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Abstract

This paper investigates some algebraic properties of the chromatic poly-
nomials of theta graphs, i.e. graphs which have three internally disjoint
paths sharing the same two distinct end vertices. We give a complete
description of the Galois group, discriminant and ramification indices for
the chromatic polynomials of theta graphs with three consecutive path
lengths. We then do the same for theta graphs with three paths of the
same length, by comparing them algebraically to the first family. This
algebraic link extends naturally to generalised theta graphs with k + 1
branches.

1 Introduction

The chromatic polynomial of an undirected graph G = (V, E) interpolates the num-
ber of λ-colourings of its vertices V , under the usual restriction that adjacent vertices
are assigned different colours. This polynomial has been extensively studied in graph
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theory and in statistical mechanics, where the chromatic polynomial is viewed as a
specialisation of the Potts model partition function. An excellent overview of the
relationship between the partition function and the chromatic polynomial is given
in [1].

A chromatic root is a root of a chromatic polynomial. The study of chromatic roots
is of particular interest to physicists, as the limit points of these roots give possible
locations for physical phase transitions [25, 19, 26, 27]. This has motivated a large
amount of research on identifying regions that are either root-free or root-dense for
families of graphs [3, 2, 17, 9, 22, 21, 28, 19]. However, until recently there has
been surprisingly little research on the algebraic nature of these roots; indeed as late
as 2004, Sokal [27, Footnote 13] commented that the algebraic theory of chromatic
roots remained “as yet rather undeveloped”.

The factorisation of a polynomial into irreducibles is perhaps its most basic algebraic
property. A graph G is said to have a chromatic factorisation if the chromatic
polynomial of G can be expressed as the product of chromatic polynomials of lower
degree (ignoring some linear factors). Any clique-separable graph, that is, a graph
that can be obtained by identifying an r-clique in some graph H1 with an r-clique
in another graph H2, has a chromatic factorisation. A graph G is strongly non-
clique-separable if P (G; λ) is not the chromatic polynomial of any clique-separable
graph. In [15, 14] it was shown that there exist strongly non-clique-separable graphs
exhibiting chromatic factorisations.

Another important invariant associated to a rational polynomial is its Galois group.
Research into these objects was initiated by [8, 12, 13], and the Galois groups of
all chromatic polynomials of degree ≤ 10 were calculated in [12, 13]. Although
most small degree chromatic polynomials have irreducible factors with symmetric
Galois group, there are also nice examples of infinite families of graphs with cyclic
and dihedral Galois groups [13]. As a counterpoint, it was shown in [5] that the
Galois group of the multivariate Tutte polynomial is always a direct product of
symmetric groups, and it was conjectured that this result holds for the standard
Tutte polynomial. Since the chromatic polynomial is a specialisation of the Tutte
polynomial, and as most chromatic polynomials of degree ≤ 10 have Galois groups
that are a direct product of symmetric groups, it is therefore worthwhile to discover
families of graphs where this is not the case.

One family of graphs that have chromatic polynomials with non-symmetric Galois
groups is the cycle graphs. It is easy to see the chromatic polynomial of the cycle of
order n+1 has Galois group isomorphic to

(
Z/nZ

)×
, that is, the multiplicative group

of units in the ring Z/nZ. The theta graph θa1,a2,a3 is the graph obtained from three
disjoint paths {u0, u1, . . . , ua1}, {v0, v1, . . . , va2} and {w0, w1, . . . , wa3}, by identifying
the start vertices u0, v0 and w0, and also identifying the end vertices ua1, va2 and wa3

(see Figure 1 below).
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Figure 1: The theta graph θ5,5,7

Similarly, the generalised theta graph θa1,a2,...,at is the graph obtained by identifying
t internally disjoint paths of length a1, a2, . . . , at ≥ 1 respectively. Theta graphs can
be regarded as being closely related to cycle graphs, since the graph θa1,a2,a3 is just
the graph consisting of a cycle of length a1 + a2 together with an additional path
of length a3. Given that the Galois groups of chromatic polynomials of all cycle
graphs are so easily determined, the next natural step is to look at the chromatic
roots of theta graphs. Moreover generalised theta graphs are indispensable tools in
proving quite general results on chromatic roots [23, 24, 7, 27, 4]. A notable example
is Sokal’s argument [27] that chromatic roots are dense in the complex plane. His
proof shows that the family of generalised theta graphs with all paths of equal length
have chromatic roots that are dense everywhere, with the possible exception of the
disc |λ − 1| < 1.

In [13] the Galois groups of chromatic polynomials for theta graphs of order at most
19 with path lengths greater than 1 were calculated. It was found that with two ex-
ceptions (namely θ2,3,3 and θ2,3,5) all of these polynomials factorised into irreducibles
that were chromatic factors of cycle graphs, and a single irreducible factor with sym-
metric Galois group. In this article we formulate a precise prediction (Conjecture
4.1) on the shape of the Galois group for all theta graphs, and demonstrate that this
conjecture holds for two infinite families of theta graph.

