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Transport theory and the WKB approximation for
interplanetary MHD fluctuations

William H. Matthaeus, Ye Zhou,! G. P. Zank, and S. Oughton?

Bartol Research Institute, University of Delaware, Newark

Abstract. An alternative approach, based on a multiple scale analysis, is presented
in order to reconcile the traditional WKB approach to the modeling of interplanetary
fluctuations in a mildly inhomogeneous large-scale flow with a more recently
developed transport theory. This enables us to compare directly, at a formal
level, the inherent structure of the two models. In the case of noninteracting,
incompressible (Alfvén) waves, the principle difference between the two models is
the presence of leading-order couplings (called “mixing effects”) in the non-WKB
turbulence model which are absent in a WKB development. Within the context
of linearized MHD, two cases have been identified for which the leading order
non-WKB “mixing term” does not vanish at zero wavelength. For these cases the
WKB expansion is divergent, whereas the multiple-scale theory is well behaved.
We have thus established that the WKB results are contained within the multiple-
scale theory, but leading order mixing effects, which are likely to have important
observational consequences, can never be recovered in the WKB style expansion.
Properties of the higher-order terms in each expansion are also discussed, leading
to the conclusion that the non-WKB hierarchy may be applicable even when the

scale separation parameter is not small.

Introduction

A central problem in solar wind physics and other ar-
eas of space physics and astrophysics is the transport of
short-wavelength magnetohydrodynamic (MHD) fluc-
tuations in a nonstationary inhomogeneous medium
[Parker, 1965; Barnes, 1979, 1992; Hollweg, 1973, 1974,
1990; Barnes and Hollweg, 1974; Jacques, 1977; Heine-
menn and Olbert, 1980]. In such situations, where
for example WKB scaling [Jeffreys and Jeffreys, 1950;
Weinberg, 1962; Bazer and Hurley, 1963; Parker, 1965;
Dewar, 1970; Barnes, 1979] would be applied, the small
parameter of interest is

A

R <1
where ) denotes the wavelength of the fluctuation, and
R the scale length of variation of the mean flow. The
simplest underlying description is in terms of linearized
MHD theory, modified appropriately to account for the
inhomogeneous background medium. A more complete
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treatment would include the nonlinear terms, but these
can be separated out formally in a multiple-scales treat-
ment, while leaving open the possibility that the non-
linearities can be modeled self-consistently.

Here we consider the linear inhomogeneous MHD
problem,

0zF
(kI MEF =0, ()
which describes the propagation of Alfvénic fluctuations
in an inhomogeneous flow. Pressure terms are absent
(of higher order) in these equations because the fluc-
tuations are considered to be locally incompressible,
and the pressure in that case acts only to enforce the
solenoidal character of the fluctuations. The Elsasser
variables are defined as

Z=EVE——

Vamp'

with v and b the small-scale velocity and magnetic field
fluctuations. We shall denote the large-scale velocity
field as U and the large-scale magnetic field as B. For
density p the large-scale Alfvén speed is V4 = B/ /4mp.
Finally, LT, L*, and the matrix M* denote linear op-
erators that involve gradients which act both on the
large-scale fields and the fluctuation (or wave) variables.
Their form is given explicitly as

LJ:E :(Uq:VA) -V, (2)
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1 1
I* =2V [ZU+V,], (3)
2 2
1 1 U
+
£ _v,.U; Bi— =64V =+Va4), (4
Mz vkvimvk S8V (zi A) (4)

where §;; is the identity matrix.

It is assumed that the small-scale variables behave
incompressibly. Thus only MHD Alfvén waves and not
magnetosonic modes are described in this approxima-
tion. Two approaches have been developed to investi-
gate the transport of Alvénic fluctuations described by
(1): the traditional WKB method [e.g., Parker, 1965;
Barnes, 1979; Hollweg, 1973; Barnes and Hollweg, 1974;
Jacques, 1977] and a more recently developed multiple-
scales method which has some similarities to, for exam-
ple, mean field electrodynamics [Zhou and Matthaeus,
1989, 1990a, b; Marsch and Tu, 1989; Tu and Marsch,
1990; Matthaeus et al., 1992].

Both approaches lead to transport equations which,
although there exist many similarities, are nevertheless
significantly different in many respects. Recently, there
has been some discussion in the literature regarding the
domain of validity of the two approaches [e.g., Hollweg,
1990; Zhou and Matthaeus, 1990a, b; Velli et al., 1989;
Zhou et al., 1990; Barnes, 1992]. For example, Zhou
and Matthaeus [1990b)] (see also Jokipii and Kota [1989])
have argued that several situations exist in which the
WKB ordering is not expected to be valid, and that the
new effects appearing in the multiple-scales approach,
perhaps unfortunately called “mixing effects,” may be
important in these cases. Specifically, within linear the-
ory, the mixing effect should be treated in leading order
when k- V4 — 0 or when V4 — 0, owing to the degen-
eracy of the two solutions to the wave dispersion rela-
tion in those limits. In contrast, Velli et al. [1989] argue
that for cases of interest in models of solar wind fluc-
tuations, these new terms are extremely small. Hollweg
[1990] recognized that the WKB expansion represents
a secular perturbation problem, requiring imposition of
solvability conditions [e.g., Nayfeh, 1973] to regularize
the expansion. Hollweg [1990] developed such an ex-
pansion for one dimensional waves, such as those con-
sidered by Heinemann and Olbert [1980], and thus his
treatment was insufficiently general to address the ques-
tion of the potential for important departures from the
WKB expectations in the leading orders of the theory.
More recently, Barnes [1992] also discussed the need to
clarify this issue, in the context of WKB theory applied
to magnetoacoustic waves and entropy fluctuations.

