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Abstract 
Several state-of-the-art machine learning classifiers are compared for the purposes of object detection in 
complex images, using global image features derived from the Ohta color space and Local Binary Patterns. 
Image complexity in this sense refers to the degree to which the target objects are occluded and/or non-
dominant (i.e. not in the foreground) in the image, and also the degree to which the images are cluttered with 
non-target objects. The results indicate that a voting ensemble of Support Vector Machines, Random Forests, 
and Boosted Decision Trees provide the best performance with AUC values of up to 0.92 and Equal Error Rate 
accuracies of up to 85.7% in stratified 10-fold cross validation experiments on the GRAZ02 complex image 
dataset. 
 

1 Introduction 
Object detection is the problem of building a classifier 
that can detect a particular class of object, such as a 
car or a person, in an image.   

Two general approaches to the learning of object 
detectors appear in the literature: the “strongly 
supervised” approach, and the less common but 
considerably more difficult “weakly supervised” 
method. In the strongly supervised case, the training 
images are neatly segmented into object and 
background so that only parts of the target object are 
used for training. For example, face detectors are 
trained only on small images of faces that have been 
removed from larger overall images.  Parts of images 
not containing a face can be used as the negative 
class.  

On the other hand, depending on the circumstances, it 
may be infeasible to preprocess the training images in 
this way. Therefore strongly supervised object 
detection becomes unworkable. One reason may be 
the cost: it could simply require too much time to 
manually segment each training image, especially if 
there are hundreds of such images. An example of 
such an application would be a personalized photo 
collection where the user chooses the classes and 
training must occur immediately from a few example 
images in order to classify an entire collection. 

Each training image can therefore be labeled as either 
positive (contains the object relevant to the class) or 
negative (does not contain the object), with no further 
information provided. This is the weakly supervised 
object detection that is the focus of this paper.  

In addition to weak supervision, there is also 
considerable interest in building object detectors from 
training data that is complex. What is meant by 
“complexity” is that the training images do not 
contain the object of interest in the immediate 
foreground of the image, but only “somewhere” in the 

image. Many image databases such as Caltech-101 [1] 
consist of images with the objects of interest in a 
dominant foreground position, occupying most of the 
image. 
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Figure 1. Examples of (a) the planes and cars categories in 
the Caltech101 database [1], and (b) the bikes, cars and 
people categories from the GRAZ02 database [6]. 

Alternatively, the GRAZ02 database [6] contains 
more variability with respect to scale and clutter. 
Objects of interest are often occluded, and they are 
often not dominant in the image. Thus this dataset is a 
more complex dataset to learn classifiers from, but of 
more interest because it better reflects the real world 
complexity likely to occur in practical applications. 



Figure 1 depicts some images from the Caltech and 
GRAZ02 databases to illustrate this difference in 
complexity. Because the GRAZ02 database is the 
more complex set of images, it is the focus of the 
experiments reported here. 

Finally, there is also interest in the amount of training 
data required to learn effective object detectors. 
Acquiring image data can be expensive, and feature 
extraction and training times given large datasets can 
require considerable computational resources in terms 
of training time and memory. To this end, all the 
experiments reported here were repeated with varying 
amounts of training data, specifically 10%, 50% and 
90% of the images in the GRAZ02 database, and the 
remainder as test data. After giving the results of these 
experiments, a comparison with previous works 
reported in the literature will be made. 

2 Background 
In this section, the features used to represent the 
images, and the machine learning classifiers that were 
compared and evaluated, are described.  

2.1 Ohta Color Space 
For image classification applications, the 
transformation of images into the Ohta color space [4] 
is advantageous as opposed to working with them 
directly in the more common Red-Green-Blue (RGB) 
color space. Several papers in the literature such as [8] 
and [2] have compared Ohta color space histograms 
with histograms derived from other color spaces, and 
concluded that the Ohta color space is the most 
effective. 

Briefly, the Ohta color space is a linear transform of 
the RGB color space in such a way that the intensity 
component of each color is separated from the color 
components. The two remaining color components are 
orthogonal.  

The definition of the Ohta color space is: 

where R, G and B refer to the red, green and blue 
components respectively, and I1, I2 and I3 are 
components of the Ohta color space. Clearly, the I1 
component corresponds to the intensity value of the 
color, while the color information has actually been 
moved exclusively to the I2 and I3 components. 

2.2 Local Binary Patterns 
Pattern and structure information are represented in 
these experiments by histograms of Local Binary 
Patterns (LBPs), as described in [5]. Although LBPs 
are most commonly used for recognizing textures, 

they are also useful for capturing the structure of 
images such as the number of pixels falling on edges, 
corners, and points. 

