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Abstract

Iwasawa theory is a powerful tool which describes the mysterious relationship
between arithmetic objects (motives) and the special values of L-functions.
A precise form of this relationship is neatly encoded in the so-called "Iwa-
sawa Main Conjecture'. Classically the Main Conjecture (as formulated by
Iwasawa himself) involved the behaviour of ideal class groups over cyclotomic
Z,-extensions, and related this to the Kubota-Leopoldt p-adic zeta-function.
During the last two decades, the main conjecture has been greatly generalized
to admissible p-adic Lie extensions, and provides a conjectural relationship
between L-values of motives and their associated Selmer groups.

A key component of the “Non-commutative Iwasawa Main Conjecture” in
[CEKT05] predicts the existence of an analytic p-adic L-function £3] inside
Ki(Z,[G]s+). To establish the existence of such an object, we need to be
able to do two things: (1) describe K; (Z,[Goo]s+) in terms of the Artin repre-
sentations factoring through G., using p-adic congruences, and then (2) show
for each motive that the abelian fragments satisfy these congruences.

This thesis provides a complete answer to the first task (1), in the specific
situation where the pro-p-group G, has dimension < 3 and is torsion-free.
We completely describe K;(Z,[G]) and its localisations by using an infinite
family of p-adic congruences, where G, is any solvable p-adic Lie group of
dimension 3. This builds on earlier work of Kato when dim(G,,) = 2, and of
Daniel Delbourgo and Lloyd Peters when G, = Z X Zg with a scalar action of
Z, . The method exploits the classification of 3-dimensional p-adic Lie groups
due to Gonzalez-Sanchez and Klopsch, as well as the fundamental ideas of
Kakde, Burns, etc. in non-commutative Iwasawa theory.

We also undertake a short study of elliptic curves over GLy(F,)-extensions,
and compile some numerical evidence in support of the first layer congruences
predicted by Kakde [Kak17| for non-CM curves.
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Chapter 1

Introduction

Over the last twenty years, the study of non-commutative Iwasawa theory
for motives has progressed rapidly, due to the work of many mathematicians

[Burls, BVIT, CFKF05, Kakl3, K

Cak 17, Kat0sh, Kat06, RW06]. Fix an odd
prime p, and an infinite algebraic extension F.,/F of some number field F.
We assume that G, = Gal(F/F) is a p-adic Lie group with no element
of order p; we further suppose that F contains the cyclotomic Z,-extension
F¢ of the base field F'. Clearly if H,, = Gal(Foo/FCyC), then the quotient
I' = G/ Ho will be isomorphic to an open subgroup of 1 + pZ,, under the
p-th cyclotomic character ‘kg’.

For a motive M with good ordinary reduction at p, the work of Coates et al
[CEKT05] associates (under the 9y (G)-conjecture) a characteristic element
Evr € K,y (Zp[[Goo]]g*), where K;(—) denotes the first algebraic K-group, the

subscript ¢ s+’ means the localisation at the set &* = Unzo p"S, and here S

indicates the canonical choice of Ore set
S = {f € Zp[Guo] ‘ ZplGo] /Zp[Go] f is a finitely-generated Zp[[HOO]]—module} .

The “Non-commutative Iwasawa Main Conjecture” predicts that there exists
an element £3] € K, (Zp[[Goo]]g*) of the exact form £3] = u- &y with u in
the image of K (Z,[Gx]); for any Artin representation p : Go — GL(V), its

evaluation at p ® x% should then satisfy

L3} (pr}) = the value of the p-adic L-function Ly, (M, p,s) at s = k,



as the variable k ranges over the p-adic integers. Note that the existence of
L,(M,p,s) is in most cases still conjectural, although its interpolation prop-

erties are easy to describe.

Remark: The strategy of Burns and Kato [BurlH, Kaf06] reduces this con-
jecture to the following: (1) prove the abelian Iwasawa Main Conjectures
for M over all finite layers; (2) describe K;(Z,[Go]s+) via a system of non-
commutative congruences; and (3) show that each of the abelian fragments,

L,(M, p,—), in combination satisfy this system of congruences.

There seem to be two approaches to (2), either using congruences modulo
trace ideals [Bonl0, KakT3, Kat06, KimT5, RW06], or instead by deriving p-
adic congruences [DPT5, DWOR, DWT0, HarT(, KakT7, Kat05]. Naturally both
approaches should be equivalent to one another.

To illustrate precisely what is meant by the terminology ‘p-adic congru-
ences’ above, for the moment suppose that G, is a two-dimensional p-adic Lie

group of the form

Goo =2 LS xZy, = (F xT)xZ,

p

where I' = 1 + pZ,, and the first factor Z; acts on the second Z,, via scalar
multiplication.

Let ¢ : Z,[I'] — Z,[I'], ¢ : v — ~* denote the linear extension of the
p-power map on I'. At integers m > m’ > 0, we also write Ny pm Zp[[l“pm/]] —

Z,[T*"] for the norm map.

X

(p)

arises from an element in K, (Zp[[Goo]]g) only if the system of p-adic congru-

Kato’s Theorem. ([Kaflli, 8.12]) A sequence (Ym) € [l Zy[[T7"]]

ences

’

m p
Ym/ ¥ N,m’— y m m
H ./V’m/7m (So(y / 1) . <./\/?0 /(1}’(0)0)>) = 1 HlOd p2 ‘Zp |:|:FP :|:|
1—1 m/— ,m

hold at every integer m > 1.

(p)



Kato has obtained similar congruences when G, is replaced by any of the
groups I'?" x Z,. His work completely describes the two-dimensional situation,
since any non-commutative torsion-free pro-p-group G with dim(G) = 2 is
isomorphic to I'"" x Z, for some s > 0.
Question. Can the analogue of Kato’s p-adic congruences be proven when
dim(G) > 27
Our goal here is to give a positive answer when dim(G) = 3 and G 2 SLy(Z,),
and G % SL;(D,) where D, is a certain division algebra of rank four over Z,.
We exclude the two insolvable cases as the representation theory is unpleas-
ant, although recent work of Kakde [KakI7] provides hope that an answer for
GL3(Z,) is not too far away.

We shall also give some fragmentary numerical evidence supporting Ma-
hesh Kakde’s modulo p congruences in [KakT7], which are formulated for ellip-
tic curves over GLy(F,)-extensions. These calculations are undertaken using

MAGMA, but for efficiency reasons we considered only p = 3 in Chapter B.



Chapter 2

Background

Iwasawa theory is a powerful tool to study the hidden secrets contained in zeta
values. Almost 100 years after Dirichlet’s celebrated class number formula,
Iwasawa theory gave a new way to study the connection between analytic
objects and arithmetic objects, by interpreting the class number formula in
terms of Galois actions on towers of ideal class groups.

There has been much interest in the study of non-commutative Iwasawa
theory over the last decade, in particular due to the GLo-Main Conjecture
formulated by Coates et al [CEKT05]. Coates et al associated in op. cit. a
characteristic element to a certain class of finitely generated A(G)-modules,
where G is a p-torsion free p-adic Lie group. In this chapter, we will briefly
recall the background material necessary to set up this Main Conjecture, in

the context of elliptic curves.

2.1 The Birch and Swinnerton-Dyer Conjec-
ture

We start this section by recalling some basic facts on elliptic curves; see Sil-

verman’s book for more details [Sil0Y].

Definition 2.1 An elliptic curve E over a field K is a non-singular projective

curve of genus one, equipped with a specified K-rational point.



As a consequence of the Riemann-Roch theorem, the elliptic curve can be also

described as a cubic Weierstrass equation of the form
y2 + a2y + azy = z3 + a2x2 + a4 + ag

with a; € K, where O = [0, 1,0] is the point at infinity. If the characteristic
of K is different from 2, we can simplify the equation above by changing the

coordinate y — 57 L

—————. which gives a new equation of the form
y—ai1x—as)

B y? =42% + bya® + 2y + bg

where by = a? + 4ay,by = 2a4 + ajaz, and by = a§ + 4ag. We define the

quantities,

by = a%aﬁ + daqag — agag — aZ,
Cy = b% — 2by,

ce = —bi + 36byby — 216D,

A = bibg — 8b] + 9bybybs,
j=ci/A,

w=dr/(2y + a1z + a3) = dy/ (32> + 2as7 + ay — a1y)
In particular, note that
4bg = bobg — bi and 1728A = ci - cg.

If the characteristic of K is different from 2 and 3, again we change the coor-
dinate via (z,y) — (z — 3by/36,y/108), thus providing the short Weierstrass
form

v =2+ Az + B
where A = 27¢;, B = —b4cg and A = —16(4A3 + 27B?).

Remark: Note that AT is called the discriminant of £ over K, which is an
important invariant of the Weierstrass form. Since FE is non-singular, thus

A # 0 and 2° + Ax + B has three distinct roots. The quantity j defined above

!Clearly A depends on the choice of Weierstrass model E : 32 = 423 + byx? + 2byx + bg.



is called the j-invariant of the elliptic curve, and w is called the invariant

differential associated to the Weierstrass equation.

A natural question to ask about elliptic curves is, given two points on the
elliptic curve, is there a way to produce a third point? The answer is positive,
since an elliptic curve has a group structure.

Define E(K) to be the set of points on the elliptic curve E
E(K)={P=(z,y) € Kx K :y* =2+ Ar + B} U{Og}

where Op is the point of infinity. The set E(K) forms an abelian group, with

the following properties:
1. Og is the identity element

2. If P,Q € E(K)and P # Op,Q # Opg, and R = (x,y) is the intersection
between the elliptic curve and the line passing through P and (), then
the point P + Q = (z, —y) € E(K)

3. If P=(z,y) € E(K), P # Op then the inverse of P is (z, —y.)

From now, we assume K is a number field (i.e. a finite extension of Q). The
first deep result concerning the group F(K) is the Mordell-Weil Theorem,

which appeared in 1922.
Theorem 2.1 (Mordell-Weil) The abelian group E(K) is finitely generated.

It follows that there is an isomorphism
EK)=2Z* e Tk

where r = ranky (F(K)) is called the rank of F, and T = E(K),,, is a finite
abelian group (the torsion group of FE).
For a non-archimedean prime v of K, let k, denote the residue field at v.

We say that E has good reduction at v if v does not divide the discriminant

A = —16(4A% + 27B?). For each finite place v, we write E for the reduction



of E at v (which may or may not be a non-singular curve over k,), and then
define
ay(E) :=q,+1— #E(k‘v)

where ¢, is the size of the finite field k,.

Definition 2.2 The local L-factor of the Hasse-Weil L-function of E at v is

the polynomial defined by

(
1 —a,(E)X + q,X? if E has good reduction at v
1-X if E is split multiplicative at v
L,(E/K,X)=
14+ X if ' is non-multiplicative at v
1 if E has additive reduction at v.

\

The Hasse-Weil L-function of F over K has the Fuler product form
L(E/K,s) =[] Lo(E/K,q;*)™"  for Re(s) >0

where the product varies over all non-archimedean primes of K. By Hasse’s

theorem, if v is a prime of F/K of good reduction and
1—a,(E)X +¢,X*=(1—-aX)(1-BX)

then |a| = || = /@, and a,(F) < 2|\/q,|. Furthermore, this result implies
that the Euler product converges in the right half plane Re(s) > 3/2.
The L-series L(E /K, s) satisfies a functional equation relating the value at

s with its value at 2 — s. More precisely, define the completed L-series as
ME/K, s) = L(E/K, ) L(E/K. 5),

where Loo(E/K,s) = N3/?((2r)~°I'(s))*¥ with N being the conductor of £

over K. Then

The L-series of E can also be defined in terms of the torsion points on F,

which is quite important when defining the Selmer group of £, and also in the



proof of Mordell-Weil theorem. Let [ be a rational prime, and define
T(E) = lmEp,  Vi(E)=T(E) @z Q. HN(E)=Hom(Vi(E).Q)

where the inverse limit is taken with respect to multiplication by [. Here
T)(E) is called the [-adic Tate module, and V;(E) denotes the [-adic Galois
representation of E.

The trace of the Frobenius morphism is equal to the coefficient a,(E) we

defined above. It follows that the factor at v could be also written as

det<1 - Fmb;1X|H;(E)fv>

X=q,°

whence

L(E/K,s) = Hdet<1 . Frob;lX]Hll(E)[v>_1

X=g¢;°
This description is quite useful when we define p-adic L-functions later on.
For a field K, we write Mg for the set of places of K, and K, denotes the

completion of K at a place v; let us define
Gg = Gal(K/K) and G, :=Ga(K,/K,).

Note that both of Gk and G, are equipped with the profinite topology, and
Gk, can be realised as a subgroup of G.

Now consider the Galois module

E,, :={P¢c E(K): mP = Og},

equipped with the discrete topology. There is an exact sequence of discrete

G g-modules

_ [m} _

0—E, — EK)— E(K)—0

where [m] denotes the morphism of multiplication by m on E. This induces a

short exact sequence in GGx-cohomology
0 — E(K)/mE(K) % H Gk, En) — H (G, E(K))ym — 0,

where HY(Gg, E(K)),, is the m-torsion in H*(Gg, E(K)), and ¢ indicates the

coboundary map.



Definition 2.3 1. The m-Selmer group of E/K is given by
Sel(E/K) = ker (B (G, Bn) = [] H' (G B, )
where the product is over all places of K.
2. The Shafarevich-Tate group of E/K equals
I(E/K) := ker(H' (G, E(K)) = [ [ H'(Gk,, E(K,))).
Hence, one obtains the short exact descent Sequenvce
0— E(K)/mE(K) — Sel,,(F/K) - II(E/K),, — 0.

We now introduce various terms appearing the BSD conjecture. First a height
function is defined on affine points P = (z,y) in E(K), with z = r/s such

that (r,s) = 1, by setting
h(P) = log(max{|r|, |s|})-

Also note that h(Og) = 0. Now, we exploit the naive height function to
produce a truly quadratic function, the so-called Néron-Tate height, by the
formula

- 1

n—o0

The Néron-Tate height plays an important role in the statement of Birch and

Swinnerton-Dyer conjecture, and it satisfies the following properties:
1. 2hyr(P) = h(P) + O(1);
2. iLNT(P) > 0 for all P;
3. fLNT(P) = 0 if and only if P is a torsion point;
4. hyr(mP) = m2hyr(P).
One constructs the bilinear Néron-Tate non-degenerate pairing
(, )nr: E(K)/E(K)ors X E(K)/E(K )tors — R,

via the formula <P, Q>NT = iLNT(P + Q) — iLNT(P) — iLNT(Q)
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Definition 2.4 With {Py,--- , P.} a Z-basis for E(K)/E(K ), the requlator
Reg(E/K) of E is the discriminant of the Néron-Tate pairing, ie.
Reg(E/K) = det({P;, P;)nT)-
If the elliptic curve E has the Weierstrass form
E: y* +axy + asy = 2° + asx® + aux + ag,

then the archimedean period of E over K is the non-zero complex number

s t
Qp/k = / w7 x 2/ WA W
: H E(R) ]1_[1 E(C)

where w = dz/(2y + a1z + a3) is the Néron differential associated to a global

minimal Weierstrass equation, and o; and 7; range over the real/complex em-

beddings of K.
Definition 2.5 For each place v of K, the Tamagawa number at v is defined
to be
o = #(E(K,)/Eo(Ky))
where Fo(K,) is the subgroup of E(K,) which consists of points which reduce

to non-singular points at v. Thus ¢,(F) =1 ifv [N.

Conjecture 2.2 (Birch, Swinnerton-Dyer) For a number field K and an el-

liptic curve E over K,
1. ords\ L(E/K,s) =rg(FE);
2. the Shafarevich-Tate group II(E/K) is finite;

3. the following equality holds

. L(E/K,s) _ Qpk X Reg(E/K) x #II(E/K) ][, ¢v =
MG ® (HE(K)or)? XV disc

Some special cases of the BSD conjectures have been proven, due to the work

of Coates-Wiles, Gross-Zagier, Kolyvagin, Rubin, and many others.

Theorem 2.3 (Coates-Wiles)[CWTH] If E is an elliptic curve defined over a
quadratic imaginary extension K over Q, and if E has complex multiplication

by K with L(E/K, s) is non-zero at 1, then E(K) is finite.
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Theorem 2.4 (Kolyvagin, Gross-Zagier)[KL89, [Kol07, (GZ86] Let K = Q.

Then
1. If L(E/Q) # 0, then both E(Q) and ILI(E/Q) are finite.

2. If orders—1 L(E/Q, s) = 1, then II(E/Q) is finite and E(Q) has rank

one.

2.2 Iwasawa theory over Z,-extensions

The class number formula, obtained by Dirichlet and Dedekind, was considered
as the first example of a deep interplay between zeta functions and ideal class
groups. In fact Iwasawa theory, which was developed in the middle of 20th
century, is actually an upgraded version of Dirichlet’s class number formula!
Iwasawa constructed the p-adic zeta function as an element of the Iwasawa
algebra, and thereby formulated the classical Iwasawa Main Conjecture, which
was then proven by Mazur and Wiles twenty years later. Over the last thirty
years, versions of the Iwasawa Main Conjecture have been formulated for ar-
bitrary motives over Q. In this section, we will introduce the Iwasawa theory
of both Tate motives and elliptic curves, over Z,-extensions at least.
Historically, the p-adic L-function was first constructed by Kubota and
Leopoldt in the 1950’s by interpolating the Riemann zeta function ((s) p-
adically. Recall that a multiplicative homomorphism x : (Z/MZ)* +— C*
is called a Dirichlet character modulo M. Then the y-twisted L-function

attached to y is given by

s, X) = Zx(n)n_s, Re(s) > 1

Recall also the Bernoulli numbers are defined by the Taylor series expansion
oo tm

=2 Bnp

m!

m=0

and the generalized Bernoulli numbers by

teJ
ent -1 ZBmX_l

j=1
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The generalized Bernoulli numbers are related to the special values of y-twisted

L-functions, as follows. For every integer m > 1, we have

Bm7X

Upon interpolating these values through a fixed embedding ¢ : Q — @p,

Kubota and Leopoldt then obtained:

Theorem 2.5 ([Was9%] Theorem 5.11) Let x be a Dirichlet character. There
exists a p-adic meromorphic function (analytic if x # 1) L,(s,x) defined on

{seC,:|s| < pl_z’lj} such that

By yw—n
L,(1—n,x)=—(1 - xw "(p)p" "X~ foralln>1.
n

In particular, for every n > 1 we therefore have

Ly(1—n,x) = (1= xw "(p)p" "L(L —n,xw™),

where w : F)* +— 1,1 is the Teichmiiller character mod p, and yw™ means the
associated primitive character. Iwasawa showed that such a p-adic L-function
belongs to an Iwasawa algebra, and he formulated his main conjecture in this

setting.

Definition 2.6 1. A Galois extension F., of F is called a Z,-extension if

Gal(Fy|F) = 7,

2. If I' = Gal(Fx/F) = Z,, then the Iwasawa algebra A(T') = Z,[[I']] is

defined to be the inverse limit Wm 7, (/e

As an example, consider Go, = Gal(Q((p~)/Q), where Q((peo) = Un>1Q(pn)-
Then A(Gw) = Z,[[G]], which is isomorphic to p — 1 copies of Z,[[T]], the
ring of formal power series over Z,. Let us henceforth abbreviate A(I") just by

A.
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Proposition 2.6 Let X be a finitely generated A-module. Then there exists
e,s,t,nj,m; € Z, and irreducible distinguished polynomials f;(T) € Z,[T],

such that . t
X~ne (@amma)e (arsma)
i=1 Jj=1

where ~ means a pseudo-isomorphism of A-modules.
A proof of this proposition can be found in Washington’s book [Was97].

