The Number of Lattice Rules of Specified
Upper Class and Rank

J. N. Lyness' and S. Joe?

Abstract

The upper class of a lattice rule is a convenient entity for classification and
other purposes. The rank of a lattice rule is a basic characteristic, also used
for classification. By introducing a rank proportionality factor and obtaining
certain recurrence relations, we show how many lattice rules of each rank exist
in any prime upper class. The Sylow p-decomposition may be used to obtain
corresponding results for any upper class.

1 Introduction

Much of the background theory of lattice rules is covered in [SJ94]. Related results
in connection with quasi-Monte Carlo methods are described in [N92]. Classification
of lattice rules has been an ongoing problem and several approaches to this problem
exist. Several of the earlier approaches [SL89] involve the rank of a lattice rule. In
practice, howevet, it is difficult to work with this somewhat elusive quantity. The
research in this paper is directed to obtaining further information about the rank.

As is conventional, we treat cubature over the region [0,1)°. An s-dimensional lattice
rule is one that can be expressed in the form

]1 1j2=1 Ji=1

here d; is a positive integer, an element of a ¢ x ¢ diagonal matrix D; z; is a row of
al x s integer matrix Z; and {x} € [0,1)” denotes the vector whose components are
the fractional parts of the components of x.
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This form is far from unique. The lattice rank of () may be defined as the smallest
value of ¢ for which ) can be expressed in this D — 7 form. In some cases the rank of
a rule is obvious. The only rank-zero rule is @ f = f(0). The number-theoretic rule

Qf = QI d.7.5] = %if({%}) (1.2

is of rank 1 unless {3} = 0. While the rank is a natural group-theoretic concept,
applying the definition given above to determine the rank of any rule of the form
(1.1) more sophisticated than (1.2) may be a significant problem.

We denote by Ag the s-dimensional unit lattice, comprising all points all of whose
components are integer. The lattice A is an integration lattice if and only if A D Ay.
It is not difficult to establish that the abscissas in (1.1) lie on an integration lattice
A that includes points jz;/d; for i = 1,2,... ,t for all integer 7 and (in view of the
symbol { }) all points of Ag. This lattice rule, denoted by Q(A), has an abscissa set
comprising all points of A N[0, 1)°.

A 1 — 1 correspondence exists between a lattice rule Q(A) and a nonsingular integer
s x s matrix in utlf (upper triangular lattice form). This is an upper triangular matrix
B satisfying

bT’C

0 when r > ¢,
€ [0,b.) when r < ¢, (1.3)
> lfore=1,2,...,s

rc

cc b

and is one of many possible generator matrices of the lattice A+ dual to A. (Recall
that x € At & x - p is an integer for all p € A and that, when B is a generator
matrix of AL, a necessary and sufficient condition that x € At is simply x = AB, for
some A € Ag.) For a given A, the generator matrix of A+ in utlf is unique.

The abscissa count of @ is N(Q) = b11baz - - - bss. We may refer to N(Q) as the order
of Q or as the order of At or as the inverse order of A. Moreover, we may refer to the
rank of @ as the lattice rank of the matrix B, and denote this by either r(Q) or r(B).
This must not be confused with the conventional matrix rank of the matrix B that
is, the number of linearly independent rows, which we shall denote by p(B).

Many lattice rules having optimum properties have been discovered by computer
search. The earlier searches such as those in [M72] involved populations of rules
of the form (1.2) and so ignored all lattice rules of rank higher than 1. To our
knowledge, the extension of searches of this particular nature to include, for example,
rank-2 lattice rules has not been satisfactorily accomplished.

Many subsequent searches, for example, [CL01], used populations specified by dual
lattices in the form (1.3). In some cases, this turned out to be a much better strategy.
For example, the trigonometric degree of a lattice rule Q(A) is more readily deter-
mined from At than from A. In a search based on A, the first task for each lattice

considered might be essentially the determination of elements of AL,



Since both kinds of searches are in vogue, a natural task is collating the results. A
key problem is recognizing the rank of Q(A) from the parameters of B. Methods for
determining the rank of a lattice rule can be time consuming. We shall deal with
this problem in a companion paper. Here we approach the problem of determining
in some measure the distribution of lattice rules over various ranks.

