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Abstract. Thresholds profoundly affect our understanding and management of ecosystem
dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will
be crossed. Combining ecological knowledge of critical system interdependencies with a large-
scale experiment, we tested for breaks in the ecosystem interaction network to identify
threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves
Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand
demonstrated that reductions in incident sunlight changed the interaction network between
sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of
positive feedbacks and changes in the architecture of the network, we provide mechanistic
evidence that stressors lead to break points in dynamics, which theory predicts predispose a
system to a critical transition.
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INTRODUCTION

Many changes in ecological systems are abrupt,

profoundly limiting our understanding of ecosystem

dynamics, and our ability to predict changes and cope

with the consequences (Carpenter et al. 2001, Scheffer et

al. 2001). Concern about crossing regional- and global-

scale thresholds underscores the need to better define the

risk of tipping an ecosystem into ecologically and

socioeconomically unfavorable states (Brook et al.

2013). Theories of how critical transitions lead to

threshold change in ecological systems have progressed

rapidly, but empirical support is patchy and often

focused on specific systems, restricting generality (Kéfi

et al. 2013).

A number of techniques have been developed to

identify the statistical properties of time series or spatial

patterns that precede thresholds (Dakos et al. 2012,

Scheffer et al. 2012). These techniques represent a valid

way of ranking different systems in terms of their

predisposition to approaching and crossing thresholds,

but for real-world ecosystems, this requires significant

investment in high-frequency monitoring that is gener-

ally uncommon (Hewitt and Thrush 2010, Lindegren et

al. 2012). Consequently, alternative and complementary

approaches are needed to inform decisions about the

risk of upcoming transitions in ecosystems and change

in ecosystem functionality and value.

The only way to conclusively detect a threshold is to

cross it (Carpenter et al. 2001). Such a shift may result

from excessive environmental forcing, the functional

extinction or invasion of species, but may also occur well

below these limits due to changes in the architecture of

interaction networks that connect the biological, chem-

ical, and physical components in the ecosystem (Scheffer

et al. 2001). The loss of positive feedbacks is particularly

important in shifting the system into a fundamentally

different state (Scheffer et al. 2012). Such shifts in the

architecture of ecosystem interaction networks have

been detected along environmental gradients, suggesting

the potential for critical transitions (Thrush et al. 2012).

Whole-lake experimental manipulations have provided

empirical evidence of the importance of positive

feedbacks and regime shifts (Carpenter 2003). However,

questions remain as to whether we can experimentally

manipulate an open and dynamic marine system to
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demonstrate changes in interaction networks and the

loss of positive feedbacks. We provide a path to address
critical transitions that facilitate a formal linkage
between empirical and theoretical study of ecosystem

dynamics. As predicted by theoretical studies, our
experiment demonstrates that stress-induced changes in

ecosystem interaction networks can occur in real-world
ecosystems, and this allows us to determine whether or
not a specific ecosystem is predisposed to undergo

transitions. Such empirical demonstration helps to
ground theory and provide real-world advice to support
managers, policy makers, and society about the limits to

resilience of ecosystems under change.
There is a long history of ecological experimentation

in marine systems, with early recognition of the role of

interactions among species and disturbance influencing
community dynamics (Dayton 1971, Woodin 1978).

New analytical techniques allow us to assess the strength
of both direct and indirect effects, define the architecture
of interaction networks, and assess its validity relative to

empirical data (Grace et al. 2012). Structured equation

models (SEMs) allow us to integrate causal and

exploratory techniques, beginning with the development

of a conceptual model supported by empirical evidence.

Our conceptual model (Fig. 1) is focused on interactions

among primary producers, two sediment-dwelling bivalves

(the deposit feeder Macomona liliana and the suspension

feeder Austrovenus stutchburyi), sediment type, and pore

water nutrient and organic matter pools, justified by

empirical research and knowledge of ecosystem function-

ing. The potential for interaction between these variables

and analogous species is typical of shallow, non-eutrophic,

coastal and estuarine sandflat systems. This interaction

network has some of the same elements as those previously

used to look for thresholds across environmental gradients

(Thrush et al. 2012). The conceptual model represents an

ecosystem interaction network that supports coastal

ecosystem services associated with habitat stability,

nutrient recycling, and productivity (Barbier et al. 2011).

