Working Paper Series
ISSN 1170-487X

ARBITRARY BOOLEAN ADVERTISEMENTS:
THE FINAL STEP IN SUPPORTING THE
BOOLEAN PUBLISH/SUBSCRIBE MODEL

Sven Bittner & Annika Hinze

Working Paper: 06/2006
June 9, 2006

(©Sven Bittner & Annika Hinze
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Arbitrary Boolean Advertisements: The Final Step in
Supporting the Boolean Publish/Subscribe Model

Sven Bittner and Annika Hinze

Department of Computer Science
The University of Waikato, New Zealand
{s. bittner, a. hinze}@s. wai kat 0. ac. nz

Abstract. Publish/subscribe systems allow for an efficient filterifigncoming
information. This filtering is based on the specificationswalbscriber interests,
which are registered with the system as subscriptionsishdsk conversely spec-
ify advertisements, describing the messages they will Egadon. What is miss-
ing so far is the support of arbitrary Boolean advertiseménpublish/subscribe
systems. Introducing the opportunity to specify theseetidBoolean advertise-
ments increases the accuracy of publishers to state theirefinessages com-
pared to currently supported conjunctive advertisemeritsis, the amount of
subscriptions forwarded in the network is reduced. Addity, the system can
more time efficiently decide whether a subscription needsetéorwarded and
more space efficiently store and index advertisements.

In this paper, we introduce a publish/subscribe system ghpports arbitrary
Boolean advertisements and, symmetrically, arbitraryl®mo subscriptions. We
show the advantages of supporting arbitrary Boolean adeenents and present
an algorithm to calculate the practically required oveplag relationship among
subscriptions and advertisements. Additionally, we dgvéhe first optimization
approach for arbitrary Boolean advertisements, advengse pruning. Adver-
tisement pruning is tailored to optimize advertisementsctvis a strong contrast
to current optimizations for conjunctive advertisemefitisese recent proposals
mainly apply subscription-based optimization ideas, Wikdeading to the same
disadvantages.

In the second part of this paper, our evaluation of pracggpkeriments, we an-
alyze the efficiency properties of our approach to deterrttiseoverlapping re-
lationship. We also compare conjunctive solutions for therlapping problem
to our calculation algorithm to show its benefits. Finallg wresent a detailed
evaluation of the optimization potential of advertisemgntning. This includes
the analysis of the effects of additionally optimizing stistions on the adver-
tisement pruning optimization.

1 Introduction

Most current research activities in the area of contenetbasiblish/subscribe (pub/sub)
systems target at the extension of the main pub/sub furaiims, e.g., by integrat-
ing metadata [11, 21], by supporting higher abstractioeigyor clients [1, 12], or by
allowing for dynamic network reconfigurations [22]. Our \wphowever, rather con-
centrates on the basic principles and foundations of thesteras. This different focus
originates out of the, in our opinion, insufficiency of curtsolutions.

2 Sven Bittner and Annika Hinze

We have recently been able to show that the direct filteringrbitrary Boolean sub-
scriptions has advantages in respect to both the scajaduild the efficiency of pub/sub
services [2, 3]. In this paper, we extend our research todtiertisement-based pub/sub
model. That is, this work presents the first solution to baitcefficient pub/sub system
supporting arbitrary Boolean subscriptions and, symrmoaityi, arbitrary Boolean ad-
vertisements.

Generally, advertisements foster the cooperation betpeblishers and subscribers.
They also decrease the number of routing tables entriehasdricrease the scalability
of pub/sub systems, shown, e.g., in [18]. The basic ideawdridement-based pub/sub
systems is as follows: Advertisements describe the evessages that publishers will
send later on; these advertisements are distributed ambhbgo&ers of the pub/sub
system. Having this information about publishers, theeystan then optimize the
subscription forwarding process: Subscriptions are oolywérded in the direction of
neighbor brokers that have previously sentaarlappingadvertisement. Thereby, this
overlapping relationship describes whether any event agesdescribed by an adver-
tisement can fulfill a subscription.

Key factor in advertisement-based pub/sub systems is fiweeat calculation of
the overlapping relationships among subscriptions andriidements, and vice versa
This relationship is symmetric, i.e., if an advertisemewertaps a subscription, the
subscription also overlaps the advertisement. In comioinatith defining subscrip-
tions and advertisements in an arbitrary Boolean way, oneetsal solution for the
calculation of overlappings is sufficient for both directso

The next step after having found the means to calculate tadappings is to de-
velop an optimization for arbitrary Boolean advertisersetithas been proposed, e.g.,
in [18], to directly apply current routing optimizationsrfoonjunctive subscriptions to
advertisements. However, such an approach leads to selrara@backs, as shown in
Sect. 2.2. But more importantly, these existing optimiagionly work in combination
with conjunctive filter expressions, which opposes the mequent of developing an
optimization for arbitrary Boolean advertisements.

In this paper, we firstly propose a method to determine thel@apping relationship
in advertisement-based pub/sub systems that support Huthaay Boolean subscrip-
tions and advertisements. Secondly, we present an optiorizenethod for pub/sub
systems that is applicable to arbitrary Boolean advertisgs) advertisement pruning.
The third part of this paper contains an extensive evalnatfdhe proposed algorithm
to determine the overlappings and of the proposed advemntisepruning optimization.
We use an online auction application scenario [5] througtttaiwhole paper to exem-
plify our calculation approaches as well as to generateesirsettings.

The rest of this paper is structured as follows: In Sect. 2pmsent and analyze re-
lated work in the area of advertisement-based pub/subragst®ection 3 describes the
semantics of event messages, and arbitrary Boolean spti@os and advertisements in
detail. These definitions are fundamental because theitdgoto determine the over-
lappings heavily depends on these semantics. We gradualBlab this algorithm in

! In case of issuing new advertisements, we require to determhether overlapping subscrip-
tions exist. Knowledge of overlapping advertisements isdeel when registering new sub-
scriptions.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 3

Sect. 4. Section 5 then successively proposes the adveetiggruning optimization.
Our experimental evaluation is presented in Sect. 6. Welyicalhclude and present
future work in Sect. 7.

2 Related Work

In this section, we present related approaches, and wodtsbthld the foundations
for our later proposals. Section 2.1 starts with analyziagent advertisement-based
pub/sub systems in general. Optimizations for advertisgsnare then the topic of
Sect. 2.2. Section 2.3 finally reviews subscriptions prgnimhich has influenced our
later proposed advertisement pruning optimization antiibutis basis.

We outline our algorithms on the basis of acyclic networkictures (or the cre-
ated minimum spanning trees for cyclic networks), as asdusyanost research pro-
totypes targeting at efficiency aspects, e.@DReS [17], REBECA [18], SIENA [9],
and XNEeT [10]. In this paper, we do thus not aim at, e.g., pervasivérenments [24]
or automatic topology reconfigurations [22]. Instead, walage the well-studied sub-
scription forwarding scheme [9] in combination with theriatite/value pair pub/sub
model. Extensions of our approach to P2P settings, e.gd, insi23], and other data
models, e.g., XML-based [10, 24] ones, remain future work.

2.1 Current Advertisement-based Approaches

Currently, advertisements have been proposed in conpmetith some pub/sub sys-
tems. All of these systems only support conjunctive supsions. Advertisements are
defined as conjunctions, or, even less expressive, theyspalgify the message type
published later on. An example for this type-based appraaEleRMES[23]. Pub/sub
systems supporting conjunctive advertisements includesfAS [16], PADRES[17],
REBECA[18], SIENA [8, 9], and the proposal in [15]. The proposed algorithmsoim€
pute the overlapping relationship, if given at all, are $glezed to the restricted con-
junctive forms of advertisements and subscriptions. Tlgasen algorithms cannot be
applied to more expressive subscriptions and advertisentiegmn conjunctive ones.

To only base advertisements upon the published event tygbeady less expressive
than allowing publishers to further restrict their potahyi sent messages by either arbi-
trary Boolean or conjunctive combinations of predicatésd, the mechanisms offered
by HERMES[23] do not minimize the amount of forwarded subscripticarsd thus the
computational load in brokers) to the same extend as the tyghes of advertisements.
However, the overlapping relationship is more efficientlcalculate in this case.

It is well-known that we can convert arbitrary Boolean exgsiens, e.g., advertise-
ments, to disjunctive normal forms (DNFs). Thus, if pubdishwould register several
conjunctive advertisements, they can specify the samenpatenessages as in an ar-
bitrary Boolean advertisement. However, these canonicad$ are exponential in size
in the worst case [19]. For arbitrary Boolean subscriptidrisas been shown that their
direct support decreases the memory requirements fongtarid indexing in various
practical settings [2]. We will apply a similar argumentatio arbitrary Boolean adver-
tisements in Sect. 3.4. Additionally, a system has to supaweral advertisements per
publisher for this conjunctive approach.

4 Sven Bittner and Annika Hinze

Furthermore, the calculation of the overlapping relatiopgor arbitrary Boolean
advertisements works more efficiently compared to a camabfidiem. This is because
a Boolean algorithm needs to evaluate subexpressionsgroggmultiply in the con-
verted form, only once. Conjunctive algorithms, howeweat all advertisements inde-
pendently of each other and thus create a higher system\idadurther elaborate on
this subject in Sect. 3.4, and practically compare conjue@nd Boolean approaches
in Sect. 6.3.

2.2 Current Advertisement-based Optimizations

In the existing literature on content-based pub/sub systeme can hardly find any op-
timizations that are based on the registered advertisamieistead, routing optimiza-
tions that have been proposed for subscriptions are swegijestoe applied to adver-
tisements as well. These optimizations are subscriptieerang [9] and subscription
merging [18]. Both subscription covering and merging (irticalar the perfect merging
approach) have, however, strong assumptions on the neggistabscriptions, and they
require similarities and relationships among these sijigmns to lead to any optimiza-
tion effect (we refer to [7] for a detailed analysis and dggimn of these drawbacks of
covering and merging).

Imperfect merging does not show this strong dependencyesuhscriptions and
advertisements registered with the system. Additiongligay have a higher optimiza-
tion potential than perfect merging [25]. One can furthepiiave imperfect merging
for subscriptions by incorporating knowledge from adwetnents, as proposed in [17].
However, we are not aware of any existing approaches théaidoeed to advertisement
optimizations.

These facts describe the general problem of existing adeerent optimizations:
They are either independent of their application, i.e.,dphBmizations do not exploit
whether they are applied to subscriptions or advertisesn@rt the optimizations have
been specifically developed for subscriptions and cannetibeessfully applied to ad-
vertisements.

As a result, meaningful evaluations of advertisement ogtitions can hardly be
found in the existing literature on pub/sub systemsnNg [9] supports subscription and
advertisement covering in its routing protocols. Howethgs work does not answer the
guestion of the influence of advertisement covering on astesy parameter. The same
does hold for HRMES [23] that, however, only supports little expressive ty@esdxd
advertisements.

Some other analyses of pub/sub systems consider the eedspémdvertisements
and evaluate the influence of optimizations based on sydtsars on the routing load:
REBECA [18] only analyzes the application of subscription covgramd subscrip-
tion merging in combination with advertisement-based stipton routing. Also the
PADRES project [17], presenting a novel computation approach deecing and merg-
ing, does not consider the optimization of advertisemenits ievaluation. In this paper,
we present an evaluation investigating the influence of tveladvertisement pruning
optimization in Sect. 6.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 5

2.3 Review of Subscription Pruning

Our later proposed advertisement-based optimizatiom$®wh the foundations of the
subscription pruning routing optimization. We thus brig#yiew subscription pruning
here:

We have introduced and evaluated subscription pruningi(wé refer to this work
for the full details about the optimization). Subscriptmmning basically removes parts
of subscription trees and is suitable to be applied for alilkiof Boolean subscriptions.
The decisions about the removals of subtrees are based dsttos4].

One objective of subscription pruning is to decrease the angmrsage for storing
subscriptions by reducing the subscription complexisy, iby pruning parts of sub-
scription trees. In doing so, the event filtering process algeriences efficiency gains,
another objective of pruning, due to this reduced compfegubscription pruning,
however, creates more general subscriptions and thuslintes false positives to the
system, which is increasing the internal network load. €hiedse positives are, al-
though, not forwarded to subscribers because the locakbafikeach subscriber does
not perform subscription pruning for its local subscripgoThus, subscription pruning
does not affect correct event delivery.

As already mentioned, the decisions about pruning operatice based on a heuris-
tic that is estimating the effects of prunings on the netwlodd. This estimation is
performed by taking into account the increases in selégtinduced by pruning oper-
ations, referred to as selectivity degradation. Orderirggossible pruning operations
by these degradations then allows the system to firstly parflbose prunings that only
have little effects on the network load before executingiprgs that strongly increase
this load.

The estimation of selectivities is based on incoming evesgsages. The selectiv-
ity of predicates is directly known by counting the numbenwdtching messages. For
newly registered predicates, we can apply estimation nastionilar to [14]. For arbi-
trary Boolean subscriptions, the selectivities are edechhased on the operators used
in subscription trees [7].

3 Semantics of Events, and Arbitrary Boolean Advertisemerg
and Subscriptions

After having presented the state-of-the-art, we now intcedour notions and def-
initions of event messages (Sect. 3.1), subscriptionst(Se2), and advertisements
(Sect. 3.3). We need to properly define these concepts aidettect semantics be-
cause the later developed algorithms to determine theapgirig relationship and the
advertisement optimization strongly depend on these diefiisi. To conclude this sec-
tion, we show the advantages of supporting arbitrary Baoéetvertisements in pub/sub
services in Sect. 3.4.

3.1 Definition and Semantics of Event Messages

For event messages, we assume a well-known definition basexyent types and
attribute-value pairs. An event tyfiespecifies a set of attributes, {a; . .. a, }, the cor-

6 Sven Bittner and Annika Hinze

responding attribute domaim®m(a;), and the supported filter functions for these at-
tributes (to be used in advertisements and subscriptidingvent messageitself con-
sists of an event type and a set of attribute-value paiesi(T, {(a1,v1), ..., (an, Un)})-
Event messages contain exactly one attribute-value pagefch attribute of their type.
In our application scenario of online book auctions, an gxdamevent messaga is
(for brevity, we only use a restricted set of four attribQites

e1 = (book, {(title, Harry Potter), (ending, 6h), (condition, new), (price, 21.00)})

This event message specifies the event type “book” and thesctiiat a new copy of
a book is offered with the title “Harry Potter” and a curremicp of NZ$21.00. The
auction for this particular item is ending within six hours.

