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ABSTRACT 

 

Industrial refrigeration equipment companies are continuously looking for ways to 

optimise the design of chilling and freezing tunnels in order to minimise food 

quality loss and increase the energy efficiency of the equipment. However, 

possibilities for dedicated experimental tests of the industrial operations are limited 

due to a large amount of food product involved while the number of design variables 

to be considered is high. A cost-effective alternative to experiments is numerical 

modelling. The main goal of this research was to simulate heat transfer of packaged 

food products in a chilling and freezing tunnel. Computational fluid dynamics (CFD) 

models were developed to improve prediction in industrial cheese chilling and 

chicken freezing. The industrial cheese chilling model was developed based on six 

blocks of agar that mimic the product arrangement and airflow pattern of a cheese 

chiller; while the chicken freezing model represents the first case of a CFD freezing 

model where the geometry was derived empirically via computed tomography scan 

data. The model predictions were validated by experimental temperature histories 

generated as part of the study. Once validated, the model was used to investigate 

the cooling heterogeneity and the effect of different operating conditions on the 

processing time. In addition to the CFD model, a simple heat transfer simulation 

based on the one-dimensional finite difference method was developed for industrial 

users. Thermal property models in the literature were also reviewed to propose the 

most suitable choice for thermal processing calculations. 
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Chapter 1 

Introduction 

 

Refrigeration is crucial for the food sector because it ensures the preservation of 

perishable foodstuffs. The main food refrigeration processes include chilling and 

freezing. Competing with other preservation technologies such as salting, smoking, 

canning and drying, the application of chilling and freezing has several advantages. 

Firstly, they are the most satisfactory methods for preserving the quality of fresh 

foods during long storage periods (Arthey, 1993), and secondly they are some of 

the most flexible and easiest to implement processes with a wide variety of 

equipment for several different food products. 

 

The refrigerated food market is one of the largest and most dynamic sectors of the 

food industry. In developed countries, the annual consumption of frozen food is 

about 50 kg for each person (IIR, 2013). Valued at USD 219.9 billion in 2018, the 

frozen-food market is expected to grow 30% by 2023 (Markets and Markets, 2018). 

Currently, there are around 5 million refrigerated vehicles in service worldwide, 

including vans, trucks, semi-trailers or trailers (Cavalier & Tassou, 2011). 

Furthermore, the volume dedicated to cold storage in the world accounted for 616 

million m3 in 2018, representing around 50,000 cold stores with an increase of 34% 

over 2012 (Salin, 2018). In order to illustrate the importance of refrigeration in food 

preservation, Table 1.1 summarises the number of refrigeration systems in 

operation worldwide in this application (Du-pont, 2019).  

 

However, the food cold chain requires further development as food waste and 

resulting economic loss is still significant (Du-pont, 2019). According to the 

International Institute of Refrigeration (IIR), nearly 20% of the global food supply 

is lost due to the absence of refrigeration (IIR, 2009). The FAO estimates that food 

production will have to increase globally by 50% from 2012 to 2050 (FAO, 2018) 

and refrigeration plays a vital role in reducing food wastage.  
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Table 1.1  Number of refrigeration systems in operation worldwide in food 

preservation application (Du-pont, 2019) 

Sector Equipment 
Number of units 

in operation 

Domestic 

refrigeration 

Refrigerators and freezers 2 billion 

Commercial 

refrigeration 

Commercial refrigeration equipment 

(including condensing units, stand-alone 

equipment and supermarket systems) 

120 million 

Refrigerated 

transport 

Refrigerated vehicles (vans, trucks, semi-

trailers or trailers) 

5 million 

Refrigerated containers (“reefers”) 1.2 million 

Refrigerated 

storage 

Cold stores 50,000 

 

Two key performance parameters for refrigeration processes are the time required 

for the product to cool to the target temperature, and the quantity of energy required. 

Currently, the design of refrigeration equipment is based heavily on experience, 

while some designers also make use of modelling software. A reliable heat transfer 

model can be of considerable help in optimising a process and investigating the 

consequences of design changes (James, Ketteringham, Palpacelli, & James, 2009) 

 

The industrial partner of this project is Milmeq Ltd. (now part of H&C Automated 

Solutions), a refrigeration equipment design and build company providing chilling 

and freezing equipment to food producers around the world. It designs and builds 

chilling and freezing tunnels incorporating both single retention time (SRT) tunnels 

and multiple retention time (MRT) tunnels. The design process for these products 

is based on a mix of experience and refrigeration model predictions from Food 

Product Modeller™ (FPM), software that us used to evaluate chilling, freezing, 

thawing and heating processes for a variety food products (MIRINZ). Milmeq Ltd 

approached the University of Waikato with the desire to increase their modelling 

capability, particularly with regards to airflow behavior within the refrigerated 

space and the effects of void spaces within the packaging on cooling rates. 
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The aim of this research is to simulate heat transfer not only in the packaged product 

itself but also in the airspace, the pallet, and the support structures. Heat transfer 

throughout the entire refrigeration space will be modelled rather than simply within 

the food product with a single layer of packaging, which is a limitation of FPM. 

The simulated results can provide a fundamental understanding of local airflow and 

energy transport mechanisms within packages, information that can be used for 

optimising the design of chilling and freezing tunnels. 

 

Two case studies chosen for this research were cheese chilling and chicken freezing. 

Cheese accounts for one-third of New Zealand dairy export earnings and 

contributes to around 8% of GDP (DCANZ, 2018). In 2018, New Zealand cheese 

production was 385,000 tons, of which 322,000 tons (84%) was exported valued at 

NZ$ 1.9 billion (Lee-Jones, 2019). Chicken meat is today the most consumed meat 

in New Zealand. It overtook beef as the country’s number one animal protein in the 

late 1990s and its consumption has increased dramatically since then. Today, the 

average New Zealander eats close to 40 kg of chicken meat each year – over twice 

the amount consumed 20 years ago (Stafford, 2017). In the past decade, New 

Zealand chicken meat exports have grown from almost nothing to over NZ$100 

million in 2016 (MBIE, 2017).   

 

This study will develop a heat transfer model for cheese chilling and chicken 

freezing, with a focus on the effect of airflow behavior in the large-scale cheese 

chilling system and effects of air voids within chicken packages on cooling and 

freezing rate. These factors have been identified as the greatest sources of 

uncertainty facing designers of industrial refrigeration equipment, such as Milmeq 

Ltd. 
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Chapter 2 

Literature review 

 

2.1 Introduction 

 
This literature review begins with a review of modes of heat transfer and modelling 

techniques in foods chilling and freezing, and the food properties input to the heat 

transfer model. Next, two computational fluid dynamic (CFD) modelling 

approaches, including porous medium modelling and direct modelling are 

considered with an emphasis on advantages and disadvantages of each approach 

and the suitability of each for the modelling work of this research. An overview of 

CFD applications is presented and current knowledge gaps are identified and 

discussed. Finally, the specific research aims of the thesis are presented. 

 

2.2 Modes of heat transfer during the forced-air chilling and freezing 

 
Heat transfer between a food product and its environment can occur in several ways, 

namely conduction, convection and radiation. Within solid bodies, heat transfer is 

described by Fourier’s conduction equation (Cengel & Ghajar, 2011): 

 

 s v

T
c k T q

t
 

   


                                          (2.1) 

 
where  (kg m-3) is the density, c (J kg-1 K-1) is the specific heat capacity, ks (W m-1 

K-1) is the thermal conductivity of food, T (K) is the product’s temperature, t (s) is 

time and qv (W m-3) is the volumetric heat generation. 

 

Heat transported towards the product surface is then carried away by convection 

and radiation. The energy balance at the product surface is given by Eq. 2.2: 

 

s conv rad

T
k q q

n


  


                                       (2.2) 

 

where qconv and qrad (W m-2) are the convection and radiation heat fluxes 

respectively, and n is the outward normal to the product surface. The left-hand side 

of Eq. 2.2 is the conduction heat flux within the product. 
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Convection describes the heat transfer between a solid object (e.g. the food product) 

and a moving fluid (e.g. air). The rate of convection heat transfer is often expressed 

by Newton’s Law of Cooling (Eq. 2.3) that incorporates the complexity of heat 

transfer through the boundary layer formed at the surface of an object by a single 

parameter h: 

 

 conv s aq h T T                                            (2.3) 

 

where h (W m-2 K-1) is the convective heat transfer coefficient, Ts and Ta (K) are 

the product’s surface and cooling air temperature. 

 

The h value relates the heat flux normal at the food surface to the temperature 

difference between the fruit surface and a reference temperature, usually the 

refrigerated air temperature. Amongst other factors, the h value depends on the 

geometry of the product, the properties of the surrounding fluid, the flow pattern 

and the degree of turbulence (Pham, 2014). Several empirical Nusselt-Reynolds-

Prandtl correlations exist to approximate the surface averaged h value as a function 

of food geometry, fluid velocity and product stacking pattern (Alvarez & Flick, 

1999; Becker & Fricke, 2004). In these correlations, the food geometry is often 

assumed to be either spherical or cylindrical, or else specific shape factors are 

employed for other geometries. The stacking pattern in a package is typically 

assumed to be a packed bed organised according to a certain configuration (Alvarez 

& Flick, 1999). These correlations represent a surface-averaged h value estimation. 

However, the convective transfer coefficient is directly related to the local thickness 

of the boundary layer on the product surface. Thus, the h value varies with location 

on the food surface. Since food surfaces are often curved, flow separation can occur 

and a wake can develop. In these regions, the h value cannot be analysed 

analytically and must be calculated numerically (Kondjoyan, 2006). 

  

All matter above absolute zero temperature emits electromagnetic waves from its 

surface via radiation to the surroundings (Datta, 2002), resulting in a transfer of 

energy. Compared to the other heat transfer mechanisms, radiation does not require 

a physical medium for its propagation (Singh & Heldman, 2009). Thermal radiation 
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emitted by a food product can be calculated with the Stefan-Boltzmann equation 

(Eq. 2.4): 

 

                             4 4
rad s aq F T T                                          (2.4) 

 

where σ (W m-2 K-4) is the Stefan-Boltzmann constant, σ = 5.67 × 108 W m-2 K-4, 

F is the view factor, and ε is the emissivity of the food product. 

 

In addition to convection and radiation, heat can be extracted from the product 

surface by moisture evaporation. However, for cheese or chicken products encased 

within a polyliner, any moisture evaporated from surface can be assumed to 

condense back on cool surfaces within the polyliner. Therefore, the latent heats of 

evaporation and condensation of moisture are assumed to equal and opposite to 

each other providing no significant net contribution to the overall heat balance. 

 

The total rate of heat transfer of fresh produce is a combination of the different heat 

transfer mechanisms discussed above. In general, it is assumed that conduction is 

the only significant mode of heat transfer within the food product while radiation 

and convection are assumed to occur at the product surface, essentially serving as 

boundary conditions for the conduction problem.  

 

2.3 Food properties  

 

Before the processing time and heat load can be calculated, thermal property data 

must be available as an input. The relevant physical properties of the food are 

enthalpy, specific heat, density and thermal conductivity. The selection of a suitable 

thermal property dataset is a key factor for obtaining accurate predictions of a heat 

transfer model. Tocci and Mascheroni (1994) investigated freezing times of a meat 

ball by a numerical method using three different sets of thermal properties. The 

authors concluded that a change in the thermal properties dataset made the average 

error between predicted freezing time and experimental data shift from -0.92% to 

13.23%. With recent advances in numerical analyses, the accuracy of any model of 

a thermal process can be limited more by reliable thermal properties input data than 

by the model formulation or the solution process (Datta, 2007b). 
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Measured thermal property data is available from a number of sources for 

minimally processed foods such as meat, dairy and horticultural produce (ASHRAE, 

2006; Houska et al., 1997; Houska et al., 1994; Rahman, 2009). However, when 

comparing data for similar foods measured by different authors, it is not uncommon 

to encounter conflicting and widely variable data, and the composition, origin, 

processing conditions, and structure of the foods are often not well documented 

(Carson, 2017; Kent et al., 1984; Nesvadba, 2005; Singh & Sarkar, 2005). This 

observation, coupled with the lack of data for many foods, particularly those which 

are highly processed, demonstrates the need for models that may be used to predict 

thermal properties from chemical composition data and temperature. 

 

There are many thermal property models in the literature, particularly for predicting 

thermal conductivity; however, many of these are purely empirical, which can limit 

their range of applicability. Others have theoretical bases but contain empirical 

parameters whose values must be obtained by experimentation (Carson, Wang, 

North, & Cleland, 2016). A number of food engineering and refrigeration 

handbooks contain guidelines for thermal property prediction, such as (ASHRAE, 

2006; Rahman, 2009; Rao, Rizvi, & Datta, 2005; Wang & Curtis, 2012); however, 

these focus more on providing a methodology for thermal property prediction than 

attempting to demonstrate that the models recommended for use are suitable for any 

particular purpose. Modelling the thermal properties of frozen foods in particular 

can be unreliable if unsuitable models are used, because the ratio of the thermal 

conductivity of frozen water to that of other component materials is relatively larger 

than the ratio of the thermal conductivity of unfrozen water to that of the other 

components and the uncertainty of the thermal conductivity prediction increases as 

the difference between thermal conductivities of the components increases (Carson, 

Lovatt, Tanner, & Cleland, 2006; Cheng & Vachon, 1969). Therefore, accurate 

thermal properties models are essential for a heat transfer model to produce a 

suitable prediction. 

 

2.4 Modelling heat transfer of foods chilling and freezing 

 
Many researchers have proposed different models to simulate heat transfer during 

chilling and freezing processes. These models can be divided into analytical, 

empirical and numerical solutions. The choice of technique depends on the 
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objectives of the modellers and the technical means at their disposal. Analytical 

techniques produce exact results provided their underlying assumptions are 

fulfilled, which is rarely the case. Their main usefulness is in providing benchmark 

results for the verification of other methods. Empirical formulas are derived with 

the objective of providing quick answers, requiring minimal computational power, 

with sufficient accuracy for most industrial users. These can be used only in 

situations similar to those used to derive and validate the empirical formulas. 

Numerical methods can, in principle, provide near-exact predictions for a wide 

variety of scenarios, although in practice their accuracy is limited by inadequate 

knowledge of the problem’s parameters (product properties, geometry, flow 

characteristics; (Pham, 2008), as discussed in Section 2.3. 

 

2.4.1 Analytical solutions. 

 

For chilling of foods of simple, regular geometry with constant thermal properties, 

constant external conditions, uniform initial conditions, no internal heat generation, 

and only convection at the boundary, there are analytical solutions (Carslaw & 

Jaeger, 1959). For example, for an infinite slab geometry: 

 

 i i
2a
i2

i=1in a

2Bi cos sin
 -

=  =  exp(- Fo)
- Bi(Bi+1)+ i

r
T T R

Y
T T

 





   
                        (2.5) 

 

where λi are the roots of: 

 

λ tan λ = Bi                                                       (2.6) 

2
Fo

kt

cR
                                                        (2.7) 

Bi
hR

k
                                                            (2.8) 

 

and Y is the dimensionless temperature; T, Ti, Ta (K) are the product temperature, 

initial temperature and cooling air temperature, respectively; R (m) is the half-

thickness of the slab; and r (m) is the distance from the center. 
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Newman (1936) showed that the solutions for regular, multidimensional objects can 

be obtained using the product rule. For example, for the three-dimensional 

rectangular brick shape, it is the product of the slab solutions in the three orthogonal 

dimensions: 

 

Y= Yx . Yy . Yz                                                       (2.9) 

 

For a high value of Fo (e.g., Fo > 0.2), Eq. 2.5 and the equivalents for infinite 

cylinders and sphere geometries can be simplified to the first term of the series. 

 

For food freezing, an analytical solution is Plank’s equation. For one-dimensional 

geometries, the equation to predict the time to freeze is:  

 

 
2

2
f

f
s f a

LV R R
t

A R h kT T

 
    

                                    (2.10) 

 

where tf (s) is the freezing time, V (m3) and As (m2) are volume and heat transfer 

area of the food item, Tf and Ta (K) are the initial freezing and cooling air 

temperatures, respectively, and Lf (J kg-1) is the latent heat of freezing. The 

derivation of Plank’s equation requires the following simplifications: unique phase 

change temperature, physical homogeneity, isotropic and regular shape, sensible 

heat effects are negligible relative to latent heat effects, constant heat transfer 

coefficient, h, and constant thermal conductivity, k. The net effect is that freezing 

time predictions are typically up to 50% too low (Wang, Pham, & Cleland, 2010). 

 

2.4.2 Empirical solutions. 

 

Empirical models can be obtained by carrying out a range of experiments in pilot 

plants where processing conditions can be accurately controlled. They involve some 

empirical parameters obtained by curve-fitting experimental data. This approach 

provides valuable data on the system performance but may lack a generalized 

theoretical description of the process. However, the experimental approach is 

indispensable in validating analytical solutions due to the simplifying assumptions 

that are required (Wang et al., 2010). 
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For chilling, empirical prediction approaches are grouped in two main categories: 

methods based on simplifying one-dimensional analytical solutions (Eq. 2.5) using 

j and f factors; and methods based on equivalent heat transfer dimensionality. 

 

Many researchers have used the first term approximation of the infinite series 

analytical solutions, but these have limited the ranges of applicability (i.e. Fo > 0.2 

and Y < 0.7). The prediction equation becomes (ASHRAE, 2006; Pham, 2002): 

 

exp 2.303
t

Y j
f

 
  

 
                                                  (2.11) 

 

where t (s) is the cooling time, j (lag factor) is a measure of the lag between the 

onset of cooling and the exponential decrease in the temperature of the food, and f 

(s) is the time required to obtain a 90% reduction in the fractional unaccomplished 

temperature difference. 

 

Equations are available for calculating j and f for basic shapes (slab, cylinder and 

sphere). Pflug (1965) plotted these solutions on a graph. Ramaswamy, Lo, and Tung 

(1982) and Lacroix and Castaigne (1987) gave approximate solutions that can be 

computed with a calculator. 

 

For complex or irregular shapes, the most comprehensive methods is that of Lin et 

al. (1993, 1996a, 1996b). The formulas are long and involve many variables but 

are simple to implement on a spreadsheet. 

 

Another empirical approach to predict cooling rate is using a shape factor called 

equivalent heat transfer dimensionality (E) to account for the geometry of food 

products (Cleland & Earle, 1982). The E compares the total heat transfer to the heat 

transfer through the shortest dimension. An expression for estimating E of 

irregularly shaped food items as a function of Biot number was also developed. 

 

For freezing, most empirical freezing time prediction methods are based on Plank’s 

analytical solution (Eq. 2.10) and attempt to correct its unfulfilled assumptions, in 

particular the non-zero sensible heats above and below the freezing temperature and 
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the gradual phase change (ASHRAE, 2006; Pham, 2006, 2014; Wang et al., 2010). 

Generally, these models include two contributions: the first one consists of a simple 

empirical correlation for one-dimensional shapes, while the second one considers 

the multi-dimensional geometrical parameter, using equivalent heat transfer 

dimensionality (E). Normally, the freezing time of a multi-dimensional object is 

calculated as the ratio of the freezing time of a reference simple geometry (typically 

an infinite slab) and E (Becker & Fricke, 1999). 

 

The correlations to estimate the freezing time of one-dimensional shape product are 

usually referenced against the infinite slab, infinite cylinder and sphere, and they 

take into account the average thermal properties of the sample and the conditions 

(i.e. initial product temperature, cooling air temperature and heat transfer 

coefficient). One of the most popular methods is a modified Plank’s equation 

developed by Pham (1986) which is accurate to within about ±15% for a wide range 

of freezing conditions and products (Wang et al., 2010): 

 

2
1 2

1 2 2f
s

H HV R R
t

A R T T h k

    
         

                                          (2.12) 

 

where H1 (J m-3) and ܶ1 (K) are the heat released and temperature difference, 

respectively, for the precooling period, and H2 (J m-3) and T2 (K)  are those for 

the combined freezing and post-cooling period, calculated from: 

 

 1 - u in fmH c T T                                                               (2.13) 

 2 - f ff fm cH L c T T                                                      (2.14) 

1 -  
2

in fm
a

T T
T T


                                                            (2.15) 

  2Δ = - fm aT T T                                                                     (2.16) 

Tfm (K) is the ‘mean freezing temperature’: 

   - 273.15 = 1.8+ 0.263 273.15 + 0.105 273.15fm c aT T T           (2.17) 

 

Several models have been proposed to evaluate the equivalent heat transfer 

dimensionality (Cleland, Cleland, & Earle, 1987a, 1987b; Hossain, Cleland, & 
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Cleland, 1992a, 1992b, 1992c; Ilicali, Teik, & Shian, 1999; Pham, 1991; Salvadori, 

Mascheroni, & De Michelis, 1996). The most general equation for a three-

dimensional irregular shape is (Hossain et al., 1992b): 

 

2 2
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1 2 / Bi 1 2 / Bi
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                                    (2.18) 

1 2
xsA

R



                                                                         (2.19) 

2 3
1

3

4

V

R



                                                                    (2.20) 

Bi
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k
                                                                          (2.21) 

 

where AXS (m2) is the smallest cross-sectional area of the food object through the 

thermal center. 

 

2.4.3 Numerical solutions 

 

The analytical and empirical solutions are useful for situations that can be modelled 

by convection only at the surface, where h and Ta are constant, and where heat 

generation is negligible. They are most accurate for regular geometries. In other 

cases, the problems are best handled by numerical techniques. Numerical methods 

include finite difference, finite element and finite volume methods. Finite 

difference (FD) methods are only practical for regular geometries where an 

orthogonal rectangular grid can be used. Finite element (FE) and finite volume (FV) 

are easily applied to irregular geometries and foods with heterogeneous structures, 

which are the basis of most commercial packages designed. Further details about 

FD, FE and FV methods are provided by (James et al., 2009; Pham, 2006, 2014; 

Wang et al., 2010).  

 

In the literature, a range of numerical models for the food chilling and freezing 

applications may be found. For chilling processes, Davey and Pham (1997) 

developed a multi-region finite-difference model to predict heat loss and weight 

loss of beef during air blast chilling. The irregular geometry was approximated by 

cylinders for the leg, rump and foreleg regions, and by slabs for the loin, ribs, 

shoulder and neck regions. Thermal properties were assumed to be independent of 
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temperature. The finite-difference model of Davey and Pham (1997) over-predicted 

the heat removed during the first 2 h of chilling by 12.6% on average. Davey and 

Pham (2000) introduced a more realistic representation of the beef side using a 

multi-layered two-dimensional finite element model of a carcass during chilling. 

Thermal properties were homogenized across the sections. The accuracy of the 

finite element model was superior to that of the finite difference model developed 

earlier (Davey and Pham (1997)), with an added advantage that it could predict 

local temperatures, including surface temperatures.  

 

Wang and Sun (2002) developed a three-dimensional finite element model for 

rectangular, brick-shaped roasted meat during air blast cooling. The model included 

the variation in physical properties of meat and operating conditions. Temperature 

profiles and product weight loss were predicted by this model.  

 

Campañone, Giner, and Mascheroni (2002) developed a generalized numerical 

model using a finite difference scheme for regularly shaped food refrigerated in air. 

The model took into account surface water evaporation, and thermal properties 

were modeled as functions of temperature and composition. 

 

Numerical methods for freezing may be designed to deal with variation in thermal 

properties, particularly thermal conductivity and specific heat. Huan, He, and Ma 

(2003) used the finite element method to analyse the freezing of foods. The apparent 

specific heat method was used to account for the enthalpy of phase change during 

freezing. The authors highlighted that the food shape and size, freezing air 

temperature and freezing air velocity are the important factors affecting the freezing 

rate. Mannapperuma, Singh, and Reid (1994a, 1994b) used a finite difference 

method based on enthalpy formulation (Mannapperuma & Singh, 1988) to simulate 

air blast freezing of whole chickens and chicken parts individually and in packages. 

The experimental temperature histories were compared with simulated results to 

estimate surface heat transfer coefficients. Fikiin (1996) presented a quasi-one-

dimensional numerical solution of unsteady heat transfer during the freezing 

process. The enthalpy method and the Kirchhoff function were used to deal with 

the variable specific heat and thermal conductivity. The enthalpy-Kirchhoff 

approach was also used by Santos, Vampa, Califano, and Zaritzky (2010) to model 
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the freezing of bakery products. The finite element scheme was used for the spatial 

discretization. Perussello, Mariani, and do Amarante (2011) developed a finite-

difference model to solve the transient heat conduction equation, transformed by 

the enthalpy and Kirchhoff functions. Food thermal properties were modeled as a 

function of composition and temperature. 

 

All the above-mentioned works on numerical simulation relied on the 

implementation of original models by the authors. Given the complexity of the heat 

transfer phenomena occurring, the models are relatively complex, and their 

implementation often requires top-level expertise in the field of applied 

mathematics. This requirement is very frequently not compatible with regular skills 

of designers of refrigeration equipment. 

 

Another option is the use of commercial numerical simulation packages including 

computational fluid dynamics (CFD) packages. The CFD approach offers the 

possibility of coupling the heat transfer inside products with the heat transfer in the 

surrounding environment, allowing a detailed local analysis of heat transfer 

phenomena. The development of user-friendly interfaces makes these software 

packages more straightforward to use, provided that the simulation approach is 

properly implemented and adapted to the particular case study. Furthermore, the 

increased calculation speed of modern processors has made the use of commercial 

CFD packages with personal computers more feasible. 