In this paper we take only a short (and relatively difficult) step in this direction.
Following [L.SK91] we define the upper class of a lattice rule Q(A) as the s-tuple
[b11, b2g, ... ,bss] of the diagonal elements of B, the generator matrix in utlf (form
(1.3)) of the dual lattice A+. The number of distinct lattice rules in this upper class

18

VS([b]) = Vs([blh bgg, . 7655]) = 62263’3 tee bzs_l

We derive straightforward formulas for v, .([b]), the number of these lattice rules of
rank r, and for v ,.([b]), the number of these lattice rules having rank not exceeding
r.

In Section 2 we reintroduce class factorization and apply it to show that
g
or(B) = [T 72 ([, (1.4)
7=1

where ngl[a'(pﬂ)] is the unique prime factorization of [b]. Further sections are re-
stricted to prime power rules. In Section 3 we derive a key theorem, the rank propor-
tionality theorem, that allows us to express v, ([a®)]) as a power of p multiplied by
a factor vo.([p, p, ... ,p]) for a specified £ < s. Section 4 is devoted to the evaluation
of this factor, which is a polynomial of modest degree in p. We provide a general
recurrence relation for this factor and tabulate it for r < £ < 5. These results are
applied in a numerical example in Section 5.

2 Background Theory

In this section, we reintroduce the upper classes [b], define a class prime factorization,
and re-express 7 ,([b]) in terms of vy, ([a®)]), where [ai)] is a prime upper class.
The principal result is (1.4) above.

While the lattice rank occurs in the theoretical development in a natural way, the
problem of determining the rank of a given lattice rule remains nontrivial. One
standard method introduced in [LK95] is by means of the classical Smith normal
form (snf).

Theorem 2.1 A nonsingular integer matriz B may be uniquely diagonalized as
S=UBYV,

where U and V' are unimodular integer matrices (|detU| = |det V]| = 1) and S =
diag{ni,ng,... ,n., 1,1,... 1} with n;y1 | n; and n, > 1.



The integers n; are the (nontrivial) invariants of the corresponding lattice rule () (see

[LK95], [SL89], and [SJ94]), and the number of (nontrivial) invariants is the rank
of Q.

In the case of a prime power rule, that is, one for which N = |det B| = p* =
ning - --n, for some prime p, all the (nontrivial) invariants are positive powers of
p. The (modulo p) matrix rank of a matrix B, denoted by p,(B), is the rank ob-
tained when all matrix elements b;; are replaced by b;; modulo p, and all elementary
arithmetic operations involving matrix elements are carried out using modulo p arith-
metic. It is trivial to show that elementary row and column operations do not alter the
(modulo p) matrix rank of a matrix. Since the unimodular matrices U and V' in the
statement of Theorem 2.1 have the effect of elementary row and column operations
on B, it follows from the theorem that

po(B) = pu(9). (2.2)

Since S (modulo p) = diag(0,0,...,0,1,1,...,1), there being r zero elements and
s — r unit elements, it is clear that p,(S) = s — r. In view of (2.2) we then have the
following theorem.

Theorem 2.3 Let Q(A) be an s-dimensional prime power rule, and let B be any
generator matriz of the dual lattice A+. Then the rank of Q is given by

r(B) = s — py(B) := py(B),

where p,(B) is the modulo p matriz rank of the matriz B and p,(B) the corresponding
rank deficiency.

As mentioned in the introduction, the diagonal elements of any integer matrix B in
utlf may be used to classify lattice rules into upper classes. In [LSK91] the theory
of upper classes was developed with a view to the recognition and classification of
sublattices and superlattices of a given integration lattice.

Definition 2.4 The upper class of an s-dimensional integer malriz B is an integer

s-vector denoted by [b] = [bi1,baa, ... ,bss], where B = VB is the utlf of B.

Definition 2.5 The upper class of Q(A) is the upper class of any generator matrix
of A*.

By extension, we occasionally refer to this as the upper class of A*; and we write
At € [b]. We define the order of an upper class as by1byg - - - bss.

A simple counting exercise indicates that the number of distinct rules Q(A) belonging
to the specified upper class [b] = [b11, b2z, . .. , bs] is

vs([b]) = vs([b11, baz, . . . , bss]) = bagb3y - - b2 (2.6)



This is the number of distinct matrices B in utlf having diagonal elements by1, baa, . . . , bgs.

