2009 International Conference on Software Testing Verification and Validation

Putting Formal Specifications under the Magnifying Glass: Model-based Testing
for Validation

Emine G. Aydal', Richard F. Paige!, Mark Utting?, Jim Woodcock®
University of York, UK!
University of Waikato, New Zealand?

Abstract

A software development process is conceptually an ab-
stract form of model transformation, starting from an end-
user model of requirements, through to a system model for
which code can be automatically generated. The success
(or failure) of such a transformation depends substantially
on obtaining a correct, well-formed initial model that cap-
tures user concerns.

Model-based testing automates black box testing based
on the model of the system under analysis. This paper pro-
poses and evaluates a novel model-based testing technique
that aims to reveal specification/requirement-related errors
by generating test cases from a test model and exercising
them on the design model. The case study outlined in the
paper shows that a separate test model not only increases
the level of objectivity of the requirements, but also sup-
ports the validation of the system under test through test
case generation. The results obtained from the case study
support the hypothesis that there may be discrepancies be-
tween the formal specification of the system modeled and
the problem to be solved, and that using solely formal ver-
ification methods may not be sufficient to reveal these. The
approach presented in this paper aims at providing means
to obtain greater confidence in the design model that is used
as the basis for code generation.

1 Introduction

In recent years, the focus in software development has
changed from training users in the capabilities of software,
to training software developers in understanding what users
expect of their software [7]. The main problem in expecting
users to be able to adapt to software is that software then
becomes more vulnerable to flaws due to misunderstand-
ings of human psychology. Human Factors Engineering has
been one of the disciplines that gained popularity in recent
years. This is in part due to the efforts of researchers aim-
ing to bridge the gap between machine and human by con-

978-0-7695-3601-9/09 $25.00 © 2009 Crown Copyright

DOI 10.1109/ICST.2009.20

131

sidering the factors that affect humans in making decisions
whilst using a piece of software [8].

These efforts have introduced changes in almost all
stages of software development, from requirements analysis
to testing, since the main focus has shifted from software ca-
pabilities to user goals and expectations. Therefore, the cor-
rect interpretation and complete elicitation of requirements
together with domain knowledge have become crucial in or-
der to understand the environment in which the software
will serve.

Human factors manifest themselves not only in terms of
end-users but also within the development process. From
this perspective, viewing the software development process
as an abstract form of model transformation, from a model
at the user end to another model at developer/analyst end
would not be unrealistic. The accuracy of such a transfor-
mation depends substantially on obtaining a correct, well-
formed initial model, capturing user concerns.

A software engineering initiative that focuses on issues
of correctness is the Grand Challenge Program proposed in
2003 [9]. According to this initiative, correctness of a soft-
ware product is defined in terms of conformity to a formal
specification, a mathematical description of the software in
a language such as Z [10]. However, a design model based
on the formal specification of a system cannot be declared
correct in isolation, i.e., it can only be said to be correct
with respect to the given formal specifications. Thus, the
question of whether the formal specification of the system
modeled at developer end is an accurate representation of
the problem to be solved is still open [14].

In this paper, we contribute to addressing this question
by exploring the link between formal modeling and model-
based testing processes. By constructing a separate test
model from requirements, we not only increase the level of
objectivity on the requirements, but also generate test cases
that supports the validation of the system under test in for-
mal specification level.

Section 2 gives the high level view of the methodol-
ogy proposed. Model-based testing in Alloy is explained
in Section 3. Section 4 presents an example implementa-

IEEE
computer
psouety

tion of this methodology. Finally, the evaluation process to-
gether with the preliminary results and the future work are
explained in Section 5 and Section 6 respectively.

2 Overview of the Methodology

Figure 1 shows a rough presentation of artefacts of a sys-
tem when only one model is used throughout the whole soft-
ware development process. The test cases are generated by
using the model together with the requirements, and the test
suite is run on the code produced by using the same model.

Although this approach may seem reasonable in terms
of encouraging reusability in software development, it does
not provide the necessary amount of objectivity required for
testing. If there are faults in the model, these faults will
be carried to both test cases and to code, therefore the test
cases will not be able to reveal the faults in the code since
they are both based on the same set of (flawed) structures
and behaviours in the model.