 

2.5 CFD methodology. 

 

CFD is a computer-based simulation tool for analysing fluid flow and heat transfer 

problems. The governing equations in CFD simulations are the mathematical 

formulations of the conservation of mass, momentum and energy which are referred 

to as the Navier-Stokes equations. In order to provide easy access to their solution 

power, many commercial CFD packages include sophisticated user interfaces to 

input problem parameters and to examine the results. Hence, all codes contain three 

main elements: (i) pre-processing, (ii) solving and (iii) post-processing (Versteeg 

& Malalasekera, 2007). 
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2.5.1 Pre-processing 

 

Pre-processing includes determining the computational domain, mesh generation, 

and definition of material properties and boundary conditions. The computational 

domain represents the object under investigation. The designer must be fully aware 

of the physics of the problem and the factors which can influence the airflow. For 

example, when modelling the forced air chilling of packaged foods, the upstream 

and downstream sections must be large enough to avoid an influence of the 

boundary conditions at the inlet and outlet on the airflow in the proximity of the 

food package. On the other hand, the size of the computational domain can be 

reduced based on symmetries or periodicity, thereby reducing the computational 

cost. 

 

Once defined, the computational domain is subdivided into elements to create the 

‘mesh’ for computation. This stage of the process is very important since the 

reliability of a CFD simulation depends on the size of these elements (the solution 

is ‘gird dependent’) (Smale, Moureh, & Cortella, 2006; Zhao, Han, Yang, Qian, & 

Fan, 2016). As the size of elements decreases, the accuracy of the solution, the 

computational time and memory requirements all increase. Therefore, an optimal 

mesh must be achieved to compromise between the calculation accuracy and 

computational cost.  

 

The properties of the fluids and of the solids involved in the simulation must be 

specified, the boundary conditions at each interface must be defined, and the initial 

conditions for all the variables must be provided. Boundary and initial conditions 

are the constraints applied on the governing equations. They connect the model with 

the surrounding environment. Inappropriate boundary and initial conditions can 

lead to misleading results.  

 

2.5.2 Solving 

 

Solving involves using a numerical method to solve the governing equations. The 

first step of the numerical algorithm is to discretize the governing equation over the 

mesh to obtain a system of algebraic equations. The discretization scheme can be 
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finite difference, finite element or finite volume. The finite volume method has 

become widely used among CFD codes because of its ease of understanding and 

programming and its high computation efficiency (Norton & Sun, 2006; Versteeg 

& Malalasekera, 2007; Zhao et al., 2016). The next step is to solve the algebraic 

equations. The underlying physical phenomena are complex and non-linear, so an 

iterative solution approach is required. The most popular solution procedure is the 

SIMPLE algorithm, which ensures correct linkage between pressure and velocity. 

However, to enhance convergence rates, some improved methods have been 

proposed, such as SIMPLEC, SIMPLER, and PISO. A comprehensive description 

of these methods was presented in (Versteeg & Malalasekera, 2007). Calculations 

continue until a specified accuracy is achieved, usually quantified by evaluating the 

residuals in the balance of one or more variables (i.e. mass, energy etc.). At this 

point, the solution is said to converge. 

 

2.5.3 Post-processing 

 

A post-processor is used to analyse the data generated by CFD simulations. 

Typically, the simulation results can be presented in the form of temperature and 

velocity maps, vector plots of the velocity field, contour plots of other scalar 

variables, and animations. In addition to graphics, most CFD packages allow the 

field data to be exported to third-party software, where they can be further processed. 

 

2.6 CFD modelling approach to simulate packaged products 

 

The goal of this research project is to model forced air chilling and freezing 

processes of packaged products. Taking into account airflows around and inside 

packages, complex geometries and spatially-variable properties, developing a 

model of such a composite domain is a difficult challenge (Smale et al., 2006). The 

main obstacle that has limited many previous models is the determination of the 

airflow behaviour around food products; information that is required to determine 

the values of the local heat transfer coefficients and the local air temperature around 

each product item. Even in the case of uniformly distributed products, the 

measurement of the fluid flow within packages using traditional methods is 

impossible without disturbing the packaging arrangement itself (Ferrua, 2007) 
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There are two main CFD approaches that have been applied to model packaged 

food: the porous medium approach and the explicit modelling approach. A brief 

description of each of these modelling approaches is given below. 

 

2.6.1 Porous medium modelling 

 

A porous medium is a solid matrix with interconnected pores or void spaces, 

through which a fluid (typically air) can flow. Representing a food package as a 

porous medium removes the need to account for the complex physical structures 

when modelling the transport phenomenon within the system (O'Sullivan, 2016). 

Variables, such as temperature, velocity and moisture content are then averaged 

over a representative elementary volume of this homogeneous media. The length 

scale of the representative elementary volume needs to be much larger than the pore 

scale but still considerably smaller than the entire package structure. The transport 

equations may be solved by coupling pressure drop relationships, such as the Ergun 

and Darcy-Forchheimer models, with the energy conservation equations for the 

solid and air phases. More detail about the development of the porous medium 

modelling was presented in (Verboven, Flick, Nicolaï, & Alvarez, 2006).  

 

The application of the porous medium approach to heat transfer in food processing 

operations can be found in the literature (Ambaw et al., 2016; Ambaw et al., 2013; 

Delele, Ngcobo, Opara, & Meyer, 2013; Delele, Schenk, Ramon, Nicolaï, & 

Verboven, 2009; Getahun, Ambaw, Delele, Meyer, & Opara, 2017a, 2017b; Hoang, 

Duret, Flick, & Laguerre, 2015; Zou, Opara, & McKibbin, 2006a, 2006b).    

  

The greatest advantage of the porous medium model is that it allows for the 

simplification of the mathematical model by using volume-averaged fluid flow 

properties, thereby reducing computing time and simulation costs. However, 

despite extensive effort, the accuracy of the porous-medium approach for modelling 

the airflow and heat transfer within packaging has been questioned, particularly for 

layered packaging (Zou et al., 2006b). The main disadvantage of this approach is 

the disregard for temperature and pressure gradients internal to the product. Another 

limitation of this approach is that the continuous-medium assumption inherent to a 
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porous media may not be justified when the package-to-product equivalent 

diameter ratio is less than 10, which is the case for a tray of bulk-packed drumsticks 

or a tray of whole chickens considered in this study. 

 

For forced-air cooling of packaged products, the airflow and the local cooling 

behavior inside packages must be accounted for to achieve an optimum design of 

the cooling process. The increasing calculation power of personal computers means 

that the greater computation demands of direct simulation compared to the porous 

medium approximation are becoming less prohibitive. 

 

2.6.2 Direct computational fluid dynamics simulations 

 

In direct CFD simulation, the complex features of the solid geometries (food 

products and package material) are not simplified to the same extent as in the porous 

medium approach. Instead, the explicit geometry of packaged product is taken into 

account in a direct model. The airflow and heat transfer through the system can be 

simulated by direct solution of the Navier-Stokes equations and the energy 

equations of the fluid and solid domains (Verboven et al., 2006). Because this 

approach deals with local properties and variables, it can provide a more 

fundamental understanding of the complex fluid flow and heat transfer behaviour. 

By contrast, the geometrical construction of the computational domain and mesh 

generation can become more challenging due to the explicit geometry considered 

by the model and this can increase the computational load significantly. 

  

2.7 Application of CFD to foods chilling and freezing  

 

With the advances in numerical modelling and computing power, CFD has been 

employed as a tool to optimize and develop equipment and processing strategies for 

the food industry (Norton & Sun, 2006). The detailed information provided by the 

use of CFD models has facilitated unique opportunities to investigate alternative 

system designs, without the need for expensive and time-consuming experiments. 

 

For industrial food chilling, Mirade, Kondjoyan, and Daudin (2002) developed a 

three-dimensional (3D) CFD model to determine the velocity field in a pork chiller 
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containing 290 carcasses. The 3D geometrical model of a pork carcass was created 

from the 2D shape of the pork carcass with a thickness of 20 cm. The airflow profile 

was used to estimate heat and mass transfer coefficients which were then employed 

in the analytical model developed by Daudin and Kuitche (1996) to calculate 

chilling kinetics inside pork carcasses. A reasonably good agreement was observed 

between the calculated and measured air velocities, and the accuracy in temperature 

and weight loss predictions were 1°C and 0.1% in absolute value, respectively. 

Pham, Trujillo, and McPhail (2009) presented a simplified, combined model in 

which CFD software FLUENT was employed to calculate the local heat and mass 

transfer coefficients, before applying a finite element method to simulate heat 

transfer on a two-dimensional model of a beef chilling process. The water diffusion 

was modelled on a fine secondary 1D mesh because water diffusion and heat 

transfer occurred on very different scales. The supplementary 1D grid used for 

solving the water diffusion equation was implemented in an additional piece of code 

programmed via a specific FLUENT user-defined function. The model was verified 

by wind tunnel tests and industrial chiller tests on heat load, temperatures, weight 

loss and surface water activity. The agreement between the model and result from 

wind tunnel tests was very good, while the agreement with the industrial chillers 

tests was only qualitative. Although the computation time of the simplified 

combined model was reduced remarkably compared to using CFD for both airflow 

and heat transfer simulation, it was difficult to use because the user-defined function 

was written in a different programming language than the CFD code.  

 

For the chilling of horticulture products, Defraeye et al. (2013, 2014) presented a 

direct CFD approach to model different packaging designs for oranges stacked on 

a pallet in forced convective cooling. In these studies, cooling performance and 

energy consumptions of each package design was evaluated. A comparison of the 

simulation results with experimental data showed good agreement between the two.  

 

The direct CFD approach has also been used by many researchers to simulate the 

effect of altering the size and location of air vents in horticultural produce 

packaging and whether these changes can improve the airflow distribution and 

cooling uniformity within and between the product packages (Berry, Defraeye, 

Nicolaї,̈ & Opara, 2016; Berry, Fadiji, Defraeye, & Opara, 2017; Han, Zhao, Yang, 
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Qian, & Fan, 2015; Lu, Chen, & Wang, 2016). In these studies, a fruit stack was 

assumed to be comprised of regular spheres organized typically in a staggered 

arrangement. The use of such simplifications can cause large differences between 

measured and simulated data for local air velocity, convective heat transfer 

coefficient, and the degree of the cooling uniformity (Gruyters et al., 2018). This 

difference was larger the less spherical the fruit (e.g. pears did not show good 

agreement between model and experiment). Therefore, more realistic fruit shapes 

are preferable. Ferrua and Singh (2009a, 2009b, 2009c, 2009d, 2011) were amongst 

the first to develop a direct CFD model that used a real product shape to optimise 

the forced-air cooling of individual clamshell-packaged strawberries. The 

strawberry geometry was reconstructed from digital images and implemented in the 

model. The authors found that forcing more air through clamshells was unlikely to 

increase the cooling rate of the process; however, periodically reversing the airflow 

direction could improve both the rate and the uniformity of the cooling process. In 

addition, bypassing half the airflow entering the pallet structure into the second part 

of the pallet, thus decreasing the temperature of the air being delivered at the 

warmest points within the system could also improve the uniformity of the cooling 

process and significantly reduced the airflow resistance in the system.  

 

Recently, Gruyters et al. (2018) presented a CFD model for studying the cooling 

process of packed apples and pears using 3D fruit shapes generated from X-ray 

computed tomography images. The Discrete Element Method was employed to 

generate a randomised fruit stack and the biological variability of the fruit shape 

was taken into account. The authors demonstrated that improving the accuracy of 

the geometrical model helped to simulate convective cooling processes more 

accurately. 

 

In freezing applications, Dima, Santos, Baron, Califano, and Zaritzky (2014) used 

COMSOL to model heat transfer inside a 2D irregular shape (crab claws) during 

freezing. In this model, Heaviside and Gaussian functions (Neeper, 2000) which 

can generate a smooth curve around the phase change were used to describe the 

abrupt variation of the apparent specific heat of the crab claw meat at the initial 

freezing temperature. The heat transfer coefficients were determined from 

independent experiments. Predicted results were validated against experimental 
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data and the validated model was used to generate a polynomial equation to 

illustrate the effect of heat transfer coefficients and external fluid temperature on 

freezing times of crab claws. Kiani and Sun (2018) presented a CFD model to study 

the ultrasound-assisted freezing process of potato sticks and potato spheres 

implemented on the OpenFOAM platform. Several thermal conductivities were 

tested in the model. This study concluded that the choice of a proper thermal 

conductivity model is crucial for achieving accurate heat transfer predictions, and 

ultrasound could give better results when applied to processes with low cooling 

rates. Zilio, Righetti, Pernigotto, and Longo (2018) employed the CFD software 

STAR-CCM + to estimate the freezing time of chicken breast. In this model, the 

chicken breast was represented by a 3D finite cylindrical shape and the thermal 

properties of chicken were introduced as a function of temperature by means of a 

User Defined Function. The experimental average heat transfer coefficient was used 

to simplify the model. The model showed good agreement with experimental data 

with the mean relative error and the mean absolute error for the chicken freezing 

time of -1.4% and 2.4%, respectively. Recently, Zhao et al. (2020) used COMSOL 

to model bayberry during quick freezing. The flesh and core of bayberry were 

described by different thermal properties and simplified by ellipsoidal shapes. The 

authors concluded that the best freezing rate for maintaining the freshness of 

postharvest bayberry was 8.51 cm/h at the freezing temperature of -120°C.  

 

2.8 Summary 

 

There has been considerable effort put into modelling heat transfer in refrigerated 

food applications. Numerical methods are generally considered the most accurate 

class of modelling methods, when analytical solutions are not available. As access 

to affordable computational power has increased, so too has the sophistication of 

these models. CFD simulations have become more frequently employed, as they 

can provide a detailed understanding of the airflow distribution, heat transfer and 

temperature gradients within a system. 

 

In spite of advances in numerical analysis, significant errors may still arise in their 

application to real-life problems due to uncertainties in the food property inputs. 
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The first part of this research will focus on improving the prediction of food 

properties during chilling and freezing. 

 

In an industrial chiller, the product load and the air velocity distribution have a 

significant influence on the food chilling rate. Therefore, a CFD model which can, 

in principle, provide detailed predictions of airflow and heat transfer for a wide 

variety of situations should be used. CFD model has been used to model the airflow 

field in the industrial chilling of pork hindquarter (Mirade et al., 2002) or beef 

carcass (Pham et al., 2009) but not the heat transfer which was simulated by an 

analytical or a 2D finite element numerical model. Although these combination 

techniques may yield predictions in reasonably short time periods, the errors 

associated with the simplified heat transfer model may preclude development of 

accurate solutions. In this study, CFD will be used to predict both the airflow 

velocity profile and the instantaneous rate of heat transfer during a food chilling 

process, in a manner that mimics the airflow and product arrangement of an 

industrial cheese chiller.  

 

In addition, although the accuracy of refrigeration models has increased over time, 

their complexity has also increased, with greater resources required, such as time, 

computing facilities, and a good working knowledge of mathematics. These 

models, however, have not always been put into practice by those working in the 

industry owing to the lack of conceptual understanding and people’s perception of 

them. For this, there needs to be a greater emphasis on simple-to-use, flexible, and 

fast programs (James et al., 2009). Therefore, the next part of this research will 

present a simple one-dimensional finite difference numerical simulation for 

predicting the heat transfer of food chilling and freezing processes for industrial 

users. 

 

While it is already possible to simulate realistic shapes of product (Ferrua & Singh, 

2009c; Gruyters et al., 2018) , there are not any CFD freezing models for any food 

products that use CT scanning as the geometry input. This research will present the 

first freezing model using the realistic geometrical model derived from CT scanning 

for polylined whole chickens or chicken pieces.  Chicken products have irregular 

shapes, and when packed in bulk within a polyliner, air voids typically exist 
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between individual food items which can have significant effect on the freezing rate. 

Freezing is accompanied by highly non-linear temperature dependencies of 

thermophysical properties such as thermal conductivity and specific heat. A direct 

CFD approach which can incorporate the real shape of chicken products, air voids 

and packaging structures and at the same time allow for the use of temperature-

dependent thermal properties will be used to develop the airflow and heat transfer 

model for bulk-packed chicken during freezing.  

 

2.9 Research objectives 

 

In this study, the terms model/modelling refer to the original work of author in 

developing a model (i.e construct a geometrical model and setup a numerical 

solution in a CFD model) while simulation means using existing models to present 

a solution for heat transfer problems.  The objectives of this projects are as follows: 

 

1) Review thermal property models for foods in the literature to propose the best 

performing model for thermal processing calculations. 

 

2) Develop a CFD model to simulate the airflow and heat transfer in an industrial 

cheese chilling process and validate the model with experimental data for a variety 

of operating conditions. 

 

3) Present a simplified one-dimensional numerical heat transfer simulation of food 

chilling and freezing and validate the simulation with experimental data of a single 

block of cheese being chilled. 

 

4) Develop and validate CFD models for forced-air freezing of individual trays of 

bulk-packed whole chickens and chicken drumsticks. Based on the validated model, 

simple correlations to estimate the effect of operating conditions on freezing time 

will be developed to optimise the design of the freezing tunnel for chicken products. 
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Chapter 3 

Improved prediction of thermal property of foods 

 

3.1 Introduction 

 

The objective of this chapter was to propose the best composition-based thermal 

properties models for generic application to foods, requiring only a knowledge of 

the food composition, initial freezing temperature (if applicable) and temperature 

of the food, without the need to perform any measurements. A comparison between 

several property models in literature and published experimental data was done to 

determine the most accurate one.  In particular, an additive specific heat capacity 

model incorporating a more accurate means of dealing with the specific heat 

capacity of water and a previously little-known thermal conductivity model 

provided improved predictions compared to the models recommended in most 

refrigeration/food engineering handbooks.  

 

3.2 Specific heat and enthalpy 

 

3.2.1 Specific heat 

 

Specific heat is defined as the energy required to change the temperature of a 

kilogram of food item by one degree Celsius (ASHRAE, 2006). During freezing 

(and thawing) processes, the phase transformation of water and fat components 

releases the latent heat of phase transition. In food, the latent heat is not released or 

absorbed at a constant temperature as it is in pure substances, but over a range of 

temperatures. Therefore, an effective specific heat capacity (ESHC) must be 

employed to account for both the change in sensible heat due to temperature change 

and in latent heat due to phase transition (ASHRAE, 2006). Since the latent heat of 

fats only becomes important when the fats start to melt, typically above 30°C, it is 

reasonable to ignore the latent heat of fusion of fat in the temperature range of 

interest for food preservation. 

 

There are several ESHC models in the literature (ASHRAE, 2006; Rahman, 2009). 

For prediction based on composition data, not involving any parameters that must 
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be measured experimentally, three physical models below were used to estimate the 

effective specific heat capacity of food item:  

 

 Additive model  

 Chen’s model 

 Schwartzberg’s model  

 

The weight additive model can be calculated by adding the contribution of the 

apparent heat capacity of each component  together with the latent heat of fusion of 

water (Cogné, Andrieu, Laurent, Besson, & Nocquet, 2003; Fikiin, 1996)  

 

 1e s s wo w wo ice wo fc x c x c x c x L
T

  
    


                   (3.1) 

where 

ce (J kg-1 K-1) is the effective specific heat capacity 

 cw (J kg-1 K-1) is the specific heat of the water fraction 

 cice (J kg-1 K-1) is the specific heat of the ice fraction 

T (K) is the temperature of food 

ω is the relative quantity of frozen water, calculated by the ratio of mass 

fraction of ice (xice) to mass fraction of water in unfrozen food (xwo) 

ice

wo

x

x
                                                      (3.2) 

xs, cs are the mass fraction and specific heat capacity of solid fractions 

including ash, protein, fibre, carbohydrate, and fat in food items, calculated 

by Eqs. 3.3 and 3.4, respectively. 

 

    xs = xp +xfa +xCHO + xfi + xash                                            (3.3) 

p p fa fa CHO CHO fi fi ash ash
s

s

x c x c x c x c x c
c

x

   
                         (3.4) 

 
 xp, xfa, xCHO, xfi, xash are the mass fraction of protein, fat, carbohydrate, fibre 

and ash in the food item. 

 cp, cfa, cCHO, cfi, cash (J kg-1 K-1) are the specific heat of protein, fat, 

carbohydrate, fibre and ash components. 
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Lf (J kg-1) is the latent heat of water solidification/fusion determined by Eq. 

3.5. 

 
273.15 273.15

f o w ice

T T

L L c dT c dT                                    (3.5) 

 Lo (J kg-1) is the latent heat of water solidification/fusion at 0°C, Lo = 

333.6×103 J kg-1. 

 

Table 3.1 shows empirical models of specific heat capacity of the various major 

components of the foods as functions of temperature. 

 

Table 3.1: Specific heat capacity and density of major food components as a 

function of temperature T (°C) ( -40 ≤ T  ≤ 150°C)  (Choi & Okos, 1986) 

Component Specific heat capacity, kJ kg-1 K-1 

Protein cp = 2.0082 + 1.208910-3T –1.312910-6T 2 

Fat cfa =1.9842+1.473310-3T – 4.800810-6T2 

Carbohydrate cCHO = 1.5488+1.962510-3T – 5.939910-6T 2 

Fiber cfi = 1.8459 + 1.8306 10-3T – 4.650910-6T2 

Ash cash = 1.0926 + 1.8896 10-3T – 3.681710-6T 2 

Ice cice =2.0623 +6.076910-3T 

 

The specific heat capacity of water was correlated from measurement data 

performed with a differential scanning calorimeter by Archer and Carter (2000) 

with an R-square value of 0.98 

 

0.5 1.5 2 2.5 3 3.5 4
1 2 3 4 5 6 7 8 9  wc B B Y B Y B Y B Y B Y B Y B Y B Y                (3.6) 

where:  

 B1 = 14.99,   B2 = 23.19,   B3 = -1716.75, 

 B4 = 14122.09,  B5 = -55963.72,  B6 = 125411.02, 

 B7 = -162011.7,  B8 = 112359.99,  B9 = -32309.86. 

 
228

228

T
Y


 , 233.15 K ≤ T ≤ 273.15 K                          
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For 273.15 K < T ≤ 383.15 K, cw was calculated by Patek et al’s correlated equation 

(Pátek, Hrubý, Klomfar, Součková, & Harvey, 2009) 

 

   
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where 

  n1 = 4, n2 = 5, n3 = 7, m1 = 2, m2 = 3, m3 = 4, m4 = 5, c3 =−8.983025854,  

a1=−1.661470539×105, a2=2.708781640×106, a3 =−1.557191544×108, 

b1=−8.237426256×10-1, b2=−1.908956353, b3=−2.017597384, 

b4=8.546361348×10-1. 

 

The second model used to predict ESHC is Chen’s model based on Raoult’s Law 

(ASHRAE, 2006; Chen, 1985)  
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where  

Tf (K) is the initial freezing point of food 

To (K) is the initial freezing point of pure water, To = 273.15K   

xb is mass fraction of bound water, xb =0.4 xp (ASHRAE, 2006) 

 

Schwartzberg’s equation for determining the ESHC of frozen food has the 

following form (ASHRAE, 2006; Schwartzberg, 1976)  
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where cu is specific heat of foods at temperatures above the freezing point 

determined by Eq. 3.8, Ms is the molecular weight of dry matter within the food 

item estimated by Eq. 3.11 below (ASHRAE, 2006): 
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3.2.2 Enthalpy 
 

Enthalpy can be obtained by integrating expressions of ESHC with respect to 

temperature. For the purposes of comparison, the reference temperature, Tr, for zero 

enthalpy at 233.15K was chosen to match the zero reference temperature of the 

experimental data of (Pham, Wee, Kemp, & Lindsay, 1994). In the case of the 

additive model, the enthalpy of foods, H, was calculated by integrating Eq. 3.1. 

 

233 233

233.15 233.15

T T

s s wo w wo f woH x c dT x c dT x L x L                 (3.12) 

 

where L233 and ω233 are latent heat of water solidification/fusion and relative 

quantity of the frozen water at T = 233.15K. 

 

In the same manner, Chen’s enthalpy model was obtained by integrating Eq. 3.8 

and Eq. 3.9 for the food item at temperatures above and below the initial freezing 

point, respectively: 
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where Hf is the enthalpy of food at the initial freezing temperature estimated by 

evaluating Eq. 3.14 at T =Tf 

 

Integrating Schwartzberg’s ESHC model (Eq. 3.10) leads to the following 

expression for the enthalpy of frozen food (ASHRAE, 2006; Schwartzberg, 1976): 
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The Schwartzberg model for enthalpy above the freezing point was estimated with 

Eq. 3.13; however, Hf  was determined by Eq. 3.15 at the initial freezing 

temperature. 

 
3.3. Thermal conductivity 
 

The thermal conductivity of foods depends on structure, composition and 

temperature (Fricke & Becker, 2001; Rahman, 2009). It is the dependence of the 

thermal conductivity of the food on structure that is accounted for by the thermal 

conductivity models in the literature (ASHRAE, 2006; Carson, 2006; Rahman, 

2009). This study only considers models which are functions of the composition of 

the food and thermal conductivities of the major food components, and do not 

involve any parameters which must be measured experimentally. Carson et al. 

(2016) divided the thermal conductivity models for heterogeneous materials into 

two groups: 

 

 Single-step methods, which predict thermal conductivity using a single 

model equation 

 Multi-step methods, which employ more than one model to predict thermal 

conductivity. 

 

3.3.1 Single-step method 

 

The simplest models that meet the single-step criteria are the Series, Parallel and 

Geometric models. The Series model corresponds to the weighted harmonic mean 

of the thermal conductivities of the food components (Rahman, 2009). 
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The Parallel model corresponds to the weighted arithmetic mean of the thermal 

conductivities of the components (Rahman, 2009) 
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The Geometric model is the weighted geometric mean of the thermal conductivity 

of the components of the foods (Rahman, 2009) 
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where ke (W m-1 K-1) is the thermal conductivity of the mixture, ki (W m-1 K-1) is 

the thermal conductivity of the ith food component, and vi is the volumetric fraction 

of the ith food component.  vi was estimated from mass fractions and densities: 
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If the food is porous and the porosity (the volume fraction of air, va) has not been 

measured it may be estimated from the apparent (bulk) density (ρe) (ASHRAE, 

2006; Carson et al., 2016) 
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Thermal conductivities and densities of major food components as a function of 

temperature are summarised in Table 3.2.  

