
Working Paper Series
ISSN 11 70-487X

Compressing computer
programs

by Rod M. Davies & Ian H. Witten

Working Paper 93/7

October, 1993

© 1993 by Rod M. Davies & Ian H. Witten
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Compressing Computer Programs

Rod M. Davies
Computer Science, University of Waikato, Hamilton, New Zealand
email rdavies@waikato.ac.nz

Ian H. Witten
Computer Science, University of Waikato, Hamilton, New Zealand
email ihw@waikato.ac.nz

1. Introduction
Computer programs offer great potential for compression. The programming languages
in which they are written are formally defined with a specified lexical and syntactic
structure. Many items they contain are "reserved words," that is, pre-defined terms of
the language; and other words have particular rules for their introduction and re-use.
Taken together, these suggest that high levels of compression should be achievable on
this type of data~ertainly higher than for normal text.

We know of no previous work on lossless compression of computer programs
(except for Barry, 1988, who describes the design of a lossless compression system
but includes no results). The small literature that exists on program compression (e.g.
Katajainen et al., 1986; Stone, 1986; Cameron, 1988) invariably describes
compression methods that are lossy in that all white space is discarded-indeed, the
first two of these papers omit comments too. It is tempting when considering syntax­
directed compression to ignore non-syntactical items like white space and comments
and concentrate on coding the parse tree alone (Katajainen and Makinen, 1990). The
functionality of programs is certainly preserved- and while one is at it one might as
well standardize variable names too, and other identifiers, and omit them from the
compressed representation. However, to regard source programs as merely encoding
functionality is to relegate them to the status of object programs. In actuality they do far
more: they are vehicles for the expression of algorithms for people to study and
modify, as well as for computers to compile and execute.

From a user's viewpoint it is often necessary to have programs reproduced exactly.
While one might argue that in principle pretty-printers eliminate the need to reproduce
white space, we all know that individuals become attached to their own layout styles
and conventions and staunchly resist the imposition of someone else's uniformity on
their programs. Comments form an essential part of all non-trivial computer programs,
as do user-defined identifiers.

This paper describes a scheme for compressing programs written in a particular
programming language-which can be any language that has a formal lexical and
syntactic description-in such a way that they can be reproduced exactly. Only
syntactically correct programs can be compressed. The scheme is illustrated on the
PASCAL language, and compression results are given for a corpus of PASCAL
programs; but it is by no means restricted to PASCAL. In fact, we discuss how a
"compressor-generator" program can be constructed that creates a compressor
automatically from a formal specification of a programming language, in much the same
way as a parser generator creates a syntactic parser from a formal language description.

2. Method of compression
The compression scheme works as follows. Given a syntactically correct program, it is
parsed into a parse tree. The parser interacts with a lexical analyzer that produces a
stream of language tokens. Nodes of the tree are labeled with token types-such as
"identifier"-rather than actual instances of tokens. Lossless program compression

1

involves the compression of lexical elements that compilers generally discard. The
lexical analyzer must provide enough extra information to allow the original tokens to
be reproduced, and to permit white space and comments to be preserved.

Some language tokens-for example operators, keywords and punctuation- have a
single lexical representation, while others-numbers, strings and identifiers- have a
large number of different representations. In the first case, knowledge of the token type
is sufficient to reproduce it, whereas in the second the actual instance of the token must
be preserved separately. For each multiply-represented token, a stream of instances is
generated during parsing.

Once parsing is complete, the program is represented by a parse tree, a
whitespace/comment stream, and several token streams. Taken together, these provide
enough information to allow the original program to be reconstructed exactly.
Implementation details of the individual steps follow.

PARSING AND PARSE TREE COMPRESSION

We developed the parser with standard compiler building tools, LEX (Lesk, 1975) and
YACC (Johnson, 1975). It was constructed in the usual way, with a lexical analysis
phase, a syntax analysis phase, and a main program coordinating the two. Since the
compressor is intended to be invoked only on programs that have already been
compiled and so are guaranteed to be syntactically correct, no error-recovery facilities
were incorporated: this greatly simplifies the task of constructing a syntax analyzer. The
output of this module is a list of productions that represent the parse tree for the target
program.

