

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Analysing Reverse Engineering
Techniques for Interactive Systems

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Master of Science in Computer Science

at

The University of Waikato

by

Feifei (Amy) Lin

supervised by

Judy Bowen·Steve Reeves

The University of Waikato

Department of Computer Science

Hamilton, New Zealand

2012

© 2012 Feifei Lin

Abstract

Reverse engineering is the process of discovering a model of a software system by

analyzing its structure and functions. Reverse engineering techniques applied to

interactive software applications (e.g. applications with user interfaces (UIs)) are

very important and significant, as they can help engineers to detect defects in the

software and then improve or complete them. There are several approaches, and

many different tools, which are able to reverse-engineer software applications into

formal models. These can be classified into two main types: dynamic tools and

static tools. Dynamic tools interact with the application to find out the run-time

behaviours of the software, simulating the actions of a user to explore the system’s

state space, whereas static tools focus on static structure and architecture by

analysing the code and documents. Reverse engineering techniques are not

common for interactive software systems, but nowadays more and more

organizations recognize the importance of interactive systems, as the trend in

software used in computers is for applications with graphical user interfaces. This

has in turn led to a developing interest in reverse engineering tools for such

systems.

Many reverse engineering tools generate very big models which make analysis

slow and resource intensive. The reason for this is the large amount of information

ii

that is generated by the existing reverse engineering techniques. Slicing is one

possible technique which helps with reducing un-necessary information for

building models of software systems. This project focuses on static analysis and

slicing, and considers how they can aid reverse engineering techniques for

interactive systems, particularly with respect to the generation of a particular set

of models, Presentation Models (PModels) and Presentation Interaction Models

(PIMs).

iii

Acknowledgments

I would like to express my great appreciations to my supervisors, Dr. Judy Bowen

and Professor Steve Reeeves. I am grateful for their support, encouragement,

expert guidance and commitment to this thesis. Their comments and proofreading

help me to finish this thesis. I would also like to thank the librarian, Ms. Cheryl

Ward, for her patience with checking through the bibliography and helping me to

improve it. Also, thanks to Peilun Hu for her occasional massage to relieve my

stiff shoulders! Finally, huge gratitude to my wonderful parents who gave me

enormous love and freedom, my siblings who encouraged me, and my lovely 3-

year-old nephew who always make me happy. Without these people, this thesis

would never have happened.

iv

v

Contents List

Abstract ………………………………………………………………. ii

Acknowledgments ……………………………………………….. iv

List of Tables …………………………………………………………. viii

List of Segments ……...………………………………………………. x

List of Figures ………..………………………………………………. xii

1 Introduction …………………………………..…………….….. 1

1.1 Background ……………………………………………...... 1

1.2 Defining the Problem and Outline of Possible Solution 9

1.3 Report Outline …………………………………………...... 13

2 Related Works ………………………………………………….. 15

3 Explanation of Example ……………………………………….. 25

4 Overview of Models with Example …………..……………….. 33

4.1 Presentation Models ……………………………................. 33

4.2 Presentation Interaction Models ………………………....... 38

4.3 Functional Specification ………………………………....... 41

4.4 Presentation Model Relation …………………………….... 46

5 Program Slicing ………………………………………………... 49

5.1 System Dependence Graphs …………………………......... 52

vi

5.2 Slicing of a System ... 64

5.3 Slicing with JavaParser ………………………………........ 73

6 Analysis of Slicing & Parsing …………………………………. 87

7 Conclusions …………………………………………………….. 97

7.1 Overview of Project Goals ………………........................... 97

7.2 Summary of Results ... 98

7.3 Future Work ……………………………………………..... 99

8 Bibliography …………………………………………………… 101

9 Appendix A …………………………………………………….. 109

10 Appendix B …………………………………………………….. 115

11 Appendix C …………………………………………………….. 119

vii

List of Tables

1: The declarations of the presentation models of the example

system. ... 36

2: The presentation models of the example system. 37

3: The presentation model of the main window of Guess Game. 51

4: Output of parsing Segment 6. .. 77

5: A partial parsing output for some objects of Guess Game. 89

6: The PModel of frame in Table 5. ... 93

viii

ix

List of Segments

1: An example of a calling control statement embedded in a sub-

system. ... 53

2: An example of a calling statement based event. 54

3: An example of data flow for the msg label in Guess Game. 56

4: The source code related to the procedure

generateRandomNumber. .. 59

5: Two different procedures with the same procedure call. 66

6: The partial source code of the class guessGame for Guess Game. 76

x

xi

List of Figures

1: The components of an interactive system and the interaction

between a user and an interactive system. 3

2: The different emphasis of different reverse engineering techniques

for an interactive system. .. 4

3: A tree representation of Java source code. 10

4: The general process of reverse engineering an interactive system. 11

5: The main window of Guess Game. ... 26

6: A message window of Guess Game after “Go” button is clicked. .. 27

7: The main window after unsuccessful guess. 27

8: The message window after second guess. 28

9: The message window after successful guess. 28

10: The main window at start of round two. ... 29

11: The message window after out of range guess. 30

12: The main window after range is reset. .. 31

13: The menu options to end game or start a new round. 31

14: mainWin of the example system. .. 36

15: msgWin of the example system. .. 37

16: The presentation interaction model of the example system. 40

xii

17: The actual process of reverse engineering an interactive system

which has multiple procedures. ... 57

18: The partial SDG of Guess Game for the Segment 1. 58

19: The partial SDG of Guess Game for Segment 1 with additional

actual-in and actual-out vertices as global variables in the called

procedure. .. 60

20: The partial PDG of the called procedure

generateRandomNumber with source code in Segment 4. 61

21: The partial SDG of the combination of Segment 1 and Segment 4,

adding a call edge, parameter-in edges, and parameter-out edges. 62

22: The extension of the node countMsg.setVisible(false)

of Figure 18. .. 63

23: The simplified SDG of Segment 5. ... 67

24: An example of a realizable path in the SDG. 70

25: The SDG of Figure 19, augmented with summary edges. 71

26: The SDG of Figure 23, sliced with respect to

msgFrame.setVisible(false). .. 72

27: The sliced SDG of Figure 26. .. 73

28: The partial SDG of Segment 6. ... 78

29: The PDG of main procedure in Segment 6. 79

30: The PDG of the procedure createAndShowGUI in Segment 6. 81

xiii

31: The SDG of Segment 6, connecting PDGs by adding a call edge,

parameter-in and parameter-out edges. ... 81

32: The complete SDG of Segment, creating flow edge represented by

a thin arrow to the SDG in Figure 31. ... 85

33: The inferred structure of a window in the form of a frame in the

source code without widgets. .. 92

34: The inferred structure of a window in the form of frame in the

source code with widgets, based on Table 5. 92

35: The PIM based on Table 6. .. 93

xiv

xv

Chapter 1

Introduction

1.1 Background

Interactive systems have been developed for years and are widespread in the

information age. Lots of applications with user interfaces (UIs) are used on

computers, for example, Graphical user interface (GUI) applications. GUIs play a

very important role in today’s software by making the operation of applications

more visually oriented with basic objects such as menus, buttons etc. It is easier

for people to understand those applications than applications with command line

interfaces, and they can more easily access the system functionality (which refers

to the internal behaviours of the system). Enterprise competitiveness is very much

dependent on the quality of the GUI because good-quality of the GUIs ensures

usability of the systems. However, interactive systems often contain design

defects that may cause users problems [9] and which are hard to find, and it is

difficult to maintain the quality of complex and large user interfaces. A large

1

proportion of failures in interactive systems are caused by human error, as

described by Leveson [1]. Human error in computer system use is often due to

errors in the user interface design and not the sole result of errors of the users of

the systems.

As part of software development, we should ensure we correctly understand what

the client’s requirements of the software are. This means that when we design it,

the requirements will always be met (assuming we design it correctly), and it can

also be guaranteed that when we turn the design into implementations the

requirements will be maintained (assuming we follow relevant formal processes).

There is no guarantee that knowing the requirements ensures programmers will

program in strict accordance with them. We need proof of this before we

implement them.

An approach we rely on to achieve this is to use formal methods, which can be

defined as follows:

“we follow a process which uses some formal language to specify the

behaviour of the intended system, techniques such as theorem

proving or model-checking to ensure the specification is valid (i.e.

meets the requirements and has been shown, perhaps by proof or

other means of inspection, to have the properties the client requires

of it) and a refinement process to transform the specification into an

2

implementation” [4].

Another reason to use formal methods is that they help with describing the

functionality of systems (application logic or underlying system behaviour) and

this is useful because it acts as a bridge between the implementation and the

artifact design, giving a clear idea about functionalities of systems for

programming which streamlines the development process.

We can describe how we will consider the components of a software system by

the illustration in Figure 1.

Figure 1: The components of an interactive system and the interaction between

a user and an interactive system.

An interactive system is constructed from a user interface and the system

3

functionality. The system functionality describes all of the internal behaviours of a

system. The user interface allows a user to access the system functionality. Many

existing well-known reverse engineering techniques and tools focus on the

underlying system behaviour (system functionality), such as the model-to-

implementation mapping tool used in [10] to check if an implementation of a

software system conforms to the specification of that system. Recently, there have

also been some tools developed to reverse engineer graphical user interfaces, and

collect information on a GUI’s structure, like GUI Ripper [7]. What we want to do

is reverse engineer the system to get both the structure of the GUI and its

corresponding internal behaviour. We illustrate this in Figure 2.

Figure 2: The different emphasis of different reverse engineering techniques for

an interactive system.

Meeting the client’s requirements is not enough for developing software. We must

4

also consider the user, to ensure they are able to satisfactorily use the software we

have built. Apart from the correctness of the underlying application, good-quality

software must meet the satisfaction of the user.

An approach named User-Centered Design (UCD) tackles these concerns and

involves the user at the centre of the design process.

“User-centered design can be characterized as a multi-stage

problem solving process that not only requires designers to analyze

and foresee how users are likely to use a product, but also to test the

validity of their assumptions with regards to user behaviour in real

world tests with actual users” [5].

User requirements are considered right from the beginning and throughout the

whole process. These requirements are noted and refined through some methods

like

“ethnographic studies, brain-storming sessions using white-boards

and post-it notes, paper and pencil sketches etc. and are intended to

convey information quickly and easily to non-technical people, i.e.

real users rather than software developers” [4].

This approach tries to ensure that the system we build is usable by the end-users.

UCD is strongly related to Human-Computer Interaction (HCI).

HCI is the study of the interaction between the user and the computer. It focuses

5

on the design, evaluation, and implementation of interactive computer systems

which are to be used by humans. This approach does not specify any order to the

activities surrounding this evaluation. It strongly iterates user evaluation

throughout the whole process, adapting to the needs of the users while issues are

discovered or changed. Therefore, a good design of user interface is created,

meeting the expectations of the intended users.

In order to ensure correct execution of the overall software, the correctness of the

user interface is essential. The UI’s correctness includes its usability, which covers

the effectiveness, efficiency, and satisfaction that is the basic and main

characteristic. This characteristic allows the user to interact with the system to

achieve their goals. In order to have a good user interface it must both be properly

designed and properly implemented.

Reverse engineering techniques are a popular and meaningful way to detect

defects in software applications and then improve or complete them. Reverse

engineering is the process of analyzing the structure, function, and operation of a

device / object / system to discover its technological principles. In the field of

software development, there are various uses of reverse engineering but no

consistency with the terminology. Chikofsky and Cross researched the uses and

defined a taxonomy in their paper [3], which states,

“Reverse engineering is the process of analyzing a subject system to

6

identify the system’s components and their interrelationships, and

create representations of the system in another form or at a higher

level of abstraction”.

We can understand reverse engineering as the initial examination of the system by

analyzing an existing software system and then inferring its design. Re-

engineering is the subsequent modification of the system generally by adding new

functionality or correcting errors in the design. Software re-engineering is mostly

used for legacy systems to better fit the needs, for example, of the different

environments required. Some examples of reverse engineering uses include those

given in Samir [8], who migrates desktop applications like Java-Swing

applications to the web as Ajax applications. Also mentioned in [8], is the famous

mobile brand Nokia who use WebCream, a commercial tool for a Java to HTML

conversion that constructs HTML front ends for Java applications to web-enable

their networking software. These are both examples of commercial re-engineering

methods based on reverse engineering principles.

Model-based design helps designers to specify and analyze systems through

identifying high-level models. Prior to implementation, the models are then

verified and used as the basis for the development of the implemented software.

Several tools are able to reverse-engineer software applications into formal

models. In practice, these tools can be classified into two main types: dynamic

tools and static tools. Dynamic tools interact with the application to find out the

7

run-time behaviours of the software, simulating the actions of a user to explore the

system’s state space. For example, the GUIRipper tool developed by Memon et al.

[7] opens all of the software under test (SUT)’s windows, and extracts all widgets,

properties, and values using a dynamic process; whereas static tools focus on

static structure and architecture by analyzing the code and documents, e.g. Corbett

[6] extracted a finite state model from Java source code using the Bandera tool.

The basic difference between them is that source code of the re-engineered

application is required for the static tools but not necessarily for dynamic tools.

This has implications in terms of the information that can be gathered.

In this project, I examine reverse engineering techniques which analyse the

structure and behaviour of interactive software applications, with the aim of

identifying how such tools could be used to build a particular set of models,

Presentation Models (PModels) and Presentation Interaction Models (PIMs).

These models were developed by Bowen and Reeves [4] with the intention of

creating formal descriptions of interactive systems. The presentation model is

used to formally capture the meaning of the user interface of a system or an

informal design artifact such as a scenario, storyboard or prototype, the

presentation interaction model provides a view of the dynamic changes of the UI.

The combination of PModels with μCharts is called PIM and we describe these

using the μCharts language [37]. I will describe these models in detail in Section

4.2.

8

1.2 Defining the Problem and Outline of Possible Solution

This project examines reverse engineering techniques and how they can be used

for interactive software applications. It shows how both types (static and dynamic

analysis) when used in this context have shortcomings.