 

The Parallel and Series models represent the theoretical bounds of the thermal 

conductivity of heterogeneous materials, in which the Series model provides the 

lower limit and the Parallel model provides the upper limit. (Carson et al., 2016) 

 

Two other models that can predict the effective thermal conductivity of a food 

product in a single step are the Effective Medium Theory model (EMT; Landauer, 

1952) : 
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and the Co-continuous model (CC; Wang, Carson, North, & Cleland, 2008)  
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Table 3.2 Thermal conductivities and densities of major food components as a 

function of temperature T (°C) ( -40 ≤ T ≤ 150°C) (ASHRAE, 2006; Carson, 

2011; Choi & Okos, 1986)  

Component Thermal conductivity, W m-1 K-1 Density, kg m-3 

Protein 0.17887+1.1958×10-3T–2.717810-6T2 1.3299×103 – 5.184010-1T 

Fat 0.18071-2.7604×10-3T –1.774910-7T2 9.2559×102 – 4.175710-1T 

CHO 0.20141+1.3874×10-3T–4.331210-6T2 1.5991×103 –3 .104610-1T 

Fiber 0.18331+1.2497×10-3T–3.168310-6T2 1.3115×103 – 3.658910-1T 

Ash 0.32962+1.4011×10-3T–2.906910-6T2 2.4238×103 – 2.806310-1T 

Ice 2.2196-6.248910-3T+1.015410-4T2 9.1689×102 – 1.307110-1T 

Air 2.364×10-2 +7.2822×10-5T 353/(T +273.15) 

Water 0.57109+1.7625×10-3T–6.760310-6T2 
9.9718×102+3.143910-3T 

–3.757410-3T2 

 

The Series and Parallel models physically match structures where layers of the 

components are aligned either perpendicular or parallel to the heat flow direction, 

as their names imply. The EMT model represents the physical structure where all 

components are mutually dispersed with each other (co-dispersed) i.e. no 

component necessarily represents a continuous phase. The CC model represents a 

physical structure where all of the components are continuous but intertwined and 

none is dispersed (Carson et al., 2016). 

 

3.3.2 Multi-step methods 

 

Single-step methods offer simplicity and are designed for the specific structures 

mentioned above. However, food components rarely exist as a single structure 

(Carson et al., 2016). Therefore, there is potential for the multi-step method, which 
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combines more than one structure model to produce a better thermal conductivity 

prediction.  

 

For frozen foods without air voids, Pham and Willix (1989) and Fricke and Becker 

(2001) recommended the use of Levy’s model (Levy, 1981) to account for the 

presence of ice. In the first step, the thermal conductivity of all the components 

excluding ice, kmix, was calculated using the Parallel model (Eq. 3.17). Then, in the 

second step, the thermal conductivity of frozen food without air voids was estimated 

by Eq. 3.23 

 

 
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2 2

2
ice mix ice mix

Levy ice
ice mix ice mix

k k k k F
k k

k k k k F

  


  
                              (3.23) 

 

where 

 kLevy (W m-1 K-1) is the thermal conductivity of frozen food without air voids 

kmix (W m-1 K-1) is the thermal conductivity of all the components excluding 

ice 

kice (W m-1 K-1) is the thermal conductivity of the ice component 
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                         (3.24) 
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                                                                    (3.25) 

vice is the volume fraction of the ice component 

 

For porous foods, the air voids must be considered in addition to ice, water, and 

other components. As the thermal conductivity of air is very low compared to that 

of the other components, porosity has a large influence on the effective thermal 

conductivity of foods (Cogné et al., 2003).  

 

In order to incorporate the influence of the air phase on the effective thermal 

conductivity of frozen foods, if nothing is assumed to be known about its structure, 

(Carson et al., 2016) recommended a multi-step procedure using the EMT model in 

the following forms: 
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Eqs. 3.26 and 3.27 represent the two-component forms of Eq. 3.21 for unfrozen, 

porous and frozen, porous foods, respectively (Carson et al., 2016). In these 

equations, ka, va are the thermal conductivity and volume fraction of the air 

component, ku,np is the thermal conductivity of the unfrozen, non-porous food 

determined by the Parallel model (Eq. 3.17) and kf,np is the thermal properties of the 

frozen, non-porous foods determined by Levy’s model (Eq. 3.23). 

 

The Maxwell-Eucken model may be used when a dispersion of one phase forms 

within a continuous phase (Carson et al., 2016). If air forms a dispersed phase 

within a food (sponge/foam-like foods), this model has the following form: 

 

 
 1
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ME f,np
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  
                             (3.28) 

 

If air forms the continuous phase (particulate foods) then the following form of the 

Maxwell-Eucken model is employed: 
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                  (3.29) 

 

Dul’nev and Novikov (1991) introduced a procedure to estimate the effective 

thermal conductivity of any heterogeneous food products. In this model, a food item 

is considered to consist of water, ice, solids (ash, protein, fibre, carbohydrate and 

fat), and air. The effective thermal conductivity of the food product is determined 

by a three-step procedure. In the first step, the thermal conductivity of the solid 

phase is calculated from the ash, protein, fibre, carbohydrate and fat fractions using 
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the Parallel model (Eq. 3.17), and the thermal conductivity of the medium that 

surrounds each ith component is determined using Eq. 3.30: 

 

j j
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                                               (3.30) 

 

In the second step, the thermal conductivities of the binary systems consisting of 

the ith component (thermal conductivity ki with volume fraction vi) and the medium 

around it (thermal conductivity Ni with volume fraction 1- vi) are determined using 

the following relationship (Dul'Nev & Novikov, 1977): 
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                          (3.31) 

 

where, min max/k k  , kmin is the minimum value between ki and Ni and kmax is the 

maximum value between ki and Ni, the value of c is related to the volume fraction, 

m, of the component which has a smaller thermal conductivity determined by Eq. 

3.32: 

0.5 cos
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Finally, the thermal conductivity of the whole system is estimated by Eq. 3.33: 
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3.4. Relative quantity of frozen water 

 

The prediction of the thermal properties of frozen food requires knowledge of the 

food’s ice fraction or the relative quantity of frozen water (ω, Eq. 3.2) which in turn 

is strongly dependent on temperature. Therefore, a model of the relative quantity of 

frozen water is required for thermal property prediction. 

 

Models for predicting relative quantity of frozen water can be found in (ASHRAE, 

2006; Fikiin, 1998; Rahman, 2009). Many of these require calculations of mole 

fractions, which in turn requires estimation of molar masses for the macromolecules 

(proteins and complex carbohydrates). Many contain empirical parameters, and 

most require knowledge of the amount of bound or un-freezable water. With the 

requirement that the calculation procedure should not involve parameters that must 

be determined experimentally, the empirical model proposed by Tchigeov (1979) 

which based only on total water content and the initial freezing temperature (Eq. 

3.34) was chosen to estimate the relative quantity of the frozen water: 
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 

                                        (3.34) 

 

Unlike other empirical models that contain parameters which are specific to the 

food in the question and typically need to be determined from experiments, the 

empirical parameters in Eq. 3.34 apply generally and do not need to be determined 

from an ice fraction measurement. Fikiin (1998) stated that Eq. 3.34 can be applied 

for various products (meat, fish, milk, eggs, fruits, and vegetables) and provides 

satisfactory accuracy when 228.15K ≤ T ≤ Tf and 271.15K ≤ Tf ≤ 272.75K. In cases 

of initial freezing temperature lower than 271.15K, such as cheese product, Carson 

et al. (2016) recommended to use a more general relationship based on Raoult’s law 

and the Clausius-Clapeyron equation: 

1 fb

wo o

T Tx

x T T


  
     

                                         (3.35) 
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In this study, Eq. 3.34 and Eq. 3.35 were used for foods with initial freezing point 

above and below 271.15 K, respectively. Figure 3.1 shows Eqs. 3.34 and 3.35 

plotted assuming an initial temperature of 272.15K, a protein mass fraction of 0.2 

and a total water mass fraction of 0.75.  

 

Figure 3.1 Plots of two different relative quantity of frozen water models (Eqs 

3.34 and 3.35) with Tf = 272.15K, xp = 0.2, xwo = 0.75 

 

It is clear from the discrepancy between the prediction results of Eqs 3.34 and 3.35 

shown in Figure 3.1, that the selection of relative quantity of frozen water model 

introduces an extra source of uncertainty. For example, the discrepancy between 

the thermal conductivity prediction of Dul'Nev & Novikov’s model based on 

relative quantity of frozen water calculated firstly from Eq. 3.34 and secondly from 

Eq. 3.35 may be as high as 9%, depending on the relative quantity of frozen water. 

This error occurs independently of any further error that may result from the 

selection of an unsuitable thermal conductivity model. Ideally, a thermal property 

model should therefore be tested independently of a relative quantity of frozen 

water model since, if the relative quantity of frozen water model over-predicts and 

the thermal property model under-predicts (or vice versa), thermal property 

predictions may appear to be accurate for a given set of data, but may only be so by 

coincidence. The most common approach when thermal property models are being 

compared appears simply to have been to base all thermal property models on a 

single relative quantity of frozen water model. 
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3.5 Comparison of model predictions against measured data 

 

The predicted values of the thermal property models discussed in sections 3.2 to 3.4 

were compared to experimental data from the literature. Since the mathematical 

expression for enthalpy of the food item was obtained by integrating the effective 

specific heat equation, an accurate enthalpy model will mean that the effective 

specific heat model is also accurate. Therefore, only enthalpy and thermal 

conductivity predictions have been validated in this study. The criteria for selecting 

data used in this evaluation were that the food compositions and initial freezing 

temperature were available, and the measurement methodology was proven to be 

accurate. The enthalpy data were obtained from Pham et al. (1994), and thermal 

conductivity data were taken from Willix, Lovatt, and Amos (1998) and Cogné et 

al. (2003) for non-porous foods, and porous frozen foods, respectively. 

 

The absolute relative error between model predictions and experimental data is 

defined as 

 

100%
exp mod

exp



                                        (3.36) 

 

where mod, and exp are model predicted data and experimental data, respectively. 

 
3.5.1 Enthalpy 

 

Table 3.3 illustrates the mean absolute relative errors between the model predictions 

and experimental data taken from the literature (Pham et al., 1994) for enthalpy of 

a variety of foods over the temperature range from -40°C to 40°C. In general, the 

additive model produced the best predictions with a mean error across all materials 

of 3.86%, while Chen’s model and Schwartzberg's model produced mean errors of 

9.30% and 12.85%, respectively. Comparison between experimental data and 

enthalpy predictions for lean lamb was plotted in Figure 3.2. It also shows good 

agreement between the predicted results of the additive model and experimental 

data. Chen’s model and Schwartzberg's model tended to be less accurate for non-

freezing temperatures than for freezing temperatures.  
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Table 3.3 Comparision of the mean absolute relative errors between predicted and 

experimental enthalpy data (Pham et al., 1994) of foods over temperature ranged 

from -40°C to 40°C. 

Material 
Mean absolute relative errors, % 

Additive model Chen Schwartzberg 

Lean lamb 0.77 9.48 13.19 

Lean beef 1.45 10.74 14.57 

Lean chicken 4.58 7.64 12.50 

Learn pork 3.04 7.94 11.36 

Lean venison 1.73 9.27 12.50 

Mutton mince, cooked 3.00 5.43 9.25 

Ham cooked 4.85 3.50 9.68 

Beef hamburgers patties 6.00 8.93 11.16 

Gurnard fillets 2.54 9.49 13.48 

Terakihi fillets 3.12 8.60 12.96 

Mutton liver 4.82 10.45 14.03 

Mutton kidney 5.60 15.13 17.65 

Mutton brains 2.93 11.29 17.81 

Kiwifruit 9.67 12.33 9.74 

Mean of all materials 3.86 9.30 12.85 

 

 

Figure 3.2: Comparision between experimental data (Pham et al., 1994) and 

enthalpy predictions for lean lamb 
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3.5.2 Thermal conductivity 

 

3.5.2.1 Non-porous foods 

 

Table 3.4 summarizes the mean absolute relative error between model predictions 

and experimental data (Willix et al., 1998) for non-porous foods over a range of 

temperature. On average, Dul’nev & Novikov’s model gave the most accurate 

predictions. The Parallel and Series models produced very high prediction errors, 

while most of the other models showed reasonable agreement with the experimental 

data, with the average mean relative error between model prediction and 

experimental data for all the materials being less than 15%. Figure 3.3 shows plots 

of thermal conductivity predictions of various models compared to experimental 

data for lean beef. It can be seen from the figure that the Parallel model significantly 

over-predicted thermal conductivity, and the Series model significantly under-

predicted thermal conductivity. The Levy model and Dul’nev and Novikov model 

provided better predictions than other models in the freezing range. All thermal 

conductivity models performed better in the non-freezing temperature than in the 

freezing temperature. 

 

 

Figure 3.3. Comparison between experimental data (Willix et al., 1998) and the 

thermal conductivity predictions for lean beef 
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Table 3.4 Comparison of the absolute relative errors between predicted and experimental thermal conductivity values (Willix et al., 1998) for non-

porous foods  

Material 
Mean absolute relative error, % Temp. range, oC 

Parallel Series Geometric 
Co-

Continuous 
EMT Levy 

Dulnev & 
Novikov 

Low High 

Lean beef 17.8 35.1 6.2 7.3 7.2 4.6 2.9 -39 37 

Beef mince 54.7 30.9 9.2 13.4 30.5 29.5 19.7 -39 38 

Boneless Chicken 26.6 41.3 5.5 8.0 13.1 7.8 3.0 -39 16 

Pork sausage meat 31.0 37.5 6.6 4.0 10.2 11.8 7.1 -40 37 

Venison 27.4 27.1 4.3 6.8 16.4 14.4 7.3 -33 36 

Gurnard fillets 12.7 34.3 7.1 9.1 5.1 2.1 4.4 -39 37 

Lemon fish fillets 24.9 31.0 5.1 6.6 14.9 11.2 7.6 -38 37 

Snapper fillets 24.2 29.5 2.8 5.5 14.3 11.4 4.7 -40 37 

Tarakihi fillets 25.0 29.3 2.3 5.1 14.9 12.2 5.3 -39 37 

Trevally fillets 15.1 32.9 6.2 8.0 6.0 5.4 3.8 -37 39 

Cheddar cheese 14.8 40.3 22.9 10.7 16.2 6.9 10.8 -39 26 

Edam cheese 11.1 41.7 23.9 12.8 16.5 11.4 12.5 -38 26 

Mozzarella cheese 22.1 45.1 22.9 10.8 12.0 6.1 8.5 -39 22 

Mean of all materials 23.6 35.1 9.6 8.3 13.6 10.4 7.5   
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3.5.2.2 Porous foods 

 

Table 3.5 shows the absolute relative errors between the model prediction and 

experimental thermal conductivity data of ice cream obtained from Cogné et al. 

(2003) for different porosities at -20°C and -30°C.  

 

Table 3.5 Comparison of the absolute relative errors between predicted and 

experimental thermal conductivity values for ice cream (Cogné et al., 2003) 

Porosity Parallel Series Geo CC EMT 
Dul & 
Nov 

Multi-step 
Method  

EMT ME1 

-20°C 

0.13 49.71 85.10 35.87 40.25 4.01 0.57 0.32 1.65 

0.23 56.07 88.73 47.94 46.05 4.83 0.05 3.04 1.59 

0.33 68.47 89.71 55.52 46.05 14.00 3.24 5.70 5.39 

0.41 70.26 90.27 62.14 47.11 28.19 0.71 15.16 3.39 

0.46 78.90 89.95 63.96 44.85 34.85 3.50 18.95 6.74 

0.60 102.46 88.06 67.51 36.19 55.58 9.85 39.58 15.57 

0.67 111.29 86.47 68.53 30.85 63.69 10.82 53.19 18.44 

Average 76.7 88.3 57.4 41.6 29.3 4.1 19.4 7.5 

-30°C 

0.13 51.62 86.40 36.97 42.22 5.90 0.27 0.20 1.14 

0.23 54.63 89.94 50.38 49.04 5.42 3.06 5.69 1.15 

0.33 68.62 90.74 57.54 48.55 14.14 1.05 7.46 3.57 

0.41 69.85 91.27 64.23 49.73 29.20 1.71 17.19 1.24 

0.46 70.36 91.39 67.63 49.97 39.24 3.53 24.65 0.25 

0.60 105.97 89.07 69.18 38.13 57.51 9.64 41.06 15.30 

0.67 106.25 88.10 71.51 35.64 67.31 6.28 57.10 13.31 

Average 75.3 89.6 59.6 44.8 31.2 3.6 21.9 5.1 

 
 
Once again, the Dul’nev and Novikov’s model showed the best accuracy with an 

average relative error of less than 4.1%. The Maxell-Eucken model with air as the 

dispersed phase (ME1) also gave a good agreement with the experimental data. This 



42 
 

can be explained by the fact that the air phase was dispersed in other phases in the 

structure of ice cream. Figure 3.4 presents a comparison between thermal 

conductivity predictions generated by Dul’nev and Novikov’s model and the 

experimental data found in (Cogné et al., 2003) at different air porosities. The model 

provided a better prediction for the thermal conductivity of frozen ice cream 

(relative errors about 5%) than that for unfrozen ice cream (relative errors around 

15%). 

 

 
Figure 3.4: Comparison between thermal conductivity data (Cogné et al., 2003) 

and predictions of Dul’nev and Novikov’s model for ice-cream. The predicted 

results depict in the lines and the experimental data depict in the points. 

 
3.6. Conclusions 

 
An assessment of selected composition-based thermal property models for foods 

was presented. The effective specific heat capacity predicted by the additive model 

(Eq. 3.1) with the specific heat of water correlated from experimental data of Archer 

and Carter (2000) and Pátek et al. (2009), and the thermal conductivity model of 

Dul’nev and Novikov (Eqs. 3.30-3.33) showed better predictions compared to other 

models for a wide range of food products. Therefore, the additive model and the 

Dul’nev and Novikov model are recommended as the best models for prediction of 

effective specific heat capacity and thermal conductivity for food products, and will 

be used for thermal properties modelling in all the chilling and freezing models in 

this thesis. 
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Chapter 4 

Numerical heat transfer model for industrial chilling installations 

4.1 Introduction 

 

Food technology continues to develop as new refrigeration equipment becomes 

available and as consumer preferences continue to change (Bogh-Sorensen, 2006). 

On the industrial scale, food refrigeration equipment is often made to order for a 

given end-user and may be designed either for a single type of product or multiple 

products. With such a high degree of customisation in modern refrigeration 

equipment, it is necessary to have a design optimisation tool to evaluate the 

performance of the refrigeration system.  The rate of cooling for a given chilling 

operation depends on the refrigeration air temperature and airflow characteristics 

(turbulence intensity, velocity profile), packaging, and packing arrangement, as 

well as the dimensions, morphology and physical properties of the food product 

(ASHRAE, 2006; O’Sullivan et al., 2014).     

 

Food Product Modeller, FPM, (MIRINZ) is a software tool that is currently being 

used by a large number of food process equipment manufacturing companies in 

New Zealand to improve the design of chilling and freezing tunnels. FPM is a finite 

difference numerical model, which can accurately predict the heat transfer rates 

within food products. However, it is only for a single product, and not able to predict 

the flow field in the tunnel. The heat transfer coefficient at the surface of the product 

has to be supplied to FPM by its user, or estimated by FPM using a correlation 

based on an air velocity that is supplied by the user. In an industrial chiller, the 

product load and the air velocity distribution have a significant influence on the 

food chilling and freezing rate. Therefore, a CFD model which can, in principle, 

provide accurate predictions of airflow and heat transfer for almost any situation 

would have some advantages over FPM. CFD has been used to model similar 

systems such as pork chilling (Mirade et al., 2002) and industrial beef chilling 

(Kuffi et al., 2016).  
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This chapter will present a CFD based numerical model for six blocks of agar in a 

forced air chilling which mimics the airflow and product arrangement in an 

industrial cheese chiller, and validate that model against experimental data.  

 

4.2 Experimental study 

 

4.2.1 Objective 

 

The aim of the experimental study is to provide data to validate a numerical model 

of the forced-air chilling of regularly shaped products by proving its ability to 

predict the temperature profile at certain positions of the test objects. The operating 

and boundary conditions in the experiments will then be reproduced in the 

numerical model. 

 

4.2.2 Experimental system 

 

The experimental setup was designed to closely match a commercial chilling 

tunnel, similar to the one shown in Figure 4.1. The tunnel chills 20-kilogram blocks 

of cheese wrapped in a plastic liner, each block being within a cardboard carton 

having dimensions of 190×300×385 mm, from 30°C to 10°C in a 24-hour cooling 

cycle.  

 

 

Figure 4.1 The industrial cheese chilling tunnel (photo courtesy of Milmeq) 

 

During the commercial chilling process, the cartons in the tunnel are cooled by a 

constant stream of air forced through the refrigeration coil at one end of the tunnel, 
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and then through the food pallet suspended in the upper and lower tiers. On the 

conveyor, two cartons were placed close to each other to form a block. These blocks 

were lined up in a row before being transferred to the pallet shelf. The product 

arrangement in the real tunnel is shown in Figure 4.2a. Spacing between the cartons 

ensures each block is subjected to the same airflow profile and refrigerated air 

temperature. The cold air flowed parallel to the longest side of the cartons (the 385 

mm dimension).  

 

A laboratory scale forced-air cooling tunnel was designed, as performing 

experiments at full scale was unfeasible due to the high experimental cost. It was 

assumed that the cheese carton distribution within the tunnel was uniform and each 

carton was symmetric about the vertical centre plane along the flow direction. 

Based on this assumption, only six cartons with four blocks on the two sides of the 

central pair cut by the symmetry plane were modelled in the experiments (Figure 

4.2b). 

 

 
(a) 

 
                                                                               (b) 

Figure 4.2 a) Products arrangement in the industrial cheese chiller. b) 

Experimental domain 
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The sample life of food materials is relatively short due to microbiological spoilage. 

Therefore, food analogue materials, such as agar gel, are often used in food 

processing experiments. Agar gel is easily shaped to a desired form and can be 

reused for many experiments without spoilage. The thermophysical properties of 

agar gel are also well established. For these reasons, agar gel was used instead of 

real cheese during chilling experiments. Six blocks of agar gel (5% agar powder, 

and 95% water on the weight basis) in acrylic plastic boxes were arranged to create 

an airflow pattern similar to the industrial tunnel (Figure 4.3).  

 

  

Figure 4.3: Six blocks of agar arrangement 

 

Because of space constraints, the dimensions of the blocks of agar were obtained 

by scaling all the linear dimensions of the cheese carton by a factor of 0.7, meaning 

the agar block volume was only 34% that of the actual block of cheese. The 

dimensions of the two test blocks in the middle were 135×210× 270 mm, while the 

dimensions of the half blocks on the sides were 135×105×270 mm. 

 

These blocks of agar were then placed in a polystyrene test chamber (PTT; Figure 

4.4a) which was in turn placed into an environmental testing chamber (ETC). A 

transition section (Figure 4.4b) was created to guide the airflow from the inlet 

through the product due to a suction created by a variable speed fan at the tunnel 

outlet. A fine net was placed at the upstream end of the tunnel to diffuse the airflow. 

The experimental set up allowed for precise control of the temperature and velocity 

of the refrigerated air passing through the PTT. 
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a) b) 

Figure 4.4: a) Polystyrene Test Tunnel and b) the transition section 

 

Temperatures were measured with T-type thermocouples connected to a Keysight 

24982A data acquisition unit and were recorded every 60 seconds. Figure 4.5 

indicates the thermocouple positions in the agar blocks. Thermocouple Numbers 1 

and 11 measured the cooling air temperature. Multipoint thermocouple probes 

supporting thermocouple Numbers 3, 4, 5 and 13, 14, 15 were placed along the 

shortest axes of Block A and Block B respectively. Thermocouple Numbers 4 and 

14 were at the geometric centre of the blocks and the two other thermocouples on 

each multipoint probe were 2 cm from the geometric centre. The other 

thermocouples were at the middle of each surface of the agar blocks. The 

thermocouples were calibrated with an ice-point reference prior to the experiments. 

 

 

Figure 4.5: Thermocouples position in the six blocks of agar chilling trials (not to 

scale) 

 

In order to locate the exact position of the geometric centre of the block of agar, a 

multi-thermocouple probe was inserted into the centre of the block of agar. This 

was achieved by placing the probe when the plastic container was half-full of agar 

Suction fan 

airflow 

Outlet section 

Product section 

Inlet section 
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(Figure 4.6a). When a half-block of agar was firm, and the mid-point of the multi-

thermocouple was rigidly attached to the geometric centre of the block of agar, the 

remaining volume of the container was then filled with agar (Figure 4.6b). 

 

Surface temperatures were measured by thermocouples that were mounted on a 

copper plate to increase the area in contact with the surface of the agar block and 

placed in the middle of each surface of blocks (Figure 4.7). 

 

  
a)  b) 

Figure 4.6: The process of inserting a multi-thermocouple probe in a block of 

agar: a) half-full block of agar, b) full block of agar in a plastic box 

 

 

Figure 4.7: Image of a surface temperature’s thermocouple 

 

Prior to each chilling trial, the six blocks of agar were equilibrated at 20°C for at 

least 24 hours. The agar temperatures were also monitored during the equilibrating 

process to ascertain all temperatures measured in each block of agar were within 

0.5°C of 20°C. The ETC temperature was set and maintained at 0°C during the 

trials. The initial agar temperature and refrigerated air temperature were chosen to 

suit the controlled temperature range of the ETC while keeping the same 

temperature driving force for heat transfer as industrial cheese chilling (30°C to 
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10°C). The experiment was terminated when all the monitored temperatures fell 

below 2.5°C, which represents the seven-eighths cooling time (i.e. the time required 

for the temperature difference to be one-eighth of the initial temperature 

difference).  

