
Vectorised SIMD Implementations of Morphology
Algorithms

Michael J. Cree
School of Engineering
University of Waikato

Hamilton 3240
New Zealand

email: cree@waikato.ac.nz

Abstract—We explore vectorised implementations, exploiting
single instruction multiple data (SIMD) CPU instructions on
commonly used architectures, of three efficient algorithms for
morphological dilation and erosion. We discuss issues specific to
SIMD implementation and describe how they guide algorithm
choice. We compare our implementations to a commonly used
opensource SIMD accelerated machine vision library and find
orders of magnitude speed-ups can be achieved for erosions using
two-dimensional structuring elements.

I. INTRODUCTION

Mathematical morphology is a core part of image process-
ing, with most morphological operators defined in terms of
the two primitive operations, the dilation and the erosion [1].
The dilation and erosion can be specified in a straightfor-
ward manner however naı̈ve implementation of the formula
describing the operators leads to an efficient algorithm, indeed,
one that grows as O(k) for processing each pixel in an
image when using a linear structuring element of length k
elements and O(k2) for a two-dimensional structuring ele-
ment. Larger structuring element sizes (particularly if using
a two-dimensional structuring element) can quickly become
computationally inefficient.

There are three ways to deal to the computational load.
Firstly, decompose the structuring element into sequential
processing of smaller and, ideally, of fewer dimensions,
structuring elements. For example, morphology with a square
structuring element can be rendered O(k) by processing with
two structuring elements: a horizontal line followed by a
vertical line. Each step has O(k) operations thus the result
is O(k).

Secondly, by implementing a cleverer and more efficient
algorithm for morphology. For example, line structuring ele-
ments can be broken down into a sequence of approximately
log k structuring elements consisting of two points appropri-
ately spaced apart. The processing time is O(log k) rather
than O(k), a significant speed-up for larger line structuring
elements. But even better, an algorithm exists since the mid
1990s for the processing of a line structuring element in O(1)
time with two memory buffers equivalent to two lines of
the image [2]–[4]. We refer to this as the HGW algorithm
following the nomenclature of Gil and Kimmel [5]. An image,
thus, can be dilated or eroded with a square structuring element

and a small amount of extra memory in time almost nearly
completely independent of the structuring element size.

Other algorithms exist for the acceleration of general arbi-
trary structuring elements. An example is the decomposition
of the structuring element into a summation of horizontal
(or vertical) chords and efficiently computing the contribution
of the various chords by use of the line recursion algorithm
and avoiding recomputation of results for subsequent chords
of the same length [6]. Van Droogenbroeck and Talbot also
propose [7] an efficient algorithm for arbitrary structuring
elements that works by updating a histogram while shifting the
structuring element from pixel to pixel. Because the histogram
size is determined by the number of grey-scale levels of the
pixel data type this method is typically only suitable for pixel
data types of 16-bits or fewer.

The third method to improve computational efficiency is
to exploit the simultaneous instruction multiple data (SIMD)
CPU instructions for vectorised processing of multimedia like
data that are present on modern CPUs. Indeed, OpenCV1,
a popular opensource C++ library for computer vision has
for over a decade provided SIMD accelerated machine vision
operations, at least on Intel hardware [8], [9]. As Urbach and
Wilkinson noted in 2008 [6] the OpenCV implementation,
while it exploits Intel SIMD CPU instructions, it is rather
slow for larger structuring element sizes as it implements the
inefficient direct algorithm!

We explore implementing standard algorithms for accelerat-
ing erosions and dilations with SIMD techniques on the Intel
architecture.

II. EROSION ALGORITHMS UNDER CONSIDERATION

Only flat structuring elements used for erosions and di-
lations on two-dimensional images are under consideration
herein. We assume all images f have their origin at the top-
left. The morphological erosion is defined by

Bf = (f 	B)(x, y) = min
(u,v)∈B

f(x+ u, y + v), (1)

for structuring element B. The dilation f ⊕ B is similarly
defined but with the maximum rather than the minimum. A

1http://opencv.org

978-1-5090-0357-0/15/$31.00 c©2015 IEEE

direct implementation of (1) results in O(k2) operations per
image pixel if k characterises the size of B in each dimension.