3.2 Definition and Semantics of Arbitrary Boolean Subscriptons

A subscriptions$ is issued by subscribers to specify their interest in evesgsages.
Each subscription consists of an arbitrary Boolean filt@ressiod and an event type.
Each variable of the filter expression is called a predigaéed is represented by an
attribute-function-operand triple = (a, f,0). A predicate might refer to any of the
attributes specified by the event type of the subscription.

Each functionf has two inputs and evaluates to a Boolean value. Its firsttiispu
an attribute value (as given by an attribute-value pair of\amt), and its second input
is an operand (as given by a predicate). These operands are not resttictealues
of attribute domains; for example, they may also specify tao$evalues. The exact
definition of the permitted operands depends on the speadficaf function f.

We can represent the Boolean filter expression of a subsxriply a tree struc-
ture [6]. Negations in filter expressions are shifted dowhi® leaf nodes using De
Morgan’s laws. We have given an example subscripfipffior our online book auction
scenario in Fig. 1(a) (for clarity, we have specified the ¢wgpe above the root—it
does, although, not belong to the tree structure). It dessthe interest in books whose
title contains the phrase “Harry Potter”, and there is lassitone day left for the auc-
tion. The subscriber wants to pay less than NZ$25.0 for nevk lsopies and less than
NZ$15.0 for already used copies. We have named the predichf? asp; to pg.

An evente fulfills a subscriptionS if and only if S specifies the same event type as
e, and the Boolean filter expression $fevaluates tarue on evente. For this evalua-
tion, each variable of the filter expression, i.e., a pradipa= (a, f,0), gets assigned
the result of the following operation: Evaluate functigmwith the value given in the
attribute-value pair oé (referring to the same attribute) as first input and the apra
o of predicatep as second input. If eventfulfills subscriptionS, ¢ is referred to as an
event that is matching. Our example subscriptiofi; (Fig. 1(a)) is fulfilled by event
e1, which has been given in Sect. 3.1.

Subscriptions do not need to contain predicates referonglltof the attributes
specified by the event type of the subscription. Furthergsarescriptions might con-
tain several predicates referring to the same attribute sEmantics in this case is given

2 \We restrict our further specifications to the conjunctivisjuhctive, and negation operators.
We can represent all other Boolean operators by the helgesgtthree supported ones.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 7

(book) (book)
AND AND
p1 P2 ng
title like "Harry Potter" OR ending < 1 day endmg < 7 days
ne / \ nr
AND AND AND AND

SN A Ny w N N\,

condltlon = newprice < 25.0 price < 15.0 condition = us condltlon = newprice > 20.0 price > 7.€ondition = usel

(a) Example subscriptiof; (b) Example advertisement;

Fig. 1. Example subscriptiots; and advertisemem, using our online book auction scenario;
we have named the predicatesfby p; to ps and the nodes ofl; by n; tong

by the Boolean operators in the filter expression. For aiteinot referred to by predi-
cates, subscribers do not restrict the attribute value evant message, i.e., they accept
all values. Whether the incoming event is matching solelyetiels on the predicates
used in the filter expression. This semantics is differeminfconjunctive approaches,
e.g., [18], where all attributes have to be referred to byctyane predicate of a filter
expression. Other approaches, e.g., [13], explicitlyrinden’t-carepredicates for at-
tributes mentioned in the type of a subscript®but not inS itself. Our approach does
not require this preprocessing, strongly increasing thsatption complexity.

3.3 Definition and Semantics of Arbitrary Boolean Advertisenents

An advertisementsl is the counterpart of a subscription and is issued by puirgsh
Advertisements describe the event messages publishésend later on and need to be
registered with the pub/sub system before actual messaggmiblished. Similarly to
subscriptions, advertisements consist of an event mesgagiand an arbitrary Boolean
filter expression. The filter expression is defined as in gifitians, i.e., it contains
predicate®; linked by Boolean operators. The semantics of an adverésér is as
follows: The issuing publisher will send messages of thetgjven in A. For each
message that will be sent, the Boolean filter expressiondgvaluates tdrue one.
Again, there might be several predicates in the filter exgiomsreferring to one
attribute. And some attributes might not be referred to by @edicate of a filter ex-
pression. For the former case, the semantics depends orotiled® operator, e.g., a
disjunctive operator of two predicates referring to onelaite a, p; = (a, f;,0;) Or
p; = (a, fj, 0;), means that eithef; or f; will evaluate totrue for each message (also
both functions could evaluate taue if they do not exclude each other). For the later
case (attributes that are not referred to by predicated)ighers will send any values
for these attributes, i.e., they do not restrict the valhey will send in their messages.
We give an example of an advertisemeht in Fig. 1(b) (again, we specify the
event type, which does not belong to the tree structure, elioe root node). This
advertisementd; specifies that the publisher will send messages descrihiotjoas
about used books that cost more than NZ$7.50 and about nelws bawing a price of
more than NZ$20.00. Furthermore, the auctions of this phbli last no longer than
seven days. Advertisemendt; does not restrict the title of books, i.e., its publisher

8 Sven Bittner and Annika Hinze

might send messages of any book title. We have named all rafdke tree structure
of A; asn, to ng. The filter expression of advertisemett evaluates tarue on event
e1 (cf. Sect. 3.1). That is, event could be sent by a publisher that has registeted

3.4 Advantages of Supporting Arbitrary Boolean Advertisenents

As already argued in Sect. 2, arbitrary Boolean advertisgsradlow publishers to more

accurately specify their potentially sent event messagepared to conjunctive ad-

vertisements. Even if assuming the conversion of arbitBrglean advertisements to
DNFs and the registration of several conjunctive advertesgts instead of a Boolean
one, the direct support of Boolean advertisements doésatie advantages in respect
to both system efficiency and scalability compared currppt@aches:

To determine the overlapping relationship in current coofive proposals, adver-
tisements are treated individually. Each conversion to Bilifeates several advertise-
ments out of an arbitrary Boolean one. These conjunctiveridements share common
subexpressions. However, there is no optimization in r&djeethis property, i.e., for
these subexpressions the required calculations are myybpformed. Using the ar-
bitrary Boolean expression, (most) subexpressions oadyramce. That is, a Boolean
algorithm performs the calculations for these subexpoassexactly once. This bene-
ficial effect outbalances the higher computational loachftallyzing a Boolean expres-
sion compared to a conjunctive one. This advantage of ushigary Boolean adver-
tisements to determine the overlapping relationship exes with a growing size of the
equivalent DNF. In Sect. 6.3, we show these efficiency benefiten using arbitrary
Boolean advertisements.

Next to the efficiency benefits when calculating the overiiagpelationship, arbi-
trary Boolean advertisements require less memory for geoaad indexation than the
converted conjunctive ones. These memory requiremergsttiirinfluence the scala-
bility properties of the broker components of a distribupedb/sub service [2, 20]. This
behavior results out of the requirement to apply pure maimorg algorithms out of
efficiency reasons.

The work in [2] presents an extensive evaluation of the mgmequirements of
arbitrary Boolean filtering algorithms and conjunctivediilhg approaches. It is shown
that even if subscriptions contain only one disjunctiverapa, the utilization of ar-
bitrary Boolean filtering algorithms requires less memdawgvertisements should be
indexed and handled in the same way as subscriptions to &lothe efficient deter-
mination of the overlapping relationship [18]. These pmigs influence the memory
requirements as follows:

Let us exemplarily pick the counting algorithm [26] as cargtive approach, and
use the results and notions from the analysis in [2]: To dateuthe overlapping rela-
tionship, for storing and indexing conjunctive advertissts we require a hit vector, an
advertisement predicate count vector (which is the copatéto the subscription pred-
icate count vector), a predicate advertisement assogitdtale (being the counterpart

3 The work in [17] shares common subexpressions of conjundilters in subscription indexes;
however, the work does not present solutions to computeuwagapping relationship among
subscriptions and advertisements.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 9

to the predicate subscription association table), and sardsgement predicate associ-
ation table (counterpart to subscription predicate aasioci table). To index and store
Boolean advertisements, we require the advertisemers {oeeinterpart to subscrip-
tion trees), an advertisement location table (countetpatibscription location table),
a predicate advertisement association table (countexppredicate subscription asso-
ciation table), a hit vector, and a minimum predicate cowttor. That is, we require
exactly the same structures as for the filtering of subdoript And these structures
require the same memory as found in the analysis in [2]. Titaiggsults symmetrically
hold for advertisements: Directly utilizing arbitrary Bean advertisements requires
less memory for storage and indexation than the usage ofdiveeded conjunctive
advertisements.

4 Calculation of the Overlapping Relationship

We have developed an algorithm allowing for the computatibthe overlapping re-
lationships among arbitrary Boolean advertisements ahscsiptions. Without loss of
generality, we consider the determination of all overlagpsubscriptions in the fol-
lowing descriptions. Finding the overlapping advertisatador a subscription works
analogously (due to the symmetric definition of advertisetmand subscriptions).

In the following subsection (Sect. 4.1), we present the geiaea of our calculation
approach. Then, we outline the important and required qarafeviolating predicates
in Sect. 4.2. In Sect. 4.3, we gradually develop our algorifor the determination
of overlapping subscriptions for conjunctive, for disjtine, and finally for arbitrary
Boolean advertisements. A practical implementation ofapproach is then described
in Sect. 4.4.

4.1 General Idea of the Calculation of Overlappings

A first solution to the problem of determining the overlapgpielationship could work
similarly to the approaches for conjunctive advertisernemd subscriptions, e.g., as
sketched in [18]. These solutions, in turn, are related éoetvent filtering algorithms
for conjunctive subscriptions, e.g., introduced in [26&t lus firstly determine all pred-
icates of subscriptions that overlap the predicates of thverdisement. Secondly, we
can derive whether a subscription is overlapping based®oykrlapping information
about its predicates: For conjunctive subscriptions,ithiés counting of the number of
overlapping predicates. And for arbitrary Boolean sulpgimns, we can base this de-
cision on the minimally required number of fulfilled predies [2] to determine the
candidate subscriptions and on the evaluation of the sipiser trees of these candi-
dates.

However, a closer at the semantics of arbitrary Booleancsigi®dns and adver-
tisements reveals the inapplicability of such an approAatadvertisementl does not
need to contain predicates for all attributes of its typeusta subscriptiors’ might
overlap advertisememt even if not all predicates o&§ overlap a predicate ofl. That
is, a calculation based on overlapping predicates leadstorg answer if an attribute

10 Sven Bittner and Annika Hinze

is not used inA. Hence, the calculation of the overlapping subscripticasel on their
overlapping predicates does not work correctly for arbjtBoolean advertisements.

Approaching the overlapping problem from the oppositediiom, although, leads
to the correct result: Only the attributes referred to byghedlicates of advertisements
are restricted in conforming event messages. And a suliseri§ only restricts an
attribute value ifS contains predicates referring to this attribute. Thus, eutd com-
pute all those predicates of subscriptions thatrareoverlappedy an advertisement.
Attributesa; referred to in a subscription but not in an advertisemémto not cause
problems because the publisher does not restrict the vafugsThus, these attributes
will be fulfilled by all event messages conforming4o

In the following, we refer to non-overlapping predicatesiasating predicatesWe
describe their calculation in the next subsection. In thehtr, remaining subsections,
we then introduce how to calculate the overlapping subsorip purely based on these
violating predicates.

4.2 Definition of Violating Predicates

We have given a leaf node; of an advertisement tree that contains the predicate
pi = (a4, fi, 0;). The violating predicate®,;,(n;) of n; are all those predicateg =

(aj, fj,05) (used in subscriptions) that refer to the same attributdhefsame event
type, and there exists no attribute value that will lead tocue result when applied to
both functions given in the predicates. That s, it has tahol

a; = a; A po € dom(a;)(fi(v,0;) = fj(v,05) = true) .

We can compute the violating predicates based on the onerdimnal indexes uti-
lized for event filtering. The calculation depends on thecfions used in both predi-
cates. For the functions@ALS, NOTEQUALS, GREATERTHAN, and LESSTHAN, we
exemplarily give the rules for the determination of vialgtpredicates in Table 1. Here,
we assume the attribute domain as totally ordered set (etggers). The first column
contains the functiorf; used in a predicate, of a leaf node:; of the advertisement; the
second column shows the functignof a predicate; of subscriptions; the last column
describes the calculation of the violating predicales,(n;). Also for other domains
and operators, e.g., strings in combination with prefixfisudnd substring operators,
we can calculate the violating predicates based on look mpkd utilized predicate
indexes.

To compute the violating predicates of each leaf nagef an advertisement, we
walk through all the indexes belonging to the attributemefé to by the predicate stored
in n;. Then, we calculate the violating predicates for each cfaliedexes (as described
in Table 1) and finally unite our results to get the Bgt, (n;).

Example 1 (Determination of the violating predicates faggicates)For our example
advertisementl; (cf. Fig. 1(b)), the violating predicates of the leaf nodgso ns5 are
as follows. Here, we assume that subscriptier{cf. Fig. 1(a)) has been registered:

P’uio(nl) = gapvio(nZ) = {pG}v-P'uio(nfi) = {pS}v-P'uio(n4) = gapvio(nS) = {Pd} .

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 11

Table 1. Overview of the calculation of violating predicates basedtloe used functionsf{—
function of the predicate; = (ai, fi,0:;) used in the leaf node; of the advertisementf;—
function of the predicatg; used in subscriptions)

fi fi Calculation ofPy;0 (1)

EQuUALS EQUALS All predicates specifying another value than

EQUALS NOTEQUALS All predicates specifying the same valuge

EQuUALS GREATERTHAN All predicates specifying a greater value than

EQuUALS LESSTHAN All predicates specifying a less or equal value than

NOTEQUALS EQUALS All predicates specifying the same valuge

NOTEQUALS NOTEQUALS All predicates specifying another value than

NOTEQUALS GREATERTHAN If o; is the maximal value, the predicates specifying
the predecessor of; otherwise none

NOTEQUALS LESSTHAN If 0; is the minimal value, the predicates specifying
the successor of;; otherwise none

GREATERTHAN EQUALS All predicates specifying a less or equal value than

GREATERTHAN NOTEQUALS If o, is the predecessor of the maximal value, the pre-
dicates specifying the maximal value; otherwise none

GREATERTHAN GREATERTHAN There are no violating predicates

GREATERTHAN LESSTHAN All predicates specifying a less or equal value than

LESSTHAN EQUALS All predicates specifying a greater/equal value than

LESSTHAN NOTEQUALS If 0, is the successor of the minimal value, the pre-
dicates specifying the minimal value; otherwise none

LESSTHAN GREATERTHAN All predicates specifying a greater or equal value than
the predecessor of

LESSTHAN LESSTHAN There are no violating predicates

4.3 Overlapping Subscriptions Based on Violating Predicas

In this section, we subsequently present the calculatidhefiolating predicates for
conjunctive, disjunctive, and finally for arbitrary Boofeadvertisements. Then, we
show how to determine all overlapping subscriptions bagethese violating predi-

cates.

