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The exact planar reconnection analysis of Craig and Henton@Astrophys. J.450, 280 ~1995!# is
extended to include the finite viscosity of the fluid and the presence of nonplanar components in the
magnetic and velocity fields. It is shown that fast reconnection can be achieved for sufficiently small
values of the kinematic viscosity. In particular, the dissipation rate is sustained by the strong
amplification of planar magnetic field components advected toward the neutral point. By contrast,
nonplanar field components are advected without amplification and so dissipate energy at the slow
Sweet–Parker rate. ©1996 American Institute of Physics.@S1070-664X~96!02806-6#

I. INTRODUCTION

Much effort has gone into finding steady-state, incom-
pressible magnetic merging solutions.1,2 A prime motivation
is understanding magnetic reconnection—a key process that
allows topological change by cutting and rejoining field lines
at null points in the field. It is believed, for example, that
reconnection is an essential ingredient in the global magnetic
collapse of the solar flare.3

Despite intensive theoretical investigation a convincing
analytic model of reconnection has proved elusive. Analytic
approaches fall into two broad categories depending on
whether ‘‘open’’ or ‘‘closed’’ magnetic geometries are mod-
eled. The recent generation of closed X-point solutions de-
scribe two-dimensional~2-D! planar reconnection in an arbi-
trarily compressible magnetic fluid.4 The reconnection region
is bounded by a rigid, superconducting boundary that an-
chors the field. Small-amplitude disturbances dissipate re-
markably quickly, confirming the possibility of fast
reconnection—that is, reconnection at a rate that is practi-
cally independent of the plasma resistivity.5–7 Although the
reconnection rate slows when finite compressibility and non-
planar field components are included in the model, this could
simply be an artifact of the rigid boundary constraining the
flow.

A complimentary approach is provided by studies of
steady-state, incompressible reconnection in open geom-
etries. Until recently, exact solutions were available only for
antiparallel merging under theansatzof 2-D ‘‘stagnation
point flow.’’8–11 The absence of field line curvature implies
that magnetic annihilation, as opposed to reconnection, is the
mechanism of magnetic energy release.

In a recent analysis, Craig and Henton12—hereafter
CH—showed that exact reconnection solutions can be de-
rived by considering sheared stagnation-point flows in open
geometries. The shearing takes place across a narrow current
layer that separates oppositely directed, curved, magnetic
field lines. The analysis extends naturally into three-
dimensions~3-D!, where solutions involve either current
sheets13 or localized quasicylindrical current tubes aligned to
the exhaust axis of the fluid.14 By contrast, the 2-D current
structure always involves a single sheet aligned to one sepa-
ratrix plane of the X point.

The main purpose of this paper is to expand the planar
analysis of CH by incorporating the finite viscosity of the
plasma. First, however, in Sec. II, we derive the equations of
21
2-dimensional viscous reconnection. The exact inviscid so-

lution is described in Sec. III, where it is noted that viscous
effects are likely to be important in the region of high shear
surrounding the neutral point. A detailed analysis of the vis-
cous solution is described in Sec. IV. Our conclusions are
summarized in Sec. V.

II. THE PLANAR RECONNECTION SYSTEM

A. Steady-state equations

We assume that the plasma is governed by the steady-
state, incompressible resistive magnetohydrodynamic
~MHD! equations. Adopting nondimensional variables, in
which fluid velocities are expressed in units of the Alfve´n
speed at the boundary of the reconnection region, the mo-
mentum and induction equations may be written as

~v–“ !v5J3B2“P2n“3v, ~1!

E1v3B5hJ, ~2!

wheren andh are the dimensionless plasma viscosity and
resistivity, respectively. The current density and fluid vortic-
ity are given by

J5“3B, v5“3v. ~3!

We adopt a planar geometry in whichz is the ignorable
coordinate. The conservation equations“–B50, “–v50 are
satisfied by taking the flux and streamfunction representa-
tions,

B~x,y!5“c3ẑ1bẑ, v~x,y!5“f3ẑ1wẑ. ~4!

