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Abstract 

Tris(hydroxymethyl)phosphine (THP) was prepared by the addition of a 

stoichiometric amount of base to tetrakis(hydroxymethyl)phosphonium chloride 

(THPC).  Freshly prepared THP was successfully immobilised onto wool through a 

Mannich-type condensation reaction between a hydroxymethyl group and an 

amine on the wool surface, forming stable >P-CH2-N< coupling links.  The 

immobilisation of THP to wool stabilised the THP, which resulted in the 

decreased oxidation of THP to tris(hydroxymethyl)phosphine oxide (THPO).   

 

The presence of immobilised phosphine groups was determined colorimetrically 

by reaction with Ni
2+

 ions, which produced a bright orange nickel-phosphine 

complex, as well as quantitatively, by measuring nickel uptake using ICP-MS.  

Immobilised THP-wool showed proportional binding for varying concentrations 

of metal solution.  Decreasing or increasing the concentration of the metal 

solution resulted in a corresponding proportional response of metal binding.  

Following immobilisation onto wool, oxidation of the system by 6% H2O2 resulted 

in a reduced binding of 24% for Cu, 25% for Co, 27% for Ni, and 93% for Cd 

relative to unoxidised THP immobilised onto wool. 

 

Additional modification of the THP-wool systems via reaction with amino acids 

and other related compounds overall did not appear to enhance the metal 

binding capacity relative to the unmodified THP-wool system.  The only modified 

THP-wool system that showed either retention or an increase in metal binding 

capacity for all metals analysed was that of 2-aminopyridine, followed by 

oxidation with H2O2   
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Chapter 1: Introduction 

1.1 Prologue 

This project entails the investigation into the ability of wool-bound 

tris(hydroxymethyl)phosphine (THP), and modified versions thereof, to bind 

metals for their extraction out of an aqueous solution.   

 

The following introduction has the aim of being a sound overview of the topic 

area which is relevant to this research.  Thus, it seeks to provide background to 

the main areas of the thesis: 

1. Synthesis of hydroxymethyl phosphines, and their subsequent reactions 

2. Uses for hydroxymethyl phosphines, both in research and in industry,  

3. Chemistry of wool 

 

The aims of this section are given in Section 1.6. 

 

1.2 Chemistry of hydroxymethyl phosphines 

1.2.1. Synthesis 

1.2.1.1 Tetrakis(hydroxymethyl)phosphonium chloride (THPC) 

THPC is a precursor to THP (Section 1.2.1.2).  The synthesis of THPC is primarily 

via the reaction of phosphine with formaldehyde and hydrochloric acid, as shown 

in Scheme 1-1.  Whilst this method has undergone some slight modifications 

over the years, to specialise for certain end uses, it is largely the same as the one 

that Hoffman employed in 1921.
1
 

 

PH3  +  4CH2O  +   HCl [P(CH2OH)4]Cl
catalyst

 

Scheme 1-1:  Conversion of phosphine gas to THPC 
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Phosphine (PH3) however, is an extremely hazardous chemical compound which 

is known to pose serious health hazards.
2
  Also in its pure form, phosphine gas is 

spontaneously inflammable at room temperature, with this instability being 

attributed to traces of diphosphine (P2H4) and also P4.
3, 4

  When utilising 

formaldehyde, hemiacetal formation can result, giving species with 

P-CH2O-CH2OH groups,
5, 6

  though these species react as P-CH2OH groups. 

 

THPC can also be prepared by the reaction of yellow phosphorus with 

formaldehyde, hydrochloric acid and an electropositive metal such as zinc as 

shown in Scheme 1-2.
7
 

 

P4  +  16CH2O  +  6Zn  +  16HCl 4[P(CH2OH)4]Cl  +  6ZnCl2  

Scheme 1-2: Formation of THPC via yellow phosphorus route 

 

 

THPC (Figure 1-1 [a]) is predominantly marketed as an 80% aqueous solution.  It 

is a colourless crystalline compound, which is very soluble in water and the lower 

aliphatic alcohols and insoluble in most of the common organic solvents.
8
  As a 

crystalline solid it is highly hydroscopic. 

 

P

HOH2C

CH2OH

CH2OH
P

HOH2C

CH2OH

CH2OH

CH2OH

 

Figure 1-1:  Structures of (a) THPC and (b) THP 

 

1.2.1.2 Tris(hydroxymethyl)phosphine (THP) 

THP (Figure 1-1 [b]) was first prepared in 1958 by Reuter and Orthner.
9
   

 

PH3  +  3CH2O  + HCl P(CH2OH)3

catalyst

 

Scheme 1-3: Conversion of phosphine gas to THP 

(b) (a) 
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Scheme 1-3 shows that like THPC (shown in Scheme 1-1), THP can also be 

synthesised from phosphine (PH3).   

 

[P(CH2OH)4]Cl    +    KOH P(CH2OH)3   +  CH2O  +  KCl  +  H2O

 

Scheme 1-4: THPC to THP 

 

A far more convenient synthesis of THP is by the reaction of THPC with base 

(Scheme 1-4).  This results in facile P-C bond cleavage at room temperature.  

Bases can include tertiary amines or stoichiometric OH
-
.  If excess OH

-
 is used this 

leads to the catalytic decomposition of the THP to the oxide, (HOCH2)3P=O 

(THPO).
10

 

 

 

1.2.1.3 Other hydroxymethyl phosphines (HMPs) 

There are a wide range of HMPs that are utilised as ligands to metals.  For 

example, one of these is the bidentate ligand 

bis[bis(hydroxymethyl)phosphino]ethane (bhpe)
11

, which is formed (Scheme 

1-5)
12

 in a similar manner to many other HMPs, by reaction of the primary 

phosphine with formaldehyde.   

 

PH2H2P P(CH2OH)2(HOH2C)2P

K2PtCl4

water+  4CH2O

 

Scheme 1-5: Formation of bis[bis(hydroxymethyl)phosphino]ethane (bhpe) 

 

 

Numerous other hydroxymethyl phosphines are known and can be utilised as 

ligands for metal centres.  These are of the type R2PCH2OH or RP(CH2OH)2, where 

R is an alkyl or aryl group.  These can utilise the reactivity of Figure 1-2 [d] to 

substitute R groups either adding or removing hydroxymethyl groups to form 
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these derivatives.  However the main route is that of RPH2 undergoing the same 

chemistry as seen in Scheme 1-1. 

 

 

1.2.2. Reactivity of hydroxymethyl phosphines 

Hydroxymethyl phosphines (HMPs) display a wide variety of reactivity, of which 

some important uses can be obtained (Figure 1-2). 

P CH2OH E=P CH2OH E = O, S, Se
H2O2 / S8 / Se

P CH2OH P H
- CH2O

P CH2OH P CH2-N<
H-N<

P CH2OH P CH2CH2CN
CH2CHCN

(a)

(b)

(c)

(d)
 

Figure 1-2:  Selected reactions of hydroxymethyl phosphines 

 

 

The formation of the P-C bond is quite reversible
13

, as demonstrated with the 

ease of reaction, to and from, THP and THPC (Scheme 1-6).  As illustrated in 

Figure 1-2 [b], the P-C bond can also be converted back to the P-H bond, with 

removal of formaldehyde. 

 

P(CH2OH)3 P(CH2OH)4
+

CH2O / H+

base  

Scheme 1-6: Reversibility of THP to THPC 

 

 

HMPs react with amino-containing compounds very rapidly via a Mannich-type 

condensation reaction (Figure 1-2 [c]), yielding an extremely stable >P-CH2-N< 

linkage.
14

  This reaction allows for the possibility of cross-linkages and polymer 

formations. 
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Figure 1-2 [d] provides the opportunity for the formation of alkyl phosphines by 

addition of the P-CH2OH group to an unsaturated compound with elimination of 

CH2O.  The resulting ligands, e.g. P(CH2CJ2CN)3, are also of interest as ligands for 

metal centres.   

 

HMPs, other than salts, are not known to react directly with alcohols.
14

 

 

 

1.3 Immobilised Phosphines 

Phosphines, such as triphenylphosphine (PPh3), are extensively used in 

coordination and organometallic chemistry.  Phosphorus based ligands such as 

PPh3 are used in a variety of metal complexes, showing good binding to a range 

of transition metals.  One such example is Wilkinson’s catalyst,
15

 RhCl(PPh3)3, 

which catalyses the hydrogenation of alkenes.  Another example is Vaska’s 

complex,
16

 IrCl(CO)(PPh3)2.  The list of complexes of phosphine ligands is 

substantial. 

 

Hydroxymethyl phosphines also have a good ability to bind with a wide variety of 

transition metals overall, from the early (e.g.  Re(V)) through to the late (e.g.  

Rh(I), Pd(II), Pt(II), Ag(I) and Au(I)), producing a wide variety of water-soluble 

transition metal complexes.
17, 18

  In the literature, this has been one of the key 

features of interest for HMPs. 

