
Preprints of WODES 2018 
May 30 - June 1, 2018 
Sorrento Coast, Italy 

Optimal Task Scheduling 

in a Flexible Manufacturing System 

using Model Checking 

Robi Malik* Patricia N. Pena** 

* Department of Computer Science, University of Waikato, Hamilton, 
New Zealand (e-mail: robi@waikato.ac.nz) 

** Department of Electronics Engineering, Universidade Federal de 
Minas Gerais, Belo Horizonte, MG, Brazil (e-mail: ppena@ufrng.br) 

Abstract: This paper demonstrates the use of model checking to solve the problem of optimal 
task scheduling in a flexible manufacturing system. The system is modelled as a discrete event 
system, for which the least restrictive safe behaviour is synthesised according to supervisory 
control theory. Then timing constraints are added to the model in the form of extended finite­
state machines, and time-optimal schedules are computed using the discrete event systems and 
model checking tool Supremica. In the case study considered in this paper, which previously was 
only solved heuristically, the method successfully produces optimal schedules to manufacture 
up to 30 products of two different types. The method is furthermore used to find an optimal 
cycle, solving the scheduling problem of the case study for an arbitrary number of products in 
optimal or asymptotically close to optimal time. 
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1. INTRODUCTION 

The task scheduling problem in manufacturing systems is 
of great importance in industry (Saygin and Kilic, 1999). 
The aim of task scheduling is to organise a set of tasks 
over a set of resources in order to optimise some criterion 
ltll'rn;me. A suitable solution provides fault-free operation 
whil<' ntilising the available resources with high efficiency. 
\Vi t !tout the use of systematic techniques to create the 
prod1u-tion programs it is not possible to guarantee such 
f<,atm<·s. Therefore, there has been a significant research 
Pffort in the past decades to develop systematic tools 
to <l<·al with the task scheduling problem (Niebert and 
Yovi11<', 2000; Ware and Su, 2017). 

In t lw majority of works, there is an implicit assumption 
that a schedule can be executed directly as developed, 
aud there is no support for possible disruptions. Aytug 
et. al. (2005) state that the inability of much scheduling 
Ws<',m-h to address the general issue of uncertainty may 
he C"owiidered as a major reason for the lack of influence of 
sdl<'dnling research on industrial practice. They consider 
thn•p key dimensions of uncertainty---cause, context, and 
iinpal't-that can help to categorise problem formulations. 
Cau8c may be tooling not available, context may be a 
hottb1eck on Monday morning, and the impact may 
lw a delay in setup-the machine cannot start when 
PXJH'c·ted. This paper is concerned with uncertainty caused 
hy possible delays that cause loss of synchrony between the 
sc:lwdnle and the actual system (Wu and Zhou, 2012). 
:nl<' 811,pervisory control theory of discrete event systems 
18 a framework that aims to develop controllers, which 
auto1uatically apply commands in a least restrictive way 
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(Ramadge and Wonham, 1989). By explicitly considering 
uncontrollable events, the framework captures the uncer­
tainty caused by variations in operation durations. Least 
restrictiveness ensures that only events leading the system 
to unsafe or undesirable states arc disabled, while all other 
options remain available to optimisation. 

Several authors have used supervisory control to ad­
dress task scheduling problems. Huang and Kumar (2008), 
Pinha et al. (2011), and Ware and Su (2017) translate 
optimisation problems into discrete event systems and pro­
pose theoretical solutions and algorithms for the problem. 
Implementations of these algorithms are not yet widely 
available, and it is not clear whether they can solve large 
instances of scheduling problems. 

The problem solved in this paper is to find a schedule that 
minimises the makespan for the production of a batch of 
products for a flexible manufacturing system introduced 
by de Quciroz et al. (2005). This case study previously 
was only solved heuristically, most recently by Pena et al. 
(2016). Attempts to solve the case study with the timed 
model checker Uppaal have only produced schedules for 
small instances of the problem (Gontijo, 2015). 

This paper uses the discrete event systems tool Supremica 
(Akesson et al., 2006; Malik et al., 2017) to develop a full 
model of the timed behaviour of the case study, making 
it possible to compute optimal schedules to produce a 
fixed number of up to 16 products, and to compute 
optimal cycles to solve the task scheduling problem for an 
arbitrary number of products. In the following, Section 2 
presents the case study and describes the modelling of the 
task scheduling problem. Afterwards, Section 3 shows the 
computed solutions for fixed-size production batches with 



Fig. 1. Flexible manufacturing system layout. 

up to 30 products, and Section 4 shows the computation 
of an optimal cycle and the resulting generalisation for 
an arbitrary number of products. Finally, Section 5 adds 
concluding remarks. 