The rank of X is just written as rank,(X) = r. The p-invariant equals
w(X) = > m;, and the A-invariant is given by A\(X) = Z;Zl n; - deg(f;).

Lastly, the characteristic power series of X is defined to be
t
Chary(X) = p*X). Hf;”,
j=1

which is well-defined up to an element of A*, of course.
Main Conjecture If X = Homeon(Gal(M/Q((pe)), Qp/Z,), where My, is
the maximal abelian pro-p-extension of Q((,~) unramified outside p, then the
characteristic power series of the w’-eigenspace for X, i.e.
X — L Z w (o) - X}a,
P pecd@n/o

equals the p-adic zeta-function £,(w'™") for each 4, up to an element of A*.
This conjecture was proved by Mazur and Wiles in 1984 [MWS&4]. Wiles then
extended the proof to totally real fields in 1990 [Wil90]. Around the same time,
Rubin gave an easier proof by using the properties of Euler systems [Rub9T].

We now switch to studying elliptic curves; indeed the BSD conjecture can
be considered as an elliptic curve version of Dirichlet’s class number formula.
In the early 1970s, Mazur studied the Iwasawa theory of these curves over cy-
clotomic Z,-extensions, and formulated an Iwasawa main conjecture for elliptic
curves over Q.

Let E be an elliptic curve over Q. For the number field Q((,), we have

the following exact sequence

0— E(Q(Cp")) ® Qp/Zp - Selp“’ (E/@(Cp”)) — HIp"O (E/Q(Cp")) — 07



14
where Sely (E/Q(Gr)) = hgm Selym (E/Q(Gr))-

Definition 2.7 The Pontrjagin dual of the Selmer group over Q((y=) is de-

noted by
Xg = Hom(Sely~(E/Q(C)), Qp/Zp)

where Selyee(E/Q(Ge)) = lim el (B/Q(Gn)).

Here X naturally has the structure of a finitely generated A(Gs )-module.
Mazur conjectured it to be a torsion A(Go )-module, and this was subsequently
proven by Kato [KF03].

In order to formulate a p-adic version of the BSD conjecture, Mazur,
Tate and Teitelbaum considered a p-adic analogue of the Hasse-Weil function
L(E,s) in [MTTRG]. We briefly describe their construction, for the newform
fE of weight two associated to E. Let r be any rational number. Then one
defines

AT(r) = —mi - ( fe(r)dr + fe(r)dr) €eR.

For all r € Q, the modular symbol [r]T is given by

AT(r)
Qp '

" =

where Qg is a Néron period for E over Z.

Let p be a prime of good ordinary reduction for F, and let a, be the trace
of Frobenius, so that N, = p+ 1 — a,, is the number of points in E(F,). Write
X?2—a,X +p for the characteristic polynomial of Frobenius, and « will denote a
root such that ord,(a) < 3. To construct the p-adic L-function as in [MTTRE],

we define a measure p, on Z; by

1
krp N _ +
pala +p"Zy) = ok (=] = sl [
for any k > 1 and a € Z,,.

Definition 2.8 The analytic p-adic L-function is given by the Mazur-Mellin

transform

L.(E,s) = /Z ()" 'dpa(x)  for all s € Z,,

X
p
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where (z)*™' = exp,((s — 1) - log,((x))), and exp, and log, are the p-adic

exponential and logarithm, and (=) : Z; — 1+ pZ,.

If Go = Gal(Q(pp~)/Q) again, then r : Go + ZX denotes the p'-cyclotomic
character. We can choose a topological generator v in I' = GZ!, so that ()
will be a generator of 1+ pZ,. Now, we can convert the function L, (F, s) into

a p-adic power series as follows.
Definition 2.9 We define L,(E,T) in Q,(a)[[T]] to be the power series
logp ((2))
LB D) = [ (4 D ),
Zy
Since p is a prime of good reduction, we shall denote the p-adic multiplier by

&= (1- 5)2-

Note the p-adic L-function 29 can be seen to p-adically interpolate the complex
L-function. For example,

£a(E,O):/ dﬂa:ep.%.
Z E

»
In general, if y # 1 is a character on I' sending v to (,», then

o 1 anrl L(E7X7 1)
Lo(E,¢—1)= Qntl G(x ) ' Q%ign(x) ’

where G(x™!) is the Gauss sum, and L(E, x !, 1) is the Hasse-Weil L-function
of E twisted by y~!.
If we further assume that the elliptic curve has good ordinary reduction at

p, then in fact
Ca(E.T) € anTm})].

Mazur’s version of the Main Conjecture predicts the following:

Conjecture 2.7 If E has good ordinary reduction at p, then the p-adic L-
function Lo(E,T) is a generator for the characteristic ideal Chary(X*"), i.e.

there exists an element u(T) € A* such that Lo(E,T) = u(T) x Chary(X*").

This conjecture has now been proved in many cases, thanks to the work of

Kato, Rubin, Greenberg and Skinner-Urban [K*05, Rub9l, Gre94, SUT4|.
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2.3 Algebraic K-theory

In this section, we introduce the formal definition of the Grothendieck group

Ky, and of the Whitehead group Kj.

Definition 2.10 For a ring R with identity element 1g, the Grothendieck
group K(R) is the free abelian group generated by the isomorphism classes [P)]
of finitely generated projective left R-modules P, modulo the subgroup generated

by the classes
[Pl + Q] - [Ped]

Note that two isomorphism classes [P] and [Q)] are equal in Ky(R), if and only
if P and () are stably isomorphic, namely P & R" = ) & R" for some n € N.

Recall that a nonzero R-submodule I of Quot(R) is called a fractional
ideal of R if there exists some non-zero a € R with al < R. A ring R is a

Dedekind domain if the fractional ideals form a group under multiplication.
Example 2.8 1. If R is a local ring or PID, then Kyo(R) = Z.
2. If R is a Dedekind domain, then there is a natural isomorphism
Ko(R) =2 Z & CI(R),
where CI(R) is the class group of R.

Let R be a ring, and I C R a two-sided ideal. The double of R along [ is

the subring of the Cartesian product R x R given by
D(R,I):={(x,y) e RxR:x—y€ I}

If p; denotes the projection onto the first coordinate, then there is a short
exact sequence

0—1— DR, I R—0,

where I embeds into D(R, I) via the map z — (0, z).
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Definition 2.11 Therelative K, group of a ring R and an ideal I is defined
to be

K()(R, I) = k‘er((pl)* : Ko(D<R, [)) — KQ(R))

Again let R be a ring and I C R an ideal. Then there exists a short exact
sequence

Ko(R,I) = Ko(R) & Ko(R/I),

where ¢, is induced by the quotient map g : R — R/I, and the map Ky(R, ) —
Ko(R) is induced by p;. The idea behind relative K-theory is to lift a matrix

over R/I to a matrix over R, in the situation where R is not necessarily

commutative.
A 0

Lemma 2.9 If A € GL,(R/I), then the 2n X 2n matriz lifts to
0 At

a matriz in G Lo, (R)

Proof. First note that

0 At 0 I, At I, 0 I, I, 0
Clearly the matrix ™| 1ifts to an invertible matrix over R. Let B and

I, O
C be any two matrices in M, (R) lifting A and A~! respectively. Then

I, B I, 0
and

0 I, -C I,

are both invertible, and lift

I, A I, 0
and respectively.

0 I, —-AY I,

Then the result follows after taking the product of these lifts. a
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For M € GL,(R), we define an injection

t:GL,(R) — GLy1(R)

M 0
M —

0 1

and call GL(R) := limy GL,(R) the infinite general linear group.

Definition 2.12 The abelian group Ki(R) is defined as the abelianization of

the infinite general linear group GL(R), namely

GL(R)

K (R) = [GL(R),GL(R)]

Let E,(R) be the subgroup of GL,(R) which is generated by all elementary
matrices

El(a) = [n + aeij,

where 1 < ¢ # j <n, a € R, and ¢;; denotes the standard matrix with a 1 on
the i*"-row and j*"-column and 0 everywhere else.

If BE(R) = hgln E,(R), then one can show that
E(R) = [GL(R),GL(R)]

and therefore as a corollary,
Ki(R) =GL(R)/E(R).

Now, whenever the ring R is commutative, taking the determinant yields a
group homomorphism from G L(R) onto the abelian group R*, and so induces
a surjective map

det : Ki(R) — R*.

The kernel of the map is defined to be the abelian subgroup SK;(R).

Example 2.10 1. Let R be a commutative ring. Then

K\(R) = R* @ (SL(R)/E(R)) = R* & SK\(R).
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2. If R =K is a field or a division ring, then
K, (K) =K.
3. If R= Ry X Ry, then K1(R) = K1(R;) ® K1(Rs).
Note that if R = Z, then SL(Z) = E(Z), so we have K,(Z) = 2> = {—1,1}.
Similarly K, (Z[i]) & {1, —1,4, —i} and K, (Z[~5Y31]) 2 yyq.
There is also a homological interpretation of K;(R) given by
Ki(R) = Hi(GL(R), Z),

where the right hand side denotes the first homology group of GL(R) with
integer coefficients. Just as we did with K,, we want to relate K; of the

quotient ring R/I to Ki(R).

Definition 2.13 Let R be a ring with unit, and let I be a two-sided ideal in

R. The relative K, group of a ring R and an ideal I is defined by
Ki(R,I) := ker((pl)* . Ki(D(R, 1)) — Kl(R)).

We define GL(R, I) to be the kernel of the map GL(R) — GL(R/I) induced

by the quotient map R — R/I. We also denote by E(R, I) the smallest normal

subgroup of E(R) containing the elementary matrices E;;(a), for all a € 1.
Clearly as each such elementary matrix is congruent to the identity matrix

modulo 7, thus F(R,I) C GL(R,I).

Remark: The subgroup E(R,I) is normal in GL(R, I), and

GL(R,I)/E(R,I) = K{(R,I),
In fact, GL(R,I)/E(R,I) is the center of GL(R)/E(R,I), and furthermore,
E(R,I)=[E(R),E(R,I)] = |[GL(R), E(R,I)] (see [Ros9H, Theorem 2.5.3]).
Theorem 2.11 Let R be a ring and [ C R an ideal. Then there exists a long
exact sequence
Ki(R, I) = Ki(R) % K (R/T) 5 Ko(R, I) = Ko(R) £ Ko(R/ 1),

where g, s induced by the quotient map q : R — R/I, and the maps K;(R, 1) —
K;(R) are induced by p;.
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2.4 Iwasawa algebras of p-adic Lie groups

Iwasawa algebras are completed group algebras of compact p-adic Lie groups,
so we will introduce the latter first. (We already met them in Section P72 in

the special case G = Z,,.)

Definition 2.14 (i) A profinite group is a compact Hausdorff topological
group G whose open subgroups form a base for the open neighbourhoods of the
identity.

(ii) The group G is said to be topologically finitely generated if G = m for
some finite subset X of G. Here X is said to be a topological generating set

for G, and d(G) will denote the minimal cardinality of such an X.

A pro-p group is a profinite group whose open subgroups each have index

equal to some power of p.

Definition 2.15 Let G be a pro-p group. Define the subgroups

P (G) =Gy =G and P (G) = Giy = B(G)P[P(G),G), fori> 1.

The decreasing chain of subgroups G = P(G) > Py(G) > -+ > P(G) > ---

is called the lower p-series of G. Furthermore,

1. G is powerful if p is odd and G /GP is abelian, or if p =2 and G/G* is

abelian.

2. G is uniform if G is powerful, finitely generated and |G : Py(G)] =
[P(G) : Piyr(G)] for alli > 1.

Recall from [DDSMS03] that a topological group G is a compact p-adic Lie
group, if and only if G contains a normal open uniformly powerful pro-p-
subgroup of finite index. If GG is a compact p-adic Lie group, then its Iwasawa
algebra is given by the inverse limit

A(G) = L,[[G]] = imZ, [G/U]

U
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where U runs over all open normal subgroups of G.

Lastly, let T' be a multiplicative closed subset consisting of nonzero divisors
in A(G), such that for each s € T and a € A(G) there exist t1,t, € T and
b1, by € A(G) satistying

Sb1 = atl, ng = tQ(I.

Then one can always form the Ore localisation ‘A(G)7’ at the multiplicatively
closed set T. We now further assume that G has a quotient I' = Z,,, and let

H denote the kernel of the surjection G — I, so that G/H 5 L.

Definition 2.16 Let S denote the set of all f € A(G) such that A(G)/A(G)f
is a finitely generated A(H)-module; we call S a left and right Ore set in
A(G).

If M is a finitely generated left and right A(G)-module, then M is S-torsion
if and only if M is finitely generated over A(H). Moreover, the set S is

multiplicatively closed, and all elements of S are non-zero divisors in A(G)

(see [CEKT0H, Section 2]).

2.5 The non-commutative Iwasawa Main Con-
jecture

In this section, we shall focus on the non-commutative Main Conjecture for-
mulated by Coates et al in [CEKT05] for GLy(Z,), but in the setting of general
p-adic Lie groups. Henceforth let G denote a compact p-adic Lie group which

is torsion-free.

2.5.1 Akashi series and Euler characteristics

To make explicit the connection between p-adic L-functions and Selmer groups,
it is not so easy to directly interpolate the complex zeta function inside a non-

commutative ring.
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Recall that S = {s € A|A/As is a finitely generated A(H) — module}. Let

S* = Up>ep"S be its p-saturation.

Lemma 2.12 [CFKT05] A A(G)-module M is S*-torsion if and only if M /M (p)
is finitely generated over A(H), where M (p) denotes the submodule of M con-

sisting of all elements of p-power order.

We write A(G)s, A(G)g+ for the localization of A(G) at S and S* respectively,
so that
AG) s = MG)s[1/p].
We also write My (G) for the category of all finitely generated A(G)-modules
which are S*-torsion.
We say that a A(G)-module M has finite Euler characteristic if H;(G, M)
is finite for all 7. If M has finite Euler characteristic, we define

X(G. M) = T[1HAG, M) =[] |Tord @ (M, z,)| "

i>0 i>0
Theorem 2.13 [CEKT05, Lemma 3.1] For each M in My (G), the homology
groups H;(H, M) for i > 0 are all finitely generated torsion A(G)-modules. If
G has no element of order p, then H;(H,M) = 0 for i > d, where d is the

dimension of the p-adic Lie group G.

Let p : G — GL,(O) be a continuous representation, where O is the ring
of integers of a finite extension L of Q,. We define M, (O) to be the ring of
matrices with coefficients inside O, and set Ap(I") := O[I'] to be the associated

completed group algebra. Then p induces two homomorphisms
p:ANG)— M,(O) and @,:A(G) — M,(Ao(I)).

If Qo(I') is the fraction field of the Iwasawa algebra Ap(I"), then ®, can be
extended to a map

D, : A(G)s — M, (Qo(T))
which (on the level of K-groups) induces

P K1(A(G)s) = K1(M,(Ao(T))) = Ao(T) ™.



23

Let us write ¢ : Ap(I') — O for the augmentation map (sending a topological
generator 7 of I' to the value 1), and set p = Ker(p). Clearly ¢ extends to a
homomorphism

0 :Ao(l')y — L.

Now let € be any element in K (A(G)s+). We can compose @), and ¢ together,

so one defines the ‘evaluation of £ at p’ by

p(P,(§) 1§ € Ao(l)y

oo if £ & Ao(I)y.

E(p) =

This map allows us to send element from K;(A(G)g+) to LU{oo}. One defines

the boundary map
ﬁg : Kl(A(G)S*) — Ko(f)ﬁH(G))
to be the connecting map in the long exact sequence

o KU(AG) = K (A(G)s) 28 Ko(My(G)) — Ko(A(G)) — Ko(A(G)g:) — 0
(2.1)

from [CEKT05, Eqn (24)]. Furthermore, if G has no element of order p then

J¢ is surjective [CEKT0S, Proposition 3.4]; henceforth we assume that G has

no element of order p.

Definition 2.17 For each M in My (G), a characteristic element of M is

any lift &y € K1(A(G)s+), such that

9c(&ar) = [M].

2.5.2 Non-commutative Main Conjecture

We now assume F is an elliptic curve over Q with good ordinary reduction at

p. Let p: Gg = GL(V,) be an Artin representation.

Definition 2.18 The complex Artin L-function is defined to be

L(p,s) = | [ Palpa™*) "
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where Py(p,T) is the polynomial
Py(p,T) = det(1 — Frob,' X|V]).

Conjecturally, this L-function has a meromorphic continuation to the whole of

C. For a prime [, recall that
Ti(E) =lim By, W(E) =T(E)®z, Q, H(E) = Hom(Vi(E), Q).

The complex L-function of F twisted by the Artin representation p is defined
by the Euler product
Li(E,p,s) =[] Pa(E,pq)"
q¢R

where P,(E, p, X) is the polynomial
Py(E,p, X) = det(1 — Frob,'X|(H}(E) ®q, V,2)") for Re(s) > 0.

Here A is a place lying over [, and R is the finite set of primes that ramify in
the extension Fi,/Q.

Let L be any algebraic extension of Q. Recall again that the classical
Selmer group S(E/L) is defined by

Sel(E/L) = ker(H'(L, Eyo) = | [ H' (Lu, E(Lw)))

where w runs over all the non-Archimedean places of L, and L, denotes the
union of the completions at w of all finite extensions of Q contained in L. One

then denotes by
X(E/L) = Hom(Sel(E/L),Q,/Z,)
the Pontrjagin dual of the discrete abelian group Sel(E/L).

The following is a non-commutative generalisation of Conjecture 274.

Conjecture 2.14 [CEKT05] Assume that E has good ordinary reduction at p,
let G = Gal(F/Q) be a p-adic Lie group without p-torsion, and assume that
Fo contains the cyclotomic Z,-extension Q¥° of Q, with I' = Gal(Q%¥°/Q) =

Zy,. Then
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1. X(E/Fy) belongs to My (G);

2. there exists Ly € K1(A(G)g+) such that for all Artin representations p
factoring through Fy,/Q,

o LR(E7I07 1) PP(pA7 u_l) —fp
®,(Lp) = QL (B)YTIQ_(E)d ®) ~ep(p) - Py(p,wY) “Qp T,

where R is the set of primes that ramifies in F./Q;

3. 0c(Lp) = [X(E/Fx)].

2.5.3 A special case when G =T

In this subsection, we focus on the special case where G = I' = Z,. Let
G = Gal(Q¥°/Q) =T, so that H = {1}. Then the long exact sequence (ZT)

becomes
o= K (A(D)) = Ky (A(T)s+) e, KoMy ((T)) = Ko(A(T)) = Ko(A(T)g+) — 0

where K;(A(I')) = A(I')*, and K;(A(I")g+) = A(F)(p)[%]x. One makes the
key observation that X (%yc) € A(I‘)(p)[zl?]X where X (%yc) is a lift of
[X(E/Q%)], and so it well-defined up to an element u € K;(A(I")) = A(T')*.