A LBP is a description of the intensity variation 
around the neighborhood of a particular point in the 
grey-scale (intensity) version of an image. LBPs can 
be used to represent troughs (dark points), peaks 
(bright points), edges, corners, and everything in 
between. They are also invariant to rotation. Figure 2 
depicts the points that must be sampled around a 
particular point (x,y) in order to calculate the LBP at 
(x,y).  

Figure 2. Points sampled to calculate the LBP around a 
point (x,y). 

In our implementation, each sample point lies at a 
distance of 2 pixels from (x, y) with an equal angular 
spacing of 2pi/16 radians. Different values for the 
number of sample points and the radius are possible, 
but in the experiments described in this paper we 
considered only the depicted values. 

Next, the intensity of each sample point around (x,y) 
is measured with those not falling in the centre of a 
pixel being sampled using bilinear interpolation. From 
these samples S[0], S[1], …, S[15], a bit string B of 
length 16 can be calculated where: 

for i=0..15, where I[x,y] is the intensity at point (x,y). 

Once the bit string has been calculated, it is then 
bitwise circularly rotated so that it has the maximum 
possible number of most significant bits: this 
effectively achieves rotation invariance. 

Finally, the bit string is assigned to a LBP category, 
and this assignment rule is straightforward: if the bit 
string has no more than two 01 or 10 transitions, 
then it is assigned to the LBP category specified by 
the number of 1s in the string, and there are 17 of 
these (as the bit string can have between 0 and 16 on 
bits inclusive). Otherwise, the bit string is assigned to 
a catch-all “non-LBP” category. The net result of this 
is that most points falling on edges, corners, peaks 
and troughs tend to fall into one of the LBP 
categories, while other points with more complex and 
noisy neighborhoods are discarded in the non-LBP 
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category. A histogram of LBP frequencies can then be 
constructed for a particular image. 

For a more complete introduction to LBPs with 
comprehensive examples, the reader is referred to [5]. 

2.3 Data Mining Classifiers 
A number of state-of-the-art machine learning 
classifiers were evaluated during this research for the 
purposes of constructing an object detector via 
supervised learning. Most data mining textbooks (e.g. 
[10]) contain more details for the interested reader. 

The classifiers utilized were Support Vector Machines 
(SVMs), Random Forests, and Boosted Decision 
Trees, along with three meta-classifier combinations 
of these individual classifiers known as Voting, 
Stacking and Grading. 

Briefly, SVMs are classifiers that construct a 
maximum margin hyperplane between positive and 
negative examples, which is then used to classify 
unseen examples. Random Forests are collections of 
decision trees, in which each individual decision tree 
is learned in a standard way but with the exception 
that only a small random subset of the attributes 
(typically 10%) is available for learning. The votes of 
the individual trees in the forest are then averaged to 
classify new examples. Boosted Decision Trees refers 
to a method in which each decision tree is learned on 
the entire dataset, but after the first tree is learned, the 
weights of the instances in the data are adjusted so 
that incorrectly classified examples are given a higher 
weight. The decision tree algorithm is then run again, 
but this time with a focus on the “harder” examples. 
This process is repeated many times. The resulting 
collection of decision trees classifies new examples in 
a similar manner to the Random Forest, by averaging 
the individual predictions, except that the individual 
trees are weighted. 

Three meta-classifiers were also used in these 
experiments: Voting, Stacking, and Grading. Voting 
takes a number of individual base classifiers (in this 
case, some combination of Random Forest, SVM or 
Boosted Decision Tree classifier) and simply averages 
the individual prediction. Stacking, on the other hand, 
takes the base classifiers and constructs a new dataset 
in which each instance consists of the predictions of 
the individual base classifiers. It then attempts to learn 
a classifier not from the original features, but from the 
predictions of the base classifiers. Grading, finally, is 
an approach in which a meta-classifier attempts to 
learn which of the base classifiers will perform best 
on a particular example. New examples are not 
classified by combining predictions in this case, but 
instead by selecting the single “best” base classifier to 
make the classification. 

3 Classifier Evaluation 
In this section, the experimental setup is described. 

3.1 Dataset 
The GRAZ02 dataset [6], a collection of 640 x 480 
24-bit color images, was selected as the most 
challenging dataset for these experiments. As Figure 1 
illustrates, the GRAZ02 dataset is interesting because 
of occlusions, differences in scale, and variations in 
the viewpoint of the target objects. 

There are three binary classification problems in the 
GRAZ02 dataset: bikes vs. background, people vs. 
background, and cars vs. background. Table 1 lists 
each class along with the number of images in that 
class, and the total number of images overall. 
 