Requirements
“n
5,
~
¥ b
\.
Iadel 2
. \
_ b
¥ Py A
Code Iy Test cases
Bl

Figure 1. Artefact generation with one model

Instead of using one model for both code and test case
generation, we propose the use of two models as shown in
Figure 2, where the design model is a complete model of
the system that is created with the aim of generating code
or guiding the implementation, and the test model is the
model of system parts that needs to be tested. As the def-
inition suggests, the test model does not have to reflect all
the system functions, i.e., it does not have to be a complete
model.

The following sections explain the techniques used
whilst forming a test model, generating test cases and trans-
forming test cases to an executable form. The left hand side
branch of Figure 2, i.e. the formation of the design model
and code generation, is not in the scope of this study.

132

Requirements
Design model Test model
Code < Test cases

Figure 2. Separating concerns for different
artefacts

3 Model-Based Testing with Alloy

Model-Based Testing (MBT) is a new and evolving tech-
nique for generating a suite of test cases from require-
ments [15]. Figure 3 summarises the test case generation
process in Model-based testing [16, 17, 18].

Validated
Model

Requirements Ahstract

Test Cases

Concretised
Test Cases

/V

o TEst Case
Specification

Test Selection
Criteria

Figure 3. Model-based Test Case Generation

As shown in Figure 3, the first step is to build an abstract
model of the SUT based on the requirements. Then, the
model is validated typically via animation. Test selection
criteria form the core of a model-based testing technique
since they aim to select the test cases that are likely to detect
severe and plausible failures at an acceptable cost. In other
words, the effectiveness of the test cases heavily depend on
the choice of test selection criteria. Once these criteria are
defined, they are then transformed into test case specifica-
tions, i.e., a format that is able to communicate with the
model produced. Given the model and the test case specifi-
cations, abstract test cases are generated [19, 20, 16, 18].

In the literature, one of the main approaches applied in
MBT is to use a commonly accepted modelling language
such as UML. Different techniques make use of different
diagrams and analyse the information absorbed by these
diagrams in their own distinct way. Some of the tech-
niques using UML as the source for test case generation
are discussed in [21, 22, 23]. There are other techniques
using other modelling languages such as AutoFocus with
CLP [25], Simulink Models with Classification Trees [24],

etc. The test cases generated by most of the techniques are
either in abstract form or concretised into test scripts writ-
ten in a programming language. For the former approach,
there is a need for an adaptor that can translate the format
that encapsulates abstract test cases to some programming
language. The techniques that create test scripts in a cer-
tain programming language limit their usage only to sys-
tems implemented in that specific language. This paper in-
troduces a technique that not only allows the user to per-
form testing both in code and model level, but also gives
the user the flexibility to adapt the technique to other mod-
elling/programming languages through different adaptors.

Figure 4 presents a high level view of test case gener-
ation process introduced in this paper. The process starts
with the modelling of system requirements in Alloy Mod-
elling Language [11]. The reason for choosing Alloy as a
modelling language is based on the results of our previous
experiments presented in [26]. We validate this model by
animating the successful execution of the operations under
test. It is important to note that it is not necessary to have a
complete model of the system unless we would like to val-
idate all the operations of the system. In other words, it is
possible to perform modular testing by only modelling the
required parts of the system, so the test model does not have
to be a refinement of the design model per se.

Requirements

v Alloy Box

Test Madel
specified in Alloy

Assertion-basad test
selection criterion

|

Test case specification
inthe form of assert
staternents

¥ i

Abstract test cases in 3L format |

!

| Adaptor ‘

Y

‘ Coneretised Test cazes ‘

Figure 4. Assertion-based Test Case Genera-
tion in Alloy

The components of Figure 4 are explained in the rest of this
section.

133

3.1 Test Selection Criteria

Test selection criteria define the conditions by which the
test cases are generated. The algorithm used to select test
cases, the size of the system instances used, the boundaries
of the test case search space and the assumptions taken are
determined during this stage. The decisions taken here are
modelling language independent.

The test selection criteria applied in this study is based
on the pre and postconditions of system operations specified
in the test model. In order to circumscribe test selection
criteria, we first define the following concepts:

o Test case
e Search space
e Size of sample set

The test cases are defined as combinations of pre-state of
the System under Test (SuT), Operation under Test (OpuT),
parameter values for the OpuT and post-state of the SuT.

