
Preprints of WODES 2018
May 30 - June 1, 2018
Sorrento Coast, Italy

Optimal Task Scheduling

in a Flexible Manufacturing System

using Model Checking

Robi Malik* Patricia N. Pena**

* Department of Computer Science, University of Waikato, Hamilton,
New Zealand (e-mail: robi@waikato.ac.nz)

** Department of Electronics Engineering, Universidade Federal de
Minas Gerais, Belo Horizonte, MG, Brazil (e-mail: ppena@ufrng.br)

Abstract: This paper demonstrates the use of model checking to solve the problem of optimal
task scheduling in a flexible manufacturing system. The system is modelled as a discrete event
system, for which the least restrictive safe behaviour is synthesised according to supervisory
control theory. Then timing constraints are added to the model in the form of extended finite­
state machines, and time-optimal schedules are computed using the discrete event systems and
model checking tool Supremica. In the case study considered in this paper, which previously was
only solved heuristically, the method successfully produces optimal schedules to manufacture
up to 30 products of two different types. The method is furthermore used to find an optimal
cycle, solving the scheduling problem of the case study for an arbitrary number of products in
optimal or asymptotically close to optimal time.

Keywords: Applications; Performance evaluation, optimization; Supervisory control theory.

1. INTRODUCTION

The task scheduling problem in manufacturing systems is
of great importance in industry (Saygin and Kilic, 1999).
The aim of task scheduling is to organise a set of tasks
over a set of resources in order to optimise some criterion
ltll'rn;me. A suitable solution provides fault-free operation
whil<' ntilising the available resources with high efficiency.
\Vi t !tout the use of systematic techniques to create the
prod1u-tion programs it is not possible to guarantee such
f<,atm<·s. Therefore, there has been a significant research
Pffort in the past decades to develop systematic tools
to <l<·al with the task scheduling problem (Niebert and
Yovi11<', 2000; Ware and Su, 2017).

In t lw majority of works, there is an implicit assumption
that a schedule can be executed directly as developed,
aud there is no support for possible disruptions. Aytug
et. al. (2005) state that the inability of much scheduling
Ws<',m-h to address the general issue of uncertainty may
he C"owiidered as a major reason for the lack of influence of
sdl<'dnling research on industrial practice. They consider
thn•p key dimensions of uncertainty---cause, context, and
iinpal't-that can help to categorise problem formulations.
Cau8c may be tooling not available, context may be a
hottb1eck on Monday morning, and the impact may
lw a delay in setup-the machine cannot start when
PXJH'c·ted. This paper is concerned with uncertainty caused
hy possible delays that cause loss of synchrony between the
sc:lwdnle and the actual system (Wu and Zhou, 2012).
:nl<' 811,pervisory control theory of discrete event systems
18 a framework that aims to develop controllers, which
auto1uatically apply commands in a least restrictive way

241

(Ramadge and Wonham, 1989). By explicitly considering
uncontrollable events, the framework captures the uncer­
tainty caused by variations in operation durations. Least
restrictiveness ensures that only events leading the system
to unsafe or undesirable states arc disabled, while all other
options remain available to optimisation.

Several authors have used supervisory control to ad­
dress task scheduling problems. Huang and Kumar (2008),
Pinha et al. (2011), and Ware and Su (2017) translate
optimisation problems into discrete event systems and pro­
pose theoretical solutions and algorithms for the problem.
Implementations of these algorithms are not yet widely
available, and it is not clear whether they can solve large
instances of scheduling problems.

The problem solved in this paper is to find a schedule that
minimises the makespan for the production of a batch of
products for a flexible manufacturing system introduced
by de Quciroz et al. (2005). This case study previously
was only solved heuristically, most recently by Pena et al.
(2016). Attempts to solve the case study with the timed
model checker Uppaal have only produced schedules for
small instances of the problem (Gontijo, 2015).

This paper uses the discrete event systems tool Supremica
(Akesson et al., 2006; Malik et al., 2017) to develop a full
model of the timed behaviour of the case study, making
it possible to compute optimal schedules to produce a
fixed number of up to 16 products, and to compute
optimal cycles to solve the task scheduling problem for an
arbitrary number of products. In the following, Section 2
presents the case study and describes the modelling of the
task scheduling problem. Afterwards, Section 3 shows the
computed solutions for fixed-size production batches with

Fig. 1. Flexible manufacturing system layout.

up to 30 products, and Section 4 shows the computation
of an optimal cycle and the resulting generalisation for
an arbitrary number of products. Finally, Section 5 adds
concluding remarks.