Bikes 365 
Cars 420 
People 311 
Background 380 
TOTAL 1476 

Table 1. Number of images in each class in the GRAZ02 
dataset. 

According to [7] the average ratio of object size to 
image size counted in number of pixels is 0.22 for 
bikes, 0.17 for people, and 0.09 for cars. 

3.2 Feature Extraction 
Each image was scaled to 320 x 240 to speed up 
processing, and converted to the Ohta color space. 
The values of I1, I2 and I3 were each scaled to range 
from 0 to 255 inclusive. The following global 
statistics were then calculated for each image and for 
each Ohta color plane Ip (p=1..3): 

• The mean, median, mode, minimum, and 
maximum values of Ip. 

• The standard deviation, skewness, and kurtosis of 
Ip. 

• A normalized histogram consisting of 16 bins, in 
which bin 1 contains the frequency of pixels with 
Ip values of 0..15 inclusive, bin 2 contains the 
frequency of pixels with Ip values of 16..31 
inclusive, and so on. 

This produced a total of 24 numeric features for each 
color plane, or a total of 72 features related to color 
overall. 

In addition to these features, 17 further features 
related to LBPs, namely the normalized frequencies of 
each of the 17 different LBPs in the image, were 
added to the feature set giving a total of 89 features 
per image. 

3.3 Classifier Implementation & 
Parameters 

The state-of-the-art classifier implementations used 
are those found in the WEKA machine learning 
workbench [10], version 3.4.3. The first three 
classifiers (namely, SVMs, Random Forests and 



Boosted Decision Trees) were trained individually, 
while the Voting, Stacking, and Grading classifiers 
combined all three of those individual classifiers into 
a single ensemble classifier. 

In all cases, the default parameters were used with the 
following exceptions: the WEKA implementations of 
SVMs, namely Sequential Minimal Optimization 
(SMO), had a complexity parameter of 2.0 and radial 
basis function kernel with a gamma parameter of 0.5. 
These parameters were chosen from informal trial-
and-error experiments on the Bikes vs. Backgrounds 
dataset prior to running the experiment, and appeared 
to be the best parameter choices. The number of 
decisions trees in the Random Forests classifier was 
set to 200. For the Boosted Decision Trees classifier, 
the boosting algorithm utilized was AdaBoostM1 with 
unpruned J48 decision trees as the base classifier, and 
there were 200 iterations. The stacking classifier used 
M5P, a regression algorithm, as the meta-classifier, 
and the grading classifier used an SVM as the meta 
classifier with the same parameters as specified 
above. 

3.4 Experiments 
There are a total of three binary classification datasets 
(Bikes vs. Backgrounds, Cars vs. Backgrounds, and 
People vs. Backgrounds) in the GRAZ02 dataset, and 
each of the six classifiers were trained with varying 
amounts (10%, 50% and 90% respectively) of 
randomly selected training data. This gives 36 
different combinations of dataset, amount of training 
data, and classifier. All images not selected for the 
training split were put into the test split, so the entire 
GRAZ02 dataset was always used in every 
experiment. 

For the 10% training data experiments, 10% of the 
images were selected randomly with the remainder 
used for testing. This was repeated 20 times. For the 
50% training data experiments, stratified 5 x 2 fold 
cross validation was used. Each cross validation 
selected 50% of the dataset for training and tested the 
classifiers on the remaining 50%; the test and training 
sets were then exchanged and the classifiers retrained 
and retested. This process was repeated 5 times. 
Finally, for the 90% training data situation, stratified 1 
x 10 fold cross validation was performed, with the 
dataset divided into ten randomly selected, equally 
sized subsets, with each subset being used in turn for 
testing after the classifiers were trained on the 
remaining nine subsets. 

4 Results 
The primary measure used to record classifier 
performance in these object detection experiments is a 
statistic known as the Area Under the ROC Curve 
(AUC). 

Briefly, given a test instance, most classifiers produce 
a probability estimate between 0 and 1 that the 
instance belongs to the positive class. However, the 
classifier ultimately has to make a binary decision 
about the test instance: it is either positive or negative. 
In most cases, the default strategy is to classify a test 
instance as positive if the probability of it being 
positive is greater than or equal to 0.5. However, this 
default strategy can often lead to suboptimal 
performance. What happens, for example, if 
alternative thresholds such as 0.4 or 0.8 give better 
performances? The AUC is a measure of classifier 
performance that is independent of the threshold: it 
summarizes not the accuracy, but how the true 
positive and false positive rate change as the threshold 
gradually increases from 0.0 to 1.0. An ideal, perfect, 
classifier has an AUC value 1.0 while a random 
classifier has an AUC of 0.5. 