 

There has been considerable interest in the immobilisation of phosphines onto 

insoluble supports (e.g. silica, polystyrene).  This facilitates the simple recovery of 

metal-phosphine based catalysts from reaction mixtures.  A number of reviews 

cover this topic
19

, and support (immobilised) phosphines are commercially 

available. 
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1.4 Applications of THP and related HMPs 

Areas of use for hydroxymethyl phosphines, and in particular THP, which are 

going to be highlighted in this discussion, are: 

1. Catalysis 

2. Flame retardancy 

3. Enzyme immobilisation 

4. Biocide treatment, and bleaching and stabilising pulps 

5. Medical 

 

 

1.4.1. Catalysis 

Catalysis is an extremely important chemical process where the rate of a 

chemical reaction is increased by the presence of a catalyst.  This catalyst is not 

consumed in the reaction itself.  Catalysis is used in over 90% of industrial 

chemical production worldwide, with processes such as the Monsanto
20

 process 

and the Cativa
21

 process, both well known for the production of acetic acid by 

the carbonylation of methanol. 

 

Owing to THP’s ability to bind to numerous transition metals, this makes it very 

worthwhile for investigations into its ability to act as a ligand for catalysts.  

Displacement of a bound ligand (e.g. PPh3) by THP provides one route to the 

synthesis of catalytically active analogues of PPh3 catalysts.  In one such case 

initial thoughts concluded that simple displacement would occur via the reaction 

shown in Scheme 1-7, however it has been concluded that it was actually 

forming Ru(THP)2[PH(CH2OH)2]2Cl2.  Whilst two THP ligands bind normally, two 

others are actually modified, losing formaldehyde to form PH(CH2OH)2,  

demonstrating the reversibility of the P-C bond even further.  This complex 

shows good potential for the hydrogenation and hydrogenolysis of lignin. 
22
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RuCl2(PPh3)3  +  n THP n PPh3 +  RuCl2THPn(PPh3)3-n  ;  n = 1 - 3  

Scheme 1-7: Displacement of PPh3 ligands by THP in RuCl2(PPh3)3 

 

 

The addition of PH3 to formaldehyde to give THP is itself catalysed by a range of 

platinum compounds.  Both [PtCl2(THP)2] and [Pt(THP)4].H2O  can be utilised for 

this catalysis, along with Na2[PtCl6] or K2[PtCl4].  Investigations
6
 into these Pt 

catalysts for this process found that [Pt(THP)4].H2O is in fact in an equilibrium 

with the hydridoplatinum complex [PtH(THP)4]
+
OH

-
.  Other THP complexes are 

also known to catalyse this reaction, including [Pd(THP)4] and [Ni(THP)4].
23, 24

 

 

Ir4(CO)12 is a good example of how THP that is immobilised onto a SiO2 surface 

(Scheme 1-8), provides a good support surface for iridium carbonyl clusters to be 

stabilised.  The THP ligands substitute CO to form Ir4(CO10)(THP/SiO2) which is an 

active catalyst for the hydroformylation of ethane and partial oxidation of 

propene.
25

 

 

OH OH

SiO2

O

SiO2

H2C
P(CH2OH)2

P(CH2OH)3  

- H2O

 

Scheme 1-8: Immobilisation of THP onto a SiO2 surface 

 

 

1.4.2. Flame Retardancy (FR) 

In 1953 the Flammable Fabrics (FF) Act was passed in the USA.  Following this, as 

well as an amendment in 1967 by the U.S. Congress, was a greatly accelerated 

research effort on cellulosics and other textiles.  Research towards flame-

proofing of cellulosics had in fact been underway for a number of years prior to 

the FF Act being passed, however this previous work was very much dwarfed in 
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comparison to the size and scale of research following the passing of the act.  

The main aims of the act were to improve and set stringent safety standards
26

 in 

particular on children’s sleepwear, as well as standards on other apparel fabrics. 

 

FR treatment, in essence, is primarily focussed around increasing the amount of 

oxygen or heat required for combustion of a particular treated item to take 

place.  Cotton, in particular, if ignited with sufficient oxygen present and heat 

input, will burn like most organic polymers.  The FF Act aimed to have the 

apparel fabrics treated to a stage that once the flame or heat source is removed, 

then the fabric would be self-extinguishing.  The background of FR is well 

covered in a review by Vail et al.
14

 

 

The Proban
TM

 process (developed by Rhodia, formerly Albright and Wilson) is 

one of two main flame-retardant treatments for textiles.  This process utilises 

THPC and the reactivity of hydroxymethyl phosphines to amines (Figure 1-2 [c]).   

 

HOH2C P+ CH2OH

CH2OH

CH2OHCl-

HOH2C P+ CH2NHCOHNCH2

CH2OH

CH2OHCl-

P+

CH2OH

CH2OH

CH2OH

Cl-

H2NCONH2

NH3

P+ CH2NHCH2 P+P CH2NHCH2

O

P

O

H2O2

THPC Proban CC

Cross-linked Structure

 

Scheme 1-9: The Proban process 
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This process (Scheme 1-9)
27

 forms an insoluble polymer in fibre voids and the 

interstices of the cotton yarn.  The insoluble Proban polymer is held mechanically 

to the cellulose fibres and yarns, and does not chemically bond to the surface.  

The applied finish displays a susceptibility to hypochlorite bleach, which reduces 

the flame retardancy level.   

 

The other main treatment is the Pyrovatex
TM

 process (Ciba).  Pyrovatex (Figure 

1-3) is added to trimethylol melamine and the cellulose which is being treated.  

Unlike Proban, Pyrovatex does chemically bond to the cellulose.  This process 

does not utilise hydroxymethyl phosphines, but does contain an 

organophosphorus compound.   

 

H3CO
P

CH2CH2CONHCH2OHH3CO

O

 

Figure 1-3: Pyrovatex 

 

 

1.4.3. Enzyme Immobilisation 

The immobilisation of enzymes is primarily focussed around cost efficiency.  The 

cost of the enzyme is reduced significantly if the enzyme can be retained due to 

immobilisation, hence allowing significant re-use of the enzyme until the activity 

is diminished.  There are many other advantages with enzyme immobilisation, 

such as improved stability and longevity, however a detailed discussion is outside 

the scope of this review.  The main disadvantages of enzyme immobilisation are 

focussed around loss of activity, physical change due to immobilisation resulting 

in loss of potentially important functional groups, mass transfer, and prolonged 

operation. 

 

Immobilisation of enzymes began with Nelson and Griffin in 1916
28

, whereby 
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they monitored the activity of invertase when immobilised onto charcoal or 

aluminium hydroxide, finding that the activity was not diminished.  Research on 

enzyme immobilisation continues to attract great interest.
29

 

 

There are five different main methods for immobilising enzymes: 

1. Adsorption 

2. Covalent cross-linking 

3. Encapsulation in a porous matrix 

4. Entrapment in a polymer  

5. Covalent binding 

The first four methods have significant issues, for example adsorption results in 

relatively weakly bound enzymes and desorption may occur when temperature, 

substrate ionic strength or concentration change.  Covalent binding does 

however often place great stress on the enzyme, which then frequently results in 

loss of activity.  However it is the most applicable and applied technique for 

immobilisation of enzymes.
30

 

 

For covalent attachment of enzymes to a support matrix, it is important that only 

those functional groups of the enzyme that are not essential for the enzyme’s 

catalytic processes, to interact and bind to the support matrix.  The first 

published covalent immobilisation by Grubhofer and Schleith in 1953
31

 attached 

pepsin and α-amylase to diazotised polyaminostyrene.  Numerous coupling 

reagents, e.g. glutaraldehyde, have been applied to the immobilisation of 

enzymes since then, utilising groups such as amino (-NH2), carboxyl (-COO
-
), 

hydroxyl (-OH), indole, imidazole, phenolic, thiol (-SH) and threonine groups. 

 

Recently, THP, a new coupling agent, was proposed for the covalent 

immobilisation of enzymes.
32

  As mentioned previously in section 1.2.1.2, THP is 

synthesised by treatment of THPC with base.  Due to THPC being manufactured 

on a mass scale for other industrial uses, it is both cheap and readily available. 
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-NH2  +  P(CH2OH)3support -NCH2P(CH2OH)2support-  H2O

 

Scheme 1-10: Mannich-type condensation reaction of THP onto an amino-containing support 

 

 

Due to the reactivity demonstrated in (Figure 1-2 [c]), this allows amino-

containing supports to immobilise THP onto the support (Scheme 1-10).  

Following this the two remaining hydroxymethyl groups are available to 

immobilise the enzyme (Scheme 1-11).  This has been shown via a number of 

studies
32-36

 to be useful for enzyme immobilisation.  An example is shown in a 

recent publication by Cheng
35

 which showed that when β-fructofuranosidase is 

immobilized to THP, the immobilized enzyme is both more thermally stable and 

also has a higher recyclobility factor, in comparison to when the enzyme was 

bound to glutaraldehyde or as the free enzyme. 

 

-NHCH2Psupport
H2N-EnzCH2OH

CH2OH
-NHCH2Psupport

CH2NH

CH2NH

enzym
e

 

Scheme 1-11: Mannich-type condensation reaction as used for the immobilisation of enzymes 

by THP 

 

 

THP generation creates a nucleophilic phosphorus atom, resulting in more 

reactive hydroxymethyl groups compared to THPC.  This leads to the one draw-

back of THP, being the fact that THP is only moderately air-stable, oxidising to 

THPO in air.  This has the effect of lessening the nucleophilicity of the central 

phosphorus atom, thereby reducing the reactivity of the hydroxymethyl groups.  