2. MODELLING

This section describes the model developed for the case
study of this paper, the flexible manufacturing system.
First, subsection 2.1 describes the open-loop behaviour of
the plant, and subsection 2.2 shows how this behaviour is
restricted to be safe by synthesis. Afterwards, subsections
2.3 and 2.4 explain how the operation times are modelled
to specify the optimisation problem.

2.1 The Flexible Manufacturing System

Fig. 1 shows the layout of the flexible manufacturing
system (de Queiroz et al., 2005). It consists of eight de­
vices: the Lathe, Mill, painting device (PD), and assembly
machine (AM) perform production tasks, while the Robot
and three conveyors (Ci, C2, C3) move workpieces between
machines and buffers. There are eight buffers (Bi , ... , Bs)
that act as intermediate deposits, each with capacity for
one workpiece. The arrows in Fig. 1 indicate the events
that represent the flow of workpieces.
This system produces two types of products from raw
blocks and pegs: blocks with a conical pin on top (Prod­
uct A) and blocks with a painted cylindrical pin (Prod­
uct B). Blocks eriter the system through conveyor Ci and
are delivered by the Robot to the Mill; after milling the
Robot puts the completed block into buffer B5 waiting
for assembly. Pegs enter the system through conveyor C2
and are delivered by the Robot to the Lathe, which cuts
them to become a cone (event c51) or cylinder (event c53).
Cones are placed by the Robot into buffer B6; cylinders are
placed into buffer B7 , where conveyor C3 takes them to the
painting device PD and back. The assembly machine AM
first takes a block from B5 and then either a cone from B6

242

Mill c41

�
u42

Ci c11

�
u12

C2 c21

�
u22

Robot

PD cs1

�
u82

Fig. 2. Flexible manufacturing system plants.

or a painted cylinder from B7 to manufacture product of
a type A or B.
The open-loop behaviour of this plant is modelled by the
discrete event system in Fig. 2. As usual in supervisory
control (Ramadge and Wonham, 1989), the set of events
is partitioned into the controllable events, which can be
disabled by a controlling agent, and the uncontrollable
events, which occur spontaneously and cannot be disabled.
In this paper, the controllability status is distinguished by
the event names starting with "c" or "u".
In the case study, the plant model is structured into
operations that start with a controllable event and finish
with an uncontrollable event. For example the operation
of conveyor Ci is started with the controllable event ell
and finishes with the uncontrollable event ul2. The only
exception is the assembly machine AM, which takes two
controllable events before finishing. The underlying as­
sumption is that a control strategy should be implemented
that decides when and in what order operations should
start, but there is no control over their completion times.

2.2 Using Supervisory Control to Impose Constraints

The open-loop plant as modelled in Fig. 2 permits un­
safe behaviour, because buffer overflow cannot always be
avoided due to the presence of uncontrollable events, and
it also permits deadlocks. Therefore, control specifications
are introduced to rule out the possibility of buffer overflow
or underflow, and synthesis (Ramadge and Wonham, 1989)
is used to obtain supervisors that restrict the plant to the
largest possible safe and nonblocking behaviour.
Small modular supervisors, both controllable and non­
blocking, can be computed automatically by compositional
synthesis (Mohajerani et al., 2014) followed by supervisor
reduction (Su and Wonham, 2004). Alternatively, this pa­
per uses the supervisors proposed by Pena et al. (2016),
which are synthesised for controllability using local mod­
ular control (de Queiroz and Cury, 2000), reduced, and
afterwards verified to be nonblocking. The resulting finite­
state machines are shown in Fig. 3. These supervisors
interact with the plant in strict lock-step synchronisation

81, 82, 85, 85,
c11 c21 c35 c37

c31 u12 c33 u22 c61 u36 c63 u38

Fig. 3. Supervisors for the flexible manufacturing system.

Device

C1

Robot

Lathe

Table 1. Operation times.