In this paper we test for changes in the architecture of the

ecosystem interaction networks (Fig. 1) associated with

decreased light levels, an important consequence of

increased turbidity in coastal ecosystems. We developed

SEMs based on experimental data derived from either

shaded or unshaded experimental plots. Changes in land

use often elevate terrestrial sediment and nutrient loading

in many estuarine and coastal ecosystems. Elevated

turbidity is generally recognized because of its negative

effects on seagrass (Duarte 2002), whereas effects on

microphytobenthos are often overlooked despite their

central role in primary productivity, nutrient interception,

and basal food resource provisioning for many benthic

invertebrates.

METHODS

SEM starts with the definition of the potential

interaction network (numbered effects discussed here

refer to numbers in the Fig. 1 network). Specifically, (1)

there is a direct negative effect of the large deposit-

feeding Macomona on microphytobenthos (MPB; rep-

resented as chlorophyll a) due to grazing (Lelieveld et al.

2003). MPB are an important food source for Maco-

mona, but there is also a positive relationship between

chlorophyll a biomass and Macomona density (Thrush

et al. 2006). Similarly, (2) sediment organic content

increases the food resources for Macomona (by analogy

to the functionally similar species Macoma balthica

[Peterson and Skilleter 1994]). (3) MPB are highly

productive (Cahoon 1999) and rely on nutrients

remineralizing in sediments to sustain that production

(Lohrer et al. 2004). Macomona affects pore water

nutrient concentrations directly (4) and indirectly (2 and

5) through influencing organic matter pools via grazing

and behaviorally induced pressure gradients in perme-

able sediments (Volkenborn et al. 2012, Woodin et al.

2012). (6) Austrovenus has a positive effect on chloro-

phyll a (Thrush et al. 2006), although this effect is

density dependent (Sandwell et al. 2009, Lohrer et al.

2011). (7) Negative interactions between large Macomo-

FIG. 1. Conceptual diagram of the potential interaction
network linking infaunal bivalves (here marine species Maco-
mona liliana and Austrovenus stutchburyi in New Zealand) to
benthic chlorophyll a and sediment characteristics. (1) Grazing
by deposit-feeding Macomona affects microphytobenthos
(MPB, represented as chlorophyll a), and MPB has a positive
relationship with Macomona density. (2) Sediment organic
content increases food resources for Macomona. (3) MPB are
highly productive and exploit nutrients remineralized in
sediments. (4) Macomona affect pore water nutrient concentra-
tions directly and (2, 5) indirectly. (6) Austrovenus has a positive
effect on MPB. (7) Large Macomona and small Austrovenus
interact negatively. (8, 9) Sediment mud content negatively
affects density of both bivalve species; high densities of both
species can increase fine-sediment erosion. (10) In coarse
sediments, Austrovenus density increases. (11) MPB and mud
content have a positive relationship, (8, 9) mediated by resident
macrofauna. (12) Mud and sediment organic content are tightly
correlated and (13) coarse sediments influence sediment organic
content by increasing permeability and decay. (14) Degrading
MPB also contributes to sediment organic matter, which (5) is
positively correlated with nutrient concentration in pore water
through microbial degradation. See Methods for further details
and references.
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na and small Austrovenus have specifically identified

(Thrush et al. 1996). (8 and 9) Densities of both bivalve

species are negatively impacted by mud (Thrush et al.

2003, 2004), but high densities of both species can

increase the erosion of fine sediments by bioturbation

(Thrush et al. 1996, Jones et al. 2011). (10) In coarse

sediments, Austrovenus density increases (Thrush et al.

2008). (11) A positive relationship between benthic

chlorophyll a and sediment muddiness exists (Van de

Koppel et al. 2001), due to fine-sediment binding by

MBP, a relationship (8 and 9) mediated by resident

macrofauna (Van Colen et al. 2013). (12) Mud and

sediment organic content are tightly correlated (Sloth et

al. 1995) and (13) coarse sediments influence sediment

organic content by increasing permeability and acceler-

ating decay rates (Huettel and Rusch 2000). Degrading

chlorophyll a (14) also contributes to the pool of organic

matter in the sediment (Ehrenhauss et al. 2004), and (5)

the concentration of pore water nutrients is positively

correlated with the sediment organic content through

microbial degradation processes (Sloth et al. 1995,

Grabowski et al. 2011).

The experiment was conducted at Wiroa Island,

Manukau Harbour, New Zealand (37801.30 S, 174849.20

E; see Plate 1). The intertidal sandflat is ;1.8 km wide

and has a shallow gradient of 0.0978 (Thrush et al. 1997).