In view of the above, it is clearly important to deter-
mine under what conditions the two approaches can be
reconciled. Although the description of the multiple-
scales mixing effects by Zhou and Matthaeus [1990b]
attempted to make contact with the traditional WKB
orderings, the discussion was couched in terms of trans-
port equations for spectra or correlation functions, rather
than in terms of the “primitive” linearized MHD equa-
tions. In this paper we directly address the issue of the
relationship between WKB and multiple-scales treat-
ments that include mixing effects. We develop a sin-
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gle multiple-scales expansion that reduces, by choice of
higher-order solvability conditions, to the two separate
cases of interest. This permits us to clearly identify
the conditions in which the two approaches are valid,
while also clarifying to a great extent the mathematical
relationship that exists between the methods.

Before turning to the main developments of the pa-
per, we describe briefly some salient features of the
WKB and multiple-scales descriptions. The WKB for-
malism, as applied to solar wind fluctuations, is an ex-
plicitly wave description in that small-scale MHD fluc-
tuations must satisfy the Alfvén dispersion relation.
The expansion parameter is 8,xp = 1/kR, where k =
wave number which satisfies the Alfvén dispersion rela-
tion, R the scale length associated with the inhomoge-
neous flow. A requirement for accuracy of the leading
order terms of the expansion is that 6, < 1, that is,
short wavelengths with respect to the flow. It is a con-
sequence of the wave description [Zhou and Matthaeus,
1990b] that there exists no mixing, or coupling, between
Alfvénic fluctuations having opposite senses of propa-
gation, at the leading order. Mixing does, nevertheless,
occur as a finite wavelength correction at higher orders
of WKB theory [Heineman and Olbert, 1980]; however,
this mixing is insufficient to account for the evolution
of cross helicity with radial distance in the solar wind
[Hollweg, 1990; Roberts et al., 1987a, b].

At leading order, WKB theory yields the equation

dP* (k)
5 (5)

where we have introduced the WKB spectral transport
operator

+LE g PE(R) =0,

1
L%VKB = (UFVy)-V4+V. (EU:}:VA> (6)
= Ly +2L%, (7)
and P* are the reduced power spectra of the fluctu-

ations. Note that the zero on the right-hand side of
(5) illustrates that the description of strong turbulence
is completely inconsistent with the WKB approach de-
scribed above. In fact, for strong turbulence, a topic
dealt with in the present paper in only a peripheral
way, there are nonlinear couplings that appear formally
when an equation such as (5) is formed. In addition,
the wave dispersion relation is not obtained.

In the multiple-scales spectral transport theory [Zhou
and Matthaeus, 1989, 1990a, b; Marsch and Tu, 1989]
the wave dispersion relation is not invoked, thereby in-
troducing the possibility that “strong turbulence” can
be included self-consistently. The expansion parameter
is chosen to be § = A;/R, where ). represents a cor-
relation scale longer than the wavelengths of the MHD
fluctuations under consideration. In this theory, mix-
ing can now exist at the leading order; this provides
the possibility of describing or explaining, at least in
part, the observed radial evolution of the cross helicity
in the solar wind [e.g., Roberts et al., 1987a, b; Zhou
and Matthaeus, 1990a; Matthaeus et al., 1992]. The
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transport equation has the form

OP*(k)
51— (8)

where F denotes the spectrum of the difference between
kinetic and magnetic energy and N L denotes nonlinear
terms responsible for local turbulence. Further equa-
tions for F' and other spectral quantities, along with a
closure for the nonlinear terms, are required to com-
plete the model. The new term M?* represents leading
order mixing. Some solutions of these transport equa-
tions have been presented by Oughton and Matthaeus
[1992] and Owughton [1993].

+ L% , PE(k)+ M*F = NI,

Relation to WKB Theory: Unified
Multiple-Scales Analysis

The WKB treatment and the non-WKB multiple-
scales transport theories make differing predictions for
leading order behavior of MHD fluctuations in a weakly
inhomogeneous background flow configuration. Nonlin-
earities do not easily explain these discrepancies, since
the mixing effect occurs in the linear transport terms.
These concerns [Zhou and Matthaeus, 1990b] have been
discussed in connection with the spectral transport the-
ory, neglecting nonlinearities. It is also possible to rec-
oncile WKB and a non-WKB mixing theory entirely
in the context of the primitive linear equations for the
fluctuating fields. In particular, we show in this section
that both theories can be derived on the basis of a single
multiple-scales development, invoking scale separation
as the common element.