1.1 Some algebraic questions

Recently, Cameron [8] made two conjectures on chromatic roots. The “nα-conjec-
ture” states that if α is a chromatic root, then so is nα for all n ∈ N. The nα-
conjecture was shown to be true for clique-theta graphs [4]. A clique-theta graph is
a generalised theta graph where the vertices are replaced by cliques and edges are
replaced by all possible edges between adjacent cliques.

The “α + n-conjecture” predicts that for every algebraic integer α ∈ Z there exists
a constant N(α), such that α + n is a chromatic root for all integers n ≥ N(α). If
this conjecture is true, then every algebraic integer α should belong to the splitting
field KP (G,λ) of a chromatic polynomial P (G, λ), for some finite graph G depending
on α. Furthermore, if one recalls that

Gal
(KP (G,λ)/Q

)
:=

{
τ : KP (G,λ)

∼−→ KP (G,λ) such that aτ = a for all a ∈ Q
}
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one would expect the Galois group for (the normal closure of) each Q(α) over Q
to be realisable as the quotient of some Gal

(KP (G,λ)/Q
)
, again for an appropriate

choice of undirected graph G.

Question 1. Is there an efficient method to determine the Galois group of the chro-
matic polynomial for G, bypassing the #P-hard problem of computing P (G, λ)?

In other words, we are asking if the composition

{
finite graphs

} P (−,λ)−→ {
elements of Z[λ]

} Gal(K−/Q)−→ {
finite groups

}
is less algorithmically complex to represent than the functors P (−, λ) and Gal(K−/Q).

Of course the Galois group is just one important invariant of a polynomial. Instead
if one considers discriminants for these splitting field extensions, one is naturally led
to study the ramification behaviour occurring inside KP (G,λ)

/
Q.

Question 2. What is the relationship between the path lengths in a graph G, and
the prime numbers which ramify in the splitting field extension KP (G,λ)?

We answer the second of these questions for two distinct infinite classes of theta graph
which are chromatically inequivalent, but whose splitting fields are algebraically
linked. It should be pointed out that just knowing the Galois group and ramifi-
cation indices is not of itself enough to determine KP (G,λ), up to isomorphism. (As a
nice illustration, the two polynomials λ3−21λ+28 and λ3−21λ−35 share the same
Galois group and both have discriminant 3969, yet they generate non-isomorphic
cubic splitting fields.)

The relationship between polynomials that not only have the same Galois group and
discriminant, but in fact have an identical splitting field structure (up to isomor-
phism) is very much stronger, which leads us to pose the following

Question 3. Can we find two disjoint families of graphs such that each individual
pair of graphs is splitting field, but not chromatically, equivalent?

1.2 Galois groups of theta graphs

Henceforth we shall exclusively consider the generalised θ-graphs θa1,a2,...,at with
aj ≥ 2. The chromatic polynomial of a θ-graph is easy to work out via addition-
identification. For instance, it is calculated in [7, Eqn(2.6a)] (and for the three path
case in [18]) that P

(
θa1,a2,...,at , λ

)
equals

λ − 1

λt−1

(
t∏

j=1

(
(λ − 1)aj − (−1)aj

)
+ (λ − 1)t−1

t∏
j=1

(
(λ − 1)aj−1 + (−1)aj

))
(1)
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which is a monic polynomial of degree a1+a2+· · ·+at−t+2, with integer coefficients.

Remark: In general, one can easily extract the cyclotomic factors from this polyno-
mial. However determining the factorisation into irreducibles of the quotient poly-
nomial is highly non-trivial; we have therefore restricted our study to three-branch
θ-graphs whose path lengths a1, a2, a3 are either equal, or else yield consecutive in-
tegers.

Even from these basic graphs many intriguing patterns emerge, intertwining the
splitting fields of chromatic polynomials which should (at first glance) have no ob-
vious connection. We will address Questions (2) and (3) for the families of graphs
G = θa,a+1,a+2 and G = θa,a,a, before making a conjecture on the general case in the
final section.

Theorem 1.1. For all integers a ≥ 2,

Gal
(KP (θa,a+1,a+2,λ)/Q

) ∼=
{

(Z/(a2 + a)Z)
× × Sa+1 if a �≡ 1 ( mod 3),

(Z/(a2 + a)Z)
× × C2 × Sa−1 if a ≡ 1 ( mod 3).

Prior to stating our second result, we remind the reader of some definitions from
algebraic number theory. If L/K denotes a normal, finite extension of number fields
and p is a prime ideal in the ring of integers OK , there is a decomposition

p · OL =

(
g∏

i=1

Pi

)ep(L/K)

where ep(L/K) > 0 is called the ramification index at p, and the Pi’s are distinct
prime ideals in OL (if K = Q and p = p · Z, we shall just abbreviate this index by
ep(L)).

