
Generalised Verification of the Observer
Property in Discrete Event Systems 1

H. J. Bravo ∗ A. E. C. da Cunha ∗ P. N. Pena ∗∗

R. Malik ∗∗∗ J. E. R. Cury ∗∗∗∗

∗ Seção de Engenharia Elétrica, Instituto Militar de Engenharia, Brazil
(email: hugobravoc@gmail.com, carrilho@ime.eb.br)

∗∗ Departamento de Engenharia Eletrônica, Universidade Federal de
Minas Gerais, Brazil (e-mail: ppena@ufmg.br)

∗∗∗ Department of Computer Science, The University of Waikato,
New Zealand, (e-mail: robi@waikato.ac.nz)

∗∗∗∗ Departamento de Automação e Sistemas, Universidade Federal de
Santa Catarina, Brazil (e-mail: cury@das.ufsc.br)

Abstract: The observer property is an important condition to be satisfied by abstractions of
Discrete Event Systems (DES) models. This paper presents a generalised version of a previous
algorithm which tests if an abstraction of a DES obtained through natural projection has
the observer property. The procedure called OP-verifier II overcomes the limitations of the
previously proposed verifier while keeping its computational complexity. Results are illustrated
by a case study of a transfer line system.

Keywords: Discrete Event Systems, Natural Projections, Observer Property.

1. INTRODUCTION

Natural projections play a central role in the computa-
tion of abstractions for Discrete Event Systems (DES)
models. Abstractions obtained by natural projections have
been extensively used in the Supervisory Control Theory
(Ramadge and Wonham, 1989), as for example in con-
trol with partial observation of events (Wonham, 2011),
in hierarchical control (Hill and Tilbury, 2006; Cunha
and Cury, 2007; Feng and Wonham, 2008; Schmidt et
al., 2008; Schmidt and Breindl, 2011), in modular syn-
thesis (Hill and Tilbury, 2006; Schmidt et al., 2006; Feng
and Wonham, 2006), in compositional verification of the
nonblocking property (Hill and Tilbury, 2006; Flordal and
Malik, 2009; Pena et al., 2009; Pena et al., 2010b), among
others.

In several of the above cited works, the observer prop-
erty (OP) is an important condition to be satisfied by the
abstracted models. Abstractions satisfying this property
are called OP-abstractions (Pena et al., 2008).

OP was first introduced in the context of hierarchical
control (Wong and Wonham, 1996). In (Wong and Won-
ham, 1996), the abstraction is obtained in the form of
a reporter map, which projects strings of events of the
original (low-level) model, built from a set Σ, into high-
level strings built from an independent set T of events. Due
to some difficulties with the use of reporter maps (Feng
and Wonham, 2010), most of the approaches subsequent
to (Wong and Wonham, 1996) focus on abstractions ob-

1 The first, second, third, and fifth authors are partially supported
by CAPES (PROCAD 102/2007). The research of the third and
fifth authors are supported in part by FAPEMIG and CNPq grant
300953/93-3, respectively.

tained by the natural projection, which maps strings of the
original model into strings of the abstraction, by erasing
events of Σ which are not contained in a given subset of
relevant events Σr ⊆ Σ, like in (Wong et al., 2000; Cunha
and Cury, 2007; Feng and Wonham, 2008; Schmidt et
al., 2008; Schmidt and Breindl, 2008).

The structure called OP-verifier was presented in (Pena et
al., 2008), inspired by the verifier introduced in (Yoo and
Lafortune, 2002). Given an input automaton M , defined
on the alphabet Σ, a set of relevant events Σr ⊆ Σ, and
a natural projection θ from strings in Σ to strings in Σr,
the OP-verifier checks whether the projection θ(M) is an
OP-abstraction.

The OP-verifier does not require explicitly computing the
abstraction to check for the OP and has been shown to
have better computational performance when compared
to other similar procedures (Wong and Wonham, 2004;
Jiang et al., 2003; Feng and Wonham, 2010; Pena et
al., 2010a). Nevertheless, the OP-verifier algorithm as
proposed in (Pena et al., 2008) can only be applied to
automata that do not have cycles of non-relevant events.

