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1 INTRODUCTION

Text categorization, or the assignment of natural language texts to predefined categories
based on their content, is of growing importance as the volume of information available
on the internet continues to overwhelm us. The use of predefined categories implies a
“supervised learning” approach to categorization, where already-classified articles—which
effectively define the categories—are used as “training data” to build a model that can
be used for classifying new articles that comprise the “test data.” This contrasts with
“unsupervised” learning, where there is no training data and clusters of like documents
are sought amongst the test articles. With supervised learning, meaningful labels (such as
keyphrases) are attached to the training documents, and appropriate labels can be assigned
automatically to test documents depending on which category they fall into.

Text categorization is a hot topic in machine learning. Typical approaches extract
“features” from articles, and use the feature vectors as input to a machine learning scheme
that learns how to classify articles. The features are generally words. Because there are so
many of them, a selection process is applied to determine the most important ones, and the
remainder are discarded. This “bag of words” model neglects word order and contextual
effects. It also raises some problems: how to define a “word,” what to do with numbers
and other non-alphabetic strings, and whether to apply stemming.

It has often been observed that compression seems to provide a very promising alter-
native approach to categorization. The overall compression of an article with respect to
different models can be compared to see which one it fits most closely. Such a scheme has
several potential advantages:

e it yields an overall judgement on the document as a whole, rather than discarding
information by pre-selecting features;

e it avoids the messy and rather artificial problem of defining word boundaries;

e 1t deals uniformly with morphological variants of words;

o depending on the model (and its order), it can take account of phrasal effects that
span word boundaries;

e it offers a uniform way of dealing with different types of documents—for example,
arbitrary files in a computer systen;

e it generally minimizes arbitrary decisions that inevitably need to be taken to render
any learning scheme practical.

Furthermore, a compression-based approach to text categorization does offer potential im-
provements in compression performance, by selecting the most suitable model for each



text on an individual basis and transmitting its identity to the receiver—although it is
categorization, not compression performance, that is our primary motivator.

We have performed extensive experiments on the use of compression models for cat-
egorization using a standard dataset. This has involved working out how to deal with
the (normal) situation where a document may belong to several categories (not merely
choosing the one that it fits best). We report some encouraging results on two-category
situations, and the results on the general problem seem reasonably impressive—in one case
outstanding. Compression-based methods certainly succeed in categorizing the majority of
documents correctly, and compare quite well with simple machine learning schemes.

However, we find that compression-based methods do not compete with the published
state of the art in the use of machine learning for text categorization (although, as men-
tioned in Section 2.1, the art is rather difficult to replicate because it is not fully described
in the literature). Some reasons why this is the case are discussed in the closing section.

We have two overall conclusions. First, a negative result: we do not recommend the use
of compression models for text categorization if one seeks the best possible categorization
performance. Second, a methodological point: results in this area should be evaluated
comparatively with respect to the state of the art—it is too easy to give a positive impression
by avoiding direct, quantitative, comparison with other work.

2  EXISTING APPROACHES TO TEXT CATEGORIZATION

Text categorization is a supervised learning task where a test document is classified into
categories using a mapping derived from a set of labeled training documents. This is
a standard setting in machine learning, and there is a host of learning algorithms for
such problems (Witten and Frank, 2000)—many of which have also been applied to text
categorization. They all require documents to be transformed into feature vectors before
learning can take place. In the following we briefly review how this is done, and which
supervised learning schemes have been applied.

2.1 DATA PREPARATION

Standard approaches to text categorization using supervised learning represent each docu-
ment by the set of words it contains. Generally, each word is a binary feature (Dumais et al.,
1998), although more complicated procedures based on combinations of term frequencies
and inverse document frequencies are also possible (Yang and Pedersen, 1997).

The low-level problems of word identification and extraction are generally brushed un-
der the carpet. For example, Dumais et al. (1998) state only that “text files are processed
using Microsoft’s Index Server.” Yang (1999) uses the SMART system (Salton, 1989) for
removing stop words and stemming. Yet it is possible that text categorization results are
quite sensitive to the precise details of word extraction. For example, financial articles
may be distinguished by a prevalence of numeric dollar figures, which may well be dis-
carded wholesale by a preprocessor. There have been no studies of the robustness of text
categorization to changes in these low-level decisions.

