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Many models have been used to describe the influence of internal or external factors on apple
bruising. Few of these have addressed the application of derived relationships to the
evaluation of commercial operations. From an industry perspective, a model must enable fruit
to be rejected on the basis of a commercially significant bruise and must also accurately
quantify the effects of various combinations of input features (such as cultivar, maturity, size,
and so on) on bruise prediction. Input features must in turn have characteristics which are
measurable commercially; for example, the measure of force should be impact energy rather
than energy absorbed. Further, as the commercial criteria for acceptable damage levels
change, the model should be versatile enough to regenerate new bruise thresholds from
existing data.

Machine learning is a burgeoning technology with a vast range of potential applications
particularly in agriculture where large amounts of data can be readily collected [1]. The main
advantage of using a machine learning method in an application is that the models built for
prediction can be viewed and understood by the owner of the data who is in a position to
determine the usefulness of the model, an essential component in a commercial environment.

Machine Learning software recently developed at Waikato University [2] offers potential as a
prediction tool for the classification of bruising based on historical data. It gives the user the
opportunity to select any number of measured input attributes and determine the influence of
that combination on a range of bruise size categories. The user may require a high degree of
accuracy in the classsification and therefore prune the attributes or bruise classes accordingly,
or alternatively seek to discover trends in the dataset (in which case a lower level of accuracy
often clarifies implicit structures in the data).

Models such as the theory of elasticity suggest that impact energy and radius of curvature will
have a signifcant effect on the bruise surface area. Cell structure is also thought to contribute
to variation in bruise size. The experiment described in this paper uses the machine learning
programs C4.5 [3] and M5’ [4] to determine the influence of impact energy, radius of curvature
and impact site location on bruise area.

1. Introduction

Considerable research effort has gone into the study of damage to fresh produce. The
primary objective has been to gain an understanding of failure mechanisms and the
relationships between applied forces and the severity of resulting damage in order to i) identify
and rectify the source of damaging forces within handling systems or ii) reduce the severity of
damage through manipulation of physiological and environmental factors which influence
susceptibility.

What the commercial operator requires is an evaluation of the handling system determining
the likely percentage of fruit which will be rejected due to impact damage. With this
quantification a cost-benefit analysis can be used to justify modifications or at least place a



monetary value on damage. Bollen [5] describes a probabilistic approach that enables the
prediction of bruise occurrence of a specified size based on impact data.

In order to extend current damage relationships developed for only one site (cheek) on a
medium sized apple to other locations on fruit of varying size, it is necessary to consider fruit
properties that potentially have a significant influence on the bruise susceptibility of a fruit of a
specified physiological status. Two major influences are the local shape of the fruit (curvature)
and the physical properties of the fruit tissue at a particular location.

An experiment was conducted to investigate these properties and the results were analysed
using two machine learning computer programs called C4.5 and M5’. Both programs attempt
to build a classification model of the factors that influence apple bruising. The models are built
as a series of rules that describe and generalise from the examples of apple bruising that were
recorded in the study. The rules quantify the logical relationships that exist between the
factors that influence the bruising. Further, they provide a scientist with some insight into the
often complex relationships that exist in their data. The two programs were used because C4.5
performs categorical prediction—prediction of a fixed set of values, and M5’ performs numeric
prediction—prediction of floating point values. In analysing this type of data it is essential to
have both kinds of prediction available.

The greatest challenge in the development of any prediction model is the amalgamation of the
many parameters influencing bruising to a significant degree, into a form suitably accurate and
useable for its intended purpose. Machine learning potentially offers the ability to rapidly
scope or detail multi-variable relationships with minimal specialist knowledge.

2. Materials and Methods

2.1 Experimental Details

96 export quality Granny Smith apples of both 100 count size and 150 count size (average
weights 195g and 133g respectively) were selected from a commerical packhouse. The fruit
were visually inspected and any existing bruises were marked. The 100 count apples were
divided into 6 samples of 16 fruit (96 fruit in total) corresponding to the 6 energy levels
selected for the experiment. The same procedure was followed for the 150 count apples. The
energy levels were predetermined to provide a probability between 0 and 1 for the bruise area
exceeding 1 cm® and represent drop heights typical of modern packing facilities in New
Zealand as determined by handling studies using an Instrumented Sphere [6]. The impact
energies are given in Table 1 with equivalent drop heights for 195g apples also shown.

Energy Level Energy (Joules) Equivalent drop height (mm)
1 0.019 10
2 0.037 20
3 0.056 30
4 0.075 40
5 0.093 50
6 0.115 60

Table 1. Energy levels used in bruising experiment.