In particular, when G = Z, the Main Conjecture of Coates et al. collapses

back down to the version of the Iwasawa Main Conjecture formulated by Mazur

for elliptic curves.

Conjecture 2.15 1. There exists L,(E,T) € Zp[[T]][ZlJ] =~ A(I’)[%], such

that for each x : T' — @; of finite order

e-L(QEE’l) if x =1

Lo(E,x(v)—1) =

n+1 L(E,x,1 . n
an1+l : Glzxfl) : QiE"ig77zix)) ZfX % 17 and COTLd(X) = p :

2. The p-adic L-function L,(E,~v—1) is a characteristic element of X (E/Fy,),
i.e.
Or(La(E, 7 — 1)) = [X(E/QY)].
Equivalently, Lo(E,v — 1) = Charym(X(E/Q%¢) x u, where u is an
element of A(T')*.



Chapter 3

The Main Results

In order to explain our main research question, we start by introducing some
necessary notations. Then we will give statements for two of the major the-
orems in this thesis. Lastly, various applications of our theorems will be dis-

cussed at the end of the chapter, in terms of specific arithmetic situations.

3.1 Preliminaries

Fix a number field F' and a prime number p # 2. We shall assume that F,,
denotes a p-adic Lie extension of F' satisfying:

(i) Gal(F/F) is a pro-p-group without any p-torsion;

(ii) F contains the cyclotomic Z,-extension F'%° of F.
The examples we have in mind here are solvable three-dimensional Galois
groups arising from algebraic geometry, or alternatively the direct product of
a two-dimensional Galois group with a group of diamond operators (in the
context of Hida’s deformation theory). We therefore suppose that either
(ilia) Goo = Gal(Fi/F) where dim(Gal(Fx/F)) = 3 and Go % SLa(Z,), SL1(Dy);
or (iiib) Go = Gal(Fu/F)x W where dim(Gal(Fioo/F)) = 2 and Wy, = Z,,.
In both (iiia) and (iiib), the p-adic Lie group G is three-dimensional and also
solvable; in fact G is a semi-direct product of Z, with an abelian subgroup

Ho of Zy-rank two. The following result classifies such groups.
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Classification Theorem. (Gonzilez-Sanchez and Klopsch [GSK0O9]) If the
pro-p-group Gu, is solvable and torsion-free with dim(G) = 3, then Go, must
be isomorphic to one of the following possibilities:

(1) the abelian group Z, X Z, X ZLy,;

(II) an open subgroup of the p-adic Heisenberg group, i.e. a group given by the
presentation <7, hi,h : [hy, ho] = 1, [hy,y] = 1, [ha,y] = hfs> for some s € Ny;
(1) the group (v,hi,hs : [hy,ho] = 1,[h1,7] = W [he,q] = hgs> for some
s e Ny

(1V) <% hi,hg o [ha by = 1,[h1,7] = hlfshg

s+rd s+r

,[h2,v] = BY hgs> for some
s,r € Nwithd e Z,;
(V) (7, b1, by = [ ho) = 1, [hy, ) = BE [ho,y) = B2 RS where s,1 € Ny
and d € Z,, such that either s > 1, or instead r > 1 and d € pZ,,
(VI) either one of the groups:
(@) (yohnyha s [haho] =1, [hay) = b5 [hay) = BE)

or (b) (y,hihy[ha o) =1, [h1,7) = BE Y, [hayy) = BY)
where s, € Ng such that s +r > 1, and t € Z; is not a square modulo p.
Let T' = {72 ‘ z € Zp} where «y is as in the previous theorem (if G, =
Gal(F/F) satisfies condition (iiia) above, we shall identify its quotient

Gal(F9°/F) = Z, with I'). One defines a decreasing sequence of normal

subgroups for G, by
U, = I x H. ateach m >0.

Recall from [SerT2, Prop 25], every irreducible G.-representation with finite
image is of the form ¢ ® Indf,: (x) for some m > 0, with characters y : U2> —
iy and ¢ : TP" — @;

If G is a pro-p-group, then we write A(G) = lim Z,|G/P] for its Iwasawa
algebra where the inverse limit runs over open subgroups P <1G. If O contains
Zy as a subring then Ap(G) = A(G) ®z, O. Lastly for a canonical Ore set
S, we use A(G)s and A(G)s for the localisation of A(G) at S, and at its

p-saturation §* = J,,~, P"S, respectively.
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Remark: We shall use O, to indicate the finite integral extension of Z, gener-
ated by the values of x. Let us also write Ny, : A(Gs) = A(U,,) for the norm
mapping on Iwasawa algebras. If [Z/{m,lxlm] denotes the commutator subgroup

of U,,, there is a commutative diagram

l:l

Ki(Agw)) O T R e) B TT T el ()"

m>0 m>0  py

l l !

K (A(Gu)s) T S T g (Aehys) ™% T T Ao (7)),

m>0 m>0  py

l | 1

Ky (A(Gao)se) T LSl TT e (Aue)s) 15 TT T Quot (Ao, (7))

m>0 m>0  py

where the vertical arrows are induced from the inclusions A(G) <= A(Gxo)s —
A(Gw)s+, and the right-most products range over irreducible non-isomorphic
G.o-representations. Here we have used S as a generic symbol, indicating the
image of the set S under each mapping [[ Ny, (—) mod [U,,, U,,] above.

One can then define three separate theta-maps Oy, O x5 and O s+ by
composing (respectively) the first, second and third rows in the above diagram,

so that

@oo,g K, (A(goo)) N HAOX (Fdim(Px))X’

Px

Osons * K1(A(Go)s) — HAOX (rdim(px))(Xp)

Px
and Occst : K1 (A(Go)s+) — [ [ Quot (Ao, (THm))) ™.
Px
The Main Goal. To describe the images of Ocy;, Ocoy.s and Oy .5+ by
using a family of p-adic congruences linking together the abelian fragments
Yo, € Quot (Ap, (IP™ ))X
Note that Case (I) is devoid of any content since G, = I' x H is abelian, in

which case
K1(AMGx)) = Ki(AT X Hoo)) = AL X Hoo)™

by Morita invariance. Hence one may ignore Case (I) completely, since

there are no non-abelian congruences to consider here.
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3.2 The non-abelian congruences

In order to describe the congruences in each of the non-empty Cases (II-VI),
we first need some means to keep track of those Artin representations induced
from characters on H,. If x is a finite order character on H., then y extends

naturally to Stabr(x) X Huo, hence

o Goo
Px = IndStabp(x)lx’Hoo (x)

is an irreducible G-representation of dimension p™x, where m, = ordp( [F :
Stabp(x)]). In all cases » € {ILIIL,IV,V,VI}, one constructs characters x1.,, X2n

Hoo — fpee Via
Xin(h{hY) = exp (2rv—=1x/p") and xo.(h{hy) = exp (2nv—1y/p")

for each z,y € Z,. In particular, x1, and x2, together generate a basis for
Hom(Hoo, ftpn)-

Case (II). For simplicity, let us initially assume we are in Case (II). Then
for each character x = x3,, - le,s +me and group element h = hihj € Ho, one
defines e} ;, € Z[u,n] by the formula

X—I(E) . pmax{O,m’—ordp(b)} if pm’ ’ by

xho
0 if p™ 1 by.

X

Theorem 3.1 If we are in Case (II), then a sequence (y,, ) € I1, Ao, (Fpmx)(p)

belongs to the image of Ouc x5 only if

m pn—m’ ps+m’ e*’h
Yoo PMNome-1(y1)) ) "
nHo }_[1 H wam (SO No,mx (Y1)

(nyP )

— b
b=1, XZXG 0 X gt

ptbifm’ >0
= 1 mod p*mrterde ). 7 [[TP"]] » 31
for all integer pairs m,n > 0 with m < n — s, and at every choice of h =

hih$ € Hoo with x € {1,...,p"} andy € {1,...,p™}.

We should point out that, a priori, it is not clear whether the p-adic power
N (- )% above should even exist, as the exponent ey, € Zlppn] is fre-

quently not a rational integer!



30

Remarks: (i) For any function f(X) € 1+ p- Oc,[X], and provided that
s € C, is chosen to lie inside the disk ‘3|p < p=2/(=1 " the p-adic power
series defined as

f(X)? = exp, (slogp (f(X)))

converges to an element of 14 p - Oc,[X]. In particular, if s € Z then f(X)*
coincides with the standard definition of the s-th power.

(ii) Furthermore, this construction extends after localisation at the multiplica-
tively closed set Oc,[X] —p - Oc,[X], i.e. if f(X) € 14 p-Oc,[X]() then
F(X)* € 14p-Oc,[X] @)

(iii) Although not explicitly stated, it is nevertheless inbuilt into Theorem B

Yox  ¢WNomy—1(y1
¢(Yop) No,my (¥1)

that each of the fractions ) belongs to the multiplicative
group 1+p-O, [[Fpm]](p). In light of this discussion, one deduces that each term
Ny (- )e;h in the above theorem exists as a well-defined element of the
multiplicative group 1+ p - O¢, [I?" ] ).

Cases (II1)-(VI). Let us now instead suppose we are in Case (x) with x €

{IILIV,V,VI}. We define a non-negative integer e, , by the rule

0 if % = (I11) or (IV)

Gp = Jordy(d)  ifx = (V)

r+ord,(t) if x = (VI).
\

It will be shown (in Proposition B4) that the abelianization of U,, yields the

tricyclic group

Un

ab .__
Un' = (U, Unn)

m
g Fp X Cps+m+e*,p X Cp5+m

where C; denotes the cyclic group of order d.
Note that the commutator [U,, , U,,] is actually a subgroup of H.,, while

I" acts on U2P through the finite quotient I'/T?"; we can then partition

—(m Hoo
7™ .

I

—_ C s+m-e X C s+m
fo%) . P *,P P
(U, Un]

into a finite disjoint union of its ['-orbits. Similarly, the dual group Hom (ﬁff:), (CX)



31

also has an action of T'/TP"; let ‘R,,” denote a set of representatives for its
[-orbits.
For each orbit w, = {y7hy' | j € Z/p"Z}, h € ﬁfﬁj) and character
X : ﬁﬁ;” ) — C*, we generalise the definition of e} , by computing the trace of
h over the orbits of x:
€ mr = Tr(lndy")(wg) == Y, ()"

X'€{x9 | geT'}

*

- depends only on the representative for

In fact, it is easy to check that e
X within the set 9, and on the orbit w; generated by h, but not on the
individual choices of ¥ and h. Although these quantities might seem abstract,

they are all computable (see Lemma [3).

Theorem 3.2 If we are in Cases (111)-(VI), then a sequence (y,, ) € I1,, Ao, (TP™)

belongs to the image of Ouc x5 only if

I o (2 ,sowo,mﬂ(yl)))e;”

¥ (prp ) M,mx (Y1)
=1 mod p23+3m+6*,p70rdp(#w) . Zp [[Fpm ﬂ ) (32>

XERm

for every m > 0, and over all I'-orbits w inside the group ﬂg)”) = Cpstmteny X

Ops+m .

X

(»)

Note in both of these theorems, if one additionally knows that (ny) el . Ao, (Fpmx) *

the modified statement should read: ‘(ypx) € Im(@oovx) if and only if the
same congruences in (370), (82) hold after replacing p® - Z,[I*"],) with its
unlocalised version p® - Z,[I*"].

We also remark that Burns and Venjakob [BVII, Prop 3.4] have con-

structed a splitting

so one can reduce the existence of elements in K; (A(QOO)S*) to those in
Ky (A(goo)s), combined with a precise growth formula for the p-invariant of

the individual y, ’s.
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3.3 Some arithmetic examples

Before explaining the strategy to prove our two main theorems, we first discuss
some applications to non-commutative Iwasawa theory that arise from these

K;-congruences.

Totally real extensions. Let us initially suppose that F' is a totally real field,
and further:

o = Un21 F,, is a union of totally real fields;

e only finitely many primes of F' ramify inside Fl,/F;

e [ contains the cyclotomic Z,-extension F'¢ of F’;

e the cyclotomic p-invariant of F(ezm/p) vanishes.
We denote by ¥ the primes ramifying inside F.,/F. One also defines F(™)
to be the unique extension of degree p™ contained in F%° so that I' =
Gal(F°/F) = lim Gal(F(™/F).

Let G = Gal(FOO/F), and write kg : I' — Z, for the p-th cyclotomic
character. By seminal work of Burns, Kakde and Ritter-Weiss [BurTh, KakT3,
RW06], there exists an element (p_/p € K (A(goo)g*) such that, at any Artin

representation p : G, — GL(V'), one has

Cro/r(pi) = Lu(p,1—k)

for each k € N satisfying & = 0 (mod [F(p,) : F]). By deforming the k-
variable p-adically, the above values interpolate to the Iwasawa function
Lys(p,—) : Z, — Q, constructed by Cassou-Nogues and Deligne-Ribet [CN7Y,

DRR0O).

Corollary 3.3 Let F/F be an infinite solvable Lie extension as above, with

dgoo

Stabr (x)xHao (X) has dimension

dim(Go) = 3. If the representation p, = In
equal to p™x say, then write Lg'ER(pX) € Quot(/\ox(Fpmx))X for the unique

element satisfying

kpo LD (py) = Lys(py, 1= k) for all k € Z,.
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(a) If we are in Case (II), then the system of congruences (832) holds for
Yoo = Lyt (px)-
(b) In Case (x) with x € {IIL,IV,V,VI}, the congruences (Z23) hold fory, =

LE_ER (px) :

Proof. Note that the infinite sequence (LD (py)) € ] p, Quot (Ao, (TP™)) )
coincides with 600,&8* (CFOO /F), as they both interpolate the same L-values.
Therefore the necessity of the congruences (81) and (822) follows directly from

Theorems B and B, respectively. O

Let us now digress momentarily, and assume we are given a congruence of the

form

!

X
E—g = 1 mod p" Z,[X]p with F,G € Oc¢,[X] and v > 1.

Then % =1+p¥- % for some R,T € Z,[X] where the p-invariant of T

Q

equals zero. It follows that F'- T = G - (T + p” - R), and one works out that
wF) = p(F-T) = p(G)+u(T+p" R) = u(G)+0,

ie. u(F) = p(G). Also F = G + 258 € Oc,[X] so that T|RG, whence
F = G (mod p¥). Certainly if u(F) = p(G) = 0, then the leading terms of
F and G are congruent mod p”. However even if u(F) = p(G) > 0, their
leading terms must still be congruent modulo p", as one can repeat the above
argument with £ = p=#F) . [ and G = p~#F) . G instead.

Conclusion: If % = 1 mod p¥ - Z,[X](p), the leading terms of F,G agree
modulo p’.

We are going to apply this to the congruences (B) and (B822) at the trivial
orbit w = {id}: specifically, F' will denote the numerator of (81) and (B22)

F(X) _

while G will be the denominator, so that 7%y = 1 mod p” - Zp[X](p) with

X =4?P" — 1, and v = s + 2m + n when x =II whilst v = 2s 4+ 3m + €, , when
* #IL
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To individually describe the leading terms, if 7(p, o) = order,—,, (prg (p, x))
then
Ls(p,1—k) if r(p,1—k)=0
LY (p1—k) =
lim, 1k (z7"P1P L, (p,2)) i r(p,1—k) >0

yields the p-adic residue of L, »(p, x) at the non-positive critical value z = 1—k.

Notations: (1) At integers m > m' > 0, let us define r,,y ,, = IndFE:))( 1) to be

the regular representation for Gal(F (m) /| (m/)).
(ii) Furthermore, we shall write I'g;;) as an abbreviation for Indi(m/,l)@bp o rm/7m‘ ( /))
where v, is the p-th Adams operator (strictly speaking i, only acts on the

trace of a virtual representation, but the abuse of notation makes sense in the

context of (-functions).

m m (mx)
(iii) Lastly set p§< )= Indg(m)(ﬂp(m)) and p;p) = Indg(mx,l)(wp o Indﬂ(m)x (X‘F(m)))'

Theorem 3.4 Let Fo/F be as above, with dim(Gs) = 3 and also (g /r €

Ky (A(goo)é‘) :

(a) If we are in Case (II), then for every m,n,k € N:

n m/ s+m

[T TT (00— 161 -0)

oy

= _ b
b=1, XZX3,0X] gt
ptbifm’ >0

n m s+m/

T (L2611 L0 (o1 - 1))

b=1,
ptbifm’ >0

my

::]3

m'=0 a=1

— b
X*X%n 'X1,5+'m’

modulo p*+2m+n,

(b) In Case (x) with x € {IILIV,V,VI}, for every m,k € N:

mx

IT (22 (1= k) - LE (el 1= 1))

XERm
= H (L(p)( ;p)7 - k) ’ L(Ep) (rO,ma 1-— k?))p ! mod p28+3m+e*,p'
XERm

Because p-adic zeta-functions of totally real fields do not vanish at odd negative

integers, a nice consequence is that whenever k = 0 (mod [F(u,) : F]), these
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congruences actually involve bona fide complex zeta-values, not simply their

p-adic residues.

Heisenberg extensions.  Let us now suppose we are in Case (II) with the

parameter s > 0, in which case G, is an open subgroup of the Heisenberg

group, i.e.
1 Z, Z,
Goo < Hs3(Zy):=1 0 1 Z, where [Hg(Zp) : QOO} =p°
0 0 1

In an unpublished preprint [Kaf06], Kato derives different but equivalent con-
gruences to (Bl), as ideal congruences in the group algebras associated to
finite sub-quotients of H3(Z,). Thus Theorem B (a) gives a concrete descrip-
tion for the most basic of these ideal relations, as a congruence modulo p*+2m+"
connecting the special values of Artin L-functions.

False-Tate extensions. Fix an integer s > 1. We shall now set F' = Q(f1,¢)
and F, = Q(ppoo, qi/pw, q;/pw) where q1,q2 > 1 are distinct p-power free
integers satisfying ged(p, ¢1g2) = ged(q1,q2) = 1. Then G, = Gal(Foo/F)
is a three-dimensional pro-p-group, which corresponds precisely to Case (III)
covered by the Classification Theorem (note that Fl, is not a union of totally
real fields so there is no element (r,_/r € K (A(QOO) S*) available, and therefore
no Iwasawa Main Conjecture can be formulated for Tate motives here).

Now if s = 1, the congruences (B2) specialise down to yield the congruences
labelled (1.1),,5 and (1.2),, in [DPTH, p3]. If E/q denotes a semistable elliptic
curve with good ordinary reduction at p, then p-adic L-functions L,(E, p,) €
A(Fpmx) [1 /p} interpolating the algebraic part of Ly 4.} (E, py, 1) have been
constructed in Theorem 1.5 of op. cit. Furthermore, there are three ‘first
layer congruences’ to check for each tuple (E,p,qi,q2). These were verified

numerically for the elliptic curves 11a3, 77cl, 19a3 and 56al using MAGMA

at the primes p = 3,5 and at small values of ¢; and g9, in §6 of op. cit.
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On the algebraic side, let us further assume that ¢; and ¢, are both chosen
to be primes of non-split multiplicative reduction for E, such that
D2 l) _ 1
Y lcond(gl;éql,qg (p
where (?) denotes the Legendre symbol at p. Then if the cyclotomic A-
invariant of Sel,~ (E/Q(py=)) equals one and if Sel,=(E/Fx)" belongs to the

category My (Go), it is shown in [DLI7, Corollary 2.6] that
rankZ(E(Fn)) = p*lor p™,

provided the p-Sylow subgroup of III(E/F,) is finite at each layer F, =
@(,upn, qi/ P n, q;/ P n). Alternatively, by studying the A-invariants of each y-part
Selpes (E/Fy(ptp>=))" @z, Oy using the congruences in Theorem B2, one can
produce the same estimate for the rank (current work of the first named author

[Del1g]).