An erosion RUV with a rectangular structuring element of
U pixels width and V -pixels height, can be decomposed into
two independent line structuring erosions, namely

RUV f =
V−1
min
v=0

U−1
min
u=0

f(x+ u, y + v) (2)

= LV LT
Uf (3)

where LV is the erosion with a vertical line structuring element
of length V and the transpose results in an erosion with a
horizontal line structuring element. Note that R11 and L1 are
identities under erosion and dilation.

Let P2,j be the erosion using a vertical linear structuring
element consisting of two points only, one at the origin, and
the other at j − 1 pixels below the origin. A line erosion LV

can be decomposed into a sequence of the P2,j , each doubling
in size, namely,

LV = P2,V−2nP2,2n · · · P2,8P2,4P2,2. (4)

where n = floor(log2 V) (and we omit P2,1 from the end
of the sequence as it is the identity). This provides a means
of calculating line erosions in O(log k) operations as each
application of P2,j incurs only one comparison to calculate
the minimum.

Line erosions can be calculated by the HGW algorithm with
three comparisons per pixel, thus independently of the line
structuring element size. Two memory buffers with as many
elements of the column of the image are required. In the first
buffer a down-ordered sequence of k minima are calculated
from the image column with each k-th entry copied from
the respective image pixel. The second buffer is similarly
constructed but with an up-ordered sequence of k-minima.
The erosion of the image column is then the minimum of the
corresponding pixel in the first buffer with the second buffer
displaced by k pixels.

The upshot is that all erosions (and dilations) involving line
and rectangular structuring elements can be calculated in O(1)
time. Calculating erosions efficiently on arbitrary structuring
elements, that is, bettering the O(k2) efficiency of the direct
implementation of (1) is a non-trivial problem and the author
is not aware of a single solution that improves efficiency for
all possible structuring elements. Nevertheless, Urbach and
Wilkinson [6] describe a good general purpose algorithm that
provides significant efficiency gains on almost all structuring
elements that are likely to be of interest.

The structuring element is broken down into individual
connected horizontal chords. The chord lengths are sorted to
provide a sorted list of unique chords lengths which is then
padded with extra power of two lengths to ensure that the
sequence of chord lengths required to compute any chord in
the list via (4) is also present in the list. It is also noted that
if there are two or more chords of the same length in the
structuring element then the calculations of the erosion of the
first chord on the image rows is identical to the calculations
for subsequent chords of the same length but applies at some

other row displacement in the image. These calculations are
therefore stored to save on future calculation. The algorithm
requires an extra 2D memory array of size of the number of
rows in the structuring element by the number of columns in
the image.

It is not necessary to break the structuring element down
into horizontal chords; one can instead use vertical chords and
process the image by columns. Urbach and Wilkinson choose
between horizontal or vertical chords based on which one uses
the fewest chords to represent the structuring element. As we
point out below this is unlikely to provide the best performance
in all cases due to the streaming nature of modern computer
memory architecture.

III. VECTORISED SIMD IMPLEMENTATION

The SIMD CPU instructions in modern CPUs (SSE and
AVX on Intel X86, Neon on Arm and Altivec on PowerPC)
are a means of vectorised hardware acceleration particularly
intended for multimedia data. Extra CPU registers of large bit
size (128-bit on SSE, Neon and Altivec, 256-bit on AVX2)
coupled with new CPU instructions permit a single operation
to be performed simultaneously on multiple data. A 128-
bit register, for instance, holds 16 unsigned 8-bit bytes, and
addition between two such registers produces the results of
16 byte additions, usually in only one CPU cycle. Since
calculations are repeated from pixel to pixel in an image,
SIMD CPU instructions are very suited for accelerating image
processing operators.