The planar field components can be isolated by taking the
curl of the momentum equation. Explicitly

@¹2f,f#5@¹2c,c#1n ¹4f, ~5!

E1@c,f#5h ¹2c, ~6!

while thez components are given by

@w,f#5@b,c#1n ¹2w, ~7!

@b,f#1@c,w#5h ¹2b, ~8!
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where@c,f# is the Poisson bracket,

@c,f#5cxfy2cyfx . ~9!

The planar reconnection problem is now specified by
three parameters:h, n, andE. On the Sun’s surface the di-
mensionless plasma resistivityh is very small—ofO(10210)
in the present units—implying that the resistive effect will
only be significant in areas of high current density. Since the
viscous coefficientn is O(h) for a collisional plasma, we
expect the inclusion of plasma viscosity to have little effect
on the results of CH, except in regions where the velocity is
highly sheared. The parameterE defines the magnitude of
the uniform electric field that drives the external plasma flow.
Fast reconnection requires that, for well-defined conditions
on the inflow boundaryx51 ~say!, E can be chosen inde-
pendently ofh and n. For example, in classical Sweet–
Parker merging,1 n50 andE scales ash1/2. This dependence
qualifies the reconnection rate as slow.

B. Analytic reconnection solutions

The planar analysis of CH can be applied in the case of
inviscid planar reconnectionn50. Following CH we note
that the Poisson brackets in Eq.~5! vanish in the case of
one-dimensional or harmonic functions. However, if we con-
sider superpositions of the form

c5bH~x,y!1g~x!, f5aH~x,y!1 f ~x!, ~10!

whereH is harmonic, there are nonlinear contributions that
prevent the Poisson brackets from vanishing. CH show that,
of all the planar harmonic functions, onlyH5xy provides an
admissible solution.

Motivated by these considerations, we assume reconnec-
tion solutions of the form

c5bxy1g~x!, f5axy1 f ~x!,
~11!

b5b~x!, w5w~x!.

Substituting these expressions into Eqs.~5!–~8! gives

~a f-2bg-!x5n f 99, ~12!

E1~ag82b f 8!x5hg9, ~13!

~aw82bb8!x5nw9, ~14!

~ab82bw8!x5hb9. ~15!

In the case of an inviscid plasma, solutions can be expressed
in terms of named functions, as discussed below.

III. INVISCID RECONNECTION

A. Analytic solution

For n50, Eqs.~12! and ~14! imply

f ~x!5
b

a
g~x!1q~x!, w~x!5

b

a
b~x!1w0 , ~16!

whereq(x) is an arbitrary quadratic function andw0 is a
constant. The effect ofq(x) is to add a global external shear
to the velocity profile. The influence of global shear flows
have been discussed by Besseret al.10 within the context of

magnetic annihilation models. Since such flows are the least
significant feature of the present reconnection solutions, we
elect to simplify the discussion by takingq(x)50. By the
same token we dismiss as physically uninteresting, the pos-
sibility of superposing a uniform component onw(x).

Under these assumptions Eqs.~13! and ~15! reduce to

E1S a22b2

a D xg85hg9, ~17!

S a22b2

a D xb85hb9. ~18!

Introducing

daw~x!5E
0

x

exp~ t22x2!dt,

erf~x!5
2

Ap
E
0

x

exp~ t2!dt, m25
~b22a2!

2ah
, ~19!

the solution can be written as

g~x!5
E

hm E
0

x

daw~ms!ds,

~20!

b~x!5
Ap

2m
b8~0!erf~mx!1b~0!.

The magnetic field and the velocity profile are thus given by

B5b~xx̂2yŷ!2Q~x!, v5a~xx̂2yŷ!2
b

a
Q~x!,

~21!

where

Q~x!5
E

hm
daw~mx!ŷ2SAp

2m
b8~0!erf~mx!1b~0! D ẑ.

~22!