This paper presents a generalised version of the OP-verifier
that can be applied to automata with no restriction on the
existence of cycles of non-relevant events. The new version
calledOP-verifier II operates on a modified automatonM ,
obtained from the input automaton M , by aggregating
states connected by cycles of non-relevant events. The
OP-verifier II overcomes the limitations of the previously
proposed verifier while keeping its computational com-
plexity. The OP-verifier II algorithm was implemented in
Supremica (Åkesson et al., 2006).

337

Preprints of WODES 2012
October 3-5, 2012
Guadalajara, México

This paper is organised as follows. Section 2 introduces the
necessary background. Section 3 describes the OP-verifier
II. Then, Section 4 presents the results that assure the
correctness of the OP-verifier II. In Section 5, a complexity
analysis is presented. Section 6 illustrates the results by an
example of a transfer line. Finally, concluding remarks are
presented in Section 7.

2. PRELIMINARIES

This paper is set in the supervisory control framework
initiated by (Ramadge and Wonham, 1989). The reader is
referred to (Cassandras and Lafortune, 2007) for a detailed
introduction to the theory.

Discrete system behaviours are modelled using strings of
events taken from a finite alphabet Σ. Then Σ∗ is the set
of all finite strings of events in Σ, including the empty
string ε. The concatenation of strings s, u ∈ Σ∗ is written
as su. A string s ∈ Σ∗ is called a prefix of t ∈ Σ∗, written
s ≤ t, if there exists u ∈ Σ∗ such that su = t. A subset
L ⊆ Σ∗ is called a language. The prefix-closure L of a
language L ⊆ Σ∗ is the set of all prefixes of strings in L,
i.e., L = { s ∈ Σ∗ | s ≤ t for some t ∈ L }.

For Σr ⊆ Σ, the natural projection θ : Σ∗ → Σ∗
r maps

strings in Σ∗ to strings in Σ∗
r by erasing all events not

contained in Σr. Σr denotes the set of relevant events,
while Σnr denotes the set of non-relevant events. The
concept is extended to languages by defining θ(L) = { t ∈
Σ∗

r | t = θ(s) for some s ∈ L }.

This paper is concerned about the property of projec-
tions known as the observer property, which is introduced
in (Wong and Wonham, 1996) for prefix-closed languages
and extended to general languages in (Wong et al., 2000).

Definition 1. (Wong et al., 2000) Let L ⊆ Σ∗ be a
language, let Σr ⊆ Σ, and let θ : Σ∗ → Σ∗

r be the natural
projection. If for all s ∈ L and all t ∈ Σ∗

r such that
θ(s)t ∈ θ(L), there exists t′ ∈ Σ∗ such that θ(st′) = θ(s)t
and st′ ∈ L, then θ(L) has the observer property.

Discrete event systems are modelled as (nondeterministic)
finite-state automata M = (QM ,Σ, δM , qM0), where QM is
the set of states, Σ is the alphabet of events, δM : QM ×

Σ → 2Q
M

is the transition function, and qM0 ∈ QM is the
initial state. M is deterministic when |δM (x, σ)| ≤ 1 for all
x ∈ QM and σ ∈ Σ. For x ∈ QM , the set of enabled events
at state x of M is EnM (x) = { σ ∈ Σ | δM (x, σ) �= ∅ }.

The transition function δM is extended to strings in Σ∗ by
letting δM (x, ε) = {x} for all x ∈ QM and, for x, z ∈ QM ,
s ∈ Σ∗ and σ ∈ Σ, z ∈ δM (x, sσ) if y ∈ δM (x, s) and
z ∈ δM (y, σ) for some y ∈ QM . The behaviour of M ,
modelled as a language L(M) = { s ∈ Σ∗ | δM (qM0 , s) �=
∅ }, represents the set of all finite strings that M can
generate.

To express termination, the alphabet Σ is assumed to
contain the special event τ ∈ Σ, which may only appear
on selfloops, i.e., δM (x, τ) = {x} whenever δM (x, τ) �= ∅.
In this notation, the marked behaviour of M is defined as
Lm(M) = { s ∈ (Σ− {τ})∗ | sτ ∈ L(M) }.