Statistical significance comparisons between the 
AUCs of the classifiers on each dataset will be 
discussed, and the accuracy of the best classifier at the 
Equal Error Rate (EER) on all three datasets will be 
reported. 

4.1 Mean AUC Performance 
Tables 2, 3, and 4 give the mean AUC values across 
all runs to 2 decimal places for each of the classifier 
and training data amount combinations, for the bikes, 
cars and people datasets respectively.  
 
 SVM RF Boost Vote Stack Grade 
10% 0.82 0.86 0.81 0.85 0.85 0.77 
50% 0.90 0.90 0.89 0.91 0.91 0.83 
90% 0.91 0.91 0.90 0.92 0.92 0.84 
Table 2. Mean AUC performance of six classifiers on the 
Bikes vs. Backgrounds dataset, by amount of training data. 
 
 SVM RF Boost Vote Stack Grade 
10% 0.73 0.79 0.75 0.77 0.78 0.71 
50% 0.80 0.85 0.82 0.85 0.84 0.77 
90% 0.82 0.85 0.83 0.86 0.85 0.78 
Table 3. Mean AUC performance of six classifiers on the 
Cars vs. Backgrounds dataset, by amount of training data. 
 
 SVM RF Boost Vote Stack Grade 
10% 0.80 0.84 0.77 0.84 0.83 0.75 
50% 0.86 0.88 0.84 0.88 0.88 0.80 
90% 0.89 0.90 0.86 0.90 0.90 0.83 
Table 4. Mean AUC performance of six classifiers on the 
People vs. Backgrounds dataset, by amount of training data. 

It can be seen that the highest AUC achieved is 0.92 
on the bikes dataset. Classifiers trained on the people 
dataset reach an AUC of 0.90, while the cars dataset 
appears to be the most difficult, with classifiers 
trained on it achieving a maximum AUC of only 0.86. 

With respect to the amount of training data, there is a 
large difference in AUCs between 10% and 50% 
training data, but much less of a difference between 



50% and 90% training data. For 10% training data, 
the Random Forests classifier is consistently the best 
(e.g. compare 0.86 AUC using Random Forests on the 
bikes dataset to 0.82 using SVMs). This suggests that 
if a smaller number of images is available (in the 
order of about 30-40), then Random Forests is likely 
to be the best classifier. For larger amounts of training 
data, the Random Forests classifier is sometimes 
slightly worse, sometimes equal to the ensemble 
classifiers Voting and Stacking. The performance of 
SVMs improves dramatically with the amount of 
training data. 

4.2 Statistical Significance 
Comparisons 

The AUC values for the best classifiers such as 
Random Forests, Voting and Stacking, appear quite 
close, and therefore to perform a finer comparison, the 
performance of each pair of classifiers on each dataset 
and amount of training data combination was tested 
for a statistically significance difference. The test was 
at 5% level using the corrected paired T-tester 
available in WEKA 3.4.3. 

 
 SVMs RFs Boost Stack Vote Grade 
SVMs  -/L/- -/-/W L/L/- L/L/L W/-/W 
RFs -/W/-  -/-/W -/-/- -/-/- W/W/W 
Boosting -/-/L -/-/L  L/L/L L/-/L W/W/W 
Stacking W/W/- -/-/- W/W/W  -/-/- W/W/W 
Voting W/W/W -/-/- W/-/W -/-/-  W/W/W 
Grading L/-/L L/L/L L/L/L L/L/L L/L/L  
Table 5. Statistical significance comparison at 5% 
significance of each classifier against every other classifier 
with 50% training data. 
 
 SVMs RFs Boost Stack Vote Grade 
SVMs  -/-/- -/-/- -/-/- L/L/L W/W/W 
RFs -/-/-  -/-/W -/-/- -/-/- W/W/W 
Boosting -/-/- -/-/L  -/L/L -/L/L W/W/W 
Stacking -/-/- -/-/- -/W/W  -/-/- W/W/W 
Voting W/W/W -/-/- -/-/W -/-/-  W/W/W 
Grading L/L/L L/L/L L/L/L L/L/L L/L/L  
Table 6. Statistical significance comparison at 5% 
significance of each classifier against every other classifier 
with 90% training data. 

Interestingly, no significant difference was found 
between the AUC values of classifiers trained using 
only 10% of the training data. When the reason for 
this was investigated, it was found that the standard 
deviation of the AUC values was 0.06 – quite a high 
variation. On the other hand, for the classifiers trained 
using 50% and 90% of the training data, the AUC 
standard deviation is between 0.01 and 0.02, which is 
a much more acceptable value enabling statistical 
significance comparisons.  

