
Working Paper Series
ISSN 1170-487X

ARBITRARY BOOLEAN ADVERTISEMENTS:
THE FINAL STEP IN SUPPORTING THE

BOOLEAN PUBLISH/SUBSCRIBE MODEL

Sven Bittner & Annika Hinze

Working Paper: 06/2006
June 9, 2006

c©Sven Bittner & Annika Hinze
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Arbitrary Boolean Advertisements: The Final Step in
Supporting the Boolean Publish/Subscribe Model

Sven Bittner and Annika Hinze

Department of Computer Science
The University of Waikato, New Zealand

{s.bittner,a.hinze}@cs.waikato.ac.nz

Abstract. Publish/subscribe systems allow for an efficient filtering of incoming
information. This filtering is based on the specifications ofsubscriber interests,
which are registered with the system as subscriptions. Publishers conversely spec-
ify advertisements, describing the messages they will sendlater on. What is miss-
ing so far is the support of arbitrary Boolean advertisements in publish/subscribe
systems. Introducing the opportunity to specify these richer Boolean advertise-
ments increases the accuracy of publishers to state their future messages com-
pared to currently supported conjunctive advertisements.Thus, the amount of
subscriptions forwarded in the network is reduced. Additionally, the system can
more time efficiently decide whether a subscription needs tobe forwarded and
more space efficiently store and index advertisements.
In this paper, we introduce a publish/subscribe system thatsupports arbitrary
Boolean advertisements and, symmetrically, arbitrary Boolean subscriptions. We
show the advantages of supporting arbitrary Boolean advertisements and present
an algorithm to calculate the practically required overlapping relationship among
subscriptions and advertisements. Additionally, we develop the first optimization
approach for arbitrary Boolean advertisements, advertisement pruning. Adver-
tisement pruning is tailored to optimize advertisements, which is a strong contrast
to current optimizations for conjunctive advertisements.These recent proposals
mainly apply subscription-based optimization ideas, which is leading to the same
disadvantages.
In the second part of this paper, our evaluation of practicalexperiments, we an-
alyze the efficiency properties of our approach to determinethe overlapping re-
lationship. We also compare conjunctive solutions for the overlapping problem
to our calculation algorithm to show its benefits. Finally, we present a detailed
evaluation of the optimization potential of advertisementpruning. This includes
the analysis of the effects of additionally optimizing subscriptions on the adver-
tisement pruning optimization.

1 Introduction

Most current research activities in the area of content-based publish/subscribe (pub/sub)
systems target at the extension of the main pub/sub functionalities, e.g., by integrat-
ing metadata [11, 21], by supporting higher abstraction layers for clients [1, 12], or by
allowing for dynamic network reconfigurations [22]. Our work, however, rather con-
centrates on the basic principles and foundations of these systems. This different focus
originates out of the, in our opinion, insufficiency of current solutions.

2 Sven Bittner and Annika Hinze

We have recently been able to show that the direct filtering onarbitrary Boolean sub-
scriptions has advantages in respect to both the scalability and the efficiency of pub/sub
services [2, 3]. In this paper, we extend our research to the advertisement-based pub/sub
model. That is, this work presents the first solution to buildan efficient pub/sub system
supporting arbitrary Boolean subscriptions and, symmetrically, arbitrary Boolean ad-
vertisements.

Generally, advertisements foster the cooperation betweenpublishers and subscribers.
They also decrease the number of routing tables entries and thus increase the scalability
of pub/sub systems, shown, e.g., in [18]. The basic idea of advertisement-based pub/sub
systems is as follows: Advertisements describe the event messages that publishers will
send later on; these advertisements are distributed among all brokers of the pub/sub
system. Having this information about publishers, the system can then optimize the
subscription forwarding process: Subscriptions are only forwarded in the direction of
neighbor brokers that have previously sent anoverlappingadvertisement. Thereby, this
overlapping relationship describes whether any event message described by an adver-
tisement can fulfill a subscription.

Key factor in advertisement-based pub/sub systems is the efficient calculation of
the overlapping relationships among subscriptions and advertisements, and vice versa1.
This relationship is symmetric, i.e., if an advertisement overlaps a subscription, the
subscription also overlaps the advertisement. In combination with defining subscrip-
tions and advertisements in an arbitrary Boolean way, one universal solution for the
calculation of overlappings is sufficient for both directions.

The next step after having found the means to calculate the overlappings is to de-
velop an optimization for arbitrary Boolean advertisements. It has been proposed, e.g.,
in [18], to directly apply current routing optimizations for conjunctive subscriptions to
advertisements. However, such an approach leads to severaldrawbacks, as shown in
Sect. 2.2. But more importantly, these existing optimizations only work in combination
with conjunctive filter expressions, which opposes the requirement of developing an
optimization for arbitrary Boolean advertisements.

In this paper, we firstly propose a method to determine the overlapping relationship
in advertisement-based pub/sub systems that support both arbitrary Boolean subscrip-
tions and advertisements. Secondly, we present an optimization method for pub/sub
systems that is applicable to arbitrary Boolean advertisements, advertisement pruning.
The third part of this paper contains an extensive evaluation of the proposed algorithm
to determine the overlappings and of the proposed advertisement pruning optimization.
We use an online auction application scenario [5] throughout the whole paper to exem-
plify our calculation approaches as well as to generate our test settings.

The rest of this paper is structured as follows: In Sect. 2, wepresent and analyze re-
lated work in the area of advertisement-based pub/sub systems. Section 3 describes the
semantics of event messages, and arbitrary Boolean subscriptions and advertisements in
detail. These definitions are fundamental because the algorithm to determine the over-
lappings heavily depends on these semantics. We gradually develop this algorithm in

1 In case of issuing new advertisements, we require to determine whether overlapping subscrip-
tions exist. Knowledge of overlapping advertisements is needed when registering new sub-
scriptions.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 3

Sect. 4. Section 5 then successively proposes the advertisement pruning optimization.
Our experimental evaluation is presented in Sect. 6. We finally conclude and present
future work in Sect. 7.

2 Related Work

In this section, we present related approaches, and works that build the foundations
for our later proposals. Section 2.1 starts with analyzing current advertisement-based
pub/sub systems in general. Optimizations for advertisements are then the topic of
Sect. 2.2. Section 2.3 finally reviews subscriptions pruning, which has influenced our
later proposed advertisement pruning optimization and builds its basis.

We outline our algorithms on the basis of acyclic network structures (or the cre-
ated minimum spanning trees for cyclic networks), as assumed by most research pro-
totypes targeting at efficiency aspects, e.g., PADRES [17], REBECA [18], SIENA [9],
and XNET [10]. In this paper, we do thus not aim at, e.g., pervasive environments [24]
or automatic topology reconfigurations [22]. Instead, we assume the well-studied sub-
scription forwarding scheme [9] in combination with the attribute/value pair pub/sub
model. Extensions of our approach to P2P settings, e.g., used in [23], and other data
models, e.g., XML-based [10, 24] ones, remain future work.

2.1 Current Advertisement-based Approaches

Currently, advertisements have been proposed in conjunction with some pub/sub sys-
tems. All of these systems only support conjunctive subscriptions. Advertisements are
defined as conjunctions, or, even less expressive, they onlyspecify the message type
published later on. An example for this type-based approachis HERMES [23]. Pub/sub
systems supporting conjunctive advertisements include A-MEDIAS [16], PADRES [17],
REBECA [18], SIENA [8, 9], and the proposal in [15]. The proposed algorithms to com-
pute the overlapping relationship, if given at all, are specialized to the restricted con-
junctive forms of advertisements and subscriptions. Thesegiven algorithms cannot be
applied to more expressive subscriptions and advertisements than conjunctive ones.

To only base advertisements upon the published event type isclearly less expressive
than allowing publishers to further restrict their potentially sent messages by either arbi-
trary Boolean or conjunctive combinations of predicates. Thus, the mechanisms offered
by HERMES [23] do not minimize the amount of forwarded subscriptions (and thus the
computational load in brokers) to the same extend as the other types of advertisements.
However, the overlapping relationship is more efficiently to calculate in this case.

It is well-known that we can convert arbitrary Boolean expressions, e.g., advertise-
ments, to disjunctive normal forms (DNFs). Thus, if publishers would register several
conjunctive advertisements, they can specify the same potential messages as in an ar-
bitrary Boolean advertisement. However, these canonical forms are exponential in size
in the worst case [19]. For arbitrary Boolean subscriptions, it has been shown that their
direct support decreases the memory requirements for storing and indexing in various
practical settings [2]. We will apply a similar argumentation to arbitrary Boolean adver-
tisements in Sect. 3.4. Additionally, a system has to support several advertisements per
publisher for this conjunctive approach.

4 Sven Bittner and Annika Hinze

Furthermore, the calculation of the overlapping relationship for arbitrary Boolean
advertisements works more efficiently compared to a canonical form. This is because
a Boolean algorithm needs to evaluate subexpressions, occurring multiply in the con-
verted form, only once. Conjunctive algorithms, however, treat all advertisements inde-
pendently of each other and thus create a higher system load.We further elaborate on
this subject in Sect. 3.4, and practically compare conjunctive and Boolean approaches
in Sect. 6.3.

2.2 Current Advertisement-based Optimizations

In the existing literature on content-based pub/sub systems, one can hardly find any op-
timizations that are based on the registered advertisements. Instead, routing optimiza-
tions that have been proposed for subscriptions are suggested to be applied to adver-
tisements as well. These optimizations are subscription covering [9] and subscription
merging [18]. Both subscription covering and merging (in particular the perfect merging
approach) have, however, strong assumptions on the registered subscriptions, and they
require similarities and relationships among these subscriptions to lead to any optimiza-
tion effect (we refer to [7] for a detailed analysis and description of these drawbacks of
covering and merging).

Imperfect merging does not show this strong dependency on the subscriptions and
advertisements registered with the system. Additionally,it may have a higher optimiza-
tion potential than perfect merging [25]. One can further improve imperfect merging
for subscriptions by incorporating knowledge from advertisements, as proposed in [17].
However, we are not aware of any existing approaches that aretailored to advertisement
optimizations.

These facts describe the general problem of existing advertisement optimizations:
They are either independent of their application, i.e., theoptimizations do not exploit
whether they are applied to subscriptions or advertisements. Or, the optimizations have
been specifically developed for subscriptions and cannot besuccessfully applied to ad-
vertisements.

As a result, meaningful evaluations of advertisement optimizations can hardly be
found in the existing literature on pub/sub systems: SIENA [9] supports subscription and
advertisement covering in its routing protocols. However,this work does not answer the
question of the influence of advertisement covering on any system parameter. The same
does hold for HERMES [23] that, however, only supports little expressive type-based
advertisements.

Some other analyses of pub/sub systems consider the existence of advertisements
and evaluate the influence of optimizations based on subscriptions on the routing load:
REBECA [18] only analyzes the application of subscription covering and subscrip-
tion merging in combination with advertisement-based subscription routing. Also the
PADRES project [17], presenting a novel computation approach for covering and merg-
ing, does not consider the optimization of advertisements in its evaluation. In this paper,
we present an evaluation investigating the influence of the novel advertisement pruning
optimization in Sect. 6.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 5

2.3 Review of Subscription Pruning

Our later proposed advertisement-based optimization builds on the foundations of the
subscription pruning routing optimization. We thus brieflyreview subscription pruning
here:

We have introduced and evaluated subscription pruning in [7] (we refer to this work
for the full details about the optimization). Subscriptionpruning basically removes parts
of subscription trees and is suitable to be applied for all kinds of Boolean subscriptions.
The decisions about the removals of subtrees are based on heuristics [4].

One objective of subscription pruning is to decrease the memory usage for storing
subscriptions by reducing the subscription complexity, i.e., by pruning parts of sub-
scription trees. In doing so, the event filtering process also experiences efficiency gains,
another objective of pruning, due to this reduced complexity. Subscription pruning,
however, creates more general subscriptions and thus introduces false positives to the
system, which is increasing the internal network load. These false positives are, al-
though, not forwarded to subscribers because the local broker of each subscriber does
not perform subscription pruning for its local subscriptions. Thus, subscription pruning
does not affect correct event delivery.

As already mentioned, the decisions about pruning operations are based on a heuris-
tic that is estimating the effects of prunings on the networkload. This estimation is
performed by taking into account the increases in selectivity induced by pruning oper-
ations, referred to as selectivity degradation. Ordering the possible pruning operations
by these degradations then allows the system to firstly perform those prunings that only
have little effects on the network load before executing prunings that strongly increase
this load.

The estimation of selectivities is based on incoming event messages. The selectiv-
ity of predicates is directly known by counting the number ofmatching messages. For
newly registered predicates, we can apply estimation methods similar to [14]. For arbi-
trary Boolean subscriptions, the selectivities are estimated based on the operators used
in subscription trees [7].

3 Semantics of Events, and Arbitrary Boolean Advertisements
and Subscriptions

After having presented the state-of-the-art, we now introduce our notions and def-
initions of event messages (Sect. 3.1), subscriptions (Sect. 3.2), and advertisements
(Sect. 3.3). We need to properly define these concepts and their exact semantics be-
cause the later developed algorithms to determine the overlapping relationship and the
advertisement optimization strongly depend on these definitions. To conclude this sec-
tion, we show the advantages of supporting arbitrary Boolean advertisements in pub/sub
services in Sect. 3.4.

3.1 Definition and Semantics of Event Messages

For event messages, we assume a well-known definition based on event types and
attribute-value pairs. An event typeT specifies a set of attributesai, {a1 . . . an}, the cor-

6 Sven Bittner and Annika Hinze

responding attribute domainsdom(ai), and the supported filter functions for these at-
tributes (to be used in advertisements and subscriptions).An event messagee itself con-
sists of an event type and a set of attribute-value pairs:e = (T, {(a1, v1), . . . , (an, vn)}).
Event messages contain exactly one attribute-value pair for each attribute of their type.
In our application scenario of online book auctions, an example event messagee1 is
(for brevity, we only use a restricted set of four attributes):

e1 = (book, {(title, Harry Potter), (ending, 6h), (condition, new), (price, 21.00)})

This event message specifies the event type “book” and describes that a new copy of
a book is offered with the title “Harry Potter” and a current price of NZ$21.00. The
auction for this particular item is ending within six hours.