2. MODELLING 

This section describes the model developed for the case 
study of this paper, the flexible manufacturing system. 
First, subsection 2.1 describes the open-loop behaviour of 
the plant, and subsection 2.2 shows how this behaviour is 
restricted to be safe by synthesis. Afterwards, subsections 
2.3 and 2.4 explain how the operation times are modelled 
to specify the optimisation problem. 

2.1 The Flexible Manufacturing System 

Fig. 1 shows the layout of the flexible manufacturing 
system (de Queiroz et al., 2005). It consists of eight de­
vices: the Lathe, Mill, painting device (PD), and assembly 
machine (AM) perform production tasks, while the Robot 
and three conveyors (Ci, C2, C3) move workpieces between 
machines and buffers. There are eight buffers (Bi , ... , Bs) 
that act as intermediate deposits, each with capacity for 
one workpiece. The arrows in Fig. 1 indicate the events 
that represent the flow of workpieces. 
This system produces two types of products from raw 
blocks and pegs: blocks with a conical pin on top (Prod­
uct A) and blocks with a painted cylindrical pin (Prod­
uct B). Blocks eriter the system through conveyor Ci and 
are delivered by the Robot to the Mill; after milling the 
Robot puts the completed block into buffer B5 waiting 
for assembly. Pegs enter the system through conveyor C2 
and are delivered by the Robot to the Lathe, which cuts 
them to become a cone (event c51) or cylinder (event c53). 
Cones are placed by the Robot into buffer B6; cylinders are 
placed into buffer B7 , where conveyor C3 takes them to the 
painting device PD and back. The assembly machine AM 
first takes a block from B5 and then either a cone from B6 
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Fig. 2. Flexible manufacturing system plants. 

or a painted cylinder from B7 to manufacture product of 
a type A or B. 
The open-loop behaviour of this plant is modelled by the 
discrete event system in Fig. 2. As usual in supervisory 
control (Ramadge and Wonham, 1989), the set of events 
is partitioned into the controllable events, which can be 
disabled by a controlling agent, and the uncontrollable 
events, which occur spontaneously and cannot be disabled. 
In this paper, the controllability status is distinguished by 
the event names starting with "c" or "u". 
In the case study, the plant model is structured into 
operations that start with a controllable event and finish 
with an uncontrollable event. For example the operation 
of conveyor Ci is started with the controllable event ell 
and finishes with the uncontrollable event ul2. The only 
exception is the assembly machine AM, which takes two 
controllable events before finishing. The underlying as­
sumption is that a control strategy should be implemented 
that decides when and in what order operations should 
start, but there is no control over their completion times. 

2.2 Using Supervisory Control to Impose Constraints 

The open-loop plant as modelled in Fig. 2 permits un­
safe behaviour, because buffer overflow cannot always be 
avoided due to the presence of uncontrollable events, and 
it also permits deadlocks. Therefore, control specifications 
are introduced to rule out the possibility of buffer overflow 
or underflow, and synthesis (Ramadge and Wonham, 1989) 
is used to obtain supervisors that restrict the plant to the 
largest possible safe and nonblocking behaviour. 
Small modular supervisors, both controllable and non­
blocking, can be computed automatically by compositional 
synthesis (Mohajerani et al., 2014) followed by supervisor 
reduction (Su and Wonham, 2004). Alternatively, this pa­
per uses the supervisors proposed by Pena et al. (2016), 
which are synthesised for controllability using local mod­
ular control (de Queiroz and Cury, 2000), reduced, and 
afterwards verified to be nonblocking. The resulting finite­
state machines are shown in Fig. 3. These supervisors 
interact with the plant in strict lock-step synchronisation 
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Fig. 3. Supervisors for the flexible manufacturing system. 

Device 

C1 

Robot 

Lathe 

Table 1. Operation times. 

Event 

ell 

c31 

c33 

c35 

c37 

c39 

c51 

c53 

u52 

15X==0 

u54 

15X==0 

Time Device Event Time 

25 

21 

19 

16 

24 

20 

38 

32 

C2 c21 

Mill c41 

C3 
c71 

c73 

c61 

AM c63 

c65 

PD c81 

Tick tick 

111 =max(l11-1,0) 

121 = max(l21-1,0) 
13x = max(l3x-1,0) 

141 = max(l41-1,0) 

15x = max(l5x-1,0) 
16x = max(l6x-1,0) 

t7x = max(t7x-1,0) 

181 = max(l81-1,0) 

25 

30 

25 

25 

15 

25 

25 

24 

Fig. 4. EFSMs plants to capture timing constraints. 

by handshaking on common events (Hoare, 1985). The 
state machines in Figs. 2 and 3 combined give the complete 
model of the closed-loop system. 

