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Observations on Adaptive Vector Filters
for Noise Reduction in Color Images

Michael J. Cree, Member, IEEE

Abstract—In a series of papers, Plataniotis et al. proposed a
number of filters for noise reduction in color images where the
noise type is unknown. In this letter, those filters with a unified
notation are summarized, and it is shown that they are essentially
variants of the same filtering procedure. It is also shown that the
class of adaptive vector filters can be considered as interpolants
between the arithmetic mean filter and the vector median filter.
Results are presented of numerical computations with the filters
on test images corrupted with noise. It is found that the adaptive
vector filters perform well with general applicability.

Index Terms—Adaptive filters, image enhancement, image
processing, median filters, multidimensional digital filters.

I. INTRODUCTION

PLATANIOTIS et al. [1]–[8] propose a number of different
vector filters for the processing of color images for the pur-

pose of noise reduction. Their aim is to develop a noise-reduc-
tion filter that performs well in the presence of any type of noise.
In this letter, the theory behind the color vector filters described
by Plataniotis et al. is summarized with consistent notation, and
it is shown that the filters are essentially variants of the same fil-
tering procedure. Some of these filters have parameters that can
be varied; however, Plataniotis et al. only try them for a few se-
lect values of the parameters. If, instead, the parameters are con-
sidered as continuously variable, as is done below, then it can be
shown that the filters interpolate between the well-known arith-
metic mean filter (AMF) and the vector median filter (VMF).
A number of numerical simulations have been run to find the
optimal settings for the parameters and to test the efficacy of
the filters for restoring images contaminated with Gaussian dis-
tributed, impulse or speckle noise.

II. BASIC THEORY AND NOTATION

All filters described use a connected neighborhood of
pixels around the pixel to be calculated. The color value, which
is a vector in three-dimensional color space, of the th pixel in
the noisy image is represented by . The pixel of the resultant
filtered image is calculated in some manner from all pixels in

. It is typical to use a square neighborhood centered on the
location of .
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The simplest filter for smoothing color images is the AMF
given by

(1)

The AMF performs well on images contaminated with Gaussian
distributed noise and poorly on images contaminated with spike
noise. The AMF often blurs images unacceptably.

To apply a median filter to color images a function that maps
the color pixel values to rankable scalars is required. Here we
use a distance function which returns a scalar value
corresponding to the “distance” apart in color space of the
color values of the th and th pixels in the noisy image. Then,
for each pixel in , the dissimilarity measure is calculated
according to

(2)

If the th pixel is most like all other pixels in , then the dissim-
ilarity measure will be small, whereas if the th pixel is most
unlike all other pixels in , then will be relatively large. The
dissimilarity measure gives a ranking of pixels, and the vector
median filter (VMF) chooses the pixel in that is the most sim-
ilar to all the others to replace the center pixel, namely that is
given by [9]

(3)

If more than one pixel in has the minimal dissimilarity mea-
sure, then one of the minimal pixels’ color value is arbitrarily
chosen to replace the central pixel.

It remains to choose a suitable distance function . A
common choice for is the -norm

(4)

where is the th component of the color value , the summa-
tion is over the three components of a color value and is the
absolute value of . Other natural contenders for the distance
function are the -norm (or Euclidean distance)

(5)

and the angle between the color pixel values

(6)

where is the magnitude of the vector . Using (6) with the
VMF constitutes the basic vector directional filter (BVDF)
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[10]. The VMF performs poorly on images contaminated with
Gaussian distributed noise and best on images contaminated
with spike noise. Neither the AMF nor the VMF lend them-
selves to be used as a general-purpose filter when the noise
type is unknown.

III. ADAPTIVE VECTOR FILTERS

To develop a general-purpose filter, Plataniotis et al. use
adaptive vector filters, in which the pixel of the filtered
image is calculated from the linear-combination of all the
pixels in [1], [2]

(7)

where is a weighting function chosen to be a nonnegative
monotonically decreasing function of its argument. Therefore,
pixels with low dissimilarity index are weighted highly in the
linear combination, and pixels with high dissimilarity index are
given a small weighting toward forming the new pixel value.
This is based on the assumption that pixels that are most dis-
similar to all other pixels in the neighborhood are most likely to
be in error. It remains to choose a suitable weighting function.

The adaptive nearest neighbor filter (ANNF) uses the angular
distance measure (6) and the weight function given by [1], [6]

(8)

with and . The
adaptive nearest neighbor multichannel filter (ANNMF) gener-
alizes the ANNF with a scalar parameter introduced
into the weight function by [2]

(9)

With , it reduces to the ANNF. Plataniotis et al. [2] require
to be between the limits of 0 and 1, but should we ignore

the upper limit and let approach infinity, then the ANNMF
reduces to the AMF. The ANNMF can, therefore, be considered
as interpolating between the AMF and the ANNF.