Heegner-type extensions. Consider an imaginary quadratic field k = Q (\/j)
and let us suppose ko denotes its Z2-extension, so that Gal(keo/k) = I'x H1 o
where H; » is the Galois group of the anticyclotomic Z,-extension of k. For
any choice of odd prime g # p with ¢ 1 D, one may set F' = Q(\/j, up) and
Fo=ks (up, ql/poo), in which case

Goo :=Gal(Foo/F) = T'x (Hioo X Hooo) = (T X Hioo) X Haoo.

Here h; acts trivially on Hy oo = (he) = Gal(Foo/k:oo(up)), while v acts on
hs through multiplication by 1 + p (we must therefore be in Case (V) with
s=d=0and r=1).

Let E/g be a semistable elliptic curve with ordinary reduction at p, split
multiplicative reduction at ¢, and with non-split multiplicative reduction at all
other primes dividing the conductor of E. We also suppose that ¢ generates
(Z/ 1022)X so that ¢ is inert in Q(pp~), and that the various Heegner condi-
tions (DT1)—(DT7) described in [DLT7, Sect 2.4] hold. Then it is shown in

Proposition 2.14 of op. cit. that for n > 0,

2p% + 2 1

TERIL > < rankz (E(F,)) < p™" +4
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with no hypotheses whatsoever on the finiteness of III(E£/F,)[p™].

The upper bound essentially comes from a growth formula for the A-
invariant of Selyee (E/Fy(p~))” as n becomes large. In fact if one exploits
the congruences (B2), this yields another way to obtain the upper bound on
rankz, (E(F,)), and establishes finer bounds on the x-part of E(F,). However
the lower bound relies heavily on the properties of Heegner points, following

the same approach as Darmon and Tian [DT10] in dimension 2.

p"-division fields of CM curves. Let E,g be an elliptic curve with complex
multiplication by k = Q(m), and select a good ordinary prime p # 2
for £ which splits inside Z(\/j) If one takes F' = Q(\/j, ,up), F, =
Q(E[p"],ql/pn) and F, = U, F for an auxiliary prime ¢ not dividing
cond(F), then G = Gal(F/F) corresponds to Case (V) with s = d =0
and 7 = 1 again. By using the congruences (B2) to study the A-invariants
of Sel,~(E/F,)", one can bound the rank of E(F,) from above by p** if the
cyclotomic A-invariant is one. Whilst Heegner points are no longer useful here,
a lower bound on the Z-rank of E(F,) of the form ¢, x p** (with ¢, # 0 and
¢, ~ 1if p > 0) should still be feasible, if one exploits the non-triviality of the

Euler system of elliptic units in place of the Heegner points.



Chapter 4

Representation Theory for

Dimension Three

We begin by reviewing some representation theory for the three-dimensional
group G.,. We next calculate the stabilizer of a character y on a case-by-case
basis. We shall also need a nice system of subgroups on which to realize our
theta-maps, so we define such a system. Finally, following the blueprint of
Kakde’s seminal paper [Kak13], we introduce the transfer map Ver, the shift

map 7, the trace map and the norm map.

4.1 The general set-up in dimension three

Observe that He, = Hico X Hooo = Z, X Z,, is generated by hy = (1,0)7 and
hy = (0,1)T topologically. The action of each ¢ = v* € T’ on an arbitrary
element (x,y)T = hihy € Ho can be described through a 2 x 2-matrix of the

form I, + M:

x
72((x7y)T) =7 (hffhg)’yz = (IQ + M)Z forall g=~* €T

0
where I, = is the identity, and M € Matgxg(Zp) is topologically

nilpotent.
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Proposition 4.1 Applying the Classification Theorem for G, the matric M

equals
0 ps ps 0 ps ps+r O ps 0 ps
, , , and
0 0 0 ps ps+rd ps psd ps+r szrrt O

in Cases (II), (III), (IV), (V) and (VI) respectively (note in Case (VIa) we

have sett =1).

Proof. Let us treat these on a case-by-case basis. We shall switch between

group notation and vector notation throughout.

In Case (II),

Afrx R T+ p'y 1 p x
Y 1(h1h§’)7 = h1+p 'hy = = )
Y 0 1) \y
pS
hence Io + M =
0 1
In Case (III),
s . ) (14 p®)x 1+p® O x
v 1(h1hg)7 = (hlhg)(lﬂj ) = = )
(L+p%)y 0 1+p°) \y
1+p° 0
hence I, + M =
0 1+p°

In Case (IV),

S xT S ™ S ' T S 1 +ps ps+r J/‘
771 (hfhg)’y _ hglﬂo Jz+pst yh:; trde+(14p°)y _

szrrd 1 + ps y

1 +ps ps+r
hence I, + M =

ps—l—rd 1 +ps
In Case (V),

1 p°
_ z T s Sdax 1 S+1
v l(hlhg)7 = h1+p Iy Ty )

pid 1+p7 [ \y
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1 p°
hence I, + M =

psd 1 ‘I‘ ps+r
In Case (VI),

S

s osr 1 p x
(R = BT = 7
ps+rt 1 y
1 p°
hence I + M =
ps—i—rt 1

4.1.1 Determining the stabilizer of a character on H.,

Note each element g € I' acts naturally (on the left) on each x € Hom(Hoo, f1pe)
by sending x +— g % x, where g x x(h) := x(¢'hg) for all h € H.,. The I'-

stabilizer of x is given by the subgroup

Stabr(x) = {g er ‘ X(g7 (hEhY)g) = x (hThY) for all h = hihy € ’Hoo} .

1
,n

Proposition 4.2 If x = x{\, X x5% @ Hee = ppn 8 a surjective character,
then

[F : Stabp(X)] = pmax{Omy}

where, using the case-by-case description in the Classification Theorem, one
has:

(II) m, =n — s —ord,(e;); (III) m, =n —s; (IV) m, =n — s;
(V) my, =n —s—min {ordp(eQ) + ord,(d), ord,(e; +preg)}; and

(VI) m, =n — s —min {r + ord,(es), ord,(e)}.

Proof. Firstly, let us denote by (,» the primitive p™-th root of unity exp(2wv/—1/p").
L p° —pt Y\ P a+p* iy y

Case (II). Here I + M = , so that 7P (hThi)y? = hj hi.
0 1

Consequently

s+i e s+i e s+i
PR z+p*Tlypy\e2 _ reizt(eaterxpit)y
h3) ™" x2.n (R h3)™ = G

X (v’pi(hfhé’)vpv = X1 (7
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equals x (hTh3) = (A" for all 7,y € Z, if and only if e; xp*** = 0 (mod p").

1+p° 0
Case (III). Here I, + M = with repeated eigenvalue

0 14 p°
Amr+ =1+ p°, and it follows that

—pl i T )P’ T 1+p° p’
X (7 P (hlhg)7p> - X(hlhg)(lﬂ?) — Cﬁl +eay) x (14+p°)P

However (1 + p*)?' = 1 (mod p*™) but (1 + p*)* # 1 (mod p*++!), in which

case Y (vfpi(h:fhg)vpi) equals x(h{hY) = ("7 for all z,y € Z, if and only

if
ordy (14 p*) —1) =s+i > n,  ic ifandonlyif i > n—s.
1 _|_ps ps+r
Case (IV). Here I, + M = et Ajpe i= 14 p* £p57Vd
ptrd 1+ pf

be the two distinct eigenvalues of I + M, so that

X Ave 0 1 1
IQ+M = PIVDIVPI_V with D[v = and P[V =

0 A Vd —vd

Since (I + M )pi = PIVD]}’;PI}}, one readily computes

i

p
i N R A x
b (hlhzzl)’Yp =
szrrd 1+ps y
p -1
1 1 )\[v’_,_ 0 1 1 i
Vd —Vd 0 Aw- Vd —Vd Yy
)‘1v++>‘1v7 >‘117v+ A?vf x
— -2 o2V
>‘IV+ IV \/_ IV++>‘IV7 y

p p p _\P P P P P
(AIV,++)‘IV,— )x+ ( )‘IV,+ ATv,— ) (/\IV,+7>‘IV,— ) NP ( ATv,4 ATy, - )
—h 2 od yh R — z+|—"5—=)y
- 1 2

AP AP P
To study both M and —“F5—= note that

p ~[r) . :
Ny = (1+p°(1£p'Vd)" = 1+ p*(1£p"Vd)+ | Pt Vay
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and (1+p"Vd) =1+ jp'Vd+ O(p**+%) where §, = ord,(d), hence

P P
Z p . D '
)\?V,:l: =1 —+ p8+1 + ps-‘r'l”-‘rl\/g + p8j + pT\/E § : jpsj + O(p2s+2T+1+5p)
=2\ J =2\ J

14t I 4 ((1 Y -1 ps+1> 4 O(p2s+r+1+5p/2) 4 O(p2s+2r+1+5p)'

A

p P
It follows that —”’*;/\IV" will equal 1 + p*t! + ((1 +pf)P —1— pSH) +

AP AN
O (p* 7 +H1+%/2) or less accurately % =14p"" +O0(p**"); applying

an induction argument:

p’ p’
Arve T A1y

2 — 1+ps+i+0(p25+i)‘ (43)

2P —)\P
On the other hand, the difference term ~***—"= equals ps T/ d4+-0 (pPetr+iton/2),
)‘?V,Jr*)‘?v,f

and therefore === = p T+ O(p**t1); applying induction again:

Ny = iy, NP
) ) —_ ps+r+z+0(p s+r+z)' (44)

2/d
Recalling the chosen character x = X7, X X%, from Equation (E22) one obtains
iy YN TN A N A B
X (V P (hih3)y" ) = Xin (7 p(h1h2)7p> X X2 (7 p(h1h2)’7p>

AP +AP AP —\P AP —\P AP +2P
IV 1v,— IV,+ IV,— IV,4+ IV,— IV,4+ "1V, —
(el( 2 )*‘92( 2 )\/E z+ el( a )*‘32( p ) Y
= Cp"

As a corollary of our estimates in (B3) and (B2), 77 %y (h*hY) = x (7_pi(hﬂf h'g)wpi>

e1rt+esy
Cpn

equals y(hihy) = for all z,y € Z, if and only if

ep’ + e d =0 (mod p”) and e p*" + ey =0 ( mod p"),

i.e. ifand only if i > n—s—min{ord,(e; +p"de;) ,ord,(p"e; +e2)} =n—s.

1 p° st
Case (V). Here I, + M = slet Ayyp =1+4F - + pV Ay

2
psd 1 + ps—i-r
with Ay = d + p?"/4 denote the eigenvalues of I, + M. Indeed for all 7 > 0,

one may write

Z. N0
L+ MY =P, | """ P!

0 AV_
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T
1 1 1— ;2 L
o _ 2VA VA
where P, = , and its inverse PV1 = % v v
P /Ay 2 — A P __1
> TVAY 5 Ay 1+ 2VAy VAv
Using this decomposition, we next deduce
pi
; ; 1 p° x
_pl x y pl _
(h1h2)’7 =
sd 1+ps+r Yy
pi
_ P 1
_ 1 1 Ave O 1 1 N
2 p" 1
v 2 "V 0 Av- 1+ 2VAv Ay
_ 2 2V/Ay 2 - 2/Ay
,\p f,\p N g AV LAY n AV =AY v y
z\ﬁ 2 2Ry 2
P p
+3p M i7’*xi o (et Vs )
2,/A 2 2,/Ay
= hl
<A§+ A{;’i)d%%(x{’,ﬁﬂpﬁ +>\€7+7>\1"27 xi>y
2/A 2 2. /A 2
X B v v (4.5)

Now from the binomial theorem,

\P _ ps+r+1 N o1 A
ve = LT PTVA Z 2 v):

J

o Iford,(v/Ay) > rthen (%T:I: /_Av>j: <%) <%)J 1\/_+O( (5-2) +5/)
where ¢, = ord,(Ay ), hence

p X ] TN j— y
_ Z?:z P ((%)J 1 (%)J 1\/A_V> +O(p23+1+6p)

TS T S TS p_l !
(1) - (14 ) AT ((w@) _1> L O,

s+r+1

AP AP _\P
It follows that “=2e = 1 4 27020 4 O (p2e2ret) and M Mo o et

O(p** 1) upon using the condition 0, > 2r, so by induction:

i

AL A petrt | A=A | |
V+ 5 = 14 5 +O(p2s+2r+z) and g‘ < [ ps+z_|_0(p2s+r+z)‘
V 1%

(4.6)
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o Alternatively, if > ord,(v/Ay) then

(5 VE) = (svE) 2 (eva) o

and arguing in an identical fashion to before, one deduces that

N+ AL petr , AL A | o
—r 0 =14+ _|_O(p23+6p+z) and + [ ps+z+0(p23+§p/2+z)'
2 2 2V/Ay
(4.7)

Again as x = 7}, X X33, this time Equation (£=3) implies

o <*€,++A1\)/,7 R xi>+e2d<>\€/‘+_/\€"> -
—pirzr Y\ Pt ’ Vav : Vav
x(v (hih3)y >= -

Exploiting our eigenvalue estimates in Equations (£58) and (E=0) appropriately,

it follows that y (’y’pi(hgfhg)vpi> equals x(hhy) = ("7 for all z,y € Z, if

and only if
exd x p*" =0 (mod p”) and e; x " + ey x p*T" =0 ( mod p");
the latter holds precisely when

s+i > n—ordy(eed) and s+i >n—ordy(e; +exp).

1 p°
Case (VI). Here I, + M = i let Ayra = 1 £ p°/p't be its

ps+rt 1

eigenvalues (note that ¢ = 1 in (a) of the Classification Theorem, and t € Z

is not a square in (b)). Then

P P p-l itk — Avi 0 d = ! !
(]2+M) PVIDVIPVI wit DVI all PVI

0 Avr— VPt =Dt
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A straightforward calculation shows

2

p
Y (WA =
ps—l-rt 1 y
Pt —1
1 1 )\VLJr 0 1 1 i
Pt —\/p't 0 Avi- Pt —\/p't Yy
/\Z\)/Z,++)‘I\I/ZI,— AI\)/ZI,+*)‘€1,— T
— 2 _ 2VPTE
/ )‘z\)/ll, 7/\%11,— )‘Ix);j, +/\z‘)/1],_
prt +2 -»—2 y
(i) (i) (i),
= hl X h2
(4.8)
and clearly N, = 1+ p 'yt + p* L (B) plt ... = 1£p /Pt +

O(p**"*1). Using a now familiar mathematical induction,

M+ X . M — M - .
+ 5 I 1—|—0<p25+7“+%) and :;‘ — = ps+l_‘_0<p2s+7‘/2+z).
(4.9)

If the character x = x{’, X x57,, by Equation (E=R) the value x (7*pi(hi‘h§’)7pi>
equals

AP NP AP AP AP AP AP AP
VI 4+ VI,— VI,+ "\VI,— VI,+ \VI,— VI 4+ VI,—
<e1 (f +e2V/p't| — 55— T+ | e1 W +e2 5 Y
Cp" .

Plugging Equation (E39) into the above, one can then deduce x (7_pi(h9f hg)ypi> =
X (h¥hy) for all z,y € Z, if and only if both

es X p ' x ( p’”t)2 =0 (modp") and e; x p*™ =0 (mod p"),
which is itself equivalent to ensuring that

s+i > n—ordy(ep't) =n—r —ord,(e) and s+i > n—ordy(e;).

4.1.2 How to choose a “good system” of subgroups

The theory in [CSRVI2, Harl(, KakT3, RWO6] operates best in the setting of

one-dimensional Lie groups. Throughout we choose an integer n, and work
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with the p-adic group G, = 1" X (Zjﬁ ) In later sections we will allow n to

[e5s}

vary, but for the time being n is fixed.

Lemma 4.3 If Z(G) denotes the centre of a group G, then

;

n—s H 00 XHpno:S .

e x IHTQ in Case (II)

n—s
20 = P x H7%’£ in Cases (III) and (IV)
o B n—s Hpn_SXHpn_S_T

e x % in Case (V)
pnfsf'rfordp(t) pn s

[P x M vk Mo iy Case (VI).

\ oo

Hioo in Case (I1I)
In particular, Z(Gs) = lim Z(Goon) =
{1}  otherwise.

Proof. We first note from the semi-direct product structure on G, that

X

hihy | (I + M)

mod p"Z?

Y Y

Hoo
Z(goo,n) = Stabp(Hpn)X Hgg

One then computes the right-hand side on a case-by-case basis, using the form
of the matrix M listed in Equation (E), as follow.

Firstly in Case (II), one has

T 1 p° x x + py
([2 + M) == = ,
y 0 1/ \vy y
x x
so the congruence (I, + M) = (mod p") holds if and only if y =0
Y Y
(mod p™~%).
In Case (III),
x 1+p® O x (1+p°)x

([2_|_]\/[) — —
y 0 1+p°) \y (1+p%)y
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T 0
and the condition = (mod p"~*) ensures that (I + M) =
y 0 y
x
(mod p™).
Y
In Case (IV),
T 1 _I_ps szrr T T _|_ps$ +ps+ry
y prd 1+p* ) \y y+py+ptde
x x
Therefore, we deduce that (I + M) = (mod p™) if and only if
) )
T +py 0 _
= (mod p"~*). Since z + p'y = 0 (mod p"*) and y +
y+pldx 0

p'dx =0 (mod p" %), we may write

n—Ss

x=kp"® —p"y for some integer k,

in which case

y+p'de =y +pdkp"* —py) =y —p”dy + kpdp"
=y —ptdy (mod p"*)=(1—-p*"d)y=0 (mod p" ).

Lastly because 1 — p*'d is invertible, one concludes that y =0 ( mod p"*).

Next in Case (V),

T 1 p° x
(Iy + M) -
y p’d 1+p™ | \y
x+p°y
y+pde +p*y

x
and therefore one deduces that (I + M) = (mod p") if and
) )
Yy 0
only if = (mod p"~®). The later is equivalent to x = 0
dz +p"y 0
(mod p"~*~°r4( @) and y = 0 (mod p"~*)
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Finally in Case (VI),

T L p7) [z T+ p'y
(I + M) = —
Y ps-‘rrt 1 y ps—i—rtx + y
x
Hence, (I + M) = (mod p") is equivalent to the congruence
Yy Yy
Y 0
= (mod p"~*), and this becomes 2 = 0 (mod p"—*~"—rd (1))
p'tx 0
and y =0 (mod p"~*). O

Bearing in mind Kakde’s subgroups should always contain the centre of Go »,

we define

H

Uprn = P (7—[_;:) where the integer m € {0,...,n — s},

$0: (1) Z(Goom) C Umn, and (ii) TP" " C Stabr(x) for any x : Heo— pym by
Proposition B2. It follows that such x extend to Uy, , if m € {m,,...,n—s},
and will thus factor through

uab _ um,n _ Fpm X %m/ng .
’ [um,naum,n] <|:h:fhg mod Hg;, f}/pm} ’ T,y S Z>

Therefore, by determining the nature of Uﬁgn in each case, we may calculate
the number of irreducible representations ¢ ® IndZ:’:(X) with ¢ : ' = C* of
finite order. (Remember that every irreducible Artin representation p on G,

is of this form for suitable m,n, x,.)