The macrofaunal community of the Wiroa Island

sandflats is dominated both numerically and in terms of

biomass by the tellinid Macomona liliana (;100/m2 for

individuals with shell length .20 mm), and the venerid

Austrovenus stutchburyi (;32/m2 for individuals with

shell length . 10 mm). To investigate differences in the

architecture of the ecosystem interaction network, we

experimentally manipulated nutrient concentrations, Ma-

comona densities, and light. The experiment was estab-

lished on 25–29 October 2011 in seven blocks that

encompassed about 8003 350 m of sandflat. Experimen-

tal plots (23 2 m) were situated about 3 m apart in three

rows to encompass an area of about 56 m alongshore and

14 m downshore. The experiment consisted of three

density treatments of Macomona (200, 50, and 0

individuals/m2 for individuals with shell length . 20

mm) crossed with three light treatments (shade, shade

control, and open) crossed with three nutrient addition

treatments (high, medium, none) and one ambient

sediment treatment. This resulted in 28 experimental

treatments, replicated once per block.

The central 1 m2 in each 4-m2 plot, excluding one

treatment of ambient sediment, was excavated to 18 cm

depth and the sediment sieved on 10-mm mesh to extract

shell hash and large macrofauna. Sediments were then

returned to the excavated plots and Macomona (.20

mm shell length) were spread evenly across the 1 m2

achieve treatment densities.

Shade cloth designed to cut ;70–80% of the incident

light was supported on a 4-m2 metal grid (mesh size 150

3 150 mm) suspended 15–20 cm above the sediment

surface. Shade controls were the metal grid only

covering the plots. Shading of plots was used to mimic

changes in light levels due to elevated suspended

sediment concentrations, SSC (Billerbeck et al. 2007).

Direct field-based manipulation of SSC is very difficult

in the medium to long term. Although SSC has multiple

effects on the benthos (Thrush et al. 2004), we focused

on effects mediated through the MPB. Benthic chloro-

phyll a is a measure of MPB standing stock, not

productivity. This is important in the interpretation of

our experiment due to the potential for bedload

transport of MPB under shaded plots, potentially

weakening treatment effects.

Nutrient addition consisted of adding four (high), one

(medium), or zero 10 cm long sections of dialysis tubing

filled with 15 g (60.1 g) of a granular slow-release

fertilizer (nutrient ratios: 18.9 N, 2.1 P, 0.0 K, 4.1 S, 3.0

Mg, 7.2 Ca). Our nutrient addition treatments were

expected to have a direct stimulatory effect on MPB,

because New Zealand sandflat studies show that MPB

respond to nutrient released from the sediment as a

result of bioturbation (Rodil et al. 2011).

Before destructive sampling at the end of the

experiment (about þ100 days, 7–10 February 2012),

pore water nutrients samples were collected from each

plot using reservoirs sampling the permeable sediments 5

cm below the sediment–water interface. Pore water was

pressure-filtered through a 2.5-cm Whatman GF/C glass

fiber filter in a Swinnex filter holder (ED Millipore,

Billerica, Massachusetts, USA) and stored on crushed

ice in the dark for transport to the laboratory, where

they were frozen to�208C pending analysis. Analysis for

dissolved inorganic nutrients followed standard methods

for seawater using an Astoria-Pacific 300 series seg-

mented-flow autoanalyzer (Astoria-Pacific, Clackamas,

Oregon, USA) with detection limits of ,0.1 lmol/L for

N and P. Three cores (2.3 cm diameter, 2 cm deep) were

collected from each plot and were pooled for chlorophyll

a, sediment particle size, and organic content analyses.

The remaining sediment within the central 1 m2 was

excavated to a depth of about 15 cm and sieved on 10-

mm mesh to extract large macrofauna, which were then

identified and sized.

Sediment for chlorophyll analysis was freeze-dried

and homogenized. A small quantity of sediment (;0.1 g)

was soaked in 10 mL of MgCO3-buffered acetone (90%)

for ;20 h. Samples were shaken after 12 h and again

prior to centrifugation. Samples were centrifuged for 10

min at 3300 rpm before fluorometric analysis (Turner

10-AU, Turner Designs, Sunnyvale, California, USA).

An acidification step (0.15 mL 0.1N HCL) was used to

separate phaeophytin from photosynthetic pigments

(Arar and Collins 1997). Total organic matter content

(as a percentage) was determined through loss on

ignition from homogenized dried sediments (1058C for

24 h or until stable mass), after combustion for 5.5 h at

5508C (Dean 1974). Sediments for particle size analysis

were digested in 10% hydrogen peroxide to remove

organic matter, until bubbling ceased before using the
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standard operating procedure for marine sediments on a

Malvern mastersizer-S (300 FR lens; Malvern Instru-

ments, Malvern, UK) to determine grain size fractions in

the range of 0.05–2000 lm.