The search space for test cases is mainly divided into
two: those that satisfy both pre and postconditions of the
OpuT and those that falsify -ideally- one precondition of
the OpuT. By separating the search space into two, we not
only aim to validate the system in terms of correct behaviour
in the expected areas, but also catch the inconsistencies be-
tween design model and test model. These inconsistencies
may be due to scope-related differences between the two
models, incorrect interpretation of the requirements whilst
modelling, lack of capabilities in modelling languages used
in building the design model or the test model. Regardless
of the cause of the inconsistent behaviour, we are certain
that the existence of such behaviour shows the importance
of introducing 'redundant’ test models in Model-based Test-
ing.

Another reason to include the second category in the
search space, i.e. those that falsify ideally one precondition,
is based on the the assumption introduced in the Coupling
effect hypothesis. Coupling effect states that complex faults
are coupled to simple faults in such a way that the test data
that detects all simple faults in a program will detect the
most complex faults [2]. This is also in line with the idea
of semantic size of the faults introduced in [4] where Offutt
et al. defined the semantic size of a fault as the difference
between the possible pre-states of the system for which the
post-state is valid and those for which the post-state does not
satisfy the postconditions. Thus, by allowing the test case
to falsify only one precondition, we keep the semantic dif-
ference between a successful execution of an operation and
a failed execution of an operation to minimum. This means
when the test cases generated by the test model are run on
the design model or on the code generated from the design
model, we either expect to see the same results, or present

the differences between test model and design model in a
clear manner.

Finally, the last decision to be made in test selection cri-
teria determination is the size of sample sets, i.e. how big
the instances of the program will be. The concern at this
point is mainly to be able to challenge the instances of the
system that differ in size in terms of the number of objects
they include.

The method of sampling not only imposes restrictions
on the size of pre-states of the system generated, but also
reduces the number of test cases that satisfy test case speci-
fications to a manageable amount. This is because, although
test specifications determine certain characteristics of the
test cases, the number of test cases that satisfy these char-
acteristics may still be immense due to the size of the in-
stances and the possible different combinations of the ob-
jects. Thus, by introducing sampling rules, we aim to:

e include groups of test cases validating the operation
under test for instances of the system that vary in terms
of size

e observe the response of operations when the system is
in its minimal and maximum size

e introduce the randomness in test case generation to a
certain degree

In light of the aims mentioned above, the samples are cate-
gorised as:

e Large: The number of objects is set to its maximum.

e Specific: The number of objects are set to a predefined
value

e Random: The number of objects is not fixed.

e Minimum: The number of objects is set to its mini-
mum.

3.2 Test case specifications

Test case specifications describe the characteristics of the
test cases to be generated by using the test selection criteria.
If test selection criteria are considered as metamodels, the
test case specifications can be regarded as instances of that
model in the sense that they realise the test selection criteria
in the modelling language in which the test model is mod-
elled. As the description states, the test case specifications
are language-dependent.

As shown in Figure 4, in this study, test case specifi-
cations are specified in terms of assert statements in Al-
loy. The Alloy Analyzer is a tool developed by the Soft-
ware Design Group at MIT, for analyzing models written
in Alloy[11, 12]. It allows the user to generate instances of

134

invariants, animate the execution of operations and check
user-specified properties. An assert statement, when called
in Alloy Analyzer, checks the SuT in terms of satisfying the
predicate specified in the statement [11].

Test triggers

Test triggers are calls to the testing environment to find a test
case that is compliant with the test case specifications. De-
pending on the environment, test case specifications may in-
herently include the behaviour of test triggers, but nonethe-
less it is important to be able to differentiate them when
there is a need.

In the Alloy Analyzer, test case specifications written
as assert statements are only visible when called by check
statements. In other words, in order to invoke the tool to
find a test case that satisfies test case specifications, there
has to be a check statement that calls the corresponding as-
sert statement.

In addition to its main purpose, the test triggers in Alloy
also provide the facility to adjust the size of the sample sets
predetermined by test selection criteria.

3.3 Abstract Test Case Generation

As part of the technique introduced in this paper, we
use the counter-example generation capability of Alloy An-
alyzer in generating test cases. TO be more specific, whilst
instantiating the test selection criteria, we assert the nega-
tion of what is specified in the test selection criteria, and
expect Alloy Analyzer to provide us what we initially aim
to find.