This paper uses the termination event in favour of the more
conventional set of terminal states, because it simplifies

presentation by unifying termination with ordinary events.
A traditional automaton with terminal states, G = (QG,
ΣG, δG, qG0 , F

G) with τ /∈ ΣG, can be converted into
this paper’s M = (QM ,Σ, δM , qM0) by adding τ to the
alphabet, Σ = ΣG∪̇{τ}, letting QM = QG and qM0 = qG0 ,
and adding τ -selfloops to every terminal state in FG, i.e.,
δM (x, σ) = δG(x, σ) for σ �= τ , δM (x, τ) = {x} for all
x ∈ FG, and δM (x, τ) = ∅ for all x ∈ QG − FG.

We define the language N ⊆ L(M) as the sublanguage
of L(M) composed of strings in (Σ − {τ})∗, namely,
N = L(M) ∩ (Σ − {τ})∗. For the automata M and G,
related as above, it is trivial to show that N = L(G) and

Lm(M) = Lm(G). M is nonblocking when N = Lm(M).

Projections can also be applied to automata, and in the
following, given a nonblocking M , it will be said that
θ(M) has the observer property if θ(Lm(M)) has the
observer property. In this case θ(M) is also called an OP-
abstraction.

Example 1. In order to illustrate the abstractions and the
observer property, letM be the automaton shown in Fig. 1
and Σr = {a, τ}. The abstraction θ(M) is shown in Fig. 2.
It can be shown that θ(M) is not an OP-abstraction by
making, as in Definition 1, s = aa, t = ε. Therefore
θ(s)t = aa ∈ θ(Lm(M)) but there is no t′ ∈ Σ∗ such
that st′ ∈ Lm(M) and θ(st′) = θ(s)t.

0 1 2 3 4

τ

a

a

a x

y

y

Fig. 1. Automaton M .

0 1 2

a, τ

aa

Fig. 2. Automaton θ(M).

In order to check if a given projection presents the observer
property, an algorithm named OP-Verifier was proposed
in (Pena et al., 2008). The OP-Verifier was inspired by
the verifier introduced in (Yoo and Lafortune, 2002).
Given an input automaton M and an alphabet partition
Σ = Σr∪̇Σnr, it checks whether θ(M) has the observer
property. The OP-verifier algorithm can only be applied
to deterministic automata that do not have cycles of non-
relevant events.

The automaton M in Fig. 1 has a cycle of non-relevant
events involving states 1, 2 and 3. It can be shown
that, although θ(M) is not OP, the OP-verifier algorithm
in (Pena et al., 2008) erroneously classifies it as OP.

3. VERIFICATION OF THE OBSERVER PROPERTY

In this section, a generalised OP-Verifier algorithm is
presented. It derives from a previous version of the OP-
Verifier (Pena et al., 2008), and adds to it the ability to
handle cycles of non-relevant events.

338

3.1 Strongly Connected Components Automaton M

In order to be able to deal with cycles of non-relevant
events, a strongly connected components automaton M

is introduced. The automaton M = (QM ,Σ, δM , AM
0) is

obtained from M = (QM,Σ, δM, qM0) where:

• the set of states QM is defined as the set of
strongly connected components, in terms only of non-
relevant events, of M . Tarjan’s algorithm (Nuutila
and Soisalon-Soininen, 1994) can be used to deter-

mine those components. In this sense, QM is a par-

tition of QM . Each component At ∈ QM , such that
At ⊆ QM , is named, in this paper, a macro-state.

• The event set Σ ⊆ Σ is partitioned into Σ = Σr∪Σnr,
such that Σr = Σr and Σnr ⊆ Σnr;

• At = AM
0 ∈ QM is named the initial macro-state of

M if qM0 ∈ AM

0 ;

• The transition function δM : QM × Σ → 2Q
M

is
defined below:
· Let At, Ak ∈ QM and σ ∈ Σr. Then, Ak ∈

δM (At, σ) if and only if ∃qi ∈ At and ∃qj ∈ Ak

such that qj ∈ δM (qi, σ).