SEMs were developed using M-Plus software (Muth-

én and Muthén 2007), based on Fig. 1, to contrast the

networks apparent in the shaded and unshaded exper-

imental treatments. We developed best-fit models for

shaded and unshaded treatments and compared these

with the results from applying the best shaded network

to the unshaded data and vice versa, in order to ensure

that there were real differences in the networks. Data

transformations (loge) to improve the linearity of

responses, or normality of errors, were utilized for

bivalve abundances, coarse sand, and mud. The initial

SEM (Fig. 1) was examined for respecification by

removal of direct pathways based on parameter tests

of significance, while maintaining nonsignificance tests

for goodness of fit (v2) and the root mean square error

of approximation, increasing values of the comparative

fit index (above 0.95) (Vile et al. 2006) and decreasing

Akaike’s information criterion (see Appendix). The

sensitivity of the model to new direct pathways was

also investigated, with the decision on whether or not to

include new links being based on parameter significance

tests and no decreases in goodness of fit (Grace et al.

2012).

RESULTS

Consistent with using SEM as a tool to integrate

causal and exploratory techniques (Grace et al. 2012),

we have not focused on the more traditional analyses of

the experimental data. Preliminary analysis did not

indicate any experimental artefacts associated with

shading (see Appendix). Treatment differences in

Macomona density were maintained in the experiment,

although slightly higher densities in shaded plots were

apparent, while Austrovenus decreased. Lower pore

water NOx concentrations were found in higher Maco-

mona density and zero nutrient addition treatments.

Pore water dissolved reactive phosphorus concentra-

tions were significantly and negatively related to

Macomona density, but not nutrient addition. No

significant differences in benthic chlorophyll a concen-

tration or pore water ammonia concentrations were

detected. Although mean benthic chlorophyll a concen-

trations in the shaded plots were low, high variability

limited the detection of significant differences (see

Appendix).

Shading drastically changed the nature of the

interaction network (Fig. 2). In the unshaded treat-

ments, there were a total of 13 interactions; although

three were weak (P . 0.15 for estimates), they were

required for model stability. A positive feedback loop

was identified between Austrovenus, benthic chlorophyll

PLATE 1. Outplanting Macomona in one of the experimental plots on the sandflat (Wiroa Island, New Zealand). Photo credit:
Rachel J. Harris.
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a, and mud. A positive coarse sediment–organic matter

link fed into this positive feedback loop. Another weak

positive feedback loop involving Macomona releasing

nutrients to support chlorophyll standing stock fed into

the stronger feedback loop.

In contrast, in the shaded plots, only seven connec-

tions were made and there were no positive feedbacks.

The positive feedback between Austrovenus, benthic

chlorophyll a, and mud was broken at the link between

benthic chlorophyll a and mud, which was now negative,

and the positive effect of Macomona on Austrovenus was

also lost. Additionally, the negative effect of Macomona

on benthic chlorophyll a was now significant and the

positive effect of chlorophyll a on Macomona had been

lost. Although both bivalves play a central role in the

interaction network under ambient light, when the

sediment is shaded, their role, and in particular the

positive feedbacks, are not apparent. Under shaded

conditions, we see mostly simple unidirectional relation-

ships between biological and physical variables, with no

role for nutrient additions.

DISCUSSION

Our empirical evidence of a break point is consistent

with theoretical predictions of a system predisposed to a

threshold shift, which would occur in response to

changes in sediment loading and eutrophication. These

stressor-induced changes imply important shifts in

ecosystem interactions that determine organic matter

degradation, nutrient recycling, and productivity that

drive the functional capacity of coastal soft sediments.

The reconfiguration of the interaction network, as a

result of shading, occurred in about 100 days and

resulted in the loss of positive feedbacks both directly by

linking large Macomona with MPB and indirectly

mediated through large Austrovenus (Fig. 2). In addi-

tion, the nutrient additions mediated the interaction

between Macomona and MPB only in the unshaded

sediments. Although mean MPB was lower in shaded

treatments, high variability precluded detecting a

significant difference. An important factor on this

sandflat is the bedload transport of surficial sediments

and associated MPB (Turner et al. 1997). This process

provides a mechanism to resupply MPB to shaded

sediments and add variability to our data. Nevertheless,

our experiment was able to detect significant changes in

the ecosystem interaction network. At the scale of our

experiment, the mechanisms of change induced by large

Macomona are behaviors (bioturbation, feeding, gill

cleaning, gut voiding) that affect pore water oxygen

concentrations and nutrient cycling (Volkenborn et al.