Event

ell

c31

c33

c35

c37

c39

c51

c53

u52

15X==0

u54

15X==0

Time Device Event Time

25

21

19

16

24

20

38

32

C2 c21

Mill c41

C3
c71

c73

c61

AM c63

c65

PD c81

Tick tick

111 =max(l11-1,0)

121 = max(l21-1,0)
13x = max(l3x-1,0)

141 = max(l41-1,0)

15x = max(l5x-1,0)
16x = max(l6x-1,0)

t7x = max(t7x-1,0)

181 = max(l81-1,0)

25

30

25

25

15

25

25

24

Fig. 4. EFSMs plants to capture timing constraints.

by handshaking on common events (Hoare, 1985). The
state machines in Figs. 2 and 3 combined give the complete
model of the closed-loop system.

The schedule optimisation discussed in the following uses
this controlled system a.c; the starting point. As the su­
pervisors are synthesised based on an untimed model,
they will ensure safe control and prevent buffer overflow
no matter what the delay is between the start and end
of operations. Also, least restrictiveness ensures that the
optimisation has the maximum freedom of choice possible.

2.8 Modelling Time with Extended Finite-State Machines

For optimisation, the durations of the operations must be
included in the model. Therefore, each operation (identi­
fied by the controllable event to start it) is assigned a fixed
duration as per Table 1.
The timed behaviour is modelled using Extended Finite­
State Machines (EFSM) (Chen and Lin, 2000; Skoldstam
et al., 2007), which allow for the addition of guards and
actions to the transitions. Each device of the flexible man-

243

ufacturing system is associated with a bounded-range inte­
ger variable that records thc1 time still needed to complete
its current operation. For example, the Lathe is modelled
using the EFSM in Fig. 4, with the variable t5x. On oc­
currence of the controllable event c51, the ·update t5x = 38
means that the variable assumes the value 38 after the
transition. Thus, the timer is initialised to the duration
of operation c51 when it starts. For the uncontrollable
event u52, the guard t5x == 0 means that the transition
is only possible when the variable value is zero. Thus,
the lathe's operation can only finish when the timer ha.c;
counted back down to zero.
Similarly, the duration of operation c53 is modelled a.c; 32
according to Table 1. The variable t5x is constrained to the
finite range {O, . . . , 38}, because 38 is the duration of the
longest operation performed by the Lathe. Similar timers
are added to all plant components in Fig. 2.
The timers are counted down with the passing of time,
which is modelled by an uncontrollable event and associ­
ated plant EFSM called Tick, also shown in Fig. 4. The
updates on the transition are executed simultaneously on
each tick of the clock. For exan1ple, the update t5x =

max(t5x-1, 0) means that the variable t5x is decremented
by one unless it has already reached zero.
The timing model only imposes constraints on event oc­
currences of the untimed model. Therefore, it is clear that
a supervisor synthesised for the untimed model continues
to be controllable (but not· necessarily nonblocking) for
the timed model. The use of uncontrollable events in con­
nection with the buffers in this model ensures that, after
synthesis of a supervisor that prevents buffer overflow, the
occurrence of an uncontrollable event never disables any
controllable events that have been enabled before. Then
a production schedule given by a sequence of controllable
events can always be executed independently of the precise
timing of uncontrollable events.
Also, the timing model only restricts the operations "to
take at least the number of ticks indicated in Table 1
to complete; they may take longer. This is enough for
optimisation, because if an optimal path is found, it will
use the smallest number of ticks possible.

2.4 The Optimisation Problem

The goal of optimisation is to find the fastest way to
produce a given number of products of type A and B.
If NA and NB are the required numbers of products, then
this amounts to finding a sequence of events through the
model, with the smallest number of ticks possible, that
includes NA occurrences of event u64 and NB occurrences
of event u66.

This objective is modelled by adding two further variables
countA and countB, with initial value 0, that count the
occurrences of events u64 and u66, using the EFSMs
Product A and Product8 in Fig. 5: the update countA += 1
is a shorthand for countA = countA + 1, and means that
the counter is incremented by 1 on occurrence of event u64,
i.e., on production of a type A product. The uncontrollable
event done is only possible when both counters have
reached their target values, because the guards in the two
EFSMs are combined by conjunction.

Product A
u64 � done

countA+= 1 �countA==NA

ProductB
u66� done

countB+=1�countB==NB

Goal
BLOCKED:

done

Fig. 5. EFSMs to capture the optimisation goal.