Proposition 4.4 For each pair m,n € Z with 0 < m <n — s,

;

m Hl o) HZ ) .
[P x =2 x 222 in Case (II
Hioo Hg,oo ( )
e Upn s+m in Cases (III) and (1V)
mmn
7" x Z X L in Case (V)
pmin{n,s+m+ordp(d)}Z ps+mZ
pm YA Z . .
\F X pmin{n,5+m+r+ordp(t)}z X ps+mZ m Ca’se (V‘[))

in fact, the first two lines are actual equalities, not just isomorphisms.
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Proof. We proceed by working through the different cases (II)-(VI) in nu-
merical order.

Case (II). Here one simply exploits the commutator relation [h’fhg,vpm] =
(.

Case (III). Here we use the relation [h{hY, +*"] = (hgfhg)(“rps)pm*l and the
fact that ord,((1 + p*)P"— 1) = s+ m.

Case (IV). Recall from Equation B2 that

m m m m m m m m
P Y PS4 NP \P AP NP
IV,+ v, — IV,+ IV,— 1V, 1V,— v, 1V,—
( 3 )’”+( + )‘/3‘”( 3 )y

) = by (P
S+m S+Tr+m z S+Tr+m S+m y
= (TR o (BT ) g

upon using the estimates in (A=3) and (£=); consequently
Hoo Ly © 7y

2

(] o ™) Zp- {4 . prtrmd+ ), (L prtm )}

Zp

Z/{m,n ~ Fpm Zp
Pt Ly

X
Pty

which means U2> = X

= <[h1,’yp7n],[h27')/pm]> =
Case (V). This time Equation (A23) combined with the estimates (E6) and

(B77) yields

2 2\/Ay 2

m m m m m m
AP AP AP AP » AP AP
V+ TV, — Vit V- op o+ Vi+ “V,— y

YRR = hS

ps+r+m ps+r+m I s+md T stm ps+r+m n ps+r+m n Yy
—(m2 I *)x(w X hy 2 2 ”)XW@

ab __ unL,n ~ pm Zp Zp
o that umﬂ‘b a <[h1,’ypm}’[h2,’ypm]> = 1 prZLpU pStMdZy X Pt Ly

Case (VI). Lastly, Equation (E8) in tandem with the estimates in (E29) im-

plies

" p" p™ p™ p™ p™ " p™
Avr, v, — i, — —( M+ v, — AV, 4+ T T —
|t S )Y VD't p) z+ ) Y
—pM 1T Y P 24/p"t
v P (hThy)Y" = hy X hy

T Yy
_ 0+... pstmTE4 Pt 0+... Ty
= (hl X D ) X (hl X Dy x hihsy ,

U m Z Z
hence UY?P = L & IP x L X E__ O
m,n <[h17’ypm]7[h2”ypm]> P ZyU pS T, P,

We remark in Cases (II-VI), each U3, has the form 7" x ﬁi?’") where ﬁfjj &
is obtained from quotienting H../HE = (hy, hy) with the subgroup generated

by {[Ela ’ypm]v [EQv me]}'
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Definition 4.1 Let orbp(ﬁizm)) 7 denote the orbits under the action of
L /TP in g(ozl ™ In particular, if h € ﬂf,’: ™ then wy, € orbr (ﬁi’f ’n)) consists
of the set {7”%7" ‘ 1€ Z}; we shall sometimes abuse notation, and write h

in place of wy.

4.1.3 Maps between the abelianizations of U/, ,,

We now outline the various mappings that appear in the description of ¥ and
® in [CSRVI2, Kak13]. Rather than give their full definitions, we specialise
them to the specific three-dimensional situation we are considering.

The conditions (A1)-(A3) and (M1)-(M4) in the exposition [CSRVIZ, p79-
123] degenerate into some fairly simple rules, which can be expressed in terms

of an explicit basis for the image of Kakde’s map “05 @)

”. In subsequent sec-
tions we will then study how these expressions transform, once the completed

group algebras A(L{f}ﬁn) are evaluated at a system of characters y on H.

The mapping o,,: Note that the normaliser of each subgroup U = Uy, C Goon
is the whole of G ,, so the Z,-linear map labelled ag @) in [CSRVT2, p85]

becomes

p™—1
ot AU, — AUER,) where i > 4Tl
i=0
If we use the shorthand o, for this linear mapping, clearly o,,(f) € H® (U, A(UZ,))
corresponds to the sum over the orbits of f under the action of the finite group

r/re".

Definition 4.2 For any h = hihi mod [Z/{m’mz,{mjn}} one defines A(Em,n) c

Zp [ugzl?n] by

P |z
A(Em’") = Z hi'hy where = (L + M) mod p".
i=0 Yi Y

Z;

In fact, we could alternatively have defined A(Em’") to be equal to the summation

P —1

Do v 'hy* which coincides, of course, with o,,(h); we will see that these

form a basis for Im(o,).
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Proposition 4.5 (i) Each element A(Em’n) depends only on the T-orbit of h
inside ﬁ((:onn) ;
(it) The image of 0., is freely generated over Z, [[Fpmﬂ by the A%m’") s, in other

words

(on) = 2,[17"] @z, 7, { AP

h=hi{hy mod [Up,m, Unn] };

(iii) If ri = ranky, romy (Im(om,)), then

/

Pl x (mp 4+ p —m) in Case (II)

o P2l (pmt 4 pm — 1) in Cases (III) and (IV)
Ty =

pmin{n—m,s+ordp(d)}+s—1 % <pm+1 +pm _ 1) in Case (V)

prin{n—mstrtordy (O} +s=1 s (ymtl 4 pm 1) n Case (VI).

\
Proof. Let h = h*hY mod [Up,n,Un.n], and put ' = 47k for some fixed

7, so that T has the same I'-orbit as h. By definition,

P -1 p" -1 Pl

mn —i i i T — (i) T i
A = N T = Y iy TRy = Yy Ry
=0 =0 =0

so that
p"—1 p"—1

A(Emm) _ Z ,y—iﬁ,yi _ Z ,y—(i—&-j)ﬁ,yi—i-j _ _A(E?/nm)7
i=0 i=0
which completes the proof for part (i).
To establish (i), first note that U3, = I?" x ﬁfj: ™ where ﬂ((:on’n) is the
previous quotient of H., equipped with the action of the group I' / [P part (ii)

)

now follows because ﬂg’f“ is generated by h{hj mod [Z/Imm, Z/lm’n] forx,y € Z.

Finally, to prove (iii) we just need to count the number of distinct A(ﬁm’n)’s,
which coincides with the total number of (I'/I'*")-orbits inside ﬁﬁf ™ In fact

by Burnside’s lemma,

om
#{F—orbits in ﬂf};ﬂn)} = #(F/Fpm)*l < Z# {E c ﬂf}?”) N TRy = E}_
j=1

From Proposition B4, in each case x € {ILIILIV,V,VI} one knows

Ho - X T
pN*,l Z pN*,Q Z

oo
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where N™ N*(T;) € N satisfy m 4+ s < N*(j?) <nandm+s< Nfgl) < nin all

*,1

five scenarios.

o If x =1II then ~ acts trivially on the first direct factor in ﬂ((;n’n), whence

#{F—Orbits 111 ﬂ((:ony = X ZpNI(}ml) X pN](]mg +0rdp(j)7m

pT—1

_ p—m « Zps-i—m > pn—l—ordp(j)—m _ pn+s—m > Z pordp(])
j=1 =0

=p"tT X ((po (™) Pt (™) T () +pm)>

=p" T ) p™ Hmp —m+p) = p T X (mp+p —m)
e Assuming that % # II, one discovers that
p'm
——(m,n (M) (m) .
#{F—Orbits in H;’ )} — pfm X ZpN +ordp(j)—m % pN*,z +ordp(j)—m
j=1

Now in Cases (III) and (IV), NH | =s+mand NI(T% = s+ m, and it follows

that

#{F orbits in H(m g — p*m X Zszrerordp(j)*m % ps+m+0rdp(j)fm

Similarly, one can also determine that the #{I'-orbits in ﬁf];"” ’n)} in Cases (V)

and Case (VI) are

pmin{n,ererordp(d)}+sfm71 % <pm+1 +pm . 1)

and
pmin{n,s+m+r+ordp(t)}Jrsfmfl % (perl +pm . 1)
respectively. So, we conclude that for x # I,

#{F orbits in 7—[ )} = p(NiTT) m)+(N*(,73)—m)_1 X (pm+1 +p™ — 1)

where N, *(T) and NV, *(7;) can be read off from Proposition B=4. a



53

. . . goo,n
Corollary 4.6 The number of irreducible representations of the form IndStabF(X)KHm/pn(X)
n)

n) _,.(n)

where x factors through ﬁfﬁ’") but not through ﬂﬁfj‘l’ is given by rc(,m — Ty

Proof. Note that any two characters x, x’ as above induce the same G -

,C*);

(m;n)

representation, if and only if y belongs to the I'-orbit of x inside Hom (goo

)

since the latter group is (non-canonically) isomorphic to ﬁf;nn , its ['-orbits

(m

(e}

are in one-to-one correspondence with the finite set orbr (ﬂ ’n)). It follows

immediately that
“the no. of Ind(x)'s primitive on " " = orby (™) —torbr ().

which equals 75" —r5" | because Im(oy,) = Z,[T7"]- {A(ﬁm’n) | @y, € orbr (ﬁizl ’n)) }.

O

The transfer map Ver,, ,,: Consider the subgroups U, , C Uy, of G, With
m > m'. The transfer homomorphism (Verlagerung) VerZZt;L" relative to these
subgroups maps Uf;}?m — Z/lfn'?n by sending
9 [t Ut ] =TT corr [Unmin: Un]
TER
where R is a fixed set of left coset representatives for U, / U, and g7 =
T¢Cqr With ¢g . € Up,,, and 1y € R.
Henceforth one writes Verny ., : AU ) — A(UZ,) for the Z,-linear and

continuous extension of the transfer map to the completed group algebras.

Lemma 4.7 Suppose g € U | and let § = (ypm/ Y - (h%hY) € 7" & Hoo be

m/,n’

any lift. Then

Verm’,m (g) (’Ypm )j ’ h:f/h’g/ mod [um,na Z/{m,n}

where (2',y') = (pm_m’x, pm_m/y> in Case (II), and in the same notation as

the proof of Proposition [.3:

A1
! N 0 x
= P, ot Ty P! in Case (x), with =€ {IILIV,V,VI}.
y 0 = Y
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’
Proof. Since U, , / U = re" / ['P™  its coset representatives are {7’0, r,. .. ,Tpm_m/,l}
/. /.
where r; = 47" . One can represent ¢ in the form v*" 7. (h%h}) for some choice

of j € Z,, in which case
. ™ ™'y ™ (i) (o —p™ i ™' ™ () () T g Yo
g = IR = O (R = - (R )

where o' :(IQ—i-M)pMIi !

ypm,i y
In fact, if ¢ : Z, — {0,1,...,p™ ™ — 1} so that «(z) = z mod p™ ™™, then

one has 47" 0+ = Tu(i4i) - V7 ™ (G+i=G+); consequently
gr; = nuﬂ)cwwoﬂ;m+m'<h?wqéwh>)

By definition, the transfer is congruent to

p'mfm -1
Ver, m(g) = H AP GG T (U Ui ]
=0

and as j+i = ¢(j+i) mod p™~ ™ clearly fypml(j“_‘(j“)) € I'"™  hence fypm/(j”_‘(j”))

and hy'hy’ commute modulo [um,n,um,n}. It follows that

Verm(g) = 77" hThY  mod [Upm, U]

’
m—1m

where ¢ = >0 !4+ —u(j+1), and the vector

/ . pr 1 "
o . 2y = > (L+Mm) v
Y D Yyt i=0 y

To calculate the term ¢, without loss of generality assume j € Z, which implies

pm—m’ 1 pn—m o1
. o m—mm! +1
e =Y grinin = Y |2
i=0 i=0 p
The right-hand sum then yields
pm—m/_l . . . pm—m/_l . .
7+ m—mm' J Ly)t+
O P e e P R Dl b=
i=0 p p i=0 p
pmfm/_L(j)_l pmfm/_l
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. . ! . ! ;
and as an immediate consequence, ¢ = p™ ™ x j so that 4*" ¢ = AP"J as

required.

To compute 2’ and ¢/, in Case (II) we find that

7

pm—m/71

pm—m’ 1 , 1 s - m/ m—m Ss+m pmT™m —1
" P X ip p P X
> S - ;
i=0 i=0 0 1 0 pmTm
o A0
In all other cases x € {II1,IV,V,VI} one has (12—|—M) =P, ’ ,
0 A
which means
pmfm/_l pm—rnl_l pmli
w | @ i A% 0
ST (b+ M) =p| = AR
i=0 y 0 o A

Note that Py = I, because I, + M is already diagonalised.

The result follows upon summing up the relevant geometric progression,

m

/ /., P
. m—m'_q m A —
e Db, A+ equals —5—. 0
x4+

The shift Ty, : For integers m > m/, we now look for a reverse mapping to

Ver,, . The commutator [hihS, 7" ] corresponds to ((IQ +M)P" — IQ>

’

as a vector in Z2; however X?" —1 = (X?" — 1) x [[}" .| ¢p(X) where ¢
denotes the p?-th cyclotomic polynomial, therefore

" / xl i
[hThs,~*"] = [hT Ay 4" ] with = [ ép(2+M)

Y’ d=m'+1 Y

As a consequence, we have the containments
[um,na um,n} C [Z/{m’,ru um’,n} - Hoo/ng .

The natural inclusion U,y, ,, < Uy, then yields the composition

um,n Z/{m/,n proj Z/{m/,n

T .m0 al? )
[um,nyum,n] ” [um,n7um,n] -~ [um’,nyum’,n] um "

. ab __
7Tm,m’ . Z/[m’n =

Moreover this shift homomorphism induces a map (7, )« : orbr (ﬁg:,n)) N
orbp (ﬁfjj ’n)), sending each orbit wy = {y7hy" | i € Z} to the direct image

ot (B)
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Recall from Proposition B75(ii) that a typical element of Im(o,,) has the
form
> =0 - wa AL say,
weorbr (HL ™)

where each f(X) € Z,[X] and AL = S =i for any T € .

1=0

Lemma 4.8 If m > m/, then (Z fo - é"n> = p" " X Y fao
A(mlvn)

(Wm,m/)* (W) ’

Proof. If h € w with @ € orbr (ﬂfjf ’n)), then within the algebra A(Uf,‘:i‘,n)

one has

pr-l prm -1 pm 1
Tm,m/ (fw ' Z V_ZE/VZ) = f‘W(’ypm - ]-) * Tm,m! Z Z ’Y_pm il_i2ﬁ’)/pm itz
1=0

11=0 i2=0

= fw Z Z Y 127rmm 2

11=0 12=0

/ p— ’

since Y P T (R)YP" = T (B) inside UD

mn’

which gives the result. O

The norm and trace homomorphisms: We now introduce two final maps that

occur in the definition of both of Kakde’s groups ¥ and ®. Firstly, if G is a

group and Conj(G) denotes it set of conjugacy classes, then A(Conj(G)) =

A(G) /m as an isomorphism of Z,-modules [CSRVI2, §2|. For an

integer pair m, m’ with m > m’:

e the norm mapping Kl( Uab ) — Kl( le n/[ R - n])) relative
U,

umn

,n? mn]

to the subgroup i C o T = U is abbreviated by Ny m;

] = Y

and

e similarly, the additive trace map A (Conj (Z/l,an'?,n)> — A (Conj (Z/{mm / [Z/lm/,n, Z/{m/m} ))

Z/{mn Mm’n N
T T - = U is denoted by Tt .

mn m

relative to [

The following lemma describes the effect of the second of these maps on
the image of o,,. Let charpm : A(T) — A(T?") denote the Z,-linear and
continuous extension of the map which sends 7' — ~% if p™ divides i, and

sends v¢ ~ 0 if p™ does not divide 1.
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Lemma 4.9 For any element a,y =Y _ fw(’ypm/ -1) AT € Im (o),

T m (am/) = pmfm’ XZ charppm (fw (fypm'_l)) .Agn’,n) c A (%)

where the sum is taken over all @ € orby (ﬂ((;n ’n)).

Proof. From [CSRVI2, Rk iii], one knows

o pm—m’ % ,ypmljﬁ if fypm,j c "
Tr m (Vp Jh):

0 if 4" TP
so that for any h € w:
T ( P A ) P ) T A () i e T
rm/’m "}/ . i ’ ) =
0 otherwise.

The stated formula then follows by linearity and continuity. O



Chapter 5

The Additive Calculations

We begin by recalling Kakde’s definition of the subset ¥ C [[, . Q, [[U%bn}]
given in [KakT3]. For a fixed n > s, the Z,-module ¥ consists of sequences

(am) satisfying the conditions:

(A1) Trpm (am/) = Tmm (am) for any m > m/’;

1

(A2) a, =ga,g ~ atevery g € Goop;

(A3) a,, € Im(o,,) foreachme {0,...,n—s}.

In fact, the general definition of W involves more than just this system of sub-
quotients. However for our purposes these are sufficient, as every irreducible
representation of G, is a finite twist of a representation obtained from in-

ducing down a character x on U, ,, for an appropriate choice of m and ¥.

5.1 The image of ¥ under the characters on
_(man)
Hoo
The main task is to see how ¥ transforms if we evaluate its constituent el-
ements at a system of characters x = {x} on Ho/H% . In particular, we
want to translate the conditions (A1)—-(A3) involving the a,,’s into equivalent

conditions involving a, := x(am,) instead, and thereby complete the middle
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square in the diagram

K2 [0n]) 25 @ g @®( I Zp[m?nﬂ)

Ev&\‘ lx lx _ lx
(@) ) o @®<H0x[[3tabr(x)ﬂ)

which at this stage we make no attempt to explain in detail! The objects and

maps above will be properly introduced later, although we should perhaps

point out that, in general, K{(—) := K;(—)/SK1(—) (see [SVI0, Section 4]).
The following key result describes x (V) C [[, C, [[Stabr(x)]] using p-adic

congruences.

Theorem 5.1 A collection of elements a, € Oc, [[Stabp(x)ﬂ arises from a
sequence (am) € W N [Tocpen—s Zp [[?/{,?ffnﬂ, if and only if for each m > 0 and
w € orbr (ﬁg: ’n)) :

(C1)  the compatibility x(am) = Trsep. () rem (Ay) holds if m € {m,,...,n — s},
(C2)  the equality a,, = a, holds at each character x' € T x x,

(C3) Z Trsapy () /rem (ay) - Tr (Indx*)(w) € Z, [[Fpmﬂ, and

Xemm,n

o (mn)
(C4) Z Trstaby (y)rem (@) - Tr (Indx*)(w) =0 mod porde#HL")+m—ord, ()

XERm,n

where R, , denotes a set of representatives for the I'-orbits inside Hom (ﬂf;”’”), CX) )

To calculate #ﬁfjj’"’ in property (C4) above, one just applies Proposition B4.
On the other hand, to calculate #w we use the orbit-stabilizer theorem, so

that for any h € @ one obtains
#w = [I/I"" : Stabp (k)] = [T : Stabp(h)].