The schedule optimisation discussed in the following uses 
this controlled system a.c; the starting point. As the su­
pervisors are synthesised based on an untimed model, 
they will ensure safe control and prevent buffer overflow 
no matter what the delay is between the start and end 
of operations. Also, least restrictiveness ensures that the 
optimisation has the maximum freedom of choice possible. 

2.8 Modelling Time with Extended Finite-State Machines 

For optimisation, the durations of the operations must be 
included in the model. Therefore, each operation (identi­
fied by the controllable event to start it) is assigned a fixed 
duration as per Table 1. 
The timed behaviour is modelled using Extended Finite­
State Machines (EFSM) ( Chen and Lin, 2000; Skoldstam 
et al., 2007), which allow for the addition of guards and 
actions to the transitions. Each device of the flexible man-
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ufacturing system is associated with a bounded-range inte­
ger variable that records thc1 time still needed to complete 
its current operation. For example, the Lathe is modelled 
using the EFSM in Fig. 4, with the variable t5x. On oc­
currence of the controllable event c51, the ·update t5x = 38 
means that the variable assumes the value 38 after the 
transition. Thus, the timer is initialised to the duration 
of operation c51 when it starts. For the uncontrollable 
event u52, the guard t5x == 0 means that the transition 
is only possible when the variable value is zero. Thus, 
the lathe's operation can only finish when the timer ha.c; 
counted back down to zero. 
Similarly, the duration of operation c53 is modelled a.c; 32 
according to Table 1. The variable t5x is constrained to the 
finite range {O, . . .  , 38}, because 38 is the duration of the 
longest operation performed by the Lathe. Similar timers 
are added to all plant components in Fig. 2. 
The timers are counted down with the passing of time, 
which is modelled by an uncontrollable event and associ­
ated plant EFSM called Tick, also shown in Fig. 4. The 
updates on the transition are executed simultaneously on 
each tick of the clock. For exan1ple, the update t5x = 

max(t5x-1, 0) means that the variable t5x is decremented 
by one unless it has already reached zero. 
The timing model only imposes constraints on event oc­
currences of the untimed model. Therefore, it is clear that 
a supervisor synthesised for the untimed model continues 
to be controllable (but not· necessarily nonblocking) for 
the timed model. The use of uncontrollable events in con­
nection with the buffers in this model ensures that, after 
synthesis of a supervisor that prevents buffer overflow, the 
occurrence of an uncontrollable event never disables any 
controllable events that have been enabled before. Then 
a production schedule given by a sequence of controllable 
events can always be executed independently of the precise 
timing of uncontrollable events. 
Also, the timing model only restricts the operations "to 
take at least the number of ticks indicated in Table 1 
to complete; they may take longer. This is enough for 
optimisation, because if an optimal path is found, it will 
use the smallest number of ticks possible. 

2.4 The Optimisation Problem 

The goal of optimisation is to find the fastest way to 
produce a given number of products of type A and B. 
If NA and NB are the required numbers of products, then 
this amounts to finding a sequence of events through the 
model, with the smallest number of ticks possible, that 
includes NA occurrences of event u64 and NB occurrences 
of event u66. 

This objective is modelled by adding two further variables 
countA and countB, with initial value 0, that count the 
occurrences of events u64 and u66, using the EFSMs 
Product A and Product8 in Fig. 5: the update countA += 1 
is a shorthand for countA = countA + 1, and means that 
the counter is incremented by 1 on occurrence of event u64, 
i.e., on production of a type A product. The uncontrollable 
event done is only possible when both counters have 
reached their target values, because the guards in the two 
EFSMs are combined by conjunction. 
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Fig. 5. EFSMs to capture the optimisation goal. 

Finally, the EFSM Goal stipulatr1s that done can never 
happen. This is achieved by declaring the event done as 
blocked (Malik et al. , 2011), which means that it is included 
in the alphabet hut not on any transition. When a model 
checker is asked to verify or refute this assertion, it will 
produce a counterexample, which is a sequence of events 
that includes done, thus showing how the flexible manu­
facturing system can produce the requested products. 
In a flexible mmmfacturing system, the devices can work 
at the same time and faster completion can be achieved 
by performing operations concurrently. The best possible 
runtime under concurrency associated with a sequence of 
events is called the makespan, and the goal of optimisation 
is to find a schedule, i.e., sequence of events, with the 
minimum makespan. 
An important observation in this example is that the non­
tick events for given numbers NA and N B  of products 
are always the same; only their order can be changed. 
Therefore, miy shortest path that ends with the done event 
must be a schedule with the smallest number of ticks and 
thus minimum makespan. 