If the analyzer cannot find a counter example that falsi-
fies the predicate in the test case specification, it states that
the assert statement may be valid, otherwise it presents the
counter example in different views such as tree view, xml
view, graph view, etc. The response of the Alloy Analyzer
may be interpreted differently depending on the test selec-
tion criteria used. Table 1 presents how the search space is
partitioned as test selection criteria and the corresponding
test case specifications.

Test Case | Test Selection | Test Case Specification
Type Criteria

TC-PP pre N\ post assert —=(pre A post)
TC-NP —pre assert —(—(pre))
TC-NPP —pre A post assert(—(—pre A post))

Table 1. Summary of the test case generation
technique

The test case types reflect the test case selection criteria.
The first P in the name stands for precondition, the second

P for postcondition and N stands for negation. The TC-PP
type of test cases present the successful execution of an op-
eration, thus the expected response from the Alloy Analyzer
is to produce a counter example to the given test case speci-
fication. If no counter example is generated, this may mean
that there is an inconsistency within the test model that pro-
hibits the satisfaction of both pre and postconditions at the
same time. This inconsistency may be due to one of the
following reasons:

e Conflicting pre/postcondition

e Conflicting invariants

e Too strong preconditions

e Incorrectly interpreted requirements

The TC-NP type of test cases provide test cases that do
not satisfy preconditions. The idea of generating such test
cases may sound strange at first, but these type of test cases
are extremely useful in robustness testing of the actual sys-
tem, and in finding the discrepancies between the design
model and the test model.

Opposite to the expectations in TC-PP, in the search of
TC-NPP test cases, we do not expect Alloy Analyzer to find
any counter examples. If it does, that shows that the test
model is not consistent within itself. In fact, the search for
a TC-NPP type of test case can be considered as a validation
activity rather than a test case search.

To conclude, there are different set of activities to be per-
formed depending on the response received from Alloy An-
alyzer and the type of test case we aim to generate. The
counter examples generated by Alloy have the information
about the pre-state of the system, the OpuT, the parameters
with which the OpuT is called, and the post-state of the sys-
tem. The post-state of the system is only valuable to have
for TC-PP type of test cases, since post-state is not of con-
cern if the precondition does not hold.

As the final activity within the test-case generation pro-
cess, we record these counter examples generated by Alloy
Analyzer in XML form. For statistical purposes, we add a
header to each test case to keep more information about the
process steps whilst reaching that point.

A concrete example of model-based testing process with
Alloy is given in Section 4.

4 Case Study: Course Assignment

The first case study in which we applied the approach is a
Course Assignment System, where the students and lectur-
ers are assigned to certain courses. The initial requirements
and restrictions of the system are listed in Table 2. It is
important to note that non-functional requirements are kept
out of the scope of this particular case study.

135

Req. | Requirement Description

No.

RO | The system consists of courses, students and lec-
turers.

R1 Each course must be subscribed by at least one
student.

R2 | Each course can only be subscribed by students
from certain years of their degree and this infor-
mation is associated to each course.

R3 The total number of students for a course cannot
exceed 7.

R4 Only one lecturer must be assigned to each course.

R5 Course ID must be unique.

R6 | The lecturer assigned to a course must have at
least 3 years of experience.

R7 | A student must subscribe to at least 1 course.

RS A student cannot subscribe to more than 6 courses.

R9 In his/her 47 year, the student cannot subscribe to
more than 4 courses.

R10 | The age of the students taking a course must be
less than the age of the lecturer assigned to that
course.

R11 | A lecturer can be assigned to 3 courses at most.

Table 2. Requirements of Course Assignment
Software

Figure 5 presents a general view of the model-based test-
ing process we followed in this case study. The internal
structure of Alloy Box is provided in Figure 4.

Requirements }—p{ Alloy Box

h
Adaptor:
L2 Live Converter

‘ Design Model in Z ‘

P~

v
Test cases
(ZLive Command Files)

Test Case Execution

in ZLive

Figure 5. Case Study: Testing a Z Model with
test cases generated by Alloy Analyzer

The system is first modelled in the Z formal specifica-
tion language [10] and checked in the ZLive Animator that
provides a simple textual user interface that handles Z in
IXEX and Unicode markup [13].

