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1. Introduction 
Computer programs offer great potential for compression. The programming languages 
in which they are written are formally defined with a specified lexical and syntactic 
structure. Many items they contain are "reserved words," that is, pre-defined terms of 
the language; and other words have particular rules for their introduction and re-use. 
Taken together, these suggest that high levels of compression should be achievable on 
this type of data~ertainly higher than for normal text. 

We know of no previous work on lossless compression of computer programs 
(except for Barry, 1988, who describes the design of a lossless compression system 
but includes no results). The small literature that exists on program compression (e.g. 
Katajainen et al., 1986; Stone, 1986; Cameron, 1988) invariably describes 
compression methods that are lossy in that all white space is discarded-indeed, the 
first two of these papers omit comments too. It is tempting when considering syntax­
directed compression to ignore non-syntactical items like white space and comments 
and concentrate on coding the parse tree alone (Katajainen and Makinen, 1990). The 
functionality of programs is certainly preserved- and while one is at it one might as 
well standardize variable names too, and other identifiers, and omit them from the 
compressed representation. However, to regard source programs as merely encoding 
functionality is to relegate them to the status of object programs. In actuality they do far 
more: they are vehicles for the expression of algorithms for people to study and 
modify, as well as for computers to compile and execute. 

From a user's viewpoint it is often necessary to have programs reproduced exactly. 
While one might argue that in principle pretty-printers eliminate the need to reproduce 
white space, we all know that individuals become attached to their own layout styles 
and conventions and staunchly resist the imposition of someone else's uniformity on 
their programs. Comments form an essential part of all non-trivial computer programs, 
as do user-defined identifiers. 

This paper describes a scheme for compressing programs written in a particular 
programming language-which can be any language that has a formal lexical and 
syntactic description-in such a way that they can be reproduced exactly. Only 
syntactically correct programs can be compressed. The scheme is illustrated on the 
PASCAL language, and compression results are given for a corpus of PASCAL 
programs; but it is by no means restricted to PASCAL. In fact, we discuss how a 
"compressor-generator" program can be constructed that creates a compressor 
automatically from a formal specification of a programming language, in much the same 
way as a parser generator creates a syntactic parser from a formal language description. 

2. Method of compression 
The compression scheme works as follows. Given a syntactically correct program, it is 
parsed into a parse tree. The parser interacts with a lexical analyzer that produces a 
stream of language tokens. Nodes of the tree are labeled with token types-such as 
"identifier"-rather than actual instances of tokens. Lossless program compression 
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involves the compression of lexical elements that compilers generally discard. The 
lexical analyzer must provide enough extra information to allow the original tokens to 
be reproduced, and to permit white space and comments to be preserved. 

Some language tokens-for example operators, keywords and punctuation- have a 
single lexical representation, while others-numbers, strings and identifiers- have a 
large number of different representations. In the first case, knowledge of the token type 
is sufficient to reproduce it, whereas in the second the actual instance of the token must 
be preserved separately. For each multiply-represented token, a stream of instances is 
generated during parsing. 

Once parsing is complete, the program is represented by a parse tree, a 
whitespace/comment stream, and several token streams. Taken together, these provide 
enough information to allow the original program to be reconstructed exactly. 
Implementation details of the individual steps follow. 

PARSING AND PARSE TREE COMPRESSION 

We developed the parser with standard compiler building tools, LEX (Lesk, 1975) and 
YACC (Johnson, 1975). It was constructed in the usual way, with a lexical analysis 
phase, a syntax analysis phase, and a main program coordinating the two. Since the 
compressor is intended to be invoked only on programs that have already been 
compiled and so are guaranteed to be syntactically correct, no error-recovery facilities 
were incorporated: this greatly simplifies the task of constructing a syntax analyzer. The 
output of this module is a list of productions that represent the parse tree for the target 
program. 