Also by property (C2), an element a, depends only on the representative for x
in R, ,,, hence the last two summations in the above theorem are independent

of any choices.
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Proof. We begin with the ‘only if” part of the argument. Suppose we are given
an arbitrary element a,, € Z, [[anb,nﬂ, and let us put a&m) = x (a,,) for any
character y : Hoo — ppn (note that if Stabr(y) = I'"", then we will drop the
superscript ™ above completely). Assuming that (a,,) € ¥ N],  Z, [[Z/{ﬁffnﬂ,

we claim the following statements hold:

(m) _

(a) there are equalities ay ' = a ) for any ¥ € I"x x, where I' x x :
{9xx|geTl};
(b) we can express a, =3 __ ) i) AL | where for any h € @

one has

pm—1
C;m) = —" % Z a ( F*X) Z Xil (,yzﬁfyz)> c A(Fpm);

m
m #H XERm,n =0

(c) —ord, <#—w) = ord (#H(mn ) +m — ord,(#w) > 0;

prpHe ™

(d) Tr(Indx*)(w) = #EX-SN (vhy);

(e) one has a;’”) = Trsgapp(x)/rem (ay) for each m > my, ie. (C1) is true.
Deferring their proof temporarily, let us first understand why they yield the
three assertions in our theorem. Clearly statement (C2) is implied by (a)
with m = ord,[I" : Stabp(x)]. Moreover both (C3) and (C4) will now follow
upon combining (b), (¢), (d) and (e) together, and then observing that the

p-integrality of the Cimg i equivalent to each sum

1—‘ — .
> alm. ( *X ZX H( Zfﬂl)) = D Tstan o/ () Tr (Indx*) ()

Xemm n Xemm,n

belonging to the lattice 2 £ 7, [[17"]] = pords#HL " yem—orty (o) 7, [ 197,

We are left to prove these five assertions. Part (a) is a consequence of
property (A2). To prove statement (b), let us write a,, = Zﬁeﬁg,n) C(Em) -h
where each c(ﬁm) € A(I'*™). Since the characteristic function of h can be
decomposed into a sum over the characters of the abelian group ﬁc(;n ’n), one
can express each coefficient above as

#Hoo AL

Hpn
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Using property (A3) and Proposition B8, we know that a,, is a A(T'?")-linear

(m) .

combination of Agﬂ "’s, which indicates c- o is constant-valued for all 4 inside

a prescribed orbit w. If we denote this common value as elm )’, then

an = Y S = Y YR = Y o). L g,
weorbr (o™ hew w hew w

N.B. In this situation, the term . f—f corresponds to the coefficient ol

of A,

Now we can break Z Ay, 0E0 2 double summation - o 37 repy-

Furthermore, a;, ™ = a§< ) whenever x’ € T * x from (a), hence for any h € w@:
m 1 C1 (m
Cgﬂ ) = =~ (m,n) ' Z X 1<h)a§( : (m,n) Z Z
#Hoo Xiﬁgl’n)_)#pn #H XERmn x' €Ty

Splicing together these last two equations, we therefore conclude

> S Y ()| A

(m e
pm
w€orbp(ﬁ((;n’n>) #H XERm,n x'€Txx

Lastly 3 ey (x') 71(h) coincides with the scaled value F*X) S (v~'hy"),
which means (b) is also established.

To show part (c) is easy since the size of each orbit w € orbr (ﬂgj ’n))
divides into p™. In order to establish (d) we define p,, := Indrg’fn’;% - 2 (x), so

that p,, = @,, Ind(x)®1 where the sum is over all characters 1 : Stabr(x)/T*" —
C*. Thus for h € @ C ﬁfjf"),

p—1
[Stabr(y) : "] - Tr(Indx*) (h) = Tr( Z x (v
and the orbit-stabilizer theorem for I'/T?" acting on Hom (ﬂ((;n’n), upn) then
implies
[T TP [[:T7"] P

[Stabr (0 ] = = gemro] [T/ Stabeymm ()] #(T )’

The assertion (e) follows from property (Al): if we set m’ = m, then

Trstabp(x)/l—‘pm (aX) = X (Trml7m (am’)) bygl) X (Wm,m’ (am)) - a;m)

This completes the ‘if” portion of the ‘if and only if’ statement.
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Now, let us focus on the ‘only if” part, which means we must show that
“(Cl1) and (C2) and (C3) and (C4) = (Al) and (A2) and (A3) "
We start with establishing (A2); in fact it is enough to show that v ta,,y = a,,,
for all y € T.

By a direct computation,

#Hoo X:ﬁg’n)%ppn
1 T m
= —— ) ¥ Z x H(h) - agcm) since vy acts trivially on I'?" |
HHo

X:ﬁgﬂn)%upn

which coincides with c(ﬁm). Consequently,

lamy= D> vy =Y vy

S SN
_ (m) 17 _ (m)7Y
= Z ¢ v hy= Z o R
SN SN
On the other hand,
my _ 1 1 amy L 17
cﬁ’y - #,}T[(m,n) X Z X <h ) aX - #ﬁ(m,n) X Z (V*X) (h)
o0 X:ﬁ&n’n)%upn o X:ﬂf;”’")eupn
1 —1/7; m
= W x Y (yRx) (R - Al by (C2).
o F7(m,n)

X-Hoo —pn
which implies that c({f) = c(Em). It follows directly that
e X T S
heHL" heH™

which means that (A2) now follows.

Secondly, we try to deduce (A3). Since c%m) only depends on wy,
as c({f) = (Em), thus one can write

D D DY WD DU DR

weorbp (ﬁ(ozl’n)) hew w new

R



63

As shown before,

m 1 -1y m 1 i “(h
= —s Y WAl = — - Y Al Y ()

#Hoo X'ﬂ(m,n) #Hoo xeiﬂm,n X’GF*X
Tloo

#’}{1 Z a ™Tr(Indx*) (w) (by C2)
XERm,n

Lastly, combining (C3) and (C4) together implies

(o) FZ L gomm) %- Sl Tr(Indy) (@) € AT,
pm m H m,n
p # o0 Xean,n

so that a,, € Im(o,,).

Lemma B8 and Lemma B9 tell us that to prove (Al), it is enough to show

that for each @’ € orbp(’H(m n)),

Z cm ( #w) = p™™ x charpm (CU7).

#w' “
weorbp ('H<m n)),

(ﬂm m/) (w):w/

Without loss of generality, we assume that m’ = m — 1 for now. Then

m—1 1 m—1 ~— 7
Trrpm—l/rpm (C‘l(ﬂ’ )> == Trrpm—l/l—\pm <— X Z a(~ ) * X 1 (W(h)))

(m—1,n)

X
#% FHTE L ex

1 m— o -
= —m 2 Tpeee (@0Y) N (r(R)

#,H‘X’ i:ﬁg’:f*l’")wcx

1

= W Yo T o (Trgpan e (a0) X (7(R))
e T

where Trpm-1 /pm (TrStabp(X) /Fpmfl(afé)) = Trgiaby(5)rom (ag). Therefore, one

has
Trpmet o (O ) = —ms > &y - (w(R)
#H o THTTEM L ex
1 i _ _ o
= (m-1n) Z X(an mod U1, Um-1m]) - X" (r(h))
#Hoo X:ﬁ&nil’n)iﬁ@

On the other hand, the characteristic function of i charz(—) : I' x H + T

extends to a map

chary(—) : Zy[[I' x H]| — Z,][[T]].
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Hence one my deduce that,

Trrpmq/rpm(cg,l_l)) = char, 7 (@, mod [Uum—1,n),Uum—1,m)])

— char, ) (w(a))

> 0 e
= x chary(a,,
— (mm) #wh

wp€orbr(Hee ),

ﬂ(wﬁ):w;(ﬁ)

1 e
I i L A
@)=’ # o0 X:ﬁﬁ;”’”)HCX
/
= Z ?;Z x O™ = px charpm (C™71).

We have therefore shown that (A1) holds for m’ = m — 1, and the general

situation follows by a simple induction on m. O

5.2 A transfer-compatible basis for the set R, ,

Assume again that x € {ILIILIV,V,VI}. We can express ﬁfj:") as the double

quotient

m,n)

FTA S VAL S—
<[h177p ] ) [h277p ]>

where h; and hy denote the image inside H,/HE. of the subgroup generators

hy, hs € Hso, as outlined in the Classification Theorem.

Clearly any character y defined on ﬂi@” ™) must satisfy

([, 77") = x (B2 7™"]) = 1.

Also ﬂﬁfj’”) >~ %,w X (m) where N, fl),N f”;) € N can be read off from
* 17 P * 2 7
Proposition M, one may then write

(™) (™)

] = () and [at] = ()

for integer pairs (21, 7;) and (Z2, §2), neither of which is p-divisible in W X
P * 17

L _ . To precisely determine them, we note that the commutator [hf hY, P ]

(m)

p*,QZ
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T
corresponds to the vector ((I, + M)P" — I) inside Z, ® Z,, whence

T T e - *,1 O
T1 To _ <(]2+M)p _12) p

) . (5.1)
Ui Yo 0 p 2

To construct a basis for Hom (ﬂf;n ’n), (CX), we therefore need a pair of
characters y; and Y., sending hafj hgj to a primitive pNS;L)-th root of
unity for each j € {1,2}.

Recall the definition of the generating characters xi.,,Xxon @ Hoo — fpn

from Chapter B, namely

X1 (hih3) = exp (2nvV—1x/p") and xo,(hi{hy) = exp (2rv—1y/p").

: Lo Z7(mn) A H
As an illustration, in Case (II) we know ’H(()O = cher X = from

Proposition B4, thus one may set

XLN}}Z) (hgfhg) = X2n (hgfhg) = an and X2,N}}72> (hgfhg) = X1,54m (hfhg) = pstrm.

(5.2)

x
We will now abuse our notation, and employ x as an abbreviation for

Yy
X(hih3).
Definition 5.1 For j € {1,2}, we define characters )Zj A ﬂ(o’jf’“) = [ (m)
Vo g pFd
through:
o if%c {III,IV,V,VI}, then
N(m)
~ x p *,1 m —1 €T
T || = X ((+Mm)" - b)
' Y - 0 0 Y
and
~ T 0 0 - -1 z
Xo, N0 = Xg N s <(fz +M)" — I2> ;
S\ ’ 0 p»2 (0
o if x=1II, one uses Equation (3) instead to define Xy nim and Xy yom)-
V1 V12
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In particular, from Equation (51) we see that Xl,NEf’f) (hi*h3') = Xy n (hih) =

CprT'f) and XZNL";) (h2h¥?) = Xa ) (h9h3) = CPNSZ)’ which satisfies our stated

requirement. The main reason why we prefer using the character set {)Zl Ny Xg nr(m) }
7,1 7,2

over the more naive choice {X1 N Xy N<m>} is motivated by the following
%1 V%2

compatibility result.

Proposition 5.2 (a) The elements of Hom(ﬂf:’n),(:x) are explicitly given

by the set

(m) (m)
~e1 ~€2 N* N*
{XLN*(ZL) 'XZN,E,TS) where e; € Z/p™*1 Z and ey € Z/p"+2 Z} '

(b) If x = II and m > m’, then

i
m—m

p
XLNEZL) e} Vermlvm = (XI,NEWIL,)> and X27N,(:;) e} Verm/7m = XQ,NL"QL/).

(c) If x € {II, IV, V,VI} and m > m/, then )Zj n(m) O Verpy o = )Zj N at each
Vg

K *’j
je{L,2}.

Proof. Let us first suppose « = II. Here one has [h1,7*"] = 1 and [hy,7*"] =
—St+m —r—
By with NI(Z;) = n and N}f’? = s + m, whilst >~<1,N}}”1> (hihy) = ¢% and

(Efﬁg) = (*,,. Part (a) then follows as Xy and X

» N(m) are inde-

Xy pr(m)
X2:NH,1 1

pendent, while #ﬁ((:n) = p" - p*™. To show (b) one notes for j = 1,2 that

N

I,1 2,

’
m—1m
y op

Xj’N(m) o Vermxym X

, = by Lemma B74, in which case
! (m/,n) N(m)
II,j Hoo 7 11,5

/ ’ ’

>~<1,N(’") ((Efﬁg)pM7m ) = (an)pm_m and 922,1\/(’”) ((Eglcﬁg)pmim ): ( ;CS*m)pm = Z“’*’"“

I, 2

. N0
Let us instead suppose x € {IIL,IV,V,VI}. Since ([2+M)p =P, * Pt
0 A_
we deduce that
(m)
N(m) pN*xl
prer 0 m -1 10 . 0
<(I2+M)p _I2> - P o | P
N
0 0 0 0 0 i’pnf’ll

On the other hand, again from Lemma BEZ7 the matrix corresponding to Ver,, ,,

2l
PU
0
. AP 1 _ .
is given by P, b . P! An elementary calculation reveals the
0 -
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identities
P
(m) xo+
p]\/*71 0 - 1 )\Pml_l O . T
(B+m)" —p) p | 7t | P
0 0 0 et y
US|
N ™ A1
1 0 ppm,l 0 p;:, 0 xr
— P )\*Hr_l )‘*,+ 1 P—l
0 0 * N(le) 0 )\pm 1 *
p* *. —
R I ’
N(T"/)
(m)_ ) [ DT m! -1 x
= pN*,l _N*,l ((I2 + M)p - [2)
0 0 Y
T
These matrix identities directly imply that )217 Nm © Ver, m equals
’ Yy
pNi’nI>7N£’,nll/> pNiwlll) pm/ —1 T
(X1 ((1+ M) — 1)
- 0 0 y
Nﬁg)*Niﬁl/)
Since (X1 N(m)) = X, y(m» the above quantity is none other than
V%1 [ §
5(17N*(,,1,) , which establishes that XLN&Y) o Ver,, m = XLNYT/)‘
7 Yy

The argument for the second composition )22 e oVer,, ,, follows identical
7%, 2

lines. O

Lemma 5.3 (i) If i7" € H™ and f(X) € Z,[X], then
1192 o] 4

/

Vet (107 = 1) - Ag?) = 5 (0" = 1) - AT
172

where &',y are as in Lemma 1.

1) Using exactly the same notation,
g Y

~e ~e (m/,n) _ —(m—m’ ~e ~e (m,n)
XLIN("fl) ) X;N(sz’) (‘Aﬁfﬁg ) = P ( ) X X, (A >

! )]
LN Ao NI TR R
; ; ce1 ce2 ; g cep™ ™
unless x =11, in which case one replaces X°' . X7 . instead with X' ",
1 N* 1 27N*,2 I’N*,l

X;ZNW) on the left-hand side of this formula.

TV %2
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ZT; ; T
Proof. Let us start by establishing (i). If - ( I, + M) for all
Yi Y
i >0, then
! pmlil ’ pmlfl , ’
Very (1777 AZ) = 3 Vet (70 IVT) = 7S R
=0 —

upon applying Lemma B70. Here in Case (x) with = € {IILIV,V,VI}, the

vector
m
Lol
x p?’ﬂ x
A -1 1 ?
— ,+
= P, * om P,
, X1
yl O )\pm/ 1 yl
m
, PL
)\i + *’+/ 0 /
’ AT R i
= P, wt P; = (L+M)
i A _—1 /
0 )‘*,— —— Yy Y
Ay
m'j g (m' ) mi ™ -1 Y mj m'—m g(mn)
so that Ver,, , (7" 7 ~Aﬁzﬁy equals ¥ 7.3 Th T hy hy vt = AP p Aﬁmlﬁy,
172 1 no

(the same identity for the Verlagerung holds in Case (II) also). The result ex-
tends to the completed group algebra by linearity and continuity.
Secondly to show part (ii) is true, we first set f(X) = 1 and then evaluate

the identity from (i) at the character X?N“") -)Z?NW. We next use Proposition
7,1 T %,2

62(b)-(c) to rewrite the transformed left-hand side in terms of the powers of

Xy N and Xo N0 =



Chapter 6

The Multiplicative Calculations

To complete the proof of the main theorem, our strategy is to establish the

existence, commutativity and row-exactness of the diagram

1 = FXx G — K| (Zp[Guon]) ™5 Z,[[Conj(Gun)]] — G2, — 1

H lown let., H

1 = FfxGP, — d £ v - Gr. =1
I Ly Lx
1o Fixgh oy (@) S ()

1l 1
T] O, [Stabr ()] ( e [[Stabp(x)]]> ©,Q,  (61)

m?X m7X
The top two lines of this diagram are precisely those occurring in [CSRVIZ
p80]. The vertical arrows labelled as “x” denote evaluation at a system of

representatives R, , and as G2 = T', the whole ensemble y therefore restricts
to being the identity map on F x gggn. At this preliminary stage, we make
no attempt to explain the maps LOG, £ and L,.

From Chapter 8, the module ¥ C [], Z, [[Uﬁf’nﬂ will consist of elements
satisfying Kakde’s additive conditions (A1)-(A3). Analogously, ® C [T, Z, [[t2P,]] )

consists of those elements (ym) satisfying the multiplicative conditions (M1)-

(M4) below, which we have specialised from [CSRVIZ, p107] to our particular
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situation:
(M1) No1m (Ym—1) = Tmm—1(ym) for all m > 1;

(M2)  ym =gymg = at every g € Gooy;

(M3)  ym = Very—1.m(Ym-1) mod Im(&Tn) for each m > 1;

(V)\P (¥) \p
(M4) L)(V) — go( (Y- 1)@ > € p-Im(c®)) for every m > 0.
Nm,m+1 (ym ) Nm 1 m<ym 1)

Here in condition (M3), the homomorphism oy, : Z,[[U> ]| — Z,[[Uz>,]]

denotes the additive map sending f s S0 42" fap"

Warning: If a sequence (y,,) satisfies conditions (M1)-(M4), then its image
under £ automatically satisfies (A1)-(A3) by [CSRVI2, pl07, Lemma 4.5].

Unfortunately, because the family of abelianizations {Uﬁlb we use is

n}0<m<n s
coarser than that considered in [CSRVI2, KakT3], we cannot directly apply

the results in op. cit. to obtain a converse statement such as

(HZ uab >(A1) (A3) — <HZ uab X) (M1)-(M4)

The salvage is to show that K (Zp[[gooyn]]) splits into a direct product of
K1(Z,[I']) with with a complementary factor W;; we shall then construct
asection S :p- ¥ — Oq (WT) for which Lo S and S o L‘@w’n(m) are both
identity maps. One concludes that (y.,) arises from K{(Z,[Gw.,]) if and only
if £L((ym)) € p- ¥, which is itself equivalent to the sequence x o L£((ym))

satisfying constraints (C1)-(C4) from Theorem Bl

6.1 Convergence of the logarithm on Im(o,,)

We will shortly introduce the Taylor-Oliver logarithm, which is usually de-
fined in terms of group algebras arising from finite groups. Since the profinite
groups G, and Uy, , are both infinite, one should instead consider their finite

counterparts

G, :=T/T" x Hoo/HE and more generally UY), :=T7" /" x Hoo/HE.,
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at each integer triple m,n,v € Z with 0 < m <n — s < v. For example, L{é’yg

equals gég)n

Remark: Using Proposition B one has Z/If;}isyn = U,—sn; in other words U, ,,
is abelian. It follows that T?" acts trivially on H,/HE. for all v > n—s, so the
semi-direct products above make good sense. Whenever we write the super-
script ) above an object or a map, we mean the analogue of that object /map
for the corresponding finite group (providing the object/map descends to its

finite version, of course).