Static analysis involves considering the software’s code. There may be thousands

of lines of code for an application, so attempting this manually (i.e. by reading

and understanding the code) is not a practical approach. In this case, some tools

can help. These may be based on reverse engineering principles such as Parsing

and Slicing. We can use a parser to generate the Abstract Syntax Tree (AST) of the

software and then use slicing tools to reduce the entire AST and then get the parts

of the AST only relating to the GUI. This reduces the amount of code which needs

to be considered. However, it sometimes causes some problems, such as the

ability to understand some of the information or missing hidden information, and

so on. We will give more details of this in Chapter 6.

The AST models an entire representation of the abstract syntactic structure of

source code written in a programming language (e.g. Java) in a tree form. A tree

representation of a Java source code is revealed as shown in Figure 3.

9

Figure 3 shows that the AST is good for the static reverse engineering as it breaks

the source code into useful components that means we can get the individual

information of each component. However, it means we need a way to traverse the

tree to find the relevant parts we care about.

Figure 3: A tree representation of Java source code.

Dynamic analysis has a different problem with losing hidden information. Most

dynamic tools only focus on modal windows. A modal window is a GUI window

that, once invoked, monopolizes the GUI interaction, restricting the focus of the

user to a specific range of events within the window, until the window is explicitly

terminated. Hence, the information for the modeless windows in the GUI that do

not restrict the user’s focus and merely expand the set of GUI events available to

the user is not extracted automatically and needs to be added manually.

Alternative information about the windows with security requirements is hard to

extract unless offering the right password because automation cannot predict or

respond to this. Also, dynamic analysis is limited with respect to the underlying

functionality it can discover, because by interacting with only the GUI, it is not

possible to understand all of the underlying system’s behaviours or changes in the

10

system states.

In addition, it is impossible in a static way to extract the information about

overlapping windows since this must be determined at run time, so it requires

dynamic analysis.

The second issue relates to the source code. If the source code does not correctly

implement the requirements, static analysis alone is unlikely to help because it is

unable to know what the intended outcome was. But we can compare it with the

outcome of the dynamic analysis to fix this issue. In dynamic analysis, the

windows with security requirements mentioned above can be extracted in a static

way, so a combined approach can also be used.

Static analysis only needs the source code. The source code expresses every part

of a software system, including the framework library, GUI implementation (i.e.

the setup of GUI and event-handler code), and the underlying application

functionality. Our proposed reverse engineering process for such an interactive

application is shown in Figure 4.

Figure 4: The general process of reverse engineering an interactive system.

11

We have previously mentioned that we want reverse engineering tools which

focus on the user interface as well as on system functionality, i.e. which can

handle all parts of an interactive system. Using a Parser, we can collect the

information about the GUI widgets, objects, event handlers, and then get the

respective behaviour information using a Slicer. We want to understand how we

can gather information on GUI structure and objects and internal system

functionality respectively to build PModels and PIMs.

In this project, we focus on static analysis and possible ways to achieve it, which

are slicing and parsing. The choice of these as the possible ways will be justified

in Chapter 2 (after related work). Using parsing, we can abstract the whole

application, but by using slicing to just get the parts we are interested in, we can

avoid building a huge model. Some problems may occur, such as losing some

information like hidden information (i.e. internal system information) during the

slicing process, e.g. the count of how many times clicking happened on a button.

We propose a possible solution to combine slicing with parsing, and iterate slicing

to get each part we are interested in and then emerge with a complete GUI AST

for generating models. In this way, we can generate smaller but complete models

for an interactive system.

12

1.3 Report Outline

In the next chapter, we discuss some related works and explain how these were

used as the basis for our decision to focus on parsing and slicing. Chapter 3

introduces a small and simple Java/Swing application which will be used as a

running example in this project. Then we give an overview of the models

(PModels and PIMs) with an example in Chapter 4. In Chapter 5, we present our

solution - program slicing, how it works with the example application, and the

combination of slicing and parsing. We go on to analyze slicing and parsing in

Chapter 6 before we conclude in Chapter 7.

13

14

Chapter 2

Related Works

In this section I discuss several papers related to reverse engineering techniques.

These papers cover both static and dynamic analysis techniques and tools for a

variety of different languages and implementations.

There are many case studies of the use of static analysis techniques, involving

model checking. Corbett et al. [6] applied reverse engineering techniques to Java

applications. They showed a tool for model checking Java source code called

Bandera that automatically extracts finite-state models in the input language of

one of the following existing verification tools (e.g. SPIN, SMV, or SAL). The

tool has four components, which are the Bandera abstraction engine with a

language for specifying abstraction, a slicer to remove irrelevant code in the

program for checking an interesting property, a back-end to generate a model with

one of the model checker input languages (SPIN, SMV, or SAL), and a user

interface for interacting with these components. Bandera uses a slicer to reduce

15

Java source code based on the user’s specification (by describing the semantic

features of the program that the user is interested in reasoning about), then

abstracts them to get the sliced program for the back-end component to generate a

finite-state model in one of the languages and enables translation of the model in

the other two model checker input languages.

Dwyer et al. [19] also presented an approach for verifying the specification of

GUI internal behaviours using abstraction and then extracting a state-transition

model with the SMV model checking tool. Dwyer et al. targeted GUI

implementations which are constructed by frameworks or toolkits. Both Dewyer

and Corbett’s works generate a model for use with an existing model checking

tool. The model generated by Dwyer et al. specifically focused on GUI

functionality; by contrast, Corbett et al. generated a model focused on specific

properties.

The methods described above focus on building models of the implementations.

The particular set of models used in our project can also be derived from the

implementations but in addition can be derived from the design artifacts as well.

The particular models we use in our project are described using the μCharts

language to abstract an application with states and transitions. One model, the

presentation model, formally models an informal design artifact / implementation

by capturing static properties of a UI design, and another model named PIM uses

16

this to capture dynamic UI behaviours to describe the functionality of the design

artifact / implementation. We describe these models in detail in Chapter 4. So, our

models model an implementation with the structure of its UI and its internal

behaviours. Compared to the models generated by the methods discussed above,

the particular models used in our project are very different. Dwyer et al. give a

clear concept about abstraction in reverse engineering techniques, and the idea

about using a slicer is very interesting and suggested a possible approach for our

work.

Silva et al. ([14], [15], and [18]) explored the applicability of slicing techniques to

the needs of reverse engineering and developed a language-independent approach

for reverse engineering interactive systems. They took a Java/Swing application as

an example case and reverse engineered a behavioural model directly from the

application’s source code. They used a parser to build the AST of the application,

and then used GUI Code Slicing ([25], [26]) to traverse the AST in order to isolate

the Swing sub-program from the entire Java program. Finally they automatically

generated a GUI model using the GUISurfer tool [17]. The GUI Code Slicing

combines two language-independent techniques including strategic programming

and program slicing.

Corbett’s Bandera tool contains a slicing component to compress paths in a

program by removing some irrelevant properties for checking a property of

17

interest. This similar function is also used by Silva et al. to extract the information

related to the GUI layer. Silva et al. produced interesting results by using slicing

techniques for reverse engineering graphical user interfaces. Those papers

suggested a solution for our project, which is language-independent programming

slicing. After parsing, the AST contains all parts of an application. This led me to

consider if I could extract anything of interest for building models from the AST

using slicing techniques iteratively. This led to more research on slicing

techniques ([22], [23], [24], [25], and [26]) which described the history of slicing

techniques and many slicing methods, and I applied my research result in this

project (see details in Chapter 5).

Another static analysis approach used to reason about user-interaction properties

of Swing applications is given in this work [12]. The user-interaction properties

refer to the interaction orderings that are the sequences of user interactions that a

GUI implementation allows. This paper focused on event-handling, and took

Swing applications as targets. It described a notion of modeling event-handling

for Swing applications, which helps to explain the structure of event-handling of

an example application written in Java/Swing. However, event-handling is not a

central concern of our work.

Staiger [16] described static analyses for reverse engineering GUIs for GUI

applications, which means they reverse engineered the structure of user interfaces

18

for GUI software systems without their system functionalities whereas for our

work we require both. Staiger took C/C++ programs using the GTK/Qt GUI

library as an example, collecting the information about GUI elements and their

relationships. Staiger used data-flow information to identify the GUI widgets to

which these expressions refer, and we can similarly use data-flow information to

help building a system dependence graph of an interactive system for the slicing

process (see details in Chapter 5).

Static analysis works on the source code of a program and source code expresses

all parts of the program. In contrast, dynamic analysis extracts information from

the running application meaning the system information is hard to get and can be

missed during the analysis as information relating to the system state is often not

visible via the GUI. Source code, therefore, provides a better option than the

running program for collecting all of the required information. Hence, we prefer

static analysis as a reverse engineering technique for our project.

Even though our project focuses on static analysis methods for reverse

engineering interactive systems, we still consider dynamic analysis to see if it is

relevant to our work. On the dynamic analysis side, Systa [27] focused on the

functionality of Java software and used reverse engineering techniques to study

and analyse the run-time behaviour of the software. Systa ran the target software

under a debugger, and got the event trace information. The event trace information

19

can be viewed as a scenario and is an input to a prototype tool. The prototype tool

outputs state diagrams which are used to examine the system’s behaviours. This

work concentrates on a system’s underlying behaviours, ignoring the structure of

the UI of the targeted software. Using a debugger to get event traces is a good idea

and we consider this useful for future work.

Some of the case studies in dynamic analysis are on testing used in order to detect

defects in GUIs. In contrast to Systa’s work above, the GUI Ripper tool [7] is a

good example of studying reverse engineering of GUIs. It dynamically constructs

a model of an executable GUI to help generate test cases under the guide of “test

coverage criteria” [20]. A GUI’s state is modelled as a set of widgets (GUI

objects), properties and values. As well as modelling the structure of a GUI, it also

models the GUI’s execution behaviour using event-flow graphs. It is similar to the

research done by Gimblett and Thimbleby [9], who produced a UI model

discovery method to automatically discover a model from a running application.

They use the method to firstly explore an interactive system’s state space and then

use an event flow graph to simulate the actions of a user. However, GUI Ripper

requires human intervention since sometimes some windows are missing in the

ripping process. Scheetz et al. [28] created a class diagram to represent a system

under test and derived test objectives from the class diagram to generate test case

with an AI planning system. However the approach used in this paper is not

relevant to our research, so we do not consider it for our future work.

20

One aim of GUI testing is to find inconsistencies and usability problems before

the user interface is developed, which can save time and money and is more

efficient than finding and fixing those problems after development. In the paper

[10], Paiva et al. presented an automatically generated GUI formal model in

Spec#, and then automated GUI testing in order to verify the conformity between

an implementation and its specification. Spec# is a rich pre/post specification

language. Paiva et al. [13] constructed a state machine model of the GUI in Spect#

language and mapped information between the model and the implementation.

They used a reverse engineering tool to extract structural and behavioural

information about the GUI under test, mixing automatic exploration and manual

exploration. Compared with paper [10], we view the latter as a newer version of

the earlier approach and the latter reduced the manual work required.

The tool called Spec Explorer used in the paper [10] generates test cases with two

steps, generating a FSM from a Spec# (specification) and then generating test

cases with coverage criteria from the FSM. It led me to consider test case

generation of our models for testing purpose in future. PIM is a model described

by μCharts (which have a similar structure to FSM), and so we considered the

difference between generating test cases from a PIM rather than an FSM. The idea

of the mapping tool is similar to another model used in our project named PMR

for short (see Section 4.4). PMR presents the relation between a presentation

21

model (PModel) of a system and the system’s formal specification. The purpose of

building a PMR of a system is to ensure its implementation and functional

specification are consistent before development.

There is an increasing demand for transforming user interfaces into a new version,

on a different platform from which they are originally implemented. The World-

Wide-Web in particular is becoming a target platform as it is the most common

interaction environment. Samir et al. [8] developed a dynamic analysis method to

automatically migrate Java/Swing applications to Ajax-enabled web-based

applications. This approach extracted the structure and behaviour of Java Swing

GUIs, using the Aspect tool in the Java application. From the extracted model, it

automatically built an Ajax-enabled web application. This work is a meaningful

for studying black-box user-interface modernization techniques. These techniques

involve extracting an HTML file of the top-level of the GUI application with the

purpose of running the instance of the application on the web server, and then

sending the HTML file to the client browser. Once the user changes the data or

performs an action on the web browser, that change / event would be sent to the

server side. At the server side, the original application will be updated with those

changes of the user interface, and then the current window on the web will be

changed. These methods have some shortcomings, such as having to reload the

whole web page to update the changes on the web page. These shortcomings are

addressed in the paper [8], which suggests instead only reloading the changes on

22

the web page rather than reloading the whole web page. This paper is not very

related to our project, but it is very helpful on migration of GUI applications.

Someone else who did research about migration is Bandelloni et al. [11] who

presented the ReverseAllUIs environment to support reverse engineering of user

interfaces for different platforms and modalities. They built the corresponding

logical descriptions at different abstraction levels. They focused on transformation

of web application (XHTML/CSS) to desktop GUI-application, while Samir et al.

migrated a GUI application to a web application. Our project targets interactive

systems for reverse engineering, whereas this paper targeted web applications,

which is unrelated with our project but is a useful technique to migrate a web

application to as mobile GUI applications.

Apart from migration between different platforms, reverse engineering techniques

are also used to update legacy systems. Moore [21] described the experience with

manually static reverse engineering legacy applications to build a model of the

user interface functionality. He developed a technique to partially automate the

reverse engineering process. The results showed that a language-independent set

of rules can be used to detect user interface components from legacy code, and

listed some problems that require dynamic analysis to solve. A similar slicing

approach was used in his work to identify the user interface subset, including all

routines and data structures which are affected by user I/O, and then user interface

23

components from the subset were detected. Moore’s work focused on text-based

applications and so is not very useful for our project as nowadays interactive

systems have a variety of user interface widgets such as buttons, texts, labels, and

menus and so on. However, this paper gave us a clear idea that reverse

engineering techniques can be used to update legacy systems.