The production list representing the parse tree is compressed as follows. Initially, 
and at each point during parsing, a certain production must be encoded out of a specific 
set of candidates. The set of candidates is given by the grammar: it comprises all rules 
that have that the current non-terminal as head. For example, if the current non-terminal 
is A and there are rules 

A::= BICID, 

then information must be encoded that specifies which of B, C, or D actually occurs. 
This is done using adaptive arithmetic coding based on the frequencies with which B, C 
and D have occurred in this context so far. Frequency counts are maintained for each 
possibility, initialized to 1 to prevent problems with zero coding probabilities, and 
updated each time one of the three rules is encountered. 

While the parse tree compressor that we built and tested is for the PASCAL 
language, it can readily be modified to deal with any language whose syntax is formally 
defined. The use of compiler-generator tools means that the lexical and syntactic 
properties of the language are specified independently from the actual parsing engine. 
All that must be added to a standard language parser is the ability to output the parse 
tree in the form of a list of productions. 

TOKEN STREAMS AND THEIR COMPRESSION 

As noted above, some token types have a single well-defined lexical representation, 
while others have different lexical representations which must be coded. In the PASCAL 
language, the ones in the second class are: 

• identifiers; 
• strings; 
• numbers, both integers and reals. 

The corresponding token streams are extracted from the target program by adding 
instructions to the lexical analyzer to output all instances of the tokens to an appropriate 
file. On completion of parsing, three streams have been generated: an identifier stream, 
a string stream, and a number stream. 
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These streams are coded and transmitted in different ways. For identifiers, a static 
model of occurrence counts is constructed and transmitted, and then the actual identifier 
sequence is encoded relative to this static model. Figure 1 shows an example. The 
identifier sequence is reproduced in part (a), part (b) gives the corresponding static 
model, part (c) shows the string of symbol table indexes corresponding to the identifier 
sequence, and part (d) indicates what is actually transmitted. 

First the model is encoded. We use the standard PPMC method for this (Cleary & 
Witten, 1984; Moffat, 1990; Bell et al., 1990), encoding the sequence of names and 
then the sequence of counts. A character that cannot occur in identifiers is used to 
separate them-comma in this example. For the sequence of counts, PPMC has its 
alphabet restricted to eleven possible symbols: the digits 0-9 and comma. The number 
of counts is the same as the number of identifiers and so there is no need for another 
symbol to terminate the sequence. There are more efficient ways than this of encoding 
the counts. For example, the total could be encoded using a static model and then all 
possible ways enumerated in which it might be broken down into the required number 
of counts. This was not deemed worthwhile because of the relatively small amount of 
space that the counts consume. 

Once the model has been encoded, the actual identifier sequence is coded with 
respect to it. Figure l(d) shows the encoding probabilities in the example. The first 
symbol has to be number 1 and so the first encoding probability is 1 (10/10). Now the 
"1" count in the model is decremented, and so the probability of the next symbol being 
number 1 is 1/9. The encoder must merely encode the fact that this is not the case 
(probability 8/9) and the decoder can infer that the second symbol is number 2. Coding 
proceeds along these lines, one model count being decremented for each symbol 
processed. 

Each identifier normally occurs at least three times: once when it is declared, once 
when it is assigned, and again when it is used; this repetition is what makes the coding 
method worthwhile. However, strings and numbers are not encoded in this way, 
because they are expected to involve far less repetition. The stream of strings is simply 
compressed using PPMC. It may be worth priming the model with the list of identifier 
names, because identifiers are often mentioned in strings (particularly error messages); 
however this is likely to give only marginal improvement and was not done because it 
is rather specific to a particular programmer's writing style. 

Integers and real numbers are compressed quite well by the above-mentioned 
"numeric" variant of PPMC. For tokens of type "integer" only one numeric sequence is 
encoded, while two are encoded for tokens of type "real"-one for the part preceding 

(a) 

(b) 

(c) 

(d) 

Sequence a,b,c,b,b,c,a,c,b,b 

Model Index Name Count 

1 a 2 
2 b s 
3 c 3 

10 

Indexes 1, 2, 3, 4, 4, 3, 1, 3, 2, 2 

Encoding "a, b, c" 

2,5,3 
IO 8 3 4 3 2 I l 2 I - - - - -
JO 9 8 7 6 5 4 3 2 I 

Figure 1 Encoding an identifier stream 
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the decimal point and the other for the part following it. Numeric values in scientific 
notation are not handled by our grammar, but could certainly be accommodated if 
necessary. An alternative to this character-based method of handling numbers is to 
encode the length of the number in bytes and then its value in binary as a word of that 
number of bytes. However, numeric constants account for such a small proportion of 
our test files that this was not deemed worthwhile. 