Finally, the EFSM Goal stipulatr1s that done can never
happen. This is achieved by declaring the event done as
blocked (Malik et al. , 2011), which means that it is included
in the alphabet hut not on any transition. When a model
checker is asked to verify or refute this assertion, it will
produce a counterexample, which is a sequence of events
that includes done, thus showing how the flexible manu­
facturing system can produce the requested products.
In a flexible mmmfacturing system, the devices can work
at the same time and faster completion can be achieved
by performing operations concurrently. The best possible
runtime under concurrency associated with a sequence of
events is called the makespan, and the goal of optimisation
is to find a schedule, i.e., sequence of events, with the
minimum makespan.
An important observation in this example is that the non­
tick events for given numbers NA and N B of products
are always the same; only their order can be changed.
Therefore, miy shortest path that ends with the done event
must be a schedule with the smallest number of ticks and
thus minimum makespan.

3. OPTIMAL SOLUTIONS FOR FIXED-SIZE
BATCHES

The model of the flexible manufacturing system has been
entered in the discrete event systems tool Supremica
(Akesson et al., 2006 ; Malik et al. , 2017) , which supports
EFSMs in the form described in the previous section
(Malik et al. , 2011). All the plants and supervisors in Figs.
2 and 3 have been entered, with timing information for the
plants as per Fig. 4, and the additional plants ProductA
and ProductB as per Fig. 5.
Finally, the Goal in Fig. 5 has been added as a property,
which was checked for language inclusion. Supremica 's lan­
guage inclusion check determines whether the behaviour of
the system is contained in the behaviour of the property. In
this case, the property Goal allows all behaviour that does
not include the event done, so that, if done is ever possible
in the system, it will be flagged as a violation of language
inclusion. If Supremica determines that language inclusion
is violated, it produces a counterexample that shows how
the property is violated. In this case, the counterexam­
ple is a sequence of events including done, which can be
interpreted as a schedule for production of the requested
products.
There are various model checking algorithms to check
language inclusion . Two of Supremica 's algorithms use
breadth-first search and guarantee that the computed
counterexamples are of minimum length. Given the ob­
servation in section 2.4 that a shortest counterexample

244

Table 2. Optimisation results

NA NB State space Runtime Makespan

1 1 2 .452 · 10
1 0 0 .6 min 238

2 2 1 . 5 12 · 10 1 1 2 . 7 min 395

3 3 3 . 569 · 10 1 1 5 .0 min 552

4 4 6 .221 · 10 1 1 7 .5 min 709

5 5 9 .463 · 10 1 1 10 .2 min 866

6 6 1 . 329 · 101 2 14 .0 min 1023

7 7 1 . 771 · 10 1 2 17 .5 min 1 180

8 8 2 . 272 · 10 1 2 2 1 . 5 min 1337

9 9 2 .832 · 10 1 2 24.5 min 1494

10 10 3.451 · 10 1 2 30.2 min 1651

1 1 1 1 4. 129 · 10 1 2 36.4 min 1808

12 12 4 .866 · 10 1 2 42.0 min 1965

13 13 5 .661 · 10 12 45 . l min 2122

14 14 6 .516 · 101 2 53.4 min 2279

15 15 7.429 · 10 1 2 6 1 . 7 min 2436

also means minimum rnakespan , these algorithms produce
counterexamples that represent optimal schedules.
The first is an explicit algorithm, which remembers every
visited state. It is limited by the amount of available
memory and typically handles up to 108 states (Malik,
2016). While the untirned model of the flexible manufac­
turing system only has 812,544 reachable states, the timing
constraints lead to state-space explosion. The explicit algo­
rithm can only compute counterexamples for up to three
products (one type A and two type B products or vice
versa).
The second algorithm uses Binary Decision Diagrams
(EDD) (Clarke ct al., 1999) to represent state sets sym­
bolically, which greatly reduces memory consumption. The
BOD-based algorithm can compute schedules for up to 15
products of each type, and Table 2 gives an overview of
its results. For the numbers NA and NB of products, the
table shows the number of states in the explored state
space, the time taken to compute, and the makcspan of
the computed optimal schedule. The computation was
done on a standard PC with a 2.8 GHz CPU and 16 GiB
of RAM. The algorithm was breadth-first search with a
disjunctively partitioned transition relation (Clarke et al.,
1999), using the BDD package CUDD (Somenzi , 2005)
with an initial node table size of 1,000,000.
Suprernica produces a single counterexample in the form
of an event sequence. By interpreting the sequence appro­
priately, it can be presented as a Gantt chart (Clark et al.,
1922) such as Fig. 6. The figure shows an optimal schedule
for one product of each type. The operations are identified
by the controllable events that start them, with start times
from the counterexample. The end times are computed
based on the anticipated durations of the operations.