3.2 Definition and Semantics of Arbitrary Boolean Subscriptions

A subscriptionS is issued by subscribers to specify their interest in event messages.
Each subscription consists of an arbitrary Boolean filter expression2 and an event type.
Each variable of the filter expression is called a predicatep and is represented by an
attribute-function-operand triplep = (a, f, o). A predicate might refer to any of the
attributes specified by the event type of the subscription.

Each functionf has two inputs and evaluates to a Boolean value. Its first input is
an attribute value (as given by an attribute-value pair of anevent), and its second input
is an operando (as given by a predicate). These operands are not restrictedto values
of attribute domains; for example, they may also specify a set of values. The exact
definition of the permitted operands depends on the specification of functionf.

We can represent the Boolean filter expression of a subscription by a tree struc-
ture [6]. Negations in filter expressions are shifted down tothe leaf nodes using De
Morgan’s laws. We have given an example subscriptionS1 for our online book auction
scenario in Fig. 1(a) (for clarity, we have specified the event type above the root—it
does, although, not belong to the tree structure). It describes the interest in books whose
title contains the phrase “Harry Potter”, and there is less than one day left for the auc-
tion. The subscriber wants to pay less than NZ$25.0 for new book copies and less than
NZ$15.0 for already used copies. We have named the predicates ofS1 asp1 to p6.

An evente fulfills a subscriptionS if and only if S specifies the same event type as
e, and the Boolean filter expression ofS evaluates totrue on evente. For this evalua-
tion, each variable of the filter expression, i.e., a predicatep = (a, f, o), gets assigned
the result of the following operation: Evaluate functionf with the value given in the
attribute-value pair ofe (referring to the same attribute) as first input and the operand
o of predicatep as second input. If evente fulfills subscriptionS, e is referred to as an
event that is matchingS. Our example subscriptionS1 (Fig. 1(a)) is fulfilled by event
e1, which has been given in Sect. 3.1.

Subscriptions do not need to contain predicates referring to all of the attributes
specified by the event type of the subscription. Furthermore, subscriptions might con-
tain several predicates referring to the same attribute. The semantics in this case is given

2 We restrict our further specifications to the conjunctive, disjunctive, and negation operators.
We can represent all other Boolean operators by the help of these three supported ones.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 7

AND AND

condition = new

OR ending < 1 day

AND

title like "Harry Potter"

price < 25.0 price < 15.0 condition = used

(book)

p2p1

p3 p4 p5 p6

(a) Example subscriptionS1

AND AND

condition = new

OR

price > 20.0 price > 7.5

ending < 7 days

condition = used

AND
(book)

n4n2 n3 n5

n1

n6 n7

n8

n9

(b) Example advertisementA1

Fig. 1. Example subscriptionS1 and advertisementA1, using our online book auction scenario;
we have named the predicates ofS1 by p1 to p6 and the nodes ofA1 by n1 to n9

by the Boolean operators in the filter expression. For attributes not referred to by predi-
cates, subscribers do not restrict the attribute value in anevent message, i.e., they accept
all values. Whether the incoming event is matching solely depends on the predicates
used in the filter expression. This semantics is different from conjunctive approaches,
e.g., [18], where all attributes have to be referred to by exactly one predicate of a filter
expression. Other approaches, e.g., [13], explicitly insert don’t-carepredicates for at-
tributes mentioned in the type of a subscriptionS but not inS itself. Our approach does
not require this preprocessing, strongly increasing the subscription complexity.

3.3 Definition and Semantics of Arbitrary Boolean Advertisements

An advertisementsA is the counterpart of a subscription and is issued by publishers.
Advertisements describe the event messages publishers will send later on and need to be
registered with the pub/sub system before actual messages are published. Similarly to
subscriptions, advertisements consist of an event messagetype and an arbitrary Boolean
filter expression. The filter expression is defined as in subscriptions, i.e., it contains
predicatespi linked by Boolean operators. The semantics of an advertisementA is as
follows: The issuing publisher will send messages of the type given inA. For each
messagee that will be sent, the Boolean filter expression ofA evaluates totrue one.

Again, there might be several predicates in the filter expression referring to one
attribute. And some attributes might not be referred to by any predicate of a filter ex-
pression. For the former case, the semantics depends on the Boolean operator, e.g., a
disjunctive operator of two predicates referring to one attribute a, pi = (a, fi, oi) or
pj = (a, fj , oj), means that eitherfi or fj will evaluate totrue for each message (also
both functions could evaluate totrue if they do not exclude each other). For the later
case (attributes that are not referred to by predicates), publishers will send any values
for these attributes, i.e., they do not restrict the values they will send in their messages.

We give an example of an advertisementA1 in Fig. 1(b) (again, we specify the
event type, which does not belong to the tree structure, above the root node). This
advertisementA1 specifies that the publisher will send messages describing auctions
about used books that cost more than NZ$7.50 and about new books having a price of
more than NZ$20.00. Furthermore, the auctions of this publisher last no longer than
seven days. AdvertisementA1 does not restrict the title of books, i.e., its publisher

8 Sven Bittner and Annika Hinze

might send messages of any book title. We have named all nodesof the tree structure
of A1 asn1 to n9. The filter expression of advertisementA1 evaluates totrue on event
e1 (cf. Sect. 3.1). That is, evente1 could be sent by a publisher that has registeredA1.

3.4 Advantages of Supporting Arbitrary Boolean Advertisements

As already argued in Sect. 2, arbitrary Boolean advertisements allow publishers to more
accurately specify their potentially sent event messages compared to conjunctive ad-
vertisements. Even if assuming the conversion of arbitraryBoolean advertisements to
DNFs and the registration of several conjunctive advertisements instead of a Boolean
one, the direct support of Boolean advertisements does still have advantages in respect
to both system efficiency and scalability compared current approaches:

To determine the overlapping relationship in current conjunctive proposals, adver-
tisements are treated individually. Each conversion to DNFs creates several advertise-
ments out of an arbitrary Boolean one. These conjunctive advertisements share common
subexpressions. However, there is no optimization in respect to this property, i.e., for
these subexpressions the required calculations are multiply performed3. Using the ar-
bitrary Boolean expression, (most) subexpressions occur only once. That is, a Boolean
algorithm performs the calculations for these subexpressions exactly once. This bene-
ficial effect outbalances the higher computational load foranalyzing a Boolean expres-
sion compared to a conjunctive one. This advantage of using arbitrary Boolean adver-
tisements to determine the overlapping relationship increases with a growing size of the
equivalent DNF. In Sect. 6.3, we show these efficiency benefits when using arbitrary
Boolean advertisements.

Next to the efficiency benefits when calculating the overlapping relationship, arbi-
trary Boolean advertisements require less memory for storage and indexation than the
converted conjunctive ones. These memory requirements directly influence the scala-
bility properties of the broker components of a distributedpub/sub service [2, 20]. This
behavior results out of the requirement to apply pure main memory algorithms out of
efficiency reasons.

The work in [2] presents an extensive evaluation of the memory requirements of
arbitrary Boolean filtering algorithms and conjunctive filtering approaches. It is shown
that even if subscriptions contain only one disjunctive operator, the utilization of ar-
bitrary Boolean filtering algorithms requires less memory.Advertisements should be
indexed and handled in the same way as subscriptions to allowfor the efficient deter-
mination of the overlapping relationship [18]. These properties influence the memory
requirements as follows:

Let us exemplarily pick the counting algorithm [26] as conjunctive approach, and
use the results and notions from the analysis in [2]: To calculate the overlapping rela-
tionship, for storing and indexing conjunctive advertisements we require a hit vector, an
advertisement predicate count vector (which is the counterpart to the subscription pred-
icate count vector), a predicate advertisement association table (being the counterpart

3 The work in [17] shares common subexpressions of conjunctive filters in subscription indexes;
however, the work does not present solutions to compute the overlapping relationship among
subscriptions and advertisements.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 9

to the predicate subscription association table), and an advertisement predicate associ-
ation table (counterpart to subscription predicate association table). To index and store
Boolean advertisements, we require the advertisement trees (counterpart to subscrip-
tion trees), an advertisement location table (counterpartto subscription location table),
a predicate advertisement association table (counterpartto predicate subscription asso-
ciation table), a hit vector, and a minimum predicate count vector. That is, we require
exactly the same structures as for the filtering of subscriptions. And these structures
require the same memory as found in the analysis in [2]. Thus,its results symmetrically
hold for advertisements: Directly utilizing arbitrary Boolean advertisements requires
less memory for storage and indexation than the usage of the converted conjunctive
advertisements.

4 Calculation of the Overlapping Relationship

We have developed an algorithm allowing for the computationof the overlapping re-
lationships among arbitrary Boolean advertisements and subscriptions. Without loss of
generality, we consider the determination of all overlapping subscriptions in the fol-
lowing descriptions. Finding the overlapping advertisements for a subscription works
analogously (due to the symmetric definition of advertisements and subscriptions).

In the following subsection (Sect. 4.1), we present the general idea of our calculation
approach. Then, we outline the important and required concept of violating predicates
in Sect. 4.2. In Sect. 4.3, we gradually develop our algorithm for the determination
of overlapping subscriptions for conjunctive, for disjunctive, and finally for arbitrary
Boolean advertisements. A practical implementation of ourapproach is then described
in Sect. 4.4.

4.1 General Idea of the Calculation of Overlappings

A first solution to the problem of determining the overlapping relationship could work
similarly to the approaches for conjunctive advertisements and subscriptions, e.g., as
sketched in [18]. These solutions, in turn, are related to the event filtering algorithms
for conjunctive subscriptions, e.g., introduced in [26]: Let us firstly determine all pred-
icates of subscriptions that overlap the predicates of the advertisement. Secondly, we
can derive whether a subscription is overlapping based on the overlapping information
about its predicates: For conjunctive subscriptions, thisis a counting of the number of
overlapping predicates. And for arbitrary Boolean subscriptions, we can base this de-
cision on the minimally required number of fulfilled predicates [2] to determine the
candidate subscriptions and on the evaluation of the subscription trees of these candi-
dates.

However, a closer at the semantics of arbitrary Boolean subscriptions and adver-
tisements reveals the inapplicability of such an approach:An advertisementA does not
need to contain predicates for all attributes of its type. Thus, a subscriptionS might
overlap advertisementA even if not all predicates ofS overlap a predicate ofA. That
is, a calculation based on overlapping predicates leads to awrong answer if an attribute

10 Sven Bittner and Annika Hinze

is not used inA. Hence, the calculation of the overlapping subscriptions based on their
overlapping predicates does not work correctly for arbitrary Boolean advertisements.

Approaching the overlapping problem from the opposite direction, although, leads
to the correct result: Only the attributes referred to by thepredicates of advertisements
are restricted in conforming event messages. And a subscription S only restricts an
attribute value ifS contains predicates referring to this attribute. Thus, we should com-
pute all those predicates of subscriptions that arenot overlappedby an advertisement.
Attributesai referred to in a subscription but not in an advertisementA do not cause
problems because the publisher does not restrict the valuesof ai. Thus, these attributes
will be fulfilled by all event messages conforming toA.

In the following, we refer to non-overlapping predicates asviolating predicates. We
describe their calculation in the next subsection. In the further, remaining subsections,
we then introduce how to calculate the overlapping subscriptions purely based on these
violating predicates.

4.2 Definition of Violating Predicates

We have given a leaf nodeni of an advertisement tree that contains the predicate
pi = (ai, fi, oi). The violating predicatesPvio(ni) of ni are all those predicatespj =
(aj , fj , oj) (used in subscriptions) that refer to the same attribute of the same event
type, and there exists no attribute value that will lead to atrue result when applied to
both functions given in the predicates. That is, it has to hold:

ai = aj ∧ @v ∈ dom(ai)(fi(v, oi) = fj(v, oj) = true) .

We can compute the violating predicates based on the one-dimensional indexes uti-
lized for event filtering. The calculation depends on the functions used in both predi-
cates. For the functions EQUALS, NOTEQUALS, GREATERTHAN, and LESSTHAN, we
exemplarily give the rules for the determination of violating predicates in Table 1. Here,
we assume the attribute domain as totally ordered set (e.g.,integers). The first column
contains the functionfi used in a predicatepi of a leaf nodeni of the advertisement; the
second column shows the functionfj of a predicatepj of subscriptions; the last column
describes the calculation of the violating predicatesPvio(ni). Also for other domains
and operators, e.g., strings in combination with prefix, suffix, and substring operators,
we can calculate the violating predicates based on look ups in the utilized predicate
indexes.

To compute the violating predicates of each leaf nodeni of an advertisement, we
walk through all the indexes belonging to the attribute referred to by the predicate stored
in ni. Then, we calculate the violating predicates for each of these indexes (as described
in Table 1) and finally unite our results to get the setPvio(ni).

Example 1 (Determination of the violating predicates for predicates).For our example
advertisementA1 (cf. Fig. 1(b)), the violating predicates of the leaf nodesn1 to n5 are
as follows. Here, we assume that subscriptionS1 (cf. Fig. 1(a)) has been registered:

Pvio(n1) = ∅, Pvio(n2) = {p6}, Pvio(n3) = {p5}, Pvio(n4) = ∅, Pvio(n5) = {p3} .

