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Abstract

The full n-Latin square is the n x n array with symbols 1,2,...,n
in each cell. In this paper we show, as part of a more general result,
that any defining set for the full n-Latin square has size n3(1 — o(1)).
The full design N (v, k) is the unique simple design with parameters
(v, k, (Z:g)), that is, the design consisting of all subsets of size k from a
set of size v. We show that any defining set for the full design N (v, k)
has size (;)(1—o(1)) (as v — k becomes large). These results improve
existing results and are asymptotically optimal. In particular, the
latter result solves an open problem given in (Donovan, Lefevre, et al,
2009), in which it is conjectured that the proportion of blocks in the
complement of a full design will asymptotically approach zero.

1 Introduction

For convenience, we adopt the notation N(a) for the set of positive integers
{1,2,...,a}.

We prove the key result on full n-Latin squares in terms of a more general
combinatorial array. A (partial) (m,n,t)-balanced Latin rectangle is an mxn
array of multisets of size (at most) ¢ such that each element of N (t) occurs (at
most) n times in each row and (at most) m times per column. If each of these
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multisets is a set, we say that the partial (m,n,t)-balanced Latin rectangle is
simple. A simple (m,n,t)-balanced Latin rectangle may be easily constructed
by placing N(t) in every cell; we call this the full (m,n,t)-balanced Latin
rectangle or F,, ,, ;.

A (partial) n-Latin square is a (partial) (n, n,n)-balanced Latin rectangle
and the full n-Latin square is the n-Latin square with N(n) in every cell.

A defining set D of an (m,n,t)-balanced Latin rectangle L is a partial
(m, n,t)-balanced Latin rectangle with unique completion to L. A minimal
defining set (one that is not the superset of any defining set) is said to
be a critical set. In the example below, the partial (2,3, 3)-balanced Latin
rectangle (on the left) is not a defining set for F; 53 (in the centre) as it also
completes to another (2,3, 3)-balanced Latin rectangle (on the right).

1 1231123123 [1.12]233[1,23
2123 (123123123 [233|1,12]123

The size or the number of entries in a partial (m,n,t)-balanced Latin
rectangle L, denoted by |L|, is the cardinality of the multiset sum of the
multisets in each cell of L (i.e. the sum of multiplicities of each element
over all the cells). To clarify, the above structures have sizes 4, 18 and 18,
respectively.

We identify any partial n-Latin square as saturated if each cell is either
empty or contains N(n). Otherwise it is non-saturated. In [4], it was shown
that a saturated critical set for the full n-Latin square has size exactly equal
to n®—2n?—n and that any defining set has size at least (n®—2n*+2n)/2. We
significantly improve this lower bound in Corollary 3, showing in fact that
the complement of a defining set for £}, ,, asymptotically tends to zero in
proportion to |F}, .| = n®. The bound presented is unlikely to be exact; in
4] defining sets of size (n —1)? + 1 of the full n-Latin square are constructed
for n > 2; this remains the smallest known construction. The structure of
minimal defining sets of F,, ,, o is completely determined in [3].

The study of critical sets in full n-Latin squares has the potential to
yield information on critical sets in Latin squares; for example, intersecting a
defining set of F}, ,,,, with any Latin square L of order n results in a defining
set of L. See [2, 12] for surveys on defining sets in Latin squares.

The idea of a full n-Latin square was motivated by the analogous concept
of a full design (see [1, 5, 6, 7,9, 11, 13, 14]). A (v, k, \)-design is a collection
of subsets of N(v) (which are called blocks), each of size k, such that each
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(unordered) pair from N(v) occurs in exactly A blocks. A design is simple
if there are no repeated blocks. There is a unique simple (v, k, (Zj) )-design
consisting of all the possible subsets of size k from the foundation set N(v);
we call this the full design F'(v, k).

A defining set for a (v, k,\) design D is a subset of D which is not the
subset of another design with the same parameters (where repeated blocks
are allowed). See [10] for a survey of known results on defining sets in designs.
Analogously to full Latin squares, the intersection of the defining set of the
full design F'(v, k) with any simple design D with parameters v and k gives
a defining set for D.

The previous best known lower bound on the size of a defining set in
the full design (for all v > 3) F(v,3) is 3(3)/7 ([7]). In the same paper it
is conjectured in the conclusion that: “...the proportion of blocks in the
complement will asymptotically approach zero.” We prove this conjecture
for any full design F'(v, k), where v — k tends to infinity, in Theorem 8. The
smallest known size of a constructed defining set for F'(v, 3) is (v® —6v*+5v+
6)/6 ([7]). In [8] defining sets for F (v, k) of size (}) — (v*+3v—2vk+2k*—8) /2
are given whenever v > k + 2 > 5. In [14] two constructions of minimal
defining sets of F (v, k) are given, of size (}) — (v* —v—k? + k+2)/2 (where
v > k+3) and of size (}) + (k — 1)(k +2)/2 — kv (where v > k + 2).