In the theory of upper classes, a concept of class factorization was introduced. Thus,
[b11,022, -« ybgs] = [Cr1, 02, -« lss][rin, ma2, - oo Tss] (2.7)
implies that
bii = Liiryi, 1 <1 <s.
Moreover, in view of (2.6) and (2.7), we have immediately

Vs([blh bgg, Ce ,bss]) = 1/5([5117622, Ce ,ESS])VS([Tll, 22, ... ,Tss]). (28)

Definition 2.9 A prime upper class is one of the form [p™,p*, ... p*], where p is
a prime and v; > 0.

Each member @ of this upper class is a prime power rule of order N(Q) = p™ 72+ 47,
The prime factorization of an upper class is one in which each factor is a prime upper
class, corresponding to a different prime. An example of a prime factorization is

[42,36,14] = [2,4,2][3,9,1][7,1,7]. (2.10)

Thus [3,9,1] is one of the prime factors of [42, 36, 14].
In view of (2.6) we have

'Vl’ ’Y2’ . ’p’Vs]) — p’y2+273+...+(5—1)’)/5. (211)

vs([p™,p

One context in which this concept of factorization is helpful is in applications of the
following theorem.

Theorem 2.12 (LSK91; Theorem 2.1) Let s X s nonsingular integer matrices B and
R be the generator matrices of Ap and AR, respectively. Then Ap O Ap if and only
if L = BR™' is an inleger malriz.

The proof is straightforward and is given in [LSK91]. If we treat B in utlf and seek R
in upper triangular form, then L is also in upper triangular form. Moreover, in this
situation we require b;; = £;r;; for 1 <1 < s. In [LSK91] it is shown in detail how R
may be obtained in utlf.

An almost trivial consequence of this theorem is the following result.

Theorem 2.13 Lel Ag and Ag be of upper classes [ri1, 722, ... ;7] and [by1,baa, ...  bgl,
respectively. For Agr to be a superlattice of Ag, that is, Agp O Ap, it is necessary that
[F11,T22, - -+ ,T'ss| be a factor of [by1,baa, ... byl



Since the earliest papers on lattice rules, for example, [SL89], the structure of lattice
rules in terms of finite group theory has influenced the development of the general
theory. In [LJ99], the classical theory regarding the decomposition of an Abelian
group as the direct sum of Sylow p-components was applied in a constructive manner
to lattice rules. We now review briefly some of this theory and extend it in a minor
way.

The order of a point x is the smallest integer A for which Ax € Ay. For every prime
number p, the subset of points in A having orders 1, p, and all higher integer powers
of p form a sublattice which is termed the Sylow p-component of A and is denoted

here by A®),

A sum operator for integration lattices was defined; the lattice sum A = Ay + A,
comprises all points x that may be expressed in the form x = x; 4+ x5, where x; € A4
and x5 € Ay. It was shown that any integration lattice A for which N(Q), the order
of Q(A), has the prime factor decomposition

N(Q) = py'pa® -+ py (2.14)
may be uniquely expressed as the lattice sum of its Sylow components:
A=A g AP o AP, (2.15)

Each Sylow component A9) is of inverse order p{* and is the unique sublattice of A
having this inverse order. A simple way of obtaining the D — Z form for each Q(A®?)
from the D — Z form (1.1) of Q(A) is given in [LJ99].

In the present context, we are interested in the upper class to which the dual lattice of
A®) | the Sylow p;-component, belongs. This is given by the following not unexpected
theorem.

Theorem 2.16 Lel A+ € [b] have order (2.14), and lel the unique prime factoriza-
tion of [b] be

?

[b] = [a.(pl)] [a.(pa)] . [a(pq)]

[0®))] being the unique prime factor of [b] having order p?]. Then the dual latlice
(AP YL of the Sylow component in (2.15) belongs to the upper class [aPs)].

