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Abstract 

Petri nets are useful for mathematically modelling disease-causing genetic epistasis. A 

Petri net model of an interaction has the potential to lead to biological insight into the 

cause of a genetic disease. However, defining a Petri net by hand for a particular 

interaction is extremely difficult because of the sheer complexity of the problem and 

degrees of freedom inherent in a Petri net’s architecture. 

We propose therefore a novel method, based on evolutionary computation and data 

mining, for automatically constructing Petri net models of non-linear gene interactions. 

The method comprises two main steps. Firstly, an initial partial Petri net is set up with 

several repeated sub-nets that model individual genes and a set of constraints, comprising 

relevant common sense and biological knowledge, is also defined. These constraints 

characterise the class of Petri nets that are desired. Secondly, this initial Petri net structure 

and the constraints are used as the input to a genetic algorithm. The genetic algorithm 

searches for a Petri net architecture that is both a superset of the initial net, and also 

conforms to all of the given constraints. The genetic algorithm evaluation function that 

we employ gives equal weighting to both the accuracy of the net and also its parsimony. 

We demonstrate our method using an epistatic model related to the presence of digital 

ulcers in systemic sclerosis patients that was recently reported in the literature. Our 

results show that although individual “perfect” Petri nets can frequently be discovered for 

this interaction, the true value of this approach lies in generating many different perfect 

nets, and applying data mining techniques to them in order to elucidate common and 

statistically significant patterns of interaction. 
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1. Introduction 

Genetic diseases can be roughly divided into two categories. The first category consists 

of all those diseases caused by a mutation to a single gene. These are the so-called 

Mendelian diseases. The gene associated with diseases of this class can often be 

identified by performing a parametric statistical analysis on genetic data obtained from 

patients with and without the disease. That is, the mutant gene’s presence should be 

highly correlated with the presence of the disease in the sample of patients. 

The other category of genetic disease is that for which no single genetic cause can be 

identified. When in a population the supposedly causative genes are examined in 

isolation, none of them correlates strongly at all with the disease. Rather, it is the peculiar 

biochemical interaction between a set of two or more genes that leads to the disease. This 

is known as epistasis or non-linear gene interaction, and it is thought to be the 

predominant cause of genetic disease (Moore, 2003; Phillips, 2008). 



  

Non-linear gene interactions are difficult to model by traditional parametric approaches, 

and hence other computational tools, essentially based on data mining techniques, have 

been developed to identify the set of interacting genes responsible. The advantage of 

these techniques is their ability to deal with sparseness of data in the multidimensional 

space (often referred to as the “curse of dimensionality”). The Multifactorial 

Dimensionality Reduction (MDR) algorithm (Moore, 2004) is one such algorithm that 

has been highly successful in this area and is routinely used to identify non-linear 

interactions, not only in genetics but also in a wide range of other application areas. 

The problem addressed in this paper, which is the next step after the data mining, is how 

to take a set of interacting genes that have been identified and automatically build a 

computational model of how these genes may be interacting. In other words, how could 

the genes, each of which produce a substance in some quantity determined by genotype, 

lead to the epidemiological observation of a high risk of the disease in some individuals, 

and a low risk in others? 

Producing a model of this interaction should help scientists understand how and why the 

disease occurs. The models produced, however, must be biologically analogous and be 

capable of incorporating prior biological and common sense knowledge in order to be 

useful. The typical output of a machine learning algorithm, for example a decision tree, 

would not meet this criteria. 

One class of computational model that has been usefully applied in the field of 

biochemical interaction modelling is the Petri net (Reisig, 1985). To illustrate, Petri nets 

are critical in the construction of models of gene regulatory networks for both cancer 



  

(Cheng et al., 2007; Lin et al., 2007) and diabetes (McGarry, 2007). They are so widely 

used by computational biologists that they are also included in common biological data 

analysis software packages such as BioCAD (Lee et al., 2007). 

Most of the time, however, scientists needing a Petri net model of biochemical 

interactions must construct their models by hand. This approach has two significant 

drawbacks. 

Firstly, in all but the simplest of cases, designing a Petri net by hand is an extremely 

tedious trial-and-error process. If, for example, there are many “rules” governing the 

interaction that must be modelled, then it may be very difficult to find one model that 

covers all of them; often one will find a model that captures some of the interactions but 

not all, and an attempt to change the model to capture a new facet of the interaction 

inevitably invalidates some of the others. 

Secondly, a manual process of building a model such as a Petri net leads only to a single 

solution that may be biased by preconception. For example, the scientist may believe that 

the interaction occurs in a certain way, and then look for Petri nets that only behave this 

way, thereby excluding other possibilities. In reality, there may be many possible 

different solutions, some more likely than others, some more parsimonious than others.  