Conjunctive AdvertisementBor a conjunctive advertisemeat with root noden., the

set of violating predicateB,;,(n.) is the union of the sets of predicates violating each
of the child nodes (i.e., predicates)wf. The reason for this definition is the fact that
for all event messages conforming to the conjunctive athesrtentA., the functions
given in all predicates in the leaf nodes evaluateie. Thus, we need to combine the

12 Sven Bittner and Annika Hinze

violating predicates for akt children (1 to ny) of n.:

Pyio nc = U Puzo nL
i=1...k

Disjunctive Advertisements-or a disjunctive advertisement,; with root noden,,
we could build the intersection of all violating predicatdsthe children ofng. This
approach results in a set of predicates violating all pegdis of the disjunction. How-
ever, the other violating predicates (those only violatmg or several predicates) are
neglected in this calculation. Because each disjunctiveidement4,; contains sev-
eral descriptions of event messages—of which one or setexa to hold for each
message—the violating predicatesAyf are in fact expressed by several predicate sets.

This characteristic contradicts our previous notion oflating predicates as a set
of predicates. Violating predicates should instead be ddfas a set containing sets of
predicates. Each of these sets describes one of the opkipreseed by the disjunctive
advertisement; with root noden 4, havingk children (., to ny):

Pmo(nd) = {Pm'o(’lli)"i =1... k} .

Arbitrary Boolean AdvertisementsArbitrary Boolean advertisements might contain
both disjunctive and conjunctive operators. Thus, thailating predicates must also be
defined as sets containing sets of predicates. We will basgaibulation of the violating
predicates on the operators in the nodesf advertisement trees. In the following,
we refer to this refined notion of violating predicates in domation with any node:
of advertisement trees d3%,,(n). All elements inP;, (n) describe a set of violating
predicates induced hy.

For leaf nodes;, we look up our indexes as described in Sect. 4.2. Then, wedmb
the computed violating predicatesfin a set to obtain our refined notion:

Plio(mi) = {Puio(n1)} -

For a conjunctive node. havingk children,n; to ng, we unite each set of violating
predicates of each child with each set of violating predisatf all other children:

I}lO nf’ - { U S|S € mo()} .
i=1...k
For a disjunctive node, havingk children,n; to ny, we unite the sets of all children:
Pyio (n4) U Puzo nl
i=1...k

Recursively calculating the violating predicates of thetnoode of the advertisement
tree of A then allows us to determine the overlapping subscriptionglf We describe
this method in the following paragraph, following this exalm

Example 2 (Determination of violating predicate&pain assuming the registration of
subscriptionS; (Fig. 1(a)), the violating predicates for the leaf nodesafetisement

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 13

A, (Fig. 1(b)) are straightforwardly derived from our caldidas in Example 1:

Plio(n1) = {Puio(m1)} = {2},
Plio(n2) = {Puio(n2)} = {{pe}},
Plio(ns) = {Puio(ns)} = {{ps}},
Plio(na) = {Puio(na)} = {2},
Plio(ns) = {Puio(ns)} = {{ps}} -

For the conjunctive nodes; andn; of A, the violating predicates are as follows:

‘Dmo(nﬁ) = {{p5’p6}} vzo(n7) = {{p3}} :

And for the disjunctive nodeg, we derive the following violating predicates:

Ppio(ns) = {{ps,p6}, {ps}} -

Finally, for the conjunctive root node, the violating predicates are the same asfor
in this example (because it holdy; (n:) = {2}):

Plio(n9) = Pli(ns) = {{ps,pe}, {ps}} -

Determination of Overlapping Subscriptiong/e now describe how to determine the
overlapping subscriptions based on the calculated viggiredicates. We require two
steps for this determination: In the first step, we determaiheandidate overlapping
subscriptionsThis set excludes all those subscriptions that will defigihot overlap
the given advertisement. The calculation of each candiosdapping subscriptios
is purely based on the number of violating predicates pesaiftion, | P,;,(.5)|. In
the second step, we then evaluate all candidates to detewhiether their subscription
tree might still evaluate ttrueiif all violating predicates evaluate false

We can base the calculation of the candidate overlappingcsigiions on the min-
imally required number of fulfilled predicatéB, ., (S)| per subscriptior$ [2, 3]. This
subscription-specific property is required in the eveneffittg step and thus already
known for all indexed subscriptions. The vale,,;, (S)| specifies the minimal num-
ber of predicates evaluating tae if a subscriptionS is fulfilled by an incoming event
message, e.g., for a conjunctive subscriptidt,;, (S5)| is the total number of predi-
cates,|P(S)|. For each candidate overlapping subscriptirthe following property
has to hold:

|P(S)‘ Z |va(S)‘ + |Pmm(S)| .

This inequality describes that a subscription tree cahestdluate totrue even if all
violating predicates do not overlap an incoming advertesei(i.e., evaluate ttalse).

To determine whether a candidate is an overlapping suliserjpve evaluate its
subscription tree. We do not need to evaluate the functibpsealicates because we
already know whether predicates overlap the advertiserf@ntviolating predicates,
we assume the result of the function of the predicatiase All other predicates are
assumed to evaluate taue. If the whole subscription tree might still resulttirue, the

14 Sven Bittner and Annika Hinze

subscription overlaps the advertisement. The reason i®rgihat violating predicates
are never fulfilled by an event messageonforming to the advertisement. The other
predicates, however, might be fulfilled, depending on tHeesused ire.

This calculation is performed for all elements &, (n), i.e., all predicate sets,
with n specifying the root of the advertisement tree. We illusttats in an example:

Example 3 (Determination of overlapping subscriptiod®)r the root node of adver-
tisementA; (Fig. 1(b)), we have already determined the set of violatiregicates (cf.
Example 2):

Pyio(ng) = {{ps, 6}, {ps}} -

For our subscriptiois; (Fig. 1(a)), it holds:
‘P(Sl)| =0, ‘Pmin(slﬂ =4.

Thus, subscriptio; is a candidate subscription for both element&jp, (ny) because
it holds6 > 2 + 4 (for set{ps,ps}) and6 > 1 + 4 (for set{ps}). S; is in fact an
overlapping subscription because its subscription treaesult intrueif p5 andpg, or
ps is false(it is sufficient if this is the case for either one of thesedicate sets).

4.4 Practical Implementation of the Calculation Approach

We have integrated our described approach of determinaguarlapping relationship
in our prototype of a distributed pub/sub system, impleraéim C/C++.

For the determination of the violating predicates of an aisement, we use the
existing implementation of a predicate bit vector, alreadgd as fulfilled predicate
vector in the filtering process [2]. For leaf nodes, we deteenthe violating predi-
cates using the one-dimensional index structures and 8tere in the predicate bit
vector. Currently, we use the STL map class for the reabpatif our one-dimensional
indexes and support the type integer. For the calculatimjyrttive nodes store the
bit vectors for all their children in an array. Conjunctivedes determine the violating
predicates for their first child and then subsequently feratiner children, including the
required union operation with the previous results (cf.tS€8). For pure conjunctive
advertisements and conjunctive nodes involving only leafas as children, we have
implemented an optimization that is only using one preeitétvector.

For each calculated predicate bit vector, we then deterthmeandidate overlap-
ping subscriptions. This step uses the hit vector impleatem, also required in the
filtering process. For each predicate, i.e., a bit that isnstkte vector, we determine all
subscriptions containing this predicate (using the engsfiredicate subscription asso-
ciation table) and increase a counter in the hit vector. Raperformed this step, this
hit vector represents the valugg,;, (.S;)| for all subscriptionss;.

We then calculate the candidate subscriptions using the kmawvn information
about the number of violating predicatg,;,(S;)| (just calculated), about the mini-
mally required number of fulfilled predicatéB,,.;, (S;)|, and about the total number of
predicatesP(.S;)| (the later two are known for all indexed subscriptions).

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 15

For these candidates, we can then access their subsctiets(using the subscrip-
tion location table required in the filtering process) andleate these trees based on
the violating predicates stored in the predicate bit ve@tdrich allows the algorithm
to easily access the state of each predicate). If a tree cait i@ true with the given
violating predicates, it belongs to an overlapping sulpsicn. This decision is based
on the used operators in the nodes of the tree.

5 Advertisement Pruning: An Optimization for Advertisements

After having the means to calculate the overlappings, we prmgeed with developing
an optimization approach for arbitrary Boolean advertisets. The general idea of
advertisement pruning is as follows: The pruning algoritisntrying to decrease the
complexity of advertisements, in respect to the space oaxitplfor storage and the
time complexity for processing, without, in case of adwatnents, strongly increasing
the amount of overlappings. In this section, we describetocachieve these goals. We
show the inapplicability of the existing subscription pinmheuristics (cf. Sect. 2.3)
for advertisements in Sect. 5.1. In the remaining subsegtiwe then propose how to
tackle the advertisement pruning problem (Sect. 5.2 to &) how to find the most
suitable pruning operation among all advertisements (Seg).

5.1 Inapplicability of the Subscription Pruning Heuristics

One could image that the heuristic to decide on the next siphsn pruning operation
can be directly mapped onto the advertisement pruning enoldHowever, subscription
and advertisement pruning follow different optimizaticreds, and the existing heuris-
tic is thus not the applicable:

The main focus of subscription pruning is to decrease thecteity of subscrip-
tions as little as possible (cf. Sect. 2.3), i.e., with eanlnmg operation we want to
generalize subscriptions to the least extend. The detatramof the selectivities of
subscriptions is, obviously, based on the incoming evessages, which should match
as little as possible additional subscriptions due to prgnWWhen applying advertise-
ment pruning, we want to increase the amount of overlappamgsng subscriptions
and advertisements as little as possible. This is, at a fiastcg, independent of the
incoming event messages. Although, we can partially etiliee selectivities deduced
by event messages, as shown in the following subsections.

What is required to prune advertisements is rather a cdioelaetween subscrip-
tions and advertisements because their overlappingoekttips are altered by the prun-
ing process (optimally, as minimal as possible). Additibnave do not need to evaluate
event messages against advertisements. Even the sold@eatisin of the predicates of
advertisements while filtering would unneccesarily deseethe event throughput of
the system. Thus, we cannot determine the selectivitieseoptedicates of advertise-
ments and, consequently, not of advertisements thems&uslso when assuming
these selectivities to be given, simply minimizing theigdidation (cf. Sect. 2.3) when
pruning does have no relation to the registered subscniptiad thus to the overlapping
relationships.

16 Sven Bittner and Annika Hinze

Hence, advertisement pruning does require a completdrdift heuristic estima-
tion approach than subscription pruning. We successivelpgse a possible heuristic
in the following subsections. In Sect. 6, we then evaluate dietail.

5.2 Discovering the Influences on the Overlappings

In this section, we subsequently identify the factors dfifiecthe overlappings among
subscriptions and advertisements. We then incorporatetfectors into a heuristic
estimating these influences in Sect. 5.3.

The algorithm to determine the overlappings uses the canégplating predicates
for its calculations (cf. Sect. 4). The number of violatinggicates is then used to
compute candidate subscriptions/advertisements. Tiseckesdidates exist, the more
efficient the calculation of overlappings.

Hence, an advertisement pruning operation should inctbassamount of violating
predicates. Such an increase is, however, impossible be@pruning operation al-
ways removes some predicates and thus the correspondiatingopredicates. Hence,
a pruning operation needs to target at removing as littl&atiirey predicates as possible
to, in turn, enlarge the number of candidates as little asiptes(Influence 1).

Although, if only considering the number of candidates, weild still strongly
increase the overlappings. The worst case is that beforerang operation none of
the candidates represents an overlapping, but afterwhictnaidates are overlapping.
Hence, we also need to take into account what violating patels are removed due to
prunings (Influence 2).

Ideally, the removed violating predicates do not influeree fact whether a sub-
scription and an advertisement overlap. Or, to put it theiotvay round, the remaining
violating predicates should still disqualify subscriptioand advertisements from over-
lapping. Hence, pruning operations must not remove prégicrom advertisements
that have violating predicates preventing subscriptiommfoverlapping. Making ratio-
nal assumptions about the usage of predicates, we can hasketision on the selec-
tivities of predicates. We elaborate on this proposal it subsection.

5.3 Characterizing an Arbitrary Boolean Advertisement

Having identified the influences of pruning operations onriagpings, we now de-
velop a heuristic incorporating these factors. The firqt stedoing so is to quantify an
overlapping ranKor advertisements. By the help of this rank, we can themedé the
effects of pruning operations (cf. Sect. 5.4). This, finadljows for the determination
of the best among all possible pruning options (Sect. 5.5).

The overlapping rank combines the number of violating praiis of an adver-
tisement Quantitative overlapping rankwith the influence of these predicates on the
number of overlappinggj(alitative overlapping rank That is, it incorporates both of
the previously identified influences (Sect. 5.2). The ogiag rank can be succes-
sively calculated for an advertisement tree based on thiragtioperators, as shown in
the following paragraphs.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 17

Leaf nodes. For a leaf nodey; of an advertisement tree, the quantitative overlapping
rank includes the number of violating predicates of the jmedd stored im; and the
number of subscriptions using these predicates.

For the qualitative overlapping rank, we have to make astiompabout the usage
of predicates in subscriptions: Generally, subscriptimorgtain a number of predicates
having different selectivities. For example, predicatetheTitle or theAuthorattribute
show a high selectivity (restrictive predicates), whemgaslicates on th€onditionat-
tribute or a generally low price have a low selectivity (geth@redicates). In practice,
there is the tendency that highly selective predicatesggndetermine whether a sub-
scription tree might be fulfilled (in respect to both mata@hinessages and overlapping
advertisements). Thus, to state it the other way round, thre selective a predicate in
subscriptions, the more important its state of fulfilment.