The production list representing the parse tree is compressed as follows. Initially,
and at each point during parsing, a certain production must be encoded out of a specific
set of candidates. The set of candidates is given by the grammar: it comprises all rules
that have that the current non-terminal as head. For example, if the current non-terminal
is A and there are rules

A::= BICID,

then information must be encoded that specifies which of B, C, or D actually occurs.
This is done using adaptive arithmetic coding based on the frequencies with which B, C
and D have occurred in this context so far. Frequency counts are maintained for each
possibility, initialized to 1 to prevent problems with zero coding probabilities, and
updated each time one of the three rules is encountered.

While the parse tree compressor that we built and tested is for the PASCAL
language, it can readily be modified to deal with any language whose syntax is formally
defined. The use of compiler-generator tools means that the lexical and syntactic
properties of the language are specified independently from the actual parsing engine.
All that must be added to a standard language parser is the ability to output the parse
tree in the form of a list of productions.

TOKEN STREAMS AND THEIR COMPRESSION

As noted above, some token types have a single well-defined lexical representation,
while others have different lexical representations which must be coded. In the PASCAL
language, the ones in the second class are:

• identifiers;
• strings;
• numbers, both integers and reals.

The corresponding token streams are extracted from the target program by adding
instructions to the lexical analyzer to output all instances of the tokens to an appropriate
file. On completion of parsing, three streams have been generated: an identifier stream,
a string stream, and a number stream.

2

These streams are coded and transmitted in different ways. For identifiers, a static
model of occurrence counts is constructed and transmitted, and then the actual identifier
sequence is encoded relative to this static model. Figure 1 shows an example. The
identifier sequence is reproduced in part (a), part (b) gives the corresponding static
model, part (c) shows the string of symbol table indexes corresponding to the identifier
sequence, and part (d) indicates what is actually transmitted.

First the model is encoded. We use the standard PPMC method for this (Cleary &
Witten, 1984; Moffat, 1990; Bell et al., 1990), encoding the sequence of names and
then the sequence of counts. A character that cannot occur in identifiers is used to
separate them-comma in this example. For the sequence of counts, PPMC has its
alphabet restricted to eleven possible symbols: the digits 0-9 and comma. The number
of counts is the same as the number of identifiers and so there is no need for another
symbol to terminate the sequence. There are more efficient ways than this of encoding
the counts. For example, the total could be encoded using a static model and then all
possible ways enumerated in which it might be broken down into the required number
of counts. This was not deemed worthwhile because of the relatively small amount of
space that the counts consume.

Once the model has been encoded, the actual identifier sequence is coded with
respect to it. Figure l(d) shows the encoding probabilities in the example. The first
symbol has to be number 1 and so the first encoding probability is 1 (10/10). Now the
"1" count in the model is decremented, and so the probability of the next symbol being
number 1 is 1/9. The encoder must merely encode the fact that this is not the case
(probability 8/9) and the decoder can infer that the second symbol is number 2. Coding
proceeds along these lines, one model count being decremented for each symbol
processed.

Each identifier normally occurs at least three times: once when it is declared, once
when it is assigned, and again when it is used; this repetition is what makes the coding
method worthwhile. However, strings and numbers are not encoded in this way,
because they are expected to involve far less repetition. The stream of strings is simply
compressed using PPMC. It may be worth priming the model with the list of identifier
names, because identifiers are often mentioned in strings (particularly error messages);
however this is likely to give only marginal improvement and was not done because it
is rather specific to a particular programmer's writing style.

Integers and real numbers are compressed quite well by the above-mentioned
"numeric" variant of PPMC. For tokens of type "integer" only one numeric sequence is
encoded, while two are encoded for tokens of type "real"-one for the part preceding

(a)

(b)

(c)

(d)

Sequence a,b,c,b,b,c,a,c,b,b

Model Index Name Count

1 a 2
2 b s
3 c 3

10

Indexes 1, 2, 3, 4, 4, 3, 1, 3, 2, 2

Encoding "a, b, c"

2,5,3
IO 8 3 4 3 2 I l 2 I - - - - -
JO 9 8 7 6 5 4 3 2 I

Figure 1 Encoding an identifier stream

3

PPMC-encoded

PPMC-encodcd

arithmetically encoded

the decimal point and the other for the part following it. Numeric values in scientific
notation are not handled by our grammar, but could certainly be accommodated if
necessary. An alternative to this character-based method of handling numbers is to
encode the length of the number in bytes and then its value in binary as a word of that
number of bytes. However, numeric constants account for such a small proportion of
our test files that this was not deemed worthwhile.