What is needed, therefore, is an automatic method of learning Petri nets for a given 

interaction. If there are many different possible solutions to this problem, an automatic 

method could be set up to identify them, and these multiple solutions could then be 

ranked by likelihood or parsimony. The scientist may then choose to select the single best 



  

solution, or perhaps analyse all of them and look for patterns. Such an approach is clearly 

not feasible if the Petri nets are designed manually. 

We therefore describe here a novel method for automatically building biologically 

analogous Petri nets for gene-gene interactions. We focus specifically on deterministic 

Petri nets, and use a genetic algorithm (Goldberg, 1989; Meffert, 2009). We then show 

how multiple solutions to the same problem can be generated and analysed in a statistical 

fashion, so that the most commonly occurring patterns of interactions can be identified. 

2. Materials and methods 

In this section, we briefly introduce Petri nets in the context of modelling in 

biochemistry, and then present our approach for non-linear gene modelling and show 

how we intend to learn Petri nets for given epistatic models. 

2.1 Theory of Petri Net Modelling and Learning in Biochemistry 

Petri nets are abstract computational models of dynamic, concurrent processes (Reisig, 

1985). Although they were originally developed to model the interacting behaviour of 

concurrent software components - and that is still their main use - they have recently 

found application in the fields of biochemistry, genetics and medicine. For example, see 

Cheng et al. (2007), McGarry et al. (2007) and Lin et al. (2007) amongst other references 

in the literature. 

Why are Petri nets relevant to these fields? The answer is that they can be considered 

abstract model of biochemical processes, which like interacting software components, are 

also concurrent. Specifically, Petri nets capture succinctly the notion of substances 



  

dynamically interacting via reactions to produce further substances that lead to further 

reactions, and so on. The concentration of substances changing over time can be 

modelled and observed. A Petri net can therefore be given some “input” substances, 

“executed” for a period of time, and the “output” substances can be measured. 

For those unfamiliar with the notion of a Petri net, Figure 1 depicts an example of a 

simple Petri net. Petri nets are directed bipartite graphs with two classes of node, places 

(circles) and transitions (rectangles). Places represent substances, and the concentration 

of a substance is modelled discretely as an integer associated with each place. Thus, in 

Figure 1, the concentration of the substance P0 is 5, and the concentration of P2 is 2. The 

discrete integer units are called tokens. The concentrations of all of the substances in the 

net in Figure 1 can be represented by the vector <5,0,2,1>, which is called the “marking” 

of the Petri net. 

Transitions are used to model reactions between substances. They have a number of input 

substances, depicted by the transition’s incoming arcs, and a number of output 

substances, depicted by the outgoing arcs. For example, in Figure 1, T0 has a single input, 

P0, and a single output, P2. (It also has an inhibitor arc as an input which will be discussed 

shortly.) T1, on the other hand, has two inputs and one output. 

The amount of a substance consumed or produced by a transition is given by the weights 

on the arcs. Where there is no weight assigned to an arc in a diagram, a default weight of 

1 is assumed. For example, if T0 “fires”, it will reduce the concentration at P0 by 1, and 

increase the concentration of P2 by 2. Thus the overall marking will change to <4,0,4,1>. 

On the other hand, if T1 fires instead of T0, the marking will change to <2,0,1,5>. 



  

A transition can fire only if it has sufficient inputs available – otherwise, it is disabled. 

Likewise, it also cannot fire if there is insufficient free capacity at one of its output 

places; for example, in Figure 1, if the maximum capacity of P3 is 4, then T1 cannot fire 

because there is already one token at P3, and there is not enough capacity available at P4 

to take an additional 4 tokens. 

Some arcs are inhibitory, which means that they basically disable transitions regardless of 

whether the transition has sufficient inputs or sufficient output capacity. For example, the 

arc from P1 to T0 is an inhibitor. If the marking of P1 is greater than zero, then T0 can 

never fire regardless. 

To make our Petri nets deterministic, we enforce the rule that whenever two transitions 

can fire simultaneously, the lowest numbered transition always fires first. This 

corresponds to the arbitrary ordering rule for deadlock resolution suggested by Reising 

(1985). In Figure 1, therefore, T0 will always fire before T1, unless T0 is disabled (for 

example, by the presence of inhibitory substance P1, or a lack of input substance P0). 

Generally speaking, once a Petri nets starts executing, it will either run until no more 

transitions can fire, or it will enter an infinite loop, in which case the simulation of the 

network may halt after sufficient time has passed. 