3. OPTIMAL SOLUTIONS FOR FIXED-SIZE 
BATCHES 

The model of the flexible manufacturing system has been 
entered in the discrete event systems tool Supremica 
(Akesson et al., 2006 ; Malik et al. , 2017) , which supports 
EFSMs in the form described in the previous section 
(Malik et al. , 2011). All the plants and supervisors in Figs. 
2 and 3 have been entered, with timing information for the 
plants as per Fig. 4, and the additional plants ProductA 
and ProductB as per Fig. 5. 
Finally, the Goal in Fig. 5 has been added as a property, 
which was checked for language inclusion. Supremica 's lan­
guage inclusion check determines whether the behaviour of 
the system is contained in the behaviour of the property. In 
this case, the property Goal allows all behaviour that does 
not include the event done, so that, if done is ever possible 
in the system, it will be flagged as a violation of language 
inclusion. If Supremica determines that language inclusion 
is violated, it produces a counterexample that shows how 
the property is violated. In this case, the counterexam­
ple is a sequence of events including done, which can be 
interpreted as a schedule for production of the requested 
products. 
There are various model checking algorithms to check 
language inclusion . Two of Supremica 's algorithms use 
breadth-first search and guarantee that the computed 
counterexamples are of minimum length. Given the ob­
servation in section 2.4 that a shortest counterexample 
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Table 2. Optimisation results 

NA NB State space Runtime Makespan 

1 1 2 .452 · 10
1 0  0 .6 min 238 

2 2 1 . 5 12  · 10 1 1  2 . 7 min 395 

3 3 3 . 569 · 10 1 1  5 .0 min 552 

4 4 6 .221 · 10 1 1  7 .5 min 709 

5 5 9 .463 · 10 1 1  10 .2 min 866 

6 6 1 . 329 · 101 2 14 .0 min 1023 

7 7 1 .  771 · 10 1 2 17 .5 min 1 180 

8 8 2 . 272 · 10 1 2 2 1 . 5 min 1337 

9 9 2 .832 · 10 1 2 24.5 min 1494 

10 10 3.451 · 10 1 2 30.2 min 1651 

1 1  1 1  4. 129 · 10 1 2 36.4 min 1808 

12  12  4 .866 · 10 1 2 42.0 min 1965 

13 13 5 .661 · 10 12 45 . l min 2122  

14 14 6 .516  · 101 2 53.4 min 2279 

15  15  7.429 · 10 1 2 6 1 . 7 min 2436 

also means minimum rnakespan , these algorithms produce 
counterexamples that represent optimal schedules. 
The first is an explicit algorithm, which remembers every 
visited state. It is limited by the amount of available 
memory and typically handles up to 108 states (Malik, 
2016). While the untirned model of the flexible manufac­
turing system only has 812,544 reachable states, the timing 
constraints lead to state-space explosion. The explicit algo­
rithm can only compute counterexamples for up to three 
products ( one type A and two type B products or vice 
versa). 
The second algorithm uses Binary Decision Diagrams 
(EDD) (Clarke ct al., 1999) to represent state sets sym­
bolically, which greatly reduces memory consumption. The 
BOD-based algorithm can compute schedules for up to 15 
products of each type, and Table 2 gives an overview of 
its results. For the numbers NA and NB of products, the 
table shows the number of states in the explored state 
space, the time taken to compute, and the makcspan of 
the computed optimal schedule. The computation was 
done on a standard PC with a 2.8 GHz CPU and 16 GiB 
of RAM. The algorithm was breadth-first search with a 
disjunctively partitioned transition relation (Clarke et al., 
1999), using the BDD package CUDD (Somenzi , 2005) 
with an initial node table size of 1,000,000. 
Suprernica produces a single counterexample in the form 
of an event sequence. By interpreting the sequence appro­
priately, it can be presented as a Gantt chart (Clark et al., 
1922) such as Fig. 6. The figure shows an optimal schedule 
for one product of each type. The operations are identified 
by the controllable events that start them, with start times 
from the counterexample. The end times are computed 
based on the anticipated durations of the operations. 