In parallel to this process, the test model is produced in Al-
loy. As mentioned in Section 2, the test specifications are

written as assert statements according to the test selection
criteria, and, then, the test triggers are called in Alloy An-
alyzer. To explain the technique on an example, the Alloy
specifications for the operation Subscribe is given below.

pred Subscribe(d, d’: DepartmentState,

s: Student, c: Course) {
not c¢ in d.CourseAssignment[s]
HasSpace [c,d]

d.CourseAssignment [s] <
callMax_CourseSubscription
IsEligible [s,c]
d’ .CourseAssignment =
d.CourseAssignment + s->c
d’ .TeachingAssignment =
d.TeachingAssignment
d’ .CourseAssignment [s] =
#d.CourseAssignment [s] + 1

}

Table 3 presents the test case specifications and the test trig-
gers for this operation. When the test triggers are run in
Alloy Analyzer, it generates counter examples for TC-PP
and TC-NP type of test case specifications. It is important
to note that TC-NP and TC-NPP can be repeated for each
different precondition, and the result to each, if obtained,
would be a different test case.

Another issue that needs to be considered in forming a
more complete test case is the requirements that relates to
the size of the system. This is achieved by using the test
triggers. The size of the instances included in the test trig-
gers for Subscribe function are listed below:

e Maximum: exactly 2 DepartmentState, 20 Person, ex-
actly 5 Course, 5 int

e Specific: exactly 2 DepartmentState, exactly 4 Stu-
dent, exactly 3 Lecturer, exactly 3 Course, 5 int

e Random/Minimum: 5 int

The size corresponding to the maximum instance of the sys-
tem has 20 people and 5 courses. The number of students
and lecturers are decided by the analyzer during the analy-
sis. The value given to the number of objects in this state-
ment is determined after careful consideration of the system
invariants.

The size of the instance that corresponds to Specific is fixed
during the test case generation process. We noticed that
when we do not put any limitations on the number of objects
to appear in the instance, i.e. we request a random instance,
Alloy finds the instance that complies with the test case
specifications and has minimum number of objects. Note
that in Alloy, the bidwidth for integer values is set to 3 by
default, so to use integer values in a larger range, the bid-
width has to be assigned to a higher value by run or check
statement.

136

Test Case Specifications

TC-PP

assert TC-PP_Subscribe
{all d,d:DepartmentState]
not Subscribe[d ,d]}

Test Trigger

check TC-PP_Subscribe for <size>

TC-NP

assert TC-NP_Subscribe_Prel {
all d,d"” : DepartmentState,
s: Student, c: Course |

(not ¢ in d.CourseAssignment[s])

or

not (

(HasSpace [c,d])

(# d.CourseAssignment[s] <
callMax_CourseSubscription)

(IsEligible [s,c 1)

)

and

and

}
Test Trigger

check TC-NP_Subscribe_Prel for <size>

TC-NPP

assert TC-NPP_Subscribe_Prel {
all d,d’” : DepartmentState,
s: Student, c: Course |

(not ¢ in d.CourseAssignment[s])

or

not (

(HasSpace [c,d]) and

(# d.CourseAssignment[s] <
callMax_CourseSubscription)

(IsEligible [s,c 1)

)

and

or

not (

(d’ .CourseAssignment =
d.CourseAssignment + s->c) and

(d’ .TeachingAssignment =
d.TeachingAssignment) and

(# d’ .CourseAssignment([s] =
#d.CourseAssignment [s] + 1)

)

)\

Test Trigger

check TC-NPP_Subscribe_Prel for <size>

Table 3. Test Case Specifications for Sub-
scribe Operation focusing on precondition;

After running the test triggers and receiving responses
from Alloy Analyzer, we record the results provided by the
analyzer in XML format with a header that helps us to build
statistical data.

Having the system in Z and the test cases in XML for-
mat, we identified the need for an adaptor that would ideally
transform the test cases from XML format to some format
that can be run on the design model. The following section
explains how this is achieved.

XML2ZLive Converter

Since we can check the consistency of the design model in
ZLive, we can also check the validity of the instances of
the system using ZLive. Thus, we transform the test cases
in XML format to ZLive commands. This process can also
be regarded as a model tranformation where test cases in
XML present the source model and the ZLive commands
present the target model. Kleppe et al. mention in [6] that
model transformations must be done according to a trans-
formation definition, where a transformation definition is a
set of transformation rules that describe how one or more
constructs in the source language can be transformed to one
or more constructs in the target language.