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 11

Table 1. Overview of the calculation of violating predicates based on the used functions (fi–
function of the predicatepi = (ai, fi, oi) used in the leaf nodeni of the advertisement,fj–
function of the predicatepj used in subscriptions)

fi fj Calculation ofPvio(ni)

EQUALS EQUALS All predicates specifying another value thanoi

EQUALS NOTEQUALS All predicates specifying the same valueoi

EQUALS GREATERTHAN All predicates specifying a greater value thanoi

EQUALS LESSTHAN All predicates specifying a less or equal value thanoi

NOTEQUALS EQUALS All predicates specifying the same valueoi

NOTEQUALS NOTEQUALS All predicates specifying another value thanoi

NOTEQUALS GREATERTHAN If oi is the maximal value, the predicates specifying

the predecessor ofoi; otherwise none

NOTEQUALS LESSTHAN If oi is the minimal value, the predicates specifying

the successor ofoi; otherwise none

GREATERTHAN EQUALS All predicates specifying a less or equal value thanoi

GREATERTHAN NOTEQUALS If oi is the predecessor of the maximal value, the pre-

dicates specifying the maximal value; otherwise none

GREATERTHAN GREATERTHAN There are no violating predicates

GREATERTHAN LESSTHAN All predicates specifying a less or equal value thanoi

LESSTHAN EQUALS All predicates specifying a greater/equal value thanoi

LESSTHAN NOTEQUALS If oi is the successor of the minimal value, the pre-

dicates specifying the minimal value; otherwise none

LESSTHAN GREATERTHAN All predicates specifying a greater or equal value than

the predecessor ofoi

LESSTHAN LESSTHAN There are no violating predicates

4.3 Overlapping Subscriptions Based on Violating Predicates

In this section, we subsequently present the calculation ofthe violating predicates for
conjunctive, disjunctive, and finally for arbitrary Boolean advertisements. Then, we
show how to determine all overlapping subscriptions based on these violating predi-
cates.

Conjunctive Advertisements.For a conjunctive advertisementAc with root nodenc, the
set of violating predicatesPvio(nc) is the union of the sets of predicates violating each
of the child nodes (i.e., predicates) ofnc. The reason for this definition is the fact that
for all event messages conforming to the conjunctive advertisementAc, the functions
given in all predicates in the leaf nodes evaluate totrue. Thus, we need to combine the

12 Sven Bittner and Annika Hinze

violating predicates for allk children (n1 to nk) of nc:

Pvio(nc) =
⋃

i=1...k

Pvio(ni) .

Disjunctive Advertisements.For a disjunctive advertisementAd with root nodend,
we could build the intersection of all violating predicatesof the children ofnd. This
approach results in a set of predicates violating all predicates of the disjunction. How-
ever, the other violating predicates (those only violatingone or several predicates) are
neglected in this calculation. Because each disjunctive advertisementAd contains sev-
eral descriptions of event messages—of which one or severalhave to hold for each
message—the violating predicates ofAd are in fact expressed by several predicate sets.

This characteristic contradicts our previous notion of violating predicates as a set
of predicates. Violating predicates should instead be defined as a set containing sets of
predicates. Each of these sets describes one of the options expressed by the disjunctive
advertisementAd with root nodend, havingk children (n1 to nk):

Pvio(nd) = {Pvio(ni)|i = 1 . . . k} .

Arbitrary Boolean Advertisements.Arbitrary Boolean advertisements might contain
both disjunctive and conjunctive operators. Thus, their violating predicates must also be
defined as sets containing sets of predicates. We will base the calculation of the violating
predicates on the operators in the nodesn of advertisement trees. In the following,
we refer to this refined notion of violating predicates in combination with any noden
of advertisement trees asP ′

vio(n). All elements inP ′

vio(n) describe a set of violating
predicates induced byn.

For leaf nodesnl, we look up our indexes as described in Sect. 4.2. Then, we embed
the computed violating predicates ofnl in a set to obtain our refined notion:

P ′

vio(nl) = {Pvio(nl)} .

For a conjunctive nodenc havingk children,n1 to nk, we unite each set of violating
predicates of each child with each set of violating predicates of all other children:

P ′

vio(nc) = {
⋃

i=1...k

s|s ∈ P ′

vio(ni)} .

For a disjunctive nodend havingk children,n1 to nk, we unite the sets of all children:

P ′

vio(nd) =
⋃

i=1...k

P ′

vio(ni) .

Recursively calculating the violating predicates of the root node of the advertisement
tree ofA then allows us to determine the overlapping subscriptions for A. We describe
this method in the following paragraph, following this example:

Example 2 (Determination of violating predicates).Again assuming the registration of
subscriptionS1 (Fig. 1(a)), the violating predicates for the leaf nodes of advertisement

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 13

A1 (Fig. 1(b)) are straightforwardly derived from our calculations in Example 1:

P ′

vio(n1) = {Pvio(n1)} = {∅},
P ′

vio(n2) = {Pvio(n2)} = {{p6}},
P ′

vio(n3) = {Pvio(n3)} = {{p5}},
P ′

vio(n4) = {Pvio(n4)} = {∅},
P ′

vio(n5) = {Pvio(n5)} = {{p3}} .

For the conjunctive nodesn6 andn7 of A1, the violating predicates are as follows:

P ′

vio(n6) = {{p5, p6}}, P ′

vio(n7) = {{p3}} .

And for the disjunctive noden8, we derive the following violating predicates:

P ′

vio(n8) = {{p5, p6}, {p3}} .

Finally, for the conjunctive root noden9 the violating predicates are the same as forn8

in this example (because it holdsP ′

vio(n1) = {∅}):

P ′

vio(n9) = P ′

vio(n8) = {{p5, p6}, {p3}} .

Determination of Overlapping Subscriptions.We now describe how to determine the
overlapping subscriptions based on the calculated violating predicates. We require two
steps for this determination: In the first step, we determineall candidate overlapping
subscriptions. This set excludes all those subscriptions that will definitely not overlap
the given advertisement. The calculation of each candidateoverlapping subscriptionS
is purely based on the number of violating predicates per subscription,|Pvio(S)|. In
the second step, we then evaluate all candidates to determine whether their subscription
tree might still evaluate totrue if all violating predicates evaluate tofalse.

We can base the calculation of the candidate overlapping subscriptions on the min-
imally required number of fulfilled predicates|Pmin(S)| per subscriptionS [2, 3]. This
subscription-specific property is required in the event filtering step and thus already
known for all indexed subscriptions. The value|Pmin(S)| specifies the minimal num-
ber of predicates evaluating totrue if a subscriptionS is fulfilled by an incoming event
message, e.g., for a conjunctive subscription,|Pmin(S)| is the total number of predi-
cates,|P (S)|. For each candidate overlapping subscriptionS, the following property
has to hold:

|P (S)| ≥ |Pvio(S)| + |Pmin(S)| .

This inequality describes that a subscription tree can still evaluate totrue even if all
violating predicates do not overlap an incoming advertisement (i.e., evaluate tofalse).

To determine whether a candidate is an overlapping subscription, we evaluate its
subscription tree. We do not need to evaluate the functions of predicates because we
already know whether predicates overlap the advertisement: For violating predicates,
we assume the result of the function of the predicate asfalse. All other predicates are
assumed to evaluate totrue. If the whole subscription tree might still result intrue, the

14 Sven Bittner and Annika Hinze

subscription overlaps the advertisement. The reason for this is that violating predicates
are never fulfilled by an event messagee conforming to the advertisement. The other
predicates, however, might be fulfilled, depending on the values used ine.

This calculation is performed for all elements inP ′

vio(n), i.e., all predicate sets,
with n specifying the root of the advertisement tree. We illustrate this in an example:

Example 3 (Determination of overlapping subscriptions).For the root node of adver-
tisementA1 (Fig. 1(b)), we have already determined the set of violatingpredicates (cf.
Example 2):

P ′

vio(n9) = {{p5, p6}, {p3}} .

For our subscriptionS1 (Fig. 1(a)), it holds:

|P (S1)| = 6, |Pmin(S1)| = 4 .

Thus, subscriptionS1 is a candidate subscription for both elements inP ′

vio(n9) because
it holds 6 ≥ 2 + 4 (for set{p5, p6}) and6 ≥ 1 + 4 (for set{p3}). S1 is in fact an
overlapping subscription because its subscription tree can result intrue if p5 andp6, or
p3 is false(it is sufficient if this is the case for either one of these predicate sets).

4.4 Practical Implementation of the Calculation Approach

We have integrated our described approach of determining the overlapping relationship
in our prototype of a distributed pub/sub system, implemented in C/C++.

For the determination of the violating predicates of an advertisement, we use the
existing implementation of a predicate bit vector, alreadyused as fulfilled predicate
vector in the filtering process [2]. For leaf nodes, we determine the violating predi-
cates using the one-dimensional index structures and storethem in the predicate bit
vector. Currently, we use the STL map class for the realization of our one-dimensional
indexes and support the type integer. For the calculation, disjunctive nodes store the
bit vectors for all their children in an array. Conjunctive nodes determine the violating
predicates for their first child and then subsequently for the other children, including the
required union operation with the previous results (cf. Sect. 4.3). For pure conjunctive
advertisements and conjunctive nodes involving only leaf nodes as children, we have
implemented an optimization that is only using one predicate bit vector.

For each calculated predicate bit vector, we then determinethe candidate overlap-
ping subscriptions. This step uses the hit vector implementation, also required in the
filtering process. For each predicate, i.e., a bit that is setin the vector, we determine all
subscriptions containing this predicate (using the existing predicate subscription asso-
ciation table) and increase a counter in the hit vector. Having performed this step, this
hit vector represents the values|Pvio(Si)| for all subscriptionsSi.

We then calculate the candidate subscriptions using the nowknown information
about the number of violating predicates|Pvio(Si)| (just calculated), about the mini-
mally required number of fulfilled predicates|Pmin(Si)|, and about the total number of
predicates|P (Si)| (the later two are known for all indexed subscriptions).

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 15

For these candidates, we can then access their subscriptiontrees (using the subscrip-
tion location table required in the filtering process) and evaluate these trees based on
the violating predicates stored in the predicate bit vector(which allows the algorithm
to easily access the state of each predicate). If a tree can result in true with the given
violating predicates, it belongs to an overlapping subscription. This decision is based
on the used operators in the nodes of the tree.

5 Advertisement Pruning: An Optimization for Advertisements

After having the means to calculate the overlappings, we nowproceed with developing
an optimization approach for arbitrary Boolean advertisements. The general idea of
advertisement pruning is as follows: The pruning algorithmis trying to decrease the
complexity of advertisements, in respect to the space complexity for storage and the
time complexity for processing, without, in case of advertisements, strongly increasing
the amount of overlappings. In this section, we describe howto achieve these goals. We
show the inapplicability of the existing subscription pruning heuristics (cf. Sect. 2.3)
for advertisements in Sect. 5.1. In the remaining subsections, we then propose how to
tackle the advertisement pruning problem (Sect. 5.2 to 5.4)and how to find the most
suitable pruning operation among all advertisements (Sect. 5.5).

5.1 Inapplicability of the Subscription Pruning Heuristics

One could image that the heuristic to decide on the next subscription pruning operation
can be directly mapped onto the advertisement pruning problem. However, subscription
and advertisement pruning follow different optimization goals, and the existing heuris-
tic is thus not the applicable:

The main focus of subscription pruning is to decrease the selectivity of subscrip-
tions as little as possible (cf. Sect. 2.3), i.e., with each pruning operation we want to
generalize subscriptions to the least extend. The determination of the selectivities of
subscriptions is, obviously, based on the incoming event messages, which should match
as little as possible additional subscriptions due to pruning. When applying advertise-
ment pruning, we want to increase the amount of overlappingsamong subscriptions
and advertisements as little as possible. This is, at a first glance, independent of the
incoming event messages. Although, we can partially utilize the selectivities deduced
by event messages, as shown in the following subsections.

What is required to prune advertisements is rather a correlation between subscrip-
tions and advertisements because their overlapping relationships are altered by the prun-
ing process (optimally, as minimal as possible). Additionally, we do not need to evaluate
event messages against advertisements. Even the sole consideration of the predicates of
advertisements while filtering would unneccesarily decrease the event throughput of
the system. Thus, we cannot determine the selectivities of the predicates of advertise-
ments and, consequently, not of advertisements themselves. But also when assuming
these selectivities to be given, simply minimizing their degradation (cf. Sect. 2.3) when
pruning does have no relation to the registered subscriptions and thus to the overlapping
relationships.

16 Sven Bittner and Annika Hinze

Hence, advertisement pruning does require a completely different heuristic estima-
tion approach than subscription pruning. We successively propose a possible heuristic
in the following subsections. In Sect. 6, we then evaluate itin detail.

5.2 Discovering the Influences on the Overlappings

In this section, we subsequently identify the factors affecting the overlappings among
subscriptions and advertisements. We then incorporate these factors into a heuristic
estimating these influences in Sect. 5.3.

The algorithm to determine the overlappings uses the concept of violating predicates
for its calculations (cf. Sect. 4). The number of violating predicates is then used to
compute candidate subscriptions/advertisements. The less candidates exist, the more
efficient the calculation of overlappings.

Hence, an advertisement pruning operation should increasethe amount of violating
predicates. Such an increase is, however, impossible because a pruning operation al-
ways removes some predicates and thus the corresponding violating predicates. Hence,
a pruning operation needs to target at removing as little violating predicates as possible
to, in turn, enlarge the number of candidates as little as possible (Influence 1).

Although, if only considering the number of candidates, we could still strongly
increase the overlappings. The worst case is that before a pruning operation none of
the candidates represents an overlapping, but afterwards all candidates are overlapping.
Hence, we also need to take into account what violating predicates are removed due to
prunings (Influence 2).