Recall that φ : N −→ N denotes Euler’s totient function. For any given prime p, one
normalises the p-adic valuation

∣∣∣∣−∣∣∣∣
p

: Q −→ pZ ∪ {0} by the rule
∣∣∣∣p∣∣∣∣

p
= 1/p.

Theorem 1.2. (i) If a ≥ 2 satisfies a �≡ 1 ( mod 3), the ramification indices are

ep

(KP (θa,a+1,a+2,λ)

)
=

⎧⎪⎪⎨
⎪⎪⎩

φ
(∣∣∣∣a2 + a

∣∣∣∣−1

p

)
if p

∣∣∣(a2 + a
)

2 if p
∣∣∣((a + 1)a+1 + (−a)a

)
1 otherwise;

(ii) If a ≥ 2 satisfies a ≡ 1 ( mod 3), the corresponding ramification indices are

ep

(KP (θa,a+1,a+2,λ)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ
(∣∣∣∣a2 + a

∣∣∣∣−1

p

)
if p

∣∣∣(a2 + a
)

2 if p

∣∣∣∣
(

(a+1)a+1+(−a)a

3×
“
a+

(a−1)2

3

”2

)

2 if p = 3

1 otherwise.
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Turning our attention to the case of equal path length, that is, for the θ-graphs
G = θa,a,a we have the following analogue of the two theorems above.

Theorem 1.3. (i) If the integer a ≥ 2, then Gal
(KP (θa,a,a,λ)/Q

) ∼= S3(a−1);

(ii) If the integer a ≥ 2, the ramification indices at each prime p are

ep

(KP (θa,a,a,λ)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if p

∣∣∣∣
(

(3a−1)3a−1+(2−3a)3a−2

3×
(
3a2−3a+1

)2

)

1 if p = 3

1 otherwise.

The proof of this result exploits an intriguing link between the chromatic polyno-
mials for the θa,a,a and the θ3a−2,3a−1,3a graphs, namely that there is a splitting field
isomorphism

KP (θ3a−2,3a−1,3a,λ)
∼= Q

(
e2πi/(9a2−9a+2),

√−3
)
∨ KP (θa,a,a,λ) .

In fact this phenomenon extends seamlessly to generalised theta graphs with k + 1
paths, and we shall devote Section 3 to a detailed investigation. It seems highly
unlikely that this relationship is the only such occurrence amongst theta-graphs,
and one future direction is to look for common structural properties which might
explain these dualities.

Based on further MAGMA [6] calculations, in Section 4 we shall make a general
conjecture concerning the form of Gal

(KP (θa1,a2,a3 ,λ)/Q
)

for any triple (a1, a2, a3) of
positive integers. This conjecture has been verified computationally by us at least
for the 171,000 examples with path lengths a1, a2, a3 ≤ 101 and whose ‘interesting
factor’ has degree < 80.

2 The argument for the polynomial P
(
θa,a+1,a+2, λ

)
In this section we prove Theorems 1.1 and 1.2. We start with two preliminary results.
Let G denote the graph θa,a+1,a+2, and one assumes throughout that the integer a ≥ 2.
Applying the formulae in (1) for path lengths a, a + 1, a + 2, we find P (G, λ) equals

λ − 1

λ2

(
2∏

j=0

(
(λ − 1)a+j − (−1)a+j

)
+ (λ − 1)2

2∏
j=0

(
(λ − 1)a+j−1 + (−1)a+j

))

= λ(λ − 1) ×
(

(λ − 1)a + (−1)a+1

λ

)
×
(

(λ − 1)a+1 + (−1)a

λ

)

×
(
(λ − 1)a+1 + (−1)a(λ − 1) + (−1)a+1

)
.
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The splitting field of (λ−1)a+(−1)a+1

λ
coincides with Q

(
e2πi/a

)
, whilst the splitting field

of (λ−1)a+1+(−1)a

λ
is given by Q

(
e2πi/(a+1)

)
. Moreover, the final term satisfies

(
(λ − 1)a+1 + (−1)a(λ − 1) + (−1)a+1

)
= (−1)a+1 × (Xa+1 + X + 1

)∣∣∣∣
X=1−λ

so one immediately obtains

Lemma 2.1. The total splitting field KP (G,λ) must be the field compositum of

Q
(
e2πi/(a2+a)

)
spliced with the splitting field Kfa(X), where fa(X) := Xa+1 + X + 1.

The discriminant of Q
(
e2πi/(a2+a)

)
is well known (e.g. see [29, Prop. 2.7]), namely

disc
(
Q
(
e2πi/(a2+a)

))
=

∏
primes p

(
a2 + a

)φ(a2+a)

pφ(a2+a)/(p−1)

while the polynomial discriminant for fa(X) is computed via the formula

disc
(
fa(X)

)
= (−1)

a2+a
2 × ((a + 1)a+1 + (−a)a

)
.