The model transformation from XML to ZLive is not the
main focus of this paper, therefore we do not present it in
detail. However, as mentioned in the previous section, we
define a test case as the combination of a pre-state of the
SuT, the name of the OpuT, the parameter values to this
operation and the post-state where applicable. Thus, during
the transformation process, the test cases in XML format are
first elevated to this more abstract level, and then specified
in ZLive commands. In addition, this process required an
additional schema to the Z model which takes the list of
objects and the relations and assigns to appropriate objects
in the instance of the Z Design model.

In light of this, we have implemented a Java application
to carry out the XML to ZLive conversion. This tool expects
the user to enter the folder that has all the XML files in it
and the folder that will hold the ZLive command files. I,
then, converts all the XML test case file to ZLive command
files. Table 4 presents a template for a ZLive command file
that is executed on the Z model to challenge the Subscribe
function.

Analysis of Results

Once the ZLive commands are produced, they are run
within the ZLive environment, and the results are compared
to those from the Alloy Analyzer. Table 5 provides statistics
about the case study and the test cases generated through the
technique introduced in this paper.

Each time there was a discrepancy between the results
obtained from Alloy Analyzer and ZLive, we examined the

137

do Init

; [InitReady | 1Set? = <list of lecture objects>A
cSet? = <list of course objects>A

sSet? = <list of student objects>A

CAssignment? = <links from student to course > A
TAssignment? = <links from course to lecturer>

; [Subscribe | s? = <student object>A
c? = <course object>]

Table 4. Template for ZLive Command File

of system operations 7
of operations tested 4
of system invariants 9
of preconditions in Operations under Test 13
of postconditions in Operations under Test 12
of test cases generated 38
of errors found 9

Table 5. Statistical information about the case
study

situation. The errors found through such examination can
be categorised as shown in Table 6.

Z specification error

Alloy specification error

Alloy Analyzer-XML file generator-related error

NN =

Model transformation-related error

Table 6. Categorisation of errors

The kind of errors found related to Z and Alloy specifica-
tions include incorrectly specified attribute range, missing
or incorrect system invariants, etc.

The errors related to XML file generation capability of Al-
loy were due to the assumptions we made in parsing the
information given in this file. We noticed some of the gen-
eralisations we made about the XML file generated by AL-
LOY were not valid for all. This experiment was carried out
on the Alloy Analyzer version 4.0 RC11. We are aware that
Alloy Analyzer developers have released a better version of
the XML file in version 4.0 RC18, so we expect to see that
these sort of problems will not occur in the future.

Model transformation-related errors occur due to the con-
cepts that are expressed differently in Alloy and Z. One ob-
vious example is the object identifiers assigned to objects in
Alloy. In the instances generated by Alloy Analyzer, the ob-
jects are created with distinct object names, therefore even
if there is no primary key, the objects are unique by de-

fault. However, whilst transforming instances to Z, we use
the definition of the object (fields and values), and thus the
object names disappear. This data loss is reflected in the
test cases as follows: if there are two objects with the same
field values, Z actually considers these two objects as one
object. Thus, the loss of such information not only changes
the structure of the test case completely, but also modifies
the size of the instances indirectly. Since the size of an in-
stance and the internal structure of a test case are the prop-
erties defined in test selection criteria, changing these two
also means creating a completely different test case with an
unknown test case specification. This is clearly an issue that
needs to be avoided during model-based testing.

The ultimate goal of this study is to find the errors re-
lated to the first two categories mentioned: specification er-
rors in design model language and test model language (Z
and Alloy in this case), and to eliminate the errors that fall
into the other categories as much as possible. As mentioned
in Section 1, by finding such errors, we gain confidence in
the design model that ideally generates the code behind the
SuT, and validate the system in a more objective manner. In
order to get closer to this goal, we evaluated our technique
by using Mutation Testing [3, 4, 5]. Section 5 explains how
Mutation testing is applied to observe the sensibility of our
technique against the specification-errors.

5 Evaluation

Mutation Testing is a testing technique that evaluates the
test quality by analysing whether a test set is able to reveal
the program under test from a set of alternative programs|[1].
There are two hypothesis behind Mutation Testing that sup-
ports the idea of injecting simple faults rather than a col-
lection of faults: Competent Programmer hypothesis which
states that competent programmers produce programs that
are close to being correct and Coupling Effect hypothesis as
previously mentioned in Section 2 [2, 3].