Ideally, the removed violating predicates do not influence the fact whether a sub-
scription and an advertisement overlap. Or, to put it the other way round, the remaining
violating predicates should still disqualify subscriptions and advertisements from over-
lapping. Hence, pruning operations must not remove predicates from advertisements
that have violating predicates preventing subscriptions from overlapping. Making ratio-
nal assumptions about the usage of predicates, we can base this decision on the selec-
tivities of predicates. We elaborate on this proposal in thenext subsection.

5.3 Characterizing an Arbitrary Boolean Advertisement

Having identified the influences of pruning operations on overlappings, we now de-
velop a heuristic incorporating these factors. The first step in doing so is to quantify an
overlapping rankfor advertisements. By the help of this rank, we can then estimate the
effects of pruning operations (cf. Sect. 5.4). This, finally, allows for the determination
of the best among all possible pruning options (Sect. 5.5).

The overlapping rank combines the number of violating predicates of an adver-
tisement (quantitative overlapping rank) with the influence of these predicates on the
number of overlappings (qualitative overlapping rank). That is, it incorporates both of
the previously identified influences (Sect. 5.2). The overlapping rank can be succes-
sively calculated for an advertisement tree based on the utilized operators, as shown in
the following paragraphs.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 17

Leaf nodes. For a leaf nodenl of an advertisement tree, the quantitative overlapping
rank includes the number of violating predicates of the predicate stored innl and the
number of subscriptions using these predicates.

For the qualitative overlapping rank, we have to make assumptions about the usage
of predicates in subscriptions: Generally, subscriptionscontain a number of predicates
having different selectivities. For example, predicates on theTitle or theAuthorattribute
show a high selectivity (restrictive predicates), whereaspredicates on theConditionat-
tribute or a generally low price have a low selectivity (general predicates). In practice,
there is the tendency that highly selective predicates stronger determine whether a sub-
scription tree might be fulfilled (in respect to both matching messages and overlapping
advertisements). Thus, to state it the other way round, the more selective a predicate in
subscriptions, the more important its state of fulfilment.

Putting together these observations with the importance ofviolating predicates when
evaluating candidates, we should try to remove little selective violating predicates rather
than highly selective ones. The qualitative overlapping rank should thus incorporate the
selectivity of violating predicates: The higher selectivea violating predicate, the higher
the corresponding qualitative overlapping rank.

We define the overlapping rankrank(nl) of a leaf nodenl as follows. It is always
in between 0 and 1.

rank(nl) =
1

|predSubAssoc|
∑

pi∈Pvio(nl)

predSubAssoc(pi)
√

matches(pi) + 1
.

The expression in the right multiplication factor sums up the overlapping rank for all
violating predicatespi of the leaf nodenl. The elements in the sum contain the quantita-
tive partpredSubAssoc(pi), describing the number of predicate subscription associa-
tions of a violating predicatepi, i.e., how many subscriptions containpi. The qualitative
part is given by the denominator, stating the selectivity ofpi. The number of matchings
per predicate (referred to asmatches(pi)) is known from the selectivity estimation for
subscriptions4.

The left coefficient ofrank(nl) ensures that the overlapping rank is always between
0 and 1. The value|predSubAssoc| describes the total number of predicate subscrip-
tion associations. The caserank(nl) = 1 occurs if a leaf nodenl has all registered
predicates (from subscriptions) as violating predicates with a selectivity of zero each.

This definition of the overlapping rank assigns higher values to leaf nodes (including
predicates) having a large number of violating predicates.These violating predicates are
weighed according to their selectivity, i.e., their importance to disqualify a candidate
from being a real overlapping.

For the Boolean operators in an advertisement tree, we only estimate the overlap-
ping rank, as shown in the following paragraphs. This estimation rank≈(ni) for a node
ni contains three values, theminimal possible overlapping rank, theaverage overlap-
ping rank, and themaximal possible overlapping rank:

rank≈(ni) = (rankmin(ni), rankavg(ni), rankmax(ni)) .

4 It can be estimated for newly registered predicates, as outlined in [7].

18 Sven Bittner and Annika Hinze

For a leaf nodenl, these three estimations have the same value:

rankmin(nl) = rankavg(nl) = rankmax(nl) = rank(nl) .

We describe the calculation of the overlapping rank for leafnodes in the following
example:

Example 4 (Determination of the overlapping rank for leaf nodes).Let us again merely
assume the registration of our example advertisementA1 (cf. Fig. 1(b)) and our ex-
ample subscriptionS1 (cf. Fig. 1(a)). It thus holds|predSubAssoc| = 6, as well as
predSubAssoc(pi) = 1 for i = 1 . . . 6. Additionally, we assume the following values
for the number of matchings for some predicates ofS1:

matches(p3) = 500, matches(p5) = 1500, matches(p6) = 2000 .

For the five leaf nodesn1 to n5 of A1 then holds (we have determined the violating
predicates in Example 1):

rank(n1) =
1

6
× 0 = 0

rank(n2) =
1

6
× (

1√
2000 + 1

) ≈ 0.00373

rank(n3) =
1

6
× (

1√
1500 + 1

) ≈ 0.00430

rank(n4) =
1

6
× 0 = 0

rank(n5) =
1

6
× (

1√
500 + 1

) ≈ 0.00745 .

These results describe that nodesn1 andn4 have the least significance in determining
candidate subscriptions and their state of overlapping, i.e.,n1 andn4 do not have any
violating predicates in this example. This is followed by nodesn2 andn3. The most sig-
nificant indicator for candidate subscriptions and their overlappings is noden5. These
results align with our assumptions about predicates: The higher the selectivities of vi-
olating predicates, the more important they are for restricting the overlappings. In this
case, the violating predicate of noden5 (predicatep3) is the most selective one.

Conjunctive nodes. For a conjunctive nodenc, we only estimate the overlapping rank.
This is required due to the general lack of information aboutthe relationships among
violating predicates. This approach, more importantly, allows for a time and space effi-
cient calculation of the required overlapping rank. This estimated overlapping includes
both concepts of a rank, the qualitative and the quantitative part.

The minimal possible overlapping rankrankmin(nc) occurs if all violating predi-
cates are shared among the children of the conjunctive nodenc. It is thus the maximal
rank of all children.

The average rankrankavg(nc) estimates a mean value for the overlapping ranks of
the children. It describes the expected mean if assuming independent child nodes and
an equiprobable distribution of the violating predicates of these children.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 19

Finally, the maximal possible rankrankmax(nc) occurs if the violating predicates
of child nodes exclude each other. It is thus at most the sum ofthe ranks of all children
but further restricted to not increase over 1.

This leads to the following equations for the three components. The calculations are
always based on the estimation of the child nodes. For brevity, here we only consider
the case of two children,n1 andn2:

rankmin(nc) = max(rankmin(n1), rankmin(n2)) .

rankavg(nc) = rankavg(n1) + rankavg(n2) − (rankavg(n1) × rankavg(n2)) .

rankmax(nc) = min(1.0, rankmax(n1) + rankmax(n2)) .

We describe the calculation of the overlapping rank for conjunctive nodes in the follow-
ing example:

Example 5 (Determination of the overlapping rank for conjunctive nodes).Let us as-
sume the setting that is given in Example 4. The calculation of the overlapping rank for
the two conjunctive nodesn6 andn7 of advertisementA1 is then as follows:

rankmin(n6) = max(0.00373, 0.00430) = 0.00430,

rankavg(n6) = 0.00373 + 0.00430− (0.00373× 0.00430) ≈ 0.00801,

rankmax(n6) = min(1.0, 0.00373 + 0.00430) = 0.00803,

rankmin(n7) = max(0, 0.00745) = 0.00745,

rankavg(n7) = 0 + 0.00745− (0 × 0.00745) = 0.00745,

rankmax(n7) = min(1.0, 0 + 0.00745) = 0.00745 .

Disjunctive nodes. For the other kind of inner nodes, disjunctions, we also apply an
estimation approach to determine the overlapping rank. It again contains the qualitative
and the quantitative part because it is based on the combinedrank of the children of the
disjunctive node.

The minimal possible rank is described by the rank of the child node of the disjunc-
tive nodend that has the smallest overlapping rank. The reason is that atleast this rank
will occur, regardless of which part of the disjunction willlead to the overlapping.

Similar to conjunctive nodes, the average rank of a disjunction nd treats child nodes
independently of each other and assumes an equiprobable distribution of the violating
predicates of children.

The maximal overlapping rank describes the situation that all children of the dis-
junction hold simultaneously and that their violating predicates exclude each other.

This leads to the following equations. Again, we only consider the case of two
children,n1 andn2, here:

rankmin(nd) = min(rankmin(n1), rankmin(n2)) .

rankavg(nc) = rankavg(n1) + rankavg(n2) − (rankavg(n1) × rankavg(n2)) .

rankmax(nd) = min(1.0, rankmax(n1) + rankmax(n2)) .

We describe the calculation of the overlapping rank for disjunctive nodes in the follow-
ing example:

20 Sven Bittner and Annika Hinze

Example 6 (Determination of the overlapping rank for disjunctive nodes).Let us again
assume the setting that is given in Examples 4 and 5. The calculation of the overlapping
rank for the disjunctive noden8 of advertisementA1 is then as follows:

rankmin(n8) = min(0.00430, 0.00745) = 0.00430,

rankavg(n8) = 0.00801 + 0.00745− (0.00801× 0.00745) ≈ 0.01540,

rankmax(n8) = min(1.0, 0.00803 + 0.00745) = 0.01548 .

This finally leads to the overlapping rank for the root noden9 of A1:

rankmin(n9) = max(0.00430, 0) = 0.00430,

rankavg(n9) = 0.01540 + 0 − (0.01540× 0) = 0.01540,

rankmax(n9) = min(1.0, 0.01548 + 0) = 0.01548 .

Having the means to estimate the overlapping rank for arbitrary Boolean adver-
tisements, we can now determine the effect of a pruning operation, as shown in the
following subsection.

5.4 Estimating the Influences of a Pruning on the Overlappings

In the last subsection, we have defined the overlapping rank,heuristically estimating
a measure for the overlappings between an advertisement andthe registered subscrip-
tions. By the help of this heuristic measure, we can now estimate the influence of an
advertisement pruning operation.

The question to be answered is as follows: Given a set of registered advertisements,
what is the order of the pruning operations to perform. That is, we firstly have to deter-
mine the best pruning of each advertisement. Secondly, we need to be able to compare
pruning operations of different advertisements to each other.

As identified previously, each performed pruning operationshould minimally influ-
ence the amount of overlapping subscriptions for the prunedadvertisement. Because our
overlapping rank estimates this relationship among advertisements and subscriptions, a
pruning should minimally change, i.e., decrease, the overlapping rank.

To describe the influence of prunings, we should use a relative rather than an ab-
solute measure. This helps to weigh a change, e.g., of 0.1, higher for an existing small
overlapping rank than for a large one. That is, if there is only a small amount of violating
predicates, the influence of removing some of them on the overlappings is higher than
for removing the same number of predicates from an overall large number of violating
predicates.

We refer to this influence of a pruning of advertisementAi to Aj asoverlapping
rank degradation,∆rank(Ai, Aj). It is defined as follows (the rank of an advertisement
Ak always equals the rank of its root nodenk, e.g.,rankmin(Ak) = rankmin(nk)):

∆rank(Ai, Aj) = max(
rankmin(Ai) − rankmin(Aj)

rankmin(Ai)
,

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 21

rankavg(Ai) − rankavg(Aj)

rankavg(Ai)
,

rankmax(Ai) − rankmax(Aj)

rankmax(Ai)
) .

This definition weighs the change in the overlapping rank relatively to the existing
rank before pruning and thus fulfils our requirements. The final step is now just to
relate all prunings with each other to determine the order ofprunings, as shown in the
following subsection. Beforehand, we give an example of calculating the overlapping
rank degradation:

Example 7 (Calculation of the overlapping rank degradation). We again assume the
setting that is given in Examples 4 to 6. The original advertisementA1 with root node
n9 has led to the following estimated overlapping rank (cf. Example 6):

rank≈(A1) = (0.0043, 0.0154, 0.01548) .

Lets us assume the removal of noden1 of A1, leading toA2. The root node ofA2 is n8,
describing the same subtree as inA1. It thus holdsrank≈(A2) = rank≈(n8) but also
rank≈(n8) = rank≈(n9) (cf. Example 6). This leads to:

∆rank(A1, A2) = max(0, 0, 0) = 0 .

Removing noden5, which is resulting inA3, leads to the following:

rank≈(A3) = rank≈(n8) = rank≈(n9) = (0, 0.00801, 0.00803) .

This results in an overlapping rank degradation∆rank(A1, A3) of:

∆rank(A1, A3) = max(1.0, 0.48, 0.48) = 1.0 .

Another pruning option, the removal ofn3 that is resulting inA4, leads to this estima-
tion:

rank≈(A4) = rank≈(n8) = rank≈(n9) = (0.00373, 0.01152, 0.01118) .

The overlapping rank degradation∆rank(A1, A4) is then:

∆rank(A1, A4) = max(0.13, 0.25, 0.28) = 0.28 .

Hence, if only assuming these three pruning options, the pruning of n1 does not have
any influence on the overlappings. This is followed by the pruning ofn3 andn5.

5.5 Determining the Best Pruning and Pruning in Practice

Our measure for the overlapping rank degradation allows us to find the best pruning
operation for each advertisementA: We just need to calculate all possible pruning op-
erations and compare their degradations with each other. The pruning that is leading to
the least degradation should be performed forA.

22 Sven Bittner and Annika Hinze

Analogous to subscription pruning, the only valid pruning operation is to remove a
child of a conjunctive node in an advertisement tree becauseit creates a more general
advertisement, potentially increasing the overlappings.Removing the child of a dis-
junction, conversely, results in a more restrictive advertisement. This pruning operation
would thus reduce the amount of overlappings and introduce false negatives, oppos-
ing the pruning idea. For the last option, removing the root node, the semantics is that
all subscriptions would overlap the completely removed advertisement, opposing the
overall application of advertisements.