Now recall from Proposition BZ3(ii) that Im(o,,) is freely generated over Z,[T*"]
by the elements AZ"™ with @ € orby (ﬂf;” ’n)). It is therefore trivially true
that Im (o v )) must be generated over Z,[I'*" /T*"] by the same ALmhg I

w1, @y € orbr (ﬂ(o’:’”)) contain hy and hs respectively, then

—1pm—1 ) pm—1
AL AL = Z 7y Z T hyy! = Z > v by )y = A:h”
i=0 j=0 t=0 2

which belongs to the image of o). It follows that Im(afﬁ)) is an ideal of
Ly, [L{,(n” %’ab}. Iterating the above calculation /N-times, one deduces that

pm—1pm—1 p—1

A(wrrlz,n) Ag;n) WN+1 Z Z Z A(mntl E’YN

5
t1=0 t2=0 tn=0 hihs

which means for each w € orbr (ﬁ&n’n)) and element h € w,

Nl pm—1 pm—1 N+1
(m,n) — (m,n (mn
(ALY = A,,th - AL
h h 2 WN 41
t1=0 tny=0 ngw WN41EW

N+1
e Clearly if #w < p™, then (Ag,”’”)) epl. Im(ag)) Cp- Im(aﬁg)).

e Alternatively, if #w = p™ so that Stabprm (h) {71’ } then

( N+1 Z Z hwg wN+1 - Z A(mn)

an
wa ET WN 41 €@ (t1,--tN)E(Z/pmZ)ON

— t t
There are at most p™V distinct elements of the form i 7’ . N, whilst

the total number of elements in ﬂ((::’n) is p2st2mtecr if (x) #(II), where by
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Proposition B4 the term

(

0 in Cases (III),(IV)

€xp = N( )+N(m) 2s =2m = q ord,(d) in Case (V)

r+ord,(t) in Case (VI)

is independent of m and n.

_A/t]\]
"h

— t
Consequently for mN > 2s + 2m + €, , these elements h 28 will

N+1
start repeating, in which case ( S;””)) €p-Im (07(5)). Note that the latter

inequality is equivalent to N +1 > 3 + QSJF%, so we arrive at the following

estimate:
Agg%n) L Sj = J 7lzg(j)
g e plas™igee ]l Im (o). (6.2)
J
If one sets €,, = —s and n = m, a similar argument implies (62) also holds

for (%) =(II).

Proposition 6.1 (a) The two formal power serieslog(1+y) = Zﬁl(—l)j+l%

and (1+y)~" = 3222 (=1)’y’ converge for ally € Im(m(ryb)).
2S+€*’p

(b) If 6,, = FH = -‘ then for every N > 1, the logarithm induces a natural

isomorphism
— 1+Im(of NN Im ()
og : — :
1 + Im( (1/))5 -N+1 Im(o"r(;:)>5m-N+l
in particular, if p > 5 and one chooses m > 2s + €, ,, then 0, = 1 above.

(c) There are isomorphisms 1 +p- Im(am ) Log p- Im(Um ) andp- Im( )) =

1+p- Im(anl{ ) which are mutually inverse maps to one another.

Proof. To show (a) one uses the estimate (622) together with the fact that the

exponent {HQ&#J —igigg — 00 as j — oo, which implies both limj%oo(—l)j“%.j =
0 and limj%oo(jl)jyj = 0. In fact, since Im(afn)) Cp- Im( ) for j > 0,
the topology induced by the neighborhoods {Im( (V)) } jeN coincides with the
p-adic topology.

The assertion in (c) can be proved by following an identical argument to

[CSRVI2, p106], which leaves us to tackle (b).
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(m.n)
For simplicity we suppose that p > 5 and m > 2s + ¢, ,, so that W

S
Im(aﬁ,’f)) by the estimate (62), whence % € Im(aﬁ,’f)) for all y € Im(aﬁlf)).

Consider the homomorphism

t vV Im(o-ﬁrl:))N
log' : 1—|—Im(0m ) — W Rz, Qp

given by log' (14 y) := log(1+y) mod Im(ofﬁ))NH. Assuming that j7 > 1, let

us examine the p-integrality of (—1)j+197.j for each y = a;---ay € Im(m(f{))N:
. i1yl al-a (w)\NJj () N+1,

e Ifpfjthen (1)L =£7-"2 € Im(ow, )" CIm(om’)" "

e [Ifj=pthen (—1)”“% = %-a’; ceak € Im(aﬁf{))Hp(N_l) C Im(m(ﬁ))NH;

o If j =p" with k > 1, then
ph+1 ' ay * pF—pk  _p" p* )\ k+p* N—pk v)\N+1
()= @ cah -y € Im(c)) CIm(al)" .
p p
Lastly, the general case where j = p*c with p { ¢ and j > 1 reduces to the
previous cases, upon replacing y with ¢ throughout.
We therefore conclude (—1)j+1y7.j € Im(aﬁf{))NH for every y € Im(m(r'f))N
and j > 1. Because log'(1 + y) = y mod Im(aﬁ,f))NH, clearly log! : 1 +
)
)

W)\ N Im(op )N
Im(am ) — —Im(iﬁﬁ))NH

that 1+ Im(ol))* !

must be a surjective map; further, one easily checks
C Ker(log'). Assertion (b) now follows immediately for
p>5and m > 2s + €, ).

Finally, to treat assertion (b) when p = 3 or m < 2s + €,,, one simply

3+ 2s+5*,p

— then (yéTm)p € Im(ag)) for all y € Im(ar(g)),

observes that if 9, >
using the estimate (62) again. One then repeats the previous arguments,

with y replaced by y°" everywhere. O

6.2 Interaction of the theta-maps with both ¢
and log

We now derive some technical results describing how the Frobenius mapping
v and the logarithm commute with the theta-homomorphisms. Let us recall

that in our situation, the trace and norm maps from géz)n down to Z/{q(nu, ), have
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the simple description

p™—1 p"—1
Trge e (@) = D v Fay* and  Normge 4o () = [ v*ab.
k=0

Definition 6.1 (a) The additive theta-map 655" : Z, [Conj( é?n)} — L [US"]

is given by the composition

H(V)’+(—) = Tr (v)

gl n/uﬁg;/)n(—> mod [U(V) LI,S,’ZH

m,n)

(b) The multiplicative theta-map 95,1{% D K (Zy| C()Z)n}) — Zy [L{,(n'f),{ab} * s de-
fined by
0 (=) := Norm

m,n

mod [Z/lél:)n, Z/{,Sfb’)n} .

¢, u, (=)

Let ¢ : Z,[T/T?] — Z, [Qf,g)n] be the map on group algebras induced from
the sequence I'/T? 5 T'/T? x {1} < G, that identifies I'/T?" with a non-

normal subgroup of Qc(,l.f)n

Lemma 6.2 There exists a splitting of abelian groups

K(Z,[6Y.]) = z,[0/T%"]" x WT(V) sending x — (2%, 2),

where x% = 1, o 96’2@), vt = Z and the complement WT(V) = {al |z €

K (2,[Gh]) }-

Proof. Firstly 6’(()'2 coincides with the quotient mapping modulo [Z/{(gf'n), L{(gm =
n ol v L v mod HOO/ " v

Hoo/HE,. The composition I'/TP" — gc(x)n S ['/T?" equals the

identity, and this induces

N 05 ’
Ky(Z,[T/T7]) =5 Ki(Z,[90]) =5 Ka(Z,[T/T7])
which must then be the identity map on K (Z,[T/T?"]) = Z,[T/T?"]". The
latter group is therefore isomorphic to a direct factor of K; (Zp [Qél.f)n}), and

the rest follows easily. O

For a group G, the ring homomorphism ¢g : Z,[Conj(G)] — Z,[Conj(G)]
denotes the linear extension of the map [g] — [¢?] on Conj(G) (note if G is

abelian, then Conj(G) = G).
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Lemma 6.3 For all a € Q,[Conj(Gs ©) )],

D (’Ouﬁﬁl,no Trg(u)n/u<u) (o) mod [uéf%,uﬁ:%} ifm>1

m—1,n

g (a) mod [Llozl,l/lofjn] if m=0.

Proof. If m = 0, the formula is straightforward to establish.

We therefore suppose that m > 1. It is enough to consider conjugacy

classes of the form o = [7 - h| with j € Z/p"Z and h € H

generate Q, [Conj( éz)n)} .

Key Claims: (1) For all j € Z/p"Z, one has (7 - 1)’ =47 - [*2, 7" inside
v Heoo

(IT) If k, k' € Z satisfy k = k' (mod p™~'), then

e ([0 F]) = g (FR7]) mod U, U] (63)

m—1,n

Postponing their proof for the moment, one calculates that

p—1
y L by (1 y . i
Bt o pw (I R) "2 6Lt ([v’” I ])

1=0
y

i Y (TS A7 )7 mod [Ul, U] if 977 € T

0 otherwise
\
(

m—1

1S T v o mod UL U] A7 € T
0 otherwise

m—1

. m__ 1 — k » y ) )
by (I) 90“7(:11,” (73 . Zi:o 1 B! ) mod [ ,Slzl,u,(n)n} if v eI?

0 otherwise

’

) mod [MJ%,L{W'{H if 7 € TP

mll m—1

by (II) SOMT(]?Y (7] p- Zp

0 otherwise

\

= poouw, o Trge ye, (17 H]) mod U, US)).

The full lemma now follows for each m > 1, as Q, [Conj (gé?n)} is generated

by [y7 - h’s.
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It remains to establish Claims (I) and (II). To prove (I) we know that

_’YJ . .
h', in which case

Toond =

>

PN i (Fomd) T o i T A2 T (Fmd) Ty e i
y v v v y v y v

_ 72j.(ﬁj.7j).mj.ﬁ...7j.g — R

¥
L

_ 7(p_1)j.p<p72)j.m(pis)j.-- (E-”yj)'ﬁ -

I
o

by (I

@ —1 77"\ ;
To show (IT) note that the L.H.S. of (63) =" 7% - [[’2, (A" )" = ¥
ji+k . k!
Hf:_ol B , while the R.H.S. of (633) =~ - Hf:_ol B by an identical argu-

ment; one deduces that

L.H.S. of (63) v p_l_vjwk . Y o
= . A Y .~y P
RIS. of (63) | () 7

However hy = ¥ =% - h .y~ (K=K e [U(V) u

k—k'
1> mfl’n} because y €

LHS. of (B3)

""" whenever k = k' (mod p™~!), which in turn implies RIS of @ —

Wfpj

p—1 E’Yj“'k/ Thi C e .
IT—0 P . This latter product is divisible by p, in fact

L.H.S. of (E3)
R.H.S. of (63)

e Uy, u® )" c U, u®)].

Therefore L.H.S. = R.H.S. mod [L{éf ) Z/{WZH, which establishes Claim (II)

as well. 0

We now examine how the Frobenius map ¢ commutes with 9&')_17”. Consider

the sequence

et . H, ﬂ; re” y (Hoo)p . re™ y (Hoo)p
v [Z/{?S;jzl n’ uﬁle n} e [Z/{,S;/zl n’ ur(rl:ll n] 8 v [Z/{TS"Z)TH u}nl”)n]

induced from the p-power map, and the containment [uﬁfll,n,uf,;’ll,n}” —
[L{éf, )n,Z/{,(n”, )n] If we label the composition as ¢ : L{,(,’:lfz — LLSLV, %’ab, by linearly

extending ¢ one obtains

Gure - QU] = QU™ D el = D el
’ geu(u),ab geu(u),ab

m—1,n m—1,n

as a homomorphism of commutative algebras.



7

Lemma 6.4 (i) For each integer m > 1 and every x € K1 (Z,] ég)n]);

~ )
Spur(:l'i"t; ° logZp[Mgl’it;] © em—l,n(‘r)

©, w).ab (logzp[u(u),ab] ) Normgég3n/u(y> (x)) mod [Z/{,,ZL’Z1 , L{r(n”)n}

m—1,n m—1,n m—1,n

(ii) For each integer m > 0 and every x € Ky(Z, [gé?n]),

v 07(7';)71(1') v c m,v v
) = Ty " ) o Mol

where 7(™") denotes the natural inclusion Q,[I'*" /T?"] — Q, [Uy(ny,)ﬁab}.

At first glance these statements are rather technical in nature, and their
demonstrations could easily be skipped on an initial reading. However they
will become important tools for us in the next section, when we calculate the

Taylor-Oliver logarithm composed with the family of theta-maps {0%2;# } 0<m<n "

Proof. Starting with assertion (i), since [2/17(:11’“ : L{,S:llvn}p C [u'r(nV?n, , Z/{T(r’ng’L]
one deduces

@, a0 ©Tr a) mod [U V) U(”)]

m—1,n gégv)n/ufrl;ll,n(

Zuere (Trge g, (@) mod (UL, UL LT) = Gom 0602, (@)  (64)

m—1,n

for every a € Q,[Conj( C()Z)n)} . Evaluating both sides at a = log(z), it is easily

verified
SOUT(:Q?EL ] log o Normgg?n/ur(:l1,n (:B) = Spufyflfl; o Trgé:’)n/uf:llyn(log(x))
by (673) " - v
y (B Pry)ab O 07(71)712 (log(az)) = Py O log o 07(”)71”@)

To prove (ii), one simply observes that

7 0 No (02(2) = 77 o Normppor (¢ mod Hao/HE)

= Normgé‘.ﬁ?n/uﬁ,ﬁ’,% <’7’>£07V) (l’ mod HOO/HZ;Z)> mod [U(V) U,(n”,)n}

= 0% o (z mod Hoo/HE) = 0% (29).

W) () — (@) _ 05 (@)
Consequently Oy, (1) T @) T oNo (O @)

follow. O

and the two identities
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6.3 The image of the Taylor-Oliver logarithm

For a finite group G, the Taylor-Oliver logarithm LOGg : Ki(Z,[G]) —
Z,[Conj(G)] is defined by

1
LOGg(z) = logz, (x) — ypg(logzp[c] (ac))

where log; () is the unique extension of log .z, o) (see [OL8Y] for more de-
tails). Note that G need not necessarily be a p-group, even though it happens
to be so in this paper.

It G = gé?n then LOGGéZ)n denotes the v-th layer of the map ‘LOG’ oc-
curring in (60). Our task is to calculate the mappings £ and £, which make

the diagram (620) commutative. The former of these maps may be determined

from the following formulae.

Proposition 6.5 (a) I[fm e {l,...,n—s} and z € K, (Zp[[g&i?n]]), then

On

oW+ o LOG w () = log, . w.ab ()

m,n co,n Zp[um,n ] ~ 9(”)
Qoufr’:lv?‘l OUm=—1n (l’)

(b) Furthermore, if 27 = % € WT(V) then

04" o LOG ) (')

log ( O () 5 (T*(m_l’y) 0 Non—1 (0 () > )
- (v),ab Moy v * (v),ab B .
ZP[Mm,n ] 7.}5 ) ) o N07m (0((),71 (.’L’)) Mmfl n 07(71)—1,71 (.’]j)

Proof. Using the definition of the Taylor-Oliver logarithm and our previous

results,
W)+ 6 LOG () = W)+ o] (x) — 1 Wt o (1 ( ))
B ).+ (log(z)) — L oTr (log(x)) mod [U(”) L{(”)}
= Unn g P p 90115,:11," g U, g mn Umn

- 655’)7;+(10g(x)) - gp“ﬁﬁ,nolog <N0rmg<y) e (m)) mod [Z/l,(:)n,u,gfu

oo, m—1,n

by m(l) v ~ v
=00 (g, g, (@) = By © gz peren © Ol 1n(@)

= log, 40 (0%, (x)) — log, w0, <95u7<;1,;51 o 955)_1,71(93'))

which establishes assertion (a).

To prove (b), one simply combines part (a) with the formula from Lemma

BA(ii). O
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Remark: As a direct consequence, in order to make the left-hand square in the
diagram
v HQ'EV’:?”L v v
Ki(z,60) e X (e)
‘LLOGQ&? J/E(V) J"C'g)

(V)
Z,[Conj(G®,)] ™ o) Iy (g

commutative, it follows from Proposition 68(a) that one should define

)

E(V) ((y%))>m = IOgZpM(;,)ﬁab} — Ym = for all (y%)) € H Zp [uy(:,)ﬁab] x
Sour(,b"l’ibn (ymfl) 0<m<n—s

To make the right-hand square commutative, we need to work out the map
ng ) explicitly. Fix a finite order character x : Hoo — ptp factoring through

the quotient group ﬂfjj’”), which one may interpret as a homomorphism

X P UWRR o T et s F et Te T ()

m,

sending an element 7 -h to 47 - x(h). It follows that its extension to Z, [leV ),zab]

satisfies
<0(V o LOG (U) (x)) = log m X © 97(71:)71( )
n OX[I;‘Z;”] (,DFpm 1 (Xpoem 1n( ))

Moreover by Proposition EH(b), for any zf = 2 /2% € WT(V) one has

( Hin(@) (No,m_l((%é,”i(ﬂ:))))
I\ N (02 () T\ v 0 69 ()

as x acts trivially on Z,[[?"/T?"], and thus also on Nj,,_1 (Géyg(x)) and

Nom (85)(x)).

Since ygﬁ?x corresponds to y o 955%(@, the preceding formulae imply one

X (97(5,);“ o LOG W, (a:T)> = log | [

should define

(v) X
@) ( (v®) — Ym.x ) )
EK ((ym X)) 1Ogox[1;,; ] Pt (Yq(vl:) 1xp) Whefe ymx © HO {FP }

FP
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Indeed if ( ) €lL, iy X © oL (W(V)) then one can further say

(v) Nt (52))
W) ((v®) _ Ymx ) 0,m—1\Y0,1
SO = 108, [ (N_Omcy") s ( R |

re Ym=1xr

)
In fact % el+p-0O [ } for all m, so the full expression occurring
0,m
inside the logarithm in Equation (68) must automatically be congruent to 1

modulo p - Oc, [FFPTT] .

Corollary 6.6 ]f( ) € @Oon(WT(V)) and one sets (y%)x) = X((y%’{))), then
both
£wv )((y%))) € \I/(”)ﬂpHIm(aT(ﬁ)) and E(g’((yﬁg}x)) € X(W(V))HP'H Oc, [F”m/F”V}.
m m,x
Proof. To address the first assertion, Proposition B3(b) implies that
(v) N, ( (v))
m ,m yO
rw )((y(”))) = log, . <y— B b (L
m m Zp[Upn v Z/lm in v
[ } N (Yé )) ygn) 1
and as each of the two fractions inside the logarithm belongs to the group
1+p-Im(o (v )) the containment follows directly from Proposition B1(c).
To establish the second assertion, one combines the discussion after Equa-
tion (618) together with the isomorphism log : 1 + p - Oc, [I?"/I'?"] —=
p'O(cp[Fpm/pr}. O

6.4 A proof of Theorems B.1 and

Recall from earlier that if a sequence (y%)) satisfies conditions (M1)-(M4),
then its image under £ always satisfies (A1)-(A3). We shall now establish

a converse statement

L)) € p-u” = (V) e o),

If we are successful, the question as to whether or not (y,(f{)) arises from

Ky (Z [gé?n]) under the mapping @é’é)n reduces to determining whether or

not ﬁ ((ym)x)) € X (¥™). To achieve this goal, we will explicitly construct
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a section

3<">:< 11 p-Zp[U,SZ),;ab]) —>< 11 1+p-Zp[uT<,;3fb}>
(A1)-(A3)

0<m<n—s 0<m<n—s (M1)-(M4)

and SW o £W)

p~\II(V)

for which £ o S®) are the respective identity

ol (")

mappings.
To produce this map S™, first fix a sequence (a%)) € Hogmgn—sp'
Zp[ ,(ny,sz}. Recall that exp : p- Z, [Ur(,i)ﬁab} —— 1+4+p-7Z, [Z/{,E,Z),{ab} is an

isomorphism of abelian groups.