There are some constraints in implementing SIMD com-
puter code. Since the same operation is applied to all data in
the SIMD register, and because branching is costly on modern
CPUs, it is usually more efficient to calculate both paths of
a conditional statement then use special and efficient SIMD
instructions that select the results between the two paths on
an element by element basis. This is particularly true if the
two paths are both short.

Most operations apply between SIMD registers, not along
the elements of a SIMD register. Algorithms that operate on
pixels between two rows of an image (or between two images)
can be made very efficient, but operations that proceed along
the row (such as the rotating sequence of minima along the
line needed in the HGW algorithm) do not lead themselves to
SIMD implementation along the row, but can be implemented
with a transposed vector calculating multiple rows at once.
But to do that is not necessarily efficient on modern computer
hardware due to the way the memory subsystem is structured.

We would like to implement portable algorithms that can be
easily compiled for various SIMD implementations (e.g. ad-
justable to the various stages of SSE and AVX implementa-
tions on the Intel platform, and to other CPU architectures),
but that is made more difficult by the nature of the Intel
implementation compared to that of the RISC CPUs (Arm and
PowerPC). While some compilers (e.g. gcc and clang) can now

2The AVX/AVX2 SIMD implementation is dual 128-bit thus does not
provide full 256-bit permutations or shifts.

automatically vectorised certain programming constructs those
facilities are still primitive and insufficient for implementation
of more complex operations such as image morphology.

The Intel SSE and AVX implementations provide SIMD
instructions that operate between two (or more) SIMD reg-
isters, between SIMD registers and a single memory access,
or on a SIMD register with one parameter provided as an
immediate. There are 16 SIMD registers (we are considering
64-bit Intel hardware only), but the fact that one operand in
a SIMD instruction can be a memory access reduces the risk
of register spill to the stack. Most Intel instructions expect
memory accesses to vectors to be aligned (i.e. to 128 or
256-bit boundaries), nevertheless provide some direct memory
access instructions that can load misaligned vectors. The
Intel implementation, particularly in the earlier incantations
of SSE, is weak in not providing useful instructions for
permutation and selection of vector elements, and provides
certain operators only for limited data types (e.g. min and
max operators only on unsigned byte and signed 16-bit integer
data). Furthermore, some useful operators when implemented
(e.g. the alignr operator for pulling out a misaligned vec-
tor from two neighbouring aligned vectors) only accept an
immediate operand, which must be known at compile time
rendering the instruction useless for many general purpose
image processing applications.

In contrast the RISC implementations (Neon and Altivec)
tend to have a much more orthogonal and complete implemen-
tation in that if an operator is provided for one data type, then
it is provided for all data types that it makes sense with. They
have a richer implementation of selection and permutation
operators (byte table lookup in Neon), but that is necessary as
they can only perform memory operations on vectors aligned
in memory3. Converting between SIMD CPU registers and
integer CPU registers and vice versa can be very costly, for
example, on PowerPC the transfer can only be done via a
memory store and load, and for certain Arm archv7 CPUs an
extraction of a scalar element from a vector register can result
in a substantial CPU stall.

For implementation of erosion along lines with arbitrary
shifts we need to be able to construct vectors at any byte
position along an image row. Let us consider two possible ap-
proaches. The first is to load two aligned neighbouring vectors
from memory and construct the misaligned vector from the low
part of one and the high part of the other. This approach must
be taken on Neon and Altivec as the direct memory access of
vectors at misaligned addresses is not supported by hardware,
but this approach can be difficult on Intel SSE/AVX because
the operators for constructing a misaligned vector from two
neighbouring aligned vectors only take an immediate operand
for the amount of misalignment, thus the misalignment must
be known at compile time. On Intel SSE/AVX one therefore
is forced into using the instructions for loading misaligned
vectors direct from memory.

3Some Arm architectures can do misaligned Neon vector loads under certain
circumstances, usually with a performance penalty.