Practically, whenever an advertisementAi is registered we calculate the best pos-
sible pruning operation leading toAj , i.e., the pruning that is resulting in the least
degradation∆rank(Ai, Aj). We then insert the tuple(∆rank(Ai, Aj), Ai) in thead-
vertisement degradation queue. This queue implements a priority queue that is ordered
in an ascending way by the first element of the tuple, the overlapping rank degradation.

To perform a pruning, we just need to extract the top element of the advertisement
degradation queue. This operation works in a constant time due to our decision about
the data structure. We then perform the best pruning of the corresponding advertisement
Ai, resulting inAj , and re-insert the new best pruning ofAj into the queue. According
to the goal of the optimization, e.g., to decrease the memoryusage or to increase the
time efficiency to calculate the overlappings, we successively perform the prunings that
are stated by the top elements of the advertisement degradation queue. The pruning
stops when the required optimization has been achieved, e.g., the memory usage has
been reduced by a certain percentage.

The most important question emerging from our advertisement pruning proposal is
the influence of prunings on the memory usage (to index and store advertisements), the
efficiency to calculate overlappings (among subscriptionsand advertisements), and the
number of overlappings (determining the forwarding of subscriptions in the network5).
We extensively evaluate these properties of advertisementpruning in the next section.

6 Experimental Analysis

In this section, we describe our evaluation of an extensive set of practical experiments
we have undertaken to analyze both the algorithm to determine the overlappings and
the advertisement pruning optimization. In Sect. 6.1, we characterize our experimental
setup to allow for a classification of our results and the repeatability of our experiments.

The efficiency properties of our algorithm to determine the overlappings are then
analyzed in Sect. 6.2. We proceed in Sect. 6.3 by comparing the time efficiency of our
calculation approach to that of a conjunctive solution. Theinfluence of the advertise-
ment pruning optimization on time efficiency, space efficiency, and amount of overlap-
pings is analyzed in Sect. 6.4. Section 6.5 goes a step further and finally evaluates these
three parameters when combining advertisement and subscription pruning.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 23

AND AND

buyItNow = yes

OR

price > 10.0

category = Action

attribute = signed

AND

price > 17.5

n2

n6 n7 n9

n3

n4 n5

n8

n1

(a) Advertisement Class 1

AND AND

buyItNow = yes

OR

price > 10.0

author = JK Rowling

attribute = signed

AND

price > 17.5

n2

n6 n7 n9

n3

n4 n5

n8

n1

(b) Advertisement Class 2

AND AND

condition = used

OR

price > 10.0

title = Harry Potter

condition = new

AND

price > 17.5

n1

n6 n7 n9

n3

n4 n5

n8

n2

(c) Advertisement Class 3

AND AND

OR

price > 20.0

title = Harry Potter

format = softcover

AND

price > 17.5format = hardcover

n2

n6 n7 n9

n3

n4 n5

n8

n1

(d) Advertisement Class 4

AND

condition = used

AND

condition = new price > 15.0

AND

condition = new price > 20.0 price > 17.5

AND

condition = usedprice > 12.5

OROR

AND

format = hardcover

AND

format = softcover

OR

AND

title = Harry Potter

n5

n11

n17n16 n18 n19

n12

n14 n15

n10

n21n20

n7 n8

n2

n13

n1

n3

n6 n9

n4

(e) Advertisement Class 5

Fig. 2.Examples of advertisements of Advertisement Classes 1 to 5

6.1 Experimental Setup

We have identified eight classes of advertisements and threeclasses of subscriptions for
our experiments. These classes of subscriptions and advertisements describe reasonable
interests (subscriptions) and potential event messages (advertisements) in our online
book auction scenario [5]. These classes are as follows:

Advertisement Class 1.A publisher offers books of a certain category. These books
are Buy-It-Now items that are further specified by a minimal price, or signed book
copies that are also stating a minimal price. We have illustrated an example ad-
vertisement of Class 1 in Fig. 2(a). It specifies category “Action”, and prices of
NZ$10.0 and NZ$17.5.

5 This, in turn, also determines the memory usage for storing subscriptions and the filter effi-
ciency.

24 Sven Bittner and Annika Hinze

AND AND

condition = used

OR

price > 10.0 condition = newprice > 17.5

n1

n4 n5 n7

n2 n3

n6

(a) Advertisement Class 6

AND AND

OR

price > 20.0 format = softcoverprice > 17.5format = hardcover

n1

n4 n5 n7

n2 n3

n6

(b) Advertisement Class 7

AND

condition = used

AND

condition = new price > 15.0

AND

condition = new price > 20.0 price > 17.5

AND

condition = usedprice > 12.5

OROR

AND

format = hardcover

AND

format = softcover

OR

n3

n9

n15n14 n16 n17

n10

n12 n13

n8

n19n18

n5 n6

n11

n4 n7

n1

n2

(c) Advertisement Class 8

Fig. 3.Examples of advertisements of Advertisement Classes 6 to 8

Advertisement Class 2.This advertisement class is similar to Class 1 but specifies
authors instead of categories. An example is given in Fig. 2(b), stating author “JK
Rowling”, and prices of NZ$10.0 and NZ$17.5.

Advertisement Class 3.A publishers offers books of a particular book title. There
are different minimal prices for used and new copies of the book. In the exam-
ple in Fig. 2(c), we have chosen “Harry Potter” as title and, again, prices of at least
NZ$10.0 and NZ$17.5.

Advertisement Class 4.This class is similar to Advertisement Class 3 but specifies
different prices for hardcover and softcover copies of the book. Figure 2(d) shows
an example of this class stating prices of NZ$20.0 and NZ$17.5 for books entitled
“Harry Potter”.

Advertisement Class 5.This class combines Advertisement Classes 3 and 4. That is,
the publishers offers different prices for the four combinations of hardcover and
softcover, as well as new and used book copies. Our example inFig. 2(e) again
refers to the title “Harry Potter” and specifies prices of at least NZ$12.5, NZ$15.0,
NZ$17.5, and NZ$20.0.

Advertisement Class 6.The publisher offers used and new books, stating a different
minimal price (similar to Advertisement Class 3 except of the title). In the example
in Fig. 3(a), these prices are NZ$10.0 and NZ$17.5.

Advertisement Class 7.This class describes a publisher offering softcover and hard-
cover books of different minimal prices (similar to Advertisement Class 4 except of
the title). In Fig. 3(b), these prices have been chosen with NZ$17.5 and NZ$20.0.

Advertisement Class 8.Similar to Advertisement Class 5, the publishers specifies dif-
ferent minimal prices for the four combinations of used and new book copies, as
well as hardcover and softcover books. There are no further restrictions on the

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 25

AND AND

condition = new

OR ending < 1 day

AND

title like "Harry Potter"

price < 25.0 price < 15.0 condition = used

(a) Subscription Class 1)

price < 25.0

AND

price < 15.0 condition = used

ORformat = softcover

AND

OR ending < 1 day

AND

title like "Harry Potter"

OR

AND

format = hardcover

AND

condition = new price < 20.0

AND

price < 10.0 condition = used

AND

condition = new

(b) Subscription Class 2

Fig. 4.Examples of subscriptions of Subscription Classes 1 and 2

books. The example in Fig. 3(c) specifies prices of at least NZ$12.5, NZ$15.0,
NZ$17.5, and NZ$20.0.

Subscription Class 1.A subscriber is interested in a particular book title and specifies
different maximal prices for used and new copies of books. Notifications should
only be sent if the auction ends in less than one day. We have illustrated an example
subscription of this class in Fig. 4(a). It specifies that thebook title should contain
the phrase “Harry Potter”, and that the book copy should costless than NZ$15.0 or
NZ$20.0.

Subscription Class 2. In addition to Subscription Class 1, the subscriber specifies dif-
ferent prices for the four combinations of used and new books, as well as hard-

AND

bids = 0 attribute = signed

OR

AND

ending < 1 day buyItNow = yes attribute = signed

AND

OR

author = JK Rowlingcategory = Action

OR

Fig. 5. Example of a subscription of Subscription Class 3

26 Sven Bittner and Annika Hinze

Table 2. Properties of the advertisement (abbreviated by A1 to A8) and subscription classes
(abbreviated by S1 to S3)

Advertisement/subscription class A1 A2 A3 A4 A5 A6 A7 A8 S1 S2S3

Number of predicates 5 5 5 5 11 4 4 10 6 12 7

Number of conjunctive operators 3 3 3 3 7 2 2 6 3 10 3

Number of disjunctive operators 1 1 1 1 3 1 1 2 1 2 3

Number of conjunctions 2 2 2 2 4 2 2 4 2 4 6

Number of predicates per conjunction 3 3 3 3 4 2 2 3 4 5 3

covers and softcovers. Our example in Fig. 4(b) again expresses interest in books
entitled “Harry Potter” that are offered for at most NZ$10.0, NZ$15.0, NZ$20.0,
or NZ$25.0.

Subscription Class 3.A collector is interested in books from a certain author but also
in books of a particular category. The books should either besigned and Buy-It-
Now items, or end within one day if they are signed or have got zero bids so far.
The example in Fig. 5 states the category with “Action” and the author with “JK
Rowling”.

These advertisement and subscription classes represent a wide range of interests and
potential event messages, and are considered as representative for our application sce-
nario.

In the advertisement examples (Fig. 2 and 3), we have named all nodesni of adver-
tisement trees (we can thus refer to them later on). In our experiments, all predicates or,
more precisely, the values of all predicates of these subscriptions and advertisements
are chosen randomly using a uniform distribution of reasonable values (derived from
the practical analysis in [5]).

We give an overview of the properties of the advertisement and subscription classes
in Table 2. This includes the number of predicates (Row 1), conjunctive operators (Row
2), and disjunctive operators (Row 3). We also show the number of conjunctive adver-
tisements/subscriptions (Row 4) and the number of predicates per conjunctive adver-
tisement/subscription [2] (Row 5) if performing a conversion to DNFs.

All of our experiments have been run on a machine equipped with 512 MB of main
memory and a processor speed of 1.8 GHz. We have derived all results described in
the following by analyzing settings involving a large number of advertisements and
subscriptions, as described later on in detail. These experiments have led to negligible
variances and we thus only show the derived mean values in thefollowing tables and
figures.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 27

Table 3. Results of our evaluation of the efficiency properties of theindividual subscription
classes (abbreviated by S1 to S3) and the setting involving all three of them (abbreviated by
S1–S3)

Parameter S1 S2 S3 S1–S3

Time in msec (First) 9.8 . . . 134.8 4.2 . . . 41.5 0.2 . . . 5.4 4.9 . . . 62.9

Time in msec (All) 22.2 . . . 320.9 35.7 . . . 510.4 16.3 . . . 253.4 25.6 . . . 374.4

Proportion of candidates 1.29 1.85 1.36 1.5

Proportion of overlappings0.04 0.35 1.0 0.46

|P ′

vio(S)| 2 4 4 10

3

6.2 Efficiency of the Calculation of the Overlapping Relationship

In this section, we analyze the time efficiency of our approach to calculate the over-
lappings. We have evaluated all three subscription classesindividually; additionally, we
have analyzed a setting involving a uniform distribution ofthese three classes.

We consider two scenarios: In Scenario All, we determine theaverage time effi-
ciency to calculate all advertisements overlapping a givensubscription. Scenario First
only determines whether an overlapping advertisement exists. That is, in Scenario First
the algorithm stops its calculations as soon as an overlapping advertisement is found.
This calculation is practically required in the registration process of subscriptions to
determine whether the subscription needs to be forwarded toneighbor brokers.

In our experiments, we register an increasing number of advertisements (uniform
distribution among the eight classes) with the system and analyze the time efficiency
properties. We give an overview of our results in Table 3. In its columns, we present the
behavior of the different classes of subscriptions; rows show the analyzed parameters.

In Row 1 of Table 3, we present the ranges of time required to determine whether an
overlapping advertisement exists. We have derived these mean values by testing at least
25,000 subscriptions. This range describes the results for20,000 up to 300,000 reg-
istered advertisements of all eight classes. The actual time per subscription increases
linearly with the number of advertisements. For example, for an incoming subscription
of Class 3 the algorithm requires on average 5.4 msec to determine whether it over-
laps at least one of the 300,000 registered advertisements.These times stated in Row
1 of the table include all calculations that are required to determine the overlappings
except of the evaluation of all candidate advertisements. The algorithm already stops its
computation if one overlapping advertisement is found.

For Subscription Class 3, we can determine the existence of overlapping advertise-
ments in the most efficient way. This is due to the fact that forthis class all advertise-
ments overlap an incoming subscription (cf. Row 4 of Table 3), i.e., the proportion of
overlapping advertisements is 1.0. Hence, the calculations finish after evaluating only
one or a small number of candidates. Generally, the time efficiency for this operation
degrades with a decreasing number of overlapping advertisements. For Subscription

28 Sven Bittner and Annika Hinze

Class 1, only having overlappings for 4% of the incoming subscriptions, this operation
is thus least efficient.

In Row 2 of Table 3, we show the time efficiency to determine alloverlapping adver-
tisements (again, the mean value for 25,000 subscriptions). The time per subscription
does again grow linearly with the number of registered advertisements. The time val-
ues shown here include the evaluation of all candidate overlapping advertisements. The
efficiency of this operation generally depends on the numberof candidates required to
evaluate (cf. to the value in Row 36). Typically, the more candidates, the less efficient the
calculation of all overlappings. However, for Subscription Class 3 (proportional num-
ber of candidates of 1.36) this operation is more efficient than for Subscription Class 1
(proportional number of candidates of 1.25). This is because the violating predicates of
Subscription Class 3 occur in far less advertisements than those of Subscription Class
1; hence, the counting of the violating predicates per subscription (cf. Sect. 4.4) is per-
formed more efficiently for Subscription Class 3—there are less counters to increase.
As expected, for Subscription Class 2, having the highest number of candidates, this
operation is less efficient than for the other classes.