4. OPTIMAL CYCLE

In practice, the desired number of products is often to_o
big to permit computation of a fixed-length schedule, or it
is unknown a-priori. In this case, it is common to identify
the cyclic behaviour of the system to derive a production
plan of arbitrary length. This amounts to the identification
of a cycle with optimum throughput, which is a difficult
problem in general due to the infinite number of possible
cycles. Yet for the flexible manufacturing system studied

"' � � ,,., "' ,r.
0 "' "' ,-.. "'

C1 ell I ell

M e41

C2 e21 I e21 I

L e53

R e33 e31 e39 e33

Ca e71

PD

A M

0 1:-, .,,. 0 "' "' C "' .,. I� <C ,_ a,

Fig. 6. Optimal schedule for NA = 1 and NB = 1 .

in this paper, an optimal cycle can be found using methods
similar to those described above.
The key to finding a cycle is to determine a suitable entr'lj
state, i .e., a system state that can be visited repeatedly
while producing. Inspection of Fig. 6 suggests the config­
uration at step 95, where there is a new peg in buffer B2 ,

a milled block in buffer B3 , and an unpainted cylinder in
buffer B7 . However, this entry state leads to a cycle with
idle time waiting for the mill to complete. With some trial
and error, a better entry state was determined such that:

• there are new workpieces in buffers B1 and B2 ,

waiting to be picked up by the robot R;
• there is an unpainted cylinder in buffer B7 , waiting

to enter conveyor C3 ;
• there is a block being processed in the mill /1.1 , ten

time steps before completion.
To compute a cycle for a given entry state, the model
is changed so that the initial state of all components is
the entry state, and the event done indicating completion
is only possible in that state. This amounts to changing
the initial states of the plants and specifications and the
initial value of the mill timer variable t41, adding selfloops
labelled done to the initial states of all plant components
except the Mill, and adding a condition that done is
only possible when t41 = 10. Then Supremica 's language
inclusion check produces a counterexample that starts and
ends in the entry state while producing the number of
products given by NA and NB.
Fig. 7 shows the cycle obtained for NA = NB = 1, which
has a duration of 157 ticks. The Gantt chart shows that the
robot R is busy for the entire cycle except for one tick. As
its eight operations are required to produce one product of
each type, an optimal cycle must have at least 156 ticks.
More careful analysis shows that a cycle of 156 ticks is not
possible: the c51 operation of the lathe L takes 38 ticks,
and while it is running, the robot can only perform two
operations servicing the mill, c35 and c31, with a combined
duration of 37 ticks. This means that every c51 operation
entails one tick with the robot idle, and since one such
operation is required to produce a type A product, it can
be concluded that the cycle in Fig. 7 is optimal.
To complete the production plan, two further models
are created to compute an initialisation and a shutdown

,,.,
;::

0 ,,., "' oc C

;:! ;3 :: � lt:: ,-.. -
. .

. .

. .

. . e41 . .

. .

. .

e51

35 e31 e37
. .

] [e73
. . . .

: 1 e81 [
. .

QD . .

. . . .

� '"' ,c "' ,0 � :: ,c �

0

C:2

L c51

"' 1..':l :X:. � ��

e35 I

e65 , ,
"' .,,c � ��

c41

c2 1 I

;3
"'

e61 I e63

'"' '"

cu 1 :

;!<
2-i

"'

c53

I c11

- 1 c41-

I c21

R c33 I c35 I c31 I I c37 I c33 I c35 I c3 1 I c39

PD

AM

0

en I

c81

Fig. 7. Optimal cycle.