Although this paper gives asymptotically optimal solutions for the sizes
of the smallest defining sets in both full designs and full n-Latin squares,
it remains an open problem to determine exact bounds. The simplicity of
constructions for the smallest defining sets known so far suggests that elegant

formulae may exist for these bounds.

2 Defining sets of full (m,n,t)-balanced Latin
rectangles

In the following, D is a simple, partial (m,n,t)-balanced Latin rectangle.
That is, D always has a completion to the full (m,n,t)-balanced Latin rect-
angle F,, ;. For each pair {a,b} C N(t), we define S,;(D) (or S, if the
context is clear) to be the set of cells in D which contain neither a nor b.

Lemma 1. Let t > 2. Suppose that D is a defining set for F, .. For each
pair {a,b} C N(t), |Sep(D)| <m+n—1.



Proof. Suppose, for the sake of contradiction, that D is a defining set for
F,..n+ and that there exists a pair {a,b} C N(t) such that |S, ;| = m+mn. De-
fine G(D) = (V1UV,, E) (where Vi = {r1,r9, ..., 7} and Vo = {c1, 2, ..., cn })
to be the bipartite graph that corresponds to the cells of S, ;. That is, edge
{ri,c;} € E if and only if the cell D, ; of D contains neither a nor b. Since
|Sapl = m + n, by elementary graph theory, G(D) contains a cycle C'; nec-
essarily of even length. Partition the edges of C' into M; and Ms, each sets
of independent edges. Starting with F' = F),,;, we construct an (m,n,t)-
balanced Latin rectangle F” # F as follows. For each {r;,c;} € My, replace a
with b in cell £} ;, so that this cell has two occurrences of b and no occurrences
of a. For each {r;,¢;} € My, replace b with a in cell F; ;, so that this cell has
two occurrences of @ and no occurrences of b. Since C'is a cycle, the resultant
F’ is still an (m, n, t)-balanced Latin rectangle. Moreover, D C F’ # F'; thus
D is not a defining set, a contradiction. O

Theorem 2. Let D be a defining set of F, . witht > 2. Then,

Dl > mn(t—l/g—\/t(t_l)(m+"—1)+i)

mn

1o y7))

Proof. Let D be a defining set of F,, ;. For each (i,7) € N(m) x N(n), let
e;; be the number of symbols in cell D; ;. Observe that

Dl = Y > ey (1)

i=1 j=1

and that for each cell, the number of pairs from N(¢) which contain no
element of that cell is (¢t —e;;)(t — e;; — 1)/2. However, from the previous
lemma, the number of cells in which each pair from N(¢) does not occur is
at most m +n — 1. Thus:

m n

DD t—e)t—ey;—1)/2 < tt—1)(m+n—1)/2. (2)

i=1 j=1

We wish to minimize (1) according to this constraint. By the method
of Lagrange multipliers, —|D| is maximized when there is a constant A such
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that

for each (i,7) € N(m) x N(n). Let N’ = 1/X > 0. Thus, from Inequality (2)
above,
mn(N +1/2) (N —=1/2) <t(t—1)(m+n—1).

Thus

V< \/t(t—l)(m—i—n—l) +1.
mn 4
The result then follows from (1). O

If m = n =t we have a full n-Latin square and the following corollary.

Corollary 3. Letn > 2. If D 1is a defining set for the full n-Latin square,
D] =n*(1 = O(n~"?)).

3 Defining sets of full designs

We start with an elementary result in extremal graph theory.

Lemma 4. Let G be a simple graph with v vertices and more than | (4v—3)/3]
edges. Then G has an even circuit.

Proof. Suppose G has no even circuits. Then for each odd cycle C in G,
there is no edge in G not belonging to C' that is incident with two vertices
from C. In fact, any two odd cycles in G must be vertex-disjoint. Suppose
there are k such cycles altogether, where k > 0. Observe that any edge not
belonging to one of these cycles must be a bridge. Thus there are at most
v—1+k<v—1+ |v/3] edges, a contradiction. O

We first consider the case when block size is equal to 3. In the following
lemma, given a subset D of the full design F'(v,3), for each (unordered)
pair {a,b} C N(v), we define s, (D) to be the number of (unordered) pairs
{i,j} € N(v) \ {a, b} such that neither {3, j,a} nor {i,j,b} is an element of
D.

Lemma 5. Let D be a subset of the full design F(v,3), where v > 4. Suppose
there exist distinct a,b € N(v) such that s,,(D) > |(4v — 11)/3]. Then D
is not a defining set for F(v,3).