THPO is therefore unreactive towards amine groups under ambient conditions, 

allowing the reactivity of P-CH2OH groups to be ‘turned off’ by (irreversible) 

oxidation to P(O)-CH2OH groups.  Modifications to the THP to try to find a 

completely air-stable analogue have taken place, with this proving successful in 

the case of ferrocenylmethylbis(hydroxymethyl)phosphine, [FcCH2P(CH2OH)2], a 

completely air-stable, crystalline compound.
37
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1.4.4. Other uses 

1.4.4.1 Biocide and Bleaching Pulp 

THP and THP salts (e.g. THPC) are widely patented for uses such as a biocide and 

for industrial uses such as bleaching pulp.  When these are reacted with various 

nitrogen-containing compounds they form a stable solid which utilises a P-C-N 

bond.
38, 39

  Some oil fields and cooling water towers employ the biocidal use of 

THP and THP salt systems. 

 

THP and THPC are both patented for use as a bleaching and brightness 

stabilisation technique for lignocellulosic materials.
40

  The method employs use 

of THP and/or THPC to kill the catalase-producing bacteria and to destroy the 

enzyme that is found in the added pulping liquors, which are used in the 

bleaching of pulps by hydrogen peroxide.
40, 41

   

 

 

1.4.4.2 Medical 

THP as a ligand is very comparable in many respects to other phosphorus based 

ligands such as triphenylphosphine (PPh3).  A large advantage for THP being used 

as a ligand over other phosphorus based ligands in metal complexes for 

medicinal use, is the fact that the hydroxymethyl groups provide high solubility in 

water, which is ideal for drugs. 

 

For example, THP has been utilised as a ligand on Cu(I), forming 

[Cu(THP)4][PF6].
42

  This Cu(I) complex produces a much higher in vitro antitumor 

activity compared to its reference drug cisplatin.  Other hydroxymethyl 

phosphines have also been utilised, such as bhpe forming [Cu(bhpe)2][PF6] 

(Figure 1-4).   The work on this complex followed that of Pillarsetty
43

 et al. who 

produced the [Au(THP)4]Cl complex, which too showed good antitumor capacity, 

following previous Au complex work.
44
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P(CH2OH)3

(HOH2C)3P

Cu+

P(CH2OH)2(HOH2C)2P

P(CH2OH)2(HOH2C)2P

Cu+

(HOH2C)3P

P(CH2OH)3

(a) (b)

 

Figure 1-4: (a) [Cu(THP)4]
+
   (b) [Cu(bhpe)2]

+
 

 

 

Katti et al. have been extensively researching in this area.
3, 17, 43-45

  Of particular 

interest has been their work utilising rhenium with THP and other similar HMP 

ligands.  
188

Re has been utilised as a therapeutic radioisotope, utilising the 

solubility of HMPs.
46

 

 

 

1.5 Wool 

Wool has for centuries played a vital part in society, namely in keeping people 

well insulated.  It is non-conducting and is very durable for a wide range of uses 

by humans. 

 

Wool contains a myriad of functional groups on its surface, primarily due to the 

fact that wool is a large protein made up of a number of amino acids.  Wool 

contains a high sulfur content, due to the amino acid cystine (Figure 1-5).
47

   

 

O
OH

NH2H

S

S

O
HO

NH2
H

 

Figure 1-5: Cystine 

 

 

Cystine is just one of many amino acids which are part of the protein keratin, of 
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which forms the basis of wool.
48, 49

  Keratin exists in either the α or β form, with 

wool mainly consisting of keratin in the α form.  The β form is dominant in other 

structures that grow from skin, such as nails.  Another prominent amino acid in 

keratin is alanine, which also features similar functional groups to cystine, but 

excluding sulfur. 

 

Chemical modification of the surface of wool has been carried out for a large 

number of years.  Some of these modifications of the wool surface attempt to 

achieve the following: 

1. To increase flame retardation of the wool (as discussed earlier) 

2. To straighten wool 

3. Colouration 

4. Shrink resistance 

 

The availability of numerous amino acid derived functional groups gives the 

ability to immobilise other species to the surface.  For the research described in 

this thesis, we have employed a method similar to that used for flame 

retardation, whereby THP is bound to wool for investigations of metal ion 

recovery.  Due to wool’s functional groups, in particular amine and carboxylate, 

it does already possess some metal ion binding ability.
50

 

 

Following the dramatic price spike for wool in World War II, there have been two 

small spikes in price, one being the commodity boom of the late 1970’s and the 

other being the wool boom of the late 1980’s.
51

  However since this time, there 

has been a general decline in the real wool price, inflation adjusted, to historic 

lows.  Wool is now a very cheap and easily accessible renewable resource, ideal 

for research, especially in these environmentally aware times. 
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1.6 Aims 

The overall aim of this project was to investigate the ability of wool-bound THP, 

and modified systems thereof, to bind metals for their extraction out of an 

aqueous solution.   

 

Each chapter contains a brief introduction.  Chapter 2 is a small chapter which 

covers the experimental techniques. 

 

Chapter 3 describes preliminary experiments.  This includes investigations into 

areas such as the stability of THP, when bound or non-bound to wool, what 

conditions are important for the binding of THP to wool, as well as the factors 

affecting the wool-THP system’s metal ion recovery.  The experimental of each 

investigation is detailed separately within each area in this chapter. 

 

Taking into account the findings in Chapter 3, these were to shape and model the 

experimental and to aid the understanding of findings discussed in Chapter 4.  

Chapter 4 investigates the modification of the wool-THP system via reaction with 

varying amino-acids and the effect of these modifications on the ability to bind 

metals from aqueous solution. 

 

The final chapter, Chapter 5, is the conclusion of the research.  This chapter also 

includes recommendations for future work in the topic area. 



 16 

Chapter 2: Experimental Techniques 

This chapter covers the general experimental techniques employed in this 

research, with details of both solvents and materials used, together with 

instrument details.  It also describes the preparation of 

tris(hydroxymethyl)phosphine (THP). 

 

2.1 General experimental techniques 

All work was conducted under atmospheric conditions, due to the complexity of 

handling large numbers of samples in each batch of work.  Nitrogen was utilised 

for storage of NMR samples overnight when minimisation of sample oxidation 

was required. 

 

After reaction with THP or further reaction with amino acids and/or metals, the 

samples were dried on paper towels on the bench; this method allowed for 

effective drying of large numbers of samples at the same time.  Samples were 

batch weighed in one sitting to reduce any variance between samples.  This 

ensured that atmospheric conditions, primarily humidity, would have a minimal 

effect on the results, as humidity would be consistent within the batch.  Humidity 

can affect sample results by varying the weight of the samples, due to moisture 

content in the samples. 

 

2.2 Solvents 

Deionised water was used throughout this research and was generated via 

reverse osmosis followed by deionisation;  the resistivity always exceeded 16 

Mohm cm
-1

. 

 

Both drum grade methanol and ethanol (95%) were used without further 

purification. 
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2.3 Materials 

80% (w/w) aqueous tetrakis(hydroxymethyl)phosphonium chloride (THPC) was 

obtained from Albright and Wilson Ltd. UK (now Rhodia).  

 

Amino acid samples were purchased through Sigma-Aldrich and were reagent 

grade or higher and used without further purification.   

 

Wool samples were standard white knitting wool of 8 ply thickness.  The brand 

was Cleckheaton.  Lots 742587, 746458 and 741432 were used. 

 

2.4 Instrumental techniques 

2.4.1. Nuclear magnetic resonance (NMR) spectroscopy 

31
P NMR solution spectroscopy was performed on a Bruker Avance 300 MHz 

instrument, with D2O as the lock solvent.  All spectra were recorded in 5 mm 

glass tubes.  
31

P spectra were recorded proton-decoupled. 

 

31
P NMR solid-state spectroscopy was performed on a Bruker Avance DRX 200 

MHz instrument, with MAS spinning speed of 5 KHz.  10,000 scans were acquired 

for all samples, with continuous wave 
1
H decoupling used.  All spectra were 

recorded in a 4 mm ZrO2 tube with a Kel-F cap.  A 4 mm MAS broadband 

multinuclear probe (Bruker) was used for all spectra.  Samples were analysed at 

Scion Research, Rotorua. 

 

2.4.2. Electrospray Mass Spectrometry (ES/MS) 

Mass spectra were obtained on a VG Platform II Electrospray Mass 

Spectrometer.  The solvent used was 1:1 methanol – water. 

 

2.4.3. Scanning Electron Microscope (SEM) 

Microscopic analysis was conducted on a Hitachi S-4700 Field Energising (FE) 
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Scanning Electron Microscope (SEM).  Imaging was conducted at 5 kV except for 

EDAX which was conducted at 20 kV.  Samples were platinum coated using a 

Hitachi E-1030 ion spotter coater. 