Putting together these observations with the importanetdting predicates when
evaluating candidates, we should try to remove little s®leiolating predicates rather
than highly selective ones. The qualitative overlappimdcighould thus incorporate the
selectivity of violating predicates: The higher selectieiolating predicate, the higher
the corresponding qualitative overlapping rank.

We define the overlapping rankink(n;) of a leaf noden; as follows. It is always
in between 0 and 1.

1 Z predSubAssoc(p;)

k() = ———c—— '
rank(m) |predSubAssoc]| matches(p;) + 1

Pi €Pyio(ny)

The expression in the right multiplication factor sums u@ @iverlapping rank for all
violating predicatep; of the leaf noder;. The elements in the sum contain the quantita-
tive partpredSubAssoc(p;), describing the number of predicate subscription associa-
tions of a violating predicatg;, i.e., how many subscriptions contain The qualitative
part is given by the denominator, stating the selectivity,0fThe number of matchings
per predicate (referred to asatches(p;)) is known from the selectivity estimation for
subscription$

The left coefficient of-ank(n;) ensures that the overlapping rank is always between
0 and 1. The valuéredSubAssoc| describes the total number of predicate subscrip-
tion associations. The casenk(n;) = 1 occurs if a leaf nodey; has all registered
predicates (from subscriptions) as violating predicatitls aselectivity of zero each.

This definition of the overlapping rank assigns higher vatodeaf nodes (including
predicates) having a large number of violating predicateese violating predicates are
weighed according to their selectivity, i.e., their im@orte to disqualify a candidate
from being a real overlapping.

For the Boolean operators in an advertisement tree, we tilpate the overlap-
ping rank, as shown in the following paragraphs. This egtoma:ank™(n;) for a node
n; contains three values, tminimal possible overlapping rankhe average overlap-
ping rank and themaximal possible overlapping rank

rank™(n;) = (rank™" (n;), rank®9(n;), rank™** (n;)) .

“ 1t can be estimated for newly registered predicates, amedtin [7].

18 Sven Bittner and Annika Hinze

For a leaf nodey;, these three estimations have the same value:
rank™"™(n;) = rank®™9(n;) = rank™**(n;) = rank(n;) .

We describe the calculation of the overlapping rank for leadles in the following
example:

Example 4 (Determination of the overlapping rank for leafles) Let us again merely
assume the registration of our example advertiserdgnfcf. Fig. 1(b)) and our ex-
ample subscriptiord; (cf. Fig. 1(a)). It thus hold$predSubAssoc| = 6, as well as
predSubAssoc(p;) = 1 fori = 1...6. Additionally, we assume the following values
for the number of matchings for some predicatesof

matches(ps) = 500, matches(ps) = 1500, matches(pg) = 2000 .

For the five leaf nodes; to ns of A; then holds (we have determined the violating
predicates in Example 1):

1

rank(ny) = 8 x0=0
1 1
1 1
1

rank(ng) = e 0=0
1 1

These results describe that nodgsandn, have the least significance in determining
candidate subscriptions and their state of overlappiegyi; andn, do not have any
violating predicates in this example. This is followed bylesn, andns. The most sig-
nificant indicator for candidate subscriptions and theertappings is nodes. These
results align with our assumptions about predicates: Thkdrtithe selectivities of vi-
olating predicates, the more important they are for restigdhe overlappings. In this
case, the violating predicate of node (predicateps) is the most selective one.

Conjunctive nodes. For a conjunctive node.., we only estimate the overlapping rank.
This is required due to the general lack of information alibatrelationships among

violating predicates. This approach, more importantlgves for a time and space effi-

cient calculation of the required overlapping rank. Thigneated overlapping includes

both concepts of a rank, the qualitative and the quantéatart.

The minimal possible overlapping ramknk™i"(n.) occurs if all violating predi-
cates are shared among the children of the conjunctive ngdéis thus the maximal
rank of all children.

The average rankank®"9(n.) estimates a mean value for the overlapping ranks of
the children. It describes the expected mean if assumingpieicident child nodes and
an equiprobable distribution of the violating predicatéthese children.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 19

Finally, the maximal possible rantank™?*(n.) occurs if the violating predicates
of child nodes exclude each other. It is thus at most the sutimeafanks of all children
but further restricted to not increase over 1.

This leads to the following equations for the three comptmérhe calculations are
always based on the estimation of the child nodes. For lytdvére we only consider
the case of two childrem,; andna:

rank™" (n.) = max(rank™"™ (ny), rank™" (ny)) .
rank®9(n.) = rank®9(n1) + rank®9(ng) — (rank®9(n1) x rank®9(ns3)) .
rank™* (n.) = min(1.0, rank™** (n1) + rank™**(ng2)) .
We describe the calculation of the overlapping rank for aoojive nodes in the follow-
ing example:
Example 5 (Determination of the overlapping rank for comjive nodes)Let us as-
sume the setting that is given in Example 4. The calculatfdheoverlapping rank for
the two conjunctive nodess andn; of advertisementl; is then as follows:
rank™™ (ng) = max(0.00373,0.00430) = 0.00430,
rank®9(ng) = 0.00373 4+ 0.00430 — (0.00373 x 0.00430) ~ 0.00801,
min(1.0,0.00373 + 0.00430) = 0.00803,
max(0,0.00745) = 0.00745,
04 0.00745 — (0 x 0.00745) = 0.00745,
min(1.0,0 + 0.00745) = 0.00745 .

rank™** (ng

(n6)
(n6)
Tankmin (n7)
(n7)
(n7)

rank®9(ny

rank™** (ny

Disjunctive nodes. For the other kind of inner nodes, disjunctions, we also appl
estimation approach to determine the overlapping ranigdiracontains the qualitative
and the quantitative part because it is based on the comkan&af the children of the
disjunctive node.

The minimal possible rank is described by the rank of thedamilde of the disjunc-
tive noden, that has the smallest overlapping rank. The reason is thedsttthis rank
will occur, regardless of which part of the disjunction vdhd to the overlapping.

Similar to conjunctive nodes, the average rank of a disjonet, treats child nodes
independently of each other and assumes an equiprobabieutisn of the violating
predicates of children.

The maximal overlapping rank describes the situation thathéldren of the dis-
junction hold simultaneously and that their violating goades exclude each other.

This leads to the following equations. Again, we only comsithe case of two
children,n; andns, here:

rank™ " (ng) = min(rank™™ (ny), rank™™ (ny)) .
rank®9(n.) = rank®9(ny) + rank®9(n2) — (rank®9(n1) x rank®9(ng)) .
rank™*(ng) = min(1.0, rank™** (n1) + rank™*" (ng)) .

We describe the calculation of the overlapping rank forutistive nodes in the follow-
ing example:

20 Sven Bittner and Annika Hinze

Example 6 (Determination of the overlapping rank for digjtive nodes)Let us again
assume the setting that is given in Examples 4 and 5. Thelatitmuof the overlapping
rank for the disjunctive nodeg of advertisemen#; is then as follows:

rank™" (ng) = min(0.00430,0.00745) = 0.00430,
rank®(ng) = 0.00801 + 0.00745 — (0.00801 x 0.00745) ~ 0.01540,
rank™* (ng) = min(1.0,0.00803 -+ 0.00745) = 0.01548 .

This finally leads to the overlapping rank for the root nageof A;:

rank™"™(ng) = max(0.00430, 0) = 0.00430,
rank®? (ng) = 0.01540 + 0 — (0.01540 x 0) = 0.01540,
rank™**(ng) = min(1.0,0.01548 4+ 0) = 0.01548 .

Having the means to estimate the overlapping rank for ayitBoolean adver-
tisements, we can now determine the effect of a pruning dperaas shown in the
following subsection.

5.4 Estimating the Influences of a Pruning on the Overlapping

In the last subsection, we have defined the overlapping taglkistically estimating
a measure for the overlappings between an advertisemernhanmdgistered subscrip-
tions. By the help of this heuristic measure, we can now edgérnthe influence of an
advertisement pruning operation.

The question to be answered is as follows: Given a set oftergid advertisements,
what is the order of the pruning operations to perform. Teatve firstly have to deter-
mine the best pruning of each advertisement. Secondly, we ttebe able to compare
pruning operations of different advertisements to eackroth

As identified previously, each performed pruning operasioould minimally influ-
ence the amount of overlapping subscriptions for the pradedrtisement. Because our
overlapping rank estimates this relationship among atbegntents and subscriptions, a
pruning should minimally change, i.e., decrease, the apgeihg rank.

To describe the influence of prunings, we should use a relasither than an ab-
solute measure. This helps to weigh a change, e.g., of @tehfor an existing small
overlapping rank than for a large one. Thatis, if there iyargmall amount of violating
predicates, the influence of removing some of them on thdayeings is higher than
for removing the same number of predicates from an ovenmglelaumber of violating
predicates.

We refer to this influence of a pruning of advertisemdntto A; asoverlapping
rank degradationArank(A;, A;). Itis defined as follows (the rank of an advertisement
Ay always equals the rank of its root nodg, e.g.,rank™™ (Ay) = rank™"(ny,)):

rank™m(A;) — rank™m(A;)
rank:’”i”(Ai) ’

Arank(A;, A;) = max(

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 21

rank®9(A;) — rank®9(A;)
rankevd(A;) ’

rank™**(A;) — rank™* (A;)
rank™e(A;)

)

This definition weighs the change in the overlapping ranktietly to the existing

rank before pruning and thus fulfils our requirements. Thalfgtep is now just to

relate all prunings with each other to determine the ordgarohings, as shown in the
following subsection. Beforehand, we give an example ofwdating the overlapping
rank degradation:

Example 7 (Calculation of the overlapping rank degrada}iofte again assume the
setting that is given in Examples 4 to 6. The original adgertient4; with root node
ng has led to the following estimated overlapping rank (cf. fapée 6):

rank™(A;) = (0.0043,0.0154,0.01548) .

Lets us assume the removal of nodeof A1, leading toA,. The root node ofl, is nsg,
describing the same subtree asdin It thus holdsrank™(A3) = rank™(ns) but also
rank®™(ng) = rank™(ng) (cf. Example 6). This leads to:

Arank(A;, A2) = max(0,0,0) =0 .
Removing node:s, which is resulting ind3, leads to the following:
rank™(As) = rank™(ng) = rank™(ng) = (0,0.00801,0.00803) .
This results in an overlapping rank degradatibrunk (A4, , As) of:
Arank(A;, As) = max(1.0,0.48,0.48) = 1.0 .

Another pruning option, the removal ef that is resulting inA,4, leads to this estima-
tion:

rank™(A4) = rank™(ng) = rank™(ng) = (0.00373,0.01152,0.01118) .
The overlapping rank degradatiairank(A;, A4) is then:
Arank(A;, Ay) = max(0.13,0.25,0.28) = 0.28 .
Hence, if only assuming these three pruning options, thaipguofn, does not have
any influence on the overlappings. This is followed by thenprg of n3 andns.
5.5 Determining the Best Pruning and Pruning in Practice

Our measure for the overlapping rank degradation allow dst the best pruning
operation for each advertisemetit We just need to calculate all possible pruning op-
erations and compare their degradations with each otherpfiuming that is leading to
the least degradation should be performed4or

22 Sven Bittner and Annika Hinze

Analogous to subscription pruning, the only valid pruniqgetion is to remove a
child of a conjunctive node in an advertisement tree becduseates a more general
advertisement, potentially increasing the overlappifi@moving the child of a dis-
junction, conversely, results in a more restrictive adgerhent. This pruning operation
would thus reduce the amount of overlappings and introdatse fnegatives, oppos-
ing the pruning idea. For the last option, removing the ramta) the semantics is that
all subscriptions would overlap the completely removedeatisement, opposing the
overall application of advertisements.

Practically, whenever an advertisementis registered we calculate the best pos-
sible pruning operation leading td;, i.e., the pruning that is resulting in the least
degradatiomrank(A;, A;). We then insert the tupleArank(A;, A;), A;) in thead-
vertisement degradation queukhis queue implements a priority queue that is ordered
in an ascending way by the first element of the tuple, the apeihg rank degradation.

To perform a pruning, we just need to extract the top elemetiteoadvertisement
degradation queue. This operation works in a constant tiaeetal our decision about
the data structure. We then perform the best pruning of thesponding advertisement
A;, resulting in4;, and re-insert the new best pruning4f into the queue. According
to the goal of the optimization, e.g., to decrease the memsage or to increase the
time efficiency to calculate the overlappings, we succesgperform the prunings that
are stated by the top elements of the advertisement degradpateue. The pruning
stops when the required optimization has been achieved,teegmemory usage has
been reduced by a certain percentage.

The most important question emerging from our advertisémeming proposal is
the influence of prunings on the memory usage (to index amd atbvertisements), the
efficiency to calculate overlappings (among subscriptems$ advertisements), and the
number of overlappings (determining the forwarding of suipgions in the networ®).
We extensively evaluate these properties of advertiseprening in the next section.

6 Experimental Analysis

In this section, we describe our evaluation of an extenst@®ftpractical experiments
we have undertaken to analyze both the algorithm to deterthia overlappings and
the advertisement pruning optimization. In Sect. 6.1, werabterize our experimental
setup to allow for a classification of our results and the atguality of our experiments.

The efficiency properties of our algorithm to determine thertappings are then
analyzed in Sect. 6.2. We proceed in Sect. 6.3 by compar@gre efficiency of our
calculation approach to that of a conjunctive solution. Trflience of the advertise-
ment pruning optimization on time efficiency, space efficigland amount of overlap-
pings is analyzed in Sect. 6.4. Section 6.5 goes a step fuatitfinally evaluates these
three parameters when combining advertisement and spbsarpruning.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 23

AND AND
/nl\ /m\
n3
category = Action author = JK Rowling
/ ”2 \ / ”2 \
N4 ns N4 ns
AND AND AND AND

A N N N,

buyltNow = yesprice > 10.(rice > 17.5ttribute = signec buyltNow = yes price > 10.(rice > 17.5ttribute = signed

(a) Advertisement Class 1 (b) Advertisement Class 2
AND AND
/ " 1\ / ’“\
title = Harry Potter title = Harry Potter
/ \ / - \
T4 ns T4 ns
AND AND AND AND

SN AN\, w N N\,

condition = usedrice > 10.(Qrice > 17.xondition = new format = hardcoveprice > 20.(Qrice > 17.5ormat = softcover

(c) Advertisement Class 3 (d) Advertisement Class 4
AND
/ ni \
n2
title = Harry Potter OR
ns
AND AND
/N N
nr ns
OR format = hardcover format = softcover
VAN / \
nio ni1 niz ni3
AND AND AND AND

ni4 / % As \ nir nig / n19 /lQU \ n21

condition = new price > 20.0 price > 1Zé&ndition = used condition = new price > 15.(orice > 12.5ondition = use!