Proof. For the sake of contradiction suppose that there exists such a pair
a,b and that D is a defining set. Construct a simple graph G with vertex
set N(v) \ {a,b} and an edge between ¢ and j whenever neither {4, j, a} nor
{i,7,b} isin D. From the previous lemma, GG contains an even circuit C; list
the edges of C' in the form of an Euler circuit ey, es, ... eq, (Where m > 2),
i.e. so that each pair of adjacent edges in the list share one vertex.

Let F; and F5 be the set of edges in the list with odd and even subscripts,
respectively, so that together they partition the edges of C'. We create a
design F’ # F by adjusting F' = F(v, 3) as follows. For each edge {i,j} € F7,
replace {4, j,a} € F with {7, j, b}, so that there are now two occurrences of
{i,4,b}. For each edge {i,j} € F;, replace {3, j,b} € F with {4, j,a}, so that
there are now two occurrences of {7, j,a}.

Observe that F” is a design with the same parameter set as F'and D C F".
Therefore D is not a defining set, a contradiction. O

We give an example illustrating the previous lemma. Suppose the follow-
ing blocks are not in D C F(v,3), for some v such that {1,2,3,4,5,a,b} C
N(v):

{{1,2,2},{2,3,2},{3, 1,2}, {1,4,2},{4,5,2}, {5, 1,2} | © € {a,b}}.

Then, there is an even circuit GG, and in turn sets of edges I} and F, as in
the proof above:

Fl = {{L 2}’ {37 1}7 {47 5}}7 FZ - {{27 3}7 {174}7 {57 1}}

Then D is a subset of the following (v, 3, v — 2)-design:

F(v,3)\ {{1,2,a},{2,3,b},{3,1,a},{1,4,b},{4,5,a},{5,1,b}},

with the following blocks each occurring twice:

{{1,2,0},{2,3,a},{3,1,b},{1,4,a},{4,5,b},{5,1,a}}.
Theorem 6. Let D be a defining set for the full design F(v,3). Then

D] > v(v—1)(v —5/2 — /(320 — 85)/12)/6 = (g) (1 - O(u12)).



Proof. Let D be a defining set of F'(v,3). For each (unordered) pair {i,j} C
N(v), let z; ; be the number of triples in D which contain both ¢ and j; then
0 <y <v—2. Observe that 3|D[ = 7, 1y, Tig-

From the previous lemma, for each {a,b} C N(v), sqp(D) < (dv—11)/3.
Observe that

Z (v=2—mz;)(v—3—u;;)/2= Z Sap(D) < (;) (4v — 11)/3.

{#,j}CN(v) {a,b}CN(v)

We wish to minimize |D| according to this constraint. By the method
of Lagrange multipliers, —|D| is maximized when there is a constant A such
that

1= Aaiy — (20—5)/2)
for each pair {i,j} C N(v). Let N’ = 1/A > 0. Thus, from the inequality
above,

(N +1/2)(N — 1/2) < 2(4v — 11)/3

N < /(320 — 85)/12.

The result follows. ]

and

We now obtain a similar result for the full design F'(v, k), where k > 3.

Lemma 7. Let D be a defining set for F(v,k) and let K C N(v) be a fived
subset such that |K| = k — 3. Let dx be the number of blocks of D which
include K as a subset. Then

die > (v —k+3)(v—k+2)(v—k+1/2—/(32(v — k) +11)/12)/6.

Proof. Without loss of generality, let N(v)\ K = N(v—k + 3). Let Fx and
Dy be the set of all blocks that contain K as a subset in F(v, k) and D,
respectively. Let Bi be the set of blocks formed by deleting K from each
block of Dg. Now, By is a subset of the full design F'(v —k+3,3). Suppose
that Bk is not a defining set for F'(v — k + 3,3); let Fj be a design with
parameters (v —k+3,3,v—k+ 1) that contains Bx but is not the full design
and let F be the set of blocks obtained by taking the union of K with each
block from Fj. Next, let I’ = (F(v,k) \ Fx) U Fy. Then F' # F(v,k), F'
has the same parameters as F'(v, k) and D C F’, contradicting the fact that
D is a defining set. Therefore By is a defining set for F'(v — k + 3,3). The
result follows from Theorem 6. O




Theorem 8. Let D be a defining set for the full design F(v, k). Then

o1 (§) [+~ LY TR (-0t - w9

Proof. Let D be a defining set of F/(v, k). Let K C N(v) such that |K| = k—3
and let dx be the number of blocks from D which have K as a subset. Then

k
(e - Y e B
KCN(®v),|K|=k—3

So, from the previous lemma:

(") (E) (= k+1/2 — /(32(v — k) + 11)/12)
3(kﬁ3)

and the result follows. ]

D[ >
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