In addition to the research studies that are based on these
two hypothesis, there are those that take into account the
size of a fault, i.e. scope of the difference between a cor-
rect and incorrect version of the program under analysis [4].
This concept is categorised as syntactic size of a fault (num-
ber of statements or tokens that need to be changed) and
semantic size of a fault (the relative size of the subdo-
main D for which the output mapping R is incorrect, where
D=-R represents the program). Table 7 provides informa-
tion about the relation between size of a fault and error de-
tection [4].

With these concepts in mind, we have taken the follow-
ing decisions in setting up the mutation testing environment
to evaluate our technique:

e Mutated specifications are produced by injecting one
mutant only.

138

Syntactic | Semantic | Error Detec- | Test case

Size Size tion usefulness

large large easy to detect low

large small reasonably medium
hard to detect

small large generate noise | medium

small small hard to detect high

Table 7. The relation between size of a fault
and error detection

e Mutant operators generate a syntactically correct spec-
ification of the system under test.

e Mutant operators are grouped in such a way that the
operators replacing the original ones are in the same
group of operators.

e Mutants are injected into the operations under test.

e For one mutant operator, two different mutated speci-
fications are generated: one where the mutant operator
is replaced by an operator that is semantically close,
and one it is replaced by a random operator that is
listed in the same category of operators.

After having defined the rules of the mutation testing
applied in this study, we determined the mutant opera-
tors. There are many studies in the literature focusing on
subsume relationship between the mutant operators with
the aim of reducing the type of mutants to a manageable
size[1, 2, 5]. In the light of these studies and the focus of
this study, we fix the type of mutants to the following list of
operators:

e Set Operator Replacement

{{67 ¢}a {Cv g}a {Ua ﬂ, \}a {]P)v]Pl}v {F7F1}7 {ZvNa Nl}}

e Relation Operator Replacement
{{dom, ran}, {<, 9,>, 6}, {+, *}, {—, +,—,—

y TP T T, HH}}

e Relational Operator Replacement

{{:v 75}7 {<’ < 2, >}}

e Logical Operator Replacement
AV, =, e {Y,3,3;}}

o Arithmetic Operator Replacement

{+v_’*v/7%}

To automate the mutation injection process, we imple-
mented a tool, that searches for the operators listed above
in a given Z specification and creates a mutated version of
that specification for each occurrence of the operator. The
tool generated 51 mutated specifications out of which 43

are type-checked. Out of these 43 mutants, 37 of them have
been killed by at least one test case. 2 of them stayed alive
due to the ’large search space error’ in ZLive whilst replac-
ing IP with P, . The remaining 4 mutated specifications that
could not be detected were those that replaced < with <
,\ with N and vice versa, thus proving the difficulty of the
errors that are semantically small.

6 Future Work and Conclusion

In this paper, we presented a novel technique that intro-

duces a test model to generate test cases by using the asser-
tions of the operations to invoke the counter example gen-
eration capability of Alloy Analyzer. The technique allows
multi-platform usability since the test cases produced are in
XML format, and there is a fixed metamodel for test cases
due to the automatic generation.
In order to show the effectiveness of the testing technique in
model level instead of testing on the code level, we carried
out a case study where the design model is written in Z, and
has been exercised by the test cases transformed from XML
to ZLive commands. The results obtained from this case
study has supported the hypothesis that there may be dis-
crepancies between the formal specification/modelling of
the system and the problem to be solved at user end. Thus,
we believe this technique can certainly help to gain more
confidence in the design model.

At the moment, we are in the process of applying the
technique on other platforms with different modelling lan-
guages. We also aim to implement adaptors from XML to
these modelling languages in order to increase the level of
automation.

In addition to extending the applicability of the tech-
nique by using different languages, we also aim to evalu-
ate the technique with other coverage criteria such as Con-
dition Coverage, Modified/Condition Decision Coverage
(MC/DC), etc. in order to have a better understanding of
its value.

7 Acknowledgments

We would like to thank Hon. Antonia Johnson for pro-
viding the "William Gibbs Trust Award” which made the
research visit to University of Waikato for this study possi-
ble.