For a weakly inhomogeneous background flow, with
fluctuations having much shorter wavelengths, we treat
6 = MA¢/R as a small parameter, and introduce two
length scales and two time scales to describe the evo-
lution of the fluctuations. Corresponding to position
vector r and time ¢ in laboratory coordinates, we define
the slowly varying spatial coordinate x and the slowly
varying time scale 7 so that for small variations dx = dr
and d7 = dt. These “slow” scales are associated with
transport. The rapidly varying or “fast” scales, associ-
ated with the local structure and dynamics of the fluc-
tuations, x’ and 7' are defined so that dx’ = dr/§ and
dr’ = dt/6. Accordingly, the position is designated by
r = x + 6x’, the time by ¢t = 7 + 67’ and derivatives are
expanded as

1
V =Vx+ -Vx, (9)

6
0 0 190
;9_t_6_'r+gﬁ' (10)

Let the fluctuating Elsésser fields be expanded as
z(x,x', 7, 7') = 25 4 625D 4 622 @ ... (11)

This expansion of fields and coordinates is substituted
into the linear MHD equations (1), and coefficients of
like powers of § are required to separately satisfy the
equations. This give a hierarchy of equations labeled

by orders of 6.
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The leading order §~! expansion yields

(0, + ILE) 59 =0, (12)

where the primed operators involve derivatives with re-
spect to the fast scale. The solution to (12) is written
as 20 = 3+(0¢iS+ | in which z+(9) is a slowly varying
envelope function and Sy (the eikonal or phase func-
tion) depends on both fast and slow coordinates. The
fast dependence is determined by (12). The slow de-
pendence of Si, however, is not uniquely determined,
and amounts to an arbitrary phase in the fast solution.
By proper choice of this slowly varying dependence of
S4, one can simplify subsequent manipulations. The
explicit form of the phase function that we choose is
written as

(13)

1 X+6x'
Si=1 / p(z?) - dx* — (r+ 6| ,
r

8]

with rg a reference position. The motivation for this will
become apparent when the O(6°) equation is discussed.
In addition, one normally treats §VSy = VxSt = p*
as the local wave vector (for example in WKB theory).
For consistency, this implies the auxiliary condition that

V x p* =0. (14)
The dispersion relation

D=(UFV4) p*-w=0

(15)

must be satisfied as a condition on the local wave vector
p to ensure a solution to (12).

So far no assumptions regarding either of the two al-
ternate approaches have been made. The only special-
ization that has been made is that the fast scale behav-
ior of the expanded variables is written for a particular
frequency component w and a particular wave vector p,
the two being related by the dispersion relation. As is
customary for linear equations, the general solution is
a superposition of the amplitudes over values of (p,w).
For convenience, in the following developments we will
not reconstruct the full Fourier expansion.

Proceeding to the O(1) expansion and making use of
the leading order solution yields

(0 +L5) 7Y = &% (9, + 15 + 1%) 57O

1
— ST Mg (16)

—iszr M (0 + LE) S5,

where the meaning of the last term and the symbol
z: El) will be presently made clear. In arriving at (16)

we have made use of the property

D
(0r + Lx)Ss = (17)

which obtains as a consequence of our choice of slowly
varying phase in (13). This important simplifying prop-
erty makes it possible to treat both WKB and non-
WKB hierarchies utilizing the same expansion.
Equation (16) is an inhomogeneous wave equation of
the same type as the leading order O(§~1) wave equa-

=0,
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tion, therefore the solution consists of a particular plus
homogeneous solution

211 — z:(1) + sz(l).

(18)

The particular solution, designated as zf (1) enters into
the final term of (16) and is discussed in the next sec-

tion. The homogeneous solution, zf(l) has the same
form (eikonal) as the zeroth-order term, hence

zI:::(l) — 22:(,1)eisi_ (19)
In determining the particular solution, care must be
taken to avoid secularities. This is equivalent to avoid-
ing resonances in the inhomogeneous wave equation (16),
that is, demanding that the resonant terms are identi-
cally zero. As we will show, such considerations lead
to two distinct choices of solvability condition, one of
which leads back to well-known classical WKB theory,
while the other corresponds to the non-WKB multiple-
scales approach with strong mixing.

To arrive at the WKB solvability condition, assume
that the inhomogeneity in the equation for z+(1) is non-
resonant with z=(%) but is resonant with z+(°). At this
order the assumption is equivalent to S; # S_. Hence
the only restriction on the inhomogeneous wave equa-
tion (16) is that

(8, + LE 4+ 1%) 5+ = 0. (20)
This is the leading order WKB equation for the prim-
itive fields z*, and implies WKB transport for the en-
ergy spectra as given in (5).

The non-WKB solvability criterion is obtained through
the assumption that zT and z~ are nearly resonant in
the sense that S; =~ S_. Hence the solvability con-
dition for (16) is that the full right-hand side vanish;
that is, the first-order corrections, z%(1), obey a homo-
geneous wave equation. However, we also obtain that
the leading order slowly varying amplitudes obey the
inhomogeneous differential equation

Or + L5 + 1) # O e MEzF O =0,  (21)
where €+ = e This represents a non-WKB
form of the transport equation with mixing possible at
the leading order and is equivalent to (8) without the
nonlinear terms. In general, the size of the mixing term
depends on the magnitude of e+ which in the present
case is O(1). It is apparent that it is necessary to
choose the non-WKB conditions when S} ~ S_, which
is equivalent to either of the conditions p* -V, ~ 0
or V4/U — 0. These are two of the conditions identi-
fied previously [Zhou and Matthaeus, 1990b] for leading
order mixing in linear spectral transport equations.