The key feature of the solution is the presence of a glo-
bal current sheet in the planex50. In the limitb5b(x)50,
the solution reduces to the simple merging of antiparallel
field lines, as proposed by Parker15 and Sonnerup and Priest.8

The fact that reconnection only occurs for nonvanishingb
shows that the merging of curved field lines is associated
with strong shearing motions aligned to the current sheet—
that is, a breakdown of the traditional stagnation point flow
symmetry in which there is no flow across any coordinate
axis.

A typical solution is shown in Fig. 1. Fluid motion ad-
vects curved field lines into the neutral point, where they are
cut and reconnected. Plasma swept into the dissipation re-
gion is ejected along the sheet, in tandem with the recon-
nected field lines. The effect of finitez components in the
solution is to tilt the field out of the original reconnective
plane. This tilt is near constant in the outer region and rap-
idly diminishes asx→0.

B. Dissipation of the normal field component

We first note that the form of solution~21! only makes
sense ifm2.0. Thus, if uau.ubu we must takea,0, corre-
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sponding to inflow along thex axis. Although the flow field
washes in both planar and nonplanar components of the mag-
netic field, only the planar component of the field is ampli-
fied as it advects toward the reconnection region. In particu-
lar, since m21;h1/2 provides the length scale for
nonuniformities in the field,b(x) varies rapidly only in a
narrow layer overlying the neutral linex50. The fact that
erf(mx) is O(1) for large arguments immediately implies
that b(x) is constant everywhere except over the current
layer.

Let us consider the case in which all planar field com-
ponents vanish@formally, E5g(x)50#. Then the solution
reduces to a magnetic annihilation model for thez compo-
nent of the field, as illustrated in Fig. 2. Despite the presence
of nonplanar flows, it is the underlying stagnation flow field
f5axy that advects the disturbance field into the current
sheet.

We now ask what is the dissipation rate of the normal
field component? Reconnection scalings are derived by as-
suming inflow conditions that are independent ofh. There-
fore we consider the effect of reducing the plasma resistivity
under the assumption that a disturbance field of fixed ampli-
tude,O(1), is washed through the inflow boundaryx51
~say!. Sinceb(x) remains of order unity until the onset of the
diffusion layer, it follows thatb must decrease rapidly to-
ward the neutral linex50—in fact, the current must scale as
h21/2 if a field of unit strength is to be achieved atx;h1/2.

Finally, we note that the volume elementdV of the cur-
rent sheet scales ash1/2. Thus, the Ohmic dissipation rate and
the flux annihilation rate of the normal field component have
the scalings

Wh5hE J2 dV;h1/2, hJ;h1/2, E50. ~23!

The field dissipation is nonreconnective, however, in the
sense that field lines are nowhere advected across the sepa-
ratrices of the field. These properties are essentially un-
changed by the superposition of the uniform nonplanar com-
ponentb(0).

C. Fast dissipation of the planar field

Consider now the dissipation of the planar component of
the field in the caseb(0)5b8(0)50. The presence of the
Dawson function adds a localized shear flow to the back-
ground stagnation flow field, which allows curved field lines
to be reconnected across the neutral point.

To determine reconnection scalings, we note that the
Dawson function, unlike the error function, decreases rapidly
in the outer field: daw(x) declines asx21 for x@1. At x51,
uQu.E/2hm25aE/(b22a2), and thereforeE must scale
independently ofh if the amplitude of the planar field is to
be fixed on the outer boundary. Hence, the field achieves a
maximum of orderh21/2 at the onset of the current sheet.
The flux pile-up of the planar field implies the fast reconnec-
tive scalings,

Wh5hE J2 dV;h21/2, hJ;h0,

~24!
b~0!5b8~0!50,

Figure 3 shows the effect of equalizing they andz com-
ponents ofQ on the inflow boundaryx51. The current,

J52@b8~x!ŷ1g9~x!ẑ#, ~25!

and hence the vorticity~sinceav5bJ! are both dominated
by the buildup in the planar component of the field. Figure 3
confirms that, at the onset of the diffusion layer, the current
is aligned predominantly in thez direction.