(e) Advertisement Class 5

Fig. 2. Examples of advertisements of Advertisement Classes 1to 5

6.1 Experimental Setup

We have identified eight classes of advertisements and ¢hasses of subscriptions for
our experiments. These classes of subscriptions and &bragnts describe reasonable
interests (subscriptions) and potential event messagk®rfisements) in our online
book auction scenario [5]. These classes are as follows:

Advertisement Class 1.A publisher offers books of a certain category. These books
are Buy-It-Now items that are further specified by a minimé, or signed book
copies that are also stating a minimal price. We have idtstr an example ad-

vertisement of Class 1 in Fig. 2(a). It specifies categoryti¢', and prices of
NZ$10.0 and NZ$17.5.

5 This, in turn, also determines the memory usage for stonitigariptions and the filter effi-
ciency.

24 Sven Bittner and Annika Hinze

OR OR
/ " \ / " \
na ns na ns

AND AND AND AND

NN, o O\ A N

condition = usegrice > 10.(rice > 17.5 condition = ne' format = hardcoveprice > 20.(rice > 17.5 format = softcove

(a) Advertisement Class 6 (b) Advertisement Class 7
OR
/n1 \
AND AND
/ "2\ / s \
ne
OR format = hardcover format = softcover
/N / - \

ns ng nio ni11
AND AND AND AND

ni2 / h 414 \ nis n16 / k /mg \ n1g

condition = new price > 20.0 price > 1&8&ndition = used condition = new price > 15.(Qorice > 12.5ondition = use!

(c) Advertisement Class 8

Fig. 3. Examples of advertisements of Advertisement Classes 6 to 8

Advertisement Class 2.This advertisement class is similar to Class 1 but specifies
authors instead of categories. An example is given in Filg), 2tating author “JK
Rowling”, and prices of NZ$10.0 and NZ$17.5.

Advertisement Class 3.A publishers offers books of a particular book title. There
are different minimal prices for used and new copies of thekbdn the exam-
ple in Fig. 2(c), we have chosen “Harry Potter” as title arghin, prices of at least
NZ$10.0 and NZ$17.5.

Advertisement Class 4.This class is similar to Advertisement Class 3 but specifies
different prices for hardcover and softcover copies of thekb Figure 2(d) shows
an example of this class stating prices of NZ$20.0 and NZfof.books entitled
“Harry Potter”.

Advertisement Class 5.This class combines Advertisement Classes 3 and 4. That is,
the publishers offers different prices for the four comiimas of hardcover and
softcover, as well as new and used book copies. Our examgi@ir2(e) again
refers to the title “Harry Potter” and specifies prices ofeatst N2$12.5, NZ$15.0,
NZ$17.5, and NZ$20.0.

Advertisement Class 6.The publisher offers used and new books, stating a different
minimal price (similar to Advertisement Class 3 except @ title). In the example
in Fig. 3(a), these prices are NZ$10.0 and NZ$17.5.

Advertisement Class 7.This class describes a publisher offering softcover and-har
cover books of different minimal prices (similar to Advegiment Class 4 except of
the title). In Fig. 3(b), these prices have been chosen wiIV.5 and NZ$20.0.

Advertisement Class 8. Similar to Advertisement Class 5, the publishers speciffes d
ferent minimal prices for the four combinations of used asd ook copies, as
well as hardcover and softcover books. There are no furégrictions on the

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 25

AND

title like "Harry Potter" OR ending < 1 day

AND AND

SN N

condition = newprice < 25.0 price < 15.0 condition = us

(a) Subscription Class 1)
AND

T

title like "Harry Potter" OR ending < 1 day

/\

AND AND
OR format = hardcover format = softcover
AND AND AND AND

SN N SN SN

condition = newprice < 25.0 price < 15.0 condition = useccondition = new price < 20.(rice < 10.0 condition = use

(b) Subscription Class 2

Fig. 4. Examples of subscriptions of Subscription Classes 1 and 2

books. The example in Fig. 3(c) specifies prices of at leas$I®5, NZ$15.0,
NZ$17.5, and NZ$20.0.

Subscription Class 1. A subscriber is interested in a particular book title anccjes
different maximal prices for used and new copies of bookdifidations should
only be sent if the auction ends in less than one day. We Hagtrdted an example
subscription of this class in Fig. 4(a). It specifies thatlibek title should contain
the phrase “Harry Potter”, and that the book copy shouldlesstthan NZ$15.0 or
NZ$20.0.

Subscription Class 2. In addition to Subscription Class 1, the subscriber speauifie
ferent prices for the four combinations of used and new bpakswvell as hard-

AND

OR/ \
/ \

category = Action author = JK Rowling AND

N N

ending < 1day buyltNow =yes attribute = sign

AN

bids =0 attribute = signed

Fig. 5. Example of a subscription of Subscription Class 3

26 Sven Bittner and Annika Hinze

Table 2. Properties of the advertisement (abbreviated by Al to A&) subscription classes
(abbreviated by S1 to S3)

Advertisement/subscription class Al A2 A3 A4 A5 A6 A7 A8 S1 B3

Number of predicates 5 5 5 5 11 4 4 10 6 12 7
Number of conjunctive operators 3 3.3 3 7 2 2 6 3 10 3
Number of disjunctive operators 11 1 1 3 1 1 2 1 2 3
Number of conjunctions 2 2 2 2 4 2 2 4 2 4 6

Number of predicates per conjuncton 3 3 3 3 4 2 2 3 4 5 3

covers and softcovers. Our example in Fig. 4(b) again espeemterest in books
entitled “Harry Potter” that are offered for at most NZ$1,0NZ$15.0, NZ$20.0,
or NZ$25.0.

Subscription Class 3. A collector is interested in books from a certain author s a
in books of a particular category. The books should eithesigped and Buy-It-
Now items, or end within one day if they are signed or have gob bids so far.
The example in Fig. 5 states the category with “Action” anel &uthor with “JK
Rowling”.

These advertisement and subscription classes represedeaange of interests and
potential event messages, and are considered as reptasefuaour application sce-
nario.

In the advertisement examples (Fig. 2 and 3), we have narheddsdsn; of adver-
tisement trees (we can thus refer to them later on). In overxnts, all predicates or,
more precisely, the values of all predicates of these sigigors and advertisements
are chosen randomly using a uniform distribution of reabtm#alues (derived from
the practical analysis in [5]).

We give an overview of the properties of the advertisemedisabscription classes
in Table 2. This includes the number of predicates (Row Ijjwtctive operators (Row
2), and disjunctive operators (Row 3). We also show the nurmbeonjunctive adver-
tisements/subscriptions (Row 4) and the number of preelicpér conjunctive adver-
tisement/subscription [2] (Row 5) if performing a conversto DNFs.

All of our experiments have been run on a machine equippgd¥ii2 MB of main
memory and a processor speed of 1.8 GHz. We have derivedsaltsadescribed in
the following by analyzing settings involving a large numioé advertisements and
subscriptions, as described later on in detail. These @rpets have led to negligible
variances and we thus only show the derived mean values ifolloeiing tables and
figures.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 27

Table 3. Results of our evaluation of the efficiency properties of itdividual subscription
classes (abbreviated by S1 to S3) and the setting invoMintdpree of them (abbreviated by
S1-S3)

Parameter S1 S2 S3 S1-S3

Time in msec (First) 9.8...1348 4.2...415 0.2...54 4.9...62.9

Time in msec (All) 22.2...320.9 35.7...510.4 16.3...253.4 25.6...374.4
Proportion of candidates 1.29 1.85 1.36 1.5
Proportion of overlappings).04 0.35 1.0 0.46
|Pio(S)] 2 4 4 5

6.2 Efficiency of the Calculation of the Overlapping Relatimship

In this section, we analyze the time efficiency of our apphoaccalculate the over-
lappings. We have evaluated all three subscription clasd@sddually; additionally, we
have analyzed a setting involving a uniform distributiorifedse three classes.

We consider two scenarios: In Scenario All, we determineaterage time effi-
ciency to calculate all advertisements overlapping a gstdyscription. Scenario First
only determines whether an overlapping advertisementexifat is, in Scenario First
the algorithm stops its calculations as soon as an overigpuivertisement is found.
This calculation is practically required in the registoatiprocess of subscriptions to
determine whether the subscription needs to be forwardedighbor brokers.

In our experiments, we register an increasing number of ideenents (uniform
distribution among the eight classes) with the system aradlyae the time efficiency
properties. We give an overview of our results in Table 3tdrcolumns, we present the
behavior of the different classes of subscriptions; rovemstine analyzed parameters.

In Row 1 of Table 3, we present the ranges of time requiredterdene whether an
overlapping advertisement exists. We have derived thesawedues by testing at least
25,000 subscriptions. This range describes the result2Fd@00 up to 300,000 reg-
istered advertisements of all eight classes. The actual gier subscription increases
linearly with the number of advertisements. For exampleafoincoming subscription
of Class 3 the algorithm requires on average 5.4 msec tordeterwhether it over-
laps at least one of the 300,000 registered advertiseniemse times stated in Row
1 of the table include all calculations that are requiredatetmine the overlappings
except of the evaluation of all candidate advertisemertits.algorithm already stops its
computation if one overlapping advertisement is found.

For Subscription Class 3, we can determine the existenceesfapping advertise-
ments in the most efficient way. This is due to the fact thattits class all advertise-
ments overlap an incoming subscription (cf. Row 4 of Tabld.8), the proportion of
overlapping advertisements is 1.0. Hence, the calculgfiimish after evaluating only
one or a small number of candidates. Generally, the timeiexfity for this operation
degrades with a decreasing number of overlapping adverists. For Subscription

28 Sven Bittner and Annika Hinze

Class 1, only having overlappings for 4% of the incoming subsions, this operation
is thus least efficient.

In Row 2 of Table 3, we show the time efficiency to determineadirlapping adver-
tisements (again, the mean value for 25,000 subscriptiding time per subscription
does again grow linearly with the number of registered aitamnents. The time val-
ues shown here include the evaluation of all candidate appihg advertisements. The
efficiency of this operation generally depends on the nurobeandidates required to
evaluate (cf. to the value in RowW) Typically, the more candidates, the less efficient the
calculation of all overlappings. However, for SubscriptiGlass 3 (proportional num-
ber of candidates of 1.36) this operation is more efficieabtfor Subscription Class 1
(proportional number of candidates of 1.25). This is beedhs violating predicates of
Subscription Class 3 occur in far less advertisements thasetof Subscription Class
1; hence, the counting of the violating predicates per suftsmn (cf. Sect. 4.4) is per-
formed more efficiently for Subscription Class 3—there asslcounters to increase.
As expected, for Subscription Class 2, having the highestbar of candidates, this
operation is less efficient than for the other classes.

6.3 Comparison to Conjunctive Calculation Approaches

In Sect. 3.4, we have used the results of a comparison ofanpiBoolean and con-
junctive subscriptions to show the benefits in memory usagernvapplying Boolean
advertisements. We now investigate the efficiency progpenif calculating the over-
lapping relationship for arbitrary Boolean in comparisorconjunctive advertisements
and subscriptions.

In our experiments, we have again increased the number @frtiskments up to
300,000, and tested the efficiency for calculating the eygrings for all three sub-
scription classes individually as well as for the combinetdisg. We show the results
in Fig. 6 for Subscription Classes 1 and 2, and in Fig. 7 fors8tiption Class 3 and the
combined setting. We have again derived these results dyzamg 25,000 different
subscriptions and taking the mean values. The abscissassesyp the number of ad-
vertisements; the ordinates state the average time pecrioiicn in milliseconds. We
show four curves per diagram, describing the two scenagibbaid First, cf. Sect. 6.2)
using the original arbitrary Boolean subscriptions anceatisements, and the converted
conjunctive subscriptions and advertisements, respgtiv

In both the conjunctive and the arbitrary Boolean case, #ieutations required
to determine the overlappings increase linearly with thenlber of registered adver-
tisements. This behavior is due to our pattern of creatingdidements and subscrip-
tions: On average, doubling the number of advertisemeetstes double the amount
of overlapping advertisements. However, Fig. 6 and 7(beappo show another be-
havior of the efficiency properties, in particular for thenpnctive algorithm. We have
thoroughly analyzed this development and clearly idemtiffee counting of predicate

® Note that the proportional number of candidate advertisgsngshown in Row 3) is greater
than 1.0. This is due to the facts that the violating preeie#t);,(S) for each subscription
S are a set, and advertisements might need to be evaluatedvierat elements in this set
P);,(S). For completeness, we show the average size aP5gt.S) in Row 5 of Table 3.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 29

400 i i 600 T T
——— Boolean, All ——— Boolean, All o
350 f e Boolean, First A | e Boolean, First &
-~ Conjunctive, All i 500 e Conjunctive, All 5
—————— Conjunctive, First .

300 oo Conjunctive, First Py

IS
o
S

Time per subscription in milliseconds
w
o
o

Time per subscription in milliseconds
N
o
o

l x 200
100 t /
50 | T St 100 |
0 — L L L L 0 = KR
20,000 80,000 140,000 200,000 260,000 20,000 80,000 140,000 200,000 260,000

Number of advertisements Number of advertisements
(a) Subscription Class 1 (b) Subscription Class 2

Fig. 6. Comparison of the efficiency of Boolean and conjunctive apph using Subscription
Classes 1 and 2

occurrences in combination with the processor cache asatson. We can observe the
same effect in the Boolean algorithm; however, it appeassratich larger number of
advertisements.