The fruit were impacted against a rigid flat surface using a pendulum impacting test rig. The
selected impact site locations on the fruit are shown in Figure 2.1. Each fruit was impacted 4
times at these locations by rotating the fruit about its polar (stem) axis. For the 100 count fruit
this meant that each fruit had 4 impacts around its check, 4 impacts around its stem shoulder
position and 4 impacts around its calyx shoulder position. The 150 count fruit had 4 impacts
around the cheek only. At each energy level there were a total of 64 impact sites for each of
the 4 locations (64 impagtq sites X 6 energies x 4 locations = 1536 sites).

-

| - stem shoulder
(avg radius = 36.3 mm)

4 - cheek

(avg radius = 43.3 mm)

(avg radius = 36.4 mm)

\ 2- calyx shoulder
(avg radius = 35.7 mm)

100 count 150 count
Figure 2.1 - Location of impact sites on the 100 and 150 count apples.

The surface curvature of the fruit was measured at each location using ‘Tri-probe’, a device
developed for this experiment. Bruise dimensions were measured within 48 hours of the
completion of impacting. Before sectioning, external bruise visibility was assessed. The bruise
width in both the polar axis and equatorial axis was then measured.

2.2 Machine Learning

Machine learning techniques were applied to the above data to generate rules to describe the
factors that influence apple bruising. The task is one of classification: given a set of values
from the factors that influence apple bruising, predict whether or not an apple will bruise.

2.2.1 Categorical prediction using C4.5

A classification model can be constructed using C4.5 to discover and analyse patterns found in
sample data. This data must have the following characteristics:

e It must have an attribute-value format. Here, the factors Energy Level, Location and
Radius of Curvature are called the properties or attributes of each case. Each attribute
may have a set of discrete values (for example, Location values are 1, 2, 3 or 4) or may be
numeric—take on a real or integer value, as for the Radius of Curvature attribute.

e Each line of data, called a case or instance, must contain a predefined class attribute,
which must have discrete values—this is the sense in which the prediction is categorical.
In this data that meant imposing a clear boundary on the definition of a bruise. We applied
the commercially accepted rule that an apple is bruised if the area of the bruise is greater
than or equal to 1 cm? (bruised apples are labelled B1), otherwise we declared the sample
to be not bruised (labelled BO).

e There must be sufficient data to build and test a classification model. The size of data
required will vary between applications and is dependent on the number of attributes and
classes and on the complexity of the classification model. A practical rule of thumb is to
insist on at least 50 instances.



The following table is part of an example data file (Table 2).

Energy Level Location Radius of Curvature Bruise Class
6 2 43 B1
6 2 46 B1
6 2 50 B1
1 3 27 BO
1 3 29 BO

Table 2. Example Machine Learning data file for C4.5

If the sample data is run through C4.5 it will produce a classification model of the data in the
form of a set of production rules. These take the form IF ‘L’ THEN ‘R’, where L (the left-hand
side of the rule) is a conjunction of attribute-based tests and R (the right-hand side of the rule)
is a class. These rules, together with a default class (the most frequently encountered class
label) are sufficient to predict the class of unseen cases—data with attribute values but no
class-attribute value. Classification of new data is achieved by finding the first rule (the rules
are ordered) whose left-hand side is satisfied by the case. The predicted class is then the one
nominated by the right-hand side of this rule. If a case falls through all of the rules then we
designate the class to be the default class.

In practice, the whole data file is used initially to train and test the classification model. If the
results look promising then the data file is split into a training set of cases and a test set of
cases. In this way the true accuracy of the rules over new data can be estimated. In order to
ensure that the rules are truly general and not too specific to one collection of cases, the
program is run in cross-validation mode. In this mode the data is divided randomly into ten
equal parts. Each part is held out in turn and the learning scheme trained on the remaining
nine-tenths, then its error rate is calculated on the holdout set. This constitutes one fold of the
cross-validation. After a fold the data is randomised and the process repeated, typically ten
times, after which the results are collated and averaged over the number of individual runs
(100).

2.2.1 Numeric prediction using M5’

Programs like C4.5 are designed for predicting categories rather than numeric quantities. The
same kind of rules can be produced in the numeric case where the right-hand side of a rule
contains a numeric value which is the average of all the training set values that the rule applies
to. The resulting set of rules represent regression equations, linear models whose weights
specify the contribution of an attribute to a classification.