From the work we have considered above, we have found that whilst there were

no existing techniques for performing the sort of reverse engineering of

interactive systems we require, there were several ideas which we considered

useful for our work. These included the use of programming slicing techniques as

a possible solution and test case generation techniques for testing purposes in

future.

24

Chapter 3

Explanation of Example

A simple application I programmed in the Java language using the Swing GUI

library is taken as an example interactive system throughout the project. While

this is a small application with limited functionality and a small UI, it contains all

of the necessary elements to explain my work in the rest of this dissertation while

remaining small enough to be easily explained and understood. This game, called

the Guess Game, asks a player to guess a secret number that the system generates,

in a range between 0 and 1000, inclusive of 0 but exclusive of 1000. The system

generates randomly a secret number in this range, and then gets the number the

player enters. After comparing these two numbers, it opens a message window to

tell players that their number guess is higher, lower, or the same as the system’s

secret number, and provides two options to players to either exit the game or

continue to guess until they get the secret number. The goal of the game is to

guess the secret number in as few turns as possible. The full source code in Java is

given in Appendix A.

25

An example of running the Guess Game is as follows:

The initial GUI window named mainWin is the main window of the program. The

default range for the number for the players to guess is between 0 and 999. The

initial window is shown in Figure 5.

Guessing 700 and typing it in the text field, and then clicking the “Go” button to

check leads to message window named msgWin to open and be active (the title

bar of the active window is blue). See Figure 6.

The number of 700 is higher, so continue the game by clicking the “Continue

Game” button. The message window is closed and the main window is activated.

See Figure 7.

Try 250 and check, see Figure 8.

Figure 5: The main window of Guess Game

26

The number of 250 is lower, so continue the game and try another number ….

This continues until the user enters 262 (which in this example is the secret

number) in the text field and checks, as shown in Figure 9.

Figure 6: A message window of Guess Game after “Go” button is clicked.

Figure 7: The main window after unsuccessful guess.

27

Figure 8: The message window after second guess.

Figure 9: The message window after successful guess.

Congratulations! 262 is the secret number. In the back-end of the system, for each

time of guessing, it records how many times the player has guessed so far for a

28

round. The process of counting is hidden information and unavailable for players

to see from the user interface of the program, but it shows the number of times on

the user interface when the player guesses the right number. In this example, the

user has tried 11 times to get the correct number of 262. Now the player can either

finish the game or start another guessing trip.

Start the next round of the game by clicking “Next Round” button. The message

window is closed and the main window is initialized. The counter restarts. See

Figure 10.

Figure 10: The main window at start of round two.

In the body of the main window, there are range options to allow players to

choose a different range for the secret number either between 0 and 100 or

between 0 and 5000.

To try another range click the radio button for “0 <= X < 100”, if the next guess

29

from the user is 101 and check. The number of 101 must be higher as it is out of

the range. See Figure 11.

This is the first time of guessing for this round, and the counter regarding the

number of user guesses is recounting in the backend. You can continue this round

by following the rules explained prior, or exit the game by clicking “Exit Game”

in the message window to close the program.

Figure 11: The message window after out of range guess.

If you consider the main window in Figure 11, there is one more option called

RESET which appears in the range options. The RESET option is available to the

players after they have selected a non-default range. It allows players to reset the

range back to 0 <= X < 1000.

30

Choose “Continue Game” button to close the message window and click RESET

radio button on the main window. The game resets. See Figure 12.

The RESET option disappears in the range options area, because the current range

is the default range of 0 <= X <1000.

Figure 12: The main window after range is reset.

In the main window, you also can exit the game by clicking the menu File and

then choosing “Close”. When you click File, you will see menu items like in

Figure 13.

Figure 13: The menu options to end game or start a new round.

31

The players also can start a new / next round based on the current range option

from the menu.

This small example of an interactive system will be used as an example

throughout the rest of this report.

32

Chapter 4

Overview of Models with

Example

In this section, I will show how the Guess Game (see Chapter 3 for the

explanation of the game) can be described with a set of models which were

developed by Bowen and Reeves [4] with the intention of creating formal

descriptions of interactive systems.

4.1 Presentation Models

The first model is named the presentation model and is used to formally capture

the meaning of an informal design (e.g. a scenario, storyboard or prototype) of a

UI or an implemented UI. This kind of model is simple and easy to understand for

non-technical people.

33

This model will formally describe the user interface (or design) of an interactive

system by way of its behaviours, and its components (widgets). If used within the

design process, the presentation model does not replace the informal design but it

is an intermediary between the informal design and formal design process, since it

abstracts the understanding of the informal design artifact in a formal way.

“The formal structure of the presentation model gives us a different

view of the design and enables us to consider it within our formal

framework” [4].

Firstly, we should know the vocabularies of the presentation model: PModel,

Widgetname, Category, and Behaviour. PModel can be understood as the states of

the UI or windows of the program. Each window is described within a PModel

which is by way of a set of widget descriptions which are expressed in a tuple

consisting of a name, a category, and a set of behaviours. Widgetname is a list of

names of widgets in each window. Category refers to the description of widget

categories. Behaviour shows what behaviour a widget has associated with it.

There are two different types of behaviours. One is an Interaction behaviour

(indicated by a name prefixed with I_) that affects the UI somehow, opening a

different window to the user or making some changes on the current window. The

other type is a System behaviour (indicated by a name prefixed with S_) that

affects the underlying system.

34

The model begins with a set of declarations which give all of the elements which

will be used in the model. An example of the declarations of the Guess Game is

given in Table 1.

The presentation model for the game is given in Table 2.

In the last row of Table 2, the : operator acts as a composition, so that mainWin :

msgWin consists of all of the widget descriptions of mainWin composed with

those of msgWin.

The presentation model GuessGame is the combination of all of the widgets and

indicates the total possible behaviours of the user interface. So far, we have an

abstract concept for the Guess Game’s user interface and its behaviours.

35

PModel mainWindow (see Figure 14 below)

msgWindow (see Figure 15 below)

GuessGame

Widgetname label1 closeMenuItem msg continueBtn number go range1

rang2 range3 newRoundMenuItem fileMenu exitBtn

countMsg

Category ActionControl SValueSelector StatusDisplay Entry Container

Behaviour I_openMsgWin S_quitApp I_hideMsgWin S_checkNumbers

S_resetApp

Table 1: The declarations of the presentation models of the example system.

Figure 14: mainWin of the example system.

36

Figure 15: msgWin of the example system.

mainWin is (label1, StatusDisplay, ())

(number, Entry, ())

(go, ActionControl, (I_openMsgWin, S_checkNumbers))

(fileMenu, Container, ())

(newRoundMenuItem, ActionControl, (S_resetApp,

I_hideMsgWin))

(closeMenuItem, ActionControl, (S_quitApp))

(range1, SValueSelector, (S_resetApp, I_hideMsgWin))

(range2, SValueSelector, (S_resetApp, I_hideMsgWin))

(range3, SValueSelector, (S_resetApp, I_hideMsgWin))

msgWin is (msg, StatusDisplay, ())

(exitBtn, ActionControl, (S_quitApp))

(continueBtn, ActionControl, (S_resetApp, I_hideMsgWin))

(countMsg, StatusDisplay, ())

GuessGame is mainWin : msgWin

Table 2: The presentation models of the example system.

37

4.2 Presentation Interaction Models

In the previous section, the presentation model shows the behaviours which exist

in the UI, but we also want to ensure that the user can actually reach all of the

functionality described in the presentation model. This is the goal of the

presentation interaction model (PIM). To show this we must think of how we can

let the user move between the windows of the UI. Hence, we need to understand

how the UI changes dynamically between the windows of the user interface under

the user interactions. The PIM gives us a view of the dynamic changes of the UI.

PIM is the composition of the presentation model (PModel) and finite state

machines (FSM), described using the μCharts language [38].

The study of FSM and μCharts is beyond the scope of this report, but I will

describe them briefly here. The vocabularies of FSM are states and transitions. A

state refers to a behavioural node of the system in which it is waiting for an event

to be triggered. The system is in only one state at a time. The state can change

from one state to another when an event is received, that is called a transition. The

μCharts language has a visual representation, μcharts (the language is μCharts

with a capital C, and the visual representations are μcharts with a small c), which

also have states and transitions. A discussion of the semantics of μCharts is

beyond the scope of this research, but a description of how PIM can be visualized

38

as μCharts can be found in [38]. A μchart consists of a finite set of states, a finite

set of action labels which for a PIM are taken from the I_behaviour sets of the

PModels, a start state which describes the initial status of the system, an accept

state (referred to as a final state), and a transition function which takes a state and

an action and returns a state. In addition, a PIM contains a relation which relates

states to PModels.

The relation between PModels and states of the μcharts is used to link the current

active state in PModels and a specific state which the μchart is in. Once there

exists a connection, then it represents that this part of the UI described in the

presentation model is visible to the user and available for interaction, that shows

this part of the UI is reachable by the user. A condition of well-formedness of a

PIM is given in [4] as follows:

“A PIM of a presentation model is well-formed iff the labels on

transitions out of any state are the names of behaviours which exist

in the behaviour set of the presentation model which is associated

with that state .”

which means that we can only make a transition between states if an appropriate

I_behaviour exists in the PModel related to the starting state of the transition.

Bowen and Reeves use PModels and PIMs to formally capture the information

generated by an informal UI design process, and do some things like specify UI

39

behaviours which is useful because it shows that the relevant functionality of a UI

are reachable by the user.

The PIM for the example game is shown in Figure 16.

Figure 16: The presentation interaction model of the example system.

The initial window is mainWin which is the initial state. When a user clicks the

“Go” button, the program invokes one of the behaviours that is an interaction

behaviour – I_openMsgWin to open msgWin. This is indicated in the PModel of

mainWin in Table 2 by the widget description:

(go, ActionControl, (I_openMsgWin, S_checkNumbers))

We only consider I_behaviours for the PIM. After the transition, the current state

is GuessGame as mainWin and msgWin are both able to seen by the user and both

can be interacted with. Once he/she clicks “Continue Game” button on msgWin, it

calls the interaction behaviour I_hideMsgWin to hide msgWin (the user is unable

to see msgWin) and activates mainWin, so it turns back to the initial state.

40

In Figure 16, each state is in turn reachable. That means each window of the

program is reachable by the users. Even so, it can not guarantee that all

behaviours are themselves correct because S_behaviours (system behaviours)

described in the presentation model are not visible in the PIM, until we check the

PModels for each state. In order to ensure correctness of the functional behaviours

of computer systems prior to implementation we can build a functional

specification.

4.3 Functional Specification

A functional specification is a formal description of the functional behaviours of a

system. It details the behaviours of the system along with properties of inputs and

outputs. It has a definite meaning (i.e. fixed semantics) defined in a specification

language, such as Z [36]. System operations are specified in the specification by

defining how they affect the state of the system. The process of application

development can be considerably simplified and streamlined by the specification.

The purpose of the functional specification is to show clearly how the varied

components of specific applications are to be designed, implemented and

integrated with each other. If used correctly, it can substantially save time and cost

of application development despite the initial cost of creating and evaluating the

specification. This is because it is able to find errors before implementing the

system and it is cheaper than finding and fixing errors later in the development

41

process.

To build a formal specification, we typically use the requirements of the system.

Here we show how we can give a specification of Guess Game based on a

description of its behaviours.

Guess Game (see details in Chapter 3) 1.randomly generates a secret number in a

range for example between 0 and 1000, 2.compares the number with the input

value by the user and then shows the result of the comparison to the user, and the

user either chooses to 3.continue the current round (or start a new round) or 4.exit

the game. Throughout a round, the system 5.counts for each guess. When the user

guesses the secret number, the system 6.shows a message giving the number of

guesses to the user. The system permits the user to either 7.change a range or 8.reset

a range to start a new round.

The highlighted phrases express the system behaviours of Guess Game, and we

will build a functional specification for those behaviours.

The state of a system can be thought of as a collection of values, or observations

from the inside of the system, such as the secret number, current guessing count,

and current range in our example system. The set of states is called a state space.

Hence, the state space for the example system has the following observations:

42

 Secret Number

 Current Guessing Count

 Current Range

Operations of a system act on the system’s state space. The highlighted phrases in

the example system’s description above roughly describe the operations. In each

operation’s specification, it states the input to the operation and the output from

the operation and any changes that are made to any observations. We name each

operation in the first row of each item below. We give a functional specification

for our example game in natural language below:

1. GenerateRandomNumber

 Input – no external inputs

 Changes:

- Generate a random number within the current defined range (the

current range observation).

- The secret number observation is now updated with the generated

number.

 Output – the generated number

2. CompareNumbers

 Input – an external input with the user guess

 Changes:

43

- Compare the number of the user guess to the secret number

observation.

- The comparison result is either higher, lower or equal.

 Output – the result of these two numbers’ comparison

3. ContinueOrNext

 Input – an external input with one of “continue” or “next”

 Changes:

- If the input is “continue”, the secret number observation, the

current range observation and the current guessing count observation

do not change.

- If the input is “next”, initialize the current guessing count

observation to be 0, keep the current range observation the same, and

generate a new secret number which is used to update the secret

number observation.

 Output – no external outputs

4. CloseGame

 Input – no external inputs

 Changes:

- Exit from the game.

 Output – no external outputs

5. CountIncrement

 Input – no external inputs

 Changes:

44

- Increase the current guessing count observation by 1.

 Output – no external outputs

6. OutputCountValue

 Input – no external inputs

 Changes – no changes

 Output – an external output with the count value

7. ChangeRange

 Input – an external input with range options

 Changes:

- Change the current range observation to match the input values

 Output – no external outputs

8. ResetRange

 Input – no external inputs

 Changes:

- Reset the current range observation to the default value

 Output – no external outputs

From the specified operations shown above, we identify that, there are relations

between some of them. We compose the related operation specifications:

 CheckAnswer:

2. CompareNumbers

5. CountIncrement

45

6. OutputCountValue

 StartNewRound:

3. ContinueOrNext

1. GenerateRandomNumber

7. ChangeRange

8. ResetRange

 QuitSystem:

4. CloseGame

These operation specifications describe the functional specifications for each

system behaviour of the Guess Game. Later I will build a relation between the

specifications and the PModels (see Table 2 in Section 4.1). For the purpose of

this work, the informal specification given is satisfactory and giving a formal

specification developed in Z (or any other formal specification language) is

beyond the scope of this project.