The reason for this behavior is as follows: As already statteel amount of cal-
culations increases linearly with a growing number of riegesd advertisements. The
calculation algorithm (cf. Sect. 4.4) uses a counter peedtbement to sum up the
number of violating predicates. The more advertisementsagister, the more coun-
ters do not fit into the processor cache and lead to cache srifdgereased. Thus, the
overall calculation time increases superlinearly evehdfd¢alculations themselves only
increase linearly. In the conjunctive algorithm, a largentver of cache misses happens
at a much smaller number of registered advertisements diine teequired conversion
to conjunctions. Subscription Class 3 (Fig. 7(a)) is leskigmced by this behavior
because (a) the number of violating predicates, leadingdceasing the counters, is
much smaller, (b) the violating predicates only occur in bsat of all registered ad-
vertisements, and (c) the violating predicates are notibliged among the converted
conjunctive subscriptions.

This effect of accessing and incrementing the counterssléadn increasing gra-
dient in the curves representing the calculation times. éxample, in Fig. 6(a) the
maximal gradient is reached at approximately 150,000 gideenents in the conjunc-
tive case. Further increasing the number of advertisenteatslinearly increases the
calculation time.

Comparing the Boolean to the conjunctive algorithm lead¢htofollowing ob-
servations: For all subscription classes, the determinatihether overlappings exist
(Scenario First) is much more efficiently to calculate usimgBoolean algorithm. The
computationis 3, 14, and 13 times more efficient for 300,@@@stered advertisements.
This calculation is always more efficient for Subscriptidasses 2 and 3 (Fig. 6(b) and
Fig. 7(a)). For Subscription Class 1 (cf. Fig. 6(a)), thejoontive and the arbitrary
Boolean approach do not show efficiency differences for tkas 80,000 advertise-

30 Sven Bittner and Annika Hinze

300 " " 400 . .
——— Boolean, All ——— Boolean, All
———————————— Boolean, First 350 | —— Boolean, First
250 1 .~ Conjunctive, Al = Conjunctive, All
,,,,,,, Conjunctive, First 300 ---=--- Conjunctive, First

N
o
o
T
N
a1
o
T

=

a o

S o

: .
=
o u
S O
. .

Time per subscription in milliseconds
N
o
o

Time per subscription in milliseconds
&
o

ul
o o
T

- gl - me Ko R
: : VRN
v R *

e
sogoogrt s emneoennoe

0
20,000 80,000 140,000 200,000 260,000
Number of advertisements

(a) Subscription Class 3

20,000 80,000 140,000 200,000 260,000
Number of advertisements

(b) Subscription Classes 1-3

Fig. 7. Comparison of the efficiency of Boolean and conjunctive apph using Subscription
Class 3 and Subscription Classes 1 to 3

ments; from approximately this point on, the Boolean solutias increasing efficiency
benefits compared to the Boolean one.

For Scenario All, the Boolean algorithm is more efficient &ubscription Classes
1 and 2 (cf. Fig. 6(a) and 6(b)) in case of high advertisemantlrers. Less registered
advertisements favor the conjunctive solution. The re&sothis changing is the cache
behavior, as explained before. The conjunctive solutioahigays more efficient for
Subscription Class 3 (Fig. 7(a)) for up to the maximal nundf¢éested advertisements.
This is also due to the cache behaviorin combination wittptieperties of the violating
predicates for this class.

The difference in efficiency between Scenario First and &gerAll depends on
the number of overlapping advertisements, shown in Row 4bfel3 for the Boolean
approach. Thus, this difference is the least for Subsorip@ilass 1; it is followed by
Subscription Class 2 and the setting containing all thraesgs; the difference is the
most for Subscription Class 3.

Concluding these experiments, we can state that a Booldatiosois always more
suitable to determine whether overlappings exist at alk Talculation is the practically
required one of the two analyzed scenarios. If we need tailzdéeall overlappings, the
more efficient approach depends on the properties of adearénts and subscriptions.

6.4 Analysis of Advertisement Pruning

We have analyzed the influence of advertisement pruning logigtit advertisement
classes individually and on a combination of these classesder to understand the
effects of pruning in a wide range of settings. In this sedksxperiments, we have
registered 100,000 subscriptions and 50,000 advertisesm@fe graphically present
the results for the individual classes in Fig. 8 to 11; Figl@eshows the effects on the
combined setting involving all eight classes. We have atwagistered a combination
of subscriptions of all three subscription classes in opeexnents.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 31

We show the proportion of advertisement pruning operatiomihe abscissae of all
figures. They range from the value of 0, describing the stnatithout pruning, to
the value of 1, stating that all possible pruning operatioage been performed, i.e.,
another pruning would remove a complete advertisementl&dtherdinate shows the
time efficiency, i.e., the average time to calculate the lapgings per advertisement.
We show two curves, one curve describing the time that isirequo determine all
overlapping subscriptions (Scenario All) and one curvéingswhether at least one
overlapping subscription exists (Scenario One). The gtiinate states the proportion
of overlappings that exists, the proportion of removed jwagteé advertisement associ-
ations (our measure for memory usage), and the proporticardidate subscriptions
for a given amount of prunings (abscissa). These propeatiesepresented by three
individual curves.

The ideal result for an optimization is an increasing tinferfcy (less time at the
left ordinate), a decreasing memory usage (increasingoptiop of removed predicate
advertisement associations at the right ordinate), anaistant amount of overlappings
(stable proportion of overlappings at the right ordinatéhvan increasing amount of
performed pruning operations (abscissa). This ideal hehdwees, apparently, not hold
in practice. There, we rather target at only slightly insieg the overlappings, and
simultaneously decreasing both the memory requiremeuitthetime to calculate the
overlappings.

In some of our settings, we experience a cut-off point. A$ fint, the behavior
of advertisement pruning changes from a worthwhile optatien to less valuable one,
i.e, the amount of overlappings increases rather stroigdyhave given these cut-off
points in the figures representing these settings (Fig, &), 11(b), and 12). For the
eight advertisement classes, our evaluation of adverésépruning is described in the
following paragraphs.

(%] [%]
2 2
£ Time Al (left) g8 Time Al (left) g
| = ime ef B 5180} —* ime ef]
§160 Time First (left) 2 0§ § Time First (left) §
2140l Overlappings (right) V% 2160 Overlappings (right) 2.0%
T —s=— Associations lost (right) S T —s=— Associations lost (right) S
£120 Candidates (right) = c140 Candidates (right) =
= “4e3 158 2190 Cut-off point 158
2100 - 2 @ a
5 8 E100f s
1% 1%
280 1082 2
5 0 £ 80t 105
Q. Q.
3 60 Q3 =
& S & 60 8
g 40F /0.5§ g 40 058
g 20t / § £ g
= 5 - 5
[: : : 002 0F=—— : : : et 002
0.0 0.2 0.4 0.6 0.8 10 2 0.0 0.2 0.4 0.6 0.8 10 2
Proportional amount of prunings Proportional amount of prunings
(a) Advertisement Class 1 (b) Advertisement Class 2

Fig. 8. Influence of advertisement pruning on Advertisement Ciadsand 2

Advertisement Class 1.For Advertisement Class 1 (Fig. 8(a)), the pruning optimiza
tion decreases the memory requirements by 65% after parfgrai prunings (removal

32 Sven Bittner and Annika Hinze

of proportionally 0.65 predicate advertisement assamiati shown at the right ordi-
nate). Simultaneously, determining whether any overlagixists (Scenario One) is
performed 18% faster (the time is reduced from 6.4 to 5.2 pillestrated at the left
ordinate); the calculation of all overlappings (Scenarlt) works 7% more efficient
(i.e., the time is decreased from 117 to 109 msec per adeeréint, as shown at the
left ordinate). These beneficial results are obtained by owreasing the amount of
overlappings from 51% to 56% (right ordinate) of all registésubscriptions.

The reason for this advantageous behavior is the initiatipguof predicates on the
attributesBuy It Now(nodeng, cf. Fig. 2(a)) andSpecial Attributgnodeny), having
merely significance in subscriptions of Class 3. But evertigr class, the removal of
these predicates does not change the overlapping relaigad he predicates on the
attributeCategory(nodens) are pruned later on, followed by some disjunctive nodes
(nodens), which only have predicates drice (Nodesn; andng) as child nodes any-
more. This pruning of predicates &nicethen creates the little increase in overlappings,
as illustrated in Fig. 8(a) from approximately 90% of all ping operations onwards.

Advertisement Class 2. There exists a cut-off point at approximately 73% of all prun
ing operations (abscissa) for Advertisement Class 2 (Klg)) 8At this point, the prun-
ing algorithm has decreased the memory requirements faraswments by 48%. The
time efficiency has increased by 5% to calculate all oveitagg(Scenario All) and by
8% to determine whether any overlapping exists (Scenarig) Orhe total amount of
overlappings has grown from 51% to 54% of all registered stijpsons. When per-
forming more pruning operations than stated by the cut-oiffitp the amount of over-
lappings increases up to 100%, i.e., all subscriptionslape| advertisements.

We can find the reason for this behavior in the advertisenmahsabscription struc-
tures: Up to the cut-off point, the algorithm only prunesdicates on the attributduy
It Now (nodeng, cf. Fig. 2(b)) andSpecial Attributgnodeng), which do not influence
the overlappings (cf. Advertisement Class 1). All of thessdjcates have been pruned
at the cut-off point. Later on, the algorithm prunes theuistive nodes (nodes).
Hence, the only remaining predicate in advertisements ihemttributeAuthor (node
ns). All registered subscriptions are then overlapping thebeertisements due to the
subscription structure.

Advertisement Class 3.We can decrease the memory requirements for advertisements
by 80% when performing all possible advertisement prunimgrations for Advertise-
ment Class 3 (Fig. 9(a)). Additionally, the efficiency projpes improve strongly: The
algorithm works 55% faster for Scenario All; the computasidor Scenario One are
performed 24% more efficiently. Also the amount of overlaygsidevelops promising
and increases by only 1%.

The reason for the stronger improvement in Scenario One amedpo Scenario
All is the development of candidate subscriptions: The neinadd candidates increases
when pruning. All of these candidates need to be evaluateltiermine all overlap-
pings. Hence, the reduction in advertisement complexitie (tb prunings) does not
have the same strong effect as in case of merely determinengxtistence of overlap-
pings. After removing the disjunctive node of advertisetagnoden., cf. Fig. 2(c)),

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 33

[y
o
o

——+- Time All (left)

Time First (left)
Overlappings (right)

[—=— Associations lost (right)
Candidates (right)

I
N

— . . - 188
——+— Time All (left) =l
Time First (left) 1168

-
o
o

Overlappings (right) R
—s=— Associations lost (right) 1145 7
Candidates (right)

©
o
I
[N

@
o

g
o

Proportion overlappings/associations/candidates

o
o
o2}
o
14

D
o
H b
H
i
N
X \ ¥
% 5'
L L L ; L
o o o
> o ®
verlapping

Time per advertisement in milliseconds
H 5
Time per advertisement in milliseconds

I
o

°© o
o

.
I
IS

N
o

N
o
.
o
N

o
<)

0 . . . A) 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportional amount of prunings Proportional amount of prunings

(a) Advertisement Class 3) (b) Advertisement Class 4

Fig. 9. Influence of advertisement pruning on Advertisement Ca8sand 4

the amount of candidates decreases again. This is due thaefimétion of violating
predicates (cf. Sect. 4.2) for disjunctive nodes, whickedeine the candidate subscrip-
tions. Also the memory requirements decrease more strdrgty this point onwards
because the algorithm removes two associations per propiagtion.

The reason for the advantageous slight increase in theapyngs is again found
in the structure of advertisements and subscriptions: @igtion Class 3 is not influ-
enced by any pruning operations because it specifies ptedioa other attributes only.
Subscription Classes 1 and 2 use the same attributes astisdweent Class 3. Hence,
pruning operations should affect the overlappings but @ayso insignificantly: The
most selective indicator for overlappings is ffidle attribute (nodezs). Subscriptions
and advertisements have to specify the same title in ordeatbto a potential overlap-
ping. The overlapping is further depending on the pricesd@ém; andng) according
to the condition (Nodesg andng). For most subscriptions either the prices for used or
for new book copies lead to an overlapping. Thus, pruningarithese predicates in
advertisements does not change the overlapping relatimsimost cases.

Advertisement Class 4. Advertisement Class 4 (Fig. 9(b)) has a similar structure
as Advertisement Class 3. Thus, we experience a similani@hahen performing
pruning operations: The memory requirements for advenises decrease by 80%
when performing all possible prunings. This strong improeat creates an additional
amount of overlappings of less than 1% of all registered iitsons (always around
33%). The efficiency to calculate all overlapping subsaip is increased by 23%
(Scenario All); the determination whether any overlappaxists works 61% faster
(Scenario First).

The reason for this beneficial behavior when pruning is affaind in the structure
of subscriptions and advertisements: Pruning the prezBcatFormat(Nodesng and
ng, cf. Fig. 2(d)) does not affect the amount of overlappinga targe extend. This is
due to theTitle attribute (nodex3) mandatorily requiring to specify the same value in
an advertisement and a subscription to lead to an overlgpfithis is given, in most
cases either the respective prices for hardcover or satdétams overlap (Subscription

34 Sven Bittner and Annika Hinze

Class 2), or one of these prices overlaps any of the spedaifitsain subscriptions (Sub-
scription Class 1). When pruning the disjunctive node (negen advertisements, we
again experience a stronger decrease in memory usage tleampmimning leaf nodes
(bend in curve). The efficiency also increases more stroingiyg this point onwards.

(%] (%]

2 2

3 : D g3y : D : : 183
S L s Time All (left T 5 ~e Time All (left 1+°T

160 4

3 Time First (left) 2'5§ 8140 - Time First (left) 1 6§
2140 Overlappings (right) 3 2 Overlappings (right) %
T —s=— Associations lost (right) S Fl0f —— Associations lost (right) 1145
£120 Candidates (right) 1202 ¢ Candidates (right) =
£ JEE = 'S 2100 Cut-off point_ ... 1128
§100 & A 2 8 e I 2
% 1 1'5£ % 80 L e 10s
(%] b 5 a2 »)
£ 80 \ £% 0 {082
> %108 > [=3
g o0 88 | 1068
— T = 40} =
a 40 1 0.5% s / 0'4%
g 20f § E20; 025
= L S S SRV g}—) . g
0 002 0 002

0.0 0.2 0.4 0.6 0.8 10 2 0.0 0.2 0.4 0.6 0.8 10 2

Proportional amount of prunings Proportional amount of prunings

(a) Advertisement Class 5 (b) Advertisement Class 6

Fig. 10.Influence of advertisement pruning on Advertisement CkaSsand 6

Advertisement Class 5. Advertisement Class 5 (Fig. 10(a)) leads to the best results
when applying advertisement pruning: The memory requirgsieave been decreased
by 91% after performing all possible pruning operationshig point, the computations
in Scenario All can be performed 49% faster than withoutgipgladvertisement prun-
ing. For Scenario First, the improvement is even 65%. Thaipgialgorithm achieves
these advances with increasing the amount of overlappygsly 1%.