 

2.4.4. Fourier Transform Infra-Red Spectroscopy (FT-IR) 

Spectra were obtained using a Perkin Elmer Spectrum Spotlight FT-IR 

Microscope, employing a liquid nitrogen cooled MCT detector with 4 cm
-1

 

resolution.  Samples were analysed in reflectance mode using a gold mirror as a 

background.  Spectrum software and Spectrum Image software was used. 

 

2.4.5. Inductively Coupled Plasma (ICP) Mass Spectrometry 

Analysis was conducted on a PerkinElmer SCIEX ICP-MS ELAN DRC II, using 

software ELAN v3.3.  Samples were introduced via a CETAC ASX-520 

autosampler, holding a maximum of 240 samples.  It features a SeaSpray 

nebuliser and a baffled Quartz cyclonic spray chamber.  A sample flow of 

1 mL/min was utilised.  The nebuliser gas flow was 0.92 L/min. 

 

All samples were acidified using 2% HNO3, unless otherwise noted.  All results 

were multiplied by a factor of 1.02, to correct for the dilution effect of 

acidification. 

 

2.5 Preparation of starting materials 

2.5.1. Synthesis of tris(hydroxymethyl)phosphine (THP)  

THP solution was synthesised from tetrakis(hydroxymethyl)phosphonium 

chloride (THPC) and a stoichiometric amount of KOH, according to (Scheme 1-1). 

10, 34
 

 

[P(CH2OH)4]Cl    +    KOH P(CH2OH)3   +  CH2O  +  KCl  +  H2O  

Scheme 2-1: The reaction of THPC to THP 
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THPC (3 g, 80% w/w aqueous solution) was weighed out into a clean flask and 

diluted to 30 mL with deionised water.  A freshly-prepared solution of KOH 

(0.707 g) in 10 mL deionised water was added dropwise to the stirred THPC.  This 

immediately generated a solution of tris(hydroxymethyl)phosphine (1.56 g in 40 

mL).  The THP solution was used on all occasions as soon as possible after 

generating, to minimise air oxidation. 
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Chapter 3: Preliminary investigations 

3.1 Introduction 

This chapter describes preliminary work carried out to investigate the behaviour 

of THP, when both bound and non-bound to wool, and also to look into varying 

methods for both qualitative and quantitative investigations into THP systems. 

 

Overall, the investigations carried out here shaped the reaction conditions for 

the quantification of metal binding for the THP-wool systems described in 

Chapter 4. 

 

 

3.2 Instruments 

A variety of instruments were utilised, or attempted to be utilised, throughout 

this project.  This section takes a brief look into each instrument and the 

problems or solutions that each instrument provided. 

 

 

3.2.1. Scanning Electron Microscope (SEM) 

Previous work which utilised the immobilisation of THP on aminopropyl silica 

showed that the SEM was a powerful method for looking at immobilised 

Escherichia coli. (E. coli).
52

  For that study it proved to be a very useful for 

investigating the morphology of the system, so a similar application for SEM was 

sought for this research. 

 

1 g of wool (6 pieces) was placed in a freshly prepared solution of THP 

(0.31 mol/L, 200 mL) for 1 hr.  These samples were then removed, and washed in 

200 mL of water for 5 minutes.  Three pieces were then added to a freshly 

prepared saturated solution of Ni
2+

 for 1hr, then washed in water (200 mL) for 5 
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minutes.  Samples were then left overnight to dry in air and then analysed by 

SEM. 

 

  

Figure 3-1: SEM images showing on left (a) native wool and on right (b) THP functionalised wool 

 

 

Samples that were analysed were: (a) native wool, (b) THP functionalised wool 

and (c) THP functionalised wool that was then reacted with a high concentration 

of nickel solution.  The morphology of the wool appeared not to visibly change 

(Figure 3-1).   

 

EDAX analysis has also been attempted to determine elemental composition.  

This analysis was not able to be conducted on the samples due to the wool being 

very 3-dimensional to analyse, resulting in large variations.  The ideal sample for 

EDAX analysis is for a sample that has very little to no 3-dimensional 

characteristics to it. 

 

 

3.2.2. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR is a powerful investigative method for identification of chemical changes to 

a species.  
31

P is able to be analysed via NMR.  Since THP and corresponding 

hydroxylmethyl phosphines contain phosphorus, this means that when samples 

are reacted and modified successfully a chemical shift would be expected to 

reflect the chemical reaction that has taken place. 
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For this two methods were utilised, solution 
31

P solution state NMR and 
31

P solid 

state (MAS) NMR.   

 

-40-30-20-1050 40 30 20 10 0 ppm 

Figure 3-2:  
31

P Solid state (MAS) NMR of THP-wool, top, and 
31

P solution state NMR of THP 

below 

 

 

A freshly prepared solution of THP was produced (0.31 mol/L, 80 mL).  This was 

analysed using solution state 
31

P NMR.  A portion of this THP solution (40 mL) 

was then reacted with 0.5 g of wool for 1 hr with the sample being washed for 

1 minute, in 20 mL of water.  The THP-wool was then analysed after 3 days by 

solid state 
31

P NMR. 

 

Peaks in the solid-state NMR correspond to those peaks seen in solution-state 

NMR for a sample of THP (Figure 3-2).  Presumably this is due to residual THP 

solution present which had not washed off properly.   

 

 

3.2.3. Infrared Spectroscopy (IR) 

Once bound to wool, analysis utilising a microscope FT-IR was unsuccessful as 

there was no notable variation in the spectra between the different samples.  A 

P=O absorption would be expected around the 1300 - 1140 cm
-1

 region
53

 for a 

THP-wool system oxidised with 6% H2O2, but this is not seen, likely due to the 

THPC 

THP 

THPO 

O=P(CH2OH)3 



 23 

fact that the phosphorus loading is low(ca 1%) so it is difficult to distinguish, in 

the presence of other absorptions in the same region of the spectrum. 

 

3.2.4. Elemental Analysis 

A wool (0.5 g) sample was reacted with a freshly prepared THP solution (0.31 

mol/L, 30 mL) for 1 hr.  Following this, it was then washed in water (200 mL) for 5 

minutes.  Both the THP-wool and native wool were subjected to micro-elemental 

analysis to determine the amount of phosphorus in the samples.   

 

A sample of native unmodified wool was found to contain phosphorus below 

detection limits, of 0.1% by weight.  Analysis of THP functionalised wool found it 

contained 1.11% by weight.  

 

 

3.2.5. Atomic Absorption 

Attempts were made to analyse samples of THP modified wool, after reaction to 

nickel solutions.  Limited literature
54

 could be found on analysis of wool for 

nickel, but there were some literature that focused on metal analysis from hair
55-

57
.  Many of these papers focussed on utilising a Graphite Furnace AA, which was 

not available.  Other specialised analytical equipment was also not available, for 

example, a closed-vessel microwave digestion system. 

 

The main problems for utilising the Atomic Absorption Spectrometer (AAS) were 

the fact that the instrument had varying detection limits and lacked the ability to 

analyse all metals.  The majority of papers worked around the requirement to 

acid digest the samples to extract the metals for analysis.  The ashing and then 

acid digestion of samples was impractical for such large numbers of samples.  

Initial investigations showed large variability between extraction from differing 

acids, and acid strengths.  
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Analysis of the solution both before and after wool samples had been suspended 

in the solutions was the logical way to overcome digestion problems.  Utilising a 

known amount of solution, of a known concentration, one could then quantify 

the metal binding of the wool systems. 

 

Utilising the AAS for this meant that analysis of the solutions would be difficult 

due to its higher detection limits compared to the inductively coupled plasma 

mass spectrometer (ICP-MS).  It was decided that due to the ease of analysis, the 

low detection limits and the wider range of metals that could be analysed for the 

ICP-MS, that this was the preferred method. 

 

3.2.6. Inductively Coupled Plasma (ICP) Analysis 

The ICP has the ability to analyse almost all metals, therefore having a wide 

scalability.  A range of metals (Hg, Ag, Ni, Co, Cu, Cd) were screened for analysis.  

The metals chosen are all softer metals with an affinity for soft ligands, such as 

phosphines, so were seen to provide a good overview for the screening of THP 

modified wool and further modified systems.  Detailed analysis of the data 

proved in Section 4.4.1 that the ICP was a method capable of accurately 

analysing most metals. 

 

3.2.6.1 Mercury Analysis 

Mercury was to be one of six metals to be screened to compare the metal 

binding efficiencies of the wool when bound to THP systems.  Mercury is a metal 

that is extremely problematic in the environment, hence if  

 

After deciding to utilise ICP-MS for analysis, mercury was one metal could be 

successfully analysed using ICP-MS.  The analysis of mercury on the ICP-MS 

required that instead of samples having 2% conc. HNO3
 
by volume, samples 

would have by volume 1% conc. HCl and 1% conc. HNO3, resulting in 2% by 

volume acidification like the other samples.   
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Analysis of mercury using ICP-MS is normally done at extreme trace level, in the 

very low ppb range.  The initial results utilising mercury showed a great amount 

of variation, which was unviable given the need for accurate results.  In one 

instance, the same sample analysed as a triplicate produced results with over 

75% variation. 