4.4 Presentation Model Relation

We previously introduced presentation models which give formal meanings to a

design artifact (e.g. prototype), and presentation interaction models which add

information about the availability and navigation between windows. Those

models detail the UI and behaviours. The functional specification is an approach

46

to describe system behaviours. The specification gives the meaning to the system

behaviours described in the PModels.

The presentation model relation (PMR) is a relation between presentation models

and the functional specification. See the presentation models for our study case

developed in Section 4.1, there are three system behaviours, which are

S_checkNumbers, S_resetApp, and S_quitApp. The functional specification of the

study case is in Section 4.3. The relation between them (i.e. the PMR) is:

S_checkNumbers  CheckAnswer

S_resetApp  StartNewRound

S_quitApp  QuitSystem

So in the PModels if we want to understand the meaning of a behaviour, such as

S_checkNumbers, we use the PMR to find out which operation in the

specification it is related to. We can then find the details of that behaviour in the

specification. This links together the model of the UI with the functional

specification.

PIMs describe the interaction behaviours and PMRs ensure the system behaviours

and the S_behaviours of the PModels are defined, thus all of the behaviours of the

interactive system can be guaranteed to be reached, and we can check correctness

and consistency before we start the implementation process.

47

48

Chapter 5

Program Slicing

In the previous sections, we have described the particular set of models (the

presentation model, the presentation interaction model, and the presentation

model relation) we would like to build for interactive software applications. From

now on we need to study how we gather the information from the interactive

system for building those models. In general, there are two methods to extract the

information that we need, dynamic and static analysis. As stated in Chapter 1, this

project only focuses on the static technique of reverse engineering. Static methods

work with source code.

Figure 4 in Chapter 1.2 gives a general idea of a static analysis process for an

application with GUIs. GUI ASTs contain all of the necessary information for

generating GUI models. An important role for getting GUI ASTs from the entire

AST is played by program slicing, isolating the Swing sub-program from the

entire Java program. Slicing techniques are used as an underlying process in many

49

software engineering tools used for different purposes. Slicing can be described

as:

“a fundamental operation for many software engineering tools,

including tools for program understanding, debugging, maintenance,

testing, and integration” [24].

We want to reverse engineer the UI and the system functionality of an interactive

software system. To begin, we need to extract GUI ASTs containing the

information on the structure of the GUI and underlying system behaviours from

an application’s source code to build the particular set of models discussed in

Chapter 4. For example, the presentation model of the main window of Guess

Game (explained in Chapter 3) is shown again in Table3.

In Table 3, the presentation model is constructed from a set of the main window’s

widgets and its behaviour representation. So, from the source code, we must

identify widgets (e.g. the Swing objects for Guess Game which is written in Java

using the Swing GUI library) and find out the name, category and behaviour for

each of these widgets. Then we subsequently need to categorise the behaviour as

an interaction behaviour (prefixed with I_) or a system behaviour (prefixed with

S_) by identifying the nature of the behaviour, and finally if it is an S_behaviour

find the underlying system code that represents the behaviour by using slicing

techniques.

50

mainWin is (label1, StatusDisplay, ())

(number, Entry, ())

(go, ActionControl, (I_openMsgWin, S_checkNumbers))

(fileMenu, Container, ())

(newRoundMenuItem, ActionControl, (S_resetApp,

I_hideMsgWin))

(closeMenuItem, ActionControl, (S_quitApp))

(range1, SValueSelector, (S_resetApp, I_hideMsgWin))

(range2, SValueSelector, (S_resetApp, I_hideMsgWin))

(range3, SValueSelector, (S_resetApp, I_hideMsgWin))

Table 3: The presentation model of the main window of Guess Game.

Program slicing is the task of computing the parts of a program that directly or

indirectly affect the part of a program we are interested in. For example, for the

case-study program (the Guess Game in Chapter 3), assume we are interested in

the button “Go” of the main window. We can use the program slicing technique to

get a sub-program (from the overall program) which only relates to this specified

button. In this sub-program, there may be no code about the range options (radio

buttons) because they do not affect the values relating to the particular button of

interest (the button “Go”). Such a sub-program is referred to as a program slice.

In the source code, there must be a segment relating to the button “Go” (because

51

the source code describes everything), and we need to specify a point of interest

for program slicing. Such a point is referred to as a slicing criterion.

5.1 System Dependence Graphs

In general, we abstract a program (e.g. parse a program) and analyse the

abstraction of the program (e.g. AST of the program) to draw a graph

representation of the program which describes the program’s data dependencies

and control dependencies. These kinds of graphs include control flow graphs

(CFGs) and program dependence graphs (PDGs). In the graph, each vertex

represents a statement of the program, and an edge between vertices indicates

their control-flow or data-flow. Then we use slicing techniques to find the set of

node(s) of the program we are interested in from the CFG or PDG.

The program slices are computed by a backward traversal of the program’s control

flow graph (CFG) or program dependence graph (PDG) using the slicing criterion

to gather the statements and control predicates [25]. For both CFG and PDG, the

building blocks are obtained by clarifying data-flow statements and control-flow

statements in source code.

Control-flow statements regulate the order in which statements should be

executed. These enable a sub-system / program to conditionally execute particular

52

blocks of code. Control-flow statements can be categorized by their effect:

decision making statements (e.g. if-else), looping (e.g. for, while), branching (e.g.

break, return), and calling. We can see from the source code in Appendix A for the

example system that, the most commonly used control-flow statements in the

example are decision making statements (if-else) and calling statements. If a sub-

system marked as A has a calling statement, this control statement passes control

to another sub-system marked as B but expects to have this control responsibility

returned to A. For example, an instance of a calling statement from a segment of

the Guess Game’s source code is as follows, as shown in Segment1.

1:

2:

3:

4:

5:

6:

7:

8:

…
public void NewGame() {

generateRandomNumber();

number.setText("Guess a number");

count = 0;

continueBtn.setText("Continue Game");

msgFrame.setVisible(false);

countMsg.setVisible(false);

}

…

Segment 1: An example of a calling control statement embedded in a sub-

system.

In Segment 1, the calling control statement on line 2 belonged to sub-system A –

NewGame from line 1 to line 8, this passes control to another sub-system B –

generateRandomNumber (see code in Appendix A) but the control

responsibility of generateRandomNumber returns to NewGame.

53

In addition to the control information (described above) embedded in a sub-

system, there is also event-based control in our source code. A sub-system is

designed to handle an event and then the sub-system responds to the event. For

instance, here is a line of code from the source code in Appendix as shown in

Segment 2.

go.addActionListener(new CheckListener());

Segment 2: An example of a calling statement based event.

This code states that an event named CheckListener is assigned to a widget

named go. A sub-system named public class CheckListener

implements ActionListener handles the designated event. Once this

widget is triggered, this system responds to the event by executing the block of

code of the sub-system. Event-based control is important for our work because it

starts to give us some of the information we need about behaviours of widgets.

Data-flow statements show the flow of processing of the changes of variables in a

system, tracing from when data enters the system to where it leaves the system. It

is important to be able to identify this as it represents state change in the system.

For instance, the value of the msg label’s text in msgWin from the source code is

shown in Segment 3.

54

Segment 3 shows that, the msg label for the Guess Game is declared on line 1,

and initialized on line 2. The initial text of the label is empty. Once the system

executes the code in the CheckListener sub-system, under a different control

statement, the text of the msg label is changed. This process shows the data flow

of the msg label in the Guess Game.

Sliced programs are mostly computed by using the Program Dependence Graph

(PDG) representation of a program.

“System Dependence Graphs (SDGs) extend program dependence

graphs (PDGs) to incorporate collections of procedures (with

procedure calls) rather than just monolithic programs” [22].

A program’s SDG is a collection of PDGs with each PDG for a procedure in the

program. More clearly, PDGs are procedure dependence graphs rather than

program dependence graphs. In general, people use the PDGs for static slicing of

single-procedure programs (which refers to programs which only contain one

method or inner class), and use SDGs for multi-procedure programs (which refers

to programs which have more than one method or inner class). The Guess Game

example program is a multi-procedure program, so we use a system dependence

graph to represent the program. So, the full process we have devised for reverse

engineering our case-study program is shown in Figure 17.

55

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

 …
Private Jlabel msg;

…

msg = new Jlabel();

…

public class CheckListener implements

ActionListener {

public void actionPerformed(ActionEvent ev){

…

try {

…

if (guessNum < RandomNum) {

msg.setText("It's LOWER than what I

think, please guess again!");

} else if (guessNum > RandomNum) {

msg.setText("It's HIGHER than what

I think, please guess again!");

} else {

msg.setText("Congratulation! The

number I'm thinking is " + RandomNum + ".");

…

}

 } catch (…) {

 …

}

}

 }

 …

Segment 3: An example of data flow for the msg label in Guess Game.

The vertices of the PDG correspond to the individual statements and control

predicates of the procedure, and the edges of a PDG correspond to data and

control dependencies among the procedure’s statements and predicates. Also, a

PDG of a procedure is obtained by merging its data dependence graph and control

dependence graph. The edges of a PDG define the ordering that the procedure

uses when executing statements, which preserves the semantics of the procedure.

56

A call statement (a calling control statement) is represented by a call vertex and a

set of actual-in and actual-out vertices for parameters, as we see later, these may

be explicit (in the definition of the procedure) or implicit (i.e. global variables the

procedure accesses). For each parameter, there is an actual-in vertex and there

might be an actual-out vertex which may be modified during the call.

Figure 17: The actual process of reverse engineering an interactive system

which has multiple procedures.

For example, see the source code in Segment 1 above, this can be described in the

SDG is shown in Figure 18.

57

Figure 18 gives the PDG for the sub-system – NewGame. The control edges from

left to right and top to bottom specify the ordering of the statements to be

executed. The called procedure is generateRandomNumber without explicit

parameters, so there are no actual-in or actual-out vertices for explicit parameters

but only a call vertex Call generateRandomNumber for the call statement.

Figure 18: The partial SDG of Guess Game for the Segment 1.

Recall that we treat global variables as “extra” parameters, which can lead to

additional actual-in and actual-out vertices. For the called procedure

generateRandomNumber in Segment 1, we can collect its related source code

from the Guess Game’s source code listed in Appendix A and display the collected

source code in Segment 4.

Segment 4 shows that this procedure has global variables that are range1,

range2, range3, and RandomNum. This means that there are extra actual-in

58

vertices and actual-out vertices for the call statement. The PDG of Segment 1 can

be completed with global parameters for the calling statement displayed in

Figure19.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

…
private static int RandomNum;

private JRadioButton range1;

private JRadioButton range3;

private JRadioButton range2;

…

public void generateRandomNumber() {

if (range1.isSelected()) {

RandomNum = (int)(Math.random()

*100);

range3.setVisible(true);

}

else if (range2.isSelected()) {

RandomNum = (int)(Math.random()

*5000);

range3.setVisible(true);

}

else {

RandomNum = (int)(Math.random()

*1000);

range3.setVisible(false);

}

}

Segment 4: The source code related to the procedure

generateRandomNumber.

The called procedure has an entry vertex and a collection of formal-in and formal-

out vertices. Similarly, as global variables are treated as “extra” parameters, they

give rise to additional formal-in and formal-out vertices. For instance, the

dependence graph for the called procedure “generateRandomNumber” for

59

Segment 1 is depicted in Figure 20.

Figure 19: The partial SDG of Guess Game for Segment 1 with additional

actual-in and actual-out vertices as global variables in the called procedure.

Figure 20 shows the partial PDG for the called procedure, we show only part here

to keep the figure simple and clear to read. We only add formal-in and formal-out

vertices for two global variables of two statements on line 7 and line 8 in Segment

4, which depended on the control statement if (range1.isSelected) of

line 6 in Segment 4. The left shaded part in the PDG represents the statement on

line 7 regarding the global variable named RandomNum, and the right shaded part

represents the statement on line 8 regarding the global variable named range3.

The rest of the vertices of the PDG can be completed in a similar way as shown

by the shaded parts.

60

Figure 20: The partial PDG of the called procedure

generateRandomNumber with source code in Segment 4.

The PDGs are connected together to form the SDG of the system by call edges

and by parameter-in and parameter-out edges. Call edges represent procedure

calls and run from a call vertex to an entry vertex. Parameter-in and parameter-

out edges represent parameter passing. A parameter-in edge runs from an actual-in

vertex to its corresponding formal-in vertex, and a parameter-out edge runs from a

formal-out vertex to an actual-out vertex. Combining the PDG of the called

procedure in Figure 20 and the partial SDG in Figure 19 for the combination of

Segment 1 and Segment 4, gives the SDG shown in Figure 21.

61

Figure 21: The partial SDG of the combination of Segment 1 and Segment 4,

adding a call edge, parameter-in edges, and parameter-out edges.

In Figure 18, each node represents a statement of the procedure in Segment 1. As

the example system is written in Java using the Swing GUI library, the features

and constructs of Swing allow widgets to directly call methods from the library.

Hence, the expression of some nodes can be extended. For example, the node of

countMsg.setVisible(false) can be expressed with more details. The

62

widget named countMsg calls a procedure named setVisible with the

actual-in parameter valued false and executes this procedure to set this widget

invisible. It means that this node puts the call statement and procedure entry

together for the setVisible method. If we decompose the statement:

countMsg.setVisible(false), we can show it with the SDG

representation in Figure 22.

Figure 22: The extension of the node countMsg.setVisible(false) of

Figure 18.