Plataniotis et al. [3]–[7] introduce a class of filters including
the fuzzy vector filter (FVF), the fuzzy vector directional filter
(FVDF), the fuzzy vector median filter (FVMF), fuzzy vector
mean filter (FVMEF), the adaptive vector filter (AVF), and the
adaptive vector directional filter (AVDF). The way they were
introduced serves to hide the fact these filters are all of the same
class and should be given a unified treatment. They are all based
on (7), and all are referred to as adaptive vector filters (AVF)
in this letter. The three primary weight functions proposed by
Plataniotis et al. for use in the AVF are [3]–[7]

(10)

(11)

(12)

with and parameters that are chosen to give a good general-
purpose filter. Our version of has the parameter in the
exponential, whereas Plataniotis et al. had it in the numerator of

TABLE I
LIMITS OF DIFFERENT WEIGHT FUNCTIONS FOR THE AVF

where it will serve no purpose, since a constant multiplier
gets cancelled out by the normalization process in (7).

IV. OBSERVATIONS

Plataniotis et al. [2] describe a version of the ANNMF that
replaces of (9) with an adaptively calculated given by

(13)

This is a mystifying choice, for it gives if
or if , and a value less than one otherwise; thus, (9)
coupled with (13) does not lead to a monotonically decreasing
weight function. This filter is, therefore, unlikely to perform as
well as the plain ANNF, particularly for images contaminated
with spike noise, since the error pixel (the spike noise) will most
likely get the maximal weighting! Our numerical simulations
confirm this observation (results not shown here).

Plataniotis et al. only report simulations for a few select
choices of the parameters and for the AVF type filters. If
we relax that restriction and consider the parameters as contin-
uously variable, then we can make some general observations
about the behavior of the AVF filters. For example, consider

(14)

Since the weights are all the same, this is identical to the AMF.
In the other extreme

(15)

very small relatively for large
very large relatively for small.

(16)

Of course, the limit above is ultimately zero for all the weights,
but by (16) above, we mean that for large the limit tends to
zero very much faster than for small. This effect is so marked
that only the smallest dissimilarity value leads to a significant
weight. The filter, therefore, takes the pixel value corresponding
to the smallest dissimilarity measure to replace the center pixel
of the neighborhood . This is the definition of the VMF. One
can continue the process for the other parameter and for the
other weight functions and . The results are listed in
Table I. Because these weight functions can continuously be
varied from the AMF to the VMF, we can consider them as
interpolating between the AMF and the VMF.

V. EXPERIMENTAL METHODOLOGY

The above filters have been implemented and tested for their
efficacy at reducing noise in contaminated color images. The
filters tested are the AMF (1), VMF (3), ANNF (8), AVF1 (10),
AVF2 (11), and the AVF3 (12). The filters (except the AMF)
were tested with each of the distance measures listed above;
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TABLE II
NOISE TYPES ADDED TO TEST IMAGES

however, results are only reported for the and distance
measures as the distance measure gave very similar results
to the measure.

The results of testing on the well-known “Lena” image are
reported here. The original and resultant filtered images are in
24-bit RGB format, and the filtering process was performed
in the RGB color space using IEEE double-precision floating-
point (approximately 16 digits precision) for internal calcula-
tions. A square 3 3 pixel neighborhood was used in all fil-
ters. The test images were contaminated using the Matlab rou-
tine “imnoise” [11]. Table II lists the types and amount of noise
added. The “labels” in this table are used to identify the noise
types in the tables of the Results section, and the parameter
column refers to the parameter passed to the Matlab “imnoise”
routine. The SNR of each of the contaminated “Lena” images is
also listed in the table.

A filtered image was compared to its corresponding un-
contaminated image and the SNR calculated by

SNR dB (17)

where the summations are over all pixels in the image less a
two-pixel-wide boundary around the edges of the image. As
well as calculating the SNR in RGB space (the color space the
images were filtered in), the original and filtered images were
converted to CIE 1976 (CIELab) space [12], wherein
the SNR ratio was also calculated. The CIELab color space
has the property that the Euclidean distance between two color
vectors gives the human perceived color error between the two
vectors.

The AVF1, AVF2, and AVF3 filters have parameters yet to be
set. These filters were run on the contaminated “Lena” images
with different values of and . The SNR only changed slowly
for varying and over reasonable ranges, so a near optimal
value of and was easily chosen by inspection of the results.
Table III lists the SNR (calculated in RGB space) for running
AVF1, using as the distance measure, on the Lena image
contaminated with Gaussian distributed noise (g30), contami-
nated with spike nose (i4) and contaminated with both Gaussian
and spike noise (g30i4). It can be seen how the AVF1 tends to
the AMF for low and and performs well on the Gaussian
contaminated image, and how the AVF1 tends to the VMF for
large and and then performs best on the image contaminated
with spike noise. It can also be seen how the filter starts to fail
for extreme values of and due to numerical overflows/un-
derflows. The values of , were chosen as

TABLE III
BEHAVIOR (SNR CALCULATED IN RGB SPACE) OF AVF1 FOR

DIFFERENT VALUES OF r AND � WHEN RUN ON “LENA”
IMAGE USING THE D DISTANCE MEASURE

TABLE IV
NEAR-OPTIMAL VALUES OF r AND � FOR THE THREE AVF FILTERS

being near optimal for unknown noise type. Table IV lists the
values of and chosen as near optimal for each filter under
the assumption of unknown noise type.