Most schemes perform feature extraction prior to learning by selecting a small number
of words to participate in the learning phase and discarding the rest (Yang and Pedersen,
1997). For learning schemes that are sensitive to irrelevant features, this improves perfor-
mance markedly; if a scheme’s computational complexity depends heavily on the number
of features, it may be the only way to make learning feasible. For example, Dumais e¢



al. (1998) selected between 50 and 300 features for each category, based on a mutual infor-
mation measure between a feature and a category.

2.2 LEARNING SCHEMES

Many supervised learning methods have been applied to the problem of text categorization.
Information retrieval metrics, used by full-text retrieval systems to allow users to sharpen
their queries using relevance feedback (Rocchio, 1971), have been used by imagining a
query that contains all the words in the test document and using weights derived from
the documents in each class (Dumais et al., 1998). Naive Bayes classifiers estimate the
probability of each feature given each category from the training data (Langley et al.,
1992), assuming statistical independence of the features (which is why the method is called
“naive”). The Bayes net technique (Sahami, 1996) models limited dependence between
different features, and has also been applied to text categorization (Dumais et al., 1998).
Nearest-neighbor classifiers assign to a test document the class of the training document
that most closely matches it. A “divide-and-conquer” approach leads naturally to a decision
tree (Lewis and Ringuette, 1994). A linear model assigns weights to the features during the
training phase, and sums them for each feature that appears in the test document (Lewis
et al., 1996). Neural nets use multi-stage combinations of simple non-linear models (Ng
et al., 1997). Linear support vector machines select a small number of critical boundary
instances (i.e. documents) from each category and build a linear discriminant function that
separates them as widely as possible.

The best results for text categorization have been obtained using support vector ma-
chines (Dumais et al., 1998), committees of decision trees (Apte et al., 1998), and nearest-
neighbor classifiers that consider k nearest neighbors instead of only one (Yang, 1999).

3 TEXT CATEGORIZATION USING PPM

All these approaches to text categorization share the disadvantage that input documents
must be converted into feature vectors before they can be processed. This involves many
arbitrary decisions, making experimental results hard to replicate. The effect of these deci-
sions has never been thoroughly investigated. Pre-processing requires language-dependent
mechanisms like stemming that may not be readily available for the language in ques-
tion. Finally, if text categorization is considered from a broader point of view—where a
“text” can be any character stream-—word-based approaches will necessarily exhibit de-
ficiencies. Ideally, a text categorization scheme should be able to classify arbitrary files,
not just English-language documents. Its success should depend only on the availability of
sufficient training data, not on the type of documents to which it is applied.

In contrast to general-purpose classification methods that require extensive data prepa-
ration, compression techniques deal with arbitrary sequences of characters. Hence they
offer the prospect of a uniform approach to text categorization. The question is whether
they can be successfully applied to the task of discriminating between classes of documents.
In the following we investigate this question using the PPM compression scheme with order
2 and escape method C (Bell et al., 1990). Other orders were tried, but both lower and
higher choices were found to degrade performance in almost all cases—presumably because
the amount of training data available is insufficient to justify more complex models.



Training data Test data
Articles  Text (Kb) Articles Text (Kb)
corn 181 210 56 81
corporate acquisitions 1650 1307 719 542
crude oil 389 522 189 206
earnings 2877 1460 1087 457
grain 433 478 149 166
interest 347 329 131 147
money market 538 610 179 211
shipping 197 212 89 94
trade issues 369 569 117 180
wheat 212 235 71 77

Table 1: Corpus of Reuters articles used in experiments

3.1 THE BENCHMARK DATA

All our results are based on the Reuters-21578 collection of newswire stories,! divided
into training and test documents using the ModApte split—the standard testbed for the
evaluation of text categorization schemes. In total there are 12,902 stories, averaging 200
words each, that have been classified into 118 categories. However, the distribution of
stories among categories is highly skewed: the ten largest contain 75% of stories. These
ten categories—earnings, corporate acquisitions, money market, grain, crude oil, trade
issues, interest, shipping, wheat, and corn—are shown in Table 1, along with the number
of training and test stories that each one contains. A story does not necessarily belong
to only one category; many stories are assigned to multiple categories, and some are not
assigned to any category at all.