COMMENTS, AND SPACES

Comments were removed by a preprocessor that stripped them out of the program and
placed them in a "comment" file with a pointer to their position in the original program.
Comments in PASCAL programs are generally long enough to make the overhead of a
pointer for each comment worthwhile. The resulting file was compressed using the
PPMC method.

In PASCAL, any amount of white space can appear between any pair of adjacent
tokens, and so each token produced by the lexical analyzer was viewed as having
leading white space-even if this was of zero length. White space tends to occur in
short strings of only a few characters, and so the use of pointers is not justified.
Moreover, advantage can be taken of the fact that programs are usually indented
systematically to reduce the bandwidth needed to represent space. This can be done by
representing each string in terms of two-dimensional spatial offsets. Each occurrence of
whitespace is viewed as a horizontal and vertical offset. If the vertical offset is 0, that
is, this white space string does not include a "newline," the horizontal offset is
measured from the end of the previous token--0 for no space, 1 for a single space,
etc.). If the vertical offset is 1 or more, the horizontal offset is measured from the last
indent.

Figure 2 shows the computation of offsets for a sample program. Part (b) shows
the horizontal and vertical offset that follow each token (using a tab size of 5). These
are arithmetically encoded in the context of the preceding token-begin, if,
identifier, and so on. Modeling is adaptive, which means that the system will tend
to "learn" a particular style of indenting.

(a) Program

(b) Offsets

begin

end;

if a=b then
writeln (a);

writeln(b);

vertical, horizontal preceding token
name representation

o. 0 <start>
1, 5 begin
o. I if
o. 0 identifier a
0, 0
o. I identifier b
1, 5 then
0, 0 writeln
0, 0
0, 0 identifier a
0, 0
1, - 5

Figure 2 Encoding white space

4

Each vertical/horizontal offset pair is encoded as a single unit. First, if it has
occurred before in the context of the current token it is encoded with its occurrence
frequency in that context. If not, an escape symbol is coded and an amalgamated model
is used. If it has occurred before in some other context it will have a non-zero count in
the amalgamated model, and will be coded using that count. Otherwise a second escape
is coded and both offsets in the pair are encoded individually using a fixed model. The
probabilities in the model are chosen to approximate Elias's gamma code (Elias, 1975);
they are

Pr[n] = 6 I rr
2

""' 0.608
(n + 1)2 (n + 1)2

to code the number n. The cumulative values of this distribution cannot be obtained
analytically, but are easily calculated in advance and stored in a table.

4. Experimental Results
The new compression method was tested on a corpus of twenty PASCAL programs
collected from the Internet. All of the programs are quite short: this seems to be typical
of files containing PASCAL programs. Table 1 shows the result. The original file size is
given, followed by the space occupied by the eight components of the compressed
representation: the parse tree, the symbols in the symbol table, the counts in the symbol
table, the identifier list, strings, numbers, white space, and comments. These are
totaled in the penultimate column, and finally the compression obtained by the PPMC
method is given for reference. The average of each column is shown at the bottom,
along with the percentage of the total that is accounted for by each component of the
compressed representation.

The compression rate of the new method averaged about 1.8 bits per character over
the whole corpus. Comparing it with PPMC, very similar results are achieved, with an

Program Original Parse Symbol table Identifier Strings Numbers White CommenLS Total PPMC
size tree symbols counts list space

1 4137 115 165 37 72 226 22 111 469 1217 1153
2 4235 154 357 41 68 96 54 138 3 911 1112
3 4474 136 178 38 69 318 16 126 489 1370 1329
4 4822 13 271 8 1 3 168 98 190 752 813
5 5237 52 94 24 36 4 8 75 1021 1314 1239
6 5799 94 127 28 40 3 132 105 1059 1588 1600
7 6523 315 123 41 167 218 73 195 181 1313 1137
8 8031 220 267 62 218 3 31 213 736 1750 1862
9 9235 133 483 64 232 3 3 209 1051 2178 2088

10 9392 385 431 74 268 278 202 232 649 2519 2472
11 9402 319 402 75 273 550 40 252 473 2384 2480
12 9543 192 498 61 340 4 313 285 166 1859 2094
13 10314 328 406 69 260 720 106 193 15 2097 2438
14 13596 254 128 53 231 282 85 258 1918 3209 3352
15 15334 707 567 116 623 257 123 388 443 3224 3442
16 17299 805 637 123 726 648 219 412 438 4008 4133
17 18112 478 569 94 377 1841 33 380 1205 4977 5153
18 22652 963 333 93 961 1534 39 491 448 4862 509
19 24957 873 405 106 845 1413 62 433 897 5034 5269
20 28188 898 812 177 1434 719 398 604 646 5688 6134

Mean 11564 372 363 69 362 456 106 260 625 2613 2715
% of total 14.2% 13.9% 2.7% 13.9% 17.5% 4.1% 9.9% 23.9% 100%

Table 1 Compression results (in bytes)

5

average improvement of only about 4%. The new method was about 14% better than
PPMC on program 12 but about 13.5% worse on program 7.

The largest component of the compressed representation is comments, followed by
strings. The new syntax-directed method offers no advantage for these components:
they are merely isolated and passed to PPMC. Between them they account for over 40%
of the compressed file size. In the uncompressed files, comments and strings account
for only about 27% of the file size.

If the compression were permitted to be lossy, preserving only the functionality of
the program, it would not be necessary to transmit comments, white space, or the
symbol table. Then the compressed size would be halved compared with PPMC,
representing a compression rate of 0.94 bits per character. Of course, such programs
would be quite unreadable on decompression.

Compression can be improved by priming the models first rather than starting them
out from scratch each time. To investigate this, the test corpus was split into two, odd­
numbered programs being used for priming and even-numbered ones being used to
evaluate the compression achieved. It was found worthwhile to prime all models except
those for the parse tree and the identifier list: it seems reasonable that knowledge of
these structures for one program does not really help in compressing another.

Table 2 shows the results obtained. Priming improves the overall compression
figure by about 10%. However, it naturally improves the compression obtained by
PPMC as well, and the net result is that the new method offers about 9% improvement
over PPMC.

5. Automatic compressor generation
The method described above and illustrated with a PASCAL program compressor can,
with some fairly routine work, be applied to any formally-defined programming
language. The question arises as to whether such a compressor could be created
automatically from the language description. This would require generating:

• a parser which during parsing creates a parse tree and the relevant token streams;
• a deparser which reconstitutes the source code from the parse tree and token

streams;
• a compressor and decompressor for the parse tree and the token streams.

This section sketches the design of such a compressor generator.

Figure 3 shows the definition of a simple "arithmetic expression" language that will

Program Parse Symbol table Identifier Strings Numbers White Comments Total PPMC
tree symbols counts list space Primed

2 154 276 28 68 69 38 132 1 766 1014
4 13 345 7 1 1 171 223 153 914 1000
6 94 91 14 40 1 133 89 971 1433 1219
8 220 205 38 218 1 22 193 644 1541 1466

10 385 276 54 268 212 189 208 352 1944 2040
12 192 471 50 340 1 311 290 89 1744 2079
14 254 101 34 231 306 83 221 1774 2449 3325
16 805 384 95 726 474 194 419 152 3249 3312
18 963 155 73 961 1231 27 548 338 4296 4510
20 898 610 141 1434 617 388 667 377 5132 5774

Mean 398 291 53 429 291 156 299 485 2346 2574
% of total 17.0% 12.4% 2.3% 18.2% 12.4% 6.6% 12.7% 20.7% 100%

Table 2 Compression results (in bytes) after priming

6

be used to illustrate the working of the generator. The language definition is assumed to
be available to both compressor and decompressor. It comprises a list of terminal
symbols, regular expressions that define the form of each non-constant token and of a
comment string, and a grammar. The regular expressions use the notation " [x J " to
represent sets, "a+" and "a*" to represent sequences of zero or more and one or more
a 's respectively,"." for any character, and parentheses for grouping. Thus an identifier
is a letter followed by any number of letters, digits or underscores, while a number is
one or more digits. A comment has the form "< * . . . * > "; also any characters
following a " %" on a line are comments. It is assumed that all tokens can be separated
by arbitrary amounts of white space, with or without comments. The productions in the
grammar are numbered for reference.

We first examine the analysis and parsing process, then look at how the information
so produced is used to reconstruct the original program, and finally consider how each
component is compressed. As a working example, Figure 4 shows a small program
and the information that the program compressor generates.

ANALYSIS AND PARSING

Standard compiler-construction tools are used to produce the lexical analyzer and
parser. The lexical analyzer is generated automatically from the information in
Figure 3(a)- (c), and produces the token stream of Figure 4(b) for the example
program. The standard lexical analyzer is modified (automatically) to write each
occurrence of the non-constant tokens to a file, one file per token type, with a separator
that is chosen automatically after examining the language definition. This creates the
streams shown in Figures 4(c) and 4(d).

The parser is generated automatically from the information in Figure 3(d), and
produces the parse tree shown in Figure 4(e). It is modified (automatically) to dump
each production that is derived into a "parse tree" file. The productions are shown in
Figure 4(f), and they can be represented as the list of productions of Figure 4(g). This
production list is the representation of the parse tree that is used for compression.

Now that the program has been analyzed, it is represented by the information in
Figures 4(c), 4(d), and 4(g).

(a) Terminals id, num, +, - * !, (I ,
'

(b) Tokens id [a-z) ([a-z0 - 9]) * -
num [0-9) +

(c) Comments comment ="(* " * \\ *) II I % * \n

(d) Grammar expr ~ expr op e xp r expr/1
expr ~ (e xp r) expr/2
expr ~ - expr expr/3
expr ~ i d expr/4
expr ~ num expr/5
op ~ + op/1
op ~ - op/2
op ~ * op/3
op ~ I op/4

Figure 3 "Arithmetic expression" language

7

DEP ARSING AND SYNTHESIS

The deparsing process reconstitutes the target program from the information that has
been generated from it. With knowledge of the language structure as set out in
Figure 3, the list of productions and token streams are used to recreate the original
program. It is not difficult to envisage how this information is used.

The first production in the list is identified from the language grammar; it is

expr ~ expr op expr.

The right-hand side of this expression is processed from left to right. On encountering a
non-terminal symbol, the next production in the list is read and the process continues
recursively. On encountering a terminal that is a constant token, it is interpreted literally
as an element of the final program. On encountering a non-constant token, the next
element is removed from the appropriate token stream and interpolated into the program
at that point

COMPRESSION

The parse tree compressor encodes the list of productions using adaptive arithmetic
coding, just as for the PASCAL grammar earlier. Note that the prefixes of each member

(a) Example program 15 - pi/(index * 2)

(b) Lexical tokens num - id I (id * num

(c) r d stream pi, index

(d) Num stream 15, 2

(e) Parse tree expr

/ I "'-
expr op e xpr

l I /\~
num - expr 0

f / r\ I
pi I (expr)

/l~
exp, op e xpr

I I I
i d . num

(f) Productions expr ~ expr op expr expr/1
expr ~ num expr/5
op ~ - op/2
expr ~ expr op expr expr/1
expr ~ i d expr/4
op ~ I op/4
expr ~ (expr) expr/2
expr ~ expr op expr expr/1
expr ~ id expr/4
op ~ * op/3
expr --, num expr/5

(g) List of productions expr/1, expr/5, op/2, expr/1, expr/4, op/4, expr/2, expr/1,
expr/4, op/3, expr/5

Figure 4 Example program

8

of the list of Figure 4(g) are not encoded. Instead, the string of numbers

1, 5, 2, 1, 4, 4, 2, 1, 4, 3, 5

is sufficient to represent the list of productions, under the assumption that the top-level
grammar element (which is "expr" in the example) is the one defined by the first group
of productions. Each of these numbers is coded, and decoded, in the context named by
the prefix in the list of Figure 4(g).

The elements in each token stream satisfy a regular expression which defines that
token type. In principle, this expression could be translated automatically into a finite­
state machine and used for compression by encoding the transitions that occur during
the parsing of any particular token. In practice, however, most programming languages
have very similar components-identifiers, strings, and numbers-and these assume
nearly the same form in every language. For example, C and PASCAL tokens are
identical except for case sensitivity, the quotation marks used to delimit comments and
strings, and the additional number formats permitted in C. In our work on compressing
PASCAL programs we have found that there is little appreciable advantage to be gained
by using specialized compression methods, and have in fact ended up using PPMC,
specialized only to expect the correct alphabet for each token type. The same applies to
the comment stream too.

The one area where a specialized model is worthwhile is white space. The strategy
described for PASCAL of specifying space incrementally both horizontally and vertically
and conditioning it as a pair on the preceding token is applicable generally. Common
indentation conventions are very similar from language to language, and this model is
appropriate even for quite different languages, such as LISP and PROLOG. While it
would be more general to allow white space to be defined as a regular expression in the
language specification of Figure 3 and compress it using PPMC like the other tokens,
compression is greatly improved by drawing the line here, accepting a fixed definition
of white space, and treating it as explained previously.

6. Conclusions
We have described a model for the compression of computer programs that

outperforms the best methods for text compression by around 9% on our test files,
which is an appreciable improvement. If the compression models are unprimed the
improvement is only about 4%.

One area where gains could be achieved by more sophisticated analysis of the target
program is the identifier list. Upcoming identifiers can be predicted more accurately
using type and scope information. Most programming languages have pre-defined data
types and allow the user to define further ones; in both cases the type of identifiers that
may occur is restricted by operators, procedure parameter declarations, and so on.
Moreover, there are different kinds of identifiers: constant identifiers, type identifiers,
variables, procedure and function names; and these are restricted as to where they can
occur. Most languages permit the scoping of identifiers and this also restricts the places
in which a particular identifier can occur. And finally, advantage could be taken of the
fact that variables are usually assigned before they are used. All these improvements
involve the semantics of the language, however, and so would be difficult to
accommodate in a compressor-generator program that works from nothing more than a
formal language description.

Gains are possible in a number of other areas. White space encoding could usefully
take into account the following token as well as the preceding one. More effort could be
made to "learn" a user's indenting style, or to select it from a library of pre-defined
possibilities. Lexical elements that are defined by regular expressions could use a finite­
state machine to predict upcoming symbols. Models for compressing strings and
comments could be primed with identifier names. However, the gains achieved by such
means are likely to suffer from the law of diminishing returns.

9

More profitable from a practical viewpoint is to investigate the use of compression
in a source code management scheme, to prevent the wastage of space caused by
proliferation of slightly different versions of programs. This seems to be a productive
area for future research.

References
Barry, M. (1988) "Data compression of structured input." Honours Report,

Department of Computer Science, University of Melbourne.

Bell, T.C., Cleary, J.G. and Witten, I.H. (1990) Text compression. Prentice Hall,
Englewood Cliffs, NJ.

Cameron, R.D. (1988) "Source encoding using syntactic information source models."
IEEE Trans Information Theory IT-34(4): 843-850.

Cleary, J.G. and Witten, I.H. (1984) "Data compression using adaptive coding and
partial string matching." IEEE Trans Communications COM-32: 396-402.

Elias, P. (1975) "Universal codeword sets and representations of the integers." IEEE
Trans Information Theory IT-21(2): 194-203; March.

Johnson, S.C. (1975) "YACC-yet another compiler compiler." Computing Science
Technical Report 32, AT&T Bell Laboratories, Murray Hill, N.J.

Katajainen, J., Penttonen, K. and Teuhola, J. (1986) "Syntax-directed compression of
program files." Software-Practice and Experience 16(3): 269-276.

Katajainen, J. and Makinen, E. (1990) "Tree compression and optimization with
applications." Int J Foundations of Computer Science 1(4): 425-447.

Lesk, M.E. (1975) "Lex- a lexical analyser generator." Computing Science Technical
Report 39, AT&T Bell Laboratories, Murray Hill, N.J.

Moffat, A. (1990) "Implementing the PPM data compression scheme." IEEE Trans
Communications COM-38(11): 1917- 1921; November.

Stone, R.G. (1986) "On the choice of grammar and parser for the compact analytical
encoding of programs." Computer Journal 29(4): 307-314.

10