6.3 Comparison to Conjunctive Calculation Approaches

In Sect. 3.4, we have used the results of a comparison of arbitrary Boolean and con-
junctive subscriptions to show the benefits in memory usage when applying Boolean
advertisements. We now investigate the efficiency properties of calculating the over-
lapping relationship for arbitrary Boolean in comparison to conjunctive advertisements
and subscriptions.

In our experiments, we have again increased the number of advertisements up to
300,000, and tested the efficiency for calculating the overlappings for all three sub-
scription classes individually as well as for the combined setting. We show the results
in Fig. 6 for Subscription Classes 1 and 2, and in Fig. 7 for Subscription Class 3 and the
combined setting. We have again derived these results by analyzing 25,000 different
subscriptions and taking the mean values. The abscissae represent the number of ad-
vertisements; the ordinates state the average time per subscription in milliseconds. We
show four curves per diagram, describing the two scenarios (All and First, cf. Sect. 6.2)
using the original arbitrary Boolean subscriptions and advertisements, and the converted
conjunctive subscriptions and advertisements, respectively.

In both the conjunctive and the arbitrary Boolean case, the calculations required
to determine the overlappings increase linearly with the number of registered adver-
tisements. This behavior is due to our pattern of creating advertisements and subscrip-
tions: On average, doubling the number of advertisements creates double the amount
of overlapping advertisements. However, Fig. 6 and 7(b) appear to show another be-
havior of the efficiency properties, in particular for the conjunctive algorithm. We have
thoroughly analyzed this development and clearly identified the counting of predicate

6 Note that the proportional number of candidate advertisements (shown in Row 3) is greater
than 1.0. This is due to the facts that the violating predicatesP ′

vio(S) for each subscription
S are a set, and advertisements might need to be evaluated for several elements in this set
P ′

vio(S). For completeness, we show the average size of setP ′

vio(S) in Row 5 of Table 3.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 29

 0

 50

 100

 150

 200

 250

 300

 350

 400

260,000200,000140,00080,00020,000

T
im

e
pe

r
su

bs
cr

ip
tio

n
in

 m
ill

is
ec

on
ds

Number of advertisements

Boolean, All
Boolean, First
Conjunctive, All
Conjunctive, First

(a) Subscription Class 1

 0

 100

 200

 300

 400

 500

 600

260,000200,000140,00080,00020,000

T
im

e
pe

r
su

bs
cr

ip
tio

n
in

 m
ill

is
ec

on
ds

Number of advertisements

Boolean, All
Boolean, First
Conjunctive, All
Conjunctive, First

(b) Subscription Class 2

Fig. 6. Comparison of the efficiency of Boolean and conjunctive approach using Subscription
Classes 1 and 2

occurrences in combination with the processor cache as its reason. We can observe the
same effect in the Boolean algorithm; however, it appears ata much larger number of
advertisements.

The reason for this behavior is as follows: As already stated, the amount of cal-
culations increases linearly with a growing number of registered advertisements. The
calculation algorithm (cf. Sect. 4.4) uses a counter per advertisement to sum up the
number of violating predicates. The more advertisements weregister, the more coun-
ters do not fit into the processor cache and lead to cache misses if increased. Thus, the
overall calculation time increases superlinearly even if the calculations themselves only
increase linearly. In the conjunctive algorithm, a large number of cache misses happens
at a much smaller number of registered advertisements due tothe required conversion
to conjunctions. Subscription Class 3 (Fig. 7(a)) is less influenced by this behavior
because (a) the number of violating predicates, leading to increasing the counters, is
much smaller, (b) the violating predicates only occur in a subset of all registered ad-
vertisements, and (c) the violating predicates are not distributed among the converted
conjunctive subscriptions.

This effect of accessing and incrementing the counters leads to an increasing gra-
dient in the curves representing the calculation times. Forexample, in Fig. 6(a) the
maximal gradient is reached at approximately 150,000 advertisements in the conjunc-
tive case. Further increasing the number of advertisementsthen linearly increases the
calculation time.

Comparing the Boolean to the conjunctive algorithm leads tothe following ob-
servations: For all subscription classes, the determination whether overlappings exist
(Scenario First) is much more efficiently to calculate usingthe Boolean algorithm. The
computation is 3, 14, and 13 times more efficient for 300,000 registered advertisements.
This calculation is always more efficient for Subscription Classes 2 and 3 (Fig. 6(b) and
Fig. 7(a)). For Subscription Class 1 (cf. Fig. 6(a)), the conjunctive and the arbitrary
Boolean approach do not show efficiency differences for lessthan 80,000 advertise-

30 Sven Bittner and Annika Hinze

 0

 50

 100

 150

 200

 250

 300

260,000200,000140,00080,00020,000

T
im

e
pe

r
su

bs
cr

ip
tio

n
in

 m
ill

is
ec

on
ds

Number of advertisements

Boolean, All
Boolean, First
Conjunctive, All
Conjunctive, First

(a) Subscription Class 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

260,000200,000140,00080,00020,000

T
im

e
pe

r
su

bs
cr

ip
tio

n
in

 m
ill

is
ec

on
ds

Number of advertisements

Boolean, All
Boolean, First
Conjunctive, All
Conjunctive, First

(b) Subscription Classes 1–3

Fig. 7. Comparison of the efficiency of Boolean and conjunctive approach using Subscription
Class 3 and Subscription Classes 1 to 3

ments; from approximately this point on, the Boolean solution has increasing efficiency
benefits compared to the Boolean one.

For Scenario All, the Boolean algorithm is more efficient forSubscription Classes
1 and 2 (cf. Fig. 6(a) and 6(b)) in case of high advertisement numbers. Less registered
advertisements favor the conjunctive solution. The reasonfor this changing is the cache
behavior, as explained before. The conjunctive solution isalways more efficient for
Subscription Class 3 (Fig. 7(a)) for up to the maximal numberof tested advertisements.
This is also due to the cache behavior in combination with theproperties of the violating
predicates for this class.

The difference in efficiency between Scenario First and Scenario All depends on
the number of overlapping advertisements, shown in Row 4 of Table 3 for the Boolean
approach. Thus, this difference is the least for Subscription Class 1; it is followed by
Subscription Class 2 and the setting containing all three classes; the difference is the
most for Subscription Class 3.

Concluding these experiments, we can state that a Boolean solution is always more
suitable to determine whether overlappings exist at all. This calculation is the practically
required one of the two analyzed scenarios. If we need to calculate all overlappings, the
more efficient approach depends on the properties of advertisements and subscriptions.

6.4 Analysis of Advertisement Pruning

We have analyzed the influence of advertisement pruning on all eight advertisement
classes individually and on a combination of these classes in order to understand the
effects of pruning in a wide range of settings. In this seriesof experiments, we have
registered 100,000 subscriptions and 50,000 advertisements. We graphically present
the results for the individual classes in Fig. 8 to 11; Figure12 shows the effects on the
combined setting involving all eight classes. We have always registered a combination
of subscriptions of all three subscription classes in our experiments.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 31

We show the proportion of advertisement pruning operationson the abscissae of all
figures. They range from the value of 0, describing the situation without pruning, to
the value of 1, stating that all possible pruning operationshave been performed, i.e.,
another pruning would remove a complete advertisement. Theleft ordinate shows the
time efficiency, i.e., the average time to calculate the overlappings per advertisement.
We show two curves, one curve describing the time that is required to determine all
overlapping subscriptions (Scenario All) and one curve testing whether at least one
overlapping subscription exists (Scenario One). The rightordinate states the proportion
of overlappings that exists, the proportion of removed predicate advertisement associ-
ations (our measure for memory usage), and the proportion ofcandidate subscriptions
for a given amount of prunings (abscissa). These propertiesare represented by three
individual curves.

The ideal result for an optimization is an increasing time efficiency (less time at the
left ordinate), a decreasing memory usage (increasing proportion of removed predicate
advertisement associations at the right ordinate), and a constant amount of overlappings
(stable proportion of overlappings at the right ordinate) with an increasing amount of
performed pruning operations (abscissa). This ideal behavior does, apparently, not hold
in practice. There, we rather target at only slightly increasing the overlappings, and
simultaneously decreasing both the memory requirements and the time to calculate the
overlappings.

In some of our settings, we experience a cut-off point. At this point, the behavior
of advertisement pruning changes from a worthwhile optimization to less valuable one,
i.e, the amount of overlappings increases rather strongly.We have given these cut-off
points in the figures representing these settings (Fig. 8(b), 10(b), 11(b), and 12). For the
eight advertisement classes, our evaluation of advertisement pruning is described in the
following paragraphs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)

(a) Advertisement Class 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)
Cut-off point

(b) Advertisement Class 2

Fig. 8. Influence of advertisement pruning on Advertisement Classes 1 and 2

Advertisement Class 1.For Advertisement Class 1 (Fig. 8(a)), the pruning optimiza-
tion decreases the memory requirements by 65% after performing all prunings (removal

32 Sven Bittner and Annika Hinze

of proportionally 0.65 predicate advertisement associations, shown at the right ordi-
nate). Simultaneously, determining whether any overlapping exists (Scenario One) is
performed 18% faster (the time is reduced from 6.4 to 5.2 msec, illustrated at the left
ordinate); the calculation of all overlappings (Scenario All) works 7% more efficient
(i.e., the time is decreased from 117 to 109 msec per advertisement, as shown at the
left ordinate). These beneficial results are obtained by only increasing the amount of
overlappings from 51% to 56% (right ordinate) of all registered subscriptions.

The reason for this advantageous behavior is the initial pruning of predicates on the
attributesBuy It Now(noden6, cf. Fig. 2(a)) andSpecial Attribute(noden9), having
merely significance in subscriptions of Class 3. But even forthis class, the removal of
these predicates does not change the overlapping relationships. The predicates on the
attributeCategory(noden3) are pruned later on, followed by some disjunctive nodes
(noden2), which only have predicates onPrice (Nodesn7 andn8) as child nodes any-
more. This pruning of predicates onPricethen creates the little increase in overlappings,
as illustrated in Fig. 8(a) from approximately 90% of all pruning operations onwards.

Advertisement Class 2.There exists a cut-off point at approximately 73% of all prun-
ing operations (abscissa) for Advertisement Class 2 (Fig. 8(b)). At this point, the prun-
ing algorithm has decreased the memory requirements for advertisements by 48%. The
time efficiency has increased by 5% to calculate all overlappings (Scenario All) and by
8% to determine whether any overlapping exists (Scenario One). The total amount of
overlappings has grown from 51% to 54% of all registered subscriptions. When per-
forming more pruning operations than stated by the cut-off point, the amount of over-
lappings increases up to 100%, i.e., all subscriptions overlap all advertisements.

We can find the reason for this behavior in the advertisement and subscription struc-
tures: Up to the cut-off point, the algorithm only prunes predicates on the attributesBuy
It Now (noden6, cf. Fig. 2(b)) andSpecial Attribute(noden9), which do not influence
the overlappings (cf. Advertisement Class 1). All of these predicates have been pruned
at the cut-off point. Later on, the algorithm prunes the disjunctive nodes (noden2).
Hence, the only remaining predicate in advertisements is onthe attributeAuthor (node
n3). All registered subscriptions are then overlapping theseadvertisements due to the
subscription structure.

Advertisement Class 3.We can decrease the memory requirements for advertisements
by 80% when performing all possible advertisement pruning operations for Advertise-
ment Class 3 (Fig. 9(a)). Additionally, the efficiency properties improve strongly: The
algorithm works 55% faster for Scenario All; the computations for Scenario One are
performed 24% more efficiently. Also the amount of overlappings develops promising
and increases by only 1%.

The reason for the stronger improvement in Scenario One compared to Scenario
All is the development of candidate subscriptions: The number of candidates increases
when pruning. All of these candidates need to be evaluated todetermine all overlap-
pings. Hence, the reduction in advertisement complexity (due to prunings) does not
have the same strong effect as in case of merely determining the existence of overlap-
pings. After removing the disjunctive node of advertisements (noden2, cf. Fig. 2(c)),

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 33

 0

 20

 40

 60

 80

 100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)

(a) Advertisement Class 3)

 0

 20

 40

 60

 80

 100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)

(b) Advertisement Class 4

Fig. 9. Influence of advertisement pruning on Advertisement Classes 3 and 4

the amount of candidates decreases again. This is due the thedefinition of violating
predicates (cf. Sect. 4.2) for disjunctive nodes, which determine the candidate subscrip-
tions. Also the memory requirements decrease more stronglyfrom this point onwards
because the algorithm removes two associations per pruningoperation.

The reason for the advantageous slight increase in the overlappings is again found
in the structure of advertisements and subscriptions: Subscription Class 3 is not influ-
enced by any pruning operations because it specifies predicates on other attributes only.
Subscription Classes 1 and 2 use the same attributes as Advertisement Class 3. Hence,
pruning operations should affect the overlappings but onlydo so insignificantly: The
most selective indicator for overlappings is theTitle attribute (noden3). Subscriptions
and advertisements have to specify the same title in order tolead to a potential overlap-
ping. The overlapping is further depending on the prices (Nodesn7 andn8) according
to the condition (Nodesn6 andn9). For most subscriptions either the prices for used or
for new book copies lead to an overlapping. Thus, pruning anyof these predicates in
advertisements does not change the overlapping relationship in most cases.

Advertisement Class 4. Advertisement Class 4 (Fig. 9(b)) has a similar structure
as Advertisement Class 3. Thus, we experience a similar behavior when performing
pruning operations: The memory requirements for advertisements decrease by 80%
when performing all possible prunings. This strong improvement creates an additional
amount of overlappings of less than 1% of all registered subscriptions (always around
33%). The efficiency to calculate all overlapping subscriptions is increased by 23%
(Scenario All); the determination whether any overlappingexists works 61% faster
(Scenario First).