 

To try to overcome this variation, additional flushes were conducted in between 

samples being analysed – as well as additional HCl flushes.  However none of 

these measures proved fruitful, so no further studies using mercury were carried 

out. 

 

 

3.3 Stability of THP 

3.3.1. NMR analysis 

As part of this study, it was desirable to undertake a study of the air-stability of 

THP; this was necessary in order to develop an immobilisation protocol which 

would minimise loss of THP by oxidation to its oxide THPO, OP(CH2OH)3. 

 

-30-20-1050 40 30 20 10 0 ppm 

Figure 3-3:  
31

P NMR of THP after a period of time of (a) 1 hr and (b) 5 days. 

 

A freshly prepared sample of THP (0.31 mol/L, 40 mL) was prepared, and 

   

 (a) 

(b) 

 

THPO 
THPC THP 
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analysed by 
31

P NMR in a D2O/H2O solution.  This solution was left exposed to air 

and was reanalysed after 5 days. 

 

Figure 3-3 shows that when non-bound tris(hydroxymethyl)phosphine (THP) is  

exposed to air it will readily undergo oxidation to form 

tris(hydroxymethyl)phosphine oxide (THPO).  After a period of 5 days all THP in 

aqueous solution is found to convert to THPO, with some also converting back to 

its precursor tetrakis(hydroxymethyl)phosphine chloride (THPC).  The peak 

observed in (a) at -28 ppm is a hemiacetal (Figure 3-4).
5, 6

   

 

P

CH2OH

CH2OHHOH2C
P

CH2OH

CH2OCH2OHHOH2C
CH2O

 

Figure 3-4:  Hemiacetal formation between P-CH2OH groups and CH2O 

 

 

3.3.2. Nickel immobilisation to THP modified wool over time 

The presence of immobilised THP can be colorimetrically determined by reaction 

with Ni
2+

 ions.  Pale green octahedral Ni
2+

, when converted to square-planar Ni
2+

, 

changes colour to a deeper orange.  Softer ligands such as sulfur and phosphorus 

prefer to form 4-coordinate square planar species.
58

  Therefore any change in 

colour observed is therefore likely to be due to the presence of reactive THP 

groups bound to the surface of the wool, having not oxidized.  THPO does not 

have the ability to form stable nickel complexes. 

 

Quantifying the amount of nickel binding, via ICP-MS, enabled the level of 

immobilisation of the THP onto the wool support to be established.  
31

P solution 

NMR of THP showed a relatively rapid (5 days) degradation to THPO which 

results in no THP being left in solution.  Thus, by utilising the nickel solution, we 

can determine if immobilising THP to the surface of the wool increases its 

stability, via its nickel binding capacity. 
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3.3.2.1 Method 

Tris(hydroxymethyl)phosphine (THP) was prepared in accordance with the 

standard procedure.  400 mL of THP solution (0.31 mol/L) was prepared.  Just 

over 8 g of wool consisting of 60 pieces of wool cut to a length of around 20 – 25 

cm, was reacted with the freshly prepared THP solution for exactly 3 hrs. 

 

Following the reaction, the wool was then washed in water, and dried overnight.  

Three pieces of wool were then reacted with a nickel solution (0.15 mol/L, 

20 mL) for 1 hr.  The remaining solution was then removed for ICP-MS analysis, 

then acidified with 2% conc. HNO3. 

 

Samples were analysed every day for the first week, then once a week 

thereafter.  The monitoring occurred for five weeks.  Triplicates were used 

initially as well as at the one week and three week stage, to monitor the 

variation.   

 

3.3.2.2 Results and Discussion 

Colour was a good basic determination as to if the nickel content that was being 

immobilised onto the wool was changing.  Visually one was unable to see any 

difference.  The ICP-MS results also concluded that over the 35-day period, the 

immobilisation of nickel by the THP modified wool system did not vary, sitting 

constantly around 3.0 mmol Ni / g of wool throughout the analysis period (Figure 

3-5).  This indicates that by being bound to the wool, the phosphorus is stabilised 

towards oxidation, thus retaining its ability to bind to nickel.  This seems at odds 

with solid-state NMR, though it does concur with FT-IR, where no P=O absorption 

could be ascertained.   
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Figure 3-5: The relationship between the exposure time of THP modified wool in air and the 

subsequent metal binding 

 

The variation both at the beginning (day 1) and end (day 45) showed little 

change, with a coefficient of variation of 3.5 %.   

 

3.3.2.3 Conclusion 

The immobilisation of THP onto wool stabilises it sufficiently, so that over a 

period of 45 days no distinguishable difference occurred in the nickel binding 

rate out of aqueous solution. 

 

 

3.4 Optimisation of binding conditions 

3.4.1. Time in metal solution 

It is important to understand how long the wool and modified wool systems 

should be placed in the metal solution, to ensure that there is sufficient metal 

loading, whilst ensuring practicality is achieved. 

 

3.4.1.1 Method 

A fresh solution of THP (400 mL, 0.31 mol/L) was prepared in accordance with 
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the standard procedure (2.5.1).  Just over 7 g of wool consisting of 54 pieces of 

wool of approximate length 20-25 cm, were reacted with the freshly prepared 

THP solution for 1 hr.  The wool samples were then washed with water (200 mL) 

for 5 minutes.  Samples were then left overnight (12 hrs) to dry. 

 

Samples were then split and reacted in nickel solution (20 mL, 2.98 mmol) for 

varying lengths of time as shown in Figure 3-6, after which the samples were 

removed and dried.  The remaining solution was then pipetted for ICP analysis, 

then acidified with 2% conc. HNO3. 

 

3.4.1.2 Results and Discussion 
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Figure 3-6:  The relationship between exposure time of THP modified wool in nickel solution 

and the subsequent metal binding 

 

Results (Figure 3-6) show an enhancement of metal binding practically until the 

3 hr mark.  The difference between having the THP modified wool sit in the 

metal solution for 3 hrs or 6 hrs is essentially negligible.   

 

Reacting the THP modified wool in the metal solution for only 1 hr leads to a 

decrease in metal binding of only 12% compared to having it in the metal 

solution for 3 hrs.   
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Subsequent experiments used a nickel solution exposure time of 1 hr.  

 

 

3.4.2. Concentration of THP solution 

Variation of the concentration of the THP solution was investigated for the 

effects that this has on the THP-wool metal binding, again monitored using Ni
2+

 

binding. 

 

3.4.2.1 Method 

A series of THP solutions of different concentrations were prepared.  8 solutions 

of THPC (3 g, 80% w/w solution, 0.0128 mol), diluted to 30 mL, were created.  

Added to these were fresh KOH solutions (10 mL), of varying concentrations 

(Table 3-1), generating varying concentrations of THP solution. 

 

Table 3-1: Table illustrating the varying concentrations of THP generated 

 KOH [KOH] [THP] 

 g mol/L mol/L 

A 0.1095 0.195 0.049 

B 0.2110 0.376 0.094 

C 0.3061 0.546 0.136 

D 0.4363 0.778 0.194 

E 0.5045 0.899 0.225 

F 0.6531 1.164 0.291 

G 0.7341 1.265 0.316 

H 0 0 0 

 

 

9 pieces of wool (1.4 - 1.6 g), of approximate length 20 – 25 cm were placed in 

each freshly prepared THP solution for exactly 1 hr.  Samples were held 

submerged for the about a minute to ensure that the wool would be wet with 

the THP solution.  The wool samples were then washed with water (200 mL), for 
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5 minutes.  Samples were then left overnight (12 hrs) to dry. 

 

Samples were then split, for triplicate analysis, and reacted in nickel solution 

(20 mL, 3.13 mmol, 0.157 mol/L) for 3 hrs, after which the samples were 

removed and dried.  The remaining solution was then removed by pipette for 

ICP-MS analysis, following acidification with 2% conc. HNO3. 

 

Nickel concentrations were subtracted from the internal standard H, which 

contained no KOH, so subsequently no THP was generated.  These were then 

converted to provide the metal binding per gram of wool. 

 

3.4.2.2 Results and Discussion 

 

Table 3-2:  Effect of THP concentration and nickel binding 

 [THP] Ni 

 mol/L mmol metal /g wool 

A 0.049 0.04 

B 0.094 0.16 

C 0.136 0.55 

D 0.194 2.70 

E 0.225 4.06 

F 0.291 5.23 

G 0.316 5.34 
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Figure 3-7:  Comparison between THP concentration and metal binding of nickel 

 

 

Figure 3-7 demonstrates that at THP concentrations of around 0.3 mol/L, the 

relationship between binding and THP concentration plateaus.  Hence, if there is 

slight variation in the amount of KOH on a small scale, this will not 

disproportionately effect the binding of the THP-wool system. 

 

3.4.2.3 Conclusion 

It appears that THP concentrations ≥ 0.3 mol/L produce a uniform THP loading.  

It is important to note that the more wool will need more THP.  For use of 5-7 g 

of wool it is recommended to utilise THP (0.31 mol/L), with 0.063 moles of THP 

(5x normal scale).  This equates to 0.01 moles THP per gram of wool.  This will 

ensure an excess of THP for the wool being bound in for 1 hr.   