3.2 EXPERIMENTS USING PAIRWISE DISCRIMINATION

Application of a straightforward compression methodology to the problem of text catego-
rization quickly yields encouraging results. Consider the two-class case. To distinguish
documents of class A from documents of class B, we form separate compression models M 4
and Mp from the training documents of each class. Then, given a test document (different
from the training documents), we compress it according to each model and calculate the
gain in per-symbol compression obtained by using M 4 instead of Mp. We assign the docu-
ment to one or the other class depending on whether this difference is positive or negative,
on the principle that M4 will compress documents of class A better and similarly for Mp.

Figure 3.2 shows results for ten pairs of categories from the Reuters data, using the
ModApte split from Table 1.2 The graphs show, on the vertical axis, the difference in
compression. The vertical line to the left of each plot shows the test documents of one class,
and the vertical line to the right shows the test documents of the other. The fact that almost
all the points in the lefthand line lie above the zero line, and almost all in the righthand line
lie below it, indicates that almost all test documents are classified correctly. Superimposed
on each vertical line is a box whose center indicates the average compression difference
for that class, and whose extent indicates the standard deviation of the distribution. The
lefthand boxes lie comfortably above the line and the righthand ones comfortably below it.

In Figure 3.2a just one article is miscategorized, and that by only a small margin. In
Figures 3.2b and 3.2c there are no miscategorizations. Figure 3.2d also shows very few

IThe collection is publicly available at www.research.att.com/~lewis/reuters21578.html.
*However, for legibility Figure 3.2 only shows one-half of the test results.
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Figure 1: Pairwise discrimination using compression: (a) money market vs shipping; (b)
grain vs interest; (c) earnings vs wheat; (d) corporate acquisitions vs trade issues; (e)
corporate acquisitions vs grain; (f) crude oil vs earnings; (g) corporate acquisitions vs
earnings; (h) corn vs wheat; (i) grain vs wheat; (j) corn vs grain.

errors, but one is by a rather large margin. Figures 3.2d and 3.2e show a new phenomenon:
an article (just one in each case) that is assigned to both categories, displayed in the
middle. Clearly a pairwise discrimination policy cannot handle such cases. In Figure 3.2d
the doubly-classified article is near the zero point, while in Figure 3.2e it is far above it.

Figure 3.2f-j show some less satisfactory results. In Figure 3.2f, several (19) earnings
articles are misclassified as crude oil, one crude oil article is miscategorized by a large mar-
gin, and there is one article that belongs to both categories. Results would be improved by
choosing a small positive number, instead of zero, as the threshold. In Figure 3.2g many
(44) earnings articles are misclassified as corporate acquisitions and two corporate acquisi-
tions articles are assigned to the category earnings; in addition, there are two articles that
belong to both. Again, results would be improved by choosing a small positive threshold.
Figure 3.2h shows an article being misclassified by a rather large margin—the compression
metric assigns one of the wheat articles to the corn category by a very large margin; in
fact, this article is more corn-like (one hesitates to say “corny”) than most corn articles.
A significant number of articles belong to both categories. Figures 3.2i and 3.2j show an
extreme situation where all but one of the wheat articles, and all of the corn articles, also
belong to the grain category. Wheat and corn evidently form a subclass of grain and cannot
be distinguished using this methodology.

Table 2 summarizes the situation for all possible pairwise discriminations. We com-
press articles corresponding to the row but not the column according to (a) the model
corresponding to the row and (b) the model corresponding to the column, and present the
mean compression difference in bits/character, (b) — (a), averaged over the test articles.
The means are positive, indicating that they lie on the correct side of the zero line. The
only exception is that corresponding to the right-hand “bar” of Figure 3.2i, wheat vs grain,
where there is only one article on wheat that is not also on grain, and that article is classified