To further illustrate the problem let us define the function
simd_cvu(l,r,o) that constructs a misaligned (or ‘un-
aligned’) vector from the two neighbouring aligned vectors l
and r where l would lie at the lower memory address ‘left’
of r (which is ‘right’ of l), and o is an integer specifying the
byte offset into l where the misaligned vector starts.4 Erosion
with P2,4 (for an example) along an image row (with the start
of the image row aligned to an SIMD vector) would therefore
proceed something like:5

r = row[0];
for (int k = 0; k<row_length; k++) {
l = r;
r = row[k+1];
u = simd_cvu(l, r, 4);
result[k] = simd_min(l, u);

}

Note that we only load each vector from memory in the image
row once, and that if we are processing unsigned bytes then
the erosion of sixteen pixels (assuming a 128-bit SIMD vector)
are computed in each iteration, for a potential speed-up of 16
times over scalar code. This code is easily compileable on all
architectures because the offset in simd_cvu() is a constant
integer known at compile time.6

Using such code in the computation of the chord erosions
of the method of Urbach and Wilkinson requires the third
parameter (the offset of the misaligned vector) of simd_cvu
to be calculated on the fly according to the list of unique chord
lengths. Such code using simd_cvu is not compileable on
the Intel architecture because the third parameter is no longer
a constant known at compilation. We therefore consider the
alternative using the function simd_ldu(a) which takes an
address to memory (a) which may be misaligned and returns
the SIMD vector located at that address in memory. Intel
CPUs have a single CPU instruction capable of performing this
function (it is slower than an aligned memory access). On Arm
Neon and PowerPC altivec the function would be implemented
by zeroing the lowest bits in a to get an aligned address,
loading the aligned vector l from that address, loading the
aligned vector r from the next aligned address, calculating the
amount of offset o from a, and calling simd_cvu(l,r,o)
to return the misaligned vector. Note that on Neon and Altivec
that two memory accesses are incurred for each invocation of
simd_ldu().

The implementation of the row erosion with P2,j , where
the offset j is not known until runtime, is

for (int k=0; k<row_length; k++) {
l = row[k];
a = address_N_elements_right_of(row[k], j);
u = simd_ldu(a);

4The exact implementation of simd_cvu need not concern us.
5We skip detail regarding image edges and avoiding reading/writing past

row array ends in these code examples.
6On Intel SSE one requires the SSSE3 CPU extension to implement

simd_cvu() efficiently. It is only older CPUs that do not have this feature.

result[k] = simd_min(l, u);
}

(Here the function address_N_elements_right_of()
calculates the required misaligned address.) This works well
on Intel SSE/AVX, but is potentially less efficient on Arm and
PowerPC due to the two memory accesses in simd_ldu(),
i.e., the re-loading of data from memory that is already
available in CPU registers.

For the purposes of this paper we use the simd_cvu()
alternative wherever possible (i.e. when the offset is a known
constant at compilation) but resort to the simd_ldu() al-
ternative otherwise despite a potential performance impact on
certain architectures.

Finally we should mention the streaming nature of modern
memory architecture [10]. Memory hardware is optimised
for (thus very efficient for) reading (streaming) data from
sequential memory locations. Random access to memory is,
however, inefficient and can result when data are not in cache,
in stalls of the CPU for hundreds of clock cycles. Assuming
C style arrays (memory increases sequential in address along
a row of an array or image) then it is most efficient to process
images along rows. Processing down columns can have a very
noticeable detrimental impact (sometimes by many factors) on
performance. Drepper gives a nice tutorial description of these
issues and solutions with the example of computing a matrix
multiplication [10].