 

The air velocity was kept constant during each experiment. Three different inlet air 

velocities (1 m s-1, 3 m s-1, 4.5 m s-1) were tested, and each trial was repeated three 

times. The air velocity was measured by a hot-wire anemometer (DANTEC 54N60 

FlowMaster, Figure 4.8a) before and after each trial both at the inlet of the tunnel 

and at a position 2 cm above the top surface of the test blocks. The sample time of 

each velocity measurement was five minutes. The inlet and outlet pressures of the 

airflow through the PTT were measured before and after each trial using an inclined 

fluid manometer (RS Pro, RS 730-2937, Figure 4.8b). 

 

a)  b)  

Figure 4.8: a) DANTEC anemometer and b) inclined fluid manometer 

 

4.3 CFD model for six blocks of agar chilling  

 
4.3.1 Introduction 

 

In this section, a CFD model for heat transfer in six blocks of agar in a forced-air 

chiller is presented. In the first step, a steady-state simulation of the airflow and 

heat transfer was performed to identify the air velocity distribution, and the 

convective heat transfer coefficient at the product surface. Next, the converged 

steady-state solution for the airflow was used as an initial condition for an unsteady 

heat transfer simulation.  
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4.3.2 Geometrical model  

 

To save the computational cost, the computational domain of the multiple agar 

block chilling model was reduced by a factor of 2 based on a symmetry plane, 

(Figure 4.9). The geometrical model was created using Ansys Design Modeller, 

with half of the centre blocks, and the two half-blocks on the left side included in 

the geometrical model.  

 

The inlet boundary was located 30 cm upstream from the product section and the 

outlet boundary was 155 cm downstream of the product section to prevent the inlet 

and outlet boundary conditions from influencing the airflow distribution over the 

product section. 

 

 

Figure 4.9: The computational domain of the six blocks agar chilling 

 

4.3.3 Transport phenomena and governing equations in the forced air cooling 

 

In the forced air cooling of food materials, the mechanisms for heat transfer can be 

complicated. Heat is removed by conduction within the product, then at the product 

surface, convective heat transfer is the main cooling mechanism. Heat also can be 

lost from the surface of the product by means of moisture loss (evaporation) and 

thermal radiation. In the agar chilling trials, the agar blocks were enclosed in plastic 

boxes which were sealed with glue and tape, and therefore, moisture evaporation 



51 
 

can be assumed to be insignificant. Previous studies have concluded that radiation 

heat transfer has a negligible effect in forced-air cooling of food products 

(Defraeye, Lambrecht, et al., 2013; Gruyters et al., 2018; O’Sullivan et al., 2016), 

and thus it was not included in the model.  

 

The airflow field around the agar blocks can be either laminar or turbulent. The 

Reynolds number for the airflow forced through the cooling tunnel was used to 

characterise the flow regime. The minimum air velocity in the multiple agar block 

chilling experiments was 1 m s-1 (section 4.2.2). The hydraulic diameter at the inlet 

of the tunnel was DH = 4A/P = 0.3 m, and the kinematic viscosity of air at 0°C was 

v = 1.338 × 10-5 m2 s-1 (Cengel & Ghajar, 2011). Therefore, the resulting Reynolds 

number was: 

 

5

1 0.3
Re 22421

1.338 10
HuD

 


  


                                (4.1) 

 

The Reynolds number of 22421 at the minimum air velocity confirmed that the flow 

in the cooling tunnel was within the turbulent regime.  

 

The flow field and heat transfer calculations can be decoupled if there is no 

temperature-dependence of the air thermal properties or buoyancy force (Fluent, 

2017). The thermal properties of air can be considered to be constant due to 

relatively small temperature change during the process (less than 20°C; 

Dehghannya et al., 2010; Ferrua & Singh, 2009; Gruyters et al., 2018; Tanner et al., 

2002)   . The buoyancy effects can be estimated by the ratio between Grashof and 

Reynolds number squared (Eq. 4.2). If this ratio is lower than unity, the buoyancy 

force can be neglected (Cengel & Ghajar, 2011; Fluent, 2017). 

 

  
2 2Re

Gr g TL

u


                                                 (4.2) 

 

where g (m s-2) is the acceleration due to gravity; β (K-1) is the volumetric thermal 

expansion coefficient; ΔT (K) is the temperature difference between the product 

surface and the bulk of air; L (m) is the characteristic length; and u (m s-1) is the 

airflow velocity. 
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At the beginning of the chilling process, the initial agar temperature is 20°C, the 

refrigerated air temperature is 0°C. The hydraulic diameter of the two test blocks of 

agar (Height = 0.135 m, Length = 0.540 m, Width = 0.210 m) is used as the 

characteristic length, L = V/A = 0.036 m, and the thermal expansion coefficient of 

air at 0°C is estimated from the ideal gas approximation, β = T-1 = 3.66×10-3 K-1. 

Substituting these values into Eq. 4.2 for 1 m s-1 yields: 

 

2 2 2

9.81 0.00366 20 0.036
0.026

Re 1

Gr g TL

u

   
             (4.3) 

 

Since the calculated value of Gr/Re2 (0.026) is significantly less than unity, 

buoyancy-driven flows can be neglected in this study.  

 

Under these flow conditions, the airflow around agar blocks can be simulated as 

steady and incompressible flow (Ferrua & Singh, 2009b; Redding, Yang, Shim, 

Olatunji, & East, 2016), and the flow within the system can be described by the 

following forms of the continuity and momentum equations, respectively: 

 

0u                                                                   (4.4) 

2
a

a

P
u u u




                                                (4.5) 

where u (m s-1) is the velocity vector, P (Pa) is the pressure, ρa (kg m -3) is the air 

density, and va (m2 s-1) is the kinematic viscosity of air. 

 

The energy transport in the air can include not only conduction and convection but 

also the diffusion of the water vapour (Ferrua & Singh, 2009b). However, since the 

agar was contained in sealed boxes, moisture evaporation was insignificant in this 

study. Hence, the energy equation in the air domain was described by: 

 

2a
a a a a a

T
c u T k T

t


      
                                   (4.6) 
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where ca (J kg-1 K-1), ka (W m-1 K-) and Ta (K) are heat capacity, thermal 

conductivity and temperature of air, respectively. 

The heat transfer equation within solid regions (agar blocks and plastic boxes) was 

modelled as: 

 

2s
s s s s

T
c k T

t
      

                                             (4.7) 

 

where t (s) is the processing time;  ρs (kg m -3), cs (J kg-1 K-1), ks (W m-1 K-) and Ts 

(K) are the density, heat capacity, thermal conductivity and temperature of solid, 

respectively. 

 

4.3.4 Numerical setup 

 

4.3.4.1 Thermal physical properties of materials 

 

The thermophysical properties of the agar, acrylic plastic and air are listed in Table 

4.1. As discussed above, the thermal properties of air can be assumed to be 

independent of temperature and were determined based on the thermal properties 

of the dry air at 0°C found in (Cengel & Ghajar, 2011). The density and specific 

heat of agar can be estimated from properties of water at the same temperature, 

found in (Cengel & Ghajar, 2011), while the thermal conductivity of agar was 

obtained from (Zhang et al., 2010). The thermal properties of acrylic plastic can be 

found in (EngineeringToolbox). Since the variation of thermal properties of agar 

and acrylic plastic were less than 4% within the range of temperature used in the 

experiments (from 20°C to 2.5°C), their properties at the initial temperature of 20°C 

were chosen in the calculations 

 

Table 4.1: Material thermo-physical properties 

Materials 
Density 
(kg m-3) 

Specific heat 
(J kg -1K -1) 

Thermal cond, 
(W m-1 K-1) 

Dynamic Viscosity 
(kg m-1 s -1) 

Air 1.292 1006 0.02364 1.729 x 10-5 

Acrylic 1190 1470 0.2 - 

Agar 998 4182 0.543 - 
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4.3.4.2 Boundary conditions 

 

The surfaces of the blocks of agar were modelled as no-slip walls with zero 

roughness. A zero heat flux boundary condition was used for the sidewalls of the 

PTT. The coupled thermal condition was applied for the interfaces between airflow 

and acrylic, acrylic and agar, and acrylic and acrylic.  

 

The inlet of the computational domain was defined as the velocity inlet with 

velocities of 1 m s-1, 3.0 m s-1, and 4.5 m s-1 imposed, as for the experiments. The 

inlet temperature was set to the temperature of the ETC (0°C, section 4.2.2). The 

low turbulence intensity of 1% was used due to the presence of the fine airflow 

diffuser.  

 

The outlet of the computational domain was defined as a pressure outlet with an 

underpressure measured by the inclined manometer to represent the pressure drop 

created by the suction fan. An outlet pressure of -85, -35 and -5 Pa were imposed 

for the high, medium and low inlet air velocity, respectively.  

 

4.3.4.3 CFD simulation. 

 

The CFD code used was ANSYS Fluent 18.2, which uses the finite volume 

technique. The standard k-ε turbulence model was employed, due to its robustness, 

relative accuracy over the wide range of turbulence flows and CPU efficiency 

(Fluent, 2017). The Enhanced Wall Treatment (EWT) option which automatically 

switches from a low-Reynolds-number approach to the wall functions (Fluent, 

2017) was enabled for near-wall modelling. The fluid region close to the agar block 

surface was meshed with a small mesh size to ensure the low y+ value (the 

dimensionless wall distance used to describe the flow behaviour) for the low-

Reynolds-number approach would be valid. From the surface of the agar blocks 

outwards, 10 layers of hexahedral elements were placed with the first layer 

thickness of 0.1 mm and a growth rate of 1.2. 

 

A hybrid mesh with tetrahedral and hexahedral elements was generated using 

ANSYS mesh generation software. The element size in the product section was 10 
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mm while the maximum face size was kept as default (36.5 mm). A mesh sensitivity 

study was performed by running simulations at three different mesh sizes to 

estimate the spatial discretization error from the difference in the average surface 

heat transfer coefficient (SHTC) of two test blocks of agar (Table 4.2). 

 

The mesh independent solution was determined by Richardson extrapolation 

(Roache, 1997), and the value of the average SHTC was 42.44 Wm-2 K-1. The error 

of the average SHTC for a mesh size of 0.1 mm of 1.2% was considered sufficiently 

low. Therefore, the mesh with 273258 elements was chosen for these computations. 

 

Table 4.2. Effect of different mesh size on average SHTC of two test blocks of 

agar 

Mesh size on 
product surface 

(mm) 

Number of 
elements 

y+ (average) 
SHTC (average) 

(W m-2 K-1) 

0.4 262923 5.06 46.05 

0.2 266901 2.52 44.12 

0.1 273258 1.25 42.94 

 

The pressure-velocity coupling was solved with the SIMPLE scheme. The second-

order spatial discretisation was used throughout for pressure, momentum, 

turbulence kinetic energy, turbulence dissipation rate and energy. The Green Gauss 

Cell-Based method was employed for the gradient discretization. The default 

solution controls were used.  

 

Prior to the transient simulation of the chilling process, steady-state simulations of 

airflow and heat transfer were performed using a constant agar temperature of 20°C 

(the initial agar temperature, section 4.2.2). These simulations were used to obtain 

the initial flow field and the heat transfer coefficient on the surface of the agar 

blocks. Subsequently, transient simulations were performed to predict the 

temperature history of the agar block during the forced-air chilling. Because the 

steady-state airflow field was imposed during the transient simulations and 

buoyancy was not included in the model (section 4.3.3), the flow and turbulence 

calculations could be turned ‘off’ to reduce computation time. The transient 

simulation was run with a time step of 1 minute and a maximum of 20 iterations for 
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each time step. The computational time for 800 minutes of simulated cooling time 

was 21 minutes on a 64-bit Intel ® Xeon ® CPU E5-1620, 3.5 GHz, 16 GB RAM. 

 

4.3.5 Results 

 

4.3.5.1 Uncertainty analysis of the experimental data 

 

The temperature profile of the agar blocks was computed by averaging the 

temperature history of the three replicates of the experimental trials, Eq. 4.8: 

 

 
 

1

n
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i

T t
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                                                    (4.8) 

 

where iT (K) is the average temperature at the ith thermocouple; 
ijT (K) is the 

temperature of the ith thermocouple number in the jth trial; n is the number of 

experimental trials (n =3); and t(s) is the processing time. The experimental 

uncertainty in  iT t at 95% confidence interval and a normal distribution, was 

computed by Eq. 4.9: 
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where 
iT

P (t) (°C) is the uncertainty in iT ; 1,0.025n  is the student’s t-statistic with (n-

1) degrees of freedom at a 95% confidence interval. 
 

4.3.5.2 Comparison of measured and predicted temperatures 

 

Figure 4.10 illustrates the comparison between the predicted and experimental 

temperatures of the two test blocks, in which Block B was at the front and Block A 

was at the back along the flow direction at the inlet air velocity of 1 m s-1.  Results 

were shown for the geometric center temperatures (T4 and T14) and the top surface 

temperatures (T2 and T12). The error bars represent the experimental uncertainty 

at 95% confidence interval. The experimental air temperature was calculated as the 
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averaged value of three replicated trials (section 4.2).  Figure 4.11 and 4.12 show a 

similar comparison at the inlet air velocity of 3.0 m s-1 and 4.5 m s-1, respectively. 

 

 

Figure 4.10: Comparison between predicted and experimental temperature of two 

tested blocks at the inlet velocity of 1 m s-1 

 

           

Figure 4.11: Comparison between predicted and experimental temperature of two 

tested blocks at the inlet velocity of 3 m s-1 
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Figure 4.12: Comparison between predicted and experimental temperature of two 

tested blocks at the inlet velocity of 4.5 m s-1 

 

Figures 4.10 - 4.12 show good agreement between predicted and experimental data. 

The model tended to underpredict the temperature drop. This could be explained by 

the model not including the effect of natural convection and thermal radiation.  

 

The accuracy of the temperature predictions of the CFD model was evaluated by 

the mean absolute temperature difference, ΔTmean  as Eq. 4.10 below: 

 

, ,
1

n

m i p i
i

mean

T T
T

n



 


                                         (4.10) 

 

where Tm,i  (K) and Tp,i (K) are the measured and predicted temperature at time point 

i and n is the number of measured temperature values. 

 

The values of ΔTmean at different measured temperatures are given in Table 4.3. The 

Biot numbers at each testing conditions was determined by: 
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Bi
hL

k
                                                (4.11) 

 

where h (W m2 K-1) is the surface-averaged heat transfer coefficient of two test 

blocks (section 4.3.5.3), L (m) is the characteristic dimension, L = 0.036 m (Section 

4.3.3), and k (W m-1 K-1) is the thermal conductivity of agar, k = 0.543 W m-1 K-1 

(Table 4.1) 

 

Table 4.3: Mean absolute temperature difference at different locations and testing 

conditions. 

Testing conditions ΔTmean (°C) 

v (m s-1) Bi T2 T4 T7 T10 T12 T14 T17 T20 

1 1.0 1.0 0.5 0.5 0.6 0.8 0.6 0.8 0.2 

3 2.2 0.7 0.7 0.1 0.2 0.2 0.7 0.2 0.3 

4.5 2.8 0.6 0.7 0.1 0.2 0.1 0.7 0.1 0.3 

 

Overall, the model predictions fit well with the experimental data. The values of 

ΔTmean were 1.0°C or less for all the monitored temperatures. At the lowest inlet air 

velocity (1 m s-1), the largest differences between predicted and measured 

temperatures were at the top surfaces (T2 and T12, Figure 4.5) with ΔTmean= 1.0°C 

and 0.8°C, respectively. At the highest airspeed (4.5 m s-1), the largest differences 

were at the centre temperatures (T4 and T14, Figure 4.5), with ΔTmean= 0.7°C for 

both positions.  

 

At the low air velocity (low Biot number) the uncertainty of the surface heat transfer 

coefficient (e.g. neglecting natural convection and thermal radiation) is more 

pronounced. That could be hypothesised to explain the high discrepancies between 

predicted and experimental surface temperatures.  

 

At higher air velocity (higher Biot number), the system becomes dominated by 

internal resistance to heat transfer. Therefore, the uncertainty of thermal properties 

(e.g. assuming a constant thermal properties) is more pronounced. The predicted 

centre temperatures which are more affected by the thermal property uncertainty 

would have higher errors compared to predicted surface temperatures. 



60 
 

4.3.5.3 Local surface heat transfer coefficient  

 

The surface heat transfer coefficient (SHTC), h (W m-2 K-1), was calculated by Eq. 

4.12: 

 

wall

in air
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h

T T



                                               (4.12) 

 

where qwall (W m-2) is the initial wall heat flux determined from the steady-state 

simulation, Tin (K) is the initial temperature of the blocks of agar, and Tair (K) is the 

cooling air temperature. Figure 4.13 shows a contour plot of the SHTC of two test 

blocks of agar, at the inlet air velocity of 4.5 m s-1. The SHTC across the agar block 

surface varied by a factor of 5, with the maximum value at the four corners of the 

surface on the upstream side and minimum values at the opposite surface. The 

averaged SHTC over the agar blocks surface at air velocities of 1 m s-1, 3 m s-1, and 

4.5 m s-1 were 15.3 W m -1 K -2, 32.5 W m -1 K -2 and 42.9 W m -1 K -2, respectively.  

 

 

Figure 4.13: SHTC of two test blocks of agar at the inlet air velocity of 4.5 m s-1 

 

4.3.5.4 Cooling heterogeneity of two tested blocks of agar 

 

Figure 4.14 illustrates the discrepancies between predicted temperatures at the same 

positions on the surface (T2 vs T12, T10 vs T20, Figure 4.5) and at the geometrical 

centre (T4 vs T14, Figure 4.5) of the two test blocks of agar at the inlet air velocity 
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of 4.5 m s-1. The maximum temperature difference at the surface (1°C) was about 

two and a half times higher than that at the centre of the two blocks (0.4°C). The 

temperature decreased faster in block B (in the front with respect to the airflow 

direction) than in block A (at the back). This trend is more obvious at the surface 

temperatures at the beginning of the chilling process. This observation was to be 

expected since the surface heat transfer coefficient decreased along the flow 

direction (Figure 4.13) and is consistent with heat transfer theory for convection 

over a flat surface (Cengel & Ghajar, 2011). At the end of the process, the 

temperature difference between the agar block surface and the air was 

comparatively small and the temperatures of the two blocks were almost the same. 

 

 

Figure 4.14: Temperature difference of the two test blocks at the same positions at 

the inlet air velocity of 4.5 m s-1 

 

Figure 4.15 presents the predicted temperature distribution of two test blocks agar 

at the velocity inlet of 4.5 m s-1 after 4.5 hours (the half cooling time).  The cooling 

rate was fastest at the corners, and the slowest cooling position was at the centre of 

the interface of the two test blocks. 
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                                   a)                                                   b) 

Figure 4.15: Temperature distribution for a) vertical symmetry plane and b) 

horizontal symmetry plane of the two test blocks agar after 4.5 hours (half cooling 

time) at the velocity inlet of 4.5 m s-1 

 

4.3.6. Conclusion 

 

The CFD model for the forced air chilling of six agar blocks in an arrangement that 

was representative of an industrial cheese chiller was presented and validated. 

The use of standard k-ε turbulence model with the Enhanced Wall Treatment 

function can predict to within 1°C compared to experimental data. However, due to 

model simplification, the model routinely underpredicted the experimentally 

observed cooling rate.  

The model presented in this study can be applied for industrial cheese chilling 

operations which have a similar airflow pattern and product arrangement as the 

experiment. 
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Chapter 5 

A simple heat transfer simulation for the forced-air chilling of 

food products 

 

5.1 Introduction 

 

For industrial use, a quick and reliable solution to predict the chilling time, product 

temperature distributions and heat flow is useful to have, rather than always 

spending time to set up a complicated CFD solution. In addition, it is highly unlikely 

that a company will be prepared to pay for a CFD licence or employ someone who 

has sufficient expertise to use it if they do not have to. In this chapter, a one-

dimensional numerical solution proposed by Ghraizi, Chumak, Onistchenko, and 

Terziev (1996) has been used with a new thermal properties model and heat transfer 

coefficients to develop a simplified cooling simulation. This approach uses the 

partial differential equation describing one-dimensional non-linear unsteady heat 

conduction inside of the product, and solves it by a finite difference technique. The 

method can take into account the temperature-dependence of thermal properties of 

foods and a general shape factor is used to reflect the product geometry. The 

simulation was applied to a single block of cheese, and agar. Predicted results were 

compared to experimentally measured temperature profiles as well as to results 

generated by the commercial FPM software. 

  

5.2 Experimental system 

 

The chilling trials for a single block of cheese and a single block of agar were 

conducted in the environmental test chamber (ETC) at AgResearch Ltd, Hamilton, 

New Zealand. The blocks of agar were taken from the six agar blocks experiments 

(section 4.2). Because access to the ETC was limited, two chilling trials were 

performed simultaneously, by using two polystyrene test tunnels (PTT, Figure 5.1), 

in which one agar block was put in the top tunnel and the other block was placed in 

the bottom tunnel. To increase the air velocity through the PTT, a transition section 

was made to reduce the cross-sectional area in the product section. The transition 

section was attached to the original PTT walls by screws and sealed by duct tape to 

ensure that all the air drawn by the fan passed through the product section. 
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Figure 5.1: Experimental system for a single block of agar chilling 

 

The modified PTT with a transition section is shown in Figure 5.2, in which the 

cross-sectional area at the product section was reduced by a factor of 2.4 compared 

to the original PTT. The cross-sectional area at the inlet and the outlet of the 

modified tunnel were 510×300 mm and 510×720 mm respectively, while the length 

of the tunnel was kept at 2400 mm as the original PTT. 

 

 

Figure 5.2: The modified PTT with a transition section for the single block of agar 

experiment 

 

A metal rack was provided to support the test block and allow airflow to sweep the 

bottom surface of the sample. The configurations of the two tunnels (dimensions, 

transition section, and suction fan) were identical, making the airflow patterns of 

the top and the bottom tunnel the same.  
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The measurements and experimental procedure of the single block of agar 

experiments were the same as the experiments with six blocks of agar (section 4.2). 

Inlet air velocities of 1.0 m s-1 and 4.0 m s-1 were used and three replicate trials were 

performed at each air velocity. 

 

In the last set of experiments, a real block of cheese measuring 190× 300×385 mm 

was used (Figure 5.3).  

 

a) b) 

Figure 5.3: a) The test sample, and b) a single block of cheese in the chilling 

tunnel 

 

Figure 5.4 illustrates the thermocouple positions in the block of cheese. The multi-

thermocouple probe supporting thermocouple Numbers 11, 12, 13 was placed along 

the shortest axis. Thermocouple Number 12 was at the geometric centre of the block 

and the two other thermocouples on the probe were 1.5 cm from the geometric 

centre. The multi-thermocouple probe supporting thermocouple Numbers 4, 5, 6, 

which was placed along the longest axis, positioned those thermocouples at 180, 

140, 100 mm distance from the front surface in the airflow direction respectively. 

Thermocouple Numbers 2 and 16 measured the air temperature. The other 

thermocouples were surface thermocouples located at the centre of each surface 

outside the carton, except for thermocouple Number 14 and 7, which were placed 

inside the carton. All thermocouples were connected to the Keysight 24982A data 

acquisition unit and temperatures were recorded every 60 seconds. 
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Figure 5.4: Thermocouples position in the single block of cheese chilling trial 

 

The experimental measurements and procedure were similar to the experiment with 

six blocks of agar. The initial cheese temperature was within 0.5°C of 19.5°C, and 

the refrigerated air temperature was kept constant at 0°C. To save the experimental 

time, the experiments were terminated when all the monitored temperatures were 

fell below 10°C (half-way between the initial cheese temperature and the cooling 

air temperature). This experiment was conducted at two inlet air velocities, 1.0 and 

4.4 m s-1 (note that the higher air velocity for the cheese (4.4 m s-1) was greater than 

that for the agar 4.0 m s-1). Each experiment was repeated twice. 

 

5.3 Numerical solution 

 

The mathematical model of the heat transfer upon symmetric cooling was defined 

as a non-linear heat conduction equation with the corresponding boundary 

conditions, as follows (Fikiin, 1996; Ghraizi et al., 1996): 
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where C (J m-3 K-1) is the volumetric heat capacity, E is the shape factor and R (m) 

is characteristic length determined as the half-thickness of the shortest dimension. 

Eq. 5.1 is the Fourier heat conduction equation inside food products, Eq. 5.2 is the 

initial boundary equation, Eq. 5.3 is the symmetric boundary condition and Eq. 5.4 

is the third kind boundary condition prescribing the heat flux due to convection on 

the surface of a food product. The shape factor, E, is used to account for the 

‘dimensionality’ of the heat transfer problem. When the appropriate value for E is 

inserted into the one-dimensional form of the heat conduction equation (Eq. 5.1), 

the results will coincide or be satisfactorily close to those obtained by solving the 

corresponding multidimensional problem (Fikiin, 1996). In the Ghraizi et al., 

(1996) model the formula of E developed by (Fikiin, 1996), Eq. 5.5, was used: 

 

1
A.R

E
V

                                                        (5.5) 

 

where A (m2), V (m3) are the heat transfer area and the volume of the object, 

respectively.  