 

 

3.4.3. Solvation Effects 

For wool that had been soaked in ethanol, it was found that if being analysed 

within the first 2 hrs of this soaking, that when the wool came to being reacted in 

a metal solution that it would readily sink and be completely covered.  However, 

when left overnight for 12 hrs in air, this effect was not present, and the samples 
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behaved in a similar manner as those that had been soaked in water for the 

same period. 

 

One amino acid to be used in Chapter 4 is p-aminobenzoic acid, which is only 

slightly soluble in water
59

.  It was important to analyse the metal binding for THP-

wool modified with this amino acid, as it has previously been utilised for metal 

recovery after immobilisation onto a gel-paper system.
60

 

 

To investigate if ethanol increased or decreased the metal binding ability of the 

modified wool system, after reaction with THP samples were split and reacted 

with 2-aminopyridine which had been dissolved in (a) water and (b) ethanol.  The 

unmodified THP wool system was also compared, via soaking for 1 hr in (a) water 

and (b) ethanol. 

 

Following the soaking, samples were left to dry overnight.  They were then 

analysed in solutions of Cu, Cd, Co and Ni.  The remaining solution was then 

analysed with ICP-MS. 

 

Results showed around 2% variation for all four metals analysed, being Cu, Cd, 

Co and Ni.  A slight increase was shown for copper and a slight decrease for Cd, 

Co and Ni.  However, being only 2% variation between the two solvents, shows 

that within experimental errors that the difference is negligible. 

 

It therefore appears that utilisation of ethanol does not increase or decrease the 

metal binding rates if an amino acid has been bound whilst in an ethanol 

solution. 

 

 

3.4.4. Pickup rates with variable metal concentrations 

It is important to understand the role of concentration of the metal solution that 

the THP wool systems are reacting with.  The aim of this experiment was to 
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determine if the wool system became saturated and therefore had a reduced 

metal binding ability, or if it picked up a portion of the available metal and 

therefore as the metal concentration increased so to does the metal binding 

proportionately. 

 

3.4.4.1 Method 

Fresh THP (400 mL, 0.31 mol/L) was prepared in accordance with the standard 

procedure (2.5.1).  Just under 8 g of wool consisting of 54 pieces of wool of 

approximate length 20-25 cm, was reacted with the freshly prepared THP 

solution for 1 hr.  The wool samples were then washed with water (200 mL), for 

5 minutes.  Samples were then left overnight (12 hrs) to dry. 

 

These wool samples were then reacted as triplicates (3 pieces of wool) with 

varying Ni
2+

 concentrations (Table 3-3) for 1 hr, after which the samples were 

removed and dried.  The remaining solution was then removed for analysis by 

ICP-MS following acidification with 2% conc. HNO3. 

 

Table 3-3: Varying nickel concentrations and the subsequent nickel binding by the THP-wool 

system 

 [Ni
2+

] Ni binding 

 mol/L mmol Ni /g wool 

A 0.0199 0.43 

B 0.0374 0.84 

C 0.0797 1.74 

D 0.0982 1.98 

E 0.2066 4.29 

F 0.4161 8.07 
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3.4.4.2 Results 
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Figure 3-8:  Linear response between the availability of nickel to its binding 

 

 

Figure 3-8 shows a linear response between the availability of metal ions and the 

binding rate of the THP-wool system to these.  The R
2
 factor for the line of best 

fit was 0.9988.  This shows that saturation has not yet been reached over the 

range of available metal in this experiment, as otherwise a plateau effect would 

be expected. 

 

3.4.4.3 Conclusion 

The linear relationship between the concentration available and the actual metal 

being bound shows that the metal binding produces a proportional response to 

the concentration.  This is important for the amino acid work (Chapter 4), as it 

shows that as long as the metal concentration is within the 0.02 – 0.4 mol/L 

range, it will likely show a proportional linear relationship. 



 36 

Chapter 4: Amino Acid Modified Systems 

4.1 Introduction 

Following on from the understanding obtained in the preliminary results, an 

attempt was made to investigate whether modification of the THP-wool system 

with amino acids and related compounds would either increase or decrease the 

ability to bind to specific metals. 

 

For this analysis, five metals were to be screened.  These were silver, copper, 

cadmium, cobalt and nickel.  Both cobalt and nickel have the advantage that 

once bound they provided colouration to the wool systems.   

 

A few systems were also oxidised to see what affect the oxidation played in 

metal binding. 

 

 

4.2 Experimental 

4.2.1. Preparation of samples 

A number of potential pathways for modification prior to metal analysis was 

employed.  This is illustrated in Scheme 4-1. 

 

4.2.1.1 THP treatment 

For each system being analysed 36 pieces of wool (5.12 – 6.2 g) of approximate 

length 20 – 25 cm, were placed in a freshly prepared THP solution (0.31 mol/L, 

200 mL) for exactly 1 hr.  Samples were held submerged for about the first 

minute to ensure that the wool would be wet, to aim for even THP 

immobilisation onto its surface.  The wool samples were then washed with water 

(200 mL), for 5 minutes, to remove the unbound THP. 
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Scheme 4-1: Overview of sample preparation 

 

 

4.2.1.2 Amino acid binding 

Samples were placed into a 200 mL solution, containing approximately 0.01 mol 

of the dissolved amino acid (0.05 mol/L) for 1 hr.  Structures of amino acids and 

related compounds are shown in Figure 4-1.  p-Aminobenzoic acid (PABA) was 

dissolved in ethanol.  The wool samples were then washed in water (200 mL), for 

5 minutes, to remove the excess amino acid that had not bound.  PABA modified 

THP-wool was washed in ethanol (95%, 200 mL).  The modification with an amino 

acid or related compound onto THP-wool is illustrated in Scheme 4-2. 

 

-NHCH2Pwool
H2N-AACH2OH

CH2OH
-NHCH2Pwool

CH2NH

CH2NH

AA

AA
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Scheme 4-2: Modification with an amino acid or related compound (AA), onto THP-wool 
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Figure 4-1: Structures of all the used amino acids, and related compounds 
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4.2.1.3 Oxididation 

If a THP-wool system, or modified versions thereof, was to be oxidised, they 

were then placed in a solution of hydrogen peroxide (6%, 200 mL) for 5 minutes.  

Samples were then washed in water (200 mL) for a further 5 minutes. 

 

 

4.2.1.4 Metal binding 

Prior to metal binding, wool samples (prepared following reactions detailed in 

Sections 4.2.1.1 - 4.2.1.3) were left out on the bench to dry overnight for 12 hrs.  

 

20 mL of each metal stock solution (Table 4-5) was then pipetted into 50 mL 

beakers;  each metal analysis was done in duplicate.  For each wool system, after 

12 hrs of drying overnight, three pieces of wool were placed in each beaker and 

left for exactly 1 hr.  After the samples were removed, 10 mL of the remaining 

solution was then pipetted out for ICP analysis.  These were acidified with 2 % 

conc. HNO3. 

 

The wool samples were then dried in air, until they were consistent relative to 

one another in the varying atmospheric conditions (humidity levels).  This was 

shown to take 6 days from when the last samples were created.  The samples 

were left for two weeks then individually weighed as a batch. 

 

 

4.2.2. ICP analysis 

All five metals being analysed were checked against external standards (50 ppb, 

1000 ppb).  Silver results were excluded due to high variation (Section 4.4.1).  

Standards contained 2% by volume of conc. HNO3 acid, the same as the samples 

submitted. 
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4.2.3. NMR Spectroscopy 

For solution NMR, a large batch of THP was prepared in accordance with the 

standard synthesis (Section 2.5.1).  Each amino acid was added on a 3:1 molar 

ratio to THP.  Samples were purged with nitrogen and analysed immediately. 

 

For solid-state NMR, one large batch of THP (0.31 mol/L, 400 mL) was reacted 

with 72 pieces of wool (ca. 12 g).  These THP-wool samples were then reacted 

with each dissolved amino acid (0.05 mol/L, 20 mL) individually.  All samples 

were then analysed as soon as possible, being 3 days after preparation. 

 

 

4.3 Results 

Table 4-1: Comparison of binding of metals (mmol / g wool) by wool and modified systems 

 Cu Cd Co Ni 

mmol metal / g wool 

native 2.96 0.00 0.50 1.10 

unmodified THP 4.55 2.39 6.22 6.36 

oxidised unmodified THP 3.44 0.15 4.64 4.65 

taurine 2.38 0.09 0.25 0.52 

glycine 1.91 0.31 0.85 1.02 

p-aminobenzoic acid 3.44 0.06 2.31 3.14 

histidine 0.61 0.31 0.22 0.02 

methionine 1.74 0.15 1.15 1.32 

proline 4.04 0.58 5.69 5.46 

oxidised proline 4.95 0.54 6.24 5.73 

glutamine 4.55 0.73 5.98 5.88 

cysteine 3.73 0.08 0.08 0.22 

threonine 2.89 0.67 3.88 4.59 

2-aminopyridine 4.11 2.42 6.77 6.36 

oxidised 2-aminopyridine 5.34 2.60 6.77 6.36 

thiourea 5.46 2.30 6.93 6.56 

oxidised  thiourea 2.46 0.05 3.05 2.75 
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Results obtained in Table 4-1 are better represented as a percentage comparison 

relative to the unoxidised and unmodified THP-wool, as shown in Table 4-2.  This 

gives a direct ability to see whether reaction with an amino acid has either 

increased or decreased the metal binding.  Included for comparison is native 

wool. 