IV. IMPLEMENTATION DETAIL

We implement in C in a portable manner the erosion and
dilation with arbitrary flat structuring elements using the chord
based method of Urbach and Wilkinson. The implementation
is in two versions: scalar code that operates by pixel pump-
ing, and an SIMD implementation that vectorises operations
wherever possible. Both processing by row (horizontal) chords
and column (vertical) chords is implemented. Note that the
distinction between row and column chords is only relevant
when reading or writing to the image being processed. The
processing to construct the chord erosion table, and update it
when each row (or column) of the image is read, is indepen-
dent of the direction data are processed in the image, thus can
be calculated very efficiently with an SIMD implementation of
a sequence of P2,j operators. The code uses the simd_ldu()
function because the offsets are calculated at run time.

The operation to calculate the minimum (or maximum for
dilation) across the results of the chords and write back to the
image can be very effectively vectorised, because the vector
data can be read from each chord in the table, the minimum
calculated via the vector min instruction, and the vector written
back to the image row with the vector write to memory. This
is not the case if vertical chords are used. The resultant vector
from the chord table needs to be written down the image
column, that is, each element of the vector is to be written to
a memory address that is offset by the size of each image row.
The only why to achieve this is to extract each element from
the CPU SIMD register, and use scalar code to write down

the image column. Given that extraction of a vector element
is quite inefficient on some CPU architectures we have not
implemented this. The vertical chord code remains scalar at
this stage.

For line erosions in the vertical direction the two line buffers
of the HGW algorithm is extended to be an array of the size
of a SIMD vector in one direction, and of the image column
in the other. A full SIMD vector of image data (i.e. sixteen
columns of the image) is processed simultaneously. To better
exploit cache spatial locality we actually implement the two
line buffers to be 64-bytes wide (the width of a line in the
CPU cache) rather than 16, and process the image in blocks
of N rows by 64 columns where N is the number of rows in
the image.

Implementing the HGW algorithm for horizontal line ero-
sions is difficult and might well be impossible to implement
efficiently. The problem is that no architecture provides SIMD
min and max CPU instructions that operate along the vectors.
We could construct misaligned vectors via simd_cvu() but
the requirement that the offset be a constant known at compile
time on the Intel architecture provides a significant obstacle.
In any case, we would be using only one element from the
vector for each displacement calculated via simd_cvu()
thus wasting most of the efficiency of the vector calculations,
so much so that the efficiency unlikely to be better than scalar
code!

We therefore process horizontal line erosions with the
recursive line algorithm using P2,j . Because we must iterate
through a number of offsets in the erosions we use the
simd_ldu() function.

We present results for compilation using Debian gcc version
4.9.2-10 at optimisation level -O2 targeted at Intel SSE up
to and including the SSE4.1 extensions. We compare against
OpenCV as compiled by Debian for Debian Stable 8.2 (also
known as ‘Jessie’) on the x86 64 architecture. Debian com-
piles software to work on generic x86 64 thus limits compiled
packages to use the features of SSE2 only, excepting that the
package detects the specific CPU at run time and verifies that
it can use newer CPU extensions.

We run the morphological operators on unsigned byte
monochromatic images of size 1055× 1025 pixels initialised
with random data. The performance events subsystem of the
Linux kernel is exploited to provide hardware counts of the
number of cycles and instructions executed in the morpholog-
ical operation, and the elapsed time of the operation while it
is scheduled on the CPU. The operation is run once on the
image to warm up the caches, and then timing is started, the
operation is performed 10 times, and then timing is stopped.
The elapsed time is provided in microseconds, and the number
of CPU cycles executed in kilocycles. We find the number of
CPU cycles to be the most consistent measure across multiple
invocations of the test program.

V. RESULTS AND DISCUSSION

We present the timing results for the vertical and horizontal
line erosions in Fig. 1. The solid line type is duplicated: the

Length (pixels)

0 20 40 60 80 100

E
x
e

c
u
ti
o

n
 t
im

e
 (

µ
s
)

0

2000

4000

6000

8000

10000

12000
Erosion with Vertical Line Structuring Element

chord-pixel

chord-simd-sse42

line-pixel

line-simd-sse42

opencv

Length (pixels)

0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

µ
s
)

0

2000

4000

6000

8000

10000

12000
Erosion with Horizontal Line Structuring Element

chord-pixel

chord-simd-sse42

line-pixel

line-simd-sse42

opencv

Fig. 1. Time to computer erosions with vertical (top) and horizontal (bottom)
lines of increasing length.

top solid line in both graphs is the chord-pixel result and the
bottom solid line is OpenCV result. The OpenCV result has
a reasonable speed because of the acceleration using the SSE
instructions of the Intel processor, nevertheless the time take
to compute the erosion increases in proportion to the length
of the structuring element because (1) is implemented.