4. OPTIMAL CYCLE 

In practice, the desired number of products is often to_o 
big to permit computation of a fixed-length schedule, or it 
is unknown a-priori. In this case, it is common to identify 
the cyclic behaviour of the system to derive a production 
plan of arbitrary length. This amounts to the identification 
of a cycle with optimum throughput, which is a difficult 
problem in general due to the infinite number of possible 
cycles. Yet for the flexible manufacturing system studied 
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Fig. 6. Optimal schedule for NA = 1 and NB = 1 .  

in this paper, an optimal cycle can be found using methods 
similar to those described above. 
The key to finding a cycle is to determine a suitable entr'lj 
state, i .e., a system state that can be visited repeatedly 
while producing. Inspection of Fig. 6 suggests the config­
uration at step 95, where there is a new peg in buffer B2 , 

a milled block in buffer B3 , and an unpainted cylinder in 
buffer B7 . However, this entry state leads to a cycle with 
idle time waiting for the mill to complete. With some trial 
and error, a better entry state was determined such that: 

• there are new workpieces in buffers B1 and B2 , 

waiting to be picked up by the robot R; 
• there is an unpainted cylinder in buffer B7 , waiting 

to enter conveyor C3 ; 
• there is a block being processed in the mill /1.1 , ten 

time steps before completion. 
To compute a cycle for a given entry state, the model 
is changed so that the initial state of all components is 
the entry state, and the event done indicating completion 
is only possible in that state. This amounts to changing 
the initial states of the plants and specifications and the 
initial value of the mill timer variable t41, adding selfloops 
labelled done to the initial states of all plant components 
except the Mill, and adding a condition that done is 
only possible when t41 = 10. Then Supremica 's language 
inclusion check produces a counterexample that starts and 
ends in the entry state while producing the number of 
products given by NA and NB. 
Fig. 7 shows the cycle obtained for NA = NB = 1, which 
has a duration of 157 ticks. The Gantt chart shows that the 
robot R is busy for the entire cycle except for one tick. As 
its eight operations are required to produce one product of 
each type, an optimal cycle must have at least 156 ticks. 
More careful analysis shows that a cycle of 156 ticks is not 
possible: the c51 operation of the lathe L takes 38 ticks, 
and while it is running, the robot can only perform two 
operations servicing the mill, c35 and c31, with a combined 
duration of 37 ticks. This means that every c51 operation 
entails one tick with the robot idle, and since one such 
operation is required to produce a type A product, it can 
be concluded that the cycle in Fig. 7 is optimal. 
To complete the production plan, two further models 
are created to compute an initialisation and a shutdown 
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sequence. The initialisation sequence starts from the initial 
state of the model and ends in the cycle entry state, and 
the shutdown sequence starts from the cycle entry state 
and ends in the initial state of the model while producing 
one further product of each type. The production plan 
to produce N products of each type then starts with the 
initialisation sequence, followed by N - 1  repetitions of the 
optimal cycle, and the shutdown sequence that produces 
the last two products. 
The initialisation and shutdown sequences computed by 
Supremica have durations of 96 and 142 ticks respectively. 
Thus, the time to produce N products of each type is 

T(N) = 96 + 157(N - 1) + 142 = 157N + 81 . 
For N � 15, this value T(N) is exactly the optimal 
makespan as computed in Table 2. For larger values of N, 
the linear factor, 157, cannot he improved because the 
cycle is optimal as explained above. The same cannot 
be said for the constant, 81, and it is conceivable (but 
unlikely) that a smaller value can be achieved for some 
large value of N. Even if such a solution exists, the 
improvement will be insignificant compared to the linear 
factor for sufficiently large N. Therefore, the solution 
proposed here is asymptotically close to optimal . 

5. CONCLUSIONS 

A discrete event system model of the flexible manufac­
turing system of de Queiroz et al. (2005) has been <level-
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oped, and the model checking tool Supremica has been 
used to compute optimal task schedules. While previously 
only solved heuristically, Supremica can compute optimal 
schedul�s to manufacture up to 30 products, and optimal 
production cycles that solve the problem for an arbitrary 
number of products. 
The modelling approach works for manufacturing systems 
with operations started by controllable events and finished 
by uncontrollable events. Breadth-first search is used to 
compute optimal schedules , which requires that the mun­
her of operations needed for a desired product is always the 
same. Supervisor synthesis ensures robustness of the com­
puted schedules in case of variations in operation times, 
while optimisation is based on a timed model with fixed 
operation durations. This suggests that the method works 
well for similar models, where there are small variations in 
operation times but no major alternatives for production. 
Fu�nre work may improve the search for the optimal cycle, 
wlnch was found by trial and error, and develop algorithms 
to find cycles automatically from the fixed-size solutions. 
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