Proof. This is almost self-evident and depends critically on the uniqueness of a Sylow
p-component. Let (A®))+ belong to some upper class [r]. Since A is a sublattice
of A of inverse order p;yj, it follows that (A®))+ is a superlattice of At of order p;y].
Thus [r] is of order pjj. Also, since (A))L is a superlattice of A+, Theorem 2.13
reveals that [r] is a factor of [b]. The unique upper class [r] satisfying both these
conditions is [¢®)]. O



Let [b] = [o®)][e??)]-..[09)] be the prime factorization of [b], and let the order
of each element At belonging to [b] be N = by1byy---bss = piip5? -+ pg?. Tt follows
from (2.8) that

q

vo([b]) = [ ve(le®™]). (2.17)

i=1

In this paper we are interested in calculating vs,([b]), the number of rules of rank r
belonging to [b], and incidentally

Zar((b]) = ) vam([b]),
m=1
the number of rules belonging to [b] whose rank does not exceed r. It was established
in [L.J99] that
r(Q(A)) = max r(Q(AM)).

1<5<q

Thus the lattices in the upper class [b] that are of rank r or less stem from lattices
in [o(?)] that are of rank r or less. Limiting the contributions in (2.17) in this way
gives

q
Zor([b]) = [] 7 (o).
7=1
This allows us to restrict our attention to v, ,([o]), where [o] is a prime upper class.

3 Number of Prime Power Lattice Rules Having Specified
Upper Class and Rank

In this section we treat prime power rules only. The main result is Theorem 3.1
below, which shows that v, . ([p",p”,...,p"]) may be expressed simply in terms of
ver([pyp,...,p]). Here the prime p occurs £ times, where ¢ is the number of nonzero
components of .

While dealing exclusively with prime upper classes, it is convenient to modify the
notation. Since [b] = [b11,b22, ... ,bss] is now of the form [p™, p™ ... p”], we shall
replace [b] by (), the value of p being understood. We set

Vs,r([b]) = I/s,r([bllva%"' abss]):’/s,r([pmvav”' ,p%])
= Vsr(M3725 - 57%) = Vs ().

We shall also abbreviate by vs,.(1%) the quantity
Vsr([pspy- - 5p]) = vsr(1,1,... 1),

7



The same notation, but without the r subscript, refers to the total number of rules
in the upper class.

Theorem 3.1 Let {() be the number of nonzero components in vy, and let vs(=y) be
the total number of members having upper class [p",p"2,... ,p"]. Then

Vsr(Y) _ ve.(1°)

- ” 3.2

v(v) w1 (32)

where vy(1%) and v,,.(1°) are the number of lattice rules in upper class [p,p, ... ,p| (the
p being repeated { times) and the number of these of rank r, respectively.

Let us define the ratio
Vs,r ()
Hsr\Y) = 7 3.3
) = 33

as a rank proportionality factor. Then Theorem 3.1 equates two distinct rank pro-
portionality factors, that is, u, () = pe,(1°). We refer to this theorem as the rank
proportionality theorem.

The formula (3.2) holds when v is replaced by v in the numerators. Here,

Ds,r('}’) = Z VS,m('Y)

is the number of lattice rules of this upper class having rank not exceeding r.

To establish the rank proportionality theorem, we first define two subsets of {1,2... | s}:
these are

T(v)={3:v =21} UMR)={5:v =0}
And we define

i — min(1,7;) = 1 when y € T, i.e. when v; > 1,
Vi = M= 0 when 7 € U, i.e. when v; = 0.
Lemma 3.4 The rank proportionalily factor (3.3) satisfies

s (V) = s, ()

Proof. Let L,(7) be the set of s x s matrices in utlf of upper class () and let
M € Lg(v) be specified. Then there is a unique member B of L;(%) whose non-
diagonal elements are b;; = m,; mod p and whose diagonal elements are p¥, that is,
p or 1 according to whether v; is positive or zero. On the other hand, for specified
B € Ls(7), there are precisely HjeTp(j_l)(W_l) matrices M € Ls(5). These are
obtained from B by replacing the diagonal elements by p” and, for 7 € T and



i < j, by setting m;; to be one of the p?~! values for which m;; = b;; (mod p) with
bij € [0,p). (When j € U, both m;; and b;; are zero.)

Since M mod p = B mod p, it follows from Theorem 2.3 that M and B have the same
lattice rank. Thus, corresponding to each B € Ly (%), there are Ny = H]ET pli=1(;—1)
matrices M € Ls(=) having the same lattice rank. Since this is an Nr to 1 correspon-
dence between elements of Ls(7) and Ls(%) and this correspondence preserves the
lattice rank r, it follows that the proportion in each set is the same. This establishes

the lemma. O

We now use a similar argument to establish the following result.