 

 

 

Table 4-2: Recovery of metals for systems compared to unoxidised and unmodified THP-wool, 

represented as a percentage 

 Cu Cd Co Ni 

% 

native 65 0 8 17 

oxidised unmodified THP 76 6 75 73 

taurine 52 4 4 8 

glycine 42 13 14 16 

p-aminobenzoic acid 75 2 37 49 

histidine 13 13 3 0 

methionine 38 6 18 21 

proline 89 24 92 86 

oxidised proline 109 23 100 90 

glutamine 100 31 96 93 

cysteine 82 3 1 3 

threonine 64 28 62 72 

2-aminopyridine 90 101 109 100 

oxidised 2-aminopyridine 117 109 109 100 

thiourea 120 96 112 103 

oxidised thiourea 54 2 49 43 

 

 



 42 

4.4 Discussion 

4.4.1. Statistics 

Whilst ICP analysis of each metal was conducted as duplicates for each amino 

acid, this was extended further for blanks to measure the variation of the ICP 

analysis itself.  Each metal had eight replicates of stock solution added to the 

analysis batch, to allow for the statistical determination of the variation of the 

instrument for each metal.  The stock solution results were also utilised for 

subtraction to determine the actual metal pickup of each of the wool systems.  

Due to the nature of the comparison of results to THP, the plain THP modified 

wool system was analysed as a batch of six to minimise errors. 

 

The set of eight replicates was to analyse the variation of the actual ICP analysis, 

ensuring that each metal had a good reproducibility factor.  This is reported as a 

value which is a coefficient of variation (cv).
61

  In simple terms the cv is the 

standard deviation divided by mean and is represented as a percentage, as 

shown in Equation 4-1. 

 

m

s
cv 100=

 

Equation 4-1: Determination of the coefficient of variation (cv), which is represented as a % 

 

 

Considering that the coefficient of variation is dependant on the standard 

deviation, then it is important that the correct standard deviation calculation is 

utilised.  There are two separate types of standard deviation calculation, with the 

difference being the determination of the degrees of freedom.  The standard use 

for software such as excel, is that the standard deviation is calculated with the 

equation shown in Equation 4-2.   
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Equation 4-2:  Univariate probability distribution standard deviation (univariate) 

 

 

The univariate standard deviation calculation, as shown in Equation 4-2, is 

utilised when calculating the standard deviation for a large pool of samples, 

where only a select few are actually being analysed.  An example would be an 

election poll, whereby it is almost impossible to quiz everyone on who they are 

voting for and therefore not all the population is being sampled.  Because of this, 

there is one more degree of freedom in the calculation.   

 

However, with the analysis of the eight metal samples of the stock solution, all 

eight of the population are being analysed.  Therefore, we are able to use the 

population probability distribution standard deviation calculation, as shown in 

Equation 4-3. 

 

∑
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Equation 4-3:  Population probability distribution standard deviation (population) 

 

 

By utilising the population standard deviation calculation, as shown in Equation 

4-3, this results in an always slightly smaller value, when compared to the 

univariate standard deviation.  When N is very large, this effect is near negligible.  

However, in this study of the amino acids and with the limit of 240 samples in 

the ICP-MS auto-sampler, this required a limit of eight for each stock solution 

which in turn results in a 6.9% difference between the two standard deviations.  

These differences are shown in Table 4-3. 
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Table 4-3: A direct comparison of standard deviations computed from the two varying 

methods, per 20 mL of metal stock solution 

Standard Deviation 

method 

Ag Cu Cd Co Ni 

mmols metal  

Univariate (Equation 4-2) 0.161 0.130 0.066 0.183 0.099 

Population (Equation 4-3) 0.151 0.121 0.062 0.171 0.093 

 

 

The exclusion limit to be applied for the cv for analysis of the metal stock 

solutions by ICP was set to 5 %.  Therefore for all results exceeding 5 % in size, 

were to be reanalysed and if the result couldn’t be brought to within the 5 % 

exclusion limit then these were excluded. 

 

 

Table 4-4: Coefficient of variations (cv) shown for each metal, with the two different standard 

deviations utilised, following the reanalysis of silver (Ag) 

Method of Standard 

Deviation utilised 

Ag Cu Cd Co Ni 

% 

Univariate (Equation 4-2) 90.02 3.49 1.75 4.59 2.65 

Population (Equation 4-3) 84.20 3.27 1.64 4.30 2.48 

 

 

The initial analysis of silver resulted in a cv of 120 %.  The silver samples were 

reanalysed as a 100-fold dilution, with an increased flush time between samples 

as well as an HCl flush between every third sample.  However, following this 

change in method the results still greatly exceeded the 5 % limit as shown in 

Table 4-4.  The other four metals were within the 5 % range for the cv, so 

therefore were acceptable. 
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Figure 4-2:  Graph showing a visual representation of the mean and the size of the standard 

deviation, utilising the population standard deviation 

 

 

The variation for the silver analysis is best represented in visual form and is 

shown this way in Figure 4-2, which compares the size of the mean to that of the 

calculated standard deviation.  This illustrates that the silver results are 

disproportionate to its standard deviation.  The standard deviation for each 

metal in exact terms, is relatively consistent.  However the results when 

compared to the mean, which the cv achieves, show that silver analysis is 

unreliable. 

 

Another method of exclusion was utilised for practical reasons.
62

  Considering 

that for each wool system the results were obtained as duplicates, a comparison 

of the variation to the mean (Equation 4-4) ensured that the duplicates were 

reportable.   

 

( )
m

mx
v i −=100

 

Equation 4-4: Determination of the variation to the mean, represented as a percentage 
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Hence, utilisation of an exclusion factor of 20 % was applied, as long as the 

results were > 1 mmol metal / g wool.  The practical reason for the 1 mmol metal 

/ g wool limit was that the variation increases when the mean is close to zero, so 

as a percentage the variation was disproportionately unbalanced in size.  For the 

purpose of this analysis, it was impractical to have a large number of samples 

within the set just to minimise error, hence the limit of 1 mmol metal / g wool, 

was the only appropriate limit that could be applied. 

 

For the purpose of analysis of near zero values the following rules were asserted, 

as recommended in a discussion
63

 document on the topic: 

1. Negative readings were used in the determination of means and 

deviations, unaltered. 

2. After subtraction of the number of moles of metal bound, which results in 

a mean for metal binding being negative, this was then set to zero for 

reporting.  Only silver data required this for the amino acid section, 

however the silver batch was excluded. 

 

4.4.2. NMR 

When amino acids, and related compounds, are reacted with the THP-wool 

system (Section 6.2) these only show the peak at 50 ppm in solid-state (MAS) 
31

P 

NMR.  Thiourea showed indications of a broad peak at -24 ppm, corresponding 

to the THP peak in solution state, however no conclusions could be made due to 

the large baseline distortion that takes place often in solid state (MAS) NMR, 

which can tend to hide peaks once a baseline calibration has taken place.  It is 

possible that the peak observed is free THP, but could also be bound >P-CH2-N< 

species, as peaks are broad. 

 

31
P solution state NMR however showed good potential to determine the nature 

of reaction taking place when amino acids and related compounds are reacted 

with THP (Section 6.1).  This provides a good model, as if modification is being 

shown in solution by NMR, then it would be expected that modification would 
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occur on the surface of the THP-wool system as well. 

 

4.4.3. Stock solutions 

All stock solutions were targeted towards 4 ppm, having been diluted down from 

1000 ppm solutions.  Each sample Table 4-5 shows the number of mmols metal 

in each 20 mL, which shows how much metal was available prior to attempted 

binding by the wool systems. 

 

Table 4-5: Number of mmols of each metal in 20 mL of stock solution 

 Cu Cd Co Ni 

mmols metal  

Stock solution 2.93 1.67 3.38 3.18 

 

 

After analysis of the metal solutions by ICP following attempted binding, the 

number of mmoles of metal extracted was determined a conversion calculation. 

The concentration after binding was subtracted from the stock solution 

concentration, then converted to an actual amount of mmol metal that was 

removed for that volume.   
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4.4.4. Comparison of metal binding by metal 

4.4.4.1 Copper 
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Figure 4-3: Comparison between copper binding and the wool system 

 

 

Copper(II)  in water will readily give the aqua ion [Cu(H2O)6]
2+

.  Addition of 

ligands to the aqua ion leads to the formation of complexes by displacement of 

water.
58

  Copper(II) is known to be a very robust cation for binding to, with a 

particular affinity for amino groups. 

 

Figure 4-3 demonstrates that native wool without any modification shows a good 

binding potential for copper.  Cystine (Figure 1-5) is one of the major amino 

acid’s that is natively incorporated into wool, and has readily available a number 

of amines for binding to nickel.   