corn corp. crude earn- grain inter- money ship- trade wheat

acq. oil ings est market ping issues
corn — 0.43 0.39 053  0.00 0.62 0.50 0.38 0.45 0.09
corp. acq. 0.79 — 0.40 0.31 0.59 0.65 0.63 0.47 0.61 0.68
crude oil 045 0.26 — 0.35  0.37 0.48 0.43 0.37 0.38 0.46
earnings 1.47  0.99 1.15 — 1.18 1.53 1.48 1.34 1.39 1.27
grain 0.13 0.36 0.33 0.47 — 0.54 0.44 0.33 0.41 0.11
interest 0.65 0.26 0.33 036 0.46 — 0.17 0.52 0.55 0.59
money market | 0.57  0.39 0.37 0.50 0.44 0.18 — 0.46 0.32 0.55
shipping 0.27 0.19 0.16 0.32  0.20 0.38 0.29 — 0.31 0.24
trade issues 0.36 0.32 0.25 045  0.26 0.33 0.20 0.35 — 0.34
wheat 0.11  0.37 0.35 049 -0.06 058 0.46 0.33 0.45 —

Table 2: Mean difference in compression between model corresponding to row and model
corresponding to column, for articles corresponding to row but not to column

incorrectly.
These results paint a generally encouraging picture, but underline the fact that the
pairwise methodology needs extending to cope with multiply-classified articles.

3.3 DBUILDING POSITIVE AND NEGATIVE MODELS

For multiply-classified articles, we decide whether a model belongs to a particular category
independently of whether it belongs to any other category. We build positive and negative
models for each category, the first from all articles that belong to the category and the
second from those that do not. For a particular category C, call these models Mp and My
respectively.

Given a new article 4, denote its length when compressed according to these models by
L[A{Mp] and L[A|My]. From these lengths, the article’s probability given the categories
C and C is:

Pr[A|C] = 2~ LIAIMP] Pr[A|C] = 2~ LAIMY]

Bayes’ formula gives the probability that a particular article A belongs to category C"
PrlA|C]Pr[C]
Pr[A|C)Pr[C] + Pr[A|C]Pr[C]

The prior probability of C' is the proportion of articles belonging to that category, and the
denominator is the prior probability of article A.

Pr[C|A] =

3.8.1 Setting the threshold

Now we turn to the question of deciding whether a new article should in fact be assigned to
C or not. This presents the tradeoff between making the decision liberally, increasing the
chance that a category-C article is correctly identified but also increasing the number of
“false positives”; or conservatively, reducing the number of false positives but also increasing
the number of “false negatives.” This tradeoff is familiar in information retrieval, where a
search engine must decide how long a list of articles to present to the user, balancing the
disadvantage of too many false positives (irrelevant documents that are displayed) if the
list is too long against too many false negatives (relevant documents that are not displayed)
if it is too short.

Following standard usage, we quantify this tradeoff in terms of recall and precision. In
order to allow comparison of our results with others, we strive to maximize the average of
recall and precision—a figure that is called the “breakeven point.”



PPM Naive LSVM | Overlap || Dumais et al. Number of features

Bayes (1998) 5 50 300

corn 54.2 65.3 90.3 0.049 65.3 83.3 61.2 578
corporate acquisitions | 91.0 87.8 93.6 0.030 87.8 66.2 845 837
crude oil 80.7 79.5 88.9 0.044 79.5 769 826 835
earnings 96.3 95.9 98.0 0.020 95.9 91.1 951 964
grain 74.6 78.8 94.6 0.038 78.8 84.3 822 789
interest 60.4 64.9 777 0.045 64.9 55.4 598 52.8
money market 76.3 56.6 74.5 0.0563 56.6 50.9 61.2 61.0
shipping 81.9 85.4 85.6 0.039 85.4 71.3 831 837
trade issues 65.0 63.9 75.9 0.047 63.9 63.4 67.0 57.0
wheat 64.9 69.7 91.8 0.051 69.7 85.3 749 682

Table 3: Recall/precision breakeven point for compression-based categorization compared
with Naive Bayes and linear support vector machines; also (on the right), subsidiary results
for Naive Bayes

The basic strategy is to compare the predicted probability Pr[C|A] with a predeter-
mined threshold ¢, and declare A to have classification C if the probability exceeds the
threshold. The threshold is chosen individually, for each class, to maximize the average of
recall and precision for that class. To this end the training data is further divided into a
new training set (2/3 of the training data) and a validation set (1/3 of the training data).
The threshold ¢ is chosen to maximize the average of recall and precision for the category
(the breakeven point) on the validation set. Once it is obtained, maximum utility is made
of the training data by rebuilding the models Mp and My based on the full training data.