There has been limited work to date on the problem of automatically learning Petri nets. 

The earliest attempt appears to be Reid (1998), who applied genetic search to build a 

Petri net given observations of its interaction with some environment. The approach does 

not seem to have been entirely successful, however, due to various problems. 

Bourdeaud'huy & Yim (2002) extended this approach, using a genetic algorithm to 



  

construct a Petri net controller for a hexapod robot. Mauch (2003) generalised it, showing 

that Petri nets can be usefully employed as “genome” representations in genetic 

programming. 

More recently, Zhao et al (2007) provides an interesting account of Petri net learning in 

the domain of fault diagnosis. Their method consists of applying a set of rules to update 

the structure and weights of a Petri net given observations. Similarly, Durzinsky et al. 

(2008) describe a method for learning a Petri net from time series data. Their approach 

enumerates all possible Petri nets, ordered by complexity up to some limit, that can 

explain the data of interest. All possible network structures can therefore be explored. It 

is not entirely evident, however, how scalable this approach is to different and larger 

problems. 

In the field of gene-gene interaction modelling, Moore and Hahn (2003)’s approach is the 

first attempt to describe a technique using a genetic algorithm to learn a Petri net model 

of a non-linear gene interaction. However, the particular variety of genetic algorithm 

(“grammatical evolution”) that they employ appears to produce only very simple Petri 

nets.  

Mayo (2005) applied multi-start random hill climbing to evolve the arcs and weights of a 

Petri net with a fixed number of places and transitions. Although this method produced 

perfect models of the genetic interaction, the Petri nets were scored only by accuracy and 

did not include prior expert knowledge about the problem; hence the resulting nets tended 

to be more complex and less biologically relevant than they needed to be. 



  

Nummela and Julstrum (2005) also provide an approach to learning Petri nets, this time 

of metabolic pathways. Similar to previous approaches, they use a genetic algorithm, but 

in their case the search is divided into two steps: the initial search is for the best Petri net 

structure, and the second search is for the best set of weights once the structure is 

finalized. Like Reid (1998), they appear to get mixed results, with the method sometimes 

working and sometimes failing. 

2.2 Petri Net Learning: A New Approach Incorporating Expert Knowledge 

and Parsimony 

In this section, we describe our new method. Like prior approaches, we also use a genetic 

algorithm. However, the key differences between our approach and previous approaches 

are (i) that we include prior expert knowledge in the net, in the form of “gene units” and 

constraints on the structure of the Petri net that can be used to encode biological and 

common sense knowledge, and (ii) we score our Petri nets not only by their performance 

or accuracy as a model of the genetic interaction, but also by their parsimony (simplicity), 

on the grounds that given two different solutions, the simplest is more likely to be the 

correct one. Simpler solutions also tend to be more easily understood by humans, who 

must examine the outputs of the algorithm. 

In addition to these key differences, our model also routinely finds multiple different 

solutions, although this can take considerable computational effort as the complexity of 

the interaction being modelled increases.  



  

2.2.1 Petri Net Configuration for Statistical Epistasis Modelling 

The Petri nets that we employed in this study are required to incorporate certain expert 

knowledge, and therefore conform to a specific structure. Because we are interested in 

how genes interact with one another, it is necessary to define a “gene unit” or a sub-Petri 

net whose structure is fixed and cannot be modified by the genetic algorithm. 

A full model of non-linear gene interaction, therefore, consists of several of these fixed 

gene units, with the gene units connected to each other via other non-gene unit places and 

transitions. Figure 2 depicts the structure of a gene unit. 

As the figure shows, each gene unit consists of a single transition. It has exactly one input 

substance, that being the substance that “activates” the gene, and exactly one output 

substance, the “product” of the gene. There is also an inhibitor substance that may 

prevent the gene from producing the product substance if it is activated. 

Within each gene unit, the rate at which the activating substance is consumed by the 

transition is one token per firing; therefore, due to the fixed maximum capacity of the 

activating place, a gene unit cannot be continuously active -- although the activating 

substance could potentially be continuously replenished by another transition. The 

product substance is produced at a rate g, and the key point here is that g is always 

determined by genotype. 

This is  quite different to other Petri net learning approaches where it is assumed that the 

arc weights are uniformly fixed, and must be optimised globally. In our case, there is one 

arc per gene unit that is variable and to be determined by genotype, and there will be 

many different genotypes (and therefore different values of g) in a population. 



  

We use the “gene dose effect rule” to determine the value of g. Each genotype consists of 

an unordered pair of alleles, with each allele being either wild-type (A) or a mutant (a). 