· Let At, Ak ∈ QM and σ ∈ Σnr. Then, Ak ∈

δM (At, σ) if and only if: (i) At �= Ak and (ii)
∃qi ∈ At and ∃qj ∈ Ak such that qj ∈ δM (qi, σ).

By construction, the strongly connected components au-
tomaton does not contain cycles of non-relevant events.

Example 2. The strongly connected components automa-
ton M obtained from M in Fig. 1 is shown in Fig. 3.
A strongly connected component in M can be identified,
composed of states 1, 2 and 3, forming macro-state A1 =
{1, 2, 3} in M . The macro-states A0 = {0} and A2 = {4}
consist of only one state each.

τ

a

a

a

A0 A1 A2

Fig. 3. Strongly connected components automaton M .

3.2 Generalised Verifier V

A nondeterministic automaton, named generalised verifier,
is defined in this section.

The generalised verifier V = (Q,Σ, δ, {AM
0 }) is obtained

by execution of Algorithm OP-Verifier II, Algorithm 3.1,
where:

• Q is the set of states, where each state is either a
set of cardinality 1 or 2, namely, 1 ≤ |{At, Ak}| ≤ 2,

where At, Ak ∈ QM , or a special state Dead.
• Σ is the event set;

• {AM
0 } ∈ Q is the initial state;

• δ : Q×Σ→ 2Q is a transition function defined by the
subroutine Delta(X) (Algorithm 3.2).

The OP-Verifier II builds V , from M and Σr. As shown in
Section 4, if Dead is reachable in V , then θ(M) is not an
OP-abstraction.

Algorithm 3.1. OP-Verifier II

1 Input M = (QM ,Σ, δM , AM
0

);

2 Let Q← ∅ and QT ← {{A
M
0
}};

3 while QT −Q �= ∅ do

4 Select X ∈ QT −Q;

5 Let QT ← QT − {X} and Q← Q ∪ {X};

6 Delta(X); (Algorithm 3.2)
7 end

8 Return V = (Q,Σ, δ, {AM
0
})

Algorithm 3.2. Transition function algorithm Delta(X)

9 Input X = {At, Ak}, (where possibly At = Ak);

10 for each σ ∈ En(X) = En
M (At) ∪ En

M(Ak) do

11 if σ ∈ Σr then

12 if σ ∈ En
M (At) and σ ∈ En

M (Ak) then

13 for each A
′
t ∈ δ

M (At, σ) and A
′
k
∈ δ

M (Ak , σ) do

14 δ({At, Ak}, σ)← δ({At, Ak}, σ) ∪ {{A
′
t, A

′
k
}};

15 QT ← QT ∪ {{A
′
t, A

′
k
}};

16 end

17 elseif (σ ∈ En
M(At) and En

M(Ak) ∩ Σnr = ∅) or

(σ ∈ EnM (Ak) and EnM (At) ∩ Σnr = ∅) then

18 δ({At, Ak}, σ)← δ({At, Ak}, σ) ∪ {Dead};

19 Q← Q ∪ {Dead};
20 end

21 else

22 if σ ∈ En
M (At) then

23 for each A′
t ∈ δM (At, σ) do

24 δ({At, Ak}, σ)← δ({At, Ak}, σ) ∪ {{A
′
t, Ak}};

25 QT ← QT ∪ {{A
′
t, Ak}};

26 end

27 end

28 if σ ∈ EnM (Ak) then

29 for each A′
k
∈ δM (At, σ) do

30 δ({At, Ak}, σ)← δ({At, Ak}, σ) ∪ {{At, A
′
k
}};

31 QT ← QT ∪ {{At, A
′
k
}};

32 end

33 end

34 end

35 end

The structure of the OP-Verifier II is similar to the
original OP-Verifier. For that reason, only the differences
will be highlighted. Algorithm Delta(X) carries the main
differences.

The transition function δ is initialised empty and is con-
structed iteratively by the execution of lines 14, 18, 24 and
30 of the subroutine Delta(X).