As an additional benefit, threshold selection automatically adjusts for the fact that Mp
and Mpy are formed from different amounts of training data. In general, one expects to
achieve better compression with more training data. On the other hand, the results in
Figure 3.2 indicate (to our surprise) that differing amounts of training data do not have a
strong influence on pairwise discrimination: it does not seem essential for good performance
to compensate for training set size.

3.3.2 Results

Table 3 shows the breakeven points obtained from our experiments, and compares them
with the results obtained by Dumais ef al. (1998) for the Naive Bayes and Linear Support
Vector Machine methods. (Ignore the rightmost block of figures; we return to them in
Section 4). PPM performs better than Naive Bayes on the six largest categories (grain is
the only exception) and worse on the four smallest ones. It is almost uniformly inferior to
the support vector method, money market being the only exception.

Compared to the support vector method, PPM produces particularly bad results on
the categories wheat and corn. These two categories are (almost) proper subsets of the
category grain. This is because articles in grain summarize the result of harvesting grain
products—for example, by listing the tonnage obtained for each crop. These articles use
very similar terminology. Consequently the model for wheat is very likely to assign a high
score to every article in grain.

It is the occurrence of the term “wheat” that is the only notable difference between an
article in grain that belongs to wheat and one that does not. The presence of a single word
is unlikely to have a significant effect on overall compression of an article, and this is why
PPM performs poorly on these categories.

Support vector machines perform internal feature selection, and can focus on a single



corn corp. crude earn- grain inter- money ship- trade wheat

acq. oil ings est, market ping issues
corn 0 0 0 0 43 0 0 0 2 29
corporate acquisitions 0 0 10 18 0 0 0 0 0 0
crude oil 0 5 0 2 2 0 1 14 2 0
earnings 1 8 0 0 1 0 0 0 0 0
grain 0 0 2 0 0 0 0 4 8 0
interest 2 48 11 15 5 0 108 3 20 1
money market 0 0 0 0 0 43 0 0 19 0
shipping 3 0 8 0 7 0 0 0 0 4
trade issues 0 3 4 0 7 16 38 5 0 1
wheat 13 0 0 0 26 0 0 0 2 0

Table 4: “False positive” confusion matrix for the predictions made by PPM

word if that is the only discriminating feature of a category. In comparison, Naive Bayes
performs badly on the same categories as PPM (money market is the only exception). This
is because, like PPM, it has no mechanism for internal feature selection. Section 4 presents
empirical evidence for the importance of feature selection in text categorization.

PPM performs badly on wheat and corn because the category grain occurs in substantial
numbers in both the positive and the negative training data for these two categories. The
effect can be quantified by computing the entropy of the distribution of grain articles among
the positive and negative training articles. The same entropy figure can be computed for all
other categories. The sum of these entropies, weighted according to the prevalence of the
corresponding category in the training data, represents a coarse measure of the “overlap,”
or similarity, between the positive and negative training data for a category.®

The Owverlap column of Table 3 shows this measure. It correlates well with the perfor-
mance difference between the support vector method and PPM. The only exception is the
category money market, and we conjecture from Naive Bayes’s poor performance on it that
this category is an outlier that occurs because it is poorly suited to the word-based ap-
proach. Excluding money market, the correlation coefficient for the difference in breakeven
performance between LSVM and PPM on the one side, and the entropy measure on the
other, is 0.71, and the correlation is statistically significant with a p-value of 0.03.

Table 4 summarizes some of the errors made by PPM on the test data. It shows how the
false positives associated with the category corresponding to a row are distributed among
the categories corresponding to the columns. Most false positives occur when articles belong
to related categories. This is particularly striking for wheat and corn: the first row shows
that 29 articles belonging to corn are incorrectly identified as wheat; the last row shows
that 13 wheat articles are incorrectly assigned to corn. Most false positives for the wheat
and corn models belong to the category grain, which comprises wheat, corn, and several
smaller categories (oat, rice, etc.) This adds further support to the argument that PPM
performs poorly with overlapping categories. A similar “false negative” confusion matrix
confirms that several articles belonging to both wheat and corn are not identified as wheat
(5 out of 15 false negatives).