In particular, any prime dividing disc
(
Q(e2πi/(a2+a))

)
must then divide a or a + 1,

and thus cannot divide disc
(
fa(X)

)
. Consequently these discriminants are coprime,

in which case no primes can ramify in Q
(
e2πi/(a2+a)

)
and Kfa(X) simultaneously. A

famous result of Minkowski implies Q
(
e2πi/(a2+a)

) ∩ Kfa(X) = Q, as there exist no
everywhere unramified extensions of the rationals.

Corollary 2.2. Gal
(KP (G,λ)/Q

) ∼= Gal
(
Q(e2πi/(a2+a))/Q

)× Gal
(Kfa(X)/Q

)
.

It therefore remains to compute the right-most Galois group, and thereby complete
the proof of Theorem 1.1. The remainder of this section is devoted to the proof of

Proposition 2.3.

Gal
(Kfa(X)/Q

) ∼=
{

Sa+1 if a �≡ 1 ( mod 3)

C2 × Sa−1 if a ≡ 1 ( mod 3).

The problem naturally splits into two complementary situations.

Case (I) – The path length a �≡ 1 ( mod 3).

Exploiting an old result of Selmer [20, Thm 1], the trinomial fa(X) is irreducible
over Q whenever a + 1 �≡ 2 ( mod 3). Further, Osada [16, Thm 1] then establishes
that the Galois group of Kfa(X) over Q is the full symmetric group i.e. Sa+1, thus
Proposition 2.3 must hold true here.
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The only primes that will ramify in Kfa(X)/Q are those that divide the discriminant

(−1)
a2+a

2 × ((a + 1)a+1 + (−a)a
)
. However the extension Kfa(X)

/
Q
(√

disc(fa(X))
)

is unramified at all finite places by [16, Cor. 1], which implies that the ramification
index for each such prime is precisely 2.

The primes p ramifying in Q(e2πi/(a2+a)) have ramification index equal to the degree

of the totally ramified extension

[
Q
(
e2πi/pN

(a)
p
)

: Q

]
with N

(a)
p =

∣∣∣∣a2 + a
∣∣∣∣−1

p
; the

latter coincides with the quantity in Theorem 1.2(i), so we are done with the first
case.

Case (II) – The path length a ≡ 1 ( mod 3).

This situation is trickier. The polynomial fa(X) is no longer irreducible in Q[X],
rather it splits into fa(X) = (X2+X+1)×ga(X); again using [20, Thm 1] the second
factor is irreducible. We therefore need to extend techniques of Llorente, Nart and
Vila [11], which themselves only deal with irreducible trinomials, in order to work
out the Galois group for this irreducible component.

Lemma 2.4. (i) disc
(
X2 + X + 1

)
= −3;

(ii) disc
(
ga(X)

)
= (−1)

a2+a+2
2 × (a+1)a+1+(−a)a

3×
(

a+ (a−1)2

3

)2 ;

(iii) The prime 3 does not divide disc
(
ga(X)

)
.

Proof. Part (i) is elementary. To show part (ii), let us write α1, . . . , αa−1 for the
roots of ga(X); then

disc
(
fa(X)

)
= (ζ − ζ)2 ×

∏
1≤j<k≤a−1

(αk − αj)
2 ×

∏
1≤j≤a−1

(
(ζ − αj)

2 × (ζ − αj)
2
)

= −3 × disc
(
ga(X)

)× (ga(ζ) × ga(ζ)
)2

where ζ = e2πi/3.

Now expanding ga(X) as a geometric series,

ga(X) = 1 +
Xa+1 − X2

X2 + X + 1
= 1 + X2(X − 1) × Xa−1 − 1

X3 − 1

= 1 + (X3 − X2) ×
(a−4)/3∑

m=0

X3m

thence ga(ζ) = 1 + (ζ3 − ζ2) × a−1
3

= z + 1 − zζ where the natural number z = a−1
3

.

By an identical argument, ga(ζ) = z + 1 − zζ .

Taking the product of these two quantities, one calculates that

ga(ζ) × ga(ζ) = (z + 1)2 + z2ζζ − z(z + 1)(ζ + ζ)

= z2 + 2z + 1 + z2 − (z2 + z) × (−1) = a +
(a − 1)2

3
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in which case

disc
(
ga(X)

)
=

disc
(
fa(X)

)
−3
(
ga(ζ) × ga(ζ)

)2 =
(−1)

a2+a
2 × ((a + 1)a+1 + (−a)a

)
−3 × (a + (a−1)2

3

)2 .

Lastly to prove (iii), it is enough to show that 9 �
(
(a + 1)a+1 + (−a)a

)
if a ≡ 1 (

mod 3). First observe that a and a +1 are both coprime to 3, and by Fermat’s little

theorem x6 ≡ 1 ( mod 9) for all x ∈ (Z/9Z
)×

. Therefore it suffices to check that

(x + 1)x+1 + (−x)x ≡ 3 or 6 ( mod 9) at every such x ≤ lcm(6, 9) = 18.

This means we need to verify it for x ∈ {1, 4, 7, 10, 13, 16}, which is easily done.