COMMENTS, AND SPACES 

Comments were removed by a preprocessor that stripped them out of the program and 
placed them in a "comment" file with a pointer to their position in the original program. 
Comments in PASCAL programs are generally long enough to make the overhead of a 
pointer for each comment worthwhile. The resulting file was compressed using the 
PPMC method. 

In PASCAL, any amount of white space can appear between any pair of adjacent 
tokens, and so each token produced by the lexical analyzer was viewed as having 
leading white space-even if this was of zero length. White space tends to occur in 
short strings of only a few characters, and so the use of pointers is not justified. 
Moreover, advantage can be taken of the fact that programs are usually indented 
systematically to reduce the bandwidth needed to represent space. This can be done by 
representing each string in terms of two-dimensional spatial offsets. Each occurrence of 
whitespace is viewed as a horizontal and vertical offset. If the vertical offset is 0, that 
is, this white space string does not include a "newline," the horizontal offset is 
measured from the end of the previous token--0 for no space, 1 for a single space, 
etc.). If the vertical offset is 1 or more, the horizontal offset is measured from the last 
indent. 

Figure 2 shows the computation of offsets for a sample program. Part (b) shows 
the horizontal and vertical offset that follow each token (using a tab size of 5). These 
are arithmetically encoded in the context of the preceding token-begin, if, 
identifier, and so on. Modeling is adaptive, which means that the system will tend 
to "learn" a particular style of indenting. 

(a) Program 

(b) Offsets 

begin 

end; 

if a=b then 
writeln (a); 

writeln(b); 

vertical, horizontal preceding token 
name representation 

o. 0 <start> 
1, 5 begin 
o. I if 
o. 0 identifier a 
0, 0 
o. I identifier b 
1, 5 then 
0, 0 writeln 
0, 0 
0, 0 identifier a 
0, 0 
1, - 5 

Figure 2 Encoding white space 
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Each vertical/horizontal offset pair is encoded as a single unit. First, if it has 
occurred before in the context of the current token it is encoded with its occurrence 
frequency in that context. If not, an escape symbol is coded and an amalgamated model 
is used. If it has occurred before in some other context it will have a non-zero count in 
the amalgamated model, and will be coded using that count. Otherwise a second escape 
is coded and both offsets in the pair are encoded individually using a fixed model. The 
probabilities in the model are chosen to approximate Elias's gamma code (Elias, 1975); 
they are 

Pr[n] = 6 I rr
2 

""' 0.608 
(n + 1)2 (n + 1)2 

to code the number n. The cumulative values of this distribution cannot be obtained 
analytically, but are easily calculated in advance and stored in a table. 

4. Experimental Results 
The new compression method was tested on a corpus of twenty PASCAL programs 
collected from the Internet. All of the programs are quite short: this seems to be typical 
of files containing PASCAL programs. Table 1 shows the result. The original file size is 
given, followed by the space occupied by the eight components of the compressed 
representation: the parse tree, the symbols in the symbol table, the counts in the symbol 
table, the identifier list, strings, numbers, white space, and comments. These are 
totaled in the penultimate column, and finally the compression obtained by the PPMC 
method is given for reference. The average of each column is shown at the bottom, 
along with the percentage of the total that is accounted for by each component of the 
compressed representation. 