Genotypes may therefore be either fully wild-type (hereafter labelled AA), heterozygous 

for the mutant allele (Aa), or homozygous for the mutant allele (aa). 

Following several biological observations, it is assumed in our nets that the mutant allele 

a causes the gene unit to overproduce more of the product substance than the non-mutant 

version A at some fixed ratio n (Pociot et al, 1995; Fishman et al, 1998; Hoffmann et al¸ 

2001). Thus, genotype AA will have the least production when the gene is activated; Aa 

will have a medium rate of production, and aa will have the greatest rate of production. 

How are the exact values of g computed? We start with two parameters, x and n, and 

compute the g according to the rules given in Table 1. The values of x and n are fixed for 

a particular gene unit, and for the duration of its lifetime, but they may vary between gene 

units and between Petri nets. In our simulations, we select x ∈ {1,2,3,4,5} and n ∈ 

{2,3,4,5} randomly, with the constraint that 2nx must be less than or equal to the 

maximum capacity of the product place (or else the gene unit will be unable to fire at all).  

Now that the gene units have been defined, we can specify the overall architecture of our 

Petri net models of gene-gene interactions. Let us define an (i,j,k) architecture as a Petri 

net consisting of the following: 

• one input place, P0, representing the initial source of tokens, or, from a biological 

point of view, the trigger event that starts the chain of reactions that lead to 

disease; P0 may only be a transition input 



  

• one output place, P1, representing the toxic disease-causing substance that builds 

up for high risk genotypes; P1 may only be a transition output 

• i additional places, representing intermediate substances  

• j additional transitions 

• k gene units as defined above, each gene unit comprising an activation and a 

product place along with a transition; the inhibiting substance, if the gene has one, 

is assumed to be one of the other places in the network 

There are a number of constraints that each network in this configuration must abide by. 

Firstly, no other places can connect directly to the transitions of gene units. The gene 

units are meant to be the fixed “building blocks” of the net, and therefore access to them 

is only via the activation place, the product place, or the inhibition place.  

The second constraint is that there can be no transitions that are “sources” or “sinks”. A 

source is transition with output arcs but no inputs, and a sink is the converse, a transition 

with inputs but no outputs. Because we want our nets to model the way in which a finite 

amount of substance is transformed by the gene units, it makes sense not to allow infinite 

sources or sinks of substance. 

Thirdly, the places have a fixed uniform maximum place capacity, which in our 

simulations was set to 10. 

Fourthly, the arc weights also have a fixed maximum value of 10. (Inhibitor arcs, 

however, do not have an arc weight.) 



  

Finally, and perhaps most importantly, there is a threshold t that is used to determine 

whether the concentration of substance at P1 should be assigned “high risk” or “low risk”. 

High risk assignments are assumed to lead to a high risk of the disease being modelled, 

and low risk assignments lead to either low or no risk of the disease. The value for t is 

arbitrary, and is set at a randomly chosen value between 0.5 and 0.9 of the maximum 

capacity of the output place P1. Once t is selected, however, it is fixed for an entire run of 

the genetic algorithm. 

Figure 3 gives an example of Petri net with three genes that conforms to this architecture 

and was discovered using our method. The net is composed of an input place (P0), an 

output place (P1), five additional transitions (one of them, T4, ended up not being used), 

and three gene units. The gene units are P2-T5-P3, P4-T6-P5, and P6-T7-P7, and in this 

particular example, none of them ended up needing an inhibitory place. The arc weights 

are 1 unless otherwise stated. 

Note that the transitions in the gene units all have the lowest firing priority and therefore 

all other non-gene unit transitions will fire before them if enabled. 

2.2.2 Execution and Evaluation of Gene-Unit-based Petri Nets 

A genetic algorithm requires candidate solutions to be evaluated in order to determine the 

solution’s fitness, and if the candidate solutions are Petri nets, then obviously they must 

be executed during the evaluation step. How is this achieved? 

Firstly, the markings of all the places except for P0 are initialised to 0. For P0, we set the 

initial marking to an arbitrary value, which is 10 in our experiments. This is the only 

initial quantity of tokens available in the network. 



  

Secondly, the values of go, g1…gk-1, where k is the number of genes involved in the 

epistatic model, must then be computed according to the gene dose effect rule described 

in the previous section. Once the value of these genotype-dependent arc weights has been 

determined and set as arc weights within the gene units, the Petri net is ready for 

execution. 

The network is then executed until one of the three following halting conditions occur: (i) 

the number of tokens at output place P1 exceeds the threshold t, in which case the 

assignment is automatically “high risk”, or (ii) no more transitions can fire, in which case 

the assignment is “low risk”, or (iii) 100 transitions fire without the threshold at P1 being 

exceeded, in which case the execution is aborted and a “low risk” assignment is assumed. 