Like in the original OP-Verifier, the transition structure
Delta(X) of the OP-Verifier II is also defined distinctly
for each type of event. Lines 11 to 20 describe the case
where σ ∈ Σr, and lines 21 to 34 present the case where
σ ∈ Σnr.

If σ ∈ Σr (line 11), verify if σ ∈ EnM (At) and σ ∈

EnM (Ak) (line 12). If so, then At and Ak move syn-
chronously trough σ, generating sets of states {A′

t, A
′

k}
(lines 13–14). If not, jump to line 17. Add this new set
of states to the set QT (line 15). To verify reachability
of Dead in V (lines 17–20), the same procedure of the
original OP-Verifier is used.

If σ ∈ Σnr (line 21), then At and Ak move asyn-
chronously trough σ. There are two possibilities: (i) σ ∈

EnM (At) (line 22), then a new set of states {A′
t, Ak} is

339

generated (lines 23–24), and this set is included in QT

(line 25). (ii) σ ∈ EnM (Ak) (line 28), then a new set of
states {At, A

′

k} is reached (lines 29–30) and added to QT

(line 31).

Example 3. Consider M and M (figures 1 and 3, respec-
tively). The relevant event set of M is Σr = {a, τ}. The
execution of the algorithm OP-Verifier II over M and Σr

generates the following transitions:

{A0}
a
→ {A1} (Line 12)

{A1}
a
→ {A1} (Line 12)

{A1}
a
→ {A2} (Line 12)

{A1}
a
→ {A1, A2} (Line 12)

{A1, A2}
a
→ Dead (Line 17)

{A1, A2}
τ
→ Dead (Line 17)

{A2}
τ
→ {A2} (Line 12)

The generalised verifier V is shown in Fig. 4. In the
verifier V , Dead is reachable. Therefore, θ(M) is not an
OP-Abstraction.

τ

a

a aa

a

τ,

{A0} {A1}

{A2}

{A1, A2} Dead

Fig. 4. Generalised verifier V .

4. PROPERTIES OF THE GENERALISED VERIFIER

In this section, some properties regarding the generalised
OP-Verifier are presented.

The following two lemmas bring some results relating
strings with the same projection to states of V . The proofs
of Lemmas 1 and 2 are omitted due to space constraints.

Lemma 1. Let a, b ∈ Σ∗ such that θ(a) = θ(b), xa ∈
δM (qM0 , a) and xb ∈ δM (qM0 , b). Then there is s ∈ Σ∗ such

that θ(a) = θ(b) = θ(s) and {Aa, Ab} ∈ δ({AM
0 }, s), with

xa ∈ Aa and xb ∈ Ab.

Lemma 2. Let s ∈ Σ∗ and {Aa, Ab} ∈ δ({AM
0 }, s). Then

there exist a, b ∈ Σ∗ such that θ(a) = θ(b) = θ(s),
δM (qM0 , a) ∈ Aa and δM (qM0 , b) ∈ Ab.

Theorem 3 brings the main result regarding the correctness
of the generalised OP-verifier, and its proof, also omitted
in this paper, is based on Lemmas 1 and 2.

Theorem 3. Dead is reachable in V if, and only if, θ(M)
is not an OP-abstraction.

5. COMPLEXITY

The complexity of the OP-Verifier II algorithm is de-
termined by the complexity to construct the generalised
verifier. If the input is a deterministic automaton M =

(QM ,Σ, δM , qM0) then the number of reachable states of V
is bounded by

|QM |2 + |QM |+ 1 = O(|QM |2) . (1)

To estimate the number of transitions of V , consider a
transition (x, σ, x′) in the input automaton M , and let
y ∈ QM be an arbitrary state. If σ ∈ Σr, then this
produces at most one transition

({Ax, Ay}, σ, {Ax′ , Ay′}) or ({Ax, Ay}, σ,Dead) (2)

according to lines 14 or 18 of Algorithm 3.2, were Ax ∈ QM

denotes the macro-state containing state x ∈ QM . If
σ ∈ Σnr, then there is one transition

({Ax, Ay}, σ, {Ax′ , Ay}) (3)

according to lines 24 or 30 of Algorithm 3.2. That is, every
transition of M produces up to |QM | transitions in V . The
deterministic automaton M has up to |Σ||QM | transitions,
so the total number of transitions of V is bounded by

|δM ||QM | ≤ |Σ||QM |2 = O(|Σ||QM |2) . (4)

Tarjan’s algorithm to identify the strongly connected com-
ponents runs in O(|δM |) = O(|Σ||Q|) time, so it is domi-
nated by the verifier construction. Therefore, (4) gives the
worst-case time complexity of the OP-Verifier II algorithm.