The compression rate of the new method averaged about 1.8 bits per character over 
the whole corpus. Comparing it with PPMC, very similar results are achieved, with an 

Program Original Parse Symbol table Identifier Strings Numbers White CommenLS Total PPMC 
size tree symbols counts list space 

1 4137 115 165 37 72 226 22 111 469 1217 1153 
2 4235 154 357 41 68 96 54 138 3 911 1112 
3 4474 136 178 38 69 318 16 126 489 1370 1329 
4 4822 13 271 8 1 3 168 98 190 752 813 
5 5237 52 94 24 36 4 8 75 1021 1314 1239 
6 5799 94 127 28 40 3 132 105 1059 1588 1600 
7 6523 315 123 41 167 218 73 195 181 1313 1137 
8 8031 220 267 62 218 3 31 213 736 1750 1862 
9 9235 133 483 64 232 3 3 209 1051 2178 2088 

10 9392 385 431 74 268 278 202 232 649 2519 2472 
11 9402 319 402 75 273 550 40 252 473 2384 2480 
12 9543 192 498 61 340 4 313 285 166 1859 2094 
13 10314 328 406 69 260 720 106 193 15 2097 2438 
14 13596 254 128 53 231 282 85 258 1918 3209 3352 
15 15334 707 567 116 623 257 123 388 443 3224 3442 
16 17299 805 637 123 726 648 219 412 438 4008 4133 
17 18112 478 569 94 377 1841 33 380 1205 4977 5153 
18 22652 963 333 93 961 1534 39 491 448 4862 509 
19 24957 873 405 106 845 1413 62 433 897 5034 5269 
20 28188 898 812 177 1434 719 398 604 646 5688 6134 

Mean 11564 372 363 69 362 456 106 260 625 2613 2715 
% of total 14.2% 13.9% 2.7% 13.9% 17.5% 4.1% 9.9% 23.9% 100% 

Table 1 Compression results (in bytes) 
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average improvement of only about 4%. The new method was about 14% better than 
PPMC on program 12 but about 13.5% worse on program 7. 

The largest component of the compressed representation is comments, followed by 
strings. The new syntax-directed method offers no advantage for these components: 
they are merely isolated and passed to PPMC. Between them they account for over 40% 
of the compressed file size. In the uncompressed files, comments and strings account 
for only about 27% of the file size. 

If the compression were permitted to be lossy, preserving only the functionality of 
the program, it would not be necessary to transmit comments, white space, or the 
symbol table. Then the compressed size would be halved compared with PPMC, 
representing a compression rate of 0.94 bits per character. Of course, such programs 
would be quite unreadable on decompression. 

Compression can be improved by priming the models first rather than starting them 
out from scratch each time. To investigate this, the test corpus was split into two, odd­
numbered programs being used for priming and even-numbered ones being used to 
evaluate the compression achieved. It was found worthwhile to prime all models except 
those for the parse tree and the identifier list: it seems reasonable that knowledge of 
these structures for one program does not really help in compressing another. 

Table 2 shows the results obtained. Priming improves the overall compression 
figure by about 10%. However, it naturally improves the compression obtained by 
PPMC as well, and the net result is that the new method offers about 9% improvement 
over PPMC. 

5. Automatic compressor generation 
The method described above and illustrated with a PASCAL program compressor can, 
with some fairly routine work, be applied to any formally-defined programming 
language. The question arises as to whether such a compressor could be created 
automatically from the language description. This would require generating: 

• a parser which during parsing creates a parse tree and the relevant token streams; 
• a deparser which reconstitutes the source code from the parse tree and token 

streams; 
• a compressor and decompressor for the parse tree and the token streams. 

This section sketches the design of such a compressor generator. 

Figure 3 shows the definition of a simple "arithmetic expression" language that will 

Program Parse Symbol table Identifier Strings Numbers White Comments Total PPMC 
tree symbols counts list space Primed 

2 154 276 28 68 69 38 132 1 766 1014 
4 13 345 7 1 1 171 223 153 914 1000 
6 94 91 14 40 1 133 89 971 1433 1219 
8 220 205 38 218 1 22 193 644 1541 1466 