Thus, for any particular Petri net, we would expect that different genotypes lead to 

different Petri net execution dynamics and therefore different disease risk assignments.  

The purpose of our study here, therefore, is to start from a set of genotype combinations 

that are divided into high and low risk (as determined by a genetic study of patients with 

and without the disease of interest), and find a way of building automatically a full Petri 

net model that predicts or explains the correct risk assignment for each genotype. It is 

extremely important that only the g values vary between genotypes; the rest of the net 

must be fixed and independent of genotype. 

Since there are three genotypes for each gene, there will be 32=9 genotype combinations 

where two genes are interacting, and 33=27 combinations where three relevant genes are 

involved. However, some genotype combinations may not occur in a real population, and 

therefore the actual number of observed combinations may be slightly less. 



  

2.2.3 Genetic Algorithm for Evolving Petri Nets 

Genetic algorithms are a well known, widely used, and effective solution to the problem 

of local search and optimisation (Goldberg, 1989). Although we do not have the space to 

describe genetic algorithms fully here, it is worthwhile giving a brief overview. 

The basic idea is to start with a population of randomly generated “solutions”. In our 

case, the solutions are Petri nets adhering to the structure and constraints specified in 

Section 2.2.1. Because the initial nets are generated randomly, they are not likely to 

perform particularly well; that is, they may only produce the correct risk assessment for, 

say, 50% of the genotype combinations. This is the level of accuracy that would be 

expected due to chance. 

The problem, then, is to “evolve” the population of Petri nets to cover more of the 

genotype/risk assessment rules, aiming to find a net that accurately covers 100% of the 

genotypes. This can be then returned as a solution, and is what we refer to as a “perfect” 

Petri net for a given problem. 

However, not all perfect Petri nets are equal: some nets may be 100% accurate but have 

more arcs, places and transitions than another net that is also 100% accurate. We would 

therefore prefer the simpler solution. 

Similarly, one solution may on average require, for example, 50 transitions to fire before 

a risk assessment is made, whereas another solution may require only 5 transitions to fire.  

Again, the simpler solution is more desirable because the net becomes more 

“understandable”. 



  

In both cases, we want the search algorithm to focus on the simpler, less complex, and 

more parsimonious solutions. Such Petri nets are more likely to be comprehended and 

interpreted by human beings. 

How can a genetic algorithm evolve such a Petri net? The answer requires us first to 

define a representation for the Petri nets. A direct graph representation is quite inefficient 

and overly complex from a computational standpoint. One simpler, more computational-

friendly, representation is the 2D integer array. One simply defines a row for each place, 

a column for each transition, and inserts an integer into each cell representing the arc 

weight. To illustrate, Table 3 shows the Petri net depicted in Figure 1 after conversion 

into a 2D array representation.  

In Table 3, a positive array entry indicates a place to transition arc and a negative array 

entry indicates a transition to place arc. Zero indicates no arc. There is a special integer 

code i (chosen to be beyond the range of normal arc weights) to indicate the presence of 

an inhibitor arc, which always goes from place to transition. 

For all (i,j,k) Petri nets as defined in the previous section, then, the dimensions of the 

equivalent 2D array will be the same as long as the values of i, j and k remain the same. 

We can now view the problem of Petri net learning and one of optimising a 2D integer 

array. 

How does a genetic algorithm find solutions? It has two basic operators: (i) crossover, in 

which two solutions “mate” with probability proportional their value or fitness, producing 

offspring solutions; and (ii) mutation, in which offspring are randomly changed. 



  

With regard to Petri nets, a solution that is the result of crossover will have half of its 

array entries coming from one parent, and half from the other. A solution that has been 

mutated will have a single entry changed, either to 0 (deleting the arc), to another non-

zero weight (which may reverse the direction of the arc if the sign changes), or to i, 

turning a normal or non-existent arc into a new inhibitor arc. 

By continuously crossing over and mutating Petri nets, our genetic algorithm can 

gradually construct a Petri that both covers all of the genotype/risk assessment rules, and 

is at the same time parsimonious. 

The fitness or value function used in our genetic algorithm will now be defined. Let p be 

an arbitrary (i, j, k) Petri net as defined previously. Suppose we have r genotype 

combinations that we want the Petri net to model, each genotype combination leading to 

a particular risk assessment. Let numCorrect(p) be the number of rules that the Petri net 

actually models correctly, i.e. the number of genotype combinations for which the 

eventual risk assessment after executing the Petri net is correct. This will be a number 

between 0 and 3r. 