We conclude that fast reconnection requires finite planar
field components to be washed through the inflow boundary
x51. The strong amplification of these components ensures
that, even if nonplanar components dominate in the outer
field, the merging field lines become increasingly planar as
the current layer is approached. The price of driving fast
reconnection, however, is the buildup of strong plasma pres-
sures in the outer field. In general, the pressure is given by

FIG. 1. Two-and-a-half-dimensional solution showing the advection of
curved field lines into the neutral point~marked with a cross!. The stars
represent the inward motion of a typical fluid element prior to expulsion
along the sheet. Solution parameters areh50.01,E50.1, b8(0)54, b(0)
50, a521, b520.75.

FIG. 2. Field lines for the normal field annihilation solution. The field lines
are obtained by superposing the harmonic background field withb(x) ẑ.
There is no flow across either of the separatrix planes when the planar field
component is turned off [E5g(x)50]. Solution parameters areh50.01,
E5b(0)50, b8(0)51, a521, b520.75.
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p5p02
1

2
~uH

2 1Q2!2byg8~x!, ~26!

whereuH5(ax,2ay). But we have just seen that the mag-
nitude ofQ is dominated by they component of the field
~which scales ash21/2!. It follows thatp0 must scale ash

21

to maintainp.0. This restrictive behavior can be avoided
only by setting the planar field components to zero. In this
case, however, there is no reconnection, only field annihila-
tion of thez component at the slow rateh1/2.

Finally, we mention that the extreme scaling on the
plasma pressure can be eased slightly by generalizing the
solution to 3-D.13 Fast dissipation of reconnecting fields can
then occur at the rateWh;h0 and the scaling of the pressure
is reduced toh21/2. More generally, it appears that strong
pressure inhomogeneities within the reconnection region are
common to all flux pile-up solutions~e.g., Forbes and
Priest1!.

IV. SOLUTION FOR NONVANISHING VISCOSITY

A. Introduction

The present solution makes clear that reconnection is
associated mainly with the magnification of the planar field
as it is swept toward the neutral point. Although the vorticity
is negligible outside the current sheet, the strong shearing
motions across the current layer suggest that viscous effects
could be significant in dissipating the energy of the fluid.
Since the inner solution is dominated by the flux pile-up of
the planar field, and the shearing motions are most severe in
planar reconnection, we choose to simplify the calculation by
takingw5b50.

A detailed discussion of viscous effects within the con-
text of stagnation flow magnetic annihilation models has
been given by Jardineet al.11 Clearly, the inclusion of vis-
cosity adds significantly to the mathematical complexity of
the problem. This is manifested, as we shall see, by the need
to specify more boundary conditions on the dependent vari-
ables forn.0.

B. Inner series expansion

Obviously, the inclusion of viscosity cannot undo the
inherent symmetry of the inviscid solution. Assuming an in-
ner series expansion of the form

f ~x!5(
n

`
f n
n!

xn, g~x!5(
n

`
gn
n!

xn, ~27!

wheren is even, we find that Eqs.~12! and ~13! yield the
following inner solution:

f ~x!5
a

b

E

h

x2

2
2
g4
4!

x2S 6h

b
1

b

15n
x41••• D , ~28!

g~x!5
E

h

x2

2
1
g4
4!

x4S 11
2a

15h
x21••• D . ~29!

It is clear that, whileg9(0)5E/h is determined by the ex-
ternal parameters of the problem,g4 can be chosen arbi-
trarily, provided thatn.0.

There are fundamental differences between the viscous
and inviscid solutions. In the casen50 we can express the
solution of Sec. III in terms of a hypergeometric series,12

viz.,

g~x!5
E

h

x1
2

2
F2S 1,32,2,2m2x2D5

E

h

x2

2 S 12
m2x2

3
1••• D .

~30!

Since f is linearly related tog, f 99(0) is nonvanishing for
the inviscid solution. Equation~28! shows, however, that
f 450 and so the vorticity dissipation rate~¹2v! always van-
ishes at the origin for finiten. To obtain localized current
sheets we must takeg4 finite, and therefore the inviscid re-
lationship f5(b/a)g no longer holds. The effect of finite
viscosity onf 99(x) is demonstrated in Fig. 4, where we see
that departures from then50 limit are always present close
to the origin.