It is possible to combine regression equations with categorical methods similar to those of C4.5
to produce model trees. These model trees have been implemented in a program called M5’
Data for M5’ must conform to the same restrictions as C4.5 except that it requires a real-valued
class attribute. Table 3 shows example data for this type of classifier with the actual bruise
sizes recorded in the Bruise Class column.



Energy Level Location Radius of Curvature Bruise Class
6 2 43 2.33
6 2 46 1.65
6 2 50 1.23
1 3 27 0.85
1 3 29 0.22

Table 3. Example Machine Learning data file for M5’

M5’ builds similar rules to C4.5 but instead of a categorical classification in the right-hand side
of the rule there is either a constant (real) value prediction or linear regression equation. Thus,
we can still observe the relationships in the data that are used in making predictions. Once
again common practice is to initially train and test on the whole file and confirm results using
cross-validation.

One difference between categorical and numeric prediction is in the measure used to establish
the error rate. In categorical prediction we can calculate the number of new cases correctly
classified and then use one minus this figure as the error rate. For numeric prediction several
error measures are available: mean squared error or root mean squared error, mean absolute
error, relative squared error or root relative squared error, relative absolute error and
correlation coefficient. Fortunately, in most practical situations, the best measure is still the
best no matter which error measure is used.

3 Results

First we present rules learned initially from all the data for both C4.5 and M5’. We then present
results of cross-validation studies. The research question being addressed in the next section
is to find the nature of the relationship between drop height, location and bruise. If a consistent
relationship can be uncovered and then suggestions for commercial operations can be made.
This study focuses on Granny Smith apples, but if data for other varieties were available then
sets of for these varieties could be generated and the commercial operation could be adjusted
if necessary to minimise bruising.

3.1 Sample Run using C4.5

The following rules were generated by using all 1536 samples and the Energy Level and
Location attributes to predict the bruise class:

Rule 1: IF Energy Level = 1 THEN Bruise Class = B0 (96.7%)
Rule 2: IF Location = 2 OR Location = 4 AND Energy Level = 2

THEN Bruise Class = B0 (86.6%)
Rule 3: IF Energy Level >2 THEN Bruise Class = B1 (91.5%)
Rule 4: IF Location = 1 OR Location = 3 AND Energy Level > 1

THEN Bruise Class = B1 (88.6%)

Default Rule: Bruise Class = B1



These rules state that 10mm drop heights do not cause major bruising on this apple variety.
When that height is increased to 20mm bruising depends on where the impact occurs. Bruising
can be avoided in 100 count apples if the apple drops onto either the calyx shoulder or cheek.
The 100 apple is predicted to bruise if dropped from 20mm onto the stem shoulder. There are
no rules for 150 count apples above a 10mm drop height—all such apples are predicted to
bruise. Because rule evaluation is order-dependent, it is possible to read off the relative
importance of the attributes. For example, the Energy Level attribute is always evaluated first
when determining classification and therefore provides greater discrimination.

An unseen case is classified by matching the conditions on the left hand side of each rule in
turn to the values of the attributes of the unclassified case. The first rule encountered that
matches these conditions classifies the case. The percentage in brackets after each rule is an
estimate of how good the classification will be on unclassified cases. The rules are tested by
evaluating unclassified cases to classify the bruise class as shown in Table 4.

Energy Level Location Bruise Class
5 1 ?
2 3 ?
1 2 ?
2 = ?
6 1 ?

Table 4. Table of sample unclassified cases

The rules listed above would classify the first unclassified case as B1 by Rule 3, the second
as B1 by Rule 4, the third as BO by Rule 1, the fourth as BO by Rule 2 and the final case as
B1 by Rule 3. When the set of rules is evaluated on all the samples the results are as follows:

Rule No. Error Times Used | Misclassification Advantage Bruise
Class

1 3.3% 256 6 ( 2.3%) 116 (12216) BO

2 13.4% 128 30 (23.4%) 68 (98I30) BO

3 8.5% 1024 80 ( 7.8%) 0 (0lo) B1

4 11.4% 128 50 (39.1%) 0  (0l0) B1

Table 5. Evaluation of individual rules using all samples

Looking at the first line of Table 5 we discover that rule 1 has a predicted error rate of 3.3%,
and was used 256 times in classifying the training cases (6 of the 256 cases were
misclassified by this rule). The Advantage section estimates the impact of each rule, and is in
the form a (blc). If a given rule were omitted then b cases now classified correctly would be
classified incorrectly, and ¢ cases now classified incorrectly by this rule would be classified
correctly by the subsequent rules and the default (a=b - ¢).