VI. RESULTS AND DISCUSSION

The results, given as SNRs calculated in RGB space, of run-
ning the AMF, VMF, ANNF, AVF1, AVF2, and AVF3 on each
of the contaminated images is presented in Table V. All the fil-
ters (except the AMF) were tested with both the and
distance measures, but for the AVF filters only test results using
the measure are presented here. The noise-type labels used
in Table V are defined in Table II.

As expected the AMF performs best on Gaussian and speckle
type noise and the VMF on the images contaminated with spike
noise. The VMF when using the distance measure, performs
poorly compared to the VMF using the measure if the SNR
is calculated in RGB color space. When the SNR is calculated in
CIELab color space the VMF using is generally the better
measure (results not shown). Visual inspection of the images
leads this investigator to prefer the VMF calculated with the
measure and there appears to be little reason to prefer any dis-
tance measure other than the relatively computationally inex-
pensive measure.

The results of running the ANNF with the and dis-
tance measures on each of the contaminated versions of the Lena
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TABLE V
SNR OF RESTORED IMAGES USING VARIOUS FILTERS ON THE LENA IMAGE. THE NOISE TYPE LABELS ARE AS GIVEN IN TABLE II

image are also presented in Table V. The ANNF performs sig-
nificantly better than the VMF on Gaussian noise and the AMF
on speckle noise. It is comparable to the VMF on speckle noise
and the AMF on Gaussian noise. The choice of distance function
has relatively little bearing on the performance of the ANNF.
These conclusions are the same as those that can be deduced
from the SNR calculated in CIELab color space (CIELab re-
sults not shown here). We suggest that one may exclusively use

and take advantage of its simplicity and relatively low com-
putational overhead.

The results of the AVF filters (AVF1, AVF2, AVF3) run with
the distance measure is also listed in Table V. They per-
form equivalently to each other and provide a slight improve-
ment over the ANNF. Notably the AVF filters perform a little
better than the AMF for low amounts of Gaussian distributed
noise and the VMF for spike noise. Visual inspection of the fil-
tered images reveals that the AVF filters do not blur images to
the extent that the AMF does. Therefore, these results suggest
that the AVF filters may be a better choice than the AMF or the
VMF even when the noise type is known a priori!

VII. CONCLUSION

The adaptive vector filters of Plataniotis et al. [1]–[8] are es-
sentially variants of the same filtering procedure and were sum-
marized with a unified notation. It was shown that the filters can
be considered to interpolate between the arithmetic mean filter
and the vector median filter. The choice of distance function for
these filters has little bearing on the performance of the filter;

therefore, the computationally inexpensive norm is a good
choice. The filters perform well as general-purpose filters when
the noise type is unknown a priori.

REFERENCES

[1] K. N. Plataniotis, D. Androutsos, V. Sri, and A. N. Venetsanopoulos,
“Nearest-neighbor multichannel filter,” Electron. Lett., vol. 31, pp.
1910–1911, 1995.

[2] K. N. Plataniotis, V. Sri, D. Androutsos, and A. N. Venetsanopoulos,
“An adaptive nearest neighbor multichannel filter,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 699–703, Dec. 1996.

[3] K. N. Plataniotis, D. Androutsos, and A. N. Venetsanopoulos, “Fuzzy
adaptive filters for multichannel image processing,” Signal Process., vol.
55, pp. 93–106, 1996.

[4] , “Multichannel filter for image processing,” Signal Process. Image
Commun., vol. 9, pp. 143–158, 1997.

[5] , “Color image filters: the vector directional approach,” Opt. Eng.,
vol. 36, pp. 2375–2383, 1997.

[6] K. N. Plataniotis and A. N. Venetsanopoulos, “Vector filtering,” in The
Color Image Processing Handbook, S. J. Sangwine and R. E. N. Horne,
Eds. London, U.K.: Chapman & Hall, 1998, pp. 188–209.

[7] K. N. Plataniotis, D. Androutsos, and A. N. Venetsanopoulos, “Color
image processing using adaptive vector directional filters,” IEEE Trans.
Circuits Syst. II, vol. 45, pp. 1414–1415, Oct. 1998.

[8] , “Adaptive fuzzy systems for multichannel signal processing,”
Proc. IEEE, vol. 87, pp. 1601–1622, Sept. 1999.

[9] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proc.
IEEE, vol. 78, pp. 678–689, Apr. 1990.

[10] P. E. Trahanias and A. N. Venetsanopoulos, “Vector directional
filters—A new class of multichannel image processing filters,” IEEE
Trans. Image Processing, vol. 2, pp. 528–534, Oct. 1993.

[11] The MathWorks Inc., Image Processing Toolbox, 3rd ed., The Math-
Works Inc., Natick, MA, 2001.

[12] CIE, “Colorimetry,” Centr. Bureau CIE, Vienna, Austria, CIE Pub. 15.2,
1986.