 

The finite difference scheme is shown in Figure 5.5, in which the (i,j)-point 

corresponding to position i (x =xi) and time j (t= t j) was determined as follows: 

 

xi= xi-1 + x, i 1,2,..., N , 
R

x
N

   

 t j = t j-1+ t, j = 1,2… 

 

where the time step, t (s), and space increment, x (m), can be variable and N is 

the number of nodes. Because of the temperature-dependence of thermal properties, 

it is necessary to average those quantities in the vicinity (efgh) of each (i,j)-point to 

make the numerical solution to be more stable (Onishenko, Vjazovsky, & Gnatiuk, 

1991). These local average values can be obtained by integrating the governing 

equation (Eq. 5.1) in the vicinity (efgh, Figure 5.5): 

 

       E E

efgh efgh

T x,t Т х,t
x C T dxdt k T x dxdt

t x х

  
      

                  (5.6) 
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Figure 5.5: The finite different scheme 

 

More details of the finite difference solution of Eq. (5.1-5.4) were presented in 

(Ghraizi et al., 1996), in which the internal nodes were discretized by the central 

difference formula, and the boundary nodes were approximated by the three-point 

backward/forward difference. The approximate system of linear algebraic 

equations, therefore, has the following form:  

 

1 1 1,2 1 ij ij ij i- , j ij i+ , j ija T +b T +e T = d ,     i = ,..., N -                            (5.7) 

  0 1 2 0j j j3T 4T T                                                                    (5.8) 

  1 24
0

2
Nj N - , j N - , j

Nj a Nj

3T - T + T
-k T + h T - T =

x
  

                          (5.9) 

 

where: 

II I

1 2 2 2 2 2 2
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Cij,
I
ijk , 

II
ijk  are the volumetric heat capacity and average thermal conductivities of 

the (i,j)-point, determined as the average values of the adjacent points, and are 

assumed to be the constant values.   
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 1 6ij K P M C N DC =( ) C +C +C +C +C +C                            (5.10) 

 I 1 6ij P N D K A Lk =( ) k +k +k +k +k +k                                 (5.11) 

 II 1 6ij P L B M C Nk =( ) k +k +k +k +k +k                                (5.12) 

 

It may be observed that the system of equations, Eq. (5.7-5.9) has the tridiagonal 

form, which can be solved by the tridiagonal matrix algorithm. Its solution is 

illustrated in the form of the recursion formula below: 

 

1, 1 1 0,1 1ij i j i , j i , jT M T N ;i ,..., N                                            (5.13) 
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; i =1,2, ..., N-1                                              (5.14) 
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                 (5.18) 

 

In the procedure to determine the temperature profile at the jth time step, the 

algorithm needs to know temperatures at the (j-1)th, jth and (j+1)th time step to 

calculate the average thermal properties of the (i,j)-point. Therefore, an iterative 

“prognosis-correction” regime (Figure 5.6) was required (Ghraizi et al., 1996), in 

which, K is the number of iterations and the iterations are interrupted when the 

maximal difference between the temperature profiles, Tij, of two consecutive 

iterations is less than a given tolerance, ε. 

 

The one-dimensional simulation was programmed in MATLAB (The MathWorks 

Inc., Natick, MA). In the simulation, the number of nodes was N =100 and the time 
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step Δt was 10 minutes. The computational time for 18 hours of cheese chilling was 

30s on a 64-bit Intel ® Xeon ® CPU E5-1620, 3.5 GHz, 16 GB RAM 

 

 

Figure 5.6: “Prognosis-correction” regime to determine Tij 

 
5.4 Thermal properties and heat transfer coefficient model 
 

To apply the Ghraizi et al. (1996) model, the additive effective specific heat 

capacity model (Eq. 3.1), and the Dul’nev & Novikov thermal conductivity (Eqs. 

3.30-3.33) were used as recommended in the chapter 3. The density model was kept 

as the original (Eq. 3.20). The composition of cheese used in the thermal properties 

calculation was 36.3% water, 23.5% protein, 34.1% fat, and 3.6% ash, found in  

(Willix et al., 1998), while agar was assumed to have the thermal properties of 

water.  

 

The convective heat transfer coefficient was calculated by the correlation equation 

proposed by (Pham, Lowry, Fleming, Willix, & Reid, 1991) and (A. C. Cleland & 

Earle, 1976) to approximate convective heat transfer coefficient as function of 

airflow velocity. The overall heat transfer coefficient between the food package and 

the cooling medium, h (W m-2 K-1), was determined from an estimate of the 

(5.13-5.18) 

(5.13-5.18) 
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convective heat transfer, the thermal resistance of the packaging materials, and the 

air gap between the food and packaging: 

 

pkgair

conv air pkg

1 1

h h k k


                                  (5.19) 

 

where the convective heat transfer coefficient was calculated as a mean value of the 

convective heat transfer coefficient correlations proposed by (Pham et al., 1991) 

and (A. C. Cleland & Earle, 1976): 

 

conv

( u 8.6 ) ( u 4.5 6.8 )
h 1.12

2

   
                          (5.20) 

 

where u (m s-1) is the air velocity around the food product. Thermal conductivities 

and thicknesses of the packaging materials and air gaps are shown in Table 5.1.  

 

Table 5.1 Thickness of packaging materials and air gap.  

Sample 

Thickness, mm 

Acrylic plastic Polyethylene Air gap Cardboard 

(k=0.2 )b (k=0.33)b (k=0.026)a (k=0.078)a 

Agar 4.5 - - - 

Cheese - 0.3 3 3 

Source: a S. P. Singh, Burgess, and Singh (2008); b The Engineering Toolbox 
(n.d.) 

 

5.5 Results 

 

The results of the one-dimensional numerical simulation, which is named as CFM, 

were validated by comparison with experimental data, as well as the predicted 

results of the commercial software FPM version 4 (FPM, AgResearch MIRINZ), 

using a three-dimensional simulation. The experimental uncertainties at 95% 

confidence level were estimated by Eqs. 4.8 and 4.9 from the three replicated trials 

for the single block of agar and from two replicated trials for the block of cheese. 
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The air velocities at 2 cm above the test sample (uabove, Table 5.2) determined in the 

experiments were used to calculate the heat transfer coefficient in CFM using Eq. 

5.19. The Biot number was estimated by Eq. 4.11. The calculated heat transfer 

coefficient and the equivalent Biot number for each trial were shown in Table 5.2 

 

Table 5.2 The calculated heat transfer coefficient and Biot number for each 

experiment 

Chilling trails uinlet (m s-1) uabove (m s-1) h (W m-2K-1) Biot 

Agar 
1.0 1.5 11.1 0.6 

4.0 5.5 22.1 1.2 

Cheese 
1.0 1.5 4.5 0.7 

4.4 7.0 5.8 0.9 

 

5.5.1 Comparison of measured and predicted product temperatures 

 

Figures 5.7 and 5.8 show the comparisons of measured and predicted temperature 

profiles for the block of cheese at the geometric center and the top surface along the 

shortest axis at different inlet air velocities. A similar comparison was made for the 

single agar block shown in Figures 5.9 and 5.10. The error bars in Figures 5.7 to 

5.10 were based on the standard deviations of the experimental data. The 

experimental air temperature was averaged from all replicated experimental trials 

(section 5.2). 
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Figure 5.7: Plots of the temperature predictions of CFM, FPM with experimental 

data for a single block of cheese at the inlet velocity of 1.0 m s-1 

 

 

Figure 5.8: Plots of the temperature predictions of CFM, FPM with experimental 

data for a single block of cheese at the inlet velocity of 4.4 m s-1 
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Figure 5.9: Plots of the temperature predictions of CFM, FPM with experimental 

data for a single block of agar at the inlet velocity of 1 m s-1 

 

 

Figure 5.10: Plots of the temperature predictions of CFM, FPM with experimental 

data for a single block of agar at the inlet velocity of 4 m s-1 
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In general, the simulation results performed by CFM fit well with the prediction 

results of FPM and the measured data. For the single block of cheese, both CFM 

and FPM show a good agreement with experimental data for the centre temperature 

prediction while big discrepancies can be seen for the surface temperature 

prediction. This can be explained by the uncertainty of the measurement of the 

thickness of the air gap underneath the carton on the top surface of the cheese test 

sample. For the single block of agar, CFM and FPM performed better at the high 

inlet air velocity. This can be justified by the fact that at the high air velocity (high 

Biot number) the internal resistance is dominant over the external resistance. Hence, 

the uncertainties of the overall heat transfer coefficient prediction could be reduced. 

 

The accuracy of the predicted temperatures of the one-dimensional simualtion and 

FPM was illustrated by the mean absolute temperature difference (ΔTmean, Eq. 

4.10). Table 5.3 shows the ΔTmean for the simulation results generated by CFM and 

FPM at the geometrical centre and surface along the shortest axis of a single block 

of cheese and a single bock of agar at different testing conditions. 

 

Table 5.3 The mean absolute temperature difference for simulation performed by 

CFM and FPM at different locations and different Biot numbers 

Materials 
uinlet, 
m s-1 

Biot 
number 

ΔTmean at surface, °C ΔTmean at centre,°C 

CFM FPM CFM FPM 

Agar 
1.0 0.6 1.1 0.7 1.1 0.6 

4.0 1.2 0.3 0.5 0.5 0.4 

Cheese 
1.0 0.7 0.5 0.8 0.3 0.3 

4.4 0.9 1.4 1.9 0.2 0.2 

 

It can be seen from Table 5.3 that both CFM and FPM show a good agreement with 

experimental data with the mean temperature difference no more than 1.9°C  

 

5.5.2 Comparison of experimental and numerical cooling times 

 

The cooling time is a key design parameter when designing the refrigeration system. 

The accuracy of the numerical model was also assessed by comparing the numerical 

and experimental half cooling time (HCT), which is defined by the time required 

for the food products have cooled halfway from the initial temperature to the 
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cooling air temperature, and determined by the time that the dimensionless 

temperature (Y, Eq. 5.21) took to equal 0.5: 

 

 0, a

in a

T t T
Y

T T





                                                  (5.21) 

 

where T (0,t) (K) is the centre temperature of the block of cheese or block of agar, 

Tin (K) is the initial temperature of food products and Ta is cooling air temperature. 

The experimental and predicted HCT at each test condition for the block of cheese 

and the single block of agar are shown in Table 5.4. The relative differences 

between the HCT predicted by CFM and FPM and the experimental data were lower 

than 6%, except for the HCT of the agar block with the inlet air velocity of 1 m s-1.  

 

Table 5.4 Comparison of predicted and experimental HCT for cheese and agar 

chilling 

Materials 
uinlet,  

m s-1 

Experiments CFM FPM 

HCT, h HCT, h Diff, % HCT, h Diff, % 

Agar 
1.0 5.1 5.8 13.7 5.6 9.8 

4.0 4.3 4.5 4.7 4.1 4.7 

Cheese 
1.0 16.4 16.6 1.2 15.5 5.5 

4.4 14.5 14.6 0.7 13.9 4.1 

 

5.6 Conclusions 

 

A one-dimensional numerical solution developed by Ghraizi et al. (1996) for non-

linear unsteady heat transfer of food products in the chilling process was presented, 

using thermal properties calculated by the methods described in Chapter 3 and the 

correlation equation of the convective heat transfer coefficient proposed by (Pham 

et al., 1991) and (A. C. Cleland & Earle, 1976). The simualtion fits well with the 

experimental results and the predicted data of the three-dimensional simualtion. 

Therefore, CFM can be used to provide a quick cooling time prediction (the 

computational time for 18 hours of cheese chilling was 30s on a 64-bit Intel ® Xeon 

® CPU E5-1620, 3.5 GHz, 16 GB RAM implemented in MATLAB) with sufficient 
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confidence in the temperature distribution along the shortest characteristic 

dimension of a 3-D object, which represents the greatest interest for food 

engineering investigations (Fikiin, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

Chapter 6 

Experimental study on the forced air freezing of whole chicken 

and bulk packed chicken drumsticks 

 

6.1 Introduction 

 

Many research projects have been conducted into characteristic the refrigeration of 

chicken products (Anderson, Sun, Erdogdu, & Singh, 2004; James, Vincent, de 

Andrade Lima, & James, 2006; Mannapperuma et al., 1994a, 1994b). However, 

they did not appear to present any data for the forced-air freezing of chicken 

containing a liner bag or polyliner, which is a common feature of the packaging 

system of the New Zealand chicken industry. This chapter describes laboratory 

experiments for the forced air freezing of bulk-packed whole chickens and chicken 

drumsticks within a polyliner, based on the information obtained from an industrial 

freezing tunnel. The objectives of the experimental work were to investigate the 

impact of the packing arrangement (or structure) of chicken drumsticks and the 

presence of a liner bag with the associated air voids between chickens and polyliner 

on freezing rate. The cooling performance of a tray of whole chickens and a tray of 

chicken drumsticks at different operating conditions was also evaluated. The 

experimental data will then be used to validate the prediction results of the CFD 

model described later in Chapter 7. Therefore, experiments were designed to have 

clear boundary conditions that could be replicated in a modelling environment; and 

a number of replications were performed to account for measurement and human 

error.  

 

6.2 The industrial chicken freezing 

 

The case study of the industrial chicken freezing was a chicken processing plant in 

Waitoa, Waikato. Under typical operation, the chicken is firstly loaded into either 

plastic or cardboard trays with open tops (Figure 6.1). The weight of each package 

ranges from 9 kg to 13 kg depending on the type of chicken products. 
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Figure 6.1: Typical trays used by the chicken processors (photo courtesy of 

Milmeq) 

 

Chicken portions (thighs, drumsticks etc.), spend some time in the boning room at 

10°C and then up to an hour waiting in the queue to go into the freezing tunnel in a 

room approximately at 0°C. This means that the temperature distribution in the 

product is highly unlikely to be uniform before it enters the tunnel, and also that 

there is likely to be significant variation in temperature between different types of 

chicken products. For example, trays containing chicken drumsticks may be 

noticeably cooler than trays containing whole chickens. 

 

 

Figure 6.2: Chicken on the conveyors before entering the freezing tunnel (photo 

courtesy of Milmeq). 

 
Chickens are frozen in the freezing tunnel (Figure 6.3) at -25°C, in which the trays 

of chicken products are placed on movable shelves. The tunnel design and product 

arrangement are similar to the industrial cheese chilling tunnel (Figure 4.2). 

Refrigerated air flows parallel to the longest dimension of the trays with two trays 

placed one behind the other on a shelf. The clearance between the trays makes sure 

that all the trays are exposed to a similar airflow profile. Perforations in the shelves 

allow for airflow to sweep the bottom surface of the tray.  
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Figure 6.3: A typical freezing tunnel configuration (photo courtesy of Milmeq). 

 
The tunnel can accommodate varying product types and carton sizes that require 

different freezing times. Shelves within a system are allocated different retention 

times, and the interfacing conveyors automatically pre-sort and accumulate product 

types, allowing transfer onto the designated shelf depending on the product 

retention time. 

 
6.3 Experimental system  

 
The chicken freezing trials were conducted at the AgResearch Ltd, Hamilton 

facility. Two Polystyrene Test Tunnels (PTT) that were used in the cheese and agar 

experiments (section 5.2) were reused for these experiments (Figure 6.4). Each PTT 

consisted of a variable speed suction fan at the downstream end, a fine mesh screen 

at the upstream end (used to diffuse the airflow), and an open section where the 

chicken trays were loaded. 

 

  

Figure 6.4: Experimental system for chicken freezing trials 

Fine mesh 

Suction fan 

Open section 
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The two tunnels were put in the Environmental Test Chamber (ETC) allowing for 

precise control of the temperature of the cooling air being forced through the PTT. 

A transition section was created by fixing a polystyrene panel as shown in Figure 

6.5. This ensured the majority of the airflow generated by the suction fan passed 

through the product section.  

 

  
a) b) 

 
c) 

Figure 6.5: Close fit of the transition section to the original tunnel: a) front view, 

b) back view, c) inside the PTT 

 

 
                                         a) 

 

                                              b) 
Figure 6.6: The cardboard tray in the chicken freezing trials: a) without polyliner, 

b) with polyliner. 
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Cardboard trays with open tops, measuring 325 mm × 580 mm × 130 mm and 

polyliners, as used by chicken processors (Figure 6.6), were used in these 

experiments. Each tray was loaded with either 1.) seventy-two drumsticks or 2.) 

eight whole chickens. In each tunnel, a 5-cm height metal platform was used to 

support the tray of chickens. This arrangement allowed the bottom surface of the 

cardboard tray to be exposed to refrigerated air. 

 

6.4 Experimental design 

 

There are several experimental variables that are difficult to reproduce in the trials, 

such as the size, shape and location of individual chicken carcasses or chicken 

drumsticks within a tray, and the exact location of thermocouples embedded in the 

monitored products. These could have considerable influence when the measured 

data are used for numerical model validation purposes (see chapter 7), particularly 

if specific temperature locations are being compared. Instead, it is more common 

practice to compare the average of all measured product temperatures with the value 

predicted by the model (Ambaw, Mukama, & Opara, 2017; Defraeye, Lambrecht, 

et al., 2013; Ferrua & Singh, 2009b; O’Sullivan et al., 2016). The more 

temperatures are measured, the more reliable the average chicken temperature 

becomes; in this study there were 20 temperature logging channels available. 

Additionally, by carefully sizing and placing whole chickens or chicken drumsticks 

in the tray, and suitably distributing all the measurement locations within the tray, 

the effect of product shape and exact location of thermocouples on the average 

chicken temperature per tray can be minimised (Ferrua, 2007). 

 

6.4.1 Temperature measurement 

 

6.4.1.1 The whole chicken freezing trials  

 

The temperature history of each chicken was monitored at a position 3-cm deep in 

the breast and in the deepest part of the gastro-intestinal cavity during the freezing 

trial. The chickens selected for the trials weighed approximately 1.6 kg each (the 

exact weight of each chicken was recorded before each trial). To replicate the 

industrial freezing scenario, eight chicken carcasses were placed into a tray; five 
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chickens (Numbers 1 to 5, Figure 6.7a) were arranged in a portrait orientation in 

the first row and three chickens (Number 6 to 8, Figure 6.7a) were arranged in a 

landscape orientation in the second row.   

 

 

                                                       a) 

 

                                                                                b) 

Figure 6.7: Chickens arrangement in a tray a) excluding and b) including the 

thermocouples 

 

T-type thermocouples with sheath diameter of 4 mm were chosen for the whole 

chicken freezing trials. The big diameter of the thermocouples helped them to 

firmly embed in the chickens. Eighteen thermocouples were used for this 

experiment, with sixteen used to record the breast and cavity temperature of each 

chicken, one to measure the cooling air temperature, and one to measure air 

temperature inside the liner bag. Each thermocouple cable was labelled before 

being manually inserted into the chicken. As much as possible, the positions and 

the depths to which the thermocouples were inserted were the same for every 

1 2 3 4 5 

6 7 8 
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chicken. After insertion of thermocouples in all chickens, the polyliner was 

wrapped and sealed using plastic tape. The thermocouples were then carefully tied 

to each other and the cardboard tray to make sure they did not move during the 

freezing trial (Figure 6.8). The cooling air temperature was measured at a position 

3 cm above the chicken tray in the tunnel. 

 

 

Figure 6.8: The completed chicken tray for freezing trials 

 

Temperatures were recorded on a Keysight 24982A data acquisition unit every 60 

seconds during the freezing trials. The D type connector, a multiway thermocouple 

connector, was used to connect the thermocouple to the data logger. This allowed 

the connection of all the monitored thermocouples to the data logger in one motion 

rather than individually so that data recording could start as soon as the test samples 

were loaded in the PTT. The temperature history of chicken changes quickly at the 

beginning of the freezing process; therefore, it is very important to start recording 

as soon as possible. 

 

The total cable length from the measuring point to the logger was minimised to 

keep the loop cable resistance to lower than 100 Ohms to avoid a significant 

measurement error, as recommended by manufacturer (RS, 2002). 
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6.4.1.2 Bulk packed chicken drumstick trials 

 

For chicken drumsticks, two freezing trials were run at the same time, with one tray 

placed in the top tunnel and another tray in the bottom tunnel of the PTT. In each 

tray, the temperatures of eight selected drumsticks at different locations were 

measured, with one thermocouple being used to measure the refrigerated air 

temperature above the tray and one more to measure the air inside the plastic liner 

bag (20 thermocouples in total). 

   

 a) b) 

 
c) 

Figure 6.9: Bulk packed chicken drumsticks arrangements: a) regularly arranged 

drumsticks with liner bag, c) randomly arranged drumsticks with liner bag, c) 

regularly arranged drumsticks without liner bag 

 

Three sets of freezing experiments were conducted on the bulk-packed chicken 

drumsticks. In the first experiment, the cooling behaviour of a tray of regularly 

arranged drumsticks within the plastic liner (Fig. 6.9a) was investigated. Seventy-

two drumsticks weighing between 140 g to 190 g were arranged in four layers. Eight 

drumsticks each having a mass of 160 g (the average weight of drumsticks in a tray) 

distributed along the two diagonals at both high and low, central and peripheral 

positions were chosen for temperature measurement (Fig. 6.10). In which, 

drumstick Numbers 1, 3 and 4 are on the bottom layer, drumstick Number 2 is on 
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the second layer, drumstick Numbers 5, 6 and 8 are on the third layer and the 

drumstick Number 7 is on the top layer 

In the second set of experiments, a tray of drumsticks arranged randomly within the 

liner bag was used (Fig 6.9b). The drumsticks selected for temperature 

measurement also weighed 160 g and were carefully placed at similar locations to 

the measurement positions in the first set of experiments.  

 

In the third experiment, a tray of regularly arranged drumsticks without the plastic 

bag was used (Fig. 6.9c) and thermocouple placement was the same as for the first 

set of experiments.  

 

            

Figure 6.10: Chicken drumsticks distribution: a) the bottom and second layer, b) 

the third and top layer 

 

The distribution of temperature measurement positions was designed to account for 

the spatial variation in temperature throughout the tray, bearing in mind that a 

maximum of eight thermocouples could be placed in each tray. This was done so 

that the average of the eight measured temperatures could represent the volume 

average temperature of the bulk-packed drumsticks as closely as possible.  

 

T-type thermocouple wires with the sheath diameter of 2 mm were used to measure 

the drumstick temperature. Because of the flexibility of the wires, they could go to 

any position in the tray without making any significant changes in the drumstick 

arrangement or the airflow pattern in the polyliner bag. The measurement end of 

each thermocouple was made rigid by enclosing it alongside a plastic rod within a 

heat shrink tube. This allowed the wire to be easily inserted into the drumsticks to 

the desired location (approximately 3 cm deep in the thickest part of the leg, Figure 

Air Air 
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6.11) and helped them to remain in place during the trial. All the thermocouples 

were calibrated using an ice-point reference before and after the measurements. 

 

The Keysight 24982A data acquisition unit with D-type connector was also used 

for drumstick freezing trials with temperatures recorded every 60 seconds during 

the trials. 

 

 

Figure 6.11: Thermocouple placement in chicken drumsticks 

 

6.4.2 Air velocity and pressure measurement 

 

The air velocities at the inlet of the PTT and 5 cm above the chicken tray were 

measured before and after each trial using a hot-wire anemometer (Dantec 54N60 

FlowMaster). The sample time for each velocity measurement was five minutes. 

The air velocity was held constant during the experiment. 

 

In addition, in order to define the outlet boundary condition in the numerical model 

(see chapter 7), the pressure drop of the airflow through the PTT created by the 

suction fan was measured by an inclined fluid manometer (RS Pro, RS 730-2937) 

before and after each trial. 

 

6.5 Experimental procedure  

 

Chickens were purchased fresh from a local retailer on the day of delivery from the 

processor. They were then sorted, scaled and positioned individually in the tray and 

thermocouples were placed as described previously. The plastic liner was then tied 

to enclose the chicken and thermocouples (other than for the experiments without 

the plastic liner bag). The loaded trays were subsequently placed in the ETC to 
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equilibrate at 10°C for 24 hours. The chicken temperatures were monitored during 

the equilibration process to ascertain when the chicken reached a uniform 

temperature. 

All freezing trials started with chickens at uniform initial temperature of 10°C 

(equilibration temperature) and the ETC air temperature was maintained at -25°C. 

The inlet air velocity was adjusted to the desired speed. The whole chicken freezing 

trials were tested at three inlet air velocities of 1.0 m s-1, 2.5 m s-1, and 4.5 m s-1. 

The regularly arranged bulk packaged drumsticks (with and without liner bag) 

freezing trials were run at inlet air velocities of 1.0 m s-1, 2.5 m s-1, and 4.3 m s-1, 

and the randomly arranged drumstick freezing trials were run at inlet air velocities 

of 1.0 m s-1 and 4.3 m s-1. The thermally equilibrated chicken trays were placed in 

the tunnels and the trial was started. Each trial was terminated when all the 

monitored chicken temperatures fell below -21°C (seven-eighths of the difference 

between initial and cooling air temperatures).  

 

After the freezing process was completed, the samples were thawed for 12 hours at 

the ambient temperature, before being re-equilibrated in ETC at 10°C for at least 

24 hours. Two subsequent trials were performed on each batch of whole chickens 

or chicken drumsticks, with the exception of the eight drumsticks that contained the 

thermocouples, which were replaced by fresh 160 g drumsticks for each replicate. 

No samples were used for more than three trials. The trials were repeated until the 

standard deviation of the experimental data was lower than a certain value (3.0°C 

for the average temperature of chicken drumstick, and 2.0°C for the average 

temperature of chicken breast and chicken cavity). There were at least three 

replicates at each air velocity for each type of experiment. 