$When calculating the entropy, we divide the weight of an article by the number of categories it belongs
to, giving every article a weight of 1 in the final sum.




3.8.8  Modifications

The results in Table 3 were obtained quickly, and we found them encouraging. Subsequently
we made many attempts to improve them, all of which met with failure.

In order to force PPM to build models that are more likely to discriminate successfully
between similar categories, we experimented with a more costly approach. Instead of
building one positive and one negative model, we built one positive model and 117 negative
ones for each of the 118 categories. For each negative model we only used articles belonging
to the corresponding category that did not occur in the set of positive articles. During
classification, an article was assigned to a category if the positive model compressed it more
than all negative models did. Results were improved slightly for categories like wheat and
corn. However, the support vector method still performed far better. Moreover, compared
to the standard PPM method, performance deteriorated on some other categories.

We also experimented with the following modifications of the standard procedure, none
of which produced any significant improvement over the results reported above:

e not rebuilding the two models from the full training data;

e using the same number of stories for building Mp and My (usually there are far more
stories available for building My);

e priming the models with fresh Reuters data from outside the training and test sets;

e priming the models with the full training data (positive and negative articles);

e artificially increasing the counts for the priming data compared with those for the
training data and vice versa;

e using only a quarter of the original training data for validation;

e using escape method A instead of C;

e using a word model of order 0, escaping to a character model of order 2 for unseen
words.

4 THE IMPORTANCE OF FEATURE SELECTION

In order to test the importance of feature selection we performed experiments with the
Naive Bayes learning scheme, varying the number of features it had access to. We employed
the standard word-based approach where the occurrence of a particular word is treated as
a binary feature. Before the input text was split into words, we removed all non-letter
characters and stop words. We did not perform stemming.

Naive Bayes does not incorporate any mechanism for feature selection. Before it is
applied, features must be pre-selected according to their influence on category membership.
Following Dumais et al. (1998), we used a different set of features for each category, choosing
the k features that had the greatest mutual information with the category.

The rightmost block of Table 3 shows the breakeven performance for the ten largest
categories for three different numbers of features: k£ = 5, k = 50 and k& = 300. It also
includes the results obtained by Dumais et al. (1998) using fifty features. Although our
results are similar overall, they differ slightly for some categories, possibly because we did
not perform stemming.

The results show that the optimum number of features varies significantly among cat-
egories. For several categories (earnings, corporate acquisitions, crude oil and shipping) a
large number of features is best. However, for grain, wheat and corn performance peaks
with only five features. Moreover, for wheat and corn the breakeven point increases dra-
matically when five features are used instead of fifty—and in fact for wheat it increases



further when just one feature is used. This is consistent with the conjecture above that
often the occurrence of just a few words is sufficient to predict category membership.

5 (CONCLUSIONS

Compared to state-of-the-art machine learning techniques for categorizing English text,
PPM produces inferior results because it is insensitive to subtle differences between articles
that belong to a category and those that do not. We do not believe our results are specific to
PPM. If the occurrence of a single word determines whether an article belongs to a category
or not, any compression scheme will likely fail to classify the article correctly. Machine
learning schemes fare better because they automatically eliminate irrelevant features.

Compared to word-based approaches, compression-based methods avoid ad hoc deci-
sions when preparing the text for the actual learning task. Morever, compression-based
methods apply immediately to the categorization of arbitrary documents, not just English
text. However, it is hard to see how efficient feature selection could be incorporated into
PPM. Hence it seems appropriate to abandon this method and to move to a classical ma-
chine learning setting where, instead of using words, each n-gram is treated as a separate
feature for the learning algorithm.

Anecdotal evidence indicates that the idea of using compression to classify documents
is one that has been reinvented many times. One of us (IHW) investigated its use for
document classification in the mid-1980s. We know of few records of such investigations,
although Teahan (1998) concludes, based on some experiments, that compression methods
are capable of ascribing authorship and identifying language dialects. We are less sanguine,
and tend to believe that compression-based methods will not compete with other, state of
the art, methods for such problems. Given our interest in the use of compression for text
mining (Witten et al., 1999), we would like to be proved wrong.
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