c73 jj

.. j c61 "j c65 : 1 c61 I c63

,_
•O

sequence. The initialisation sequence starts from the initial
state of the model and ends in the cycle entry state, and
the shutdown sequence starts from the cycle entry state
and ends in the initial state of the model while producing
one further product of each type. The production plan
to produce N products of each type then starts with the
initialisation sequence, followed by N - 1 repetitions of the
optimal cycle, and the shutdown sequence that produces
the last two products.
The initialisation and shutdown sequences computed by
Supremica have durations of 96 and 142 ticks respectively.
Thus, the time to produce N products of each type is

T(N) = 96 + 157(N - 1) + 142 = 157N + 81 .
For N � 15, this value T(N) is exactly the optimal
makespan as computed in Table 2. For larger values of N,
the linear factor, 157, cannot he improved because the
cycle is optimal as explained above. The same cannot
be said for the constant, 81, and it is conceivable (but
unlikely) that a smaller value can be achieved for some
large value of N. Even if such a solution exists, the
improvement will be insignificant compared to the linear
factor for sufficiently large N. Therefore, the solution
proposed here is asymptotically close to optimal .

5. CONCLUSIONS

A discrete event system model of the flexible manufac­
turing system of de Queiroz et al. (2005) has been <level-

245

oped, and the model checking tool Supremica has been
used to compute optimal task schedules. While previously
only solved heuristically, Supremica can compute optimal
schedul�s to manufacture up to 30 products, and optimal
production cycles that solve the problem for an arbitrary
number of products.
The modelling approach works for manufacturing systems
with operations started by controllable events and finished
by uncontrollable events. Breadth-first search is used to
compute optimal schedules , which requires that the mun­
her of operations needed for a desired product is always the
same. Supervisor synthesis ensures robustness of the com­
puted schedules in case of variations in operation times,
while optimisation is based on a timed model with fixed
operation durations. This suggests that the method works
well for similar models, where there are small variations in
operation times but no major alternatives for production.
Fu�nre work may improve the search for the optimal cycle,
wlnch was found by trial and error, and develop algorithms
to find cycles automatically from the fixed-size solutions.

REFERENCES
Akesson, � - , Fabia�1 , l\L , Flordal , H. , and Malik, R. (2006).

Suprennca-an mtegrated environment for verification,
synthesis and simulation of discrete event systems. In
8th Int. Workshop on Discrete Event Systems, 384--385.
IEEE. doi: 10.1109 /WODES.2006 .382401.

Aytug, H . , Lawley, M.A. , McKay, K . , Mohan, S. , and
Uzsoy, R. (2005). Executing production schedules in
the face of uncertainties: A review and some future
directions. Eur. J. Oper. Res. , 161, 86 --110. doi:10.
1016/j.ejor.2003.08.027.

Chen, Y.L. and Lin, F. (2000). Modeling of Discrete Event
Systems Using Finite State Machines with Parameters.
In 2000 IEEE Int. Conj. Control Applications, 941-946 .
doi:10.1109/CCA.2000.897591.

Clark, W . , Polakov , W .N . , and Trabold, F.W . (1922). The
Gantt chart, a working tool of management. The Ronald
Press Company, New York, NY, USA.

Clarke, .Jr . , E .M. , Grumberg, 0 . , and Peled, D.A. (1999).
Model Checking. MIT Press.

de Queir_oz , M .H. and Cury, .J .E.R. (2000). Modular
supervisory control of large scale discrete event systems.
In R. Bod and G. Stremersch (eds.), Discrete Event
Systems: Analysis and Control, SECS 569, 103--118.
Kluwer.

de Queiroz, M.H. , Cury, J .E.R. , and Wonham, W .M.
(2005). Multitasking supervisory control of discrete­
event systems. Discrete Event Dyn. Syst. , 15, 375-395.
doi:10.1007 /s10626-005-4058-y.

Gontijo, R.L. (2015). Aplicru;ao da ferramenta de veri­
ficac;ao formal UPPAAL na obtenc;ao de planos de
produc;ao para sistemas de manufatura modelados como
sistemas a eventos discretos. Trabalho de Conclusao
de Curso, Universidade Federal de Minas Gerais MG
Brazil.

' '

Hoare, C.A.R. (1985). Communicating Sequential Pro­
cesses. Prentice-Hall .