The reason for this beneficial behavior when pruning is againfound in the structure
of subscriptions and advertisements: Pruning the predicates onFormat (Nodesn6 and
n9, cf. Fig. 2(d)) does not affect the amount of overlappings toa large extend. This is
due to theTitle attribute (noden3) mandatorily requiring to specify the same value in
an advertisement and a subscription to lead to an overlapping. If this is given, in most
cases either the respective prices for hardcover or softcover items overlap (Subscription

34 Sven Bittner and Annika Hinze

Class 2), or one of these prices overlaps any of the specifications in subscriptions (Sub-
scription Class 1). When pruning the disjunctive node (noden2) in advertisements, we
again experience a stronger decrease in memory usage than when pruning leaf nodes
(bend in curve). The efficiency also increases more stronglyfrom this point onwards.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)

(a) Advertisement Class 5

 0

 20

 40

 60

 80

 100

 120

 140

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)
Cut-off point

(b) Advertisement Class 6

Fig. 10. Influence of advertisement pruning on Advertisement Classes 5 and 6

Advertisement Class 5. Advertisement Class 5 (Fig. 10(a)) leads to the best results
when applying advertisement pruning: The memory requirements have been decreased
by 91% after performing all possible pruning operations. Atthis point, the computations
in Scenario All can be performed 49% faster than without applying advertisement prun-
ing. For Scenario First, the improvement is even 65%. The pruning algorithm achieves
these advances with increasing the amount of overlappings by only 1%.

However, the application of pruning firstly degrades the efficiency to determine all
overlappings. The reason is again found in the number of candidates, which show a
similar increase as the overall time to determine the overlappings in Scenario All. This
increase in candidates is due to the performed pruning operations: In the beginning, the
pruning algorithm chooses to prune predicates on the attributeFormat (Nodesn7 and
n9, cf. Fig. 2(e)). This results in more subscriptions of Class2 being considered as can-
didates. Then, mainly predicates specifying low prices arepruned (also some predicates
stating new books). This results in an increase in candidates of Subscription Classes 1
and 2. However, at some point the amount of candidates only increases very slowly any-
more because mainly predicates specifying new books (Nodesn14 andn18) are pruned
(which decreases the number of violating predicates much less than pruning predicates
on Price). If most of these predicates onConditionhave been pruned, the algorithm
again decides to prune onPrice. This leads to the newly developing larger gradient of
the curve in Fig. 10(a). Finally, the disjunctive nodes (node n3) of advertisements are
pruned, resulting in a dropping amount of candidates (only one predicate remains per
advertisement (noden2)).

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 35

Advertisement Class 6.For Advertisement Class 6 (Fig. 10(b)), we again experience
a cut-off point. This time, it occurs after having performedapproximately 70% of all
possible pruning operations. At this point, the memory requirements could be reduced
by 35%; the overlappings are increased from 55% to 68% of all registered subscriptions.
The algorithm can determine whether any overlappings exist(Scenario First) 13% more
efficiently at the cut-off point. However, all overlapping subscriptions (Scenario All)
require a 6% higher computation time compared to the situation without pruning.

When performing all prunings, each subscription overlaps every advertisement, but
the computation time is faster than without pruning. The reason for this behavior is that
after more than approximately 70% of all prunings, mostly one predicate onCondition
and one predicate onPrice remain in advertisements. Because subscriptions of Classes
1 and 2 always specify the interest in both possible conditions, all subscriptions finally
overlap. The overlappings with Subscription Class 3 are notinfluenced by any prunings.

The first increase in the computation time in Scenario All is again due to the increase
in candidates and the required evaluation of these candidates. After the cut-off point, the
amount of candidates decreases and thus also the computation time.

Altogether, more overlappings exist for Advertisement Class 6 than for Class 3
because Class 6 does not additionally restrict the titles ofbooks, i.e., Advertisement
Class 6 is more general than Advertisement Class 3.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)

(a) Advertisement Class 7

 0

 50

 100

 150

 200

 250

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)
Cut-off point

(b) Advertisement Class 8

Fig. 11. Influence of advertisement pruning on Advertisement Classes 7 and 8

Advertisement Class 7.There are again strong benefits of advertisement pruning when
using Advertisement Class 7 (Fig. 11(a)): After performingall pruning operations, the
memory usage is half of the original one, and the overall increase in overlapping sub-
scriptions is only 5%. Additionally, the efficiency in Scenario First is increased by 8%;
the time to compute all overlappings is improved by 1%.

The amount of overlappings is nearly unaffected by pruning operations for Adver-
tisement Class 8 because only predicates on the attributeFormat(Nodesn4 andn7, cf.
Fig. 3(b)) are considered to be pruned (similarly to Advertisement Class 4). Firstly, the

36 Sven Bittner and Annika Hinze

algorithm prunes hardcover specifications (noden4), which does not affect the overlap-
pings at all (hardcover books are generally more expensive than softcover books). When
pruning softcover predicates (noden7), the amount of overlappings increases slightly.
In fact, it only increases if the hardcover part of an advertisement does not overlap the
subscription but the lower price from the softcover overlaps the subscription.

Advertisement Class 8.We again experience a cut-off point for advertisements of Ad-
vertisement Class 8 (Fig. 11(b)). This point occurs at approximately 73% of all pruning
operations. The pruning algorithm can decrease the memory usage at this point by 44%.
The total number of overlappings is increased by 21%, and thecomputations in Scenario
First work 25% faster. However, the efficiency to compute alloverlappings (Scenario
All) degrades by 11%.

This efficiency degradation in Scenario All is again caused by the increase in can-
didate subscriptions. Similar to Advertisement Class 5, the pruning algorithm firstly
removes predicates onFormat (Nodesn5 andn6, cf. Fig. 3(c)), increasing the candi-
dates of Subscription Class 2. However, in contrast to Advertisement Class 5 there is
no predicate onTitle in Advertisement Class 8. This property also increases the amount
of overlappings and finally leads to the situation of all advertisements overlapping all
subscriptions (when pruning more than specified by the cut-off point).

Advertisement Classes 1–8.The influence of advertisement pruning in the setting
including a combination of all eight advertisement classesis not merely the mean of
the results of the individual classes. It is also influenced by the quality of our heuristic
when applied to different advertisement structures simultaneously.

In Fig. 12, we have illustrated the cut-off point that is occurring after performing
approximately 77% of all pruning operations. At this point,the pruning algorithm has
decreased the memory usage by 49%; the overall amount of overlappings has increased
by only 5% at this cut-off point. The efficiency properties inScenario First are improved
by 24%; Scenario All, however, leads to a decrease by 3%. Whenperforming slightly
more prunings than stated by the cut-off point, also the efficiency in Scenario All does
improve compared to the unpruned situation (3% efficiency increase with a further 5%
increase in overlappings). Although, we have plotted the cut-off point at 77% because
of the bend that is existing in the overlapping curve in Fig. 12.

Our combined setting shows that our pruning heuristic does also work if register-
ing advertisements involving different structures. The promising results at the cut-off
point—and in particular its position—show that our heuristic chooses pruning oper-
ations for advertisements of different classes and correctly judges their influence on
the overlappings. In fact, the pruning algorithm firstly performs those prunings that do
not strongly increase the overlappings (pruning operations before the cut-off points of
the individual classes). The pruning operations increasing the overlappings (after the
cut-off points of the individual classes) are only performed if no other suitable prun-
ing opportunities exist anymore, which is leading to the cut-off point in the combined
setting.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 37

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

P
ro

po
rt

io
n

ov
er

la
pp

in
gs

/a
ss

oc
ia

tio
ns

/c
an

di
da

te
s

Proportional amount of prunings

Time All (left)
Time First (left)
Overlappings (right)
Associations lost (right)
Candidates (right)
Cut-off point

Fig. 12. Influence of advertisement pruning on Advertisement Classes 1–8

Summary of the Results.We have illustrated an overview of the previously described
behaviors in Table 4. In the columns, we show our different settings. Rows contain the
measured parameters: Row 1 states the amount of prunings at the cut-off point propor-
tional to the overall number of possible pruning operations. The decrease in memory at
the cut-off point is presented in Row 2 (proportional to the overall memory usage for
advertisements). Row 3 indicates the proportional change in the average computation
time per advertisement for Scenario All (an advantageous decrease is indicated by “↓”
and an increase by “↑”). The improvement in Scenario First is shown in Row 4. Row 5
contains the proportional increase in overlappings at the cut-off point. The total increase
in overlappings is finally given in Row 6.

Our results show that advertisement pruning is a valuable optimization: At the cut-
off point, the memory usage has been decreased between 44% and 91%. The efficiency
of the practically required operation to determine whetheran overlapping exists is, at
the same time, improved by 8% to 65%. The total increase in overlappings at the cut-
off point is between 1% and 24%. For the general setting, involving all advertisement
classes, the decrease in memory usage is 49%, the efficiency improvement 24%, and
the increase in overlappings only 5%.

6.5 Combining Advertisement and Subscription Pruning

Our evaluation in the previous section has only considered the influence of advertise-
ment pruning so far. Subscription pruning, which advertisement pruning is derived from
(cf. Sect. 5), has been analyzed in [7]. These independent evaluations have shown that
the two approaches are valuable optimizations if applied individually. What is still miss-
ing is to analyze the effects of utilizing both subscriptionand advertisement pruning
(i.e., subscription-based and advertisement-based optimizations) at the same time. We
will do so in this section. We have again registered 100,000 subscriptions and 50,000
advertisements in this series of experiments.

For our evaluation, we consider the general setting containing subscriptions of all
three classes and advertisements of all eight classes. We analyze the influence of ad-
vertisement pruning after having performed different amounts of subscription pruning

38 Sven Bittner and Annika Hinze

Table 4.Overview of the influence of advertisement pruning at the cut-off point (the eight adver-
tisement classes are abbreviated by A1 to A8)

Advertisement class A1 A2 A3 A4 A5 A6 A7 A8 A1–8

Prop. cut-off point 1.0 0.73 1.0 1.0 1.0 0.7 1.0 0.73 0.77

Prop. decrease in memory 0.65 0.48 0.8 0.8 0.91 0.35 0.5 0.44 0.49

Prop. change in time (All) ↓0.07 ↓0.05 ↓0.24 ↓0.23 ↓0.49 ↑0.06 ↓0.01 ↑0.11 ↑0.03

Prop. decrease in time (First) 0.18 0.08 0.55 0.61 0.65 0.13 0.08 0.25 0.24

Prop. increase in overlappings 0.09 0.06 0.01 0.01 0.01 0.250.08 0.37 0.11

Total increase in overlappings 0.05 0.03 0.01 0.01 0.01 0.240.05 0.21 0.05

operations. These amounts vary from the situation of no subscription pruning (0% SP)
to the point where all possible subscription prunings have been performed (100% SP).
We vary the proportion of subscription pruning in steps of 10%, each displayed in a
separate curve.

In contrast to our figures in the previous subsection, the abscissae of our graphs
now state the proportion of reduced memory requirements, i.e., the amount of removed
predicate advertisement associations (previously also shown as a curve). The maximal
possible reduction varies according to the amount of subscription prunings, e.g., 72%
for no subscription pruning (0% SP) and 53% for all possible subscription prunings
(100% SP).

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.0 0.2 0.4 0.6

P
ro

po
rt

io
na

l n
um

be
r

of
 c

an
di

da
te

s

Proportional advertisement associations lost

(a) Number of Candidates

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.0 0.2 0.4 0.6

P
ro

po
rt

io
na

l n
um

be
r

of
 o

ve
rla

pp
in

gs

Proportional advertisement associations lost

0% SP
10% SP
20% SP
30% SP
40% SP
50% SP
60% SP
70% SP
80% SP
90% SP

100% SP

(b) Number of Overlappings

Fig. 13.Amount of candidates and amount of overlappings when applying both subscription and
advertisement pruning

In Fig. 13(a), we have illustrated the proportional number of candidate subscrip-
tions, strongly influencing the time efficiency in Scenario All (determination of all
overlappings). Generally, the more subscription pruning operations one performs (rep-
resented by the different curves), the less candidates exist. When only some subscription

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 39

prunings have been executed, this behavior is not that stable yet and does still depend
on the advertisement prunings as well. But after approximately 50% of all subscription
prunings, the amount of candidates clearly decreases more and more. From 80% of all
subscription prunings onwards, the number of candidates remains stable at 75% of all
registered subscriptions.

The reason for this decrease in candidates is the removal of predicates in subscrip-
tions, leading to more general subscriptions. Obviously, more general subscriptions do
overlap more advertisements than more restrictive subscriptions. Hence, the amount of
candidates decreases because subscriptions are mostly evaluated only once.

The just pointed out increase in overlappings when performing subscription pruning
is illustrated in Fig. 13(b) (proportional amount of overlappings). Without subscription
pruning, the proportional number of overlappings is approximately 46%. Having per-
formed all subscription prunings, approximately 75% of allsubscriptions overlap an
advertisement on average (which is the same as the number of candidates from 80% of
all subscription prunings onwards, i.e., at this point all candidates are, in fact, an over-
lap). This is a rather strong increase, showing that the subscription pruning heuristic
does not focus on the influence of prunings on overlappings. Advertisement pruning,
however, only slightly increases the overlappings: When reducing the amount of predi-
cate advertisement associations by 72%, the amount of overlappings increases by 18%
(0% subscription pruning). But reducing the amount of predicate subscription associa-
tions by only 30% results in an increase in overlappings of even 29% (0% advertisement
pruning). A sound property of subscription pruning in combination with advertisement
pruning is, however, the stabilization of the number of overlappings at 30% of all sub-
scription prunings. Having performed these prunings, neither advertisement nor sub-
scription pruning influences the overlappings anymore. Thus, one could perform all
possible advertisement prunings and all possible subscription prunings without further
increasing the overlappings.