Likewise, let numArcs(p) be the number of arcs (both normal and inhibitor) in the net, 

and let numFires(p) be the average number of transition firings required to predict a risk 

assessment given a genotype (the rules for determining when to stop executing the Petri 

net were given in Section 2.2.2). These functions measure the parsimony of the Petri net. 

Another function is used to compute the fitness, that being the maximum possible number 

of arcs in a net, maxArcs(p), which is computed by multiplying the number of places by 

the number of arcs. 



  

Our final fitness function, therefore, is defined by Equation 1. There are three main 

components to this equation: (i) the rule coverage component, which has an overall 

maximum contribution to the fitness of 1
2 ; (ii) a transition firing component, which 

increases as the average number of transition firings per rule decreases (recall that the 

maximum allowed number of firings is 100), and has maximum contribution of 1
4 , and 

(iii) an arc complexity component that is maximised when the number of arcs is 

minimised, which also has a maximum contribution to the overall fitness of 1
4 . 

Value( p) =
1
2

numCorrect( p)
r

� 
� 
� 

� 
� 
� +

1
4

1−
numFires( p)

100

� 
� 
� 

� 
� 
� +

1
4

1−
numArcs( p)
maxArcs( p)

� 

� 
� 

� 

� 
�  (1) 

Thus, the total fitness function ranges theoretically from 0.0 (the absolutely worst Petri 

net along all of the dimensions of correctness and parsimony) to 1.0 (a perfectly correct, 

highly parsimonious net). 

In practice, however, the fitness values tend to fall within a fairly narrow range within the 

0.0 to 1.0 theoretical limits. For example, the Petri net depicted in Figure 3 correctly 

predicts the risk assessment for all of the rules it was trained on, it has a low number of 

transition firings on average, and also a minimal number of arcs required to model the 

interaction, yet its fitness value is approximately 0.65. 

In all our experiments, the genetic algorithm’s population size is set to 500 and it runs 

until 500 generations elapse without any further improvement. If the best current solution 

happens to cover all of the rules, i.e. it is 100% accurate in predicting risk assessment 



  

from genotype, then this best solution is returned; otherwise it the genetic algorithm 

restarts with a new, random population. 

This latter measure, specifically restarting if no further gains can be made and if a perfect 

net has not been found, is necessary to avoid the genetic algorithm from converging to 

local fitness function maxima.  

3. Results 

In this section, we evaluate our approach for automatically building Petri net models of 

epistasis. 

3.1 Experimental Setup 
A recently discovered disease-causing non-linear gene interaction is used as a test-bed 

(Beretta et al., 2009). This model, depicted in Figure 4, describes the risk of developing 

digital ulcers in a population of 200 Italian systemic sclerosis patients. It was built using 

the MDR kernel over a set of 22 cytokine Single Nucleotide Polymorphisms (SNPs) and 

3 Human Leukocyte Antigens (HLAs), genotyped by polymerase chain reaction with 

sequence-specific primers as previously described (Beretta et al, 2009). The genes are 

HLA-B*3501 (hereafter referred to as B35), IL-2 and IL-6. 

In each cell of Figure 4, the left bars indicate the frequency of patients (cases) with digital 

ulcers, and the right bars indicate the frequency of patients without digital ulcers (the 

controls). If the ratio of cases:controls exceeds a certain threshold, patients are labelled as 

“high-risk” (they dark-shaded cells), otherwise they are “low-risk” (the light-shaded 

cells). 



  

We desire a perfect Petri net that explains this model. Such a net should ultimately 

produce, after execution, a token count exceeding the threshold t at the output place for 

high risk genotypes, but it should not exceed the t for the low risk genotypes. 

We consider two different approaches to using our method to understand these 

interactions. A first approach is simply to run the algorithm a number of times and select 

by hand (using biological knowledge and intuition) one of the nets, whichever seems the 

most suitable or parsimonious. 

In the second approach, the algorithm can be run multiple times to construct multiple 

perfect Petri net models. These Petri nets can then be analysed statistically to determine 

the most frequent interactions. However, the output in this case is not an executable 

model: rather it is a set of commonly occurring patterns that would represent the most 

interesting biochemical pathways that intervene in gene-gene interactions. 

To perform the statistical analysis of multiple perfect Petri nets we used frequent itemset 

mining (Argawal et al., 1994; Lui et al., 1998). Frequent itemset mining in its simplest 

form enumerates all patterns of a particular size, ranking them by confidence. In our case, 

the data is composed of Petri nets. For each net, we determined the number of direct 

connections between places. That is, if two places in a given net were connected by at 

least a single transition, a direct connection between the places is assumed; on the other 

hand, if the two places did not have a single transition between them, but rather a 

sequence of more than one pair of intermediate transitions and places, a direct connection 

was not assumed. 