So far we have seen that the distinction between
WKB transport and mixing type transport depends
upon the choice of solvability condition on the O(8°)
equation. Further insights are gained by investigation
of the higher-order equations and their solvability con-

+i(S_-54)
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ditions. To avoid confusion between the two cases, we
deal with them separately in the next two sections.

Structure of the WKB Hierarchy

The leading order WKB solution is of the form de-
scribed after (12) and is transported at the long wave-
lengths according to (20). The next order corrections, in
view of the solvability condition and the nonresonance
of §; and S_, must be of the form

20 = ED S | GE0GiSs, (22)

where 2; () is the slowly varying envelope of the partic-
ular solution. Taking into account the WKB solvability

(1)

condition, z '’ must obey

(0 + LE) 22D = —eiS= [Mi§2§(°)+ (23)

655" (0 + LE) Sz -

The appearance of the final term in (16) and (23) is
directly associated with the ansatz (22). For this form
of the particular solution the wave operator and phase
function are mismatched, in the term on the left-hand
side, and in the final term on the right side. One can
see for the fast operator that

(0, + LE) 5% = ie'S% [pT - (UF V) —w]
= F2%S5FV,-pT (24)
while, for the slow scale operator,
(3.,- + L,ic) eSF = 5 letSF [p* (UFVy) - w]
2i6=1e*5F V4 - p¥. (25)

The last line in each of the above two equations follows
from the first by subtracting zero in the form of the dis-
persion relation (15). The appearance of the factor of
6~ in the second of these relations reflects the fact that
the wave number corresponds to short-wavelength fluc-
tuations when ¢ is small, so the phase function changes
considerably when the slow scale coordinate is varied.
The property embodied in (25), and in particular this
factor of 671, accounts for the presence of the final term
in (23), which otherwise would seem to belong in the
next order equations.

The explicit form of the particular solution is readily
obtained by using (22), (24), and (25) in (23) to find

(M* . 7F(0),

#Z0 = :
2ifw—pF - (UFVy)

Pyi

(26)

This completely and uniquely determines igz @, Again,
we see that the specific choice (13) for the phase func-
tion has led to simplification. The terms involving fast
and slow derivatives of the phase function contribute

equally, accounting for the factor of 2 in the denomina-
tor of (26).
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As yet Ef(l), the amplitude of the homogeneous so-
lution at this order, is undetermined. Keeping in mind
that there are a number of differences between the
present treatment and that of Hollweg [1990], it appears
that the analogous term in Hollweg’s expansion is taken
to be arbitrary and is set to zero. We will now see that,
for the present formulation of the WKB hierarchy, the
amplitude of this homogeneous solution is determined
by higher-order solvability considerations.

At O(8) we find

(6,:+L ) 7 £(2) _

e+ (9, + L + 1*) 520 + MEEE ()

—e'5% [ (0 + 13 + 1%) 550 + MEETY)

—i825(" (9, + LF) 5%, (27)

where the last term on the right-hand side anticipates
a particular solution with mismatched phase function.
Viewed as an equation that determines the fast scale
behavior of Z¥(?), we note the following structure of
(27). First, the WKB solvability condition requires that
the resonant term on the right-hand side vanish sepa-
rately, so that secularities in the fast scale quantities on
the left-hand side are avoided. Thus we require that
Or +LE +I*) 5D+ MEZFD =0, (28)
Equation (28) provides a connection between the
first-order homogeneous and particular solutions, relat-
ing their slow scale variations. Technically, (28) is an

inhomogeneous equation for zh( ), and we could argue
that it involves a further decomposition into a homo-
geneous and particular solution, referring now to the
slow scale behavior. However, such a homogeneous so-
lution to (28) would obey the analogue of (20) at the
slow scales and the analogue of (12) at the fast scales.
Thus, without loss of generality, this type of contribu-
tion to zh( ) can be grouped with the leading order
solution, z%(%), since it obeys the same equations. The
only solution to the solvability condition equation (28)
that we need to consider is then the particular solution
with source —Mid,; E;Fk(l). This linear equation is formally
solved by a Green’s function, giving an explicit expres-

sion for zi( ) in terms of zq:(l),

70 = [ay [anGa(x—v,t-nMEZFD ) (29)

where y and 7 are slow coordinates of integration, and
the source function can also be rewritten in terms of
#*(9) if desired, through (26).

Having dealt with the solvability condition at this
order, (27) reduces to an inhomogeneous equation, the
solutions to which will consist of a homogeneous and a
particular solution, z¥(2) = z,df(z) +z,:,t(2). The homoge-
neous part satisfies the by now familiar wave equation,
£ —,

(0r + Lx:) 2 (30)
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so that the solution takes the form zy®) = &= (PeiSz,

Next, the particular solution to (27) is written, in anal-
ogy to (26) and (29), and taking into account both (24)
and (25), as

+ , zF()
5@ _ (M “n )
Pt 2w —pF - (UFVy)]

S (1)
(6 + LE + L*) 2 Eag,

- (31)

Thus the full solution to (27) takes the form z*(?) =

..:t(z) et 4+ 3 ~i(2) e*5%, with the fast behavior of the ho-
mogeneous part determined by (30) while both the slow
and fast behavior of the particular solution is deter-
mined by (31).