The implementation of the chords method without SIMD
acceleration (chord-pixel) is, as expected, the slowest, and in-
creases logarithmically with structuring element length due to
the use of the recursive line erosion algorithm. The horizontal
line erosion is faster than the vertical erosion due to the better
memory access pattern, hence a greater likelihood of cache
hits. The SIMD implementation (chord-simd-sse42) is faster
in both the vertical and horizontal line cases, but the biggest
speed up is achieved for the horizontal situation. Indeed it
beats the accelerated OpenCV implementation in this case. The
significant difference in processing horizontal chords versus
vertical chords suggests that it may be better to implement
a preference for processing horizontal chords for arbitrary

Structuring element length (pixels)

0 20 40 60 80 100

F
a
c
to

r
in

c
re

a
s
e
 i
n
 s

p
e
e
d

0

2

4

6

8

10

12

14
Speedup of our SIMD Line Implementation over OpenCV

horizontal line

vertical line

Fig. 2. Speedup of our SIMD line erosion implementations over that provided
by OpenCV.

structuring elements even if the number of horizontal chords
greatly exceeds the number of vertical chords. We comment
further below.

The execution time of the unaccelerated HGW algorithm
(line-pixel) barely increases with line structuring element
length and in the case of the vertical line erosions is faster
than the OpenCV implementation for structuring elements of
length of about 58 pixels and longer. Note that our SIMD
implementations of line erosions (line-simd-sse42) uses the
fast line processing algorithm only for vertical line erosions
and uses the recursive algorithm for the horizontal direction.
Nevertheless, the erosions in the horizontal direction are
faster than the corresponding vertical one (particularly for
structuring element lengths below about 50 pixels) despite the
less efficient algorithm. This comes about because of the better
use of cache when processing image data along rows of the
image. The SIMD implementations are very much faster than
OpenCV. A speed comparison of our fastest algorithm versus
OpenCV is shown in Fig. 2. The nature of the two algorithms
(recursive versus HGW) is very evident with the vertical line
erosion (using the HGW algorithm) increasing to an order of
magnitude speed-up over OpenCV for long structuring element
lengths.

This speedup in using an efficient line erosion algorithm
becomes very much more pronounced for two-dimensional
rectangular erosions. Since it can be decomposed into two
line erosions the rectangular erosion is as efficient as the line
algorithms, however OpenCV implements the direct algorithm
(1) without exploiting the decomposition into line erosions.
Because of this the OpenCV implementation shoots off the top
of the graph shown in Fig. 3 even before we get to 10×10 pixel
erosions Even our scalar implementations (chord-pixel and
line-pixel) beat OpenCV at square erosions greater than 3× 3
pixels in size! A SIMD implementation of a bad algorithm, no
matter how cleverly implemented it is, can perform worse than

Side length (pixels)

0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
)

0

2000

4000

6000

8000

10000

12000
Erosion with Square Structuring Element

chord-pixel

chord-simd-sse42

line-pixel

line-simd-sse42

opencv

Fig. 3. Time to compute erosions with a square structuring element. The
solid line shooting off the top of the graph is OpenCV.

straight-forward scalar implementations of a better algorithm.
At this point it is worth making a comparison to Matlab,

a commonly used commercial package. In 2008, Urback and
Wilkinson reported that Matlab implemented the naı̈ve direct
equation for erosion [6], but our tests with Matlab R2015a
reveal that the morphology implementation for vertical line
erosions execute in a constant (approximately) 20 000 µs for
increasing line structuring element size, and in about 27 000µs
for horizontal line erosions. The vertical erosion is quicker
because Matlab stores arrays in column priority order, thus
processing in columns better utilises cache. While a much
better algorithm is now implemented, the time to process an
image is still rather slow on Matlab: our SIMD code is nearly
two orders of magnitude faster.