Lemma 3.5 Let 5; be 1 or 0 according to whether v; > 1 orv; =0, and let £ be the
number of unit components in . Then for 1 <r </,

s (3) = per(1°).

Proof. Suppose B € L,(%). Since 4 has precisely s — ¢ zero components, s — ¢
diagonal elements of B are units and their corresponding column vector includes only
one nonzero element, which appears in the diagonal position. Using elementary row
and column interchanges one may transform B into B’ having the form

I._, C
B/:|: Oé B//:|7

where I,_, is a unit matrix and B” is a member of Lg(lé). Theorem 2.3 shows that
r(B) = r(B') = s — py(B’). Since p,(B") = s — L+ p,(B") = s — p,(B"), we see
that the lattice rank of B coincides with the lattice rank of B” and is independent
of the elements in . Because C' is obtained from B by deleting every column with
a unit diagonal element and every row without a unit diagonal element, we see that
the elements of C' are b;; for : € U and j € T. When j < 1, then b;; = 0; when 5 > 1,
b;; may take any value in [0,p). Suppose there are n elements b;; such that ¢ € U,
7 € T,and 5 > i. These are the only elements in C' that can be nonzero.

Suppose B” is of lattice rank r. Then corresponding to this B” are p” distinct matrices
B of this lattice rank, these being obtained by allowing the n elements in C' that can
be nonzero to take values in [0, p) independently of each other.

Since every distinct matrix B € L,(%) corresponds to one unique matrix B” € L;(1%),
it follows that the proportion of matrices having a particular rank is the same for
each set. That is,

o vse(A) (1Y) ‘
tsr () = ) - i) = e, (1°).

This establishes the lemma and hence Theorem 3.1. O



A direct corollary of Theorem 3.1 is obtained by a double substitution of (2.11) in
(3.2).

Corollary 3.6 Let ((7) be the number of nonzero components in ~, and let vy(y) be
the total number of members having upper class [p",p"2,... ,p"]. Then

Ve () = v, (10)prF20etF o=t ptlt=1)/2

?

where vy, (1%) is the number of latlice rules of rank r in upper class [p,p,... ,p|.

This reduces significantly the scope of the problem. Essentially the dependency on
~ has been factored out of v,,(v). We now need only expressions for v, (1%), a
two-parameter set.

4 Recurrence Relations for v, (1°)

In simple cases, we may obtain expressions for v;,(1¢), 1 < r < £, directly. For
example, we have v;,(1%) = 1. This is a consequence of Theorem 2.3; the number of
matrices B” for which B = B” mod p has matrix rank zero is just 1. We shall now
derive a recurrence formula that yields expressions for other choices of the parameters
r and £ relatively painlessly as polynomials in p.

Theorem 4.1 For1 <r </,

Vesr, (1F) = (p" = 07w, (1) 4 g0 (19).

Proof. Suppose £ € Lg_}_}(l“_l) has lattice rank r, and let £ = F mod p. Then the
(+1) x (£ +1) matrix £ may be written as

- B b
P=lo 5]

where B = B mod p for some B € Ly/(1%) and b is a £ x 1 column vector having
components in [0, p). Note that there are p’ possible choices of the vector b and that
each B corresponds to a unique B. The matrix E has lattice rank r if and only if
F has matrix rank ¢ + 1 — r. In this situation, B must have a matrix rank of either

L4+1—rorf—nr.

If B has matrix rank £41—r, then it has /+1—r linearly independent column vectors,
say, by,... ,bsgy1-.. When F has matrix rank £ 4+ 1 — r, b is linearly dependent on
these vectors, and hence we may write

l41—r .
b= )" Ab; mod p,

=1

10



where A; € [0,p). We see that each choice of the A; produces a different b. Thus the
number of possible b for which both B and E have matrix rank £+ 1 — r is given by
pT1=". Moreover, there are vy,_;(1*) matrices B that have matrix rank /+1—r, and
so we conclude that the number of matrices £ for which both £ and B have matrix

rank £ + 1 — r is given by p™1=" v, (19).