Firgure 22 shows the complete expression of the node

countMsg.setVisible(false) of Figure 18, where setVisible can be

directly used from the Swing library. A similar expression also occurs in Figure 20

and Figure 21, for the range3.setVisible(true) statement. In all of the

figures used in this work, thick solid arrows represent control dependencies, thin

63

solid arrows correspond to data dependencies, small dashed arrows are used for

call edges, and big dashed arrows represent parameter-in or parameter-out

dependencies. In the specified statement, there exists parameter passing and

output of the actual value of parameters. In order to simplify the SDG, we only

build the SDG based on statements and ignore the extension expressions caused

by the Swing library for the later examples.

The full SDG of Guess Game is shown in Appendix B. The complete SDG will be

very big due to the inclusion of the extra vertices because of global variables and

the Swing library property, but we show the main structure of the SDG by

omitting those extra vertices but keeping their relationships.

5.2 Slicing of a System

In general, source code of a system can consist of thousands of lines of codes. It is

not practical to understand source code manually and it would cost too much time

to consider the large amount of source code in this way to build the models. If we

do so, we end up with large amounts of information which must be read and

understood to build the PModel or PIM, which makes model development slow

and resource intensive, as the large amount of information generated from the

source code must all be analysed to build the final models. Slicing techniques help

to reduce unnecessary source code and get the relevant source code for building

64

models of an application. It saves time if we only have to consider the relevant

source code for model generation and is therefore a more efficient process.

Horwitz et al. [24] showed that system slices can be obtained by solving a

reachability problem on the SDG. To compute the program slice with the slicing

criteria with respect to a SDG vertex v, there are existing realizable paths from

some SDG vertices to v along control and data flow edges. The set of outgoing

vertices on those paths make up the sliced SDG, and their corresponding

statements are composed to create the program slice with respect to the statement

of v.

We only consider realizable paths not all paths, because not all paths in the SDG

correspond to possible execution paths. For example, we firstly build a SDG for

Segment 5, and then check the SDG in Figure 23.

We have explained the treatment of global variables for the SDG in the previous

section (see Figure 19, generateRandomNumber). Similarly, there are global

variables in Figure 23, which are continueBtn and msgFrame for Segment 5,

number, count, and countMsg for the called procedure NewGame whose

source code is in Segment 1. Hence, there must be extra actual-in vertices

representing the value of each actual parameter before the call and actual-out

vertices representing the value of each actual parameter after the call NewGame.

65

We omit the PDG for NewGame in this figure. However, the procedure entry of

NewGame has both formal-in vertices and formal-out vertices, similar to the

procedure entry of generateRandonNumber in Figure 20. In order to keep

the figure simple, we ignore those vertices and the detailed PDG for the called

procedure but keep the relation between the call vertices and procedure entry

vertex in Figure 23 for discussing realizable paths. There are parameter-in edges

from actual-in edges to formal-in edges, and parameter-out edges from formal-out

edges to actual-out edges. Thus, the relation between the call statements and the

procedure entry in Figure 23 include call edges, parameter-in edges and

parameter-out edges.

…
public class NewRound implements ActionListener {

public void actionPerformed(ActionEvent e) {

NewGame();

}

}

public class ContinueGame implements ActionListener {

public void actionPerformed(ActionEvent e) {

 if (continueBtn.getText() == "Next Round") {

NewGame();

}

msgFrame.setVisible(false);

}

}

Segment 5: Two different procedures with the same procedure call.

66

Figure 23: The simplified SDG of Segment 5.

We can consider Figure 23 and Figure 21 together to view the detailed SDG of

Segment 5, which describes the detailed SDG of multi-procedures consisting of

NewRound and ContinueGame invoking NewGame, and NewGame invoking

generateRandomNumber. In order to discuss realizable paths more clearly

with our example, we just focus on the simplified SDG in Figure 23.

To compute a slice with respect to msgFrame.setVisible(false), we

only need to consider the realizable paths, without the path: NewRound ->

call NewGame -> NewGame.

67

Realizable paths:

“reflect the fact that when a procedure call finishes, execution

returns to the site of the most recently executed call” [24].

In a call site, there are outgoing parameter-in edges, incoming parameter-out

edges, and outgoing call edges. A path in the SDG is a realizable path if and only

if its call edge, parameter-in edges and parameter-out edges work on the same call

statement and called procedure. For example, see the path labeled with ① in

Figure 24:

NewRound -> call NewGame -> enter NewGame -> call

NewGame

is a realizable path, while the path labeled with ② in Figure 24:

NewRound -> call NewGame -> enter NewGame -> call

NewGame

is not. In path ①, the parameter-in edge (call NewGame -> enter

NewGame) and the parameter-out edge (enter NewGame -> call

NewGame) work on the same call statement and procedure entry, while the

parameter-out edge (enter NewGame -> call NewGame) works on a

different call statement than the parameter-in edge (call NewGame ->

enter NewGame) in path ②.

Therefore, using realizable paths with a slicing algorithm, it’s possible to get a

precise program slice, for a given vertex v. The slice is represented in the SDG by

68

the set of vertices that lie on some realizable paths from the entry vertex of the

procedure to v. To achieve this precision, Horwitz et al. [24] use the augmented

SDG with summary edges. A summary edge is added from actual-in vertex v to

actual-out vertex v whenever there is a realizable path from the actual-in vertex to

the actual-out vertex. Also, the summary edges exist in a call statement and

represent the interprocedural (describing between different procedures) data

dependencies. As we do not display the extra vertices as the global variables in

Figure 23, we take the previous example of the SDG containing the calling

statement generatRandomNumber with extra vertices in Figure 19, and

augment this SDG in Figure 25.

Similar to the example of Figure 23, the summary edges exist between actual-in

vertices and corresponding actual-out vertices, but it is hard to explicitly state

them in Figure 23 because we ignore the global variables and the extra

expressions of some nodes representing methods, as those methods are directly

used from the Swing library. However, this concept of the summary edge should

be kept in mind while using the SDG with slicing methods to get a precise

program slice.

With the augmented SDG, we use two-passes to do the program slicing, and each

pass only traverses certain kinds of edges. Pass 1 starts from the slicing criterion –

vertex v, and backwardly traverses along data-flow edges, control-flow edges, call

69

edges, summary edges, and parameter-in edges, but not parameter-out edges. Pass

2 starts from all of the actual-out vertices reached in Pass 1, and then backwardly

traverses along data-flow edges, control-flow edges, summary edges, and

parameter-out edges, except call edges or parameter-in edges. The sliced program

(program slice) consists of the set of vertices obtained during traversing Pass 1

and Pass 2, and the edges between those vertices.

Figure 24: An example of a realizable path in the SDG.

70

Figure 25: The SDG of Figure 19, augmented with summary edges.

Keeping in mind the summary edges for Figure 23, if we slice it with respect to

msgFrame.setVisible(false) by the two-passes method, we can show

the vertices and edges traversed by the method in Figure 26. The result of an

interprocedural slice of Figure 26 is shown in Figure 27.

In short, the two-passes traversal for the slicing algorithm can be described as

follows: Pass 1 determines all vertices from which a vertex v of interest can be

reached without traversing procedure entries. Procedure entries can be ignored in

Pass 1, as the summary edges guarantee the data dependencies between multi-

procedures. Pass 2 determines the remaining vertices in the slice by traversing all

of the procedure entries omitted in Pass 1.

71

Figure 26: The SDG of Figure 23, sliced with respect to

msgFrame.setVisible(false).

72

Figure 27: The sliced SDG of Figure 26.

5.3 Slicing with JavaParser

The example SDGs presented in the previous section are manually obtained from

source code. It is not too hard to get those SDGs manually because the source

code for the case-study system (the Guess Game application) is not too long. If we

work on an interactive system for example with more than 2000 lines of source

code (and it is common for interactive systems to have far more lines of code than

that), it will be quite hard to picture the SDG for the whole system, unless there is

a tool to automatically analyze the source code and then generate the SDG. We

73

can envisage such a tool using Parsing tools, such as Java Parser which can be

obtained from JavaParser’s sourceforge page for Java applications:

 http://code.google.com/p/javaparser/

We start by using JavaParser to generate the AST (abstract syntax tree) of a

system, which models an entire representation of the abstract syntactic structure of

source code in a tree form. Figure 3 in Chapter 1 gives a tree representation of

some Java source code. Each node in Figure 3 can be extracted by the parsing

technique. The AST contains all of the information about the system. Using

JavaPaser, we can get the information required for the SDG construction by

traversing the tree. The output of the Guess Game with JavaParser is displayed in

Appendix C. Now we have the AST we can build the SDG manually. This is

better than manually building the SDG directly from the source code, but is still

not very efficient. There is an existing commercial program-understanding tool

called CodeSurfer (see http://www.grammatech.com/products/codesurfer/) for the

C++ programming language which creates Call graphs and does dataflow analysis

and control dependence analysis and can construct the PDGs or SDGs for

systems. Such a tool could be developed for the Java programming language to

automatically build the SDGs for Java applications in the same way. In the

absence of a tool to build the SDG for our application we proceed manually. The

process we describe in this thesis which shows how to build the SDG from an

AST could be used as the basis for developing the sort of tool described above

74

(see Chapter 7 future work).

In the SDG, the first ENTER vertex is always named by the system’s name from

the super-class. For example, in our Guess Game, the first Enter vertex to start the

SDG is ENTER guessGame, we set the name from the class declared in the top

node under the import libraries as shown in Segment 6.

The class listed in Segment 6 is the super class, representing the system. After

getting the first Enter vertex, we clarify the control dependencies to build vertices

for each control statement and add an arrow from the Enter vertex to those

vertices. The control statements include object declarations, method declarations

and inner class declarations. JavaParser is able to get the global variables with

object declarations, each method with its name, parameter information and body

statements, and any inner class information. The name of the method is used to

construct the Enter vertex of the PDG of the method procedure.

For example, if we used JavaParser to parse segment 6, then the output would be

as shown in Table 4. (Appendix C gives the actual parser outputs.)

Then according to the output in Table 4, we are able to generate the SDG of

Segment 6. Each super-class has one main method for the system. When the

program is run it is the main method which subsequently calls the other

75

procedures. Hence, there is no call vertex for the main method only the Enter

vertex. The first level of the control-flow information for the guessGame class

includes object declarations and the main method. We build the SDG for the first

level of control-flow as shown in Figure 28.

import javax.swing.*;
…

public class guessGame {

private static int RandomNum;

private JTextField number;

private JLabel msg;

…

public static void main(String[] args) {

RandomNum = (int)(Math.random() *1000);

SwingUtilities.invokeLater(new Runnable() {

public void run() {

new guessGame().createAndShowGUI();

}

});

}

public void createAndShowGUI() {

 try {

…

} catch {

…

}

}

…

}

Segment 6: The partial source code of the class guessGame for Guess Game.

76

Object Declaration: int RandomNum

JTextField number

JLabel msg

…

Method name:

Type:

Parameter:

Body-

blockstatement:

Main

void

[String[] args]

{
1. RandomNum = (int)(Math.random() *1000);
2. SwingUtilities.invokeLater(new Runnable() {

public void run() {
*new guessGame().createAndShowGUI();

 }

});

}

Method name:

Type:

Parameter:

Body-

blockstatement:

createAndShowGUI

void

null

{
try {

…
} catch {

…
}

}

… …

Table 4: Output of parsing Segment 6.

77

Figure 28: The partial SDG of Segment 6.

In order to complete the SDG in Figure 28, we need to picture the procedural

dependence graph (PDG) for the main procedure. Similarly, we can build a PDG

for each method, or inner class, by analyzing the corresponding block of code

obtained by JavaParser. It is straightforward to write methods which obtain the

relevant parts of the AST, and JavaParser uses the visitor pattern [2] to make this

easier. We use the method’s name or the inner class’s name to build the ENTER

vertex of its PDG respectively, and then analyze its body statements which may

contain decision making statements such as if-else to build control vertices. We

show the output of the main procedure in Table 4. There are two statements

containing one event-based calling statement.

SwingUtilities.invokeLater(new Runnable() {

public void run() { … }

})

This event-based calling statement is a commonly-used statement for the main

method for any Java application using the Swing library, and its actual action is

78

implementing the statement in the run method, which is marked with * in Table

4. In order to make the graph clear and simple, we only consider the statement

marked with * rather than this event-based calling statement. Figure 29 depicts the

PDG of the main procedure.

Figure 29: The PDG of main procedure in Segment 6.

The main procedure invokes another procedure named createAndShowGUI.

We build a PDG for this method using the concept of building procedure

dependence graphs for any method or inner class discussed above. We show

JavaParser’s output for createAndShowGUI in Table 4 and generate its PDG

in Figure 30.

An SDG is a combination of PDGs. To get the SDG of Segment 6, we need to

merge the PDG of the main procedure and the PDG of the

createAndShowGUI procedure into the partial SDG in Figure 28. To connect

the procedure dependence graphs, we add a call edge between each procedure call

79

vertex and its corresponding procedure entry vertex in its PDG. The connected

PDGs are shown in Figure 31.

Figure 31 depicts the parameter-in edge and parameter-out edge between the call

vertex and the enter vertex. This is because the procedure createAndShowGUI

(its source code is given in Appendix A) has several global variables e.g.

number, msg and so on. That means under the call vertex, there are extra

vertices containing actual-in and actual-out vertices for each global variable used

in this procedure. Likewise, there are extra vertices containing formal-in and

formal-out vertices for each global variable under the enter vertex. Thus,

parameter-in and parameter-out edges for each global variable exist. Furthermore,

the summary edges from each actual-in vertex to its corresponding actual-out

vertex exist as well. To keep the graph here simple for reading, we ignore actual-

in, actual-out, formal-in, and formal-out vertices in Figure 31 but state the

parameter-in and parameter-out edges to indicate that those ignored vertices do

exist.

The connected PDGs shown in Figure 31 depict the system dependence graph

(SDG) of segment 6 with the system’s control dependencies, but without its data

dependencies so far. In principle, the SDG of a system is combining the system’s

data dependence graph and control dependence graph. The data dependencies can

be obtained by forwardly traversing the SDG we have built so far.