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.0 0.2 0.4 0.6

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

Proportional advertisement associations lost

(a) Efficiency in Scenario First

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

0.0 0.2 0.4 0.6

T
im

e
pe

r
ad

ve
rt

is
em

en
t i

n
m

ill
is

ec
on

ds

Proportional advertisement associations lost

0% SP
10% SP
20% SP
30% SP
40% SP
50% SP
60% SP
70% SP
80% SP
90% SP

100% SP

(b) Efficiency in Scenario All

Fig. 14. Average time per advertisement to determine whether any overlappings exist (Scenario
First) and to determine all overlappings (Scenario All)

The influence of subscription pruning on the time efficiency in Scenario First (deter-
mination whether an overlapping exists) is shown in Fig. 14(a). Here, we can clearly ob-

40 Sven Bittner and Annika Hinze

serve the improving influence of subscription pruning on theefficiency properties: The
more subscription prunings one performs, the more efficientthe determination whether
overlappings exist. Additionally, the more subscription prunings have been executed,
the less influence does the application of advertisement pruning have: Without any sub-
scription pruning, advertisement pruning improves the efficiency in Scenario First by
46%. Having performed all possible subscription prunings,the improvement is 11%.
Altogether, this set of results shows that both subscription and advertisement pruning
improve the efficiency to determine the existence of overlappings.

The time efficiency to calculate all overlappings is finally shown in Fig. 14(b). Sim-
ilar to the development of the candidates (Fig. 13(a)), subscription pruning generally
improves the efficiency properties of calculating the overlappings after a stabilization
phase: Having performed more than 50% of all subscription prunings, Fig. 14(b) clearly
shows a steadily improving time efficiency. Without any advertisement pruning, the
time to calculate all overlapping subscriptions has decreased from approximately 108
to 38 msec per advertisement. Generally, the time efficiencyto calculate overlappings
develops similarly as the candidate subscriptions due the interdependence of these two
parameters. So, up to 70% of all subscription prunings, advertisement pruning shows
an uneven development of the calculation times (similar to the development of the can-
didates). When performing more than 70% of all subscriptionprunings, the time effi-
ciency when additionally applying advertisement pruning improves linearly. This is due
to the stable amount of candidates (cf. Fig. 13(a)) in combination with the decreasing
complexity of advertisements.

Summarizing these results, we can state that subscription pruning leads to an op-
timization when applied in combination with advertisementpruning. However, sub-
scription pruning does not focus on the influence of pruningson the overlappings (it
focusses on minimally increasing the network load for eventrouting). Thus, it increases
the amount of overlappings stronger than advertisement pruning when reducing the
memory usage to the same amount. The increase in overlappings stops after having per-
formed a certain number of subscription pruning operations(approximately 30% of all
possible prunings). After this point, subscription pruning still increases the efficiency
properties very significantly and, simultaneously, reduces the memory requirements to
index and store subscription.

7 Conclusions and Future Work

Current pub/sub systems define subscriptions and advertisements as conjunctive filter
expressions. An advantage of such conjunctive solutions isthe opportunity to ignore the
internal structure of subscriptions while filtering. However, there also exist advantages
when directly supporting arbitrary Boolean subscriptions, as it has been shown recently.

In this paper, we have presented the first advertisement-based pub/sub system that
is internally supporting both arbitrary Boolean subscriptions and advertisements. In
Sect. 3.1 to 3.3, we have firstly defined the exact semantics ofevent messages, arbitrary
Boolean subscriptions, and arbitrary Boolean advertisements. This step has become
necessary because the introduction of arbitrary Boolean filter expressions imposes chal-
lenges that do not occur for restricted conjunctive forms. These challenges range from

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 41

the problems occurring due to the usage of the same attributein several or no predicates,
to the definition of an overlapping relationship between advertisements and subscrip-
tions. In Sect. 3.4, we could then show that arbitrary Boolean advertisements require
less memory for storage and indexation than conjunctive ones.

The greatest challenge when supporting arbitrary Boolean advertisements is to de-
velop an algorithm to determine the overlapping relationships. We have proposed such
an algorithm in Sect. 4. We have started by showing that current calculation approaches
do not work for the Boolean case followed by proposing the general computation idea
of our algorithm in Sect. 4.1. This outline has led to the concept of violating predi-
cates, described in Sect. 4.2. We have then elaborated on howto base the calculation of
overlappings on the violating predicates in Sect. 4.3; Section 4.4 has finally described a
practical implementation of our algorithm.

In this paper, we have also presented a novel optimization approach, advertise-
ment pruning, that is tailored to advertisements. Advertisement pruning is based on
the subscription pruning routing optimization (reviewed in Sect. 2.3) but directly bases
its pruning decisions on the influence of these prunings on the overlapping properties
among subscriptions and advertisements. This makes advertisement pruning to the first
advertisement-tailored optimization for pub/sub systems

We have successively developed this optimization approachin Sect. 5: After having
identified the effects of prunings on the overlappings in Sect. 5.2, we have incorporated
these influences into the measure of an overlapping rank in Sect. 5.3. This rank then
allows us to estimate the influence of pruning operations, asdescribed in Sect. 5.4.
In Sect. 5.5, we have shown how this, finally, gives us the means to determine the
best advertisement pruning to perform, i.e., the pruning operation that increases the
overlappings the least.

The final part of this paper, Sect. 6, has focused on the extensive experimental eval-
uation of our approaches. In Sect. 6.1, we have described ourexperimental setup, and
have identified eight advertisement classes and three subscription classes, characteristic
for an online auction application scenario. These definitions allow for the classification
of our results and the repeatability of our experiments.

We have investigated the general properties of our approachfor calculating the over-
lappings in Sect. 6.2 and have found a linear increase of the calculation times with an
increasing number of advertisements. In Sect. 6.3, we have additionally compared our
approach to conjunctive solutions. We could show that our algorithm strongly outper-
forms the conjunctive approach in determining whether any overlappings exist. This be-
havior is mainly due to the exponential explosion of the problem size when converting
arbitrary Boolean to conjunctive expressions. If it is required to calculate all overlap-
pings, the more efficient computation solution (Boolean or conjunctive) depends on the
structure of advertisements and subscriptions.

In Sect. 6.4, we have then evaluated the advertisement pruning optimization for
the different advertisement classes (identified in Sect. 6.1) individually as well as for
a combined setting. We could show that advertisement pruning is a valuable optimiza-
tion that, at the same time, is (i) strongly reducing the memory requirements to store
advertisements (49% less memory in the combined setting), (ii) moderately increasing
the efficiency to determine whether overlappings exist (24%more efficient in the com-

42 Sven Bittner and Annika Hinze

bined setting), and (iii) only slightly increasing the amount of overlappings (5% in the
combined setting).

The last part of our evaluation (Sect. 6.5) has focused on theeffects of simulta-
neously applying both subscription and advertisement pruning. We could show that
subscription pruning also leads to an optimization if it is applied in addition to adver-
tisement pruning. However, subscription pruning increases the amount of overlappings
more strongly than advertisement pruning. This behavior isclearly due to the different
focus of subscription pruning and shows that our estimationof the influences of adver-
tisement prunings has been effectively encapsulated in theintroduced, advertisement-
tailored optimization.

Our results show that the support of arbitrary Boolean subscriptions and advertise-
ments does lead to improvements of pub/sub systems in respect to both time efficiency
and space efficiency. Additionally, our results prove that optimizations for advertise-
ments can significantly reduce the memory usage of pub/sub systems while increasing
their efficiency. In the future, we plan to analyze the algorithm to calculate the overlap-
pings and the advertisement pruning optimization in combination with other application
scenarios to show their general applicability. Furthermore, we plan to fully support ar-
bitrary Boolean advertisements and their optimization in our prototype of a distributed
pub/sub system. This finally allows for the analysis of theireffects in the distributed
system.

References

1. M. Antollini, M. Cilia, and A. Buchmann. Implementing a High Level Pub/Sub Layer for
Enterprise Information Systems. InProceedings of the 8th International Conference on
Enterprise Information Systems, Paphos, Cyprus, May 23–27 2006. Springer-Verlag.

2. S. Bittner and A. Hinze. A Detailed Investigation of Memory Requirements for Pub-
lish/Subscribe Filtering Algorithms. InProceedings of the 13th International Conference
on Cooperative Information Systems (CoopIS 2005), pages 148–165, Agia Napa, Cyprus,
October 31–November 4 2005. Springer-Verlag.

3. S. Bittner and A. Hinze. On the Benefits of Non-Canonical Filtering in Publish/Subscribe
Systems. InProceedings of the 25th IEEE International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW ’05), pages 451–457, Columbus, USA, June 6–10 2005.
IEEE Computer Society.

4. S. Bittner and A. Hinze. Dimension-Based Subscription Pruning for Publish/Subscribe Sys-
tems. InProceedings of the 26th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW ’06), Lisbon, Portugal, July 4–7 2006. IEEE Computer Soci-
ety.

5. S. Bittner and A. Hinze. Event Distributions in Online Book Auctions. Technical Report
03/2006, Computer Science Department, The University of Waikato, February 2006.

6. S. Bittner and A. Hinze. Pruning Subscriptions in Distributed Publish/Subscribe Systems. In
Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSC 2006),
Hobart, Australia, January 16–19 2006. ACS.

7. S. Bittner and A. Hinze. Subscription Tree Pruning: A Structure-Independent Routing Opti-
mization for General-Purpose Publish/Subscribe Systems.Technical Report 01/2006, Com-
puter Science Department, The University of Waikato, January 2006.

Arbitrary Boolean Advertisements: The Final Step in Supporting Boolean Pub/Sub 43

8. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaces and Algorithms for a Wide-
Area Event Notification Service. Technical Report CU-CS-888-99, Department of Computer
Science, University of Colorado, October 1999. revised May2000.

9. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service.ACM Transactions on Computer Systems (TOCS), 19(3):332–
383, 2001.

10. R. Chand and P. A. Felber. A Scalable Protocol for Content-Based Routing in Overlay Net-
works. InProceedings of the Second IEEE International Symposium on Network Computing
and Applications (NCA 2003), pages 123–130, Cambridge, USA, April 16–18 2003. IEEE
Computer Society.

11. P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Designing Semantic Publish/Subscribe
Networks Using Super-Peers. InSemantic Web and Peer-to-Peer, pages 159–181. Springer-
Verlag, 2006.

12. P. T. Eugster, R. Guerraoui, and J. Sventek. DistributedAsynchronous Collections: Abstrac-
tions for Publish/Subscribe Interaction. InProceedings of the 14th European Conference
on Object-Oriented Programming (ECOOP ’2000), pages 252–276, Cannes, France, June
12–16 2000. Springer-Verlag.

13. J. Gough and G. Smith. Efficient Recognition of Events in aDistributed System. InProceed-
ings of the 18th Australasian Computer Science Conference (ACSC-18), Adelaide, Australia,
February 1–3 1995. ACS.

14. M. Guimarães and L. Rodrigues. A Genetic Algorithm for Multicast Mapping in Publish-
Subscribe Systems. InProceedings of the Second IEEE International Symposium on Net-
work Computing and Applications (NCA 2003), pages 67–74, Cambridge, USA, April 16–18
2003. IEEE Computer Society.

15. D. Heimbigner. Expressive and Efficient Peer-to-Peer Queries. InProceedings of the 38th
Hawaii International Conference on System Sciences (HICSS-38), Big Island, USA, January
3–6 2005. IEEE Computer Society.

16. A. Hinze. A-MEDIAS: Concept and Design of an Adaptive Integrating Event Notification
Service. PhD thesis, Freie Universität Berlin, Institute of Computer Science, July 2003.

17. G. Li, S. Hou, and H.-A. Jacobsen. A Unified Approach to Routing, Covering and Merging
in Publish/Subscribe Systems based on Modified Binary Decision Diagrams. InProceedings
of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS ’05),
pages 447–457, Columbus, USA, June 6–10 2005. IEEE ComputerSociety.

18. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Technische
Universität Darmstadt, September 2002.

19. G. Mühl, L. Fiege, and A. Buchmann. Filter Similaritiesin Content-Based Publish/Subscribe
Systems. InProceedings of the International Conference on Architecture of Computing Sys-
tems (ARCS ’02), pages 224–238, Karlsruhe, Germany, April 8–12 2002. Springer-Verlag.

20. F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. InProceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD 2003), pages
431–442, San Diego, USA, June 9–12 2003. ACM Press.

21. M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS: Fast Filtering of Graph-based Metadata.
In Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pages
539–547, Chiba, Japan, May 10–14 2005. ACM Press.

22. G. P. Picco, G. Cugola, and A. L. Murphy. Efficient Content-Based Event Dispatching in
the Presence of Topological Reconfiguration. InProceedings of the 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS ’03), pages 234–243, Rhode Island,
USA, May 19–22 2003. IEEE Computer Society.

23. P. R. Pietzuch.Hermes: A Scalable Event-Based Middleware. PhD thesis, University of
Cambrigde, Queens’ College, February 2004.

44 Sven Bittner and Annika Hinze

24. T. Sivaharan, G. Blair, and G. Coulson. GREEN: A Configurable and Re-configurable
Publish-Subscribe Middleware for Pervasive Computing. InProceedings of the 7th Inter-
national Symposium on Distributed Objects and Application(DOA 2005), pages 732–749,
Agia Napa, Cyprus, October 31–November 4 2005. Springer-Verlag.

25. Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das, and P. Larson. Summary-based
Routing for Content-based Event Distribution Networks.ACM SIGCOMM Computer Com-
munication Review, 34(5):59–74, 2004.

26. T. W. Yan and H. Garcı́a-Molina. Index Structures for Selective Dissemination of Informa-
tion Under the Boolean Model.ACM Transactions on Database Systems (TODS), 19(2):332–
364, 1994.