In the second case, when B has matrix rank ¢ — r, the argument in the preceding
paragraph shows that there are p~" vectors b that result in £ having matrix rank
¢ — r. Tt then follows that there are p’ — p~" vectors b for which E has the desired
matrix rank £ + 1 — r. Thus the number of matrices F for which E has matrix rank
{4+ 1—r and B has matrix rank ¢ — r (and hence rank deficiency r) is given by

(p" — p" " e, (1°).

The arguments in the two preceding paragraphs then establish that for 1 <r </,

Vg_HJ,(lZ-H) = (pé - pZ_T)V({J(lZ) + pé+1_7”1/g7,n_1(1z). (4.2)

a

This may be used as a recurrence relation to evaluate v, (1) as long as it is correctly
anchored. For this, one needs v;,4(1¢) = 1 and v44(1%) = 0 for £ > 1.

In Theorem 4.1, we obtained the recurrence relation (4.2) for v,,(1), this being
the number of /-dimensional lattice rules of rank r belonging to the upper class
[p,p,...,p]. We now note some minor algebraic corollaries that could be useful in
practice.

In some contexts, one requires the number of rules v, (%) of the upper class () whose
rank does not exceed r. As mentioned after the statement of Theorem 3.1, this is

r

ranly) = 20 5,10y = 200y, e, (4.3

ve(14) (19

m=1

An independent recurrence relation for ,(1°) can be obtained by elementary ma-
nipulation of (4.2). This yields

Dg+17r(1é+1) = (pé — pé_’")ﬂgm(lé) —I—pé_’"Dgﬂn_l(lZ) for 1 <r <V, (4.4)

anchored by v ,(1%) = v,(1%) = p=1/2 and veo(1%) = 0 for £ > 1. Note that (4.2) and
(4.4) are almost identical; the difference being the replacement of a single coefficient
p1=" by p*=" in the second term. The same remark applies to (4.6) and (4.8) below.

The expressions for v,,.(1°) obtained in this way contain significant factors of the form

(p — 1)p’. These can be factored out of the recurrence relation (4.2). It can readily
be established that

I/gﬂn (1Z)
(p _ 1)Z—rp((f—r)(f—r—1)/2

mo(15) = (4.5)

11



satisfies the recurrence relation

pr—1

for 1 <r </,
p—1

ﬂ-f—l—l,r(lé—}_l) - ﬂ-é,r(lz) + pz—l—l_rﬂ-f,r—l(lé)

anchored by m,(1¢) = 1 and m;0(1%) = 0 for £ > 1.
Analogously, one may show that

g, (1%)

_ A
T (17) = (p — 1)e—rple=n)te=r-1)/2

satisfies the recurrence relation

pr—1

— T (1) + P g (1) for 1 <r <,

ﬁ-é—}—l,r(lé—}_l) -

anchored by 7,,(1¢) = =112 and Tro(14) =0 for £ > 1.

(4.6)

(4.8)

This formula together with (4.6) was used to generate the expressions for 7, (1¢) and

To,-(1%) for 1 <r < ¢ <5 given in Table 1.

Table 1: Expressions for m,.(1¢) and 7, (1%)

O | m,(1%) 70, (1%)

1{1]1 1

20111 1
211 p

3011 1
2| 2p+1 (P’ =1)/(p—1)
311 p?

411101 1
2 |3p*+3p+1 PP +2pt +3p+1
3132 +2p+1 (P =1/(p—1)
411 p®

50111 1
2 | 4p° +6p* +4p+1 pt+3pP +6p +4p+1
316p*+8p° +7p? +3p+1 | p" +2p° +3p° +4p* +5p> +6p* +3p + 1
414p° +3p7 +2p + 1 (P =1/(p-1)
511 p10

12



5 Summary and Example
We summarize here the steps in the calculation of v ,.([b]). In practice, we evaluate
Us([b]) and finally set v ,.([b]) = vs,.([b]) — Us—1([b]).