10 385 276 54 268 212 189 208 352 1944 2040 
12 192 471 50 340 1 311 290 89 1744 2079 
14 254 101 34 231 306 83 221 1774 2449 3325 
16 805 384 95 726 474 194 419 152 3249 3312 
18 963 155 73 961 1231 27 548 338 4296 4510 
20 898 610 141 1434 617 388 667 377 5132 5774 

Mean 398 291 53 429 291 156 299 485 2346 2574 
% of total 17.0% 12.4% 2.3% 18.2% 12.4% 6.6% 12.7% 20.7% 100% 

Table 2 Compression results (in bytes) after priming 
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be used to illustrate the working of the generator. The language definition is assumed to 
be available to both compressor and decompressor. It comprises a list of terminal 
symbols, regular expressions that define the form of each non-constant token and of a 
comment string, and a grammar. The regular expressions use the notation " [ x J " to 
represent sets, "a+" and "a*" to represent sequences of zero or more and one or more 
a 's respectively,"." for any character, and parentheses for grouping. Thus an identifier 
is a letter followed by any number of letters, digits or underscores, while a number is 
one or more digits. A comment has the form "< * . . . * > "; also any characters 
following a " %" on a line are comments. It is assumed that all tokens can be separated 
by arbitrary amounts of white space, with or without comments. The productions in the 
grammar are numbered for reference. 

We first examine the analysis and parsing process, then look at how the information 
so produced is used to reconstruct the original program, and finally consider how each 
component is compressed. As a working example, Figure 4 shows a small program 
and the information that the program compressor generates. 

ANALYSIS AND PARSING 

Standard compiler-construction tools are used to produce the lexical analyzer and 
parser. The lexical analyzer is generated automatically from the information in 
Figure 3(a)- (c), and produces the token stream of Figure 4(b) for the example 
program. The standard lexical analyzer is modified (automatically) to write each 
occurrence of the non-constant tokens to a file, one file per token type, with a separator 
that is chosen automatically after examining the language definition. This creates the 
streams shown in Figures 4(c) and 4(d). 

The parser is generated automatically from the information in Figure 3(d), and 
produces the parse tree shown in Figure 4(e). It is modified (automatically) to dump 
each production that is derived into a "parse tree" file. The productions are shown in 
Figure 4(f), and they can be represented as the list of productions of Figure 4(g). This 
production list is the representation of the parse tree that is used for compression. 

Now that the program has been analyzed, it is represented by the information in 
Figures 4(c), 4(d), and 4(g). 

(a) Terminals id, num, +, - * !, ( I , 
' 

(b) Tokens id [ a-z) ( [ a-z0 - 9 ] ) * -
num [0-9) + 

(c) Comments comment ="(* " * \\ *) II I % * \n 

(d) Grammar expr ~ expr op e xp r expr/1 
expr ~ ( e xp r ) expr/2 
expr ~ - expr expr/3 
expr ~ i d expr/4 
expr ~ num expr/5 
op ~ + op/1 
op ~ - op/2 
op ~ * op/3 
op ~ I op/4 

Figure 3 "Arithmetic expression" language 
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DEP ARSING AND SYNTHESIS 

The deparsing process reconstitutes the target program from the information that has 
been generated from it. With knowledge of the language structure as set out in 
Figure 3, the list of productions and token streams are used to recreate the original 
program. It is not difficult to envisage how this information is used. 

The first production in the list is identified from the language grammar; it is 

expr ~ expr op expr. 

The right-hand side of this expression is processed from left to right. On encountering a 
non-terminal symbol, the next production in the list is read and the process continues 
recursively. On encountering a terminal that is a constant token, it is interpreted literally 
as an element of the final program. On encountering a non-constant token, the next 
element is removed from the appropriate token stream and interpolated into the program 
at that point 

COMPRESSION 

The parse tree compressor encodes the list of productions using adaptive arithmetic 
coding, just as for the PASCAL grammar earlier. Note that the prefixes of each member 

(a) Example program 15 - pi/(index * 2) 

(b) Lexical tokens num - id I (id * num 

(c) r d stream pi, index 

(d) Num stream 15, 2 

(e) Parse tree expr 

/ I "'-
expr op e xpr 

l I /\~ 
num - expr 0

f / r\ I 
pi I ( expr ) 