Returning to the proof of Proposition 2.3 when a ≡ 1 ( mod 3), we see immediately by
Lemma 2.4(i),(iii) that X2 + X + 1 and ga(X) have relatively prime discriminants;
applying Minkowski’s result once more, we deduce that Q

(
e2πi/3

)
and Kga(X) are

linearly disjoint over Q. As a direct consequence,

Gal
(Kfa(X)/Q

) ∼= Gal
(
Q(e2πi/3)/Q

)× Gal
(Kga(X)/Q

) ∼= C2 × Gal
(Kga(X)/Q

)
.

Therefore to prove Proposition 2.3 in Case (II), it remains to establish the following

Lemma 2.5. Gal
(Kga(X)/Q

) ∼= Sa−1.

Proof. Recalling that ga(X) = Xa+1+X+1
X2+X+1

, high school calculus shows

g′
a(X) =

d
(

Xa+1+X+1
X2+X+1

)
dX

=
(a + 1)Xa + 1 − (2X + 1) × ga(X)

X2 + X + 1
.

Suppose we fix some prime p dividing disc
(
ga(X)

)
, so that p may ramify inside

Kga(X); in particular, the prime p
∣∣(a + 1)a+1 + (−a)a hence p can divide neither of

a nor a + 1. Let us further assume there exists β ∈ Fp satisfying

• g(β) = 0;

• g′
a(β) = 0.

Our strategy is to show that β is exactly a double root of ga(X) modulo p, and at
most one such β can occur.

Plugging β into our above expression for the derivative,

g′
a(β) ≡ (a + 1)βa + 1 − (2β + 1) × g(β)

β2 + β + 1
≡ 0 ( mod p)
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which implies (a + 1)βa + 1 ≡ 0 ( mod p), so that βa ≡ −(a + 1)−1 ( mod p).
Furthermore as ga(β) ≡ 0 ( mod p) one finds βa+1 + β + 1 ≡ 0 ( mod p), thus

β
(
βa +1

) ≡ β
(− (a + 1)−1 + 1

) ≡ −1, i.e. β
(− 1+ (a + 1)

) ≡ −(a + 1) ( mod p).

It follows that β ≡ − (a+1
a

) ∈ Fp can be the only double root for ga(X) modulo p.
As a corollary, ga(X) ≡ (X − β)2 × ha(X) ( mod p) where ha(X) ∈ Fp[X] has no
multiple roots, except possibly for X = β.

Remark: In fact, one can quickly see why X = β simply cannot be a root of ha(X).
If it were a root then (X − β)2 would have to divide g′

a(X), in which case

(X − β)2 would divide (a + 1)Xa + 1 − (2X + 1) × ga(X).

Now (X −β)2 divides ga(X), implying (X −β)2 divides ja(X) := (a+1)Xa +1; but
the only root of j′a(X) = a(a + 1)Xa−1 is X = 0, and 0 �≡ − (a+1

a

)
( mod p).

In summary, we have so far established that either ga(X) has no multiple roots mod
p, or at worst ga(X) ≡ (X−β)2×ha(X) ( mod p) where ha(X) has no multiple roots
and ha(β) �≡ 0, for every prime p

∣∣ disc
(
ga(X)

)
. Consequently the inertia subgroup

at any place p of Kga(X) above p is either trivial, or else is a group generated by a
transposition.

If we write Ip for each inertia group at p, then the set
{Ip

}
p

∣∣disc(ga)
generates a

subgroup J of G = Gal
(Kga(X)/Q

)
. The fixed field of J is an unramified extension

of H0
(G,Kga(X)

)
= Q, which must equal the ground field Q (via Minkowski again). It

follows that J = G, hence this whole group is generated by transpositions. However
the irreducibility of ga(X) implies G operates transitively on the roots α1, . . . αa−1;
indeed there is only one outcome, namely one deduces G ∼= Sa−1 as claimed.

The same arguments as in Case (I) then allow us to compute the ramification indices
ep listed in Theorem 1.2(ii). Note that e3

(Kfa(X)

)
= 2 because Q

(
e2πi/3

)
is always a

subfield of the splitting field of fa(X) = (X2 + X + 1)× ga(X), while the prime 3 is
unramified in Kga(X) courtesy of Lemma 2.4(iii).

The proof of Theorems 1.1 and 1.2 is complete.

3 The analysis for θ-graphs with equal path length

We now give the proof of Theorem 1.3, which exploits an algebraic connection be-
tween the chromatic polynomials of the θa,a,a and θ3a−2,3a−1,3a graphs (the number
theory of the latter object is covered by the previous section). Since this connection
generalises to theta-graphs with k +1-branches, we shall therefore work in this more
general setting.
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Expanding on our previous notation, we now write θ
(k+1)
a, ‖ for the theta-graph con-

taining k + 1 paths all of equal length a ≥ 2. Using the formula in (1), its chromatic
polynomial factorises into

P
(
θ

(k+1)
a, ‖ , λ

)
= (−1)k+1 × λ(λ − 1) ×Ha,‖(1 − λ)

where the last factor

Ha,‖(X) =
(Xa − 1)k+1 − Xk(Xa−1 − 1)k+1

(X − 1)k+1
.