Finally, there is a summary and a confusion matrix showing where the misclassifications occur
(Table 6). Thus, 348 unbruised apples (B0O) were classified correctly, 130 unbruised apples
were misclassified as bruised (B1), 36 bruised apples were misclassified as unbruised and
1022 bruised apples were classified correctly. In this application we are looking for rules that
have low error rates that minimise the number of bruised apples classified as unbruised.



Actual BO cases Actual B1 cases

Classified as B0 348 36

Classified as B1 130 1022

Table 6. Confusion Matrix
3.2 Results using M5’

Rule sets were generated for the same data with M5’ using the Energy Level and Location
attributes to predict the amount of bruising an apple is likely to receive:

Rule 1: IF Energy Level = 1 OR Energy Level = 2 OR Energy Level = 3 THEN
IF Energy Level = 1 THEN LM1
IF Energy Level = 2 OR Energy Level = 3 THEN LM2

Rule 2: IF Energy Level = 4 OR Energy Level = 5 OR Energy Level = 6 THEN
IF Location = 2 THEN LM3
IF Location = 1 OR Location = 3 OR Location = 4 THEN

IF Energy Level = 4 THEN LM4
IF Energy Level = 5 THEN LM5
IF Energy Level = 6 THEN LM5

The right hand sides of these rules are linear models:

LM1:  Bruise = 0.251 + 0.193 (Location=1 or 3) + 0.0936 (Location=1)

LM2:  Bruise = 0.88 + 0.119 (Location=1 or 3) + 0.277 (Energy Level=3 or 4 or 5 or 6)
LM3:  Bruise = 1.62 + 0.2 (Energy Level=6)

LM4: Bruise = 1.75 + 0.101 (Location=1)

LM5:  Bruise = 2.18 — 0.181 (Location=1 or 3)

LM6:  Bruise = 2.11 + 0.162 (Location=1 or 3) — 0.0853 (Location=1)

Thus, if the drop height is 10mm the apple is predicted to bruise to a maximum of 0.251 if
dropped in locations 2 and 4, 150 count apples bruise to a maximum of 0.251 + 0.193, and
100 count apples bruise the most when dropped on their stem shoulder (0.251 + 0.193 +
0.0936).

The interesting case is via LM2 where the constant 0.88 is close to the commercially accepted
limit. The drop height required to reach LM2 is either 20mm or 30mm. If the drop height is
30mm then the size of the bruise is only just over 1, but only if the location can be restricted to
the calyx shoulder or the cheek of the 100 count apple. These results are similar to the
categorical case but place a quantifiable measure on the predicted bruise size—an extremely
valuable result.

3.3 Results of cross validation

In order to discover the relative importance of each attribute we performed 100 runs for each
of six cross-validation studies to classify all bruising and externally visible bruising. In the
visible bruising datasets the classification is determined by whether or not a bruise was visible
(before sectioning) rather than by the size of the bruise after sectioning. Three sets of



attributes were used; the Energy Level (E), the Energy Level and Location (EL), and the
Energy Level, Location and Radius (ELR). A summary of the results is presented in Table 7.

Trial Avg Rule Size Avg Error Rate Avg no. Misclassifications
E 2.0 12.6% 114
EL 4.7 10.8% 36
ELR 11.3 9.5% 66
V-E 1.2 21.3% 142
V-EL 3.0 20.5% 104
V-ELR 13.9 19.2% 145

Table 7. Results of cross-validation studies using C4.5

These results indicate that for both cases (all bruising and externally visible bruising) while all
three attributes (ELR) give the fewest errors, the EL combination is preferred as it significantly
minimises the number of bruised apples that are misclassified as unbruised, the average error
rate is similar to that of the lowest error rate (ELR) and a small number of rules were used to
achieve this. The EL combination is also the most commercially useful combination as these
attributes are non destructive and under a degree of commercial control. For the numeric
prediction task the cross validation gave a root mean squared error of 0.32 (correlation
coefficient of 0.89), which is at a similar performance level to the categorical case.

4, Conclusion

Where bruises were measured after sectioning the classification accuracy was predictably high
with the best combination of attributes being the Energy Level and Location. When only
externally visible bruises were considered as in commercial practice, the best combination was
still. Energy Level and Location but the error rate and misclassification level increased
considerably. The accuracy of the rules given by the machine learning programs is good given
the inherent variability of apple bruising. As a data analysis tool it offers an extremely simple
and rapid method for evaluating the significance of measurements from an experiment. Finally,
the technique creates the opportunity for a scientist to gain valuable insights into the often
complex relationships that exist within their data.
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