2012). Mediation of the effects of nutrient additions by

large bivalves only in unshaded plots highlights the

potential for cumulative effects associated with in-

creased turbidity and eutrophication.

SEMs revealed that shading the sediment decoupled

the ecosystem role of Macomona in sediment biogeo-

chemistry. The range of data encompassed in model

building is important in generalizing the SEM. Although

the differences in environmental conditions encom-

passed in this experiment were subtle, the interaction

network models developed from this experiment were

similar to those previously developed from broadscale

surveys of large bioturbating fauna, sediment grain size,

organic characteristics, and benthic chlorophyll a

(Thrush et al. 2012). The previous analysis revealed

shifts in network architecture across a benthic chloro-

phyll a threshold of 11.6 lg/g chlorophyll a. Despite the

smaller range of data in our more recent experiment, a

similar threshold was detected, implying that the

FIG. 2. Changes in ecosystem interaction networks associated with experimental shading, showing R2 values for each factor.
Red arrows indicate positive effects, black lines indicate negative. Solid lines denote parameter estimates with P , 0.05; dotted lines
with P values 0.05–0.15; dashed lines with P . 0.15, but the relationship needs to be retained in the model for stability. Line
thickness increases with the size of the parameter estimate, standardized by the relevant range standardization procedure (Grace et
al. 2012); actual values are presented in the Appendix.
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networks are reasonably stable and consistent. Funda-

mental shifts associated with a loss of positive feedbacks

and restrictions in the importance of indirect effects were

apparent in both this experimental study and the

previous broadscale analysis. Providing empirical infor-

mation to define how a set of ecosystem components are

connected in an interaction network helps to elucidate

ecosystem function. Moreover, if specific types of

connections are present, but can be changed by

particular stressors, this provides a useful means for

predicting the risk of critical transition related to a

specific type and magnitudes of stress. It also allows

insight into ecosystem function after the transition.

Although there is often a gap between theory and

practice, we have been able to experimentally shift the

architecture of an interaction network, providing more

impetus for scientists and managers to use these

indicators of critical transitions. Our results show that

well-designed and scaled manipulative field experiments

can contribute to identifying warnings of increased risk

for upcoming ecosystem transitions by testing for

changes in interaction networks. For example, specific

experiments manipulating the level of shading could be

designed and implemented in different locations to

define key break points for resource management. Shifts

in functional performance associated with shading may

not be gradual if interaction networks fundamentally

shift. In our experiment, we see changes associated with

interactions that affect key attributes of the system

ranging from primary productivity and the stabilization

of fine sediments to the ability of the system to recycle

key nutrients. This indicates that the maintenance of

community function plays critical roles in the resilience

of sandflats to elevated suspended-sediment concentra-

tions and eutrophication.

Change associated with non-point-source land use,

sediments, and nutrients are notoriously difficult to

manage. However policies that generate inertia and are

blind to other surprises are dangerous and ultimately

may be very costly in terms of the loss of ecosystem

services and associated societal values (Horan et al.

2011). This is why the risks of threshold shifts are

important. If not properly accounted for, our futures

may be marked by sudden, unexpected reductions in

ecosystem functionality and value. If there is a credible

risk that a particular system can change in a nonlinear

way associated with subtle but cumulative stress, then

management down to a predetermined limit will be

highly risky. Our approach of investigating the archi-

tecture of ecosystem interaction networks, and how they

are changed by stressors, provides real-world empirical

evidence to support many of the theoretical develop-

ments in regime shifts and resilience. This will allow us

to more tangibly understand the implications of

thresholds in ecosystems that affect our daily lives.

Although we cannot yet predict when break points in

dynamics will occur, our approach does identify

mechanistic links and the key connections between

ecosystem elements that will facilitate interventions.

Such interventions are important in averting regime

shifts, especially where the drivers of change are difficult

to adjust or generate huge legacy effects (Biggs et

al. 2009).
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SUPPLEMENTAL MATERIAL

Appendix

Description of experimental effects and potential artifacts and base statistical tables structured equation modeling (Ecological
Archives E095-127-A1).
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