6. CASE STUDY

In this section, the case study of obtaining an abstraction
for the behaviour of a transfer line in the context of
hierarchical control is presented. It is shown that cycles
of non-relevant events arise naturally from the problem
and that the original OP-Verifier algorithm in (Pena et
al., 2008) fails to detect that the abstraction is not OP,
while the generalised OP-Verifier algorithm presented in
this paper detects it. Moreover, a modification is shown
for the abstracted behaviour that turns it into OP and
that the generalised OP-Verifier also detects it.

Consider the example of a manufacturing transfer line with
material feedback in Fig. 5, adapted from (Zhong and
Wonham, 1990). The system is composed of two machines,
M1 and M2, and a test unit TU , linked by intermediate
buffers of unitary capacity. Machines M1 and M2 produce
workpieces that are tested in TU , which determines their
approval or rework in M2. The input and output events
for M1, M2 and TU are indicated in the workflow lines in
Fig. 5, therefore Σ = {x, y, z, w, v1, v2, a1, a2, τ}. There are
two kinds of input events for TU , event v1 is the test of a
workpiece for the first time, and event v2 is the test of a
reworked workpiece. There are also three different output
events for TU , event a1 is the approval of a workpiece
after the first test, event a2 is the approval of a workpiece
that has been reworked, and event r the redirection of a
workpiece that was not approved to rework in M2.

v1, v2x
M1

y
B1

z
M2

w
B2 T.U.

r

a1, a2

Fig. 5. Transfer Line.

Consider that the low-level control has already been de-
veloped, solving the problems of overflow and underflow of
the unitary buffers and the problem of performing different

340

tests for reworked and non-reworked workpieces. The low-
level controlled behaviour, automaton M , is shown in Fig.
6. Also consider that, in some hierarchical control ap-
proach one is concerned with the input-output behaviour
of the workcell for coordination purposes with other work-
cells (Cunha and Cury, 2007; Schmidt et al., 2008; Schmidt
and Breindl, 2011). Thus, the relevant events are the input
event for the workcell x and the two output events a1 and
a2, therefore Σr = {x, a1, a2, τ}. The abstraction θ(M) is
then shown in Fig. 7.

23

4 5 6 7 8

910

τ

xy

z

z

w

wr

rv1

v2

a1

a2

1

Fig. 6. Automaton M .

τ
x

a1,a2

1 2

Fig. 7. Abstraction θ(M).

One of the most important conditions for hierarchical
control approaches like (Cunha and Cury, 2007), (Schmidt
et al., 2008), or (Schmidt and Breindl, 2011) is that θ(M)
has to be an OP-abstraction. From definition 1, it can
be shown that θ(M) is not an OP-abstraction by making
s = xyzwv1rzwv2 ∈ N and t = a1 ∈ Σ∗

r such that
θ(s)t = xa1 ∈ Lm(θ(M)), but there is no t′ ∈ Σ∗ such
that st′ ∈ Lm(M) and θ(st′) = xa1. Moreover, when
applying the OP-Verifier algorithm of (Pena et al., 2008)
for M and Σr, a verifier automaton can be obtained, with
46 states and 81 transitions, where the state Dead is not
reached. It can be shown that the reason that makes the
verifier not reach the stateDead is the cycle of non-relevant
events formed by states 7, 8, 9 and 10 of M , Fig. 6.

The strongly connected components automaton M is
shown in Fig. 8. The labels for the macro-states of M are
Aj = {j}, for j = 1...6, and A7 = {7, 8, 9, 10}. By applying

the OP-Verifier II algorithm, a generalised verifier V , with
23 states and 35 transitions, is obtained, Fig. 9. Observe
that V reaches the state Dead confirming that θ(M) is
not an OP-abstraction.