80

Figure 30: The PDG of the procedure createAndShowGUI in Segment 6.

Figure 31: The SDG of Segment 6, connecting PDGs by adding a call edge,

parameter-in and parameter-out edges.

81

The half complete SDG with control flow information contains all of the

statements of the source code. In order to build the data dependencies between

procedures, we first get a set of object declarations from the AST produced by

JavaParser, and traverse the SDG for each declared object from top to bottom and

left to right to check if any two vertices have the same declared object. If these

exist, we create a data dependence from the top vertex pointing to the lower

vertex, or from the left vertex pointing to the right vertex. Besides the

interprocedural data dependencies used for the SDG, we also need to complete the

PDGs with data dependencies (intraprocedural data dependencies). By a similar

method, we first extract each set of variables for each procedure, and then traverse

each procedure for each variable of its corresponding set of variables from top to

bottom, left to right. If any two vertices have the same variables, we create a data

dependence from the top vertex pointing to the lower vertex, or from the left

vertex pointing to the right vertex. Thus, we complete the data dependencies of

the SDG.

To complete the SDG of Segment 6 in Figure 31, according to the object

declarations extracted by JavaParser in Table 4, we start to forwardly traverse the

SDG in Figure 31 from the Enter guessGame vertex down to the first object

RandomNum. Once the traversal reaches a node about this object, then we mark

this node as node1, e.g. the node of int RandomNum is node1. Then we

82

continue to traverse to the right of node1. If there is no related node, we traverse

down to the next level of control-flow from left to right. Once we visit a node

related to this object, we mark this node as node2, e.g. the node of RandomNum

= (int)(…) is node2. Once node2 has appeared, we add an arrow from node 1

to node2, and then unmark node1 and mark node2 to be node1 to continue until

we have visited the last node of the SDG. We repeat the traversal for the second

object number, as well as the third object msg, to create their data dependencies.

Since there are no variables for the procedures listed in Segment 6, we omit the

intraprocedure (inside a procedure) traversal for those variables to create the

intraprocedure (between procedures) data dependence, which uses a similar

method of creating data dependence of these objects in Table 4. Adding data

dependence to the graph of Figure 31 leads to the graph shown in Figure 32.

In brief, we use JavaParser to analyze the control dependencies for the system,

build procedure dependence graphs, and then connect those procedure dependence

graphs to form the SDG of the system with control dependencies. After that, under

the assistance of JavaParser to get a set of object declarations and each set of

variables for each procedure, we repeatedly traverse forward in the built SDG for

the set of objects or in its PDG for its set of variables to build data dependencies.

By now, the complete system dependence graph is built.

As well as the SDG of an application, we also need to define a set of vertices of

83

interest as slicing criteria before we apply the slicing algorithm on the application.

A set of vertices of interest for the application can be constructed by the output

statements of the application. An output statement refers to a statement in a

procedure whose object’s value is changed after the statement is executed. For

example, in Segment 1, the statement count = 0 in line 4 is an output

statement as the value of the count object is changed after the procedure

executes this statement. Similarly, the statements from line 4 to line 7 in Segment

1 are output statements. In the SDG, they all can be viewed as vertices of interest

if we want to get a program slice with respect to each of them. Basically, we are

interested in the outputs and their effects on the state space. Any statement which

affects an observation’s output is firstly considered as a vertex of interest in the

SDG. For instance, the statement for the count object discussed above is a kind

of statement which affects the output of the current guessing game observation.

With the complete SDG, we apply the two-pass traversal methods to slice the

system with a set of vertices of interest of the SDG. What this means is that it

does the slicing for the system with a vertex of interest from the set and iterates

this process until the set of vertices of interest becomes empty. The program slices

generated with respect to the vertices of interest from the set compose the sub-

system and then we can gather information from the sub-system to generate our

models for the system under analysis.

84

Figure 32: The complete SDG of Segment, creating flow edge represented by a

thin arrow to the SDG in Figure 31.

In the next chapter, we describe the results of applying these techniques to the

Guess Game example and outline some issues with these techniques.

85

86

Chapter 6

Analysis of Slicing & Parsing

We have discussed previously slicing and parsing techniques, and we now discuss

how we use the information gathered by those techniques to build our particular

models: a presentation model (PModel) and a presentation interaction model

(PIM).

A presentation model describes the widgets and their behaviours in a window.

Firstly, we need to define how many windows of an application there are. For a

Java application, a window can be represented by a frame, a panel or a dialogue.

Normally, a frame has one or more panels and the widgets of a window are on

panels or directly on the frame. Using parsing techniques, we can extract all of the

objects of the application. Appendix C gives the output of the Guess Game from

the JavaParser tool. We list the output of the objects of the AST in Table 5.

The first row of Table 5 gives the panels and frames of the example game, and in

87

the second row it gives the relations between the panels and frame. From those,

we can define the windows. For example, see the bold phrases in Table 5, the

second row shows that rangePanel is on panel and panel is on frame

(btnPanel is on msgPanel and msgPanel is on msgFrame), which means

frame is a window. From the third row of Table 5, we find what objects are on

the window. There are number and go on panel, which means both objects

(widgets) are on frame (window). Hence, we can extract widgets and their

windows by using parsing techniques and then use this information to generate

Pmodels.

As well as using the parsing technique for the generation of PModels, we can also

traverse the SDG of the slices. First, we use the parsing technique to obtain a set

of objects that for panels, frames, or dialogues labelled as setA and a set of objects

for the others which refers to the widgets on the user interface of the application

labelled as setB. Assuming we have setA and setB as below:

setA: panel, frame, rangePanel

setB: number, go

In the sliced SDG, we mark each node (vertex) which declares each item of setA,

traverse from these marked nodes along their outgoing edges (representing data

dependence). If two edges come into the same node, we check the node to see

which object is added onto the other one. In Java applications using the Swing

library, there is an add method for putting a widget on a window. For example,

88

frame.getContentPane().add(panel) means panel is added onto

frame; panel.add(rangePanel) means rangePanel is added onto

panel. In this way, we can define the frame object as a window of the

application. We show the inferred structure of this window in Figure 33.

Windows (panels or

frames):

JFrame msgFrame

JPanel btnPanel

JFrame frame

JPanel panel

JPanel msgPanel

JPanel rangePanel

Relations between

panels and frames:

panel On frame.getContentPane()

msgPanel On msgFrame.getContentPane()

btnPanel On msgPanel

rangePanel On panel

Widgets: number On panel

go On panel

…

Table 5: A partial parsing output for some objects of Guess Game.

In a similar way, we define the msgFrame object as the other window of the

application. Hence, we should build two PModels respectively for frame and

msgFrame. After defining windows, we need to extract the information about the

89

widgets of each window. In a similar manner to defining windows above, we mark

those nodes which represent the declarations of each item in setB and traverse

from these marked nodes along the outgoing edges. If a node visited has more

than one incoming edge we mark this node as nodeX, we check nodeX to see if it

has an add method and find out which object calls the method. For example, if

nodeX represents the statement panel.add(go), the object panel calls the

add method to add the object go. That means go is on panel and panel is on

frame, so the widget go is on frame. Alternatively, once we get nodeX, we

traverse backward from this node to see if any of the marked nodes from setA can

be reached. If a marked node from setA is reached, it means nodeX is on the item

the marked node refers to, and then use the same way as we defined windows to

decide which window the nodeX is on. Based on Table 5, the inferred structure of

frame is shown in Figure 34.

A PModel also defines the behaviour of each widget of the window. For a Java

application using the Swing library, event-based control implies the widget is an

ActionControl, i.e. it generates some behaviours. If we refer to Segment 2

showing the event-based control for go, it indicates the widget go is an

ActionControl and has a behaviour defined by calling the CheckListener

procedure. Using the widget go as an example, we traverse forward from the node

which declares this widget and check each visited node, to identify if any one

represents an event-based control. Once this kind of node is visited, we traverse

90

its procedure call to identify if the behaviour is an S_behaviour, or I_behaviour, or

S_behaviour and I_behaviour. I_behaviours navigate the windows of the

application. For our example application, the behaviour for opening the message

window in the form of msgFrame controlled by the statement

msgFrame.setVisible(true) statA, or hiding the message window

controlled by the statement msgFrame.setVisible(false) statB, are

I_behaviours. Traversing the procedure calls, if it only has a node about statA or

statB, then this behaviour is an I_behaviour; if it also has other nodes, then this

has multiple behaviours and is both of S_behaviour and I_behaviour; if it has

nodes but nothing about statA or statB, then this behaviour is an S_behaviour.

Using this algorithm, we can define the behaviours for the widgets which have

event-based controls. The widget go has both an I_behaviour and S_behaviour, as

its called procedure CheckListener contains statA (the procedure’s source

code is given in Appendix A), so in the SDG of slices we must have a node

representing it in the procedure call. We can name the I_behaviour as

I_openMsgWin, and the S_behaviour as S_checkNumbers. For the other widgets,

we categorise them by their type, such as “Entry” for widgets which are textfields,

“StatusDisplay” for widgets which are labels etc. Using JavaParser, we can get

object declarations for global variables or variable declarations for variables. In

Table 4 in Section 5.3, there is a row for object declarations. This gives an output

which is JTextField number, which means the widget number is a

textfield, so we can categorise it as an “Entry”.

91

Figure 33: The inferred structure of a window in the form of a frame in the

source code without widgets.

Figure 34: The inferred structure of a window in the form of frame in the

source code with widgets, based on Table 5.

Now, we have clarified windows, widgets, and their behaviours for Table 5. Based

on the results we get by the methods above, we can build the PModels shown in

92

Table 6.

frame is (number, Entry, ())

(go, ActionControl, (I_openMsgFrame, S_checkNumbers))

….

msgFrame is ….

Table 6: The PModel of frame in Table 5.

We can check the source code in Appendix A to know that frame represents the

main window and msgFrame represents the message window of the application.

According to Table 6, we also can build the PIM shown in Figure 35.

Figure 35: The PIM based on Table 6.

Using the slicing and parsing techniques with the SDG of the slices, we are able to

extract the information for the generation of presentation models and a

presentation interaction model using the approach we have discussed above. We

apply the approach based on the SDG of the slices of an application under

analysis (we could apply the approach on the whole SDG of an application under

93

analysis but it is too time-consuming to traverse the complete SDG as it is large

and complex). What this means is that if the SDG of the slices is not precise it can

lead to mistakes when we build the models. Also, in the process of slicing and

parsing for getting slices of the application, some issues may occur, including

those caused by the style of coding.

Using the techniques described, we may get sub-programs which are too big and

contain too much information. For example, the information about the event of a

button may consist of hundreds of lines of code including several functions in one

method, or some useless information about extraneous widgets which were used

for testing during the programming period and which do not work in the final

application (i.e. the widgets that are never added to any of the windows). In this

case, we will build a big procedure dependence graph, and then get a big system

dependence graph which is a collection of procedure dependence graphs. Big

system dependence graphs will cause difficulties in traversal for creating

relationships between the vertices and also take a long time to do. Similarly, it is

difficult and time-consuming when we use the two-passes method (details in

Section 5.2) on a large graph, traversing pass 1 and pass 2 to get the sliced

program.

The second problem is that we may extract too little information leading to

models that are not understandable, such as getting some event name only which

94

by itself is meaningless. For example, if we end up with a behaviour in the model

called “methodA”, this gives no clue as to what the method does and will make it

harder to understand the method. To make sense of this, we will need to look at

the code of the method to confirm behaviour (i.e. we end up having to manually

read the source code again). This causes trouble in reading and understanding the

models, consumes extra time, and also requires human involvement.

Another problem is about hidden information relating to the system’s response,

which may be missed because we only focus on extracting information about the

graphical user interface only. The model of an interactive system is not only the

model of the graphical user interface but also the model of the system’s

functionality. Thus, we also need to get the sliced program where slices relate to

the hidden information (for example, global variables). This problem relates to the

set of properties of interest which may not be complete as slicing criteria.

The first two problems are caused by the application programmers’ coding style,

and the last problem is the result of the process of slicing and parsing because the

analysts only focus their attention on the graphical user interface of an interactive

system leading to the incomplete slicing criteria.

Coding style is critical. If we are to build tools which fully automate the process

(which is desirable) then in order to capture all information, we need to consider

95

all of the possible ways the program may be designed. This is not feasible, so

coding style is hard to address and the kind of issues caused by different coding

styles may occur and lead us to get imprecise models of the application. However,

the second problem relating to slicing criteria can be solved by a more structured

slicing criteria generation. There may still be underlying functionality we do not

identify, but if this is only the behaviour not required for our models (because the

user can not access it via interaction) then that does not cause problems for the

PModels or PIM.

The presentation model relation (PMR) of the application can not be built

following the methods described, as it is a relation between the presentation

models and a specification of the application, but we do not have access to the

specification during slicing or parsing.

96

Chapter 7

Conclusions

7.1 Overview of Project Goals

This project discusses reverse engineering interactive software applications,

which refers to applications with user interfaces, by static methods. Using existing

reverse engineering techniques to get exact models of interactive software systems

is not easy. Many existing reverse engineering techniques only focus on the

system functionality or the system’s user interface, and generate very big models

which cause slow analysis and which are resource intensive. This project

addresses those problems. We can reverse engineer the interactive system to get

both the structure of the graphical user interface and its corresponding internal

behaviours, and have identified how slicing and parsing techniques could be used

to generate a particular set of models, presentation models and presentation

interaction models [4].

97

7.2 Summary of Results

With the aim of building small graphs of a system to derive the models, this

project suggests using program slicing techniques combined with parsing

techniques to get the sub-system which contains all of the necessary information

about the system’s user interface but without additional irrelevant information for

the models’ generation. We first build the system dependence graph of the system

which describes the data dependence graph and control dependence graph of the

system. Next we define a set of vertices of interest as slicing criteria which

normally is a set of the outputs of the system, and then we use the two-passes

method to slice with respect to each vertex of interest to get the corresponding

slice. Finally, we combine these slices to form the program slice of the system

with the slicing criteria of the set of vertices of interest.