The second family we consider are theta-graphs obtained by identifying the endpoints
for consecutive paths of length (k+1)a−k, (k+1)a−k+1, . . . , (k+1)a. If we denote

this new graph with the label θ
(k+1)
a, ↑ then using Equation (1) again, one calculates

P
(
θ

(k+1)
a, ↑ , λ

)
= (−1)(k+1)a(λ − 1) ×

∏k
j=0 P (C(k+1)a−j , λ)

λk(λ − 1)k
×Ha,↑(1 − λ)

where the quadrinomial term

Ha,↑(X) = X(k+1)a − X(k+1)a−1 + Xk − 1

and each Cr denotes a cycle graph of length r.

Lemma 3.1. The interesting factor Ga,↑ dividing Ha,↑ is given by the quotient

Ga,↑(X) :=

{
(X−1) Ha,↑(X)

(Xk+1−1)(Xd+1)
if k is odd and d = gcd(k − 1, 2a − 1) > 1

Ha,↑(X)

Xk+1−1
otherwise,

and is an irreducible polynomial over Q.

Proof. The roots of Ha,↑(X) = X(k+1)a −X(k+1)a−1 +Xk −1 are inverses of the roots
of P(X) = X(k+1)a − X(k+1)a−k + X − 1. From [10, Theorem 1] if P(X) does not
vanish at roots of unity then P(X) is irreducible; otherwise P(X) can be factored
into two rational factors, one of which is irreducible, and the other factor vanishes
only at roots of unity.

Applying [10, Theorem 2] the only possible zeros of Ha,↑(X) that are also roots of
unity must be simple, and are found amongst the zeros of:

• Xk+1 = ±1

• X = ±1

• Xd − 1 where d = gcd
(
(k + 1)a − k, (k + 1)a − 1

)
= gcd(k − 1, 2a − 1).
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(a) All roots of Xk+1 − 1 are roots of Ha,↑(X). If ω is a root of Xk+1 − 1, then
ω is a root of the factor X(k+1)a − X(k+1)a−1 + Xk − 1 because

ω(k+1)a − ω(k+1)a−1 + ωk − 1 = 1a − 1aω−1 + ω−1 − 1 = 0.

(b) No roots of Xk+1 + 1 are roots of Ha,↑(X). If ω is a root of Xk+1 + 1 then

Ha,↑(ω) = ω(k+1)a − ω(k+1)a−1 + ωk − 1 = (−1)a − (−1)aω−1 − ω−1 − 1

=

{
−2ω−1 if a is even

−2 if a is odd.

(c) The roots ±1. It is easy to see that X = 1 is a root of Ha,↑(X) for all k, and
that X = −1 is a root of Ha,↑(X) if and only if k is odd. These are also roots of
Xk+1 − 1, and as the roots of unity at which Ha,↑(X) vanishes are simple roots by
[10, Theorem 2], it suffices to consider this factor only.

(d) For d as above, the roots of Xd − 1 (excluding 1) are not roots of
Ha,↑(X). If ω �= 1 is a root of Xd − 1, then

Ha,↑(ω) = ω(k+1)a − ω(k+1)a−1 + ωk − 1

= ω(k+1)a−1ω − ω(k+1)a−1 + ωk−1ω − 1

= ω − 1 + ω − 1 = 2(ω − 1) �= 0.

(e) Non-integer roots of Xd + 1 will be roots of Ha,↑(X) if and only if k is
odd. We first compute the sign of (−1)d. If d = gcd(k − 1, 2a − 1) then 2a ≡ 1
(mod d); in particular, the divisor d must be odd and (−1)d = −1. If ω is a root of
Xd + 1 then

Ha,↑(ω) = ω(k+1)a − ω(k+1)a−1 + ωk − 1

= ω(k+1)a−1(ω − 1) + ωk−1ω − 1

= (−1)
(k+1)a−1

d (ω − 1) + (−1)
k−1

d ω − 1.

Using a parity argument together with the fact d is odd, one deduces that

Ha,↑(ω) =

⎧⎪⎨
⎪⎩
−ω + 1 + ω − 1 = 0 if k is odd

ω − 1 − ω − 1 = −2 if k is even and a is odd

−ω + 1 − ω − 1 = −2ω if k is even and a is even,

hence Xd + 1 divides Ha,↑(X) if and only if k is odd.

In summary the only factor of Ha,↑(X) arising from roots of unity is Xk+1−1, except
when k is odd and d > 1 in which case Xd + 1 also divides Ha,↑(X).
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Proposition 3.2. (i) We have an inclusion of splitting fields KHa,‖(X) ⊂ KGa,↑(X);

(ii) The group Gal
(KGa,↑(X)

/KHa,‖(X)

)
is always solvable;

(iii) If Gal
(KGa,↑(X)/Q

) ∼= Sn with n = deg(Ga,↑(X)) > 4, then KHa,‖(X) = KGa,↑(X).

