
Feature Refinement

Steve Reeves and David Streader
Department of Computer Science, University of Waikato, Hamilton, New Zealand

{stever,dstr}@cs.waikato.ac.nz

Abstract

Development by formal stepwise refinement offers a
guarantee that an implementation satisfies a specification.
But refinement is frequently defined in such a restrictive way
as to disallow some useful development steps. Here we de-
fine feature refinement to overcome some limitations of re-
finement and show its usefulness by applying it to examples
taken from the literature.

Using partial relations as a canonical state-based se-
mantics and labelled transition systems as a canonical
event-based semantics, we define functions formally linking
the state- and event-based operational semantics. We can
then use this link to move notions of refinement between the
event- and state-based worlds.

An advantage of this abstract approach is that it is not
restricted to a specific syntax or even a specific interpreta-
tion of the operational semantics

Keywords: state-based refinement, event-based refine-
ment, feature refinement, stuttering refinement, Z, B, Event
B

1 Introduction

In this paper we introduce feature refinement (Defini-
tion 11). We apply it to examples used in the literature,
including one where the point is to show that retrenchment
is more flexible than normal refinement.

In general a refinement step is the development of a con-
crete description C from an abstract description A, written
A v C. The idea, as commonly described in the literature,
is that A v C iff:

any user of A will not be able to observe if they
had actually been given C in its place

There are many distinct definitions of refinement, includ-
ing those that we consider here, that can can be said to
formalise this. To illustrate this we consider a simple ex-
ample illustrating the difference between normal refinement
[12, 9, 1, 23] and feature refinement, both of which can be

viewed as particular formalisations of this common descrip-
tion.

1.1 An example needing feature refinement?

Can we refine a one place buffer BA with two operations
in and out, into BC, a one place buffer with the additional
feature of a third operation del that terminates the buffer
(this example is considered in more detail in [18])? This is
not allowed as a refinement by many definitions in the liter-
ature but it can be argued that it should be, as any successful
use of BA will also succeed with BC.

Clearly if a user–program were to call the del operation
then they would be able to tell if they were given BA or BC

and hence it would not be a refinement. But by restricting
the set of programs to those that call only the operations of
BA, then none can tell if they were given BC and BA v BC

would be a valid refinement.
Using the normal state-based definitions of refinement

found in the literature BA cannot be refined into BC, an ex-
ception being [2] where, as we shall see, it depends crucially
upon the details of the definitions.

A reader might, quite reasonably, take the view that the
step from BA to BC is not a refinement step but some other
development step for example a “versioning” step. From
this view point the work presented here can be seen as giv-
ing a formal definition of the version relation and a formal
guarantee of what behaviour is preserved between different
versions.

In fact, in order to satisfy not only people who, like us for
the reasons above, view this buffer development as a valid
refinement, but also people who want it to be disallowed,
we allow specifications of either view.

1.2 The bigger picture

Development by formal stepwise refinement offers a
guarantee that an implementation satisfies a specification.
But refinement is frequently defined in such a restrictive
way as to not allow some useful development steps. Re-
trenchment [6] offers a more flexible development but the

Fifth IEEE International Conference on Software Engineering and Formal Methods

Unrecognized Copyright Information
DOI 10.1109/SEFM.2007.44

371

Fifth IEEE International Conference on Software Engineering and Formal Methods

Unrecognized Copyright Information
DOI 10.1109/SEFM.2007.44

371

Fifth IEEE International Conference on Software Engineering and Formal Methods

Unrecognized Copyright Information
DOI 10.1109/SEFM.2007.44

379

Fifth IEEE International Conference on Software Engineering and Formal Methods

Unrecognized Copyright Information
DOI 10.1109/SEFM.2007.44

371

guarantee that an implementation satisfies a specification is
lost.

In order to combine the advantages of event-based and
state-based approaches we are going to build semantic map-
pings (both ways) between partial relations, a canonical
state-based operational semantics, and labelled transition
system (LTS), a canonical event-based operational seman-
tics. That this is possible is well-known, of course, but
should be kept in mind in the sequel as it motivates much
that we do. Its details are straightforward, as we will see,
and it is used formally in the proofs of most of the lemmas
in this paper.

Event-based refinements in [11] permit the addition of
new operations and are given an abstract formalisation in
[18] thus, using the mappings mentioned above, allowing
the results to be applied to a variety of event-based and
state-based formalisms. Here we will elaborate the work
in [18] using a more state-based language and add a pa-
rameterised definition of simulation. This has enabled us to
show that a recent definition of Event B refinement [2] is
less general than an old event-based refinement in [11].