Based on the program slice, we suggest an approach of using parsing and slicing

techniques to extract the user interface’s structure from the program slice for the

purpose of building the particular set of models we are interested in. The models

are presentation models that formally describe the behaviours and components of

the user interface of an interactive system and a presentation interaction model

that gives the availability and navigation of the system’s user interfaces to ensure

each user interface of the system is reachable by the user. The set of models

represent an abstraction of an interactive system, including both the user interface

98

and system functionality.

We have examined these techniques and approaches with our study case – Guess

Game throughout this project.

There are some issues which can occur during the generation of program slices

because of the system programmers’ code style and the choice of the slicing

criteria. Hence, the program slices may vary and lead to differences in the final

models generated. However, we have shown that such an approach is feasible and

that our idea of combining parsing and slicing in the manner shown is a valuable

contribution and presents a solution to the problem.

7.3 Future Work

This project uses slicing and parsing to aid reverse engineering techniques for

interactive systems. We have used parsing tools and then manually generated the

system dependence graph. In future, we consider developing a tool (based on the

algorithms described in Chapter 5) to automatically create the system dependence

graph for an interactive system to be analysed. In addition, we consider that it may

be beneficial to combine some dynamic analysis methods to improve our

techniques. For example, the technique used by Systa [27] uses a debugger to get

event traces and outputs state diagrams about the events which can be used to

99

examine the total behaviour of a class, object, or method. We consider this may be

helpful for improving the generation of the system dependence graphs.

100

8 Bibliography

[1]. Leveson, N. G. (1995). SafeWare: System safety and computers. Reading,

Mass.: Addison-Wesley.

[2]. Source making: Visitor Design Pattern. (2012). Retrieved from

http://sourcemaking.com/design_patterns/visitor

[3]. Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design

recovery - A taxonomy. IEEE Software, 7(1), 13-17.

[4]. Bowen, J., & Reeves, S. (2008). Formal models for user interface design

artefacts. Innovations in Systems and Software Engineering, 4(2), 125-141.

[5]. Wikipedia: User-centered design. (2012). Retrieved from

http://en.wikipedia.org/wiki/User-centered_design

[6]. Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Pasareanu, C. S.,

Robby, & Hongjun, Z. (2000). Bandera: Extracting finite-state models

from Java source code. Proceedings of International Conference on

Software Engineering, June 4 - 11, 2000 (pp. 439-448). New York: ACM.

[7]. Memon, A., Banerjee, I., & Nagarajan, A. (2003). GUI ripping: Reverse

engineering of graphical user interfaces for testing. Proceedings - 10th

Working Conference on Reverse Engineering, November 13 - 16, 2003 (pp.

260-269). Victoria, BC, Canada: IEEE Computer Society.

101

[8]. Samir, H., Stroulia, E., & Kamel, A. (2007). Swing2Script: Migration of Java-

Swing applications to Ajax Web applications. Proceedings - 14th Working

Conference on Reverse Engineering, WCRE 2007, October 28 - 31, 2007

(pp. 179-188). Vancouver, BC, Canada: IEEE Computer Society.

[9]. Gimblett, A., & Thimbleby, H. (2010). User interface model discovery:

Towards a generic approach. Proceedings - 2nd ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, EICS'10, June 19 - 23,

2010 (pp. 145-154). Berlin, Germany: ACM.

[10]. Paiva, A. C. R., Faria, J. C. P., Tillmann, N., & Vidal, R. A. M. (2005). A

model-to-implementation mapping tool for automated model-based GUI

testing. Proceedings - Formal Methods and Software Engineering. 7th

International Conference on Formal Engineering Methods, ICFEM 2005.

November 1 - 4, 2005 (pp. 450-464). Berlin, Germany: Springer-Verlag.

[11]. Bandelloni, R., Patern, F., & Santoro, C. (2008). Reverse engineering cross-

modal user interfaces for ubiquitous environments. In G. Jan, H. M.

Borup, P. Philippe, C. V. Gerrit & W. Janet (Eds.), Engineering Interactive

Systems (pp. 285-302). Berlin: Springer.

[12]. Dwyer, M. B., Robby, Tkachuk, O., & Visser, W. (2004). Analyzing

interaction orderings with model checking. Proceedings - 19th

International Conference on Automated Software Engineering, ASE 2004,

September 20 - 24, 2004 (pp. 154-163). Linz, Austria: IEEE Computer

Society.

102

[13]. Paiva, A. C. R., Faria, J. C. P., & Mendes, P. M. C. (2008). Reverse

engineered formal models for GUI testing. Proceedings - Formal Methods

for Industrial Critical Systems. 12th International Workshop, FMICS

2007, July 1 - 2, 2007 (pp. 218-233). Berlin, Germany: Springer-Verlag.

[14]. Silva, J. C., Campos, J. C., & Saraiva, J. (2006). Combining formal methods

and functional strategies regarding the reverse engineering of interactive

applications. Proceedings - Interactive Systems: Design, Specification,

and Verification. 13th International Workshop, DSVIS 2006. July 26 - 28,

2006 (pp. 137-150). Berlin, Germany: Springer-Verlag.

[15]. Silva, J. C., Saraiva, J., & Campos, J. C. (2009). A generic library for GUI

reasoning and testing. Proceedings - 24th Annual ACM Symposium on

Applied Computing, SAC 2009, March 8 - 12, 2009 (pp. 121-128).

Honolulu: ACM.

[16]. Staiger, S. (2007). Reverse engineering of graphical user interfaces using

static analyses. Proceedings - 14th Working Conference on Reverse

Engineering, October 28 - 31, 2007 (pp. 189-198). Piscataway, NJ: IEEE.

[17]. Silva, J. C., Silva, C., Goncalo, R., Saraiva, J., & Campos, J. C. (2010). The

GUISurfer tool: Towards a language independent approach to reverse

engineering GUI code. Proceedings - 2nd ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS'10, June 19 - 23, 2010

(pp. 181-186). Berlin, Germany: ACM.

103

[18]. Silva, J. C., Saraiva, J., & Campos, J. C. (2011). Models for the reverse

engineering of Jave/Swing application. Retrieved from

http://news.informatik.uni-mainz.de/ALT/Dateien/26-Silva-old.pdf

[19]. Dwyer, M. B., Carr, V., & Hines, L. (1997). Model checking graphical user

interfaces using abstractions. Proceedings - 6th European Software

Engineering Conference, ESEC/FSE '97, September 22 - 25, 1997 (6 ed.,

pp. 244-261). USA: ACM.

[20]. Memon, A. M., Soffa, M. L., & Pollack, M. E. (2001). Coverage criteria for

GUI testing. Proceedings - 8th European Engineering Conference (ESEC)

and 9th ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE-9), September 10 - 14, 2001 (pp. 256-267). Vienna,

Austria: ACM.

[21]. Moore, M. M. (1996). Rule-based detection for reverse engineering user

interfaces. Proceedings of WCRE '96: 3rd Working Conference on Reverse

Engineering, November 8 - 10, 1996 (pp. 42-48). Los Alamitos, CA: IEEE

Computer Society.

[22]. Horwitz, S., Reps, T., & Binkley, D. (2004). Interprocedural slicing using

dependence graphs. ACM SIGPLAN Notices, 39(4), 229-243.

[23]. Agrawal, H. (1994). On slicing programs with jump statements. ACM

SIGPLAN Notices, 29(6), 302-312.

104

[24]. Reps, T., Horwitz, S., Sagiv, M., & Rosay, G. (1994). Speeding up slicing.

Proceedings – 2nd ACM SIGSOFT Symposium on Foundations of

Software Enginering. SIGSOFT '94, December 6 - 9, 1994 (pp. 11-20).

USA: ACM.

[25]. Tip, F. (1994). A survey of program slicing techniques. Retrieved from

http://researcher.ibm.com/files/us-ftip/jpl1995.pdf

[26]. Weiser, M. (1981). Program slicing. Paper presented at the Proceedings - 5th

International Conference on Software Engineering, March 9 - 12, 1981,

New York.

[27]. Systa, T. (1999). Dynamic reverse engineering of Java software. Retrieved

from http://www.cs.tut.fi/~tsysta/papers/ecoopnew.pdf

[28]. Scheetz, M., von Mayrhauser, A., & France, R. (1999). Generating test cases

from an OO model with an AI planning system. Proceedings - 10th

International Symposium on Software Reliability Engineering, November

1 - 4, 1999 (pp. 250-259). Los Alamitos, CA: IEEE Computer Society.

[29]. Fu, C., Grechanik, M., & Xie, Q. (2009). Inferring types of references to

GUI objects in test scripts. Proceedings - 2nd International Conference on

Software Testing, Verification, and Validation, ICST 2009, April 1 - 4,

2009 (pp. 1-10). Denver, CO: IEEE Computer Society.

[30]. Grilo, A. M. P., Paiva, A. C. R., & Faria, J. P. (2006). Reverse engineering of

GUI models. Retrieved from

http://inforum.org.pt/INForum2009/docs/full/paper_39.pdf

105

[31]. Lutteroth, C. (2008). Automated reverse engineering of hard-coded GUI

layouts. Proceedings of the 9th conference on Australasian user interface,

AUIC2008, Wollongong, Australia (pp. 65-73). Darlinghurst, Australia:

Australian Computer Society.

[32]. Systa, T. (1999). On the relationships between static and dynamic models in

reverse engineering Java software. Proceedings of the 6th Working

Conference on Reverse Engineering, Atlanta, Georgia (pp. 304-313):

IEEE.

[33]. Xun, Y., Cohen, M. B., & Memon, A. M. (2011). GUI Interaction testing:

Incorporating event context. IEEE Transactions on Software Engineering,

37(4), 559-574.

[34]. Moore, M. (1995). Reverse engineering user interfaces: A technique.

Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.49.5043&rep=rep1&type=pdf

[35]. Da Cruz, A. M. R., & Faria, J. P. (2010). Automatic generation of user

interface models and prototypes from domain and use case models.

Retrieved from http://www.mendeley.com/research/automatic-generation-

user-interface-models-prototypes-domain-case-models/

[36]. ISO/IEC 13568. (2002). Information technology -- Z formal specification

notation -- Syntax, type system and semantics.

[37]. Reeve, G. (2005). A refinement theory for μCharts. PhD thesis, University of

Waikato, Hamilton, New Zealand.

106

[38]. Bowen, J., & Reeves, S. (2009). Refinement for user interface designs.

Formal Aspects of Computing, 21(6), 589-612.

107

108

9 Appendix A

The Source Code of the Guess Game in Java is shown here.

/**

author: Feifei Lin

*/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

1: public class guessGame {

2: private static int RandomNum;

3: private JTextField number;

4: private JLabel msg;

5: private JFrame msgFrame;

6: private JPanel btnPanel;

7: private int count = 0; // how many times to get the right
number

8: private JButton continueBtn; // click to back the main window
or reset the game

9: private JRadioButton range1;

10: private JRadioButton range2;

11: private JRadioButton range3;

12: private JLabel countMsg;

13: public static void main(String[] args) {

14: RandomNum = (int)(Math.random() *1000);

15: SwingUtilities.invokeLater(new Runnable() {

16: public void run() {

17: new guessGame().createAndShowGUI();

}

109

});

}

18: public void createAndShowGUI() {

19: try {

20: JFrame frame = new JFrame("Guess A Number Game");

21: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22： JPanel panel = new JPanel();

23： panel.setPreferredSize(new Dimension(450,150));

24： frame.getContentPane().add(panel);

25： JLabel label1 = new JLabel("I am thinking of a
number X where: " + "0 <= X < 1000, Guess what I am: ");

26： number = new JTextField("Guess a number", 20);

27： JButton go = new JButton("Go");

28： msg = new JLabel();

29： panel.add(label1);

30： panel.add(number);

31： panel.add(go);

32： go.addActionListener(new CheckListener());

33： msgFrame = new JFrame("The Message of The Number");

34： msgFrame.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

35： JPanel msgPanel = new JPanel();

36： msgPanel.setPreferredSize(new Dimension(400,150));

37： msgFrame.getContentPane().add(msgPanel);

38： msgPanel.setLayout(new BoxLayout(msgPanel,

BoxLayout.PAGE_AXIS));

39： msgPanel.add(msg);

40： msgPanel.add(Box.createRigidArea(new
Dimension(0,5)));

41： msgPanel.setBorder(BorderFactory.createEmptyBorder(1
0,10,10,10));

42： btnPanel = new JPanel();

43： btnPanel.setLayout(new BoxLayout(btnPanel,

BoxLayout.LINE_AXIS));

44： btnPanel.setBorder(BorderFactory.createEmptyBorder(1
5,10,10,10));

110

45： btnPanel.setAlignmentX(Box.LEFT_ALIGNMENT);

46： JButton exitBtn = new JButton("Exit Game");

47： exitBtn.addActionListener(new FinishGame());

48： continueBtn = new JButton("Continue Game");

49： continueBtn.addActionListener(new ContinueGame());

50： btnPanel.add(exitBtn);

51： btnPanel.add(Box.createRigidArea(new

Dimension(10,0)));

52： btnPanel.add(continueBtn);

53： msgPanel.add(btnPanel, BorderLayout.CENTER);

54： msgPanel.add(Box.createRigidArea(new
Dimension(0,5)));

55： countMsg = new JLabel();

56： msgPanel.add(countMsg, BorderLayout.PAGE_END);

57： msgFrame.pack();

58： msgFrame.setVisible(false);

59： JMenuBar menuBar;

60： JMenu menu;

61： JMenuItem menuItem;

62： menuBar = new JMenuBar();

63： menu = new JMenu("File");

64： menu.setMnemonic(KeyEvent.VK_A);

65： menu.getAccessibleContext().setAccessibleDescription
("The only menu in this program that has menu items");

66： menuBar.add(menu);

67： menuItem = new JMenuItem("New Round",
KeyEvent.VK_N);