τ

xy

z

w

r

v1

a1

a2
A1A2A3

A4 A5 A6

A7

Fig. 8. Automaton M .

To obtain an OP-Abstraction for this problem, one can
follow the lines of (Pena et al., 2010a) and exploit

τ

x

y y y y

y

y

z z z

z

z

z

w

w

w

w

w

w

r

r

r

r

r

r

v1

v1

v1

v1

v1

a1

a1

a2

{A1}

{A1}

{A2}

{A3}

{A4}

{A6}

{A7}

{A2, A3}{A2, A4}{A2, A5}{A2, A6}{A2, A7}

{A3, A4}{A3, A5}{A3, A6}{A3, A7}

{A4, A5}{A4, A6}{A4, A7}

{A5, A6}{A5, A7}

{A6, A7}Dead

Fig. 9. Verifier V .

the properties of the unsafe path ({A1}, r, {A6, A7})
({A6, A7}, a1, Dead) in V , Fig. 9. Therefore, consider the
relabelling of the transition (6, r, 7) of M in Fig. 6 to
(6, r1, 7), creating the new relevant event r1 that corre-
sponds to the first rework of a workpiece. Let M ′ be
the modified automaton and θ′(M ′) the new abstraction,
shown in Fig. 10. It can be proved that θ′(M ′) is an OP-
abstraction. Moreover, when applying the OP-Verifier II
algorithm in this case, a verifier V ′ is obtained, with
17 states and 24 transitions, where state Dead is not
reachable.

1 2 3

τ
x

r1

a1

a2

Fig. 10. Abstraction θ′(M ′).

7. CONCLUSIONS

The OP-verifier II presented in this paper allows to effi-
ciently check whether an abstraction obtained by a natural
projection has the observer property. The procedure is a

341

modified version of a previous one, where a restriction on
the existence of cycles of non-relevant events in the original
automaton model M was overcome. The new version of
the verifier builds upon the encapsulation of states in M
connected by cycles of non-relevant events. The resulting
(non-deterministic) automaton M is then translated into
a transition structure V in which the OP is checked by
verifying the reachability of a state Dead. The authors
are currently investigating how the OP-verifier II could
be used to improve the OP-Search proposed in (Pena
et al., 2010a) in order to help computing reduced OP-
abstractions.

REFERENCES

Cassandras, C.G. and S. Lafortune (2007). Introduction to
Discrete Event Systems - Second Edition. Springer.

Cunha, A.E.C. and J.E.R. Cury (2007). Hierarchical Su-
pervisory Control Based on Discrete Event Systems
with Flexible Marking. IEEE Transactions on Auto-
matic Control 52(12), 2242–2253.

Feng, L. and W.M Wonham (2006). Computationally Effi-
cient Supervisor Design: Abstraction and Modularity.
In: Proceedings of the 8th International Workshop on
Discrete Event Systems, WODES’06. Ann Arbor, MI,
USA. pp. 3–8.

Feng, L. and W.M. Wonham (2008). Supervisory con-
trol architecture for discrete-event systems. Automatic
Control, IEEE Transactions on 53(6), 1449–1461.

Feng, Lei and W. M. Wonham (2010). On the compu-
tation of natural observers in discrete-event systems.
Discrete Event Dynamic Systems 20(1), 63–102.

Flordal, Hugo and Robi Malik (2009). Compositional
verification in supervisory control. SIAM J. Control
and Optimization 48(3), 1914–1938.

Hill, R.C. and D.M. Tilbury (2006). Modular Supervisory
Control of Discrete Event Systems with Abstraction
and Incremental Hierarchical Construction. In: Pro-
ceedings of the 8th International Workshop on Dis-
crete Event Systems, WODES’06. Ann Arbor, MI,
USA. pp. 399–406.

Jiang, S., R. Kumar and H.E. Garcia (2003). Optimal
sensor selection for discrete-event systems with partial
observation. IEEE Transactions Automatic Control
48(3), 369–381.