A structure similar to what we have just seen occurs
at all higher orders in the WKB hierarchy. In fact,
for all orders @ > 1, the solutions can be written in
terms of the phase functions as homogeneous and par-
ticular parts in the familiar form z*(®) = i,f(a)e"si +
izﬂf (a)e"sﬁ with the homogeneous envelope function de-
termined (as a consequence of a solvability condition)
by the formal solution, in analogy to (29), to the equa-

tion

(a + L:l: + L:l:) ~:i:(a) + M :F(") =0, (32)
in which we view the particular solution as a given
source function. According to the argument given in
the previous paragraph, this Green’s function solution
for zf(a) can be chosen to be the entire solution to
the homogeneous problem at O(«), by proper choice of
the definition of the leading order solutions. Similarly,
for all orders & > 1 the particular solution envelope
functions are given in terms of the prior order solutions
according to

+ ~¢(a 1) + + ~i(a 1)
~:t(a) (M ) + (a + L +1 )
i 2ijw — pF - (UF Vy)]

(33)

The assembly of the entire formal WKB hierarchy
is now complete, and a full solution can be obtained
as follows. First, we select the specific form of the
operators L,ﬂé, L* and Mi:;?, which depend upon the
fixed background flow and magnetic field. At the in-
ner boundary, say the Alfvénic critical point or some
other surface, boundary data are chosen for the field
zt(0), Without loss of generality, all other fluctuation
fields in the expansion are selected to have value zero
at the inner boundary. The leading order fields evolve
at the long wavelengths and low frequencies in accor-
dance with (28), with fast scale behavior determined
by (12)-(15). The first correction consists of a particu-
lar solution determined by (31), and homogeneous part
whose fast evolution obeys the usual wave equation (the
homogeneous form of (27)), with the slow envelope de-
termined by (28). All higher orders are determined by
use of (33) to obtain the particular solution from the
previous order, and then employing (32) to determine
the envelope of the homogeneous part.
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It remains to discuss the conditions for accuracy, and
possible convergence, of the series solution obtained
through the WKB procedure specified above. However,
we defer consideration of WKB convergence properties
momentarily in order to address the structure of the
higher-order terms associated with use of the non-WKB
solvability condition.

Structure of the non-WKB Hierarchy

We return now to the hierarchy of equations implied
by the selection of the solvability condition (21) in the
O(8°) transport equation (16). This choice implies that
2E(1) obeys a sourceless wave equation, and that, there-
fore the particular solution in (18) vanishes. This prop-
erty considerably simplifies the O(6) equations, which
reduce to

(6 + L;E,) zék(z) — %% (9, + L+ L*) th(l)

— etSE MEFFD), (34)

In the spirit of the argument leading to (21), we choose
the solvability condition to be the vanishing of the en-
tire right hand side of (34), thus ignoring possible non-
resonance of source terms with distinct phase factors.
This reduces (34) to a sourceless wave equation for the
fast O(62) solution, supplemented by the slow envelope
equation

(8- + LE + L*) M) p e MEzTM =0,  (35)
with €4 having the definition given following (20). The
envelope equation for z*(!) is identical in form to (20),
the analogous equation obeyed by #+(0).

It is immediately apparent that all higher orders of
expansion generated by the non-WKB solvability con-
dition will share several properties. First, all of the
fast space/timescale wave equations are homogeneous,
so there will be no particular solutions, only homoge-
neous solutions. Second, all solvability conditions ob-
tained in this fashion will have the same structure, given
by (21) and (35).

These simple but powerful properties of the non-
WKB solvability approach permit the entire problem
to be recast in simpler terms. We may resum the en-
tire series given in (11), using the eikonal ansatz for the
form of the solution,

+ ot

2zt = 5tetSt,

(36)
The entire perturbative solution can then be directly
summed to all orders and is found to obey the pair of
equations

>+
(0 + LE +L¥) 55 +exMEZF = 0. (38)

This result, obtained here using only the eikonal ansatz
and the scale separation assumption, is evidently equiv-
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alent to the full non-WKB hierarchy. This is discussed
further below.

Convergence and Accuracy of WKB and
non-WKB Expansions

Our motivation originates in applications, such as the
solar wind, where the scale separation parameter § is
small, that is, the fluctuations have wavelengths small
compared to characteristic background scales. Conse-
quently, we assumed § < 1 in both WKB and non-
WKB treatments, but in the non-WKB hierarchy no
assumptions were made concerning €+. When the con-
ditions that motivated the non-WKB solvability condi-
tion are satisfied, e+ = 1 and this approach must be
preferred to the WKB approach, which is expected to
fail in that case. In the event that the WKB solvability
condition is permissible, €+ is rapidly varying on the
fast scales, and has the effect of a parameter with mag-
nitude <« 1. In that case the couplings that enforce
interactions between the zt and 2z~ are weak, that is,
there is little mixing. However, with regard to the non-
WKB formalism, this means only that a small term has
been kept in each order, one that might have been rele-
gated to higher order in §. This will not invalidate the
procedure. In particular, the series still resums to give
(37)-(38), although the mixing effects remain small.