/l~ 
exp, op e xpr 

I I I 
i d . num 

(f) Productions expr ~ expr op expr expr/1 
expr ~ num expr/5 
op ~ - op/2 
expr ~ expr op expr expr/1 
expr ~ i d expr/4 
op ~ I op/4 
expr ~ ( expr ) expr/2 
expr ~ expr op expr expr/1 
expr ~ id expr/4 
op ~ * op/3 
expr --, num expr/5 

(g) List of productions expr/1, expr/5, op/2, expr/1, expr/4, op/4, expr/2, expr/1, 
expr/4, op/3, expr/5 

Figure 4 Example program 
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of the list of Figure 4(g) are not encoded. Instead, the string of numbers 

1, 5, 2, 1, 4, 4, 2, 1, 4, 3, 5 

is sufficient to represent the list of productions, under the assumption that the top-level 
grammar element (which is "expr" in the example) is the one defined by the first group 
of productions. Each of these numbers is coded, and decoded, in the context named by 
the prefix in the list of Figure 4(g). 

The elements in each token stream satisfy a regular expression which defines that 
token type. In principle, this expression could be translated automatically into a finite­
state machine and used for compression by encoding the transitions that occur during 
the parsing of any particular token. In practice, however, most programming languages 
have very similar components-identifiers, strings, and numbers-and these assume 
nearly the same form in every language. For example, C and PASCAL tokens are 
identical except for case sensitivity, the quotation marks used to delimit comments and 
strings, and the additional number formats permitted in C. In our work on compressing 
PASCAL programs we have found that there is little appreciable advantage to be gained 
by using specialized compression methods, and have in fact ended up using PPMC, 
specialized only to expect the correct alphabet for each token type. The same applies to 
the comment stream too. 

The one area where a specialized model is worthwhile is white space. The strategy 
described for PASCAL of specifying space incrementally both horizontally and vertically 
and conditioning it as a pair on the preceding token is applicable generally. Common 
indentation conventions are very similar from language to language, and this model is 
appropriate even for quite different languages, such as LISP and PROLOG. While it 
would be more general to allow white space to be defined as a regular expression in the 
language specification of Figure 3 and compress it using PPMC like the other tokens, 
compression is greatly improved by drawing the line here, accepting a fixed definition 
of white space, and treating it as explained previously. 

6. Conclusions 
We have described a model for the compression of computer programs that 

outperforms the best methods for text compression by around 9% on our test files, 
which is an appreciable improvement. If the compression models are unprimed the 
improvement is only about 4%. 

One area where gains could be achieved by more sophisticated analysis of the target 
program is the identifier list. Upcoming identifiers can be predicted more accurately 
using type and scope information. Most programming languages have pre-defined data 
types and allow the user to define further ones; in both cases the type of identifiers that 
may occur is restricted by operators, procedure parameter declarations, and so on. 
Moreover, there are different kinds of identifiers: constant identifiers, type identifiers, 
variables, procedure and function names; and these are restricted as to where they can 
occur. Most languages permit the scoping of identifiers and this also restricts the places 
in which a particular identifier can occur. And finally, advantage could be taken of the 
fact that variables are usually assigned before they are used. All these improvements 
involve the semantics of the language, however, and so would be difficult to 
accommodate in a compressor-generator program that works from nothing more than a 
formal language description. 

Gains are possible in a number of other areas. White space encoding could usefully 
take into account the following token as well as the preceding one. More effort could be 
made to "learn" a user's indenting style, or to select it from a library of pre-defined 
possibilities. Lexical elements that are defined by regular expressions could use a finite­
state machine to predict upcoming symbols. Models for compressing strings and 
comments could be primed with identifier names. However, the gains achieved by such 
means are likely to suffer from the law of diminishing returns. 
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More profitable from a practical viewpoint is to investigate the use of compression 
in a source code management scheme, to prevent the wastage of space caused by 
proliferation of slightly different versions of programs. This seems to be a productive 
area for future research. 
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