 

6.6 Experimental results 

 

6.6.1 Average temperature of chicken breast and chicken cavity per tray 

 

As discussed in section 6.4, the average temperature of all the monitored chickens 

per tray could be used to validate a heat transfer model (see chapter 7). Therefore, 

the time history of the average temperature at two different positions: 3 cm depth 

in chicken breast and in the chicken cavity, were computed from the experimental 
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results. In each trial, the average temperature profile of chicken breast and chicken 

cavity was calculated by averaging temperatures at the same position of all chickens 

within a tray, Eq. 6.1 

 
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N
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

                                                  (6.1) 

 

where:  

x indicates the position in a chicken (3 cm deep in the breast or in the cavity)  

j indicates the jth trial number 

i indicates the individual chicken in a tray 

N is the total number of chickens in a tray, N = 8 

t(s) is the processing time 

,x jT (K) is the average temperature in the jth trial at the position ‘x’ 

, ,x i jT (K) is the temperature of the ith chicken in the jth trial at position ‘x’  

 

The average temperature over time of a tray of chicken was computed by averaging 

the temperature histories of all experimental trials, Eq. 6.2 
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where: 

n is the number of the experimental trials (n = 4 at the 1 m s-1 freezing trial 

and n = 5 at the 2.5 m s-1 and 4.5 m s-1 freezing trials, section 6.5); 

xT (K) is the average temperature at the position ‘x’ 

 

The experimental uncertainty in xT (t) at a 95% confidence interval and a normal 

distribution of the measurements, was computed by Eq. 6.3: 
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where: 

 
xT

P t (°C) is the experimental uncertainty in xT  

1,0.025n  is the student’s t-statistic with (n-1) degrees of freedom at a 95% 

confidence interval. 
 

The experimental average temperature profiles of chicken breast and chicken cavity 

at the inlet air velocity of 1 m s-1, 2.5 m -1 and 4.5 m s-1 are compared in Figure 

6.12.  

 

      

Figure 6.12: The plots of average temperature per tray of chicken breast and 

chicken cavity during the freezing trial at three tested air velocities. Error bars 

indicate standard deviation 

 

As expected, the freezing rate was faster at the higher air velocity. Within a tray, 

the average temperature of chicken cavities was higher than that of chicken breasts, 

at the same air velocity. That means the slowest cooling point in a tray of chicken 

in the forced-air freezing will be in the cavity position. The experimental 

uncertainty of the average chicken temperature was smaller than 1.8°C for all three 

tested air velocities. 

 

The temperature history of a food product depends on the initial temperature and 

the cooling air temperature (Defraeye, Lambrecht, et al., 2013) and these were 
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slightly different between trials. Hence, the seven-eighths cooling time (SECT) (i.e. 

the time taken for the temperature to reach seven-eighths of the difference between 

initial and cooling air temperatures) was chosen to compare freezing rates between 

trials. Using the dimensionless temperature (Y, Eq. 6.4), the SECT of a tray of 

chicken was determined by the time Y took to equal 0.125 

 

a

in a

T T
Y

T T





                                                        (6.4) 

 

where T (K) is the average chicken cavity temperature (because the cavity cooled 

slower than the breast), Ta (K) is the cooling air temperature and Tin (K) is the initial 

temperature of all chicken. The SECT of a tray of chicken at the different air 

velocities is presented in Table 6.1. The uncertainty of the SECT was calculated 

using the same formula as the average temperature of chicken with SECT in place 

of Tx (Eq. 6.3) 

 

Table 6.1: The SECT of a tray of chicken in a freezing trial at different air 

velocities 

Trial number 
SECT, h 

u =1 m s-1 u = 2.5  m s-1 u = 4.5 m s-1 

1 27.2 20.4 19.5 

2 27.5 23.4 18.9 

3 29.0 23.0 19.7 

4 27.7 22.3 18.8 

5 - 21.6 19.6 

Mean 27.8 22.1 19.3 

Experimental 
uncertainty, h 

1.2 1.5 0.5 

 

6.6.2 Temperature profile of individual chickens within a tray 

  

Although the size and shape of each chicken, the location of chickens in a tray, and 

the position of thermocouples within each chicken are random variables, effort was 

made to minimise this variation between replicates by careful selection of chicken 

size, placement of chicken in the tray and insertion of thermocouples in each 
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chicken. The individual chicken temperatures were calculated by averaging 

temperature histories at the same position for all replicated trials, Eq. 6.5: 

               
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where 

x indicates the position in a chicken (3 cm deep in the breast or in the cavity)  

j indicates the jth trial number 

i indicates the individual chicken in a tray 

n is the number of experimental trials  

t(s) is the processing time 

,x iT (K) is the average temperature at the position ‘x’ of the ith chicken 

, ,x i jT (K) is the temperature of the ith chicken in the jth trial at position ‘x’  

 

The experimental uncertainty in ,x iT (t) at a 95% confidence interval and a normal 

distribution of the measurements, was computed by Eq. 6.6: 
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where 

 
,x iT

P t (°C) is the experimental uncertainty in ,x iT  

1,0.025n  is the student’s t-statistic with (n-1) degrees of freedom at a 95% 

confidence level. 
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Figure 6.13: Comparison of experimental chicken breast and chicken cavity 

temperature of individual chicken in the freezing experiment at the inlet air 

velocity of 2.5 m s-1. Error bars indicate experimental uncertainty 
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Figure 6.13 illustrates the temperature histories in the breast and in the cavity of 

individual chickens (averaging from 5 replicated trials) with the error bars indicate 

experimental uncertainty at an inlet air velocity of 2.5 m s-1. Within a chicken, the 

cavity temperature was higher than breast temperature except for chicken Numbers 

5 and 8 which are close to the tray wall that was against the airflow direction. The 

experimental uncertainty of all the monitored temperatures was less than 5°C with 

the greatest uncertainty being in the sub-cooling region. This is reasonable since 

thermal properties of chicken change significantly in this region. 

 

In order to investigate the cooling heterogeneity within a tray of chicken under 

forced air freezing, the maximum differences in the breast temperature and cavity 

temperature of individual chickens within the same tray were calculated for the 

three tested air velocities (Figure 6.14) 

 

 

Figure 6.14: The maximum temperature difference profiles of chicken breast and 

chicken cavity within a tray. 

 

For a given air velocity, the maximum temperature difference of chicken breast of 

individual chickens within a tray was lower than that for the chicken cavity. The 

maximum differences at the velocity inlet of 1 m s-1, 2.5 m s-1 and 4.5 m s -1 were 

10.2°C, 9.9°C and 13.1°C obtained after 20 hours, 16 hours, and 11 hours 
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respectively, which are in the sub-cooling region (Figure 6.12). They were about 

30% of the difference between the initial chicken temperature and the cooling air 

temperature. By the end of the freezing process, the maximum differences 

decreased for all tested air velocities. The lowest of the maximum differences in the 

breast temperature and cavity temperature of individual chickens at the finishing 

point were 2.1°C, and 2.5°C respectively, obtained in the 1 m s-1 freezing trials (the 

finishing point was marked when the average temperature of chicken per tray was 

-21°C). The results suggest that the lower the cooling air velocity the more uniform 

of the temperature of chickens within a tray at the end of the process. 

 

6.6.3 The cooling air temperature profile in the whole chicken freezing trials 

 

The average value of the temperature histories of airflow at 3 cm above the chicken 

tray for each freezing experiment was calculated from all replicated trials and 

presented in Figure 6.15. The procedure to calculate the experimental uncertainty 

in the average cooling air temperature was the same as for the individual chicken 

temperatures (Eq. 6.6). After the initial two hours, the average temperature of the 

cooling air consistently ranged between -24°C and -25°C. 

 

 
    a) 
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     b) 

 

        c) 

Figure 6.15: The cooling air temperature profiles in whole chicken freezing 

experiments a) at the air velocity of 1 m s-1, b) at the air velocity of 2.5 m s-1 and 

c) at the air velocity of 4.5 m s-1 

 

6.6.4 The average temperature profile of chicken drumsticks per tray 

 

The average temperature history of chicken drumsticks in a tray was calculated 

from eight monitored drumsticks. The final average temperature histories of 

chicken drumsticks during freezing experiments were computed by averaging 

values from three replicated trials. The experimental uncertainty in these 
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measurements was determined by the same procedure as for the whole chicken 

temperatures (Eq. 6.3) 

 

The uncertainty at 95% confidence interval of the average temperature of a tray of 

drumsticks ranged from 0.5°C to 3.0°C except for the case of the experimental data 

of the irregularly arranged drumsticks at the inlet air velocity of 4.3 m s-1 where the 

standard deviation was as high as 4.0°C 

 

Figure 6.16 shows the cooling history of the average temperature of drumsticks per 

tray in the regularly arranged drumstick freezing experiments at three different air 

velocities. The cooling rate at the inlet air velocity of 1 m s-1 was significantly 

slower than at two other velocities (2.5 m s-1 and 4.3 m s-1) 

 

 

Figure 6.16: Average temperature profiles of chicken drumsticks per tray in the 

regular arrangement freezing experiments 

 

6.6.5 Comparison of cooling rate between regular and irregular packing of 

drumsticks 

 

Cooling histories of trays of regularly packed and randomly packed drumsticks 

were compared in Figure 6.17. The error bars indicate 95% confidence interval of 

the average temperature of the tray. Although the randomly packed drumsticks 

appeared to have cooled slightly faster on average than the regularly packed 
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drumsticks, the difference between the two packing arrangements was less than the 

uncertainty in the measurements at both low and high air-speeds. This suggests that 

the packing arrangement and alignment of the leg-bone within the tray did not have 

a significant impact on freezing time when the drumsticks are contained within the 

bag. Since the orientation of the drumsticks did not appear to affect freezing time, 

it is possible that only the total fraction of air voids within the package may be 

required as model input, with no requirement to account for size or shape of the air 

voids. 

 

 

Figure 6.17: Cooling histories of regularly packed and randomly packed 

drumsticks at different air velocities 

 
6.6.6 Comparison of cooling times of regularly packed drumsticks with and 

without liner bag 

 
Figure 6.18 shows cooling histories of regularly packed chicken drumsticks with 

and without the liner bag. As expected, the drumsticks without the liner bag cooled 

significantly faster than those packed within the liner bag for all three air velocities 
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Figure 6.18: Cooling histories of regularly packed drumsticks with and without 

the liner bag 

 
 
In order to quantify the effect of the liner bag on cooling time the seven-eighths 

cooling time (SECT) were calculated, and results are shown in Table 6.2. The effect 

of the liner bag on cooling time increases as the air velocity increases, the SECT 

for the plastic lined chicken was more than three times greater than for the unlined 

case when the air velocity was 4.3 m s-1. The slower cooling of polylined chicken 

drumsticks can be explained by the insulating effect of the polyliner. Air voids 

within the polyliner with an intrinsic low thermal conductivity act as an insulating 

material. With a polyliner, refrigerated air cannot directly interact with the chicken 

either. 

 

Table 6.2: Experimental SECT of the tray of drumsticks 

Air velocity, 
m s-1 

With liner Without liner 

SECT, h 
Experimental 
uncertainty, h 

SECT, h 
Experimental 
uncertainty, h 

1.0   25.9 0.5 9.9 0.8 

2.5 20.8 1.2 7.0 0.3 

4.3  19.3 0.8 5.9 0.6 

 

For the chicken with liner, the effect of evaporation would be minimal, since any 

moisture evaporated from chicken surface can be assumed to condense back on cool 
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surfaces within the polyliner, providing no significant net contribution to the overall 

heat balance. However, evaporative cooling would have been much more 

significant for the chicken without the liner (Hu & Sun, 2000; Kuffi et al., 2016), 

and hence would have contributed to some of the increase in the cooling rate. In the 

no-liner freezing experiments, the maximum total weight loss of drumsticks (which 

was at the inlet air velocity of 4.3 m s-1) was 140 g (the weight difference of the 

bulk-packed drumsticks before each trial and after thawing). The latent heat of 

evaporation of water is approximately 2500 kJ kg-1 (at 0°C) (Cengel & Ghajar, 

2011). Hence, the maximum potential contribution by latent heat of evaporation is 

Qeva = 0.14 × 2500 = 350 kJ                                      (6.7) 

The enthalpy of chicken at 10°C (initial temperature) and -21°C (final temperature) 

are 331.2 kJ kg-1 and 53.8 kJ kg-1, respectively (Riedel, 1957).  Therefore, the total 

heat load in the freezing process of the 11.5 kg of a tray of drumsticks is: 

Qtotal = 11.5 × (331.2 - 53.8) = 3190 kJ                        (6.8) 

The potential heat removed from drumsticks by evaporation is 350/3190 ×100 % = 

11%. Also, some of the weight loss would have been drip loss, so the actual drying 

during freezing of drumsticks may contribute to less than 11% of faster cooling in 

case of no liner.  

 

The liner bag is used to minimise moisture loss during the refrigeration process. 

The moisture loss could have a detrimental impact on product quality, so it is 

unlikely that processors would remove the bag to increase throughput. However, 

these results clearly indicate that the presence of the liner bag has a much greater 

impact on freezing time than the orientation of the chicken drumsticks within the 

bag. 

 

6.6.7 Temperature profile of individual drumsticks within a tray 

 
The average temperature histories of individual drumsticks within a tray in the 

regularly packed drumstick experiments were determined from the three replicated 

trials. The experimental uncertainties were also computed following the same 

procedure as for the whole chicken temperatures (Eq. 6.6). It was assumed that the 
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average cooling history would be a good estimate of the general trend of individual 

chicken leg temperatures within a tray.  Figure 6.19 shows the cooling profile of 

individual drumsticks within a tray at three different air velocities. In general, a 

bigger span was observed in the sub-cooling region compared to the pre-cooling 

region. Drumsticks located at the middle of the tray (drumstick Numbers 2, 3, 6, 7; 

Figure 6.10) cooled slower than those at the boundary (drumsticks Numbers 1, 4, 

5, 8). This is reasonable since the drumsticks at the boundary are closer to the 

refrigerated air outside. 

 

 
a) 
 

 
b) 
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c) 

Figure 6.19: Cooling profile of individual drumsticks within a tray in freezing 

experiment at the inlet air velocity of a) 1.0 m s-1, b) 2.5 m s-1 and c) 4.3 m s-1 

 
The cooling heterogeneity in a tray of drumsticks was further investigated by 

calculating the maximum differences in the temperature of individual drumsticks 

within a tray (Figure 6.20). Above the initial freezing point, the maximum 

temperature differences in the 1 m s-1, 2.5 m s-1 and 4.3 m s-1 freezing experiments 

were 6.8°C, 7.2°C and 8.1°C, respectively obtained after 1 hour of freezing. In the 

freezing temperature range, the maximum temperature differences for individual 

drumsticks rose to 15.4°C, 18.1°C and 17.9°C obtained after 20 hours, 16 hours and 

14 hours, respectively. This represented approximately 50% of the difference 

between the initial and the refrigerated air temperature. By the end of the freezing 

process, the maximum differences decreased significantly. At the finishing point 

(marked when the average temperature of drumsticks per tray was -21°C), the 1.0 

m s-1 freezing experiments showed the lowest difference of 2.5°C compared to 

4.0°C and 4.3°C for the 2.5 m s-1 and 4.3 m s -1 freezing experiments, respectively. 

These result again confirmed that the lower cooling air velocity led to a more 

uniform temperature profile of individual chicken pieces within a tray at the end of 

a freezing process. 
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Figure 6.20: The maximum differences in temperatures between individual 

chicken drumsticks within a tray at different air velocities. 

 
6.6.8 The cooling air temperature profiles in the chicken drumsticks freezing 

experiments 

 

The temperature histories of the cooling air in the regularly packed drumstick 

freezing experiments were averaged from the three replicated trials, and the results 

are shown in Figure 6.21. The experimental uncertainty in these measurements were 

calculated by the same procedure as for the individual whole chicken temperatures 

(Eq. 6.6).  The average temperature of cooling air varied from  -24°C to -25°C in 

all freezing experiments. 
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a) 

 

b) 
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c) 

Figure 6.21: The cooling air temperature profiles in regular packed drumsticks 

freezing experiments a) at the air velocity of 1 m s-1, b) at the air velocity of 2.5 m 

s-1 and c) at the air velocity of 4.3 m s-1 

 

6.7 Conclusions 

 

The freezing trials for a tray of whole chickens and a tray of chicken drumsticks 

were designed and executed based on information obtained from an industrial 

chicken freezing operation. Freezing trials were repeated five and three times for 

chickens and drumsticks, respectively, to collect a validation data set for the 

modelling of freezing operations. 

 

The results showed a large range in the cooling histories of individual chickens in 

the sub-cooling region. The maximum difference in the temperatures between 

individual chickens and chicken legs within a tray were about 30% and 50% of the 

difference between the initial chicken temperature (10°C) and refrigerated air 

temperature (-25°C), respectively. The difference decreased towards the end of the 

process and, the lower the cooling air velocity, the more uniform the chicken 

temperature near the end. 

 



106 
 

The packing structure of the chicken drumsticks within the plastic liner bag did not 

have a significant impact on the freezing rate for any of the air velocities 

investigated based on a 95% confidence interval. That means the designer doesn’t 

have to know the drumstick orientation when designing the freezer. On the other 

hand, the presence of the plastic liner bag increased freezing times by more than a 

factor of 3 at high air velocities. This is because refrigerated airflow can interact 

directly with the chicken if there is no polyliner, rather than being insulated by air 

trapped inside the polyliner; and evaporation plays a significant role in the total 

amount of heat transfer (up to 11% of the total heat load) when there is no polyliner 

to prevent moisture transfer.  

 

This experimental data will be used as a validation tool for the heat transfer model 

described in Chapter 7. 
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Chapter 7 

Numerical modelling of the forced air freezing of bulk packed 

whole chickens and chicken drumsticks 

 

7.1 Introduction 

 

Poultry is the most commonly consumed meat globally, in which chicken meat 

represents approximately 88 per cent of poultry meat output (ThePoultrySite, 2014). 

The shelf life of chicken meat is relatively short, all fresh poultry should be 

consumed within two days of purchasing (Jimenez, Salsi, Tiburzi, Rafaghelli, & 

Pirovani, 1999), so it is often necessary to freeze chicken to improve food safety 

and preserve product quality through the supply chain. Benefits of freezing include 

not only a long shelf life but also an excellent retention of nutrients, sensory 

qualities and of the prevention of microbial growth (Pham, 2014). An efficient 

design of freezing equipment is required to maximise the economics. Therefore, it 

is important that a chicken freezing process be modelled accurately to allow for 

design optimisation. 

 

On the industrial scale in New Zealand, chicken products are typically cooled 

within a plastic liner bag (polyliner), which has the effect of restricting air 

movement within the air voids between the liner and the chickens and results in a 

larger air void within the bag on top of the chicken. The polyliner increases 

resistance to heat transfer since it prevents air outside the bag from directly 

contacting the chicken; however, it serves to reduce moisture loss which is 

detrimental to product quality and appearance. Despite research to account for the 

effect of voids on heat transfer rates (Ambaw et al., 2017; Datta, 2007a; James et 

al., 2006; North, 2000; O’Sullivan et al., 2016) a general approach for dealing with 

this problem has yet to be established. As such, accounting for voids within food 

packages remains a significant challenge for designers of industrial refrigeration 

equipment (Smitheram, 2018).  

Several research articles have previously reported chicken freezing process models. 

Mannapperuma et al. (1994a, 1994b) presented a finite difference numerical 

method based on enthalpy formulation to simulate the air blast freezing of plastic-
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wrapped whole chicken, tray packs of chicken parts and boxed chicken parts. Zilio 

et al. (2018) used the CFD software STAR-CCM + to model the liquid-solid phase 

change in the freezing of a chicken breast. The above-mentioned studies 

approximated the geometry of chicken by using simple shapes and used average 

heat transfer coefficients to represent the boundary condition over the entire surface 

of the packaging. None of them accounted for the effect of air voids within packages 

on the freezing rate. Air voids of different shapes and sizes exist when whole 

chicken carcasses or chicken drumsticks are packed in bulk, due to the irregular 

shapes of the products. A more rigorous model for the convective freezing of 

chicken would provide refrigeration equipment designers with a greater ability to 

optimise this important industrial process.  

 

In an attempt to reproduce a realistic shape of food product and air voids within 

packages, many researchers (Ambaw et al., 2017; Ferrua & Singh, 2009b; 

O’Sullivan et al., 2016)  employed a CFD modelling approach. These models were 

applied to the forced-air chilling of food products. However, modelling the food 

freezing process could be a greater challenge since thermophysical properties such 

as the thermal conductivity and specific heat suddenly change around the freezing 

point, which makes the governing equation becoming highly non-linear and thus 

difficult to solve (Pham, 2006). In food freezing applications, the CFD approach 

was successful applied for potatoes (Kiani & Sun, 2018; Kiani, Zhang, & Sun, 

2015), pork cuts (Wang & Zou, 2014)  and chicken breasts (Zilio et al., 2018).  

 

In this study, the CFD approach would be used to model the forced air freezing of 

polylined whole chickens and chicken drumsticks packed in bulk. A realistic 3D 

geometric model of chicken products was obtained empirically from computed 

tomography images. This represents the first CFD freezing model that uses x-ray 

tomography to generate a realistic model geometry. The package structure, air voids 

within packages, and the flow field around the products were included in the model. 

The prediction results are validated against the experimental data presented in the 

previous chapter. The model will then be used to investigate the cooling 

heterogeneity within food packages, airflow distribution in the freezing tunnel and 

the effect of operating conditions on freezing time. 
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7.2 Geometrical model 

 

The first step in the development of the CFD model was to construct a 3D 

geometrical model of a tray of whole chickens and chicken drumsticks in the 

forced-air freezing tunnel. This model includes the chicken products, the liner bag, 

the cardboard tray and the airflow domain. Section 7.2.1 to 7.2.3 present the 

procedure to create a geometrical model of the chicken freezing system. 

 

7.2.1 Reconstruction of bulk packed chicken products geometrical model 

 

Reconstructing a realistic geometrical model of packaged food products is 

challenging. Ferrua and Singh (2009b) made use of a single realistic strawberry 

fruit shape in a numerical precooling study. This single fruit shape was used to 

manually create a geometric model of the stack of identical strawberries in a 

clamshell. This procedure was also employed by (O’Sullivan et al., 2016) to create 

a geometrical model of a modular bulk package of kiwifruit. Both generating the 

single fruit shape and the entire package were very time consuming. With the x-ray 

computed tomography (CT) image technique, it has recently become possible to 

quickly generate numerous realistic 3D shapes of bulk-packed chicken products. 

CT scanning uses x-ray radiation which can penetrate inside objects with sufficient 

depth depending on the mass density and mass absorption coefficient of the material 

(Herremans et al., 2013). Therefore, the CT scanning technique can extract with 

good detail both the outer shape and interior structure (e.g. the gastro-intestinal 

cavity of chicken carcass) of chicken products packed in bulk. This technique 

already proved its merit to visualise and model realistic fruit stacks in a non-

destructive way (Gruyters, 2019). In this study, CT scanning was used to construct 

a realistic 3D geometrical model of the empirical shape of bulk-packed chickens. 

 

Whole chicken carcasses and chicken drumsticks were selected for CT scanning 

and arranged in a tray, following the same procedure as for the experiments (section 

6.4). The scans were made by a Philips CT scanner at Massey University School of 

Veterinary Science, New Zealand (Figure 7.1) 
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Figure 7.1: Scanning process of a chicken tray 

 

The construction of the chicken model started by creating the 3D surface points 

(STL geometry file) using the SlicerTM software package. This is an open-source 

platform for segmentation, registration and 3D visualization of medical imaging 

data. The first step in the reconstruction of the surface model of the chicken was 

segmenting CT images into distinct regions (i.e. chicken, cardboard and air). The 

CT scan data organized into a 3D matrix of volume elements (voxels). SlicerTM uses 

Otsu’s thresholding technique (Otsu, 1979) for the segmentation task. This 

technique divides the dataset into different classes based on the specify intensity 

value assigned to each of the voxels. The intensity values used for classifying the 

dataset are known as thresholds. The mathematical formulation can be described as 

follows: 

1 1

2 1 2

1

   

   

   n n

val if I

I val if I

val if I


 

 


  
 

                                        (7.1) 

 

where I is the intensity value, λ is the threshold and n is the number of intensity 

levels. The main drawbacks of this technique are firstly, the difficulty of finding the 

most suitable threshold for segmenting of the region of interest on specific dataset; 

secondly, the sensitivity of the resulting segmentation to noise and intensity of 

inhomogeneity and thirdly, this technique does not take into account the spatial 

distribution of the voxel intensities (Benitez Mendieta, 2016).  
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The segment editor module in SlicerTM allows users to select the threshold range of 

interest and the resulting 3D surface model will be displayed on the user interface. 

The selection tools in Slicer were used to remove unwanted structures such as the 

table on which the tray of chicken sat on during scanning. Figure 7.2 and Figure 7.3 

illustrate the final surface reconstructed from CT data of bulk packed whole 

chickens and chicken drumsticks, respectively 

  

  
a) b) 

  
c) d) 

Figure 7.2: Surface reconstruction model of whole chickens a) top view, b) 

perspective view, c) left side view and d) front view 

 

  
a) b) 

  
c) d) 

Figure 7.3: Surface reconstruction model of bulk packed chicken drumsticks a) 

top view, b) perspective view, c) right side view and d) front view 

 

In order to import the CT scan data into the CFD model, the surface geometry of 

bulk-packed chicken carcasses and chicken pieces needed to be transformed into a 



112 
 

solid. Prior to that, the surface model needs to be clean and smooth to make it 

possible to convert to solid and avoid the complicated details that can result in 

highly skewed mesh elements. In the numerical solution, a highly skewed mesh can 

significantly compromise the accuracy and stability of the model (Ferrua, 2007). 

MeshmixerTM (Autodesk, Inc) was used for this step because it provides a number 

of tools dedicated to identifying and correcting errors on imported surfaces (i.e. 

holes and discontinuities) as well as sculpting, smoothing, and resizing the mesh 

density. 