Definition 6.2 Given the sequence (agfé)) above, one recursively defines y((f’) =

1 and

)

) .= &Mf,’{l’?'il (ymly) X €XD,, 1 )by (a%)) for each m > 1,

Ym

so that (ym) eIl 1—{—p-Zp[ }{%ab}. We label this association (ag,';)) — (y%))

by S,

Lemma 6.7 (i) The composition L") o SW) is the identity map on ], p -
v),ab
Zp [ USR]

(ii) The composition S o LW yields the identity map on ], 14+p-Z, [Ur(rz)r{ab] .

Proof. To establish the first assertion, one simply calculates that

(¥)
LM o s ((aff{)))m = LY((y)) e log, wwier | = - v)
T\ Py (¥m-1)

by 62 v v
= logzpm,;%ab] <expzp[u7(;)ﬁab] (afn))> = afn).

The proof of the second assertion follows along identical lines. O

For the rest of this section, we assume that (a%)) cll.r-Z, [Z/lr(rl[ )ﬁab} satisfies
(A1)-(A3). The goal now is to prove that properties (M1)—(M4) all hold
for (yq(f{)) = S(”)((ag{))). Three of them are straightforward to deduce, but

property (M3) requires more effort.
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FEstablishing that S(”)((a%))) satisfies (M1),(M2),(M4).  Let us begin by

obtaining (M1). Since (A1) holds for the sequence (ag{)), clearly

(v) _ )
Nmfl,m © eXpr[Ufﬂ’fﬁJ (am—l) - eXpr[ur(:‘)ﬁab] © Trmfl,m (am—l)
by (A1)
= XDy )ab) © o1 (a%)) = Mmm-10 XDy ).t (ag))
i e Nm-1 ,m (}ﬂ&? 1) . Tm,m—1 (}'Srlz/))

= for each m > 1. The latter is equivalent
Nm—1,m (ga(yin) 2 ) Tm,m—1 (w(yf,? 1 )

to

u -
) = ) ¢ g (2ot

me 1 " ﬂ-m—l,m—Q (yqu)_l)

The equality between Ny, 1, (y&ll) and 7, m—1 (yfn)) now follows by induc-

tion on m, thereby yielding (M1) as a consequence.
Focussing instead on (M2), the semi-direct product structure on gé?n =

;’j;% implies the subset of Qg.f,)n—invariant elements in Z,, [Z/{T(r'f %’ab] consists

of
H (G, ZU) = HO(D.Z,U$™) = (1m(ol)[1/p]) N2, U],

Now (A2) states that a') belongs to this subset, hence y) € Im( ) [1/p] N
Zy| v 121 upon combining the recurrence in Definition B2 with induction on
m, and (M2) follows.

To show that (M4) holds true, consider the trace mapping Tr, 41 acting

on Z, [Un,. o ab] For each integer m > 0, one may decompose

Z, [U(V),ab} ~ 7 [ m+1/rp (mn)} @Ker(Tl"mm+1)

m,n

where by Lemma B9, the trace acts through multiplication by p on the first
factor and kills off the second factor.

Note that a) € p-Z o Wl{zflb} SO %Trm,mﬂ (agﬁ)) = a!) mod p-Ker(Trmi1).
Moreover the sequence (aff{)) satisfies (A3), thus p - aly) — Tt mt1 (agi)) €

p-Im (a,(f{)) and applying Proposition B

CXPy e (p . a%) — Trymi1 (a%)) € 1+p-Im (Unlz/))-
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v v ex a(u) .
It is easy to see exp (p- al) — Trm<m:+1(a£n))) = Nm,m+p1 (O :X}z;%)). Also, recalling
from earlier that exp (agﬁ:)) = ~(yz’;) % we therefore conclude
PYm=1
(v)\P I\ (v) B
() X mans (¥r) € 1+p-Im(c).

gur(:l’la})n (yi’s)*l) ’ VY — @u}:,{;ab (y7(717,/)71)

)P ) \? 1
Equivalently N(L) X @u(w,ab ((m—l))) €el+p- Im(af}?)) SO

Nmfl,m (YE::) 1
(M4) holds.
Establishing that SW) ((a,(;{))) satisfies (MS3). We begin with a technical
result describing the image of the map ) Ly, [Z/{,(,’{ %ab] — 7y [u,S;’ )n’ab} sending

f}—) ,-)/Pmllfpmli'

Lemma 6.8 For eachm € {0,...,n—s}, the I'-invariant submodule H° (T, Im(c?fn(”)))

is finitely generated over Z, [F/Fpu] by the combined set

H#w

{AS;W) w € orbp(’;'-[( ) H#w=0p } U {p A(m”

weorbp(H( ) #Hw <p }

and in particular, Im (o, ¢ ) c H°(T, Im(am( ))) - Im(E;L(”)).

Proof. Because a generator v € T' acts trivially on I'"" /T?" and through

Iy, + M on ﬂgj n),
H' (F’ Zp [ursly,)ﬁab]) = Zp [Fpm/rpy] ®z, H? <<Iz + M>7 Ly, WS:”)})

= Z,[I"" /T <Zh ‘weorbp(ﬂgj’n))>

B ew

— 7,[7" 7] - <#_w - Al

o w € orbp (ﬂg: n))>

where we have employed the basic identity A(m " = p_ Yl hAyt =
ZEIEZUF h

. H#Hoo m,n)
Now pick an element p—mh . ( Zhe n belonging to H O(<[2 +

#wh ’

M >, Ly, mf;””)} ) Then one easily sees that

m—1 p—1 pm~1i-1
#wi m,n #w g — #’W* _pym—1; = m—1;
A = LSS - N )

i
o
T.
o
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#wy pml-1 —j_ j
P 2aj=0 hoy? €

which coincides exactly with o, o ( fh) where f; =

;w

Q,[H7™]. 1t follows that p* - (ﬁ;—*

R =/ ijj’")}, and as

Al n)) € Im(om ) if and only if

> mfl_l T . m
PPy A7hy i g =p
Zh wa if #’WE < pm7

the latter condition occurs when z > 0 if #w = p™, or alternatively z >

1 if #w < p™. Therefore the union of the sets {fg ‘ #Howy = pm} and

{p Iy | #Howy < pm} will generate the [-invariant part of Im(Er\;l(V)) over

Z,[T'/T7"], as asserted.

Finally, the inclusion Im (07(5)) — H° (F,Im(&?n(”))) occurs as the genera-

tors AU of the left-hand module are p-integral multiples of generators for
the right-hand module. O

Verm—_1.m
Proposition 6.9 For each m > 1, the transfer sends p - Im(o,,_1)  ——'

Im (5;1(")) )

——(m—1,n)

Proof. If we choose any h = hihy € H,. ' and f(X) € Z,[X], then from

Lemma bB33:

7

Vet (£ = 1) - AGLI) =t (7 = 1) AT,
1 2

a:,/

where € Z2 is given in Lemma B Setting f(X) = p, it follows
/

Y
immediately that

Ver,, 1m(p A{fh: ")> — A(E?%), € Tm(o) by £ Im(E;L(”)),

Lastly applying Proposition B73(ii), we know p - Im(a(u)_l) is freely generated
over the algebra Z, [Fpm_l / pr] by the set of p - Ah hy s hence the result is

proven. (]
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Let us now establish that (M3) holds for (ygﬁ)) =SW ((a%))). For each integer

m > 2,
> (v) (v)
i by 52 Guran (Y1) X exby ) (am’)
(v) o ~ (v) (v)
Ver,, _1.m (ym71) Ver,,—1.m ((‘Ouf:l’;ﬁl (ym72) X eXpr[uT(:l,im (amfl)
(v)
~ Ym=—1 v) ()
= @, ,(v),ab » X exp (v),ab (am —Verm_l,m a,
u’mfl,n (Verm—27m—1(y1(fn)_2)) ZP[Mm,'n ] ( m—1

and the term agﬁ) —Very,_1.m (aﬁ,l:ll) €Im (8?1(”)), using Lemma B8 and Propo-

sition B9.

An identical argument to Proposition 61(b) shows that

Im(Efn(V))N o1+ Im(Efn(V))N

Im(UAfn(”))N“ 1+ Im(a.\;I(V))N-&-l

eXpr [u’r(:y)ﬁab} :

is an isomorphism for every N > 1, in which case

) )
Ym ~ Ym=1
- e X (14+d,,
Ver,,—1.m (y,(,l;),l) (puy(”ll’b" (Verm—2,m—1 (y,(ﬁ),z) ) ( )

for some d,,, € Im(c?fn(”)).

Furthermore, one easily checks the containment @u(y),ab (Im(aﬁ}ff”)) -
m—1,n

vl

Im (6;1(”)) . Therefore, if we inductively assume
Very—2,m—1 (y£r1:>_2

) —
one may conclude % el —i—Im(am( )). Property (M3) then follows

Vermfl,m (ygsll
for all m > 2 by induction. (If m = 1 the same argument works fine, except

one omits the denominator terms above.)

Proof of Theorem 2. As mentioned earlier, now that we have constructed the
section S mapping p - ¥ into @™, to check whether (y%)) arises from an
element of K; (Zp[gég?n]) it is the same as verifying if Eg’) ((y,(ﬁ)x)) € x(¥™).
However, the latter is equivalent to checking whether L(XV ) ((yﬁﬁ)x)) satisfies the
conditions (C1)—(C4) listed in Theorem 5.

Theorem 6.10 If x € {IILIV,V,VI}, then Egj)((y%’?x)) satisfies conditions

(C1)-(C4) in Theorem B if and only if:

(i) NStabF(X)/l“pm (y(myix) = y%?x at each m € {m,,...,n — s},

)

j € Lm(@),
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(ii) ym = y v whenever x' € ' x x, and

(v) (v) Tr(Indx™*)(w)

¥Yx QO(NO,m *1(3’1 ))

(iii) Nsta m ( - —
H T o) Nom (51

= 1 mod pN(m)+N(m)+m ordp(#w) | Zp [Ppm/rp”]

for every integer m € {0,...,v}, and every orbit w € orbp (H(m OO)).

Proof. If one chooses the sequence (al™) := Eg)(( W), then (C1) is
readily seen to be equivalent to (i), while condition (C2) is equivalent to

(ii). Focussing therefore on conditions (C3) and (C4), if one puts e} , =

Tr(Indy*)(w) then

D Trsuanr /e (@) - Tr(Indx*) (@) = Y €} X Trsgapy oo (2l

Xemm,n Xemm;n

) IV )
by (5T) \ Yy om—1(¥1")
B S % o X Trgpa o ©log (— P (#»

XERm,n NO,mX (Y§ )) rpY

) Nome 1 (78 V)
y 0,m,—1\Y
= logZp 2] H NStabp(X)/Fpm< N—X o Premx! <+)1

re XE€Rm,n 0,my (yl ) rp”

Recall that (C3) and (C4) together imply 37 oy Trgeapp(y)/rem (a&l’)) ‘Tr(Indy*) (@)
is congruent to zero modulo pordp(#”g ™) +m—ordy (#%) . Z,[TP" JTP"], for m €
{0,...,n — s} and at each orbit @w € orbr ('H(m n)). Now for all integers
i > 1, the mappings log : 1 + p’ - Z,[[P"/I?"] — p' - Z,[[*" /"] and
exp : p' - Z,[TP" /TP = 1+ p' - Z,[[P" /TP"] are inverse isomorphisms to

each other. As an immediate consequence,

v * or 7 m—or w Fpm
> Trguaneoyree (aY)) Tr(Indx*) (@) = 0 mod podr#H"tm-ord(#=) 7, [Fp”}

XERm,n

| | o) o(Nom (V))) Tr(Indx*) ()
Fand oty i Ty, Nounnio o (-2 20 o

longs to 1+ pordp(#ﬁgﬁn ") tm—ordy (#) . Z,|T?" /17",

Finally, both ﬁ(m’n) o F )

o0

and R,,, = R, provided that x €
{IIL,IV,V,VI}; moreover ord, (#H mn)) N( ™ N( ™) therefore the equiva-

lence is fully established. O
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The reader will notice that these congruences are independent of the choice of
n > m + s. They also behave well if we take the projective limit as v — oo,
hence one can obtain analogous congruences for the completed group algebras
Z,[[I7"]] = lm, Z,|T?" JTP"], i.e. those congruences labelled Equation (B72)
in Chapter B.

The proof of the ‘non-S-localised version” of Theorem B=2 has therefore been
completed, i.e. asequence (Y, ) € [L., Ao, (re™) * belongs to Ocoy (K1 (A(Gx)))

(v) (v (v) (v)

if and only if NStaby(x)/Fpm (me,x) - Ym,)x if m 2 m,, secondly y — Ymx

, =
m?X

for x' € T" % x, and lastly

Tr(Indx*)(w)
./\/ ( yx 90('/\[0,me1 (YI)) ) *
| | Stabr (x)/TP™ '

e(yw)  Nom,(y1)

= 1 mod pN,Ej’ll)+N*(,"2L)+mfordp(#w) ) Zp [[Fpmﬂ

XERm, 00

for every positive integer m, and at every orbit w € orbr (ﬂfjj ’OO)).

Remarks: (a) If  =II, the proof of Theorem BT runs along identical lines —
the only point of departure is that NI(Im,l) = n and NI(}Z) = s+ m, so Ryn
is no longer independent of n. Nevertheless in Case (II), the multiplicative

conditions equivalent to (C3) and (C4) are

Tr(Indx*)(w)
| | NStabr (/0 ( Yx .W(M,mxl(}ﬁ))) "

ta/ P
XERm.n o o (yvr) Nom, (y1)

=1 mod p8+2m+”_°rd”(#w) - Ly [[Fpmﬂ (6.7)

for every positive integer m < n — s, and at every orbit @w € orbr (ﬂ(ozl’n)).
(b) To transform these into the congruences labelled Equation (81), one must
calculate each of R,, ,, #w and Tr(Indx*)(w) precisely — we refer the reader
to the worked example given later in §I1, for the full details.

(c) Of course, this still only gives us a non-S-localised version of Theorem B,
describing @OO7X(K{(A(QOO))) rather than @0073%([({ (A(G)s)), which is an

issue we address below.
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Extending these congruences to the localisations.  Finally, we explain how
to extend these results from Kj (A(QOO)), to both of the Ore localisations

K{(A(Gx)s) and K{(A(Gx)s+). Let us focus first on K (A(Gwo)s), and write
90075 : K1 (A(goo)g) — H K1 (A(u;b)g)

for the corresponding collection of morphisms []6,..s, with 6,, s := Ny, (—)
mod Uy, Up,].

In order to extend the arguments in §51-§6=3 so as to produce non-abelian
congruence conditions ‘@s’ describing Im(@oo,g), one must first extend the

Taylor-Oliver logarithm to a homomorphism

—

= A
LOGg., s Ki <A(goo,n)s> — /\(goo,n)/s_\ for every n > 1,

[A(goo,n)s, A(goo,n>5]

—

where A(Goon)s denotes the Jac(Z,[Hoo,,])-adic completion of the localisation
A(Gso.n)s. This task has already been partially accomplished (see for example
and cokernel of these maps on the completion. Indeed by [CSRVIZ, Lemma
5.2], the extension of the logarithm sits inside a commutative square

—

K1(AMGson) —  Ki(MGom)s)

lLOGgoo,n lLOGgw,n,s

—

2, [[Coni(Gas,)] — —oeTeen)s

[A(goom)& A(goo,n)s]

where the horizontal arrows are induced from the natural inclusion A(Gu ) —

—

MGoon)s:

We simply observe that the properties of the Taylor-Oliver logarithm we
derived in §623 extend to the Jac(Z,[Ho,»])-adic completion if one ignores their
kernels/cokernels, and omit the details (which are anyway identical to Section
5 of op. cit.). The remainder of the proof of Theorems Bl and B2 in the
S-localised situation then follows readily, albeit the congruences in Equations

(B) and (B2) are now taken modulo p® - Z, [[I?"]] | rather than just modulo

(p)

p°* - Ly [[Fpmﬂ, and we unfortunately lose their sufficiency in the process.
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We now turn our attention to the S*-localisation, A(Gy)s+, which is less
problematic. Recall that G, has no element of order p, in which case Burns

and Venjakob [BVII, Prop 3.4] have constructed a splitting

K1 (AMGw)s) = Ki(AlGwo)s) ® Ko(Fy[Guc])-

Furthermore, there exists another commutative diagram

Ei(AGx)s)  — Ki(AGw)s) & Ko(Fy[9uc])

l®oo,8* l (©c0,5,00)

[[5(A@)s) < ] E(AUP)s) & Ko(F, U

m>0 m>0
where the map 6, : K, (Fpﬂgoo]]) — HmZO Ky (Fpﬂu;b]]) encodes how the non-
commutative p-invariant information in Ko (F,[G]) gets distributed amongst
its abelian fragments.

Thus a sequence (yz,,) lies in the image of O s+, if and only if each term
factorises into Ysim = (ygm, um) where the components (ygm) € Im(@oqg)
and (tm) € Im(6y). Note that G is a pro-p-group so that Ko(F,[G]) = Z,
and similarly Ko (F,[U2]) = Z. Consequently a tuple (u,) € [1,, Ko (F,[U])
arises from the image of © if and only if for every integer m > 0, one has

= [Goo : U] X p for some fixed p € Z.

Because the bottom arrow in the above diagram may possibly not be sur-
jective, the most one can say is that any (y?jm) € Im(@oq S*) must of necessity
satisfy (M1)-(M4). If we denote this subset of [], -, Ki (A(UEP)5~) satisfying
(M1)—(M4) by ‘@s+’, then this potential lack of surjectivity yields another ob-
struction to Oy s+ @ K (A(gw)s*) — ®s« being an isomorphism. In terms
of O x5+ = X © Oxos+ from the Introduction, this translates into the ne-
cessity of the congruences written down in Theorems B and B holding for

X(¥z5m) € [, Quot (Ao, (IP™)) *, but not their sufficiency regrettably.



Chapter 7

Some Explicit Computations

The various quantities R, ,, @ and e}  occurring in the congruences (B1)

and (B32) are easy to define in theory, but it is not quite so evident how to work
them out in practice. We shall now give a step-by-step guide to calculating
these terms algorithmically.

Step 1: We first explain how to express Xl,fo’l‘) and )22’N$> in terms of i,

and x2.,.

a

Step 2: We next explicitly list representatives for R, , in the form )21 NOh
T %1

Xz,N*(f’;)'

Step 3: We end by giving formulae to compute both #w and e} , = Tr (Indx*) (w).
The