FIG. 3. Current buildup along thex axis with the ‘‘perturbation’’ fieldO(1).
Although both planar and normal field components are comparable on the
inflow boundary, the planar field is preferentially magnified as it is advected
into the current sheet. Accordingly, the current atx50 is primarily in thez
direction. Solution parameters areh50.01,a521, b520.75.

FIG. 4. f 99 for various values of the viscous coefficientn. Although the
graphs merge in the outer field, a significant difference is always maintained
within the current layer. In particular, an increasingly sharp transition layer
emerges asn→0. The dashed line represents the unattainablen50 limit.
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C. Numerical results

Finally, it remains to investigate whether the changes
incurred by the inclusion of viscosity compromise the fast
reconnection rates of CH. In the absence of an analytic vis-
cous solution we must rely upon numerical simulations to
determine reconnection scalings.

We assume that the reconnection region is defined over
the unit squareuxu, uyu<1. To determine reconnection rates
we fix field amplitudes on the inflow boundaries and system-
atically varyh ~keepinga, b, andn constant!. At this stage,
the system parameterE should be regarded as a function of
h.

The inflow of magnetized plasma is determined by
evaluating @c,f# over the boundary. Since the advection
bracket is independent ofy, and even inx, it is sufficient to
specify inflow conditions onx51. We have that

@c,f#x515hg9~1!2E, ~31!

which reduces to

ag8~1!2b f 8~1!.2E, ~32!

if the current is localized atx50. Under these conditions,E
must be taken independent ofh to maintain the rate of ma-
terial inflow.

For numerical purposes, however, it is easiest to assume
inner conditions onx50 and to ‘‘shoot’’ to satisfy the inflow
conditions atx51. For nonvanishing viscosity, Eqs.~12! and
~13! can be combined to yield a fourth-order equation for the
field potentialg(x). Appropriate inner conditions are there-
fore

g5g85g-50, g95
E

h
. ~33!

But Eq. ~32! makes clear that the amplitude of the dis-
turbance fieldg8(1) is not uniquely determined forb.0.
This ambiguity can be eliminated by normalizingg8(1) ac-
cording to the prescription

g8~1!5g08~1!, ~34!

whereg08(1) is the outer boundary value for then50 solu-
tion. To achieve this normalization we exploit the fact—as
expression~29! confirms—that the coefficientg4 can be cho-
sen arbitrarily. Therefore, we systematically shoot usingg4
until Eq. ~34! is satisfied. In this way the inflow conditions of
the inviscid calculation are reproduced.

The results of the numerical experiments, subject to Eqs.
~33! and ~34!, are evident in Fig. 5. The Ohmic dissipation
rate scales marginally slower than the inviscid model@see
Eq. ~24!#, but the solution is still fast,Wh;h20.48. It follows
that viscous damping of the flow’s inner ‘‘shearing layer’’
does not compromise the global reconnection scalings of the
solution.

V. CONCLUSIONS

We have considered exact solutions for 2-D planar re-
connection. Our analysis shows that fast reconnection is

maintained by the strong magnification of the planar field as
it advects toward the current layer. This allows flux annihi-
lation to proceed independently of the plasma resistivity, and
the Ohmic dissipation rate to achieve the superfast scaling
h21/2. Nonplanar components of the field, however, are not
amplified as they are carried toward the current layer. Ac-
cordingly, the dissipation of the perpendicular field occurs
only at the slow Sweet–Parker rateh1/2.

Since magnetic reconnection requires the presence of
strong shearing motions across the current layer, it is natural
to expect that viscous effects will significantly modify the
inviscid solutions. Specifically, we find that the Fourier de-
velopment of the solution across the inner diffusive layer is
fundamentally changed for any finiten—the dissipation rate
of the vorticity has to vanish. For fixed inflow conditions,
however, the global energy dissipation rates remain essen-
tially unaffected for all physically significant levels of
plasma viscosity.
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