Tables 5 and 6 present the results of the statistical 
significance comparisons for 50% and 90% training 
data amounts respectively. The tables must be read as 
follows: if X is a classifier labeling the row, and Y a 

classifier labeling the column, then the table entry 
indicates which datasets X wins over, loses to, or 
draws with Y on. The order of the datasets is: bikes, 
cars, people. 

 
 Classifier Wins Losses Draws 
50% TD SVMs 3 6 6 
 RFs 5 0 10 
 Boosting 3 7 5 
 Stacking 8 0 7 
 Voting 8 0 7 
 Grading 0 1 14 
90% TD SVMs 3 3 9 
 RFs 4 0 11 
 Boosting 3 5 7 
 Stacking 5 0 10 
 Voting 7 0 8 
 Grading 0 0 15 

Table 7. Summary of statistical significance comparisons at 
5% significance between all pairs of classifiers on the 50% 
and 90% training data runs. 

For example, the entry for Stacking and SVMs in 
Table 5 is “W/W/-“ which indicates that Stacking 
significantly outperforms SVMs on the bikes and cars 
datasets, but there is no difference on the people 
dataset (with 50% training data).  Similarly, the entry 
“-/L/L” in Table 6 for Boosting (on the row) and 
Voting (on the column) indicates that Boosting has a 
significantly lower AUC than Voting on the cars and 
people datasets, but there is no difference on the bikes 
dataset. 

Given the analysis in Tables 5 and 6, it is possible to 
count the number of times that each classifier has a 
statistically significantly better AUC than the others, 
and this summary is presented in Table 7. This table 
clearly shows when the amount of training data is at 
the 50% level, voting and stacking are best 
performing classifiers. However, with an increase in 
training data to 90%, Voting becomes the single best 
classifier.  

4.3 ROC Curves and Equal Error Rates 
for Voting 

Figure 3 depicts the ROC curves for the Voting 
classifier after running a 1 x 10 fold cross validation 
experiment on the bikes, cars and people datasets 
respectively. The AUC is defined as the area under 
this curve, and as can be expected from Tables 2-4, 
the performance of Voting on the bikes dataset 
produces the best ROC curve, and the cars dataset is 
the worst.  

From the ROC curves is it possible to calculate the 
accuracy of the Voting classifier at the Equal Error 
Rate (EER), which is the accuracy achieved when the 
threshold is set such that the false positive rate equals 
the false negative rate (rather than a default value 
such as 0.5). Like AUC, the EER accuracy is a 
threshold-independent means of reporting classifier 
performance. Table 8 lists the mean EER accuracies 



for Voting on each of the binary classification tasks in 
the GRAZ02 dataset. 

Figure 3. ROC curve for Voting after a 1 x 10 fold cross 
validation experiment on the Bikes, Cars and People 
datasets. 
 

 EER Accuracy 
Bikes  85.75% 
Cars  78.15% 
People 82.65% 

Table 8. Accuracy of the Voting classifier at the EER for 
Bikes, Cars and People. 

5 Comparison To Previous Work 
It is instructive at this point to compare the current 
results with that of previous researchers who have 
worked on the same dataset. 

Opelt & Pinz [7] proposed a method for weakly 
supervised image classification in which an object 
localization step is performed prior to training. The 
purpose of this step is to find the parts of the training 
images in which the object of interest (a bike, car, or 
person depending on the problem) actually appears, so 
that the rest of the positive image containing only 
background can be safely ignored. In combination 
with their boosting approach for classification, they 
achieved ROC equal error rates (in the best cases) of 
76.4% for bikes, 81% for people, and 70.2% for cars.  

More recently, a patch-based approach was proposed 
in [9]. In this approach, “interesting” patches in an 
image are located and then various different features 
are extracted from each interest point, such as grey 
values, multi-scale autoconvolution transforms, and 
Haar integral-based invariants, and these interest point 
features are used for classification. The best EER 
accuracy results achieved when 100 interest points 
were selected was 72.7%, 68.8% and 79.5% for bikes, 
cars, and people respectively. 

Finally, [3] proposes a method called “saliency 
maps”, which is a novel visual attention technique. An 
SVM is used to both construct the saliency maps and 
classify the images at the same time. The authors 
report EER accuracies of 79% for bikes and 71.7% for 
cars in the weakly supervised learning case. 

6 Conclusion 
The results of this research show that the Voting 
ensemble of an SVM classifier, a Random Forests 
classifier, and a Boosted Decision Trees classifier 
provides the best performance in terms of AUC on the 
GRAZ02 dataset. When compared to previous related 
work, these results are promising and can be used as a 
baseline for future research. 
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