  

This approach allowed us to assign to each possible pair of places in each net a binary 

indicator, with 1 denoting the presence of direct connection, and 0 the absence. Therefore 

each net could be converted into a fixed length binary vector, and frequent itemset 

mining could be applied on the entire dataset. 

We performed two types of analysis on this place-place connection data: firstly we 

determined the most frequent single connections, and secondly we determined the most 

frequent largest pattern of connections (i.e. the largest group of single connections that 

co-occur as a group). 

3.2 Experimental Results 

In the first experiment, we generated 400 Petri nets for the digital ulcers model depicted 

in Figure 4. As described in Section 2.2.1, the Petri nets are constrained in various ways. 

The g values for each gene are genotype dependent and computed according to the gene 

dose rule described in Table 1. The value function to be optimised in each run of the 

multi-start genetic algorithm is that described previously in Equation 1. 

Two examples of Petri nets learned by the genetic algorithm along with the g values 

required in order to execute them are given in Figure 5. Figure 3 is also an example of a 

perfect net that was found. 

To check that these nets are indeed perfect Petri nets, it is possible to trace the execution 

of the Petri nets for given genotypes. For example, according to Figure 4, the genotype 

B35=aa, IL-2=Aa and IL-6=Aa (the darkly shaded middle cell of the first 3×3 square in 

the figure) should lead to a high risk assessment. The g values are, in the case of Figure 



  

5(a), gB35=6, gIL-2=5 and gIL-6=6; and in the case of Figure 5(b), they are gB35=6, gIL-2=5 

and gIL-6=4. 

After the g values for this particular genotype are set, the input place P0 is initialised to 10 

tokens and the net is executed deterministically. Because this genotype is high risk, the 

number of fired transitions should not exceed 100 before the threshold the output place P1 

is exceeded. 

Table 3 lists the sequence of transitions fired in order to exceed the threshold at P1, for 

both of the nets depicted in Figure 5. Note that the sequences are quite short despite up to 

100 transition firings being permitted; this is clearly an effect of including the average 

number of transition firings into the value function.  

The single place-place connections found via frequent itemset mining are shown in Table 

3, ranked by frequency. As it can be observed, the most frequent connection is from the 

product place of the B35 gene (P7) to the output place P1, which occurs in 382 out of 400 

of the Petri nets. This is by far the most frequent of the connections to the output place; 

the next most frequent connections are from the input place P0 to the activating places of 

the gene units, P2, P4 and P6. The fourth most frequent connection is from P3 (the output 

of the IL-6 gene unit) to P1, which occurs 288 times. And finally, there are two 

interesting “feedback” connections that frequently occur: specifically the output of the 

IL-2 gene unit (P5) to the input of the IL-6 gene unit (P2), and the output of the IL-6 gene 

unit (P3) to the input of the B35 gene unit (P6). 

Single connection analysis can reveal the frequency of different place-place connections 

in general, but because of variations in the perfect Petri nets that are constructed with 



  

each run of the algorithm, there may be larger patterns consisting of sets of multiple 

connections that co-occur. Exploring these would therefore give a greater qualitative 

understanding of the gene-gene interaction dynamics. 

In the next analysis, we used frequent itemset mining to determine the most frequent 

overall sub-structure occurring in the 400 Petri nets we found. That sub-structure is as 

follows: {P0�P2, P0�P4, P0�P6, P3�P1, P7�P1, P5�P2, P5!�P4}. This sub-structure 

of 7 co-occurring place-place connections occurs in 115 out of 400 of the Petri nets, and 

for the most part the present connections (e.g. P0�P2) are the same as the single most 

frequent connection analysis in Table 4. However, the symbol “!�” indicates absence of 

a connection rather than the presence; and so one can infer the additional conclusion that 

the IL2 gene unit (P5) only feeds back and activates the IL6 gene unit (P2) when there is 

no feedback from IL2 to itself (i.e. no connection from P5 to P4). 

4. Discussion 

We have described a novel method based on a genetic algorithm for automatically 

building Petri nets, with application to the modelling of non-linear gene interactions.  Our 

Petri nets have a unique architecture, that being one in which any finite number of 

interacting gene units can be modelled. Our method also constructs multiple perfect Petri 

nets ranked by parsimony for a problem, which are then amenable to statistical analysis 

in order to discover common interaction patterns. These patterns may form the basis for 

future experimental investigation in a laboratory. 