References

[1] Kim S., Clark J.A., McDermid J.A., The Rigorous
Generation of Java Mutation Operators Using HAZOP,
In: Proceedings of the 12th International Conference on
Software and Systems Engineering and their Applica-
tions (ICSSEA’99). Paris, France.

139

[2] Offutt A.J., Lee A., Rothermel G., Untch R.H., Zapf
C., An Experimental Determination of Sufficient Mutant
Operators, ACM Transactions on Software Engineering
and Methodology (TOSEM), Volume 5 , Issue 2, Pages
99-18, 1996.

[3] Offutt A.J., Lee S.D., An Empirical Evaluation of Weak
Mutation, IEEE Transactions on Software Engineering,
v.20 n.5, p.337-344, 1994.

[4] Offutt A.J.,Hayes J.H., A Semantic Model of Program
Faults, Proceedings of the 1996 ACM SIGSOFT inter-
national symposium on Software testing and analysis,
Pages 195 - 200, 1996.

[5] Black P.E., Okun V., Yesha Y., Mutation Operators for
Specifications, Proceedings of the 15th IEEE interna-
tional conference on Automated software engineering,
2000.

[6] Kleppe A., Warmer J., MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison-
Wesley, 2003.

[7] Jackson D., Jackson M., Separating Concerns in Re-
quirements Analysis: An Example, Rigorous Develop-
ment of Complex Fault-Tolerant Systems , 210-225,
2006.

[8] Viller S., Bowers J., Rodden T., Human Factors in re-
quirements engineering: A survey of human sciences lit-
erature relevant to the improvement of dependable sys-
tems development processes. Interacting with Comput-
ers 11(6): 665-698 (1999)

[9] Jones C., OHearn P., Woodcock J., Verified Software:
A Grand Challenge, IEEE Computer Society (2006).

[10] Z Notation, http://en.wikipedia.org/wiki/Z_notation.
[11] The Alloy Analyzer, http://alloy.mit.edu/.

[12] Jackson D., Software Abstractions: Logic, Language,
and Analysis, MIT Press, 2006.

[13] CZT ZLive, http://czt.sourceforge.net/zlive/index.html.

[14] Coryoth, A Case for Formal Specification,
http://www.kuroShin.org/story/2005/7/29/04553/9714,
2005.

[15] Dalal S.R., Jain A., Karunanithi N., Leaton J.M., Lott
C.M,, Patton G.C., Horowitz B.M., Model-based testing
in practice, Proceedings of International Conference of
Software Engineering ICSE, 1999.

[16] Utting M., Pretschner A., Legeard B., A taxonomy of
model-based testing, Tech. report, 2006.

[17] Pretschner A., Phillips J., Methodological issues in
model-based testing, Model- Based Testing of Reactive
Systems, LCNS 3472 (2005), 281291.

[18] Pretschner A., Model-based testing in practice, Pro-
ceedings of Formal Methods 2005 (2005), 537541.

[19] Utting M., Position paper: Model-based testing, Ver-
ified Software: Theories, Tools, Experiments(VSTTE)
(20006).

[20] Prenninger W., Pretschner A., Abstractions for model-
based testing, Proc.2nd International Workshop on Test
and Analysis of Component Based Systems (TAC0S04)
(2005), 5971.

[21] Gogolla M., Buettner F., Richters M.,USE: A UML-
based specification environment for validating UML and
OCL. Sci. Comput. Program. 69(1-3): 27-34 ,2007.

[22] Cavarra A., Crichton C., Davies J., Hartman A., Jeron
T., Maunier L., Using UML for automatic test case gen-
eration, TACAS, 2002.

[23] Bernard E., Bouquet F., Charbonnier A., Legeard B.,
Peureux F., Utting M., Torreborre E., Model-based Test-
ing from UML Models, Lecture Notes in Informatics, pp.
223230, 2006.

[24] Conrad M., Doerr H., Fey 1., Model-based genera-
tion and structural presentation of test scenarios, WOrk-
shop on Software-Embedded Systems Testing (WSEST)
(1999).

[25] Pretschner A., Slotosch O., Aiglstorfer E., Kriebel
S., Model-based testing for real: The inhouse card case
study, J.SoftwareTools for Technology Transfer (2004),
140157.

[26] Aydal E.G., Utting M., Woodcock J., A Compari-
son of State-based Modeling Tools for Model Validation,
TOOLS-Europe08, Switzerland, July 2008.

140