 

The final, cleaned reconstructed surfaces (in form of triangle meshes) were 

converted to quad meshes using ReCapTM  Photo (Autodesk, Inc) to make it suitable 

to transform to solid surface forms (T-spline bodies) using Fusion 360TM (Autodesk, 

Inc). The summary of the workflow to construct the 3D geometrical model of 

chicken from CT images is presented in Figure 7.4 

 

 

Figure 7.4: The workflow to create a 3D model from CT images 

 

The completed geometrical models of whole chickens and bulk packed chicken 

drumsticks are depicted in Figure 7.5 and Figure 7.6, respectively. Some 

simplifications were made to prevent overly complex meshes. The model assumed 

an ideal thermal contact between the chicken surfaces. In addition, due to the 

insignificant heat fluxes in the gastro-intestinal cavities of chicken carcass 
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(confirmed by simulation results), the exact shape of cavities may not affect the 

freezing rate of bulk-packed whole chickens. Hence, the gastro-intestinal cavities 

were represented by ellipsoids which closely fit the volume of the reconstructed 

cavities to reduce the number of finite volumes in the CFD model. Moreover, 

because of the geometrical similarity of four rows in a tray of drumsticks (eighteen 

drumsticks in each row, Figure 7.3), the drumstick model was created by a 

combination of four identical blocks (each block representing one row in bulk-

packed drumsticks).  

 

 

Figure 7.5: Geometrical model of bulk-packed whole chickens 

 

 

Figure 7.6: Geometrical model of bulk packed chicken drumsticks 

 

The volumes of bulk-packed whole chickens (not considering the gastro-intestinal 

cavities) and chicken drumsticks geometric models were 11.9×10-3 m3 and 10.8×10-

3 m3, respectively. Multiplying the geometric model volumes by the chicken density 

of 1070 kg m-3 (Walters & May, 1963) yields masses of 12.7 kg and 11.5 kg 
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respectively which are similar to the average weight of a tray of whole chickens 

(12.8 kg) and chicken drumsticks (11.5 kg) in the experiments (section 6.4). 

 

7.2.2 The cardboard tray and the polyliner model 

 

The geometrical model of the cardboard tray was created manually based on its 

actual dimensions (580×325×130 mm) using ANSYS Design Modeller (Figure 7.7). 

The cardboard thickness at bottom, left and right side was 5 mm. The front and the 

back of the tray were equipped with two handle vents and, on these sides, the 

cardboard thickness doubled (10 mm). 

 

To simplify the geometric model, the oval handle vents at the end walls were 

represented by rectangular vents (90×35 mm) which have the same area as the 

actual vents. The chamfers at four corners of the tray were neglected. 

 

 

 

  
(a) 

 

 
                                                 b) 

Figure 7.7: Photo of a) the real, and b) the geometrical model construction of the 

cardboard tray 
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Bulk-packed chicken products are encased in a liner bag which is in direct contact 

with chickens at the edges, bottom and top of the tray. However, the single contact 

points between chicken and polyliner can generate high skewed and distorted 

meshes in the meat and fluid region inside the liner bag (Ferrua, 2007; O'Sullivan, 

2016), that will compromise the accuracy and the stability of the solution. To avoid 

this problem in the geometric models small air gaps were created between the 

contact points, effectively placing the polyliner slightly apart from the chicken 

model. The larger the air gap, the better mesh quality, but the less realistic the 

thermal contact resistance becomes. The smaller the air gap, the smaller the element 

sizes must be to discretise the fluid region, increasing the number of mesh elements, 

the computer resources and computational time needed to perform numerical 

analysis. A 2 mm clearance between polyliner and chicken model was found to be 

the minimum distance that could be used to achieve a solution of the numerical 

model within the computational power constraints (a 64-bit Intel® Xeon® CPU E5-

1620, 3.5 GHz, 16 GB RAM).  

 

The artificial air gap placed between the liner and the chicken increases the volume 

of air inside the polyliner, but this is offset by the volume of air lost when the 

geometric models of the chickens were built from the CT data (compare Figures 

7.2 and 7.3 with Figures 7.5 and 7.6). The experimental results (section 6.6.5) 

suggested that only the total fraction of air void within package needs to be 

considered rather than its size and shape when modelling heat transfer of packaged 

chicken. Moreover, an extra 2 mm gap over the extreme outer points of the chickens 

was expected to make very little difference when there is already a considerable air 

gap under much of the liner’s surface. 

  

The liner bag was modelled by rectangular blocks close-fitted to the chicken model 

while ensuring that the minimum gap between liner and chicken was 2 mm. The 

bottom and lateral surfaces of the liner were assumed to be in direct contact with 

the cardboard. In the numerical setup, the liner was described as a zero thickness 

wall. Therefore, it acted as a physical barrier to restrict the airflow inside rather than 

a thermal barrier to heat transfer. The photos of a tray of whole chickens, chicken 

drumsticks model were shown in Figures 7.8 and 7.9, respectively. 
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a) b) 

 
c) d) 

Figure 7.8: a, c) a real tray of whole chickens, b) top view and d) isometric view 

of 3D model of a tray of chicken containing polyliner 

 

 
(a) (b) 

 
c) d) 

Figure 7.9: a, c) a real tray of drumsticks, b) top view and c) isometric view of 3D 

model of a tray of drumsticks containing polyliner 
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7.2.3 The completed computational domain 

 

The computational domain was constructed based on the internal dimensions of the 

PTT (Section 6.3) with the 3D model of a tray of whole chicken or chicken 

drumstick placed in the middle section at a distance of 5 cm from the bottom surface 

as in the experimental setup (Figure 7.10). Transition regions were placed at the 

inlet and outlet of the tray to aid with mesh refinement. From the inlet to the outlet 

along the airflow direction, the flow domain was divided into inlet section, 

transition inlet, product outer section, transition outlet and outlet section with the 

length of 650, 200, 700, 350, 500 mm, respectively. The inlet and outlet boundaries 

were both at the distance of 850 mm from the product outer section that was 

believed long enough to avoid an influence on the flow in the proximity of the 

product. 

 

The section of the PTT that housed the chicken tray was divided into inner and outer 

‘product regions’. The product inner region included the air inside the liner bag, the 

cardboard tray, and the airflow up to 1 cm around the tray. This region was 

surrounded by the product outer section of the flow domain. The space between 

product inner and product outer region along the flow direction was kept at 5 cm.    

 

 

a) 
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b) 

Figure 7.10: Computational domain of a) bulk-packed whole chickens, b) chicken 

drumsticks in the forced-air freezing model 

 

7.3 Mesh generation 

 

The computational domain was meshed with ANSYS Meshing. Non-uniform mesh 

sizes were used. The chicken region and product inner region were discretised with 

the small elements to ensure sufficient definition of the geometrical model of the 

chicken and small air gap between chicken and polyliner (Figure 7.11 and Figure 

7.12). From the product outer section outward the mesh became coarser. The 

selected element size for each section in the bulk-packed whole chicken model and 

bulk-packed drumstick model is shown in Table 7.1. 

 

Table 7.1: Element size in the whole chicken model and drumstick model 

Section 
Whole 

chicken 
Drumstick 

Product 

inner 

Product 

outer 

Transition 

inlet/outlet 

Inlet/

Outlet 

Element 

size, mm 
8 6 4.2 10 20 40 

 

The mesh was designed to be used for the low-Reynolds number approach to 

modelling the boundary layer. This approach required high cell density in the wall-
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normal direction (Defraeye, Verboven, & Nicolai, 2013). Therefore, in the 

boundary-layer region of the flow domain from the outer surface of the polyliner 

and the cardboard onward, 5 layers of prismatic cells were placed, with the first 

layer thickness of 0.6 mm and the growth rate of 1.2. 

 

A mesh sensitivity study was done by running simulations at three different mesh 

sizes. Each consecutive mesh was obtained by increasing the number of elements 

of the previous mesh by 30%. Richardson extrapolation (Roache, 1997) was used 

to determine the mesh-independent solution. Table 7.2 and Table 7.3 show the 

effect of different mesh size on the volume-average temperature of whole chickens 

and drumsticks after 20 hours freezing. The mesh sizing was evaluated at the 

highest air velocity (4.5 m s-1 for whole chicken model and 4.3 m s-1 for drumstick 

model). 

 

Table 7.2: Effect of different mesh size on the volume-average temperature of 

chicken after 20 hours freezing in the chicken model 

Element size on 

product inner 

section, mm 

Number of 

elements 

Tchicken after 

20 hours 

Mesh 

Independent 

solution 

Relative 

error, % 

4.8 3184692 -20.5 

-19.4 

5.2 

4.2 4206147 -20.0 2.9 

3.7 5593117 -19.8 1.6 

 

Table 7.3: Effect of different mesh size on the volume-average temperature of 

drumstick after 20 hours freezing in the drumstick model 

Element size on 

product inner 

section, mm 

Number of 

elements 

Tdrumstick after 

20 hours 

Mesh 

Independent 

solution 

Relative 

error, % 

4.8 3458023 -20.6 

-19.6 

4.9 

4.2 4564705 -20.1 2.6 

3.7 6047350 -19.9 1.3 

 

With the mesh size of 4.2×106 and 4.5×106 elements for the whole chicken model 

and drumstick model respectively, the spatial discretization errors were 2.9% and 
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2.6% which are common acceptable errors in other studies (A Ambaw et al., 2017; 

Defraeye, Lambrecht, et al., 2013).Therefore, these grids were used for numerical 

simulation.  

 

The ranges of orthogonal quality and skewness are from 0 to 1. The higher 

orthogonal quality and the lower skewness of a mesh the better its quality (Meshing, 

2010). The average skewness of the grids for the whole chicken model and 

drumstick model were 0.24 and 0.23, respectively. For the average orthogonal 

quality, these figures were the same at 0.76. The worst cells were in the airflow 

region inside the polyliner.  The maximum skewness of the grids of the whole 

chicken model and the drumstick model were 0.93 and 0.95, which were still lower 

than the critical value of 0.97 (Ferrua, 2007). The minimum orthogonal quality of 

these grids were 0.07 and 0.05, respectively. If the orthogonal quality is lower than 

0.01 then the grid is unlikely to produce a stable and converging solution 

(O'Sullivan, 2016) 
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Figure 7.11: a) Mesh of the chickens and air region inside the polyliner b) gap 

between chickens and polyliner 

 

 

 

 

 

 

Chicken 

Air inside polyliner Cardboard 
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Figure 7.12: a) Mesh of the drumstick and air region inside the polyliner b) gap 

between drumsticks and polyliner 

 

 

Air inside polyliner Drumsticks 

Cardboard



123 
 

7.4 Transport equations 

 

During forced-air freezing, chicken products are cooled by two main mechanisms: 

heat transfer (including conduction, convective and radiation) and mass transfer due 

to moisture loss from produce surfaces. Previous studies have concluded that 

radiation and moisture evaporation have a negligible effect in forced air cooling 

(Defraeye, Lambrecht, et al., 2013; Gowda, Narasimham, & Murthy, 1997; 

Gruyters et al., 2018; O’Sullivan et al., 2016), and thus they were not included in 

the freezing model. Typically, for the product in an enclosed space like a liner bag,  

the effect of natural convection must be accounted for when the Rayleigh number 

is higher than 1708 (Cengel & Ghajar, 2011). The Rayleigh number for an enclosure 

is determined from: 

 

  3

2
Ra Pr

p lg T T L




                                                   (7.1) 

 

where g (m s-2) is gravity; β (K-1) is the volumetric thermal expansion coefficient; 

Tp and Tl (K) are the temperatures of chicken and polyliner surfaces; L (m) is the 

characteristic length; v (m2 s-1) is the kinematic viscosity and Pr is the Prandtl 

number. In this model, L is the height of the polyliner (~ 9 cm). Tp and Tl were 

determined as the initial chicken temperature (10°C) and cooling air temperature (-

25°C). The fluid properties are evaluated at the average fluid temperature Tavg
  = (Tp 

+Tl )/2  = -7.5°C, allows β = 3.76 x 10-3 K-1, v = 1.27x 10-5 m2 s-1 and Pr = 0.738 

(Cengel & Ghajar, 2011). Substituting these variables in Eq.7.1 yields 

 

  
 

3
6

25

9.81 0.00376 10 25 0.09
Ra 0.738 4.3 10

1.27 10

    
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
           (7.2) 

 

Since the calculated value of Ra (4.3 x 106) is higher than the critical value (1708), 

natural convection cannot be neglected in this study. A Ra number less than 108 

also implies a laminar flow inside the polyliner (ANSYS, 2017) 

 

For the airflow outside the polyliner, the flow regime is characterised by the 

Reynolds number  
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Re HuD


                                                              (7.3) 

 

where u (m s-1) is the air velocity, DH (m) is the hydraulic diameter and v (m2 s-1) is 

the kinematic viscosity. To estimate Re, u was taken as the minimum air velocity, 

u = 1 m/s. The hydraulic diameter at the inlet of the tunnel (300×510 mm) was DH 

= 4A/P = 0.378 m, and the kinematic viscosity of the refrigerated-air at -25 oC was 

v = 1.128 × 10-5 m2 s-1 (Cengel & Ghajar, 2011). Substituting these variables in 

Eq.7.3 yielded 

 

5

1 0.378
Re 33510

1.128 10


 


                                (7.4) 

 

The Reynolds number of 33510 at the minimum air velocity confirmed that the flow 

outside the polyliner is within the turbulent regime for internal of pipe/duct flow.  

 

Under these conditions, the flow field within the system can be modelled by the 

following form of the continuity, momentum and energy conservation equations as 

given in Eqs. 7.5 – 7.9. Gravity was activated in the model and the fluid density 

was set as a function of temperature to simulate natural convection. No external 

source terms were included in the model. 

 

The continuity equation was: 

 

  0a
au

t





   


                                                (7.5) 

 

where ρa (kg m -3) is the air density, t(s) is the time, and u (m s-1) is the velocity 

vector 

 

The momentum equation was: 

 

   a
a

u
u u P g

t


  


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
                             (7.6) 
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where P (Pa) is the pressure, g (m s-2) is the gravity and τ is the stress tensor given 

by: 

 

  2
I

3
T

a u u u         
 

                                          (7.7) 

 

with μa (kg m-1 s-1) is the dynamic viscosity of air and I is the unit tensor. 

 

The energy conservation equation is: 

 

      a
a e a

E
u E P k T

t





       


                  (7.8) 

 

where ke (W m-1 K-1) is the effective thermal conductivity, E (J kg-1) is the specific 

energy of fluid defined as: 

 

2

2

P u
E H


                                                        (7.9) 

 

where H (J kg-1) is the enthalpy and u2/2 represents the kinetic energy. 

 

In solid regions (chicken products and cardboard tray) the heat transfer equation is 

given by: 

 

   s s
s s

c T
k T

t


  


                                        (7.10) 

 

where ρs (kg m -3), cs (J kg-1 K-1), ks (W m-1 K-) and Ts (K) are the density, heat 

capacity, thermal conductivity and temperature of solid, respectively 

 

7.5 Numerical model 

 

7.5.1 Thermal properties of materials 

 

Thermal properties of air and packaging materials are presented in Table 7.4. The 

properties of air were estimated at -25°C (the cooling air temperature), using the 

data found in Cengel and Ghajar (2011), and were assumed constant throughout the 
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simulation except for air density inside the polyliner, which was assumed to behave 

as an ideal gas in order to simulate natural convection. The cardboard properties 

were the same as those used by (O'Sullivan, 2016; S. P. Singh et al., 2008) 

 

Table 7.4 Thermal properties of air and packaging materials 

Properties 
Air outside 

liner  
Air inside 

liner  
Cardboard 

Density, kg m-3 1.4225 ideal gas 195 

Specific heat, J kg-1 K-1 1004.5 1004.5 1700 

Thermal conductivity, W m-1 K-1 0.0217 0.0217 0.078 

Dynamic viscosity, kg m-1 s-1 1.6 × 10-5 1.6 × 10-5 - 

 

The specific heat capacity and thermal conductivity of chicken were set as a 

function of temperature to account for the sudden change of these properties around 

the freezing point (Pham, 2006). These properties were estimated from the 

composition data found in (Sweat, Haugh, & Stadelman, 1973), in which the 

composition of whole chicken was taken as the white chicken meat with 74.4% 

water, 0.3% fat and chicken drumstick was considered as dark chicken meat with 

76.3% water and 2.5% fat.  

 

The thermal properties prediction method was presented previously in Chapter 3. 

Since the mathematical expression for enthalpy of a food item was obtained by 

integrating the specific heat equation, the accuracy of the enthalpy will guarantee 

the accuracy of the specific heat equations. The comparison between predicted and 

experimental enthalpy and thermal conductivity data are presented in Table 7.5 and 

7.6, respectively. In general, the model gave a better predictions in unfrozen 

temperature compared to the frozen temperature ranges. The mean relative errors 

over the temperature range -30°C to 20°C for enthalpy of chicken carcasses and 

chicken drumsticks were 6.8% and 8.2%, respectively. Those numbers for thermal 

conductivity prediction were 7.7% and 5.6%. The mean relative errors of less than 

10% confirm that the predicted thermal conductivity and enthalpy (or specific heat) 

of whole chickens and chicken drumsticks are suitable for using in the numerical 

model. 
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Table 7.5: Comparison between predicted and experimental enthalpy data for 

whole chicken and chicken drumsticks. The experimental enthalpy data was 

obtained from Riedel (1957) 

T, oC 
Enthalpy, kJ kg-1 Relative error, % 

Whole 
Chickens 

Drumsticks 
Riedel, 
1957 

Whole 
Chickens 

Drumsticks 

-30 20.7 20.9 19.1 8.6 9.4 

-20 43.8 44.2 53.8 18.5 17.8 

-10 75.4 76.2 74.1 1.7 2.8 

-7 91.2 92.3 87.7 4.0 5.2 

-5 108.5 110.0 105.7 2.7 4.0 

-3 148.8 151.2 137.2 8.5 10.2 

-2 223.9 228.2 179.2 24.9 27.3 

-1 298.7 304.9 290.4 2.9 5.0 

0 302.1 308.3 297.8 1.4 3.5 

10 335.0 341.7 331.2 1.2 3.2 

20 368.1 375.3 368.3 0.0 1.9 

Mean relative error 6.8 8.2 

 

Table 7.6: Comparison between predicted and experimental thermal conductivity 

data for whole chicken and chicken drumsticks. The experimental thermal 

conductivity data was taken from Sweat et al. (1973) 

T, oC 

Thermal conductivity, W m-1 K-1 

Relative error, % 
Prediction Sweat et al. (1973) 

Whole 
chickens 

Drums 
White 
meat 

Dark 
meat 

Whole 
chickens 

Drums 

-30 1.58 1.62 1.42 1.49 10.73 8.79 

-20 1.50 1.54 1.33 1.39 13.36 10.51 

-10 1.41 1.43 1.21 1.28 16.31 12.21 

0 0.47 0.48 0.48 0.48 0.34 0.31 

10 0.49 0.49 0.48 0.49 1.77 0.59 

20 0.51 0.50 0.49 0.50 3.60 1.24 

Mean relative error 7.69 5.61 

 

To simplify the model, a constant chicken density of 1070 kg m-3, found in (Walters 

& May, 1963), was used. Based on the physical properties model, it was predicted 

that the chicken density varies by only 6% between -25°C (freezing temperature) 
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and 10°C (initial chicken temperature), suggesting that a constant mid-range density 

value will be adequate for these simulations. 

 

7.5.2 Boundary and operating conditions 

 

The inlet of the computation domain was defined as the velocity-inlet. The 

velocities imposed for the whole chicken model were 1 m s-1, 2.5 m s-1, and 4.5 m 

s-1, and for the drumstick model were 1 m s-1, 2.5 m s-1, and 4.3 m s-1, the same as 

for the experiments described in Chapter 6. The inlet air temperature was set at -

25°C. The low turbulence intensity of 1% was used as the presence of the fine 

airflow diffuser.  

 

At the outlet of the domain, an under-pressure was imposed to represent the suction 

pressure of the fan. These values were taken from the experiments and for the high, 

medium and low inlet air velocity for both whole chickens and drumsticks freezing 

experiments were -20 Pa, -10 Pa and -5 Pa, respectively. The cardboard, polyliner, 

chicken products and all other surfaces of the tunnel were modelled as no-slip walls 

with zero roughness. The initial temperatures of the chicken/drumstick and 

cardboard were set to the equilibrating temperature at the start of the experiment 

(approximately 10°C) and differed slightly depending on each experiment. Air 

volume inside the liner was defined as a laminar zone to simulate natural convection. 

 

7.5.3 Numerical solution 

 

Numerical simulation was performed with CFD code ANSYS Fluent Release 18.2.  

The standard k-ε turbulence model with the Enhanced Wall Treatment (EWT) 

option was used. The EWT is the near-wall modelling method that can 

automatically switch from a low Reynolds number approach (LRNM) to a wall 

function approach (WF). The LRNM is more accurate than WF in the prediction of 

convective heat transfer in the boundary layer (Defraeye, Verboven, et al., 2013). 

However, the restriction that the near-wall mesh must be sufficiently fine 

everywhere might impose too large a computational requirement. The EWT 

possesses the accuracy of LRNM for the fine near-wall meshes and, at the same 

time, will not reduce accuracy for the coarse meshes where the WF is suitable. The 
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standard k-ε turbulence model is robust, relatively accurate over the wide range of 

turbulence flows and CPU efficiency (ANSYS, 2017). The combination of standard 

k-ε turbulence model with EWT for the near-wall modelling was expected to give 

the best performance for a number of turbulence models (O'Sullivan, 2016) 

 

The SIMPLE algorithm was used for pressure-velocity coupling. The second-order 

discretization scheme was used for pressure, momentum, turbulent kinetic energy, 

turbulent dissipation rate and energy. The Green-Gauss Cell Based option was used 

for gradient discretization, to ensure second-order interpolation, as recommended 

by ANSYS (2017) 

 

To speed up the calculation, the steady-state flow equation was first solved with the 

energy equation disabled in order to obtain the initial fluid flow field. Once the 

steady-state simulation had converged, a transient simulation was performed by 

solving the flow and energy equations simultaneously to account for the effect of 

natural convection. The default residuals were used to indicate the converged 

solution for continuity, x-, y- and z- velocity, energy, k and epsilon. A temporal 

sensitivity test was performed by running the simulation at three different time steps 

of 30 s, 60 s and 120 s. The time step-independent solution was determined by 

Richardson extrapolation (Roache, 1997). The relative errors of the volume-

averaged temperature of bulk-packed whole chicken and drumsticks after 20 hours 

freezing for the time step of 120 s were 0.3 % and 0.6%, respectively. These errors 

were small enough to justify the use of a time step of 120 s in the numerical 

simulation. A maximum of 20 iterations per time step was used. The computational 

times for the whole chicken model and drumstick model for 21 hours freezing were 

7.5 hours and 8.0 hours, respectively. The calculations were performed on a 64-bit 

Intel® Xeon® CPU E5-1620, 3.5 GHz, 16 GB RAM. 

 

7.6 Numerical model validations 

 

The numerical model was first validated by comparing the predicted temperatures 

with experimental data collected in Chapter 6 for the average temperature history 

and the SECT of a tray of whole chickens and drumsticks for different refrigerated 

air velocities. The SECT was calculated following the same method presented in 
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section 6.6. Subsequently, the measured temperature histories of individual whole 

chickens or drumsticks within a tray were also compared with the numerical results 

to assess the accuracy of the developed model in predicting the local cooling 

behaviour. 

 

7.6.1 Comparison of the numerical and measured average temperature history of 

chickens per tray. 

 

The predicted average temperatures per tray of chicken breast and chicken cavity 

were computed by averaging the equivalent temperatures of all chickens. In the 

numerical model the breast temperature of each chicken was determined at 3 cm 

depth in the breast along the y-direction (Figure 7.13) to match the thermocouple 

position in the experiments (Figure 6.7). Since the cavity temperature was measured 

at an arbitrary position in the cavity, the volume-averaged temperature of the air 

region within the cavity was chosen as the representative temperature. 

 

  

Figure 7.13: Position of virtual breast sensors in chicken model. 

 

Figure 7.14a shows the comparison between the model prediction and experimental 

average temperatures of chicken breast and chicken cavity at the inlet air velocity 

of 1 m s-1, with the error bars representing the experimental uncertainty at 95% 

confidence interval. The same comparisons at inlet air velocities of 2.5 m s-1, and 

4.5 m-1 are depicted in Figures 7.14 b and 7.14c. 

 

1 2 3 4 5 

6 7 8 
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a) 

 

b) 



132 
 

 

c) 

Figure 7.14: Predicted and experimental average temperature of chicken breast 

and chicken cavity at the air velocity of a) 1 m s-1, b) 2.5 m s-1 and c) 4.5 m s-1 

 

The results show good agreement between model predictions and experimental data. 

The worst prediction was at the air velocity of 4.5 m s-1, with the mean discrepancy 

between predicted and measured average temperature was 1.3°C for both chicken 

cavity and chicken breast.  At the air velocity of 1 m s-1, the mean temperature 

differences were 0.9°C and 0.6°C for the breast and cavity temperature, respectively, 

while they were 0.4°C and 0.3°C for 2.5 m s-1. The worst prediction (under 

prediction of cooling rate) at the air velocity of 4.5 m s-1 may be explained by the 

possibility that at the high air velocity (high Biot number) the effect of the artificial 

air gap in the CFD model which increases the internal resistance to heat transfer, 

has become more pronounced. 

 

7.6.2 Comparison of the numerical and measured SECT of a tray of chickens 

 

The SECT of a chicken tray was determined based on the average temperature 

history of the chicken cavity. Table 7.7 presents the predicted and experimental 

SECT (from Chapter 6) for a tray of chicken. The model tends to overpredict the 
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SECT with the maximum difference between predicted and experimental values of 

7.3% at 4.5 m s-1 

 

Table 7.7 Experimental and predicted SECT of a tray of chicken at different air 

velocities 

Air velocity, 
m s-1 

Experimental 
SECT, h 

Experimental 
uncertainty, h 

Predicted 
SECT, h 

Difference, % 

1.0 27.8 1.2 29.7 6.8 

2.5 22.1 1.5 22.3 0.9 

4.5 19.3 0.5 20.7 7.3 

 

7.6.3 Comparison of the numerical and measured temperature history of 

individual chickens within a tray. 