Constructing Petri nets manually or using a different automatic method that produces 

only a single solution excludes the possibility of this kind of aggregate analysis. 



  

There are two main further avenues future refinement of this method. Firstly, more 

biological or common sense knowledge could be incorporated as constraints.  

Secondly, a greater focus could be placed on the aggregate analysis side, in which 

significant patterns across many solutions are identified. Tools such as data and graph 

mining can be applied fruitfully here. The drawback of this approach, of course, is that 

the output is not an executable model as a normal Petri net typically is; rather, it would be 

a set of qualitative graphical patterns (for example, “the output of genes X and Y 

combine together to activate gene Z”). 

Yet, biologists and geneticists are somewhat more interested in reducing epistatic models 

to a limited number of simple reactions invariant to randomness that can eventually be 

tested in vivo or ex vivo, rather than having a complex, albeit mathematically-perfect 

model that is difficult to test by translational research experiments. These “core” 

hypotheses could, for instance, be verified by perturbation experiments in simple 

organisms, a well-known and successful strategy in dissecting biological epistasis 

(Phillips, 2008). 

To achieve this goal, it will be necessary to develop a more intelligent and therefore 

faster method for learning Petri nets, especially when the size of the desired Petri net is 

larger. A genetic algorithm, although powerful, is still a heuristic search strategy and 

therefore is not guaranteed to always find an optimal solution. Random mutations to arc 

presence, weight and direction take little account of Petri net dynamics, and our 

observations have shown that the fitness function frequently does not vary smoothly with 

minor changes or mutations to the net’s structure. Future research should therefore also 



  

be directed towards devising a more efficient method of searching the space of possible 

Petri nets. 



  

Tables 
 

Table 1 

Genotype Rule for computing g 
AA 2x 
Aa x+n 
aa 2nx 
 

Table 2 

 T0 T1 
P0 1 3 
P1 i 0 
P2 -2 1 
P3 0 -4 
 

Table3 

Petri Net depicted in… Transitions Fired 
Figure 5(a) T3 T5 T6 T6 T1 T5 T6 T6 T1 T7 T7 T3 T6 T6 T1 T5 T0  
Figure 5(b) T4 T7 T7 T0 T5 T2 T6 T6 T5 T5 T3 T7 T0 T1 
 

Table 4 

Connection Frequency 
P7�P1 382 (96%) 
P0�P6 360 (90%) 
P0�P2 353 (88%) 
P0�P4 323 (81%) 
P3�P1 288 (72%) 
P5�P2 276 (69%) 
P3�P6 240 (60% 
P7�P2 227 (57%) 
P5�P6 214 (54%) 
P5�P1 204 (51%) 
P7�P4 196 (49%) 
P3�P4 184 (46%) 
P3�P2 167 (42%) 
P7�P6 163 (41%) 
 



  

Figures 
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Figure 3 

 



  

 

Figure 4 

 

 



  

Figure 5(a) 

 

P1 threshold: 0.5 

g values: 

 B35 il2 il6 
aa 6 8 8 
Aa -- 5 6 
AA 2 2 4  

 



  

Figure 5(b) 

 

P1 threshold: 0.7 

g values: 

 B35 il2 il6 
aa 6 8 6 
Aa -- 5 4 
AA 2 2 2  

 

 



  

Legends to tables and figures 

Table 1. Rules for computing g for each genotype. 

Table 2. 2D array representation of the Petri net depicted in Figure 1. 

Table 3. Sequence of transitions fired by two different perfect Petri nets in order to 

exceed the threshold at P1. The initial marking for P0 is 10 tokens. 

Table 4. Variable single place-place connections and their frequency of occurrence 

in 400 Petri nets for the simplified digital ulcers model. 

Figure 1. An example of a Petri net with four places and two transitions. 

Figure 2. Schematic representation of a gene. When tokens are in the activating 

place (AP), the gene produces at a fixed rate g in the product place (PP) unless 

inhibited.  

Figure 3. A Petri net consisting of three gene units. 

Figure 4. Multifactor dimensionality reduction (MDR) model of non-linear gene-

gene interaction. The model describes the risk of developing digital ulcers in Italian 

systemic sclerosis patients (Beretta et al. 2009). Key: For IL-2 and IL-6, cell indices 

0, 1 and 2 denote genotypes AA, Aa and aa repectively. For B35, cell index 0 

indicates AA/Aa and index 1 indicates genotype aa. 

Figure 5. Two different but perfect Petri net explanations of the interaction defined 

by the simplified digital ulcers model in Figure 4.  
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