 

Thiourea, when unoxidised, is the only modified system, which has a higher 

copper binding than the unmodified THP system.  Solution state NMR (Section 
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6.1) of thiourea, when reacted with THP, indicate that unlike others it does not 

cause a chemical shift to any original THP peaks.  This indicates that thiourea 

isn’t actually binding to the THP, the only amino acid or related compound to not 

show signs of binding.  However, THP-thiourea reacted materials are known from 

literature.
14

 

 

The oxidised 2-aminopyridine system significantly enhances the copper binding 

capacity, compared to the unoxidised 2-aminopyridine.  It is possible that a 

pyridine oxide group is being formed for this to occur. 

 

 

4.4.4.2 Cadmium 
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Figure 4-4: Comparison between cadmium binding and the wool system 

 

 

The only systems which showed good metal binding potential was for the 

non-acidic systems of unmodified THP, 2-aminopyridine, oxidised 
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2-aminopyridine and thiourea.  Carboxylic acid and sulfonic acid functional 

groups present in the other ligands tended to suppress cadmium binding 

potential.  Cadmium extraction in acidic conditions has previously been shown to 

be difficult.
64

  Interestingly there is a sudden decline in metal binding ability 

following oxidation of the thiourea, most likely due to the oxidation of the sulfur 

resulting in a decreased pH, and potential loss of thiourea sulfur, which would be 

expected to be a good ligand d towards soft metal ions such as Cd
2+

. 

 

Cadmium forms numerous complexes with amine ligands.  Pyridines and 

pyrazoles are also good ligands.
58

   

 

Native wool also demonstrates no detectable binding towards cadmium. 

 

 

4.4.4.3 Cobalt 
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Figure 4-5: Comparison between cobalt binding and the wool system 
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As is the case with the binding of cadmium, the systems for 2-aminopyridine and 

thiourea both show good binding for cobalt.  The systems for proline and 

glutamine also showed good potential, with recovery rates of 90 % of that of the 

unmodified THP system.   

 

Heavily suppressed binding was observed on all sulfur containing systems, other 

than that of thiourea.  Again, this can be explained by the suspected non-binding 

of the thiourea and hence the result for this system is around par with that of the 

unmodified THP. 

 

The systems for taurine, histidine and cysteine all showed significantly 

suppressed cobalt binding, with recovery rates of less than 5 % of that of the 

unmodified THP system. 

 

 

4.4.4.4 Nickel 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

na
tiv

e
un

m
o

di
fie

d 
T

H
P

ox
id

is
ed

 u
nm

od
ifi

ed
 T

H
P

ta
ur

in
e

gl
yc

in
e

p-
am

in
ob

en
zo

ic
 a

ci
d

hi
st

id
in

e
m

et
h

io
ni

ne

pr
ol

in
e

ox
id

is
ed

 p
ro

lin
e

gl
ut

am
in

e
cy

st
ei

ne
th

re
on

in
e

2-
am

in
op

yr
id

in
e

ox
id

is
ed

 2
-a

m
in

op
yr

id
in

e
th

io
ur

ea
ox

id
is

ed
  

th
io

ur
ea

Nature of species bound to wool

M
et

al
 B

in
d

in
g

 (
m

m
o

l m
et

al
 / 

g
 w

o
o

l)

 

Figure 4-6: Comparison between nickel binding and the wool system 
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Like copper, cadmium and cobalt, the oxidised system of 2-aminopyridine 

showed a high binding ability. 

 

Systems which featured sulfur based functional groups tended to observe a 

suppressed binding rate comparative to other modified systems.  The exception 

to this was again thiourea.   

 

For the p-aminobenzoic acid system, colorimetrically  the wool appeared to be 

bound to a higher content of nickel compared to the remaining systems.  

However, as seen, the results from ICP-MS concluded that it had in fact not 

enhanced binding. 

 

 

4.4.5. Selectivity of systems 

Graphs for all systems illustrating the metal binding of the system compared to 

THP can be found in Section 6.3.  These comparisons illustrate clearly the metal 

binding ability of the system for each metal, relative to other metals analysed. 

 

Along with native wool, both taurine and cysteine show an ability to 

predominantly favour binding of copper out of solution.  Cysteine in particular 

shows a much greater ratio of copper binding, relative to cadmium, cobalt and 

nickel, as shown in Figure 4-7.  This selectivity towards binding copper has the 

theoretical ability to produce filter-type applications, whereby only copper is 

bound out of solution.  This may be the case as cysteine is the only SH compound 

that was analysed, and Cu
2+

 will form CuSR when reacted with RSH. 
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Figure 4-7: Metal binding ability for the cysteine system 

 

Selective binding towards either cadmium, cobalt or nickel was not observed by 

any system that was utilised.  However, numerous systems were able to retain 

their binding ability towards copper, cobalt and nickel, thus selectively 

decreasing their metal binding ability for cadmium.  This low metal binding ability 

for cadmium is predominantly associated with the presence of a carboxylic acid 

group, or another acidic functional group such as sulfonic acid on taurine.
65
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Chapter 5: Conclusions 

In this research it has been shown that THP can be successfully immobilised onto 

a wool support. 

 

THP in solution will undergo oxidation to form THPO.  THPO removes or 

decreases metal binding in most cases, unless metal binding is occurring through 

the P=O system.  By immobilising THP onto wool it has been shown to stabilise 

and therefore decrease the rate of oxidation of the THP.  The presence of 

immobilised THP was determined colorimetrically  by reaction with Ni
2+

 ions, 

which produced a bright orange nickel-phosphine complex, as well as 

quantitatively, by measuring nickel uptake using ICP-MS.   

 

Additional modification of the THP-wool systems via reaction with amino acids 

and other related compounds overall did not appear to enhance the metal 

binding capacity relative to the unmodified THP-wool system.  The only modified 

THP-wool system that showed either retention or an increase in metal binding 

capacity for all metals analysed was that of 2-aminopyridine, which following 

immobilisation onto the THP-wool system was then oxidised.  Considering that 

the system is already oxidised, no decrease in metal binding would be expected 

due to oxidation from the air, so this system could have some viable ability to be 

used as a filter exposed to air. 

 

The results showed that the unmodified THP-wool system is a very robust and 

very productive system.  THP immobilisation onto wool is a cost effective 

method of functionalisation, due to the wide availability of THP precursors.  As 

well as this it has shown itself to be a very effective functionalisation method for 

metal ion recovery out of solution by wool.   

 

 

This study has endeavoured to provide a model study for metal binding of THP 
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modified wool systems, but utilisation of a larger number of metals would be of 

interest.  By utilising metal ions with significantly varying chemistry towards 

varying functional groups, would enable a greater understanding of the potential 

for selectivity of the THP modified wool systems.  The binding of THP to wool 

potentially allows the subsequent grafting of any metal binding group, or other 

functionalisation, through THP-amine chemistry discussed in this thesis. 

 

It would be very interesting to investigate the metal binding ability of the THP 

wool system, when there are a wide range of coexistent metals in the one 

solution.  This would identify if the system has preferential binding towards 

particular metals.  If the THP wool system was to be utilised as a filter for 

environmental waters, then it would be fair to assume that these environmental 

waters would contain coexistent metals. 
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Chapter 6: Appendices 

6.1 Solution State NMR spectra 

-40-30-20-1050 40 30 20 10 0 ppm 

Figure 6-1: 
31

P solution state NMR of THP added to (a) taurine  (b) glycine  (c) histidine  (d) 

methionine  (e) proline, with (f) unmodified THP for comparison.  Lock solvent D2O. 
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-40-30-20-1050 40 30 20 10 0 ppm  

Figure 6-2: 
31

P solution state NMR of THP added to (a) glutamine  (b) cysteine  (c) threonine  (d) 

2-aminopyridine  (e) thiourea, with (f) unmodified THP for comparison.  Lock solvent D2O. 
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6.2 Solid state NMR spectra 

-40-30-20-1050 40 30 20 10 0 ppm 

Figure 6-3: 
31

P solid state (MAS) NMR of THP-wool reacted with (b) 2-aminopyridine  (c) 

methionine  (d)  thiourea  (e) proline, with both (a) oxidised, unmodified THP-wool and  (f) 

unmodified THP-wool for comparison 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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6.3 Graphs illustrating binding of each system compared to THP 
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Figure 6-4: Metal binding ability for native wool 
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Figure 6-5: Metal binding ability for the oxidized THP system 
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Figure 6-6: Metal binding ability for the taurine system 
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Figure 6-7: Metal binding ability for the glycine system 
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Figure 6-8: Metal binding ability for the p-aminobenzoic acid system 
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Figure 6-9: Metal binding ability for the histidine system 
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Figure 6-10: Metal binding ability for the methionine system 
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Figure 6-11: Metal binding ability for the proline system 
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Figure 6-12: Metal binding ability for the glutamine system 
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Figure 6-13: Metal binding ability for the cysteine system 
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Figure 6-14: Metal binding ability for the threonine system 
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Figure 6-15: 2-aminopyridine 
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Figure 6-16: Thiourea 
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