The fact that all orders of the non-WKB expansion
obey the same equations suggests that even § < 1 may
not be a formal requirement for accuracy and conver-
gence. Suppose we consider the original linearized MHD
equations (1) and assume only that the solutions we
seek take the eikonal form

+ -+

zT = 7FetS%,

(39)
Substitution into (1) produces the single equation
izt

6

[(8r + L,ic,) Sy] +

(0, + Ly + L¥) 25 +ea MEIzF =0.  (40)
Now let the phase function S satisfy the familiar condi-
tions (13)-(15). This causes the term multiplying§~! to
vanish separately, a statement equivalent to (37). The
remainder of (40) reduces to the non-WKB envelope
equation involving mixing of the + fluctuations, with
intrinsic strength €4, a relation identical to (38). Con-
sequently, the resummed non-WKB hierarchy is seen
to be fully equivalent to the full linearized MHD equa-
tions. The approximation being made is simply that
the eikonal relations (13)-(15) permit the fast part of
the wave operator to separately vanish. This will be
legitimate when the scale separation condition § < 1
is met. However, the general approach outlined is valid
(and exact) whenever a formulation for Sy can be found
that obeys (37).

In this framework it appears that the non-WKB for-
malism is perturbative only to the extent that errors of
some order in § might exist in the underlying eikonal
properties. Naturally, one need also keep in mind that
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general formulations of the linearized MHD equations
might themselves give rise to solutions that become un-
bounded in space or time. However, the non-WKB for-
malism appears to be as robust as the linearized MHD
equations themselves, provided that accurate expres-
sions for the eikonal (13) can be found. In particular,
the above argument suggests that the non-WKB for-
malism, with S1 obeying (37) exactly, is always con-
vergent, whenever the solutions to (1) exist. In appli-
cations to the solar wind fluctuation problem, in the
short-wavelength limit, the non-WKB formalism be-
comes identical to linearized MHD.

Consideration of the general conditions for conver-
gence of the WKB hierarchy is more difficult. One needs
to determine the general conditions for the iteration im-
plied by (33) and (32) to remain bounded. Rather than
pursue this, it seems more useful to characterize con-
ditions necessary for the accuracy of the first several
terms in the WKB hierarchy. For accuracy, we would
require, for example, that |zi(a+1)| < IZi(a)|, and other
relations such as lz:':(l)l < |2i(0)| and Iii(l)l < |"i(0)|
We proceed to dlscuss the extent to whlch these might
be valid using estimates of the terms in (33) and (32).

For simplicity, we estimate the effect of the matrix
Mif by a factor M* ~ 2(U % V4)/R, where R is the
local heliocentric distance coordinate. (This is appro-
priate for a spherical expansion at constant speed U,
see, for example, Zhou and Matthaeus [1990a).) In view
of (25) we may write +2V 4-pT = £2V,4pT cos 6, where
6 is the angle between the local wavevector and the
large scale Alfvén speed V4. Then (26), along with

the accuracy condition Izi(l)l < IE:E(O)I, suggests the
requirement that

AV £V, 1

<1 41
R 4V,pF cosd — ' (41)
o 1 2Vacosf
< A COs , (42)
pTR UxVy
in addition to the scale separation condition
1
—< 43
7 (43)

Clearly, the first of these conditions is more restrictive
than the second for the solar wind, in which V4 < U.
In addition, we can estimate the terms in the slow spa-
tial transport operator on the left side of (28) as of
order =~ (U £ V4)/R. Thus, because the homogeneous
and particular solutions are connected by (28) and (32),
they are expected to be of the same order.

In this elementary assessment, one sees immediately
that the WKB procedure will lose accuracy (and possi-
bly convergence as well) when cos@ — 0, corresponding
to a “two-dimensional” fluctuation geometry, with wave
vectors perpendicular to the local large-scale magnetic
field. It also becomes inaccurate when V4 /U — 0, cor-
responding to negligible frequency difference between
outward (+) and inward (—) propagating waves [Holl-
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weg, 1990]. These conditions cause S; =~ S_, distin-
guishing the cases in which we argued earlier that the
non-WKB solvability conditions need to be enforced.
Accordingly, the rationale for utilizing the WKB solv-
ability condition fails, and its use can produce un-
bounded results. In these situations, the non-WKB hi-
erarchy is preferable and can be expected to produce
more accurate results. In the context of spectral trans-
port theories the same cases were identified as requir-
ing use of a transport theory with the possibility of
strong mixing between zt and z~ [Zhou and Matthaeus,
1990b].

Numerical Examples

In order to illustrate the substantial differences be-
tween approximate solutions to (1) resulting from the
imposition of either the nonresonant or the resonant
solvability conditions, we now present some pertinent
numerical results. We present solutions to the spec-
tral form of the transport equations associated with the
leading order slowly varying terms in the WKB and
non-WKB hierarchies, for example, (5) and (8), rather
than the fluctuations themselves, since this is often the
application of interest [see Tu et al., 1984; Tu, 1988;
Marsch and Tu, 1989; Tu and Marsch, 1990; Zhou and
Matthaeus, 1990a]. As the spectral transport equations
are derived directly from the equations for the fluc-
tuations, there is a clear correspondence between the
two forms of the solutions. The details of the deriva-
tion and structure of the spectral transport equations
are not relevant here, and we refer readers to previ-
ous work for further discussion [Zhou and Maithaeus,
1990a; Oughton and Matthaeus, 1992; Oughton, 1993].
What is important for the present illustrations is that
the spectral equations admit mixing effects in the same
limits in which they are expected for the primitive scale-
separated equations. Thus, the influence of geometry
(slab versus two dimensional), magnitude of wave num-
ber, and magnitude of Alfvén speed can be investigated
in a straightforward fashion by computing solutions to
the spectral transport equations.