Deferring its proof momentarily, let us first explain why Theorem 1.3 is a conse-
quence. If k = 2 the polynomial Ga,↑(X) = g3a−2(X) in the notation of §2, and so by
Lemma 2.5 one knows that Gal

(Kg3a−2(X)/Q
) ∼= S with n = 3a − 3.

Providing a > 2 we can apply the third part of the above result, and thereby deduce

Kg3a−2(X) = KGa,↑(X)
by 3.2(iii)

= KHa,‖(X) = K
P
(

θ
(3)
a,‖, λ

) = KP (θa,a,a,λ)

in which case Theorem 1.3(i) follows immediately. Likewise the ramification indices
for KP (θa,a,a,λ) are identical to those of Kg3a−2(X), and the latter indices were deter-
mined at the end of the previous section; hence 1.3(ii) follows too.

(Alternatively if a = k = 2, Theorem 1.3 can be verified computationally using
MAGMA [6].)

Proof of Proposition 3.2. Recall that the polynomial Ga,↑(X) is irreducible in Q[X],
thus we can write R = {α1, . . . , αn} to denote its set of distinct roots. If α ∈ R then

(α − 1)k+1 ×Ha,‖
(
αk+1

)
=
(
α(k+1)a − 1

)k+1 − (α(k+1)a−1 − αk
)k+1

.

However Ha,↑(α) = 0 whence α(k+1)a−1 − αk = α(k+1)a − 1, and so (α − 1)k+1 ×
Ha,‖

(
αk+1

)
must be zero. Since α �= 1 by the irreducibility of Ga,↑, it follows αk+1

is a root of Ha,‖(X). Conversely, by reversing the argument above, one sees that all
the roots of Ha,‖(X) arise as (k + 1)-st powers of elements in R.

As a corollary, KGa,↑(X) = Q(α1, . . . , αn) ⊃ Q(αk+1
1 , . . . , αk+1

n ) = KHa,‖(X) which

proves statement (i). Furthermore, by basic Kummer theory Gal
(KGa,↑(X)

/KHa,‖(X)

)
will be a subquotient of the semi-direct product(

Z
/
(k + 1)Z

)×
�
(
Ck+1 × · · · × Ck+1

)
with n-copies of Ck+1,

as the larger splitting field is obtained by adjoining (k+1)-st roots of elements in the
ground field. Since the latter group is solvable, its subquotient Gal

(KGa,↑(X)

/KHa,‖(X)

)
must also be solvable and part (ii) is established.

Finally to prove statement (iii), we will assume that Gal
(KGa,↑(X)/Q

) ∼= Sn with
n > 4. Since n is at least 5, the only normal subgroups of Sn are the alternating
group An, the trivial group {id}, and Sn of course. By the fundamental theorem of
Galois theory,

Gal
(KHa,‖(X)/Q

) ∼= Gal
(KGa,↑(X)/Q

)
H

where H = Gal
(KGa,↑(X)

/KHa,‖(X)

)
.
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If H ∼= Sn then KHa,‖(X) = Q, which is impossible since Ha,‖(X) has no rational
roots.

If H ∼= An then Gal
(KHa,‖(X)/Q

) ∼= C2 which is cyclic and therefore solvable; however

Gal
(KGa,↑(X)

/KHa,‖(X)

)
is also solvable by (ii), in which case Gal

(KGa,↑(X)/Q
)

must
be solvable as “G/H and H both solvable ⇐⇒ G is solvable”. This yields yet
another contradiction, as it is well known that Sn is a solvable group if and only if
n = 1, 2, 3, 4.

By a process of elimination, the only remaining possibility is that H = {id} in which
case Gal

(KHa,‖(X)/Q
) ∼= Gal

(KGa,↑(X)/Q
)
; in addition KHa,‖(X) ⊂ KGa,↑(X) by part

(i), and one concludes that KHa,‖(X) and KGa,↑(X) are identical splitting fields.

Remark: Each graph θ3a−2,3a−1,3a falls under Case (II) of Proposition 2.3, which
involves the additional factor X2 + X + 1 corresponding to the interesting factor
in the chromatic polynomial of the cycle C4. As KHa,‖(X) and KGa,↑(X) are identical
splitting fields, it is clear that the graph θa,a,a ∪C3a−1 ∪C3a ∪C4 (i.e. the graph with
components θa,a,a and the three cycles of order 3a − 1, 3a and 4) shares the same
splitting field as the graph θ3a−2,3a−1,3a. Thus we have found two disjoint families of
graphs such that each individual pair of graphs is splitting field equivalent, thereby
yielding a positive an answer to Question 3. However we note that Question 1
remains unresolved in general, although our results at least give us a way to obtain
the splitting field of one family of graphs from the other family.