However, the application of pruning firstly degrades thecifficy to determine all
overlappings. The reason is again found in the number ofidatess, which show a
similar increase as the overall time to determine the opeitegs in Scenario All. This
increase in candidates is due to the performed pruning tipesaln the beginning, the
pruning algorithm chooses to prune predicates on the aterlBormat (Nodesn; and
ng, cf. Fig. 2(e)). This results in more subscriptions of Cl2$®ing considered as can-
didates. Then, mainly predicates specifying low pricepanaed (also some predicates
stating new books). This results in an increase in candid#t&ubscription Classes 1
and 2. However, at some point the amount of candidates oclgéses very slowly any-
more because mainly predicates specifying new books (Negdesndng) are pruned
(which decreases the number of violating predicates musshtlean pruning predicates
on Price). If most of these predicates @@onditionhave been pruned, the algorithm
again decides to prune dtrice. This leads to the newly developing larger gradient of
the curve in Fig. 10(a). Finally, the disjunctive nodes (@ed) of advertisements are
pruned, resulting in a dropping amount of candidates (onby predicate remains per
advertisement (nodey)).

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 35

Advertisement Class 6. For Advertisement Class 6 (Fig. 10(b)), we again experience
a cut-off point. This time, it occurs after having perforneggproximately 70% of all
possible pruning operations. At this point, the memory negqments could be reduced
by 35%; the overlappings are increased from 55% to 68% oégistered subscriptions.
The algorithm can determine whether any overlappings éX@stnario First) 13% more
efficiently at the cut-off point. However, all overlappinglkscriptions (Scenario All)
require a 6% higher computation time compared to the sgoatithout pruning.

When performing all prunings, each subscription overlagsyeadvertisement, but
the computation time is faster than without pruning. Theoedgor this behavior is that
after more than approximately 70% of all prunings, mostlg predicate oi€ondition
and one predicate dPrice remain in advertisements. Because subscriptions of Gasse
1 and 2 always specify the interest in both possible contlitiall subscriptions finally
overlap. The overlappings with Subscription Class 3 arénilotenced by any prunings.

The firstincrease in the computation time in Scenario Albigia due to the increase
in candidates and the required evaluation of these caredidatter the cut-off point, the
amount of candidates decreases and thus also the compuiate

Altogether, more overlappings exist for AdvertisementsSi® than for Class 3
because Class 6 does not additionally restrict the titlelsooks, i.e., Advertisement
Class 6 is more general than Advertisement Class 3.

1% 1%
2 2
E : Il (left) gt : Il (left) S
[= - fl c B .
160 F = Time All (lef T 5250 = Time All (lef o
3 Time First (left) 1208 & Time First (left) 25§
2140 Overlappings (right)] Overlappings (right) @
T —s=— Associations lost (right) 5 To00 Associations lost (right) 5
=120} —=— Candidates (right) g c —=— Candidates (right) N 2~0'g
£ S g 158 = -~ Cut-off point , .. g
c < = . 3 “ £
5100 & 2150) 158
@ L 5 9 B
g% {102 % g
% 60 I § éloo /—A— 1.0§
5 e T 5 f 5]
%40 058 S50t . —=—"7058
E 20+ S E /E/E/E/E/E/E/E/Q/l E
= x - 5 . 5
0 ‘/é/ L L L L 00 o 0 " L L n fn 00 o
0.0 0.2 0.4 0.6 0.8 10 g 0.0 0.2 0.4 0.6 0.8 10 g
Proportional amount of prunings Proportional amount of prunings

(a) Advertisement Class 7 (b) Advertisement Class 8

Fig. 11.Influence of advertisement pruning on Advertisement Ckgsand 8

Advertisement Class 7.There are again strong benefits of advertisement pruning whe
using Advertisement Class 7 (Fig. 11(a)): After performatigpruning operations, the
memory usage is half of the original one, and the overalldase in overlapping sub-
scriptions is only 5%. Additionally, the efficiency in SceiweFirst is increased by 8%;
the time to compute all overlappings is improved by 1%.

The amount of overlappings is nearly unaffected by prunimgrations for Adver-
tisement Class 8 because only predicates on the attiifouteat (Nodesn, andny, cf.
Fig. 3(b)) are considered to be pruned (similarly to Adwentinent Class 4). Firstly, the

36 Sven Bittner and Annika Hinze

algorithm prunes hardcover specifications (nagg which does not affect the overlap-
pings at all (hardcover books are generally more expensaresoftcover books). When
pruning softcover predicates (node), the amount of overlappings increases slightly.
In fact, it only increases if the hardcover part of an adgertient does not overlap the
subscription but the lower price from the softcover ovesltige subscription.

Advertisement Class 8.We again experience a cut-off point for advertisements of Ad
vertisement Class 8 (Fig. 11(b)). This point occurs at axiprately 73% of all pruning
operations. The pruning algorithm can decrease the mensage.at this point by 44%.
The total number of overlappingsis increased by 21%, anddhegutations in Scenario
First work 25% faster. However, the efficiency to computeoaktrlappings (Scenario
All) degrades by 11%.

This efficiency degradation in Scenario All is again causgthle increase in can-
didate subscriptions. Similar to Advertisement Class 8, ghuning algorithm firstly
removes predicates drormat (Nodesns andng, cf. Fig. 3(c)), increasing the candi-
dates of Subscription Class 2. However, in contrast to Aibement Class 5 there is
no predicate offitle in Advertisement Class 8. This property also increasesrtiwiat
of overlappings and finally leads to the situation of all atigements overlapping all
subscriptions (when pruning more than specified by the ffygeint).

Advertisement Classes 1-8.The influence of advertisement pruning in the setting
including a combination of all eight advertisement classasot merely the mean of
the results of the individual classes. It is also influencgthle quality of our heuristic
when applied to different advertisement structures siamglously.

In Fig. 12, we have illustrated the cut-off point that is oetwg after performing
approximately 77% of all pruning operations. At this pothe pruning algorithm has
decreased the memory usage by 49%; the overall amount dappangs has increased
by only 5% at this cut-off point. The efficiency propertieSSoenario First are improved
by 24%; Scenario All, however, leads to a decrease by 3%. Vgbeiorming slightly
more prunings than stated by the cut-off point, also theieffiy in Scenario All does
improve compared to the unpruned situation (3% efficiencyeiase with a further 5%
increase in overlappings). Although, we have plotted theoffupoint at 77% because
of the bend that is existing in the overlapping curve in Fig. 1

Our combined setting shows that our pruning heuristic déss\aork if register-
ing advertisements involving different structures. Themising results at the cut-off
point—and in particular its position—show that our helcisthooses pruning oper-
ations for advertisements of different classes and cdyr@atges their influence on
the overlappings. In fact, the pruning algorithm firstly feems those prunings that do
not strongly increase the overlappings (pruning operathmfore the cut-off points of
the individual classes). The pruning operations increptie overlappings (after the
cut-off points of the individual classes) are only perfochieno other suitable prun-
ing opportunities exist anymore, which is leading to theaffipoint in the combined
setting.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 37

160 L = Time All (left)

Time First (left)

L Overlappings (right)
—=— Associations lost (right)

Candidates (right)

Cut-off point

DUy N

n
=}

=
o

o]
o
T
[
o

60 |
40}

o
n

Time per advertisement in milliseconds

N
o o
T

o
g b
Proportion overlappings/associations/candidates

0.0 0.2 0.4 0.6 0.8 1.0
Proportional amount of prunings

Fig. 12.Influence of advertisement pruning on Advertisement Ckas8

Summary of the Results. We have illustrated an overview of the previously described
behaviors in Table 4. In the columns, we show our differettirags. Rows contain the
measured parameters: Row 1 states the amount of pruninys ett-off point propor-
tional to the overall number of possible pruning operatidie decrease in memory at
the cut-off point is presented in Row 2 (proportional to tiverall memory usage for
advertisements). Row 3 indicates the proportional chandgked average computation
time per advertisement for Scenario All (an advantageoosedse is indicated by "
and an increase by"). The improvement in Scenario First is shown in Row 4. Row 5
contains the proportional increase in overlappings attiteff point. The total increase
in overlappings is finally given in Row 6.

Our results show that advertisement pruning is a valuaktiengfation: At the cut-
off point, the memory usage has been decreased between 41194 %n The efficiency
of the practically required operation to determine whetireverlapping exists is, at
the same time, improved by 8% to 65%. The total increase inlawgings at the cut-
off point is between 1% and 24%. For the general setting,luing all advertisement
classes, the decrease in memory usage is 49%, the efficienqpergvyement 24%, and
the increase in overlappings only 5%.

6.5 Combining Advertisement and Subscription Pruning

Our evaluation in the previous section has only considdredrtfluence of advertise-
ment pruning so far. Subscription pruning, which adventiset pruning is derived from
(cf. Sect. 5), has been analyzed in [7]. These independehiaions have shown that
the two approaches are valuable optimizations if applidtvidually. What is still miss-
ing is to analyze the effects of utilizing both subscriptenmd advertisement pruning
(i.e., subscription-based and advertisement-based atiions) at the same time. We
will do so in this section. We have again registered 100,Q@&eriptions and 50,000
advertisements in this series of experiments.

For our evaluation, we consider the general setting coimigiisubscriptions of all
three classes and advertisements of all eight classes. slgzarthe influence of ad-
vertisement pruning after having performed different anmtswf subscription pruning

38 Sven Bittner and Annika Hinze

Table 4. Overview of the influence of advertisement pruning at theaffipoint (the eight adver-
tisement classes are abbreviated by Al to A8)

Advertisement class Al A2 A3 A4 A5 A6 A7 A8 Al-8

Prop. cut-off point 10 073 10 10 10 0.7 10 0.73 0.77
Prop. decrease in memory 065 048 08 08 091 035 05 04 0
Prop. change in time (All) ~ |0.07 |0.05 |0.24 |0.23 |0.49 10.06 |0.01 70.11 10.03
Prop. decrease in time (First) 0.18 0.08 0.55 0.61 0.65 0.188 00.25 0.24
Prop. increase in overlappings 0.09 0.06 0.01 0.01 0.01 0®88 0.37 0.11
Total increase in overlappings 0.05 0.03 0.01 0.01 0.01 0245 0.21 0.05

operations. These amounts vary from the situation of noigi®n pruning (0% SP)
to the point where all possible subscription prunings haentperformed (100% SP).
We vary the proportion of subscription pruning in steps o¥l@ach displayed in a
separate curve.

In contrast to our figures in the previous subsection, theiabme of our graphs
now state the proportion of reduced memory requiremesetsthe amount of removed
predicate advertisement associations (previously alsastas a curve). The maximal
possible reduction varies according to the amount of syftgmm prunings, e.g., 72%
for no subscription pruning (0% SP) and 53% for all possihibssription prunings
(100% SP).

4
©
=}

g15f & 0% SP+
Q £ o x
€ 5 L 30% SPs
S13| g0.70 —‘d_rﬂ 40% SP=
k] “— 50% SPe
5123 ©0.655 60% SP+
2 g 70% SP-
S11} £ 060 80% SP+
= 2 90% SP~
104 = 0.55 100% SP~
k] 5

30.9 r £ 0.50

<] 53 1

a08f 2045}

07 . . . 0.40 . . .
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Proportional advertisement associations lost Proportional advertisement associations lost
(@) Number of Candidates (b) Number of Overlappings

Fig. 13. Amount of candidates and amount of overlappings when apglyoth subscription and
advertisement pruning

In Fig. 13(a), we have illustrated the proportional numblecandidate subscrip-
tions, strongly influencing the time efficiency in Scenarith @etermination of all
overlappings). Generally, the more subscription prunipgrations one performs (rep-
resented by the different curves), the less candidatets @ieen only some subscription

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 39

prunings have been executed, this behavior is not thatesyadtland does still depend
on the advertisement prunings as well. But after approxem&0% of all subscription
prunings, the amount of candidates clearly decreases mdrmare. From 80% of all
subscription prunings onwards, the number of candidatesire stable at 75% of all
registered subscriptions.

The reason for this decrease in candidates is the removatdigates in subscrip-
tions, leading to more general subscriptions. Obvioustyramgeneral subscriptions do
overlap more advertisements than more restrictive syttgmms. Hence, the amount of
candidates decreases because subscriptions are mostigtedeonly once.

The just pointed out increase in overlappings when perfograuibscription pruning
is illustrated in Fig. 13(b) (proportional amount of ovgnéngs). Without subscription
pruning, the proportional number of overlappings is apprately 46%. Having per-
formed all subscription prunings, approximately 75% ofsalbscriptions overlap an
advertisement on average (which is the same as the numbandidates from 80% of
all subscription prunings onwards, i.e., at this point alhdidates are, in fact, an over-
lap). This is a rather strong increase, showing that thecsigt®n pruning heuristic
does not focus on the influence of prunings on overlappingsefisement pruning,
however, only slightly increases the overlappings: Whelicang the amount of predi-
cate advertisement associations by 72%, the amount ofapgergs increases by 18%
(0% subscription pruning). But reducing the amount of prat# subscription associa-
tions by only 30% results in an increase in overlappings ene8% (0% advertisement
pruning). A sound property of subscription pruning in conation with advertisement
pruning is, however, the stabilization of the number of tagpings at 30% of all sub-
scription prunings. Having performed these prunings,hegitidvertisement nor sub-
scription pruning influences the overlappings anymore.sTtawme could perform all
possible advertisement prunings and all possible sulismriprunings without further
increasing the overlappings.