Hu�ng, .J . and Kumar, R. (2008). Optimal nonblocking
directed control of discrete event systems. IEEE Trans.
Autom. Control, 53(7), 1592-1603. doi:10.1109/TAC.
2008.927800.

246

Malik, R . (2016) . Programming a fast explicit conflict
checker . In 13th Int. Workshop on Discrete Event
Systems, 464-469. IEEE. doi:10.1109/WODES.2016 .
7497885.

Malik, R. , Akesson, K . , Flordal, H. , and Fabian, M.
(2017) . Supremica---an efficient tool for large-scale
discrete event systems. !FA G Paper80nLine, 50(1),
5794- 5799. doi :10.1016/j.ifacol .2017.08.427.

Malik, R. , Fabian, M. , and Akesson, K. (2011). Mod­
elling large-scale discrete-event systems using mod­
ules, aliases, and extended finite-state automata. In
1 8th !FA G World Congress, 7000- -7005. cloi:10.3182/
20110828-6-IT-1002.00593 .

Mohajerani, � - , Malik, R. , and Fabian , M. (2014) . A
framework for compositional synthesis of modular non­
blocking supervisors. IEEE Trans. Autom. Control
59(1) , 150-162. doi:10.1109/TAC.2013.2283109.

Niebert, P. and Yovine, S. (2000). Computing optimal
operation schemes for chemical plants in multi-batch
mode. In N. Lynch and B.H. Krogh (eds.), Hybrid
Systems: Computation and Control, HSSC 2000, vol­
ume 1790 of LNCS, 338-351. Springer. doi:10 .1007/
3-540-46430- l _29.

Pena, P.N . , Costa, T.A. , Silva, R.S. , and Takahashi,
R.H.C. (2016) . Control of flexible manufacturing sys­
tems under model uncertainty using supervisory control
theory and evolutionary computation schedule synthe­
sis. Inform. Sciences, 329, 491 502. doi:10.1016/j.ins.
2015.08.056 .

Pinha,. D .C . , de Queiroz, M.H. , and Cury, J .E.R. (2011).
(�ptnnal scheduling of a repair shipyard based on super­
visory control theory. In 201 1 IEEE Conf. Automation
SC'ience and Engineering, 39-44. doi:10 .1109/CASE.
2011.6042515.

Ran_i-�ge, P .. J .G . and Wonham, W .M. (1989). The control
of discrete event systems. Proc. IEEE, Special Issue
on Discrete Event Dynamic Systems, 77, 81-98. doi:
10.1109/5.21072.

Saygin , C. and Kilic , S.E. (1999). Integrating flexible
process plans with scheduling in flexible manufacturing
systems. Int. J. Adv. Manuf. Technol. , 15, 268-280. doi:
10.1007/s001700050066.

Skoldstam, M., Akesson, K. , and Fabian, M. (2007) . Mod­
eling of discrete event systems using finite automata
with variables . In 46th IEEE Conf. Decision and Con­
trol, 3387 -3392. doi:10.1109/CDC.2007.4434894.

Somenzi, F. (2005). CUDD: CU decision diagram pack­
age, release 2.4.1. Technical report, Dept. Electrical
and Computer Engineering, Univ . Colorado at Boulder,
USA. URL http : / /vlsi . colorado . edu/-fabio/CUDD.

Su, R. and Wonham, W .M. (2004). Supervisor reduction
for discrete-event systems. Discrete Event Dyn. Syst. ,
14, 31- -53. doi:10.1023/B:DISC.0000005009.40749.b6.

Ware, S. and Su, R. (2017) . Time optimal synthesis
based upon sequential abstraction and its application
to cluster tools. IEEE Trans. Autom. Sci. Eng. , 14(2),
772-784. doi: 10.1109/TASE.2016 .2613911.

Wu, N . and Zhou, M. (2012). Schedulability analysis
and optimal scheduling of dual-arm cluster tools with
residency time constraint and activity time variation.
IEEE Trans. Autom. Sci. Eng. , 9(1), 203-209. doi:
10.1109/TASE.2011.2160452.

	Optimal task scheduling paper_Page_1_2R
	Optimal task scheduling paper_Page_2_1L
	Optimal task scheduling paper_Page_2_2R
	Optimal task scheduling paper_Page_3_1L
	Optimal task scheduling paper_Page_3_2R
	Optimal task scheduling paper_Page_4_1L