68： menuItem.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_2, ActionEvent.ALT_MASK));

69： menuItem.addActionListener(new NewRound());

70： menu.add(menuItem);

71： menuItem = new JMenuItem("Close", KeyEvent.VK_Q);

72： menuItem.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_1, ActionEvent.ALT_MASK));

111

73： menuItem.addActionListener(new FinishGame());

74： menu.add(menuItem);

75： frame.setJMenuBar(menuBar);

// range:

// radio buttons

76： range1 = new JRadioButton("0 <= X < 100");

77： range2 = new JRadioButton("0 <= X < 5000");

78： range3 = new JRadioButton("RESET");

79： range3.setVisible(false);

80： ButtonGroup group = new ButtonGroup();

81： group.add(range1);

82： group.add(range2);

83： group.add(range3);

84： range1.addActionListener(new NewRound());

85： range2.addActionListener(new NewRound());

86： range3.addActionListener(new NewRound());

87： JPanel rangePanel = new JPanel();

88： rangePanel.setPreferredSize(new Dimension(400,70));

89： rangePanel.setBorder(BorderFactory.createTitledBorder
("Range Options"));

90： panel.add(rangePanel);

91： rangePanel.add(range1);

92： rangePanel.add(range2);

93： rangePanel.add(range3);

94： frame.pack();

95： frame.setVisible(true);

96： } catch (Exception e) {

97： e.printStackTrace();

}

}

98： public void generateRandomNumber() {

99： if (range1.isSelected()) {

100： RandomNum = (int)(Math.random() *100);

101： range3.setVisible(true);

}

112

102： else if (range2.isSelected()) {

103： RandomNum = (int)(Math.random() *5000);

104： range3.setVisible(true);

}

105： else {

106： RandomNum = (int)(Math.random() *1000);

107： range3.setVisible(false);

}

}

108： public void NewGame() {

109： generateRandomNumber();

110： number.setText("Guess a number");

111： count = 0;

112： continueBtn.setText("Continue Game");

113： msgFrame.setVisible(false);

114： countMsg.setVisible(false);

}

115： public class NewRound implements ActionListener {

116： public void actionPerformed(ActionEvent e) {

117： NewGame();

}

}

118： public class ContinueGame implements ActionListener {

@Override

119： public void actionPerformed(ActionEvent e) {

// TODO Auto-generated method stub

120： if (continueBtn.getText() == "Next Round") {

121： NewGame();

}

122： msgFrame.setVisible(false);

}

}

123： public class FinishGame implements ActionListener {

@Override

124： public void actionPerformed(ActionEvent e) {

// TODO Auto-generated method stub

125： System.exit(0);

}

113

}

126： public class CheckListener implements ActionListener {

127： public void actionPerformed(ActionEvent ev){

128： msgFrame.setVisible(true);

129： count ++;

130： System.out.println("You have guessed "+ count + "
times");

131： String str = number.getText();

132： try {

133： int guessNum = Integer.parseInt(str);

134： if (guessNum < RandomNum) {

135： msg.setText("It's LOWER than what I think,
please guess again!");

136： } else if (guessNum > RandomNum) {

137： msg.setText("It's HIGHER than what I think,
please guess again!");

138： } else {

139： msg.setText("Congratulations! The number I'm
thinking is " + RandomNum + ".");

140： continueBtn.setText("Next Round");

141： countMsg.setVisible(true);

142： countMsg.setText("You guessed " + count + "
times for this round.");

}

143： } catch (NumberFormatException e) {

144： return;

}

}

}

}

114

10 Appendix B

The system dependence graph of Guess Game is shown on the following insert.

In order to keep the graph simple for reading, the extra vertices including the

actual-in, actual-out vertices for the global variables for call statements are

omitted, as well as the extra vertices as the property of the Swing library.

However, we keep the relations for the global variables between call statements

and called procedures by showing their parameter-in and parameter-out edges.

Based on the source code of Guess Game in Appendix A, we put a number of the

line of a statement with the variables used in the statement to express a node in the

SDG on the following insert. That means to read the full expression of a node in

Appendix A.

115

116

11 Appendix C

The main outputs of parsing Guess Game by JavaParser are listed below,

extracting inner classes, method declarations, object declarations, and variable

declarations used in the whole program.

For inner classes:

$ inner class: public class NewRound implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 NewGame();

 }

}

$ inner class: public class ContinueGame implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent e) {

 if (continueBtn.getText() == "Next Round") {

 NewGame();

 }

 msgFrame.setVisible(false);

 }

}

$ inner class: public class FinishGame implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.exit(0);

 }

}

$ inner class: public class CheckListener implements ActionListener {

 public void actionPerformed(ActionEvent ev) {

 msgFrame.setVisible(true);

 count++;

119

 System.out.println("You have guessed " + count + " times");

 String str = number.getText();

 try {

 int guessNum = Integer.parseInt(str);

 if (guessNum < RandomNum) {

 msg.setText("It's LOWER than what I think, please guess

again!");

 } else if (guessNum > RandomNum) {

 msg.setText("It's HIGHER than what I think, please guess

again!");

 } else {

 msg.setText("Congratulation! The number I'm thinking is " +

RandomNum + ".");

 continueBtn.setText("Next Round");

 countMsg.setVisible(true);

 countMsg.setText("You guessed " + count + " times for this

round.");

 }

 } catch (NumberFormatException e) {

 return;

 }

 }

}

For global variables:

Object Declaration: int RandomNum

FieldDeclaration: private static int RandomNum;

Object Declaration: JTextField number

FieldDeclaration: private JTextField number;

Object Declaration: JLabel msg

FieldDeclaration: private JLabel msg;

Object Declaration: JFrame msgFrame

FieldDeclaration: private JFrame msgFrame;

Declaration of the Window class: msgFrame

Object Declaration: JPanel btnPanel

FieldDeclaration: private JPanel btnPanel;

Declaration of the Window class: btnPanel

Object Declaration: int count

FieldDeclaration: private int count = 0;

Object Declaration: JButton continueBtn

FieldDeclaration: private JButton continueBtn;

Object Declaration: JRadioButton range1

120

FieldDeclaration: private JRadioButton range1;

Object Declaration: JRadioButton range2

FieldDeclaration: private JRadioButton range2;

Object Declaration: JRadioButton range3

FieldDeclaration: private JRadioButton range3;

Object Declaration: JLabel countMsg

FieldDeclaration: private JLabel countMsg;

For method declarations:

method name: main

! modifiers: 9

! type: void

! parameter: [String[] args]

! body-blockstmt: {

 RandomNum = (int) (Math.random() * 1000);

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 new guessGame().createAndShowGUI();

 }

 });

}

method name: createAndShowGUI

! modifiers: 1

! type: void

! parameter: null

! body-blockstmt: {

 try {

 JFrame frame = new JFrame("Guess A Number Game");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel();

 panel.setPreferredSize(new Dimension(450, 150));

 frame.getContentPane().add(panel);

 JLabel label1 = new JLabel("I am thinking of a number X where: " +

"0 <= X < 1000, Guess what I am: ");

 number = new JTextField("Guess a number", 20);

 JButton go = new JButton("Go");

 msg = new JLabel();

 panel.add(label1);

 panel.add(number);

 panel.add(go);

 go.addActionListener(new CheckListener());

121

 msgFrame = new JFrame("The Message of The Number");

 msgFrame.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

 JPanel msgPanel = new JPanel();

 msgPanel.setPreferredSize(new Dimension(400, 150));

 msgFrame.getContentPane().add(msgPanel);

 msgPanel.setLayout(new BoxLayout(msgPanel, BoxLayout.PAGE_AXIS));

 msgPanel.add(msg);

 msgPanel.add(Box.createRigidArea(new Dimension(0, 5)));

 msgPanel.setBorder(BorderFactory.createEmptyBorder(10, 10, 10,

10));

 btnPanel = new JPanel();

 btnPanel.setLayout(new BoxLayout(btnPanel, BoxLayout.LINE_AXIS));

 btnPanel.setBorder(BorderFactory.createEmptyBorder(15, 10, 10,

10));

 btnPanel.setAlignmentX(Box.LEFT_ALIGNMENT);

 JButton exitBtn = new JButton("Exit Game");

 exitBtn.addActionListener(new FinishGame());

 continueBtn = new JButton("Continue Game");

 continueBtn.addActionListener(new ContinueGame());

 btnPanel.add(exitBtn);

 btnPanel.add(Box.createRigidArea(new Dimension(10, 0)));

 btnPanel.add(continueBtn);

 msgPanel.add(btnPanel, BorderLayout.CENTER);

 msgPanel.add(Box.createRigidArea(new Dimension(0, 5)));

 countMsg = new JLabel();

 msgPanel.add(countMsg, BorderLayout.PAGE_END);

 msgFrame.pack();

 msgFrame.setVisible(false);

 JMenuBar menuBar;

 JMenu menu;

 JMenuItem menuItem;

 menuBar = new JMenuBar();

 menu = new JMenu("File");

 menu.setMnemonic(KeyEvent.VK_A);

 menu.getAccessibleContext().setAccessibleDescription("The only menu

in this program that has menu items");

 menuBar.add(menu);

 menuItem = new JMenuItem("New Round", KeyEvent.VK_N);

 menuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_2,

ActionEvent.ALT_MASK));

 menuItem.addActionListener(new NewRound());

 menu.add(menuItem);

 menuItem = new JMenuItem("Close", KeyEvent.VK_Q);

 menuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_1,

122

ActionEvent.ALT_MASK));

 menuItem.addActionListener(new FinishGame());

 menu.add(menuItem);

 frame.setJMenuBar(menuBar);

 range1 = new JRadioButton("0 <= X < 100");

 range2 = new JRadioButton("0 <= X < 5000");

 range3 = new JRadioButton("RESET");

 range3.setVisible(false);

 ButtonGroup group = new ButtonGroup();

 group.add(range1);

 group.add(range2);

 group.add(range3);

 range1.addActionListener(new NewRound());

 range2.addActionListener(new NewRound());

 range3.addActionListener(new NewRound());

 JPanel rangePanel = new JPanel();

 rangePanel.setPreferredSize(new Dimension(400, 70));

 rangePanel.setBorder(BorderFactory.createTitledBorder("Range

Options"));

 panel.add(rangePanel);

 rangePanel.add(range1);

 rangePanel.add(range2);

 rangePanel.add(range3);

 frame.pack();

 frame.setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 }

}

method name: generateRandomNumber

! modifiers: 1

! type: void

! parameter: null

! body-blockstmt: {

 if (range1.isSelected()) {

 RandomNum = (int) (Math.random() * 100);

 range3.setVisible(true);

 } else if (range2.isSelected()) {

 RandomNum = (int) (Math.random() * 5000);

 range3.setVisible(true);

 } else {

 RandomNum = (int) (Math.random() * 1000);

 range3.setVisible(false);

 }

123

}

The output of the body statements line by line:

^^^^^^^^^^^^^^ if (range1.isSelected()) {

 RandomNum = (int) (Math.random() * 100);

 range3.setVisible(true);

} else if (range2.isSelected()) {

 RandomNum = (int) (Math.random() * 5000);

 range3.setVisible(true);

} else {

 RandomNum = (int) (Math.random() * 1000);

 range3.setVisible(false);

}

method name: NewGame

! modifiers: 1

! type: void

! parameter: null

! body-blockstmt: {

 generateRandomNumber();

 number.setText("Guess a number");

 count = 0;

 continueBtn.setText("Continue Game");

 msgFrame.setVisible(false);

 countMsg.setVisible(false);

}

These are methods in the inner classes above (as the property of Swing library):

method name: actionPerformed

method name: actionPerformed

method name: actionPerformed

method name: actionPerformed

In Java, a frame represents a window of a program.

PModels :

JFrame msgFrame

JPanel btnPanel

124

JFrame frame

JPanel panel

JPanel msgPanel

JPanel rangePanel

Describe each widget of the example application’s UI and where it refers to, and

also list all of variables including global variables used in the program:

panel On frame.getContentPane()

Variables used in the methods: panel

label1 On panel

Variables used in the methods: label1

number On panel

Variables used in the methods: number

go On panel

Variables used in the methods: go

msgPanel On msgFrame.getContentPane()

Variables used in the methods: msgPanel

msg On msgPanel

Variables used in the methods: msg

Box.createRigidArea(new Dimension(0, 5)) On msgPanel

Variables used in the methods: Box.createRigidArea(new Dimension(0, 5))

exitBtn On btnPanel

Variables used in the methods: exitBtn

Box.createRigidArea(new Dimension(10, 0)) On btnPanel

Variables used in the methods: Box.createRigidArea(new Dimension(10, 0))

continueBtn On btnPanel

Variables used in the methods: continueBtn

btnPanel On msgPanel

Variables used in the methods: btnPanel

Box.createRigidArea(new Dimension(0, 5)) On msgPanel

Variables used in the methods: Box.createRigidArea(new Dimension(0, 5))

countMsg On msgPanel

Variables used in the methods: countMsg

menu On menuBar

Variables used in the methods: menu

menuItem On menu

Variables used in the methods: menuItem

menuItem On menu

Variables used in the methods: menuItem

range1 On group

Variables used in the methods: range1

125

range2 On group

Variables used in the methods: range2

range3 On group

Variables used in the methods: range3

rangePanel On panel

Variables used in the methods: rangePanel

range1 On rangePanel

Variables used in the methods: range1

range2 On rangePanel

Variables used in the methods: range2

range3 On rangePanel

Variables used in the methods: range3

126

	1.1 Background
	1.2 Defining the Problem and Outline of Possible Solution
	1.3 Report Outline
	4.1 Presentation Models
	4.2 Presentation Interaction Models
	4.3 Functional Specification
	4.4 Presentation Model Relation
	5.1 System Dependence Graphs
	5.2 Slicing of a System
	5.3 Slicing with JavaParser
	7.1 Overview of Project Goals
	7.2 Summary of Results
	7.3 Future Work

