
-2

. Direct comparison of biomass in g C m
-2

 with other 

Ecopath models is not possible as it is dependent on the average (euphotic) depth 

of the studied area.  

 Phytoplankton production in northern and southern regions of Manukau 

Harbour has been estimated to be 200 and 170 g C m
-2

 yr
-1

, respectively (Vant & 

Budd 1993). In the same regions, mean chl a concentration was estimated to be 9 

and 5.3 mg m
-3

, which is equivalent to c. 0.8 and 0.4 g C m
-2

 (Vant & Safi 1996). 

This yields P/B estimates of between 255 and 425 yr
-1

; P/B has ranged between 

200 and 248 yr
-1

 in previous New Zealand Ecopath model applications (Bradford-

Grieve et al. 2003, Jiang & Gibbs 2005, Pinkerton et al. 2008), so P/B was set to 

260 yr
-1

.  

 

A1.6  Detritus 

 Carbon content of sediment in Whangateau Harbour is typically < 1%, 

although it can be up to 8 % underneath mangroves stands (Kelly 2009). Organic 

carbon content of sediment in Tauranga Harbour ranged from 0.15 to 0.4% (at an 

exposed, sandy site and a sheltered, muddier site); if carbon content of the 

sediment is assumed to average 1 % and based on a sediment density of 1.51 g 

cm
-3

 there will be 15,100 g C m
-3

 (author’s unpublished data). Detritus biomass 
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was estimated to be 151 g C m
-2

, based on the assumption that only the upper 1 

cm of the sediment will be available to the detritus feeders (Rybarczyk and 

Elkaim, 2003). This is somewhat lower than values used in some other Ecopath 

models, for example Bradford-Grieve et al. (2003) used 433 g C m
-2

 in their 

model of the Southern Plateau, New Zealand (but that was an oceanic system), 

and 423 g C m
-2

 in a model of the Seine estuary, France (Rybarczyk and Elkaim, 

2003).  

 

A1.7  Fisheries in Whangateau Harbour 

 Shellfish beds in the harbour are exploited by recreational harvesters, who 

travel from the surrounding region. The majority of harvesters come from 

Auckland and closure of beaches to shellfish harvesting in Auckland is thought to 

have contributed to increasing harvesting pressure in Whangateau Harbour 

(Kearney 1999). The annual harvest of Austrovenus from Lews Bay, a popular 

shellfish gathering location in the north of the harbour, has been estimated to be 

28 tonnes wet weight, out of a possible 408 tonnes of harvestable biomass (i.e. > 

30 mm shell length) (Kearney 1999). Average individual wet weight of 

Austrovenus in that area of the harbour has been measured to be 6.8 g (C. Pilditch, 

University of Waikato unpublished data). Twenty-eight tonnes is therefore 

equivalent to c. 165, 000 g C, or 0.022 g C m
-2

 (based on average individual 

biomass of 0.04 g C).  

 Paphies australis (pipi) are also an important recreational fishery resource 

and although catch has not been recorded for this species anecdotal evidence 

suggests that pipi populations are under significant pressure from harvesters 

(MFish 2009). Closure of the Austrovenus beds to harvesters in 2010 also 

included pipi as there was concern that if the harbour was closed for Austrovenus 

only then harvesters would focus effort on pipi, significantly increasing harvesting 

pressure on that species (MFish 2009). However, due to lack of data an estimate 

of pipi harvest has not been included in the model.  

 

A1.8  Reduction in Austrovenus biomass following a mass mortality event 

 The Ministry of Fisheries surveyed shellfish beds in Whangateau Harbour 

in 2009 following a mass mortality event. Comparison of the 2009 survey with 

data from similar surveys carried out between 2001 and 2006 shows that 
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Austrovenus biomass decreased by 54 % after the mass mortality event (Table 

A1.4). There was a large decrease in the number of larger individuals as the 

proportion of the population with shell length ≥ 30 mm decreased from c. 16 % in 

2001 to 2006, to 7 % in 2009. Following the methods outlined earlier in this 

appendix for estimating Austrovenus biomass the post-mass mortality event 

biomass was estimated to be 1.58 g C m
-2

 across the total estuary area (compared 

with 3.38 g C m
-2

 before the event). 

 

Table A1.4: Ministry of Fisheries Austrovenus survey data for 2001 to 2009 

Year Population 

estimate (SE)  

Density Shell 

length 

(L) 

% ≥ 30 mm 

length 

Biomass 

 × 10
6
 ind. m

-2
 mm  g C m

-2 *
 

2001 253.3 (27.6) 394.6 24.0 19.2 20.0 

2003 376.7 (41.4) 587.2 23.0  25.4 

2004 349.0 (57.9) 544.1 24.0 16.3 27.6 

2006 290.0 (23.2) 452.0 22.4 13.7 17.7 

2009 239.8 (17.3) 371.8 20.5 7.4 10.4 

*Densities converted to biomass using: AFDW = 0.0000006
 . 

L
3.788

 (author’s 

unpublished data; r
2
 = 0.93, n = 140), and 1g AFDW = 0.5 g C in bivalves (Brey 

2001) 
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