It is important to recall that event-based operational se-
mantics, commonly defined as LTS , have been given many
different interpretations, e.g. abstract data types with single-
ton failure semantics [7], handshake processes with failure
and trace semantics [13] and with broadcast semantics [17],
etc. Similarly state-based operational semantics, commonly
defined as partial relations, have been given many different
interpretations. In Z and B [23, 21, 1] partial relations are
interpreted as undefined outside of precondition and totally
correct, while in [7] they are interpreted as guarded outside
of precondition and totally correct, but in [9, Chapter 1-7]
they are interpreted as partially correct. It is common with
both state- and event-based operational semantics to give
different interpretations by using different definitions of re-
finement [7, 13, 17, 23, 21, 1, 9] to, so to speak, ‘complete’
the semantics.

Our bridge between the state- and event-based ap-
proaches can be used prior to giving the operational seman-
tics any specific interpretation, that is prior to completing
the semantics.

This contrasts with much of the work combining state-
and event-based approaches [7, 11, 10] where at the very
start specific interpretations of the state- and event-based
semantics are chosen.

1.3 Plan of the paper

The operational semantics of B, Event B, Z and so on are
concrete versions of the general, more abstract, semantics
we develop in Section 2.

It can be argued that one of the most important contribu-
tions of the B methodology is the definition of first-order

logical conditions sufficient to imply forward simulation
and hence refinement [12, 9]. Thus satisfying B’s proof
obligations implies refinement as found in B. We wish to
keep to this admirable and practical philosophy, hence, af-
ter defining feature refinement (vDFR) this paper: one, de-
fines a forward simulation that implies feature refinement;
two, establishes in what way C satisfies A when A is a fea-
ture refinement of C; and three, illustrates the usefulness of
feature refinement in modelling design steps that previously
have only been formalised as retrenchments.

In Section 3 we define the event-based labelled transition
system semantics and in Section 3.1 we relate it to the pre-
viously defined state-based semantics. In Section 4 we give
a state-based definition of stuttering steps and using this we
define the parameterised feature refinement in Section 4.1
and parameterised simulation in Section 4.2.

In Section 5 we give the event-based definition of hiding
and restriction and using the simple relation (Section 3.1)
between the state- and event-based semantics show that hid-
ing is related to stuttering and feature refinement includes
both hiding and restriction.

In Section 6 we specialise our abstract definition of re-
finement and apply it to an example formalised in B, using
both undefined and guarded (magic) parts of an operation’s
domain.

2 State-based relational semantics

This section considers operations on state that are given a
partial relation semantics. Special cases of this include, but
are not limited to, how Z and B work. It should be clear that
the machines of B relate directly to the relational semantics
defined below, as do collections of Z operation schemas and
the state over which they are defined.

A relational semantics is based around a set of named
partial relations.

In both this section and the next we have Act, the uni-
versal set of operation/event names.

Definition 1 Relational semantics. Let ΣM be a finite set
of states, the state space of M. M is a relational semantics
where:

M , (ΣM, initM, NprM, AlpM),

where, given a single global state • /∈ ΣM,

initM ⊆ • × ΣM

is an initialising operation,

NprM ⊆ {(o, Ro)|o ∈ AlpM ∧ Ro ⊆ ΣM × ΣM}

is a set of named relations, and

AlpM ⊆ Act

372372380372

and we call AlpM the alphabet of M. Let

relM(o) , R iff (o, R) ∈ NprM

2

Note that M gives no meaning to elements ofAct\AlpM,
i.e. operations not in the alphabet of M.

The standard formalisation of refinement uses programs
built from a sequence of parts, first init, the initialisation of
a semantics, followed by a sequence of operations.

Definition 2 Programs. Let programs be defined by:

Prog , {init; s|s ∈ Act∗}

and programs using only operations from AlpM, the alpha-
bet of semantics M, be defined by:

ProgM , {init; s|s ∈ Alp∗M}

The relational semantics of program p = init; o1; o2 . . .
is defined to be the sequential composition of the relational
semantics of its constituent operations ([23, 1]):

relM (p) , initM; relM (o1); relM (o2) . . .

2

Note that if some oi is given no meaning by M then p is
given no meaning either.

In the literature [12, 9, 1, 23] refinement vL is defined,
or by a slight rearrangement can be defined, by:

Definition 3 Let A and C be relational semantics. Let
r ⊆ ΣA × ΣC be the retrieve relation between the state of
(abstract) semantics A and the state of (concrete) semantics
C. A vL C iff

1. AlpA = AlpC; and

2. ∀p ∈ ProgA.relC(p) ⊆ relA(p); r. 2

It should be noted that (as in B) we do not consider a
finalisation operation. Because of this in the second clause
we have included ; r to relate the final states of the two pro-
grams.

3 Event-based LTS semantics

In this section we will define a fairly standard event-
based operational semantics and in Section 3.1 define its
relationship with the fairly standard state-based relational
semantics of (collections of) operations from the previous
section. This provides a route for the transfer of ideas from
one world view to the other.

Definition 4 LTS—labelled transition systems. Let NA be
a finite set of nodes. Let τ be a special unobservable oper-
ation. A is a LTS where:

A , (NA, SA, TA, AlpA)

where
SA ⊆ NA,

and we call SA the start nodes of A,

TA ⊆ {(n, a,m)|n,m ∈ NA ∧ a ∈ AlpA ∪ {τ}},

and we call TA the transitions of A, and

AlpA ⊆ Act,

and we call AlpA the alphabet of A 2

In what follows we assume the existence of at least one
start node sA ∈ SA.

Definition 5 Paths. A path is a sequence of alternating
nodes and operations. The set of paths generated by the
LTS A is:

PathA ,
{sA, ρ1, n2, ρ2, . . . |(sA, ρ1, n2), (n2, ρ2, n3), . . . ∈ TA}
We write |ρ| for the number of operations in a path

and ρα for the sequence of operations in path ρ, so if
ρ = sA, ρ1, n2, ρ2 . . . then ρα , ρ1, ρ2

For finite paths ρ = sA, ρ1, n2, ρ2, . . . ni define
last(ρ) , ni.

We will write ε for the empty sequence of operations. 2

Where A is obvious from context we write:

• x a−→y for (x, a, y) ∈ TA;

• n a−→ for ∃m.(n, a,m) ∈ TA;

• sA
ρα−→ when ρ ∈ PathA; and finally

• sA
ρα−→n when ρ ∈ PathA ∧ last(ρ) = n.

Definition 4 takes no account of τ operations being un-
observable, and we call→ a strong semantics and define the
traces of A in:

Definition 6 Traces of LTS A.

Tr(A) , {ρα|sA
ρα−→},

Trace refinement:

A vTr C , Tr(C) ⊆ Tr(A).

2

373373381373

3.1 Relating state- and event-based semantics

We define a function lts that maps the state-based re-
lational semantics A (Definition 1) into an event-based LTS
semantics (Definition 3) and its inversenpr. Both mappings
are little more than a reorganisation of definitions.

Definition 7 For relational semantics

M = (ΣM, initM, NprM, AlpM),

we have
lts(M) , (NM, SM, TM, AlpM)

where
NM , ΣM,

SM , range(initM),

and

TM , {(x, n, y)|(n,R) ∈ NprM ∧ (x, y) ∈ R}.

For LTS
A = (NA, SA, TA, AlpA)

we have

npr(A) , (ΣA, initA, NprA, AlpA)

where
ΣA , NA,

initA , {(•, n)|n ∈ SA}
and

NprA , {(n,R)|n ∈ AlpA ∧ (x, y) ∈ R⇔ x
n−→y}

2

As we previously stated both operational semantics are
open to many different interpretations so we view them as
giving just part of the semantic story. By defining the trans-
lation between state-based systems and event-based systems
on the operational semantics we have not restricted our-
selves to a particular interpretation of the operational se-
mantics.

Where not confusing we will give the same name to
a machine (in the B sense, or a collection of operation
schemas and state schemas in the Z sense, for example) and
its relational semantics.

Lemma 1 For relational semantics (machines) A and C, if
AlpA = AlpC then

A vL C⇔ lts(A) vTr lts(C)

2

init• s

◦

in

AlpBA
, {in, out}

s s

◦ ◦

out
s s

◦ ◦

Figure 1. Relational semantics - BA

The very simple relation between the state- and event-
based semantics shown in Definition 7 makes a number
of event-based results from the literature available to state-
based models and vice versa. But we must be careful about
any informal interpretation we bring to any formal model.

The relational semantics in Figure 1 gives a state-based
partial relation semantics of the buffer BA (from Section 1)
that we can transform, using lts, into the event-based LTS
semantics in Figure 2 (left-hand LTS).

BAs ◦
out

in
BCs ◦ d
out

in
del

Figure 2. LTS Buffers

From the state-based perspective we know that these par-
tial relations can be interpreted either as guarded outside
of precondition or as undefined outside of precondition,
similarly they can be interpreted either as a totally-correct
model or as a partially-correct model, whereas in process
algebra the LTS in Figure 2 would always be interpreted as
guarded outside of precondition and to distinguish between
totally- or partially-correct interpretations different refine-
ments would be used.

4 Stuttering

The state-based world formalises an operation that that
is both unobservable and has no effect as a skip operation.
Stuttering refinement has been defined so as to ignore these
skip operation. In the event-based world there are two oper-
ations that can not be observed, τ that can be performed but
not observed and δ that does nothing, see [4] for details. The
unobservable τ can be removed by hiding or abstraction
where as the δ can be removed by restriction [4]. The two
event-based unobservable operations (Definition 13) will be
discussed in Section 5.

Data refinementvL has been weakened [3] by replacing
clause 1 with the following clause that permits stuttering
steps to be added to the concrete machine. A concrete oper-
ation o is a stuttering step if it refines an abstract skip , idA

operation, where idA is the identity relation over the state
space of A.

374374382374

Definition 8 Stuttering refinement. Relational semantics
(machine) A refines relational semantics (machine) C with
stuttering, A vS C, where A and C have retrieve relation r
between them, iff

1. AlpA ⊆ AlpC and ∀ o ∈ AlpC\AlpA we have
r; relC(o) ⊆ idA; r and

2. ∀p ∈ ProgC.relC(p) ⊆ relA(p); r

2

Before we liberalise the definition of refinement we
rephrase it so as to drop any reference to the alphabet of
the machines.

To do this we assume that when a program calls an op-
eration that is not in the alphabet of a machine then the pro-
gram executes a skip operation.

Definition 9 We write J KM for the semantic mapping that
gives the relational semantics of both an operation o and a
program p.

JoKM , if o ∈ AlpM then relM(o) else idM

JpKM , initM; Jo1KM; Jo2KM . . .

2

Using the relations in Definition 9 we can drop the first
clause in Definition 8.

Definition 10 Machine refinement. Relational semantics
(machine) A (machine) refines relational semantics (ma-
chine) C, A vB C, where A and C have retrieve relation
r between them, iff

∀p ∈ Prog.JpKC ⊆ JpKA; r

2

It is easy to see that this is no more that a rephrasing of
refinement that permits stuttering steps.

Lemma 2 For machines A and C

A vS C⇔ A vB C

2

4.1 Feature Refinement

In this section we formally introduce feature refinement
as a liberalisation of vB. This parameterised definition of
refinement is a specialisation of a more general definition of
refinement found in [18]. It is a significant liberalisation of
normal refinement and has been designed via its relation to
simulation, as we will see in this section.

WhereasvB considers all programs Prog we simply al-
low the alphabet of the programs considered to be restricted.

Definition 11 Feature Refinement. Let D ⊆ Act and A
and C be machines, and let r be a retrieve relation between
them.

Let
P , {init; s|s ∈ (Act\D)∗}

then
A vDFR C , ∀p ∈ P.JpKC ⊆ JpKA; r

2

It is important to note that all we are doing that is new is
letting the set of programs be restricted to P and hence by
definitionvB=v∅FR. Again straight from the definition we
can see that:

Lemma 3 A vB C⇒ A vDFR C 2

Now that we have refinement parameterised over the set
D we explain its parameterised guarantee:

feature refinement A vDFR C guarantees that any
behaviour of machine C could be a behaviour of
machine A when C is used by a program that calls
operations from AlpC\D.

4.2 Simulation

In order for our new definition to be of much use in prac-
tice we need to define sound simulation rules.

Definition 12 Let A and C be machines and r a retrieve
relation between them. Forward simulation A vXFS C holds
iff:

1. JinitKC ⊆ JinitKA; r and

2. ∀o ∈ X.r; JoKC ⊆ JoKA; r

2

This can be visualised as in Figure 3.

s

◦
⊆ ⊆ ⊆

◦

◦

◦ ◦

◦ ·

·

JinitKC

JinitKA

r r r

JbKAJaKA

JaKC JbKC

Figure 3. Forward simulation

The classic result that forward simulation is sound with
respect to refinement still applies if we restrict both the al-
phabet used in refinement and the alphabet used in the defi-
nition of simulation.

Lemma 4 Let A and C be machines, D ⊆ Act and X ,
Act\D. Then,

A vXFS C⇒ A vDFR C

2

375375383375

5 Hiding and Restriction

The event-based literature supports a bottom-up ap-
proach to development by defining two operators, hiding
and restriction, that build an abstract model from a more
concrete model by treating unobservable events in two
ways. We use them in our subsequent definitions of refine-
ment relations in the more usual (for state-based develop-
ments) top-down style to build concrete models from more
abstract models.

Definition 13 Restriction and hiding on LTS A =
(NA, sA, TA, AlpA).

AδD , (NA, sA, TAδD , AlpAδD)

where
D ⊆ Act,

and D is the set of operations to restrict (i.e. make unob-
servable and blocked),

TAδD , {n
a−→AδD l | n

a−→Al ∧ a /∈ D}
and

AlpAδD , AlpA\D.
AτT , (NA, sA, TAτTAlpAτT)

where
T ⊆ Act,

and T is the set of operations to hide (i.e. make unobserv-
able and unblockable),

TAτT ,

{n a−→AτT l | n
a−→Al∧a /∈ T}∪{n τ−→AτT l | n

a−→Al∧a ∈ T}
and

AlpAτT , AlpA\T.
2

To model τ operations as unobservable we define how to
abstract (remove) them from a LTS:

Definition 14 Observational semantics =⇒. For LTS A,

n
a

=⇒m , n τ
=⇒n′, n′ a−→m′,m′ τ=⇒m ∧ a ∈ Act

where

s
τ

=⇒t , s τ−→s1, s1
τ−→s2, . . . sn−1

τ−→t ∨ s = t

Also,

Abs(A) , (NA, SA, {(n, x,m)|n x
=⇒m}, AlpA).

and hiding is given by:

C\T , Abs(CτT)

2

C
s 1 4

2 3

a c

t

b C\{t}

s 1 4

2 3

a c

ba

b

Figure 4. Hiding the event t, i.e. making it
unobservable and unblockable and then ab-
stracting

C
s 1 4

2 3

a c

d

b Cδ{d}

s 1 4

2 3

a c

b

Figure 5. Restricting the event d, i.e. making
it unobservable and blocked

Hiding and restricting are illustrated in Figure 4 and Fig-
ure 5. Having explained event-based restriction (δD) and
hiding (\T or Abs(τT)) that allow us to move from the
concrete to the abstract we reverse them to give two refine-
ment steps from the abstract to the concrete.

Definition 15 Tau- and delta-refinement. Let A and C be
machines and New ⊆ AlpC\AlpA be a set of new observ-
able operations. Then:

A vTrδNew C , A vTr CδNew

A vTr\New C , A vTr C\New 2

The event-based delta-refinement appears in [11] as a be-
havioural subtype. By applying the definition to the opera-
tional semantics we are able via Definition 7 to “port” it to
state-based models.

Lemma 5 Let A and C be machines andN = AlpC\AlpA.
Then: A vB C⇔ lts(A) vTr\N lts(C) 2

Viewed from the state-based perspective the event-based
action abstraction mirrors stuttering, as is well known. Thus
t, in Figure 6, is a stuttering step. From the state-based per-
spective C\{t} is the abstract machine A and the effect of
the concrete program init; a; t; b in Figure 6 is the same as
the effect of the abstract program init; a; b.

⊆ ⊆ ⊆ ⊆•

s

s

1

1 1

2 3

3

·

·

JinitKC

JaKC JtKC JbKC

JinitKA

r r r r

idJaKA JbKA

Figure 6. t ∈ AlpC\AlpA

376376384376

The removal of τ events has been widely studied in the
event-based literature (for details see [15, 8, 22, 19]) and
because of lack of space we do not wish to repeat the dis-
cussion here. But we do wish to remind the reader that there
are many different, valid, interpretations given to τ -loops.

In the CSP failure/divergence semantics τ -loops are in-
terpreted as diverging, that is having chaotic behaviour
“whether it is true or not” [20, p95]. In CCS [15] and the
fair failure semantics of [8, 16] τ -loops can simply be ig-
nored and for an interpretation neither based on fairness nor
chaos we have CFFD and NDFD in [22] and for an opera-
tional model neither based on fairness nor chaos see [19].

Some state-based models introduce rules, notably
WED EF in Event B [14], that prevent the introduction of
τ -loops. In Section 6.1 we take an example from the litera-
ture where the introduction of τ -loops was usefully given a
fair interpretation. Consequently we will adopt the fairness
assumption.

Lemma 6 Let A and C be machines, T ⊆ Act, D ⊆ Act,
T ∩D = ∅ and T = Act\(AlpA ∪D). Then:

A vDFR C⇔ lts(A) vTr\T lts(C)δD

2

5.1 Old ideas in new places and put to new uses!

We have combined, in novel ways, old ideas from a va-
riety of places. While hiding is likely to be familiar restric-
tion is, from a state-based perspective, less so. Therefore,
to clarify things we review the event-based notion of restric-
tion from a state-based perspective by returning to the buffer
example from Section 1.

It is clear from the LTS in Figure 2 that BA vTrδ{del} BC,
but how are we to interpret this? It should be noted that
vTrδ{del} formalises a design decision, i.e. tells us some-
thing about the relation between the abstract BA and the
concrete BC. BA specifies the correct behaviour of a buffer;
it tells us nothing about error events, such as del. They are
assumed to not occur (i.e. are blocked) in the abstract BA.

So, when BA was originally formulated only the be-
haviour of operations in and out were considered. Subse-
quent design decisions to model errors introduced the event
del that was previously neither observable nor executable
(blocked), but on programs where del does not appear, BA

and BC have the same meaning, so BC is as acceptable as
BA. Hence the delta-refinement.

As we said in Section 1 we wish to be able to define the
buffer in such a way as to prevent or allow the introduction
of certain events. We can easily prevent the introduction of
del in future development of BA by expanding the alphabet
while keeping the picture (Figure 2) the same. Thus if we
define BAd to have the same transitions and initial state as

BA but arrange for its alphabet to include del, i.e. AlpBAd
,

AlpBA
∪ {del}, then clearly del cannot be added again and

BAd 6vTrδ{del} BC.
We have not found, in the state-based literature, a defini-

tion that mirrors this abstract definition of delta-refinement,
though Event B has a definition of refinement permitting
new events to be introduced where “the only constraint on
these events is that they maintain the local invariant” [2].

Delta-refinement is a liberalisation of refinement in [2].
It should be noted that the refinement in [2] can be applied
to none of our examples. This is so for three reasons: one,
the operations can be undefined on some of the domain and
hence have a different semantics to Event B; two, in none
of our examples is the local invariant preserved by the new
events; and three, the refinement in [2] excludes the intro-
duction of τ -loops.

6 Feature refinement in B

In this section we show how the syntax of B machines
can be extended to allow the liberalisation of refinement to
be incorporated into B-style development.

To distinguish tau-refinement from delta-refinement we
introduce two clauses to the B syntax: DELTAOPS D and
TAUOPS T , where D and T are sets of operations.

When DELTAOPS D appears in a MACHINE M the D
operations must not be defined in the OPERATIONS clause
(because they have to be blocked) and this clause alters
the semantics of the machine only by adding the D oper-
ations to the alphabet of the machine. Consequently we
define AlpM to be the union of the operations in the OP-
ERATIONS and DELTAOPS clauses.

In a REFINEMENT C let the operations in the OPERA-
TIONS clause be OC and New be the operations not in the
MACHINE A it refines, New = OC\AlpA.

When both DELTAOPS D and TAUOPS T clauses ap-
pear in a REFINEMENT C we require that T ∩ D = ∅,
because obviously an operation cannot be both blocked and
unblocked, and T = New since all the TAUOPS have to be
(newly) defined. These clauses indicate which type of ab-
stract operation has been refined by the introduction of the
new concrete operation. The TAUOPS clause is not strictly
needed but is added both for clarity and the above consis-
tency checking.

Whenever DELTAOPS D appears in a REFINEMENT
the refinement is taken to be vDFR and if no DELTAOPS
clause appears then D is taken to be empty, so the refine-
ment is v∅FR, i.e. vS or, equivalently,vB .

As C is guaranteed to behave like A only for programs
that do not call operations in D it is clear that the D oper-
ations require no proof obligation as no guarantee needs to
be satisfied (recall refinement in [2]). We illustrate this in
the next section.

377377385377

6.1 Example - Mobile Radio

For our second example we use the specification of a
Mobile Radio from [6] where the difficulties refining the
high-level mobile radio HLMR (Figure 7) are used to mo-
tivate the use of retrenchment.

MACHINE HLMR
SETS CALLS = {Idle, Busy}
VARIABLES callState, currChan
INVARIANT callState ∈ CALLS∧

currChan ∈ CHAN
INITIALISATION callState := Idle ‖

currChan :∈ CHAN
OPERATIONS

do , PRE callState = Busy THEN
callState := Idle END;

di , SELECT callState = Busy THEN
callState := Idle END;

co(x) , PRE callState = Idle ∧ x ∈ CHAN THEN
CHOICE callState := Busy ‖ currChan := x
OR skip END
END;

ci(x) , PRE x ∈ CHAN THEN
SELECT callState = Idle

THENcallState := Busy ‖ currChan:= x
ELSE skip END

END;
END

Figure 7. HLMR

The radio is either in an Idle or a Busy state and the
channel number is always set to an element ofCHAN . The
radio is initially in Idle. The call incoming action ci(x) has
a channel number as parameter . The set of values that this
parameter ranges over can be partitioned into two sets and
we will assume n ∈ CHAN and m /∈ CHAN in what
follows.

The LTS semantics for these machines can be messy
and dominated by the transitions used to represent the un-
defined parts of the operations. Purely as sugar we split
the LTS semantics into two LTS (see Figure 81). In the
bottom LTS of Figure 8 we have included only the active
and guarded parts of the events and have omitted the un-
defined parts. The undefined parts appear in the top LTS.
We can build a LTS for HLMR by adding the undefined

1It is well-known from the literature that total correctness semantics is
easier to model using total relations than using partial relations. Standard
ways to lift and totalise partial relations so as to give a guarded outside of
precondition interpretation can be found in the literature. Here, as is com-
monly done, we represent the semantics of operations using the underlying
partial relation, the only difference being that we transform the semantics
into LTS via our linking function lts.

parts to the bottom LTS. This can be achieved by adding
{n a−→x|x a state of HLMR} for each n a−→Undefined
in the top LTS.

Idle Busy

Undefined
do,ci(m),co(m) co(n),co(m),ci(m)

Guaranteed actions of HLMR

Idle Busydi,do

co(n),ci(n)

co(n)

Figure 8. High Level Mobile Radio

The specification makes no guarantee as to its behaviour
if one of the undefined operations is called.

The high-level Mobile Radio has been partially speci-
fied. How it behaves with operations ci(m) and co(m) is
completely undefined, as are operation do from state Idle
and operation co(n) from state Busy, and note that it is
blocked from the operation di in state Idle.

The error features we wish to add require the addition of
new operations fade, reset, sel. In HLMR we have not
considered the ability of the radio to fade. That is to say we
have made the simplifying assumption that radio will not
fade.

The less abstract, lower-level view of the mobile radio
LLMR takes into account new features, in particular three
new operations that do not appear anywhere in the high-
level specification HLMR: when the radio is Busy it may
fade and when a fade occurs the radio is Jammed; when
the radio is Jammed it must be reset to the Idle state. This
specification is very weak, it assumes that reset will only
be called when callState = Jam; before the radio will
work the user must select a suitable wave band.

Let us assume that the LLMR description is a more
accurate depiction of the actual radio. We can view the
refinement from HLMR to LLMR as adding these new
features, while still providing the service guaranteed in
HLMR.

This difference in the interpretation of the new opera-
tions is reflected in how their non-appearance in the high-
level view HLMR is “explained” within LLMR, i.e. that
they are either TAUOPS or DELTAOPS.

The LLMR machine (Figure 9) is taken from [6] but
with some small amendments. Firstly the TAUOPS and
DELTAOPS clauses state how to abstract the new opera-
tions and hence which proof obligations should be applied.
The TAUOPS clause means that the usual B proof obliga-
tions for such operations are used for the new operations,
and the DELTAOPS clause needs no proof obligations be-
cause no guarantee needs to be made since the operations

378378386378

REFINEMENT LLMR
REFINES HLMR
TAUOPS sel,reset
DELTAOPS fade
SETS JCALLS = CALLS ∪ {Jam}
VARIABLES jcallState, jcurrChan, bandSelected
INVARIANT jcallState ∈ JCALLS∧
bandSelected ∈ Bool ∧ jcurrChan ∈ CHAN∧
(callState, jcallState) ∈
{(Idle, Idle), (Idle, Jam), (Busy,Busy)}∧

currChan = jcurrChan∧
(bandSelected = FALSE ⇒ jcallState = Idle)
INITIALISATIONjcallState= Idle ‖
bandSelected = FALSE ‖ jcurrChan :∈ CHAN
OPERATIONS

sel , SELECT band selected = FALSE
THEN band selected := TRUE END;

reset , SELECT callState = Jam
THEN callState := Idle END;

fade , SELECT callState = Busy∧
band selected = TRUE THEN

callState := Jam END;
do , PRE jcallState = Busy∧

bandSelected = TRUE
THEN jcallState := Idle END;

di , SELECT jcallState = Busy∧
bandSelected = TRUE

THEN jcallState := Idle END;
co(x) , PRE jcallState = Idle ∧ x ∈ CHAN∧

bandSelected = TRUE
THEN
CHOICE jcallState := Jam OR skip OR

jcallState := Busy ‖ jcurrChan := x END
END;

ci(x) , PRE x ∈ CHAN THEN
SELECT jcallState = Idle∧
bandSelected = TRUE

THEN
jcallState := Busy ‖ jcurrChan := x

ELSE skip END END;
END

Figure 9. LLMR

are blocked. Secondly the INVARIANT is changed to de-
fine the reachable set of nodes. Without this the proof obli-
gations for the refinement of operation co(x) from HLMR
to LLMR could not be satisfied.

In the LTS for LLMR (Figure 10) states where
band selected = FALSE are, to save space in the
diagram, represented with (bsf,), while those where
band selected = TRUE are left unamended. (Note that

Idle

Jam

Busy

(bsf,Idle)

Undefined

do,co(m),ci(m)

co(n),co(m),ci(m)

do

co(n),co(m),ci(m)

co(n),co(m),ci(m)

do

LLMR

Idle

Jam

Busy

(bsf,Idle)

(bsf,Jam)

(bsf,Busy)

sel

sel

sel

di,do

fade

reset

reset

co(n)

co(n),ci(n)
co(n)

Figure 10. Low Level Mobile Radio

the unreachable states (bsf, Jam) and (bsf,Busy) may be
“deleted” by subsequent refinement).

Note the difference between the TAUOPS operations re-
set and sel and the DELTAOPS operation fade: while
fade can be simply deleted from LLMR without break-
ing the specification given by HLMR, reset cannot be
simply deleted but has to become a skip in order that in
HLMR co(n) loops back to Idle; also sel cannot simply
be deleted either since otherwise the initial state (bsf, Idle)
would have no transitions leading from it!

The “DELTAOPS {fade}” clause in the REFINEMENT
(Figure 9) is not giving a meaning to the fade operation in
the concrete machine LLMR. It is defining what type of re-
finement is being performed and hence can be viewed as
giving meaning to the relation between HLMR and LLMR.
More specifically it tells us that in the HLMR fade opera-
tions were considered to not occur (they were blocked).

If we were to add “DELTAOPS {fade}” to HLMR then
because the fade operation would now be in the alphabet
we know that it has been considered but because it is new,
i.e. always blocked, the specification is saying that it can-
not be performed from any state. Consequently we would
no longer be able to use feature refinement to build LLMR.
Recall the effect of adding of the DELTAOPS clause is sim-
ply to add the fade operation to AlpHLMR. Thus the set
of programs considered in definition of v∅FR is enlarged to
include fade operations.

379379387379

7 Conclusion

Refinement as usually understood in the state-based
world (e.g. Z, B and so on) is frequently found to be too
restrictive or conservative [6, 5] in that it does not recognise
as a refinement some useful and uncontroversial develop-
ment steps.

By using an obvious and well known relation between
state- and event-based operational semantics we have been
able to combine known results from state- and event-based
models to create feature refinement, vDFR, a new (to the
state-based world) and flexible definition of refinement. In-
terestingly we are able to see in what contexts C behaves
like A when A vDFR C: they turn out to be simply the pro-
grams over AlpC \D.

The usefulness of this new refinement has been shown
by applying it to an example (Section 6.1) taken from the
literature.

The closest state-based definition of refinement to fea-
ture refinement that we can find in the literature is Event
B refinement. But feature refinement and Event B refine-
ment differ in the following three ways: one, feature re-
finement makes no restriction on the machine INVARIANT;
two, τ -loops are treated fairly; and three, feature refinement
is equally applicable whatever (different) interpretations are
given to the operational semantics.

Acknowledgements

We thank various referees for their comments, and the
Foundation for Science, Research and Technology (FRST)
of New Zealand for funding this research.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] J.-R. Abrial, D. Cansell, and D. Méry. Refinement and
reachability in Event B. In H. Treharne, S. King, M. C.
Henson, and S. Schneider, editors, ZB05: Formal Specifica-
tion and Development in Z and B, volume 3455 of Lecture
Notes in Computer Science, pages 222–241. Springer, 2005.

[3] R.-J. Back and K. Sere. Superposition refinement of reac-
tive systems. Formal Aspects of Computing, 8(3):324–346,
1996.

[4] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science 18, 1990.

[5] R. Banach and J. Derrick. Filtering retrenchments into re-
finements. In SEFM, pages 60–69. IEEE, 2006.

[6] R. Banach and M. Poppleton. Retrenchment, refinement and
simulation. In Proc. ZB-00, volume 1878 of LNCS, pages
304–323, 2000.

[7] C. Bolton and J. Davies. A singleton failures semantics for
Communicating Sequential Processes. Formal Aspects of
Computing, 18:181–210, 2006.

[8] E. Brinksma, A. Rensink, and W. Vogler. Fair testing. LNCS
962, pages 313–327, 1995. Springer-Verlag.

[9] W.-P. de Roever and K. Engelhardt. Data Refinement:
Model oriented proof methods and their comparison. Cam-
bridge Tracts in theoretical computer science 47, 1998.

[10] J. Derrick and E. Boiten. Relational concurrent refinement.
Formal Aspects of Computing, 15(2):182–214, November
2003.

[11] C. Fischer and H. Wehrheim. Behavioural subtyping rela-
tions for object-oriented formalisms. LNCS, 1816:469–483,
2000.

[12] J. He, C. Hoare, and J. Sanders. Data refinement refined.
ESOP 86 LNCS, 213:187–196, 1986.

[13] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International Series in Computer Science, 1985.

[14] C. Metayer, J.-R. Abrial, and L. Voisin. Event-B language.
RODIN Project Deliverable D7, May 2005.

[15] R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

[16] V. Natarajan and R. Cleaveland. Divergence and fair testing.
In Z. Fülöp and F. Gécseg, editors, ICALP, volume 944 of
LNCS, pages 648–659. Springer, 1995.

[17] K. V. S. Prasad. A calculus of broadcasting systems. Science
of Computer Programing, 25((2-3)):285–327, 1995.

[18] S. Reeves and D. Streader. Comparison of Data and Process
Refinement. In J. S. Dong and J. C. P. Woodcock, editors,
ICFEM 2003, LNCS 2885, pages 266–285. Springer-Verlag,
2003.

[19] S. Reeves and D. Streader. Atomic Components. In ICTAC
2004, LNCS 3407, pages 128–139. Springer-Verlag, 2004.

[20] A. Roscoe. The Theory and Practice of Concurrency. Pren-
tice Hall International Series in Computer Science, 1997.

[21] J. M. Spivey. The Z notation: A reference manual. Prentice
Hall, 1989.

[22] A. Valmari and M. Tienari. Compositional Failure-based Se-
mantics Models for Basic LOTOS. Formal Aspects of Com-
puting, 7(4):440–468, 1995.

[23] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment and Proof. Prentice Hall, 1996.

380380388380