Chebyshev pseudospectral methods were used to com-
pute solutions to (5) and (8) with the nonlinear terms
neglected. The latter (non-WKB) case requires addi-
tional equations for closure since fields other than the
inward (P~) and outward (P) energies are involved.

Since the full three-dimensional, time-dependent so-
lution of the problem is currently out of reach, we re-
strict ourselves to the one-dimensional system in which
all spectral quantities depend solely upon the helio-
centric radial coordinate. With a view toward solar
wind applications the large-scale velocity U is taken
to be constant and radially outward; By is the stan-
dard Parker spiral; and p o R~2. We make the fur-
ther approximation, not crucial for the present purpose,
that the small-scale turbulence is, and remains, either
isotropic, slab, or two-dimensional (2D). This causes
the mixing operators to reduce to algebraic functions of
radial distance so that the equations are then relatively
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straightforward to solve [Zhou and Matthaeus, 1990a;
Oughton and Matthaeus, 1992; Oughton, 1993).

The boundary conditions imposed are those appro-
priate for supersonic, super-Alfvénic flow which begins
at the Alfvén critical radius (where V4, = U). More
specifically we have purely outward type fluctuations,
which requires that the inward energy and the energy
difference, F, are zero at this distance. (Hollweg [1990]
has remarked that a small admixture of inward waves
may be required for consistency with higher order terms
in the expansions, but we neglect this effect here.) Since
our equations are linear, the actual value of P* > 0 is
immaterial. Steady state solutions to these transport
equations, for the special case V4/U = 0 case show
marked departures from standard WKB solutions [Zhou
and Matthaeus, 1990a], as is consistent with discussions
in earlier sections above.

The numerical solutions will be compared using a sin-
gle diagnostic quantity, the normalized cross helicity
0. = (Pt —P~)/(P*+P~). This quantity is bounded,
the extremal values corresponding to purely outward
propagating Alfvén waves (o, = 1) and purely inward
propagating ones (o, = —1). Intermediate values cor-
respond to a superposition of z* and z~, irrespective
of whether or not these fluctuations are propagating,
interacting, or associated with mixing effects. This di-
agnostic is sensitive to the accuracy of the leading order
WKB solution, which predicts, for the chosen boundary
data, that o, = +1 for all heliocentric distances R, cor-
responding to purely outward propagating waves at all
distances.

Figure 1 shows plots of o, versus heliocentric dis-
tance for the case of isotropic turbulence with an iner-
tial range spectral slope of —5/3. It is important to note
that for isotropic fluctuations [OQughton and Matthaeus,
1992; Oughton, 1993] the equation for the evolution of
the energy difference spectrum (cf. (21)) lacks an oscil-
latory term ~ k - V4 that would act to enforce WKB
behavior. Since the “WKB enforcing” terms are the
only wave number dependent terms in the linear the-
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Figure 1. Normalized cross helicity as a function of he-
liocentric distance. The dashed curves are the leading
order solutions for the non-WKB hierarchy when the
small-scale turbulence is isotropic, for varying Ao, the
ratio of Alfvén speed to flow speed at the inner bound-
ary. The leading order WKB solution is shown as the
solid line.
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Figure 2. Leading order non-WKB solutions for the
case of slab turbulence at various wave numbers. The
solid curve is the normalized cross helicity for k£ = 0
(and also for the 2D geometry); moving up the figure
the broken curves are respectively for k = 1 (dash-dot),
2 (dash), and 5 (dot).
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ory, the isotropic results are independent of the wave
number of the fluctuations. Results for three values
of Ag = V4 (R = Ry)/U, are shown, namely 0, 0.4
and 1, along with the standard (leading order) WKB
theory (o = 1). As Ao decreases, the solutions show
greater departures from the WKB result, in agreement
with the properties of the WKB and non-WKB solu-
tions discussed in section .

For slab turbulence (i.e., transverse fluctuations with
wave vector k parallel to Bg) the WKB enforcing terms
alluded to above are present, and convergence to WKB
results is expected at short wavelength. Slab results
with Ag = 1 are shown in Figure 2. Solutions for the
(nonzero) values of k depicted in Figure 2 are such that
1/kL, varies from 1/10 to 1/50, where L ~ 0.5 AU is a
characteristic length scale for the background fields. In
addition, a solution for & = 0 is shown.

The extremely rapid convergence to WKB-like solu-
tions as k increases away from zero is evident. Well
before k reaches a value corresponding to correlation
lengths typically observed at 1 AU in the solar wind
(= 1/50 AU), the solutions are essentially equivalent to
the WKB results.

As a final point in this section, note that the solutions
for 2D small-scale turbulence are always of the non-
WKB form; that is, mixing is important. Formally, the
2D result for the model numerical problem is equivalent
to the k = 0 slab result [Oughton, 1993], which departs
substantially from the WKB result.