0% SP +
10% SPx
20% SP*
30% SP=
40% SP=
50% SPe

©
o

60% SP«
~1 70% SP=
% 80% SP-
90% SP~
100% SP~

®
o
T

~
o
T

|

Time per advertisement in milliseconds

:/

Time per advertisement in milliseconds
o = N w S o o ~ © ©

0.2 0.4 0.6 . E 0.6
Proportional advertisement associations lost Proportional advertisement associations lost

(a) Efficiency in Scenario First (b) Efficiency in Scenario All

Fig. 14. Average time per advertisement to determine whether angfappngs exist (Scenario
First) and to determine all overlappings (Scenario All)

The influence of subscription pruning on the time efficiemc@cenario First (deter-
mination whether an overlapping exists) is shown in Figal4ere, we can clearly ob-

40 Sven Bittner and Annika Hinze

serve the improving influence of subscription pruning ondfiieiency properties: The
more subscription prunings one performs, the more effi¢tl@ntietermination whether
overlappings exist. Additionally, the more subscriptiaamngs have been executed,
the less influence does the application of advertisemenimpguhave: Without any sub-
scription pruning, advertisement pruning improves thecigfficy in Scenario First by
46%. Having performed all possible subscription prunirigs,improvement is 11%.
Altogether, this set of results shows that both subscipsind advertisement pruning
improve the efficiency to determine the existence of ovemilags.

The time efficiency to calculate all overlappings is finalyen in Fig. 14(b). Sim-
ilar to the development of the candidates (Fig. 13(a)), stiption pruning generally
improves the efficiency properties of calculating the avepings after a stabilization
phase: Having performed more than 50% of all subscriptionipgs, Fig. 14(b) clearly
shows a steadily improving time efficiency. Without any atigement pruning, the
time to calculate all overlapping subscriptions has desyédrom approximately 108
to 38 msec per advertisement. Generally, the time effici¢m@alculate overlappings
develops similarly as the candidate subscriptions duentieedependence of these two
parameters. So, up to 70% of all subscription prunings, didesnent pruning shows
an uneven development of the calculation times (similahéodevelopment of the can-
didates). When performing more than 70% of all subscripimmings, the time effi-
ciency when additionally applying advertisement prunmgiioves linearly. This is due
to the stable amount of candidates (cf. Fig. 13(a)) in colim with the decreasing
complexity of advertisements.

Summarizing these results, we can state that subscriptiomny leads to an op-
timization when applied in combination with advertisempntning. However, sub-
scription pruning does not focus on the influence of prunimgshe overlappings (it
focusses on minimally increasing the network load for eveuting). Thus, it increases
the amount of overlappings stronger than advertisementipguwhen reducing the
memory usage to the same amount. The increase in overlagsiimygs after having per-
formed a certain number of subscription pruning operat{approximately 30% of all
possible prunings). After this point, subscription prunstill increases the efficiency
properties very significantly and, simultaneously, redube memory requirements to
index and store subscription.

7 Conclusions and Future Work

Current pub/sub systems define subscriptions and advediss as conjunctive filter
expressions. An advantage of such conjunctive solutiot@iepportunity to ignore the
internal structure of subscriptions while filtering. Hoveemthere also exist advantages
when directly supporting arbitrary Boolean subscripti@ssit has been shown recently.
In this paper, we have presented the first advertisememdhqaso/sub system that
is internally supporting both arbitrary Boolean subsaoips and advertisements. In
Sect. 3.1 to 3.3, we have firstly defined the exact semantiegesft messages, arbitrary
Boolean subscriptions, and arbitrary Boolean advertisggé his step has become
necessary because the introduction of arbitrary Booletan ékpressions imposes chal-
lenges that do not occur for restricted conjunctive formgede challenges range from

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 41

the problems occurring due to the usage of the same attiibaéxeral or no predicates,
to the definition of an overlapping relationship betweeneatisements and subscrip-
tions. In Sect. 3.4, we could then show that arbitrary Baoledvertisements require
less memory for storage and indexation than conjunctive.one

The greatest challenge when supporting arbitrary Booldaeréisements is to de-
velop an algorithm to determine the overlapping relatigmshVe have proposed such
an algorithm in Sect. 4. We have started by showing that nticaculation approaches
do not work for the Boolean case followed by proposing theegaicomputation idea
of our algorithm in Sect. 4.1. This outline has led to the e&piof violating predi-
cates, described in Sect. 4.2. We have then elaborated otoHmage the calculation of
overlappings on the violating predicates in Sect. 4.3;i8eekl.4 has finally described a
practical implementation of our algorithm.

In this paper, we have also presented a novel optimizatigmoaeh, advertise-
ment pruning, that is tailored to advertisements. Adventisnt pruning is based on
the subscription pruning routing optimization (reviewadsect. 2.3) but directly bases
its pruning decisions on the influence of these prunings erotlerlapping properties
among subscriptions and advertisements. This makes &bragnt pruning to the first
advertisement-tailored optimization for pub/sub systems

We have successively developed this optimization apprimeShct. 5: After having
identified the effects of prunings on the overlappings intSe@, we have incorporated
these influences into the measure of an overlapping rankéh 5. This rank then
allows us to estimate the influence of pruning operationgjessribed in Sect. 5.4.
In Sect. 5.5, we have shown how this, finally, gives us the maardetermine the
best advertisement pruning to perform, i.e., the pruningrajion that increases the
overlappings the least.

The final part of this paper, Sect. 6, has focused on the ext=asperimental eval-
uation of our approaches. In Sect. 6.1, we have describedxmarimental setup, and
have identified eight advertisement classes and threergptise classes, characteristic
for an online auction application scenario. These defingiallow for the classification
of our results and the repeatability of our experiments.

We have investigated the general properties of our apprfoachlculating the over-
lappings in Sect. 6.2 and have found a linear increase ofatweilation times with an
increasing number of advertisements. In Sect. 6.3, we hdditi@nally compared our
approach to conjunctive solutions. We could show that ogorithm strongly outper-
forms the conjunctive approach in determining whether argylappings exist. This be-
havior is mainly due to the exponential explosion of the fpeobsize when converting
arbitrary Boolean to conjunctive expressions. If it is riegd to calculate all overlap-
pings, the more efficient computation solution (Booleanamjenctive) depends on the
structure of advertisements and subscriptions.

In Sect. 6.4, we have then evaluated the advertisementrgruoptimization for
the different advertisement classes (identified in Sed). i@dividually as well as for
a combined setting. We could show that advertisement pguria valuable optimiza-
tion that, at the same time, is (i) strongly reducing the mgmequirements to store
advertisements (49% less memory in the combined settiijghdderately increasing
the efficiency to determine whether overlappings exist (24éte efficient in the com-

42 Sven Bittner and Annika Hinze

bined setting), and (iii) only slightly increasing the amouof overlappings (5% in the
combined setting).

The last part of our evaluation (Sect. 6.5) has focused orefleets of simulta-
neously applying both subscription and advertisementipginNe could show that
subscription pruning also leads to an optimization if it ipbked in addition to adver-
tisement pruning. However, subscription pruning incredee amount of overlappings
more strongly than advertisement pruning. This behaviolgiarly due to the different
focus of subscription pruning and shows that our estimatfche influences of adver-
tisement prunings has been effectively encapsulated imtheduced, advertisement-
tailored optimization.

Our results show that the support of arbitrary Boolean suitsens and advertise-
ments does lead to improvements of pub/sub systems in tespeath time efficiency
and space efficiency. Additionally, our results prove thatiroizations for advertise-
ments can significantly reduce the memory usage of pub/sstbrag while increasing
their efficiency. In the future, we plan to analyze the altjoni to calculate the overlap-
pings and the advertisement pruning optimization in coratodm with other application
scenarios to show their general applicability. Furtheremare plan to fully support ar-
bitrary Boolean advertisements and their optimizationtngrototype of a distributed
pub/sub system. This finally allows for the analysis of theffects in the distributed
system.

References

1. M. Antollini, M. Cilia, and A. Buchmann. Implementing a ¢t Level Pub/Sub Layer for
Enterprise Information Systems. Rroceedings of the 8th International Conference on
Enterprise Information Systepi8aphos, Cyprus, May 23-27 2006. Springer-Verlag.

2. S. Bittner and A. Hinze. A Detailed Investigation of MemdRequirements for Pub-
lish/Subscribe Filtering Algorithms. IRroceedings of the 13th International Conference
on Cooperative Information Systems (CooplS 20papes 148-165, Agia Napa, Cyprus,
October 31-November 4 2005. Springer-Verlag.

3. S. Bittner and A. Hinze. On the Benefits of Non-Canonic#kFing in Publish/Subscribe
Systems. IrProceedings of the 25th IEEE International Conference ostritiuted Comput-
ing Systems Workshops (ICDCSW ’‘0&ges 451-457, Columbus, USA, June 6-10 2005.
IEEE Computer Society.

4. S. Bittner and A. Hinze. Dimension-Based Subscriptiamitig for Publish/Subscribe Sys-
tems. InProceedings of the 26th IEEE International Conference ostitiuted Computing
Systems Workshops (ICDCSW ’'O6lsbon, Portugal, July 4-7 2006. IEEE Computer Soci-
ety.

5. S. Bittner and A. Hinze. Event Distributions in Online BaAuctions. Technical Report
03/2006, Computer Science Department, The University dkélta, February 2006.

6. S. Bittner and A. Hinze. Pruning Subscriptions in Disitéx Publish/Subscribe Systems. In
Proceedings of the Twenty-Ninth Australasian Computegr®a Conference (ACSC 2006)
Hobart, Australia, January 16—19 2006. ACS.

7. S. Bittner and A. Hinze. Subscription Tree Pruning: A 8twve-Independent Routing Opti-
mization for General-Purpose Publish/Subscribe Systdeshnical Report 01/2006, Com-
puter Science Department, The University of Waikato, JanR@06.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Arbitrary Boolean Advertisements: The Final Step in SugpipgrBoolean Pub/Sub 43

. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaced &Algorithms for a Wide-

Area Event Notification Service. Technical Report CU-C8-88, Department of Computer
Science, University of Colorado, October 1999. revised [20§0.

. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design andl&ation of a Wide-Area

Event Notification Service ACM Transactions on Computer Systems (TQQ$8(3):332—
383, 2001.

R. Chand and P. A. Felber. A Scalable Protocol for CorBaisied Routing in Overlay Net-
works. InProceedings of the Second IEEE International Symposiumetwdtk Computing
and Applications (NCA 2003pages 123-130, Cambridge, USA, April 16-18 2003. IEEE
Computer Society.

P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejd| sigming Semantic Publish/Subscribe
Networks Using Super-Peers. S&mantic Web and Peer-to-Pepages 159-181. Springer-
Verlag, 2006.

P. T. Eugster, R. Guerraoui, and J. Sventek. DistribAssthchronous Collections: Abstrac-
tions for Publish/Subscribe Interaction. Rroceedings of the 14th European Conference
on Object-Oriented Programming (ECOOP '200@grges 252-276, Cannes, France, June
12-16 2000. Springer-Verlag.

J. Gough and G. Smith. Efficient Recognition of Eventsiistributed System. IRroceed-
ings of the 18th Australasian Computer Science ConferehCS(C-18)Adelaide, Australia,
February 1-3 1995. ACS.

M. Guimaraes and L. Rodrigues. A Genetic Algorithm faultitast Mapping in Publish-
Subscribe Systems. IRroceedings of the Second IEEE International Symposiumein N
work Computing and Applications (NCA 200Bages 67—74, Cambridge, USA, April 16-18
2003. IEEE Computer Society.

D. Heimbigner. Expressive and Efficient Peer-to-Peeari@s. InProceedings of the 38th
Hawaii International Conference on System Sciences (HE&33ig Island, USA, January
3-6 2005. IEEE Computer Society.

A. Hinze. A-MEDIAS: Concept and Design of an Adaptive IntegratingriE\otification
Service PhD thesis, Freie Universitat Berlin, Institute of CortgnuScience, July 2003.

G. Li, S. Hou, and H.-A. Jacobsen. A Unified Approach to titmy Covering and Merging
in Publish/Subscribe Systems based on Modified Binary DmtBiagrams. IrProceedings
of the 25th IEEE International Conference on Distributech@uiting Systems (ICDCS 'Q5)
pages 447-457, Columbus, USA, June 6-10 2005. IEEE Compatéety.

G. Muhl. Large-Scale Content-Based Publish/Subscribe Syst&hb thesis, Technische
Universitat Darmstadt, September 2002.

G. Muhl, L. Fiege, and A. Buchmann. Filter SimilaritiesContent-Based Publish/Subscribe
Systems. IProceedings of the International Conference on Architectf Computing Sys-
tems (ARCS '02pages 224-238, Karlsruhe, Germany, April 8—12 2002. §priverlag.

F. Peng and S. S. Chawathe. XPath Queries on Streamiag D&troceedings of the 2003
ACM SIGMOD International Conference on Management of D&i&MOD 2003) pages
431-442, San Diego, USA, June 9-12 2003. ACM Press.

M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS: Fdgtiiig of Graph-based Metadata.
In Proceedings of the 14th International Conference on WoilidMeb (WWW 2005)ages
539-547, Chiba, Japan, May 10-14 2005. ACM Press.

G. P. Picco, G. Cugola, and A. L. Murphy. Efficient CoriBased Event Dispatching in
the Presence of Topological ReconfigurationPhoceedings of the 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS [@)es 234-243, Rhode Island,
USA, May 19-22 2003. IEEE Computer Society.

P. R. Pietzuch.Hermes: A Scalable Event-Based MiddlewafhD thesis, University of
Cambrigde, Queens’ College, February 2004.

44 Sven Bittner and Annika Hinze

24. T. Sivaharan, G. Blair, and G. Coulson. GREEN: A Configleaand Re-configurable
Publish-Subscribe Middleware for Pervasive Computing.Pfaceedings of the 7th Inter-
national Symposium on Distributed Objects and Applicatio®A 2005) pages 732—-749,
Agia Napa, Cyprus, October 31-November 4 2005. Springeaye

25. Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. DasdaP. Larson. Summary-based
Routing for Content-based Event Distribution Network€M SIGCOMM Computer Com-
munication Revien34(5):59-74, 2004.

26. T. W. Yan and H. Garcia-Molina. Index Structures fore8tle Dissemination of Informa-
tion Under the Boolean ModeRCM Transactions on Database Systems (TOD®R):332—
364, 1994.