Åkesson, Knut, Martin Fabian, Hugo Flordal and Robi
Malik (2006). Supremica - An integrated environment
for verification, synthesis and simulation of discrete
event systems. In: Proceedings of the 8th Internationsl
Workshop of Discrete Event Systems, WODES’06.
Ann Arbor, MI, USA. pp. 384–385.

Nuutila, Esko and Eljas Soisalon-Soininen (1994). On
Finding the Strongly Connected Components in a Di-
rected Graph. Information Processing Letters 49, 14.

Pena, P. N., J.E.R. Cury, R. Malik and S. Lafortune
(2010a). Efficient Computation of Observer Projec-
tions using OP-Verifiers. In: Proceedings of the 10th
International Workshop on Discrete Event Systems,
WODES’10. Berlin, Germany. pp. 416–421.

Pena, P.N., J.E.R. Cury, A.E.C. da Cunha and S. Lafor-
tune (2010b). Metodologia e Ferramenta de Apoio

ao Teste de Não-Conflito no Controle Modular de
Sistemas a Eventos Discretos. SBA Controle & Au-
tomação 21(1), 58–68.

Pena, P.N., J.E.R. Cury and S. Lafortune (2008).
Polynomial-Time Verification of the Observer Prop-
erty in Abstractions. In: Proceedings of the 2008
American Control Conference, ACC’08. Seattle, USA.
pp. 465–470.

Pena, P.N., J.E.R. Cury and S. Lafortune (2009). Ver-
ification of Nonconflict of Supervisors Using Ab-
stractions. IEEE Transactions on Automatic Control
54(12), 2803–2815.

Ramadge, P. J. G. and W. M. Wonham (1989). The
Control of Discrete Event Systems. Proc. of the IEEE
77(1), 81–98.

Schmidt, K. and C. Breindl (2008). On maximal permis-
siveness of hierarchical and modular supervisory con-
trol approaches for discrete event systems. In: Discrete
Event Systems, International Workshop on. pp. 462–
467.

Schmidt, K., H. Marchand and B. Gaudin (2006). Modular
and Decentralizd Supervisory Control of Concurrent
Discrete Event Systems Using Reduced Systems Mod-
els. In: Proceedings of the 8th International Workshop
on Discrete Event Systems, WODES’06. Ann Arbor,
MI, USA. pp. 149–154.

Schmidt, K., T. Moor and S. Perk. (2008). Nonblocking
hierarchical control of decentralized discrete event
systems. Automatic Control, IEEE Transactions on
53(10), 2252–2265.

Schmidt, Klaus and Christian Breindl (2011). Maximally
Permissive Hierarchical Control of Decentralized Dis-
crete Event Systems. IEEE Transactions Automatic
Control 56(4), 723–737.

Wong, K.C. and W. M. Wonham (1996). Hierarchical Con-
trol of Discrete-Event Systems. Discrete Event Dy-
namic Systems: Theory and Applications 6(3), 241–
273.

Wong, K.C. and W.M Wonham (2004). On the Computa-
tion of Observers in Discrete-Event Systems. Discrete
Event Dynamical Systems 14(1), 55–107.

Wong, K.C, J.G. Thistle, R.P Malhamé and H.-H Hoang
(2000). Supervisory Control of Distributed Systems:
Conflict Resolution. Discrete Event Dynamic Sys-
tems: Theory and Applications 10, 131–186.

Wonham, W. M. (2011). Supervisory Control of Discrete-
Event Systems. Systems Control Group, Department
of Electrical & Computer Engineering, University of
Toronto. Toronto, Canada. Updates posted annually
at http://www.control.utoronto.ca/DES.

Yoo, T. and S. Lafortune (2002). Polynomial-time verifi-
cation of diagnosability of partially observed discrete-
event systems. IEEE Transactions on Automatic Con-
trol 47(9), 1491– 1495.

Zhong, H. and W.M. Wonham (1990). On the Consis-
tency of Hierarchical Supervision in Discrete-Event
Systems. IEEE Transactions on Automatic Control
35(10), 1125–1134.

342