Discussion

We have shown that the WKB and non-WKB hierar-
chies can be obtained from a single asymptotic expan-
sion, distinguished according to the imposed solvabil-
ity conditions. Application of the non-WKB solvability
condition in each order regardless of whether z* and
z~ are resonant or not yields homogeneous wave equa-
tions at all orders. Hence every order of the expansion
takes on the same form, leading to a valid resummation
of the asymptotic series and thus giving z*. By con-
trast, the WKB solvability condition introduces a much
more complex hierarchy of perturbed equations whose
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solutions consist always of homogeneous and particular
parts. Consequently, resumming the asymptotic series
proves extremely difficult. The solvability conditions
for the non-WKB approach prove less restrictive, and
therefore the regime of convergence for the WKB theory
is correspondingly smaller.

It is apparent that it is necessary to choose the non-
WKB conditions when S, &2 S_, which is equivalent to
either of the conditions

p* Vs o~ O
Va/U — 0,

U the mean flow velocity. These are two of the con-
ditions identified previously by [Zhou and Matthaeus,
1990a, b] in their development of the non-WKB trans-
port theory for spectral quantities.

Where applicable, the lowest-order WKB theory is
substantially simpler, since it allows for the possibil-
ity, in leading order of following each of the fluctuation
types independently. For example, in the solar wind,
WXKB theory allows the evolution of “outward travel-
ing” waves to be computed with no reference whatso-
ever to an admixture of inward waves. In contrast, the
non-WKB formalism always requires that equations for
both species of fluctuations be followed. While this im-
plies that the leading order equations are more com-
plex than in WKB theory, the higher-order equations
are simpler, since no particular solutions appear. More-
over, the non-WKB theory collapses to the WKB theory
when the latter is valid, as suggested by the analysis and
demonstrated by our numerical examples.

The reason for the greater complexity of the WKB
heirarchy at orders beyond the first is easy to under-
stand. The WKB strategy is to simplify the leading
order description, which is accomplished by simultane-
ously exploiting the separation of length scales and the
rapid phase interference of waves propagating in oppo-
site directions. In cases where this works it completely
decouples the dynamics of inward and outward travel-
ing waves. However, in general the effects of phase in-
terference and scale separation are physically distinct,
and are associated with two independent small parame-
ters. The price paid for the leading order WKB simpli-
fication is that higher-order corrections are more com-
plicated and become large in certain limits. The non-
WKB heirarchy makes no assumption about phase sep-
aration, and exploits only one effect, that of scale sepa-
ration. Consequently, the non-WKB procedure has the
same complexity at all orders, being more complex than
WKB in leading order, but subsequently more simple.

The numerics show that isotropic fluctuations (with
the symmetry maintained by unspecified effects) dis-
play sensitivity to the strength of the Alfvén speed V4
relative to the radial flow speed U, with weaker V,
cases departing more from WKB expectations. Slab
fluctuation geometry shows rapid convergence to the
WKB result as the wavelength is decreased. It appears
that the entire powerlaw inertial range of wave num-
bers in the solar wind (as measured at 1 AU) lies within
the range of accuracy of WKB theory, if these fluctua-
tions are assumed to be of slab geometry and described
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by linearized MHD. In contrast, 2D fluctuations never
approach WKB theory, for any wavelength or Alfvén
speed. (See, e.g., Matthaeus et al. [1990] for an inter-
pretation of solar wind observations as 2D fluctuations.)
The numerical results are completely consistent with
the discussion in section regarding the applicability of
the WKB approach for these cases.

Under general circumstances, non-WKB theory pro-
vides for the possibility of mixing, a perhaps unfortu-
nate terminology for the coupling of oppositely-traveling
Alfvénic fluctuations at leading order. Suggestions have
been made [e.g., Zhou and Matthaeus, 1990a] that this
may account for the observed evolution of cross-helicity
in the solar wind [Roberts et al., 1987a, b]. The above-
described unified treatment of mixing and standard
WKB theories (in which mixing is at higher order) may
help to clarify the nature of this effect and the relation-
ship between spectral transport theories of these two
types [e.g., Tu et al., 1984; Marsch and Tu, 1989; Tu
and Marsch, 1990; Zhou and Matthaeus, 1990a).

While the present paper has dealt exclusively with
linear MHD, nonlinear effects can be incorporated within
the non-WKB framework in a self-consistent manner.
However, this is not the case for classical WKB theory,
since strong nonlinear effects will involve substantial de-
partures from the frequency/wavenumber relation em-
bodied in the dispersion relation, which is required for
validity of the WKB ordering. (Note that Tu et al.
[1984] have argued that in certain limits, namely weak
turbulence, the WKB transport operator may be com-
patible with nonlinear effects.) We expect that the non-
WKB treatment is preferable and quite likely required
in any transport theory involving strong MHD turbu-
lence.

Finally, in the present discussion we have dealt mainly
with the case of fluctuations with wavelength small com-
pared to background inhomogeneities. However, our
analysis has suggested that the non-WKB formulation
of linear inhomogeneous MHD may remain accurate
whenever a suitable eikonal relation can be defined,
even if the scale separation parameter is not small. This
indicates that the non-WKB formalism may find appli-
cation in situations with rapidly varying but organized
mean fields, such as MHD shock problems.
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