As described in Section 2, we obtain the prime factorization of [b] and set
g
ar([b]) = [ [ 721D
7=1

[a(?))] being a prime factor of [b]. The class of the corresponding Sylow p-component
is of the form

[a(p)] =[p",p” P
and for 1 <r </ (see (4.3)),

DST([‘T(p)]) = Dgr(1Z)p72+273+"'+(5—1)%—Z(€—1)/2

_ ﬁz,r(lé)(p i 1)é—rp(é—r)((Z—r—1)/2p72+273+~~~+(s—1)'ys—Z((Z—l)/Q

3

where £ is the number of positive integers in the set {7; : 1 < ¢ < s}. Note that the
first factor in this last expression, which depends on ¢ and r, is a polynomial in p of
degree not more than ¢(/—1)/2. The second and third factors depend on (¢ —r) only.
The final factor depends on ~; and on £. For r > £, we set Dsm([a'(p)]) = 1?574([0'(?9)]).

As an example, we apply these formulas to obtain the number of three-dimensional
rules of various ranks belonging to upper class [42,36, 14]. Using the prime factoriza-
tion given in (2.10), we find

vs,-([42,36,14]) = v5,.([2,4,2])v3-([3,9, 1])vs..([7, 1, 7]). (5.1)
For the first factor on the right, p =2, v = (1,2,1), and £ = 3, giving
73,([2,4,2]) = 73,(1%)(2 — 1)>772B-B-r=1)/29242x1=8x2/2 _ 7, (13)9B-r)B=r=1/2 9
From Table 1 with ¢ = 3, we find
ma(17) =1, ma(1) = (p° —1)/(p—1) =7, ms(1°) =p’ =38,
yielding

3,-([2,4,2]) =4, 14, and 16 for r=1,2,3.

A similar calculation for the other two factors is marginally shorter (since £ = 2, the
result for r = 3 coincides with that for r = 2). We find

v5,([3,9,1]) =6, 9, and 9 for r=1,2.3
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and
s ([7,1,7]) =42, 49, and 49 for r=1,2,3.
Putting these values into (5.1) we obtain

751([42,36,14]) = 4 x 6 x 42 = 1008,
752([42,36,14]) = 14 x 9 x 49 = 6174,
755([42,36,14]) = 16 x 9 x 49 = T056.

These are the number of rules of that upper class having rank r or less. The number
having rank r may be obtained by subtraction, giving

vs,,([42,36,14]) = 1008, 5166, and 882 for r =1,2,3.

We note that these numbers are in surprisingly simple ratio to one another. For
example 155 = Tr37. A similar observation, in a somewhat similar list appearing in
[JH92], motivated the present work.

Previously published formulas for the number of lattice rules satisfying various con-
ditions are significantly different from those presented here. The easiest formulas (see
[L.S89]) are for v4(N), the number of s-dimensional rules of order N. Formulas for
vs(ni,n2, ... ,ns; N), the number of rules having specified invariants nqy > ng > -+ >
ns, were derived independently in [L93] and in [JH92]. Both formulas use what is
essentially a Sylow p-component decomposition. Formulas are given for

a1 Q2 QAjs, Oy
VS(pj 7pj 7"'7pj 7pj )7
where N = Hq e and n; = [[%_, p°7* are the prime factor decompositions with
. 1 P; i 1 P; p p

Doy Qi = Q.

The relation of these results with the present results is tenuous. In our example, the
rules belonging to [42,36,14] form a subclass of 7,056 rules of the total number of
651 x 1210 x 2850 = 2,244,973, 500 rules (see [LS89]) of order 42 x 36 x 14 = 21, 168.
There are 4 x 3 x2 = 24 possible sets of invariants. If we are interested in the number of
rules having only rank 1, one can find that there are 448 x1053x2793 = 1,317,580, 992
rank-1 rules in this set. The problem treated here, however, is essentially different. The
new result could, of course, be used, in extremis, to find the number of rank-r rules
of order N; but this approach would require finding all the upper classes of order NV
and evaluating v, ,([b]) for each.

6 Concluding Remarks

The rank of a lattice rule is one of its significant theoretical properties. For a given
lattice rule, however, calculating its rank is not trivial. This paper is limited to
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finding the number of lattice rules of rank r in a given upper class by using a noncon-
structive argument based on proportions. This quantity is first calculated for prime
upper classes using recurrence relations. Then the Sylow p-decomposition allows the
calculation for any upper class.

At present, it appears to be easier to determine the number of lattice rules of a given
rank than to determine the rank of any particular rule. In a companion paper, we
shall treat the practical task of determining the individual rank of a given lattice rule
when its corresponding generator matrix for the dual lattice, B, is available in utlf.
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