As a final result we show the erosion using a disc-like
structure. We define the disc to be those pixels contained
within a fixed radius of the origin. We admit that such a
structuring element is not suitable for granulometry, but it is
useful for our purposes as a structuring element that is not
easily decomposed into a series of simpler and more efficient
erosions, nevertheless the SIMD chord implementation gives a
significant speed-up over the OpenCV implementation. While
not shown in the graph, the Matlab implementation returns to
the direct implementation of the erosion (1) and gets extremely
slow for large discs (approximately 20 s per image erosion
for discs of radius 100 pixels). Our SIMD implementation is
taking approximately 30 ms for the same.

VI. CONCLUSION

We demonstrated SIMD implementations on Intel archi-
tecture of line erosions that are faster than OpenCV by
many factors, and of square erosions by orders of magni-

Radius (pixels)

0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

µ
s
)

×10
4

0

5

10

15
Erosion with Disc Structuring Element

chord-pixel

chord-simd-sse42

opencv

Fig. 4. Time to computer erosions with a disc structuring element.

tude, particularly for larger structuring element sizes. SIMD
implementations must take account of the streaming nature of
memory and the organisation of data in the image matrix.
For example, we found that that implementing the HGW
line algorithm in SIMD for horizontal line erosions was not
feasible, and resorted to the slightly less efficient recursive line
algorithm. Nevertheless impressive speed gains were found for
commonly used structuring element sizes.

REFERENCES

[1] J. Serra, Image Analysis and Mathematical Morphology, 2nd ed. New
York: Academi, 1982.

[2] A. van Herk, “A fast algorithm for local minimum and maximum filters
on rectangular and octagonal kernels,” Patt. Recog. Lett., vol. 13, pp.
517–521, 1992.

[3] J. Gil and M.Werman, “Computing 2-D min, median and max filters,”
IEEE Trans. Pat. Anal. Mach. Intell., vol. 15, no. 5, pp. 504–507, 1993.

[4] E. B. P. Soille and R. Jones, “Recursive implementation of erosions and
dilations along discrete lines at arbitrary angles,” IEEE Trans. Pat. Anal.
Mach. Intell., vol. 18, no. 5, pp. 562–567, 1996.

[5] J. Gil and R. Kimmel, “Efficient dilation, erosion, opening and closing
algorithms,” IEEE Trans. Pat. Anal. Mach. Intell., vol. 24, no. 12, pp.
1606–1617, 2002.

[6] E. R. Urbach and M. H. F. WIlkinson, “Efficient 2-d grayscale morpho-
logical transformations with arbitrary flat structuring elements,” IEEE
Trans. Im. Proc., vol. 17, no. 1, pp. 1–8, 2008.

[7] M. van Droogenbroeck and H. Talbot, “Fast computation of morpholog-
ical operations with arbitrary structuring elements,” Pattern Recognot.
Lett., vol. 17, pp. 1451–1460, 1996.

[8] G. R. Bradski and V. Pisarevsky, “Intel’s computer vision library:
Applications in calibration, stereo, segmentation, tracking, gestere, face
and object recognition,” in Proceedings IEEE Conference on Computer
Vision and Pattern Recognition (CVPR2000), Hilton Head Island, SC,
Jun 2000, pp. 2796–2797.

[9] G. Bradski, “The OpenCV library,” Dr Dobbs Journal, no. Nov 01,
2000.

[10] U. Drepper, “What every programmer should know about memory, part
5: what programmers can do,” Linux Weekly News, October 2007, https:
//lwn.net/Articles/255364.