 

To investigate the performance of the chicken freezing model at specific locations 

rather than for average temperatures, the experimental and predicted cooling curves 

were separated on a per chicken basis. The comparison of individual chicken breast 

and chicken cavity temperature profiles at 1 m s-1 air velocity are shown in Figure 

7.15. Similar comparisons at 2.5 m s-1 and 4.5 m s-1 are shown in Figures 7.16 and 

7.17, respectively 

 

For the chickens at the corner of the tray (chicken Numbers 1, 5 and 6, Figure 6.7 

2) where the thermocouples were close to the contacting points between chickens 

and the liner bag, the effect of the artificial air gap used in the simulation (which 

increases the resistance to heat transfer) is most obvious. That is most likely the 

reason for the under-prediction of the temperature drop of the breast and cavity of 

these chickens. 

 

The air gap between the top surfaces of chicken Numbers 2, 3, 4, 7 and 8 and the 

liner in the model can be matched to the presence of thermocouple wires on the top 

surfaces of the chickens in the experiments (Fig. 6.7). In these chickens, the 

agreement between predicted and measured temperature history is better for the 

breast compared to the cavity location. At this point, it is also noteworthy to recall 

that the chicken cavity geometry was represented by an ellipsoid rather than using 

their real shape, as derived via CT scanning. In addition, the numerical cavity 
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temperature was represented by the average temperature of the air volume inside 

the cavity instead of a single point temperature. Therefore, an error in cavity 

temperature predictions would be expected. Moreover, it can be hypothesized that 

the predictions at the breast, which is closer to the chicken surface than the cavity, 

are less affected by the uncertainty in thermal properties. Hence, the predicted 

temperatures at these locations closely follow the experimental histories.  

 

 

 

a) 

 

 

b) 

Figure 7.15: Predicted and experimental temperature history of individual a) 

chicken breasts and b) chicken cavities at the air velocity of 1 m s-1. The 

numerical temperatures are depicted in red continuous lines; measured values are 

depicted in blue dash lines 
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a) 

 

 

b) 

Figure 7.16: Predicted and experimental temperature history of individual a) 

chicken breasts and b) chicken cavities at the air velocity of 2.5 m s-1. The 

numerical temperatures are depicted in red continuous lines, measured values are 

depicted in blue dash lines 
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a) 

 

 

b) 

Figure 7.17: Predicted and experimental temperature history of individual a) 

chicken breasts and b) chicken cavities at the air velocity of 4.5 m s-1. The 

numerical temperatures are depicted in red continuous lines, measured values are 

depicted in blue dash lines 

 

7.6.4 Comparison of the numerical and measured average temperature history of 

chicken drumsticks per tray. 

 

The suitability of the drumstick model was first assessed by comparing the 

experimental (Chapter 6) and predicted average temperature histories of a tray of 
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drumsticks. The average predicted temperature was computed by averaging the 

predicted temperatures at 8 positions (Figure 7.20) which corresponded to the 

positions of the 8 thermocouples in the experiments. While not shown clearly in 

Figure 7.18, the depth (y-direction position) of each modelled temperature was also 

chosen to match the experimental position. Position Numbers 1, 3 and 4 are on the 

bottom layer, Number 2 is on the second layer, Numbers 5, 6 and 8 are on the third 

layer and the Number 7 is on the top layer. 

 

  

 

Figure 7.18: Position of virtual sensors in the drumstick model 

 

Figure 7.19 shows the measured and simulated average time-temperature curves 

per tray of chicken drumsticks. The results show good agreement between the 

experimental and predicted histories of the drumsticks with mean temperature 

differences of 0.3°C, 0.9°C and 1.1°C for air velocities of 1 m s-1, 2.5 m s-1 and 4.3 

m s-1 respectively. As can be seen from Figure 7.19, the drumstick model gave a 

better prediction in the cooling range than in the freezing range. This is reasonable 

since freezing is a more complicated process than cooling without phase change, 

because thermal properties highly depend on temperature.  

 

1 

2 

3 
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a) 

 

b) 
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c) 

Figure 7.19: Predicted and experimental average temperature of chicken 

drumsticks per tray at the air velocity of a) 1 m s-1, b) 2.5 m s-1 and c) 4.3 m s-1. 

The numerical temperatures are depicted in red continuous lines, measured values 

are depicted in blue dash lines. 

 

7.6.5 Comparison of the numerical and measured SECT of a tray of drumsticks 

 

Table 7.8 summarizes the results of predicted and measured SECT of a tray of 

drumsticks at different air velocities. The SECT was determined based on the 

average temperature history of a tray of drumsticks. The maximum difference 

between predicted and experimental SECT was 5.7% at 4.3 m s -1. 

 

Table 7.8 Experimental and predicted SECT of a tray of drumsticks at different air 

velocities 

Air velocity,  
m s-1 

Experimental 
SECT, h 

Experimental 
uncertainty, h 

Predicted 
SECT, h 

Difference, % 

1.0 25.9 0.5 26.6 2.7 

2.5 20.8 1.2 21.9 5.3 

4.3 19.3 0.8 20.4 5.7 
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7.6.6 Comparison of the numerical and measured temperature histories of 

individual drumsticks within a tray. 

 

The performance of the drumstick freezing model was further assessed by 

comparing the predicted and measured temperature histories of specific drumsticks 

within a tray at the air velocity of 1 m s-1 (Figure 7.20), 2.5 m s-1 (Figure 7.21), and 

4.3 m s-1 (Figure 7.22). 

 

 

 

Figure 7.20: Predicted and experimental temperature history of individual 

drumsticks within a tray at the air velocity of 1 m s-1. The numerical temperatures 

are depicted in red continuous lines, measured values are depicted in blue dash 

lines 
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Figure 7.21: Predicted and experimental temperature history of individual 

drumsticks within a tray at the air velocity of 2.5 m s-1. The numerical 

temperatures are depicted in red continuous lines, measured values are depicted in 

blue dash lines 

 

 

 

Figure 7.22: Predicted and experimental temperature history of individual 

drumsticks within a tray at the air velocity of 4.3 m s-1. The numerical 

temperatures are depicted in red continuous lines, measured values are depicted in 

blue dash lines 

 

For all tested air velocities, the temperatures predicted by the model followed the 

same trend as the measured data. Drumsticks located at the edge of the tray 



142 
 

(drumstick Numbers 1, 4, 5 and 8, Figure 7.18) cooled faster than those in the 

middle (drumstick Numbers 2, 3, 6 and 7).  

 

While the model showed good prediction for temperature histories of drumstick 

Numbers 2, 3, 4 and 8, it tended to overpredict for drumstick Numbers 1 and 5 and 

underpredict for drumstick Numbers 6 and 7. This can be explained by the fact that 

the thermocouple positions of drumstick Numbers 1 and 5 were close to the corner 

of the tray where the drumsticks are in direct contact with polyliner. Therefore, the 

effect of the artificial air gap in the model is more obvious in these locations, 

making the predicted temperatures higher than measured data. On the another hand, 

the ‘bunching’ of the polyliner bag where it is tied (with the air gap inside, Figure 

7.9c) on the top surface of bulk-packed drumsticks in the experiments can explain 

the slower cooling in the experimental histories than the modelled temperatures for 

the drumstick Numbers 6 and 7, which are close to the bunching of the liner bag 

(Figure 6.10). The over-prediction of temperature of these drumsticks at the end of 

the freezing process may also be linked to condensation on the drumstick surfaces. 

Moisture from the air inside the polyliner and moisture evaporated from drumsticks 

was assumed to condense back on the drumstick surfaces. When the temperature of 

drumstick surfaces dropped below the freezing point, the condensation would 

become ice, which has a higher thermal conductivity than chicken at the same 

temperature (i.e. thermal conductivity of ice at -10°C is 2.3 W m-1 K-1 (ASHRAE, 

2006) while thermal conductivity of chicken at this temperature is only 1.3 W m-1 

K-1, Sweat et al., 1973). Therefore, the condensed moisture may enhance the heat 

transfer on drumstick surfaces at the end of the freezing. In addition, the ice layer 

on the top surface of bulk-packed drumsticks has glued the drumsticks in proximity 

with the polyliner (drumstick Numbers 6 and 7) and replaced the air voids between 

them, which could lead to a faster cooling in the experimental temperature of 

drumstick Numbers 6 and 7 at the end of the freezing process. 

 

7.7 Analysis 

 

7.7.1 Temperature distribution 

 

Figures 7.23 and 7.24 show temperature distributions in a tray of whole chickens 

and a tray of drumsticks at the inlet air velocity of 2.5 m s-1 after 13 hours freezing 
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(average half cooling time, HCT). The contour plots visualise the temperature of 

cardboard, air inside the plastic bag, and chickens.  

 

It can be seen from the figures that the temperature of chickens along the edges of 

the tray was lower than that of the middle one, as would be expected. Along the 

airflow direction, chickens at the front end cooled faster than those at the back end. 

The insulation effect of the air layer on top of chicken surfaces was evident from 

the higher temperature of chickens on top layer compared to those in the bottom 

layer. 

 

  
a) b) 

 

 
 

c) d) 
 

Figure 7.23: a) Location of vertical and horizontal cross-sectional area b) 

temperature distribution on chicken surfaces, temperature contour along the c) 

vertical cross-sectional area and d) horizontal cross-sectional area. Results were 

taken at the air velocity of 2.5 m s-1 after 13 hours freezing (average HCT) 
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a) b) 

 

 

 

c) d) 
Figure 7.24: a) Location of vertical and horizontal cross-sectional area b) 

temperature distribution on drumstick surfaces, temperature contour along the c) 

vertical cross-sectional area and d) horizontal cross-sectional area. Results were 

taken at the air velocity of 2.5 m s-1 after 13 hours freezing (average HCT) 

 

7.7.2 Airflow distribution 

 

Figure 7.25 shows the velocity distribution along the vertical plane (Figure 7.24a) 

of the airflow in the wind tunnel for the drumstick model at the inlet air velocity of 

2.5 m s-1. Since the airflow domain of the whole chicken model is similar to the 

drumstick model, the flow field in the whole chicken model will be the same as the 

flow field in Figure 7.25. 

 

The model was based on the actual dimensions of the wind tunnel and the cardboard 

tray, so the airflow contour was captured as realistically as possible. The high 

gradient of velocity was observed in the fluid region close to the cardboard and 

polyliner surfaces. Perpendicular to the direction of the airflow, the air velocity 
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increased from zero at the cardboard and polyliner surfaces to the maximum value 

of 4.5 m s-1 

 

 

 

Figure 7.25: Contour along the vertical plane of airflow in the wind tunnel for the 

drumstick model at the inlet air velocity of 2.5 m s-1 

 

 

a) 

 

b) 

 

Figure 7.26: Contours along the vertical plane of airflow inside the liner bag of a) 

chicken model and b) drumstick model. Results were taken at the air velocity of 

2.5 m s-1 after 13 hours freezing (average HCT) 
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The velocity fields along the vertical plane inside the polyliner are shown in Figure 

7.26a for the whole chicken model and Figure 7.26b for the drumstick model. The 

effect of natural convection produces a velocity field inside the polyliner with 

maximum air velocities of 0.09 m s-1 and 0.06 m s-1 for the whole chickens and 

drumstick models, respectively. The effect of natural convection is more 

pronounced at the beginning of the freezing process when the temperature 

difference between chicken products and refrigerated air inside the polyliner is 

highest and diminishes toward the end when chicken’s temperature closes to 

refrigerated air temperature.  

 

7.7.3 Effect of operating conditions on freezing time 

 

Having been experimentally validated, the numerical model was used to calculate 

freezing times under different operating conditions, as presented in Figure 7.27 (for 

bulk-packed whole chickens) and Figure 7.28 (for bulk-packed drumsticks). For the 

purposes of this comparison, ‘freezing time’ is defined as the time taken by the 

average temperature of chicken (the freezing time of bulk-packed whole chickens 

was based on the average temperature of the chicken cavity) to reach -18°C.  

 

Figures 7.27 and 7.28 show that the impact of increasing cooling air velocity from 

1.0 m s-1 to 2.5 m s-1 on the freezing time was greater than that when it was raised 

from 2.5 m s-1 to either  4.5 m s-1 (for whole chickens) or 4.3 m s-1 (for drumsticks), 

indicating that the relationship between the airflow rate and cooling rate is 

diminishing. Changing the air temperature from -25°C to -30°C made the freezing 

time of whole chickens and drumsticks decrease by average 4.9 hours and 4.5 hours 

respectively, while the reductions were only 3.0 hours and 2.8 hours when the air 

temperature dropped from -30°C to -35°C. Decreasing the initial temperature from 

10°C to 5°C or from 5°C to 0°C resulted in approximately 1 hours faster cooling 

for both bulk-packed whole chickens and drumsticks. 
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Figure 7.27: Effect of operating conditions on freezing time of bulk-packed whole 

chickens 

 

 

Figure 7.28: Effect of operating conditions on freezing time of bulk-packed 

drumsticks 
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The effects of cooling air velocity, cooling air temperature and initial chicken 

temperature on freezing time were expressed as correlation equations, Eq. 7.11 for 

bulk-packed whole chickens and Eq. 7.12 for bulk-packed drumsticks, as below: 

 

0.732

0.233 18
8.307 a

c
in a

T
t u

T T



   
   

                                         (7.11) 

0.702

0.189 18
8.077 a

d
in a

T
t u

T T



   
   

                                        (7.12) 

 

where  

tc, td (hours) are the freezing time of bulk-packed whole chickens and bulk-

packed drumsticks, respectively 

u (m s-1) is the cooling air velocity, (1 ≤ u ≤ 4.5 m s-1 for whole chickens and 

1 ≤ u ≤ 4.3 m s-1 for drumsticks) 

Ta, Tin (°C) are the cooling air temperature and the initial chicken temperature, 

(-35 ≤ Ta ≤ -25°C, 0 ≤ Tin ≤ 10°C) 

 

From the regression statistics, no correlation equation has R-square value lower 

than 0.95, which indicates a good fit for the correlation equations. Therefore, the 

correlations developed above can be used to predict the processing time in forced 

air freezing of bulk-packed chickens and bulk-packed drumsticks in the freezing 

tunnels where the packages are similar in design to the one considered in this study 

 

7.8 Conclusions 

 
This chapter described a numerical model to simulate the forced-air freezing of 

bulk-packed whole chickens and drumsticks encased in a polyliner within a carton. 

The model represents the first case of a CFD food freezing model where the 

geometry was derived empirically via CT scan data. The polyliner created an 

enclosed space, consisting of air voids between chicken products and the liner bag. 

In this space, the effect of natural convection is significant, as shown by the velocity 

field inside the polyliner of up to 0.09 m s-1 for the whole chicken model and 0.06 

m s-1 for the drumstick model after 13 hours freezing at the air velocity of 2.5 m s-
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1. Therefore natural convection must be simulated when dealing with polylined food 

products. 

 

Considering the complexity of the transport phenomena within the system, 

simplifications and uncertainties required in developing the model as well as the 

difficulty in identifying the exact position of the thermocouple, reasonable 

agreement was found between the predicted and experimental temperature histories 

of individual products. When compared to the freezing history data from Chapter 6, 

the mean discrepancy in average temperature prediction was less than 1.3°C, and 

the maximum difference of SECT prediction was 7.3% for both whole chicken and 

drumstick models. However, in food freezing, the cooling heterogeneity is also of 

interest since it will affect the quality of individual products. In addition to 

providing good predictions for average temperatures, the numerical model was also 

able to predict the temperatures at the specific location within the tray.  

 

The model was used to study the effect of different operational parameters on the 

freezing rate of the chicken freezing processes. Increasing the refrigerated air 

velocity above 2.5 m s-1, and decreasing the refrigerated air temperature below -

30°C resulted in a diminishing reduction in improvement to freezing time. The 

proposed correlation equations (Eqs. 7.11 and 7.12) can be used to estimate the 

freezing time of bulk-packed chickens and bulk-packed drumsticks in the freezing 

tunnels where the packages are similar in design to the one considered in this study. 
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Chapter 8 

General conclusions and future study 

 

8.1 General conclusions 

 

This research project has developed a numerical model to simulate airflow and heat 

transfer for industrial cheese chilling and freezing of individual trays of whole 

chickens and chicken parts. More specifically, a direct CFD approach was used in 

these models to improve the accuracy of the predictions. The model predictions 

were validated by experimental data generated as part of the study. Once validated, 

the model was used to investigate the cooling heterogeneity and the effect of 

different operating conditions on the processing time. In addition to the CFD model, 

a simple heat transfer simualtion based on one-dimensional finite difference method 

was presented for industrial users. Thermal property models in the literature were 

also reviewed to propose the most suitable choices for thermal processing 

calculations. The following conclusions were drawn from this research: 

 

1. The effective specific heat capacity predicted by the additive model (Eq. 3.1) 

with the specific heat of water correlated from experimental data of Archer and 

Carter (2000) and Pátek et al. (2009), and the thermal conductivity model of 

Dul’nev and Novikov (Eqs. 3.30-3.33) showed better predictions compared to other 

models for a wide range of food products. Therefore, the additive model and the 

Dul’nev and Novikov model are recommended as the best models to predict the 

effective specific heat capacity and thermal conductivity of food products. 

 

2. The airflow field in the agar chilling model that mimicked the airflow pattern and 

products arrangement of an industrial cheese chilling process could be numerically 

modeled as a steady state airflow field and decoupled from energy transport during 

the transient simulation. The flow and turbulance calculations could be turned off 

in the transient simulation to reduce computation time. 

 

3. The heat transfer coefficient across the agar block surface varied by factor of 5, 

with the maximum value at the four corners of the surface on the upstream side and 

minimum values at the opposite surface. 
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4. The use of the standard k-ε turbulence model with the Enhanced Wall Treatment 

in the CFD chilling model of six blocks of agar could predict temperatures to within 

1°C compared to experimental data. The model underpredicted the experimentally 

observed cooling rate routinely, which could be explained by the exclusion of the 

effect of natural convection, and thermal radiation. 

 

5. The univerality of the  one dimensional numerical solution proposed by (Ghraizi 

et al., 1996) has been improved by incorporating the composition-based thermal 

property model (the additive effective specific heat capacity model, Eq. 3.1, and the 

Dul’nev and Novikov thermal conductivity model, Eqs. 3.30 – 3.33) and the 

correlation equation for the convective heat transfer coefficient proposed by (Pham 

et al., 1991) and (Cleland & Earle, 1976) . The simulation was validated by 

experimental temperature histories along the shortest dimension of a single block 

of agar and a single block of cheese undergoing the chilling process. Additionally, 

the  one-dimensional simulation was compared to results generated by the three 

dimensional model FPM. The one dimentional simulation fit well with 

experimental data and the values predicted by  FPM. Therefore, the one dimentional 

simulation can be used to provide a quick cooling time prediction (the 

computational time was 30s to simulate 18 hours of cheese chilling on a 64-bit Intel 

® Xeon ® CPU E5-1620, 3.5 GHz, 16 GB RAM implemented in MATLAB) with 

sufficient confidence in the temperature distribution along the shortest 

characteristic dimension of a 3-D object, which represents the greatest interest for 

food engineers.  

 

6. The freezing experiments showed a large range in the cooling histories of 

individual chickens in the sub-cooling region. The maximum differences between 

the temperatures of individual chickens and chicken legs within a tray were about 

30% and 50% of the difference between the initial chicken temperature (10°C) and 

refrigerated air temperature (-25°C), respectively. The difference decreased 

towards the end of the process, and the lower the cooling air velocity, the more 

uniform the chicken temperature near the end. 

 

7. The packing structure of the chicken drumsticks within the plastic liner bag did 

not have a significant impact on the freezing rate for any of the air velocities 
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investigated, based on a 95% confidence interval. That means the designer doesn’t 

have to know the drumstick orientation when designing the freezer. On the other 

hand, the presence of the plastic liner bag increased freezing times by more than a 

factor of 3 at high air velocities. This is because the liner bag prevents refrigerated 

airflow from directly interacting with the product and evaporation plays a 

significant role in the total amount of heat transfer (up to 11% of the total heat load) 

when there is no polyliner to prevent moisture transfer. 

 

8. The CFD model of polylined bulk-packed whole chickens and bulk-packed 

drumsticks during forced-air freezing based on CT scans of the chicken was 

validated against experimental freezing data. By using the temperature-dependent 

thermal properties of chicken meat, the mean differences between the predicted and 

experimental average chicken temperature was less than 1.3°C for all tested 

conditions, for both the whole chicken and drumstick model. The maximum 

difference of SECT prediction was 7.3%. In addition to providing good predictions 

for average temperatures, the numerical model was also able to predict the 

temperatures at specific locations within the tray. 

 

9. The simulation results showed the flow field inside the polyliner could reach 

velocities of up to 0.09 m s-1 for the whole chicken model and 0.06 m s-1 for 

drumstick model after 13 hours freezing at the air velocity of 2.5 m s-1 which 

indicates the effect of natural convection is significant during the forced air freezing 

of polylined bulk-packed chickens and must be included in the simulation. 

 

10. The validated chicken and drumstick model were used to study the effect of 

different operational parameters on the freezing rate of the chicken freezing 

processes. The result indicates that increasing the refrigerated air velocity above 2.5 

m s-1, and decreasing the refrigerated air temperature below -30°C can lead to a 

diminishing reduction in improvement to freezing time. The proposed correlation 

equations (Eqs. 7.11 and 7.12) can be used to estimate the freezing time of bulk-

packed chickens and bulk-packed drumsticks in freezing tunnels where the 

packages are similar in design to the one considered in this study. 
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8.2 Future study 

 

Although significant progess was made towards the accurate modelling of industrial 

cheese chilling and chicken freezing processes, several research question remain 

unanswered and should be considered in the future: 

 

1. In this study the industrial cheese chilling process was modeled as six blocks of 

agar that mimic the airflow pattern and product arrangement of an industrial chilling 

tunnel. However, the thermal properties of cheese are different from agar, so the 

temperature distribution inside blocks of cheese is different from blocks of agar. In 

a future study, real blocks of cheese should be used instead of blocks of agar. In 

addition, the product load of the industrial cheese chiller is higher than that in the 

model, which could make the airflow distribution and cooling rate of the cheese 

chiller different from the model. Considering the effect of the product load in the 

cheese chiller, the model for predicting air velocity distribution in a large chiller 

developed by (Mirade & Picgirard, 2006) could be used in combination with the 

unsteady heat tranfer simulation of the current model for a more comprehensive 

analysis of transport phenomena in an industrial cheese chiller. 

 

2. The application of the one-dimensional simulation presented in chapter 5 can be 

investigated further. Firstly, the simulation can be validated over a wide range of 

irregular shape food product. In this case, the Biot-number dependent shape factor 

proposed by (Hossain et al., 1992a, 1992b, 1992c) can be used to account for the 

irregular shape of the product. Secondly, the simulation can also be applied for the 

food freezing process since it has already incorporated the temperature-dependent 

thermal properties of foods. 

 

3. Despite this study presenting the first case of CFD modeling for chicken freezing 

where the geometry was derived empirically via CT scan data, some simplifications 

have been made and should be rectified in a future study. Firstly, the 2 mm artificial 

air gap between chiken and the liner bag was created in the simulation to avoid 

highly skewed and distorted meshes that can compromise the stability of the 

solution; however, the artificial air gap will increase the resistance to heat transfer 

due to the low thermal conductivity of air. Therefore, it would be valuable to 



154 
 

eliminate the artificial air gap in the new model routine. This could be done by using 

automated methods to generate a realistic polyliner shape for bulk packed product 

presented in (Olatunji, Love, Shim, & East, 2020).  Secondly, the model assumed 

substantial connection between chicken surfaces that can increase the thermal 

conductance between chicken products. In this case, a watershed segmentation 

algorithm for separating the solid objects in the CT scan data could be used. In this 

algorithm, the Euclidean distance map (EDM)  of the CT image is calculated 

(Danielsson, 1980; Herremans et al., 2013). The EDM can be interpreted as a 

topographic map of a terrain with mountain peaks (region of solid objects) and local 

valleys (air regions). If this terrain would be flooded with water, the water would 

run down the mountain peaks and into local valleys. By marking the local valleys, 

the mountain peaks can be separated and correspondingly, the solid objects from 

one another (Esveld, Van Der Sman, Van Dalen, Van Duynhoven, & Meinders, 

2012). The watershed algorithm was sussessful applied for a pack of pears 

(Gruyters, 2019) and could be applied for bulk-packed chicken products. Thirdly, 

the model assumed homogeneous thermal properties. However, the thermal 

conductivity of chicken depends on structure (i.e thermal conductivity of chicken 

meat is different from chicken bone). Considering the spatial variation in thermal 

properties of chicken could further increase the accuracy of the predictions. This 

could be achieved  by using a geometrical model of the internal structure based on 

dedicated CT scans that show constrast for muscle, skin and bone. 

 

4. The heterogeneity of the forced air chilling and freezing is strongly influenced 

by the local airflow behavior within the package system. As this study shows, CFD 

modelling provides an effective means for predicting and understanding the 

complexity of the transport of momentum and energy within a packed structure. A 

logical continuation of this research would be the optimization of the forced air 

chilling and freezing by using this model. In paticular, CFD can be used as design 

tool for novel packing system (e.g. adding perforations on liner bags, differences in 

the geometrical cardboard tray shapes and vent designs), investigating different 

product arrangements, product weight, and different operating conditions in order 

to promote a more rapid and uniform cooling of products and increase the energy 

efficiency. 
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