4 The general case

In this conclusion, we present some speculations concerning the structure of the
Galois group of a general theta graph. Fix integers a1, a2, a3 ≥ 2, and consider the
finite set

Σa1,a2,a3 :=
{

d ∈ N such that d
∣∣ gcd(ai, aj − 1) for some i �= j

}
.

Using the formulae in (1), it is not too difficult to check that
∏

d∈Σa1,a2,a3
Φd(1 − λ)

always divides into P (θa1,a2,a3, λ), where Φd(X) denotes the d-th cyclotomic polyno-
mial.

Conjecture 4.1. Assume the theta graph θa1,a2,a3 is neither θ2,3,3 nor θ2,3,5. Then

(i) In the polynomial factorisation

P (θa1,a2,a3 , λ) = (−1)a1+a2+a3−1(λ − 1) ×
∏

d∈Σa1,a2,a3

Φd(1 − λ) ×Fa1,a2,a3(λ) say,

the right-most term Fa1,a2,a3(X) is a monic irreducible inside Z[X];
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(ii) The interesting factor Fa1,a2,a3(X) has symmetric Galois group, and its splitting
field is disjoint from the splitting field of

∏
d∈Σa1,a2,a3

Φd(X);

(iii) The Galois group of the general theta graph θa1,a2,a3 is a direct product

Gal
(KP (θa1,a2,a3 ,λ)/Q

) ∼=
(

Z
/
Na1,a2,a3Z

)×
× Sa1+a2+a3−2−P

d∈Σ φ(d)

where the integer Na1,a2,a3 = lcmd∈Σa1,a2,a3

{
d
}
.

For example, if a1 = a2 = a3 = a then the set Σa,a,a = {1} and we recover the
isomorphism G ∼= S3a−3 in Theorem 1.3(i). Likewise choosing (a1, a2, a3) = (a, a +
1, a + 2) instead, Theorem 1.1 is then an immediate consequence of 4.1(iii) above.

The reasoning behind this conjecture is as follows. Firstly, one predicts after factoris-
ing out the maximal cyclotomic piece

∏
d∈Σa1,a2,a3

Φd(1 − λ) from P (θa1,a2,a3 , λ), the

remaining polynomial Fa1,a2,a3(λ) forms part of an algebraically uniform family of
polynomials, and the family is generically irreducible with symmetric Galois group.
Moreover the discriminant of Fa1,a2,a3 should be coprime to φ(Na1,a2,a3); the latter
would imply that the field KFa1,a2,a3

intersects trivially with the splitting field of the
cyclotomic terms.

Certainly the first two assertions in the above conjecture imply the third, in which
case one would expect a direct product decomposition between the cyclotomic Galois
group and that of the interesting factor. One major obstruction to proving this con-
jecture is that we don’t yet have a general method which can establish irreducibility
over Q for polynomials of the form Fa1,a2,a3(λ) at every triple (a1, a2, a3). Another
impediment is the lack an explicit formula expressing disc(Fa1,a2,a3) as a function in
a1, a2 and a3.

Remarks: (a) We exclude the exceptional graphs θ2,3,3 and θ2,3,5 as the values of
(a1, a2, a3) are so small that the generic behaviour of Fa1,a2,a3 is not preserved at these
specialisations. The chromatic polynomial of θ2,3,3 is equal to λ(λ − 1)(λ − 2)(λ4 −
5λ3 +11λ2−13λ+7), and the Galois group of the quartic factor is isomorphic to the
dihedral group of order 8. Secondly P (θ2,3,5, λ) = λ(λ− 1)(λ− 2)(λ6 − 7λ5 + 22λ4 −
40λ3 + 45λ2 − 31λ + 11) where the sextic has Galois group isomorphic to S2 � S3

which is of order 48.

(b) There are 171,700 non-isomorphic theta graphs with path lengths in the range
[2, 101]; MAGMA [6] confirmed that P (θa1,a2,a3 ; λ) is always divisible by (λ − 1) ×∏

d∈Σa1,a2,a3
Φd(1 − λ), and the quotient polynomial Fa1,a2,a3(λ) is irreducible for all

such a1, a2, a3 ∈ [2, 101].

(c) We also computed numerically the Galois group of the interesting factor
Fa1,a2,a3(λ) where a1, a2, a3 ∈ [2, 101], under the restriction that its degree was < 80,
and found in all cases (except θ2,3,3 and θ2,3,5) that it was the full symmetric group
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as Conjecture 4.1 predicts. If the degree of Fa1,a2,a3 is more than about 80, then the
MAGMA [6] algorithm takes too long a time to run.

In general, it is not possible to peel cycle graphs off a given graph by simple ap-
plications of the addition/contraction relation, as we did for theta graphs. In fact
the data for graphs of small order n that have no separating clique [13] supports
a conjecture that the chromatic polynomial of such graphs has a single non-linear
irreducible factor which almost always has the Galois group Sn−κ, where κ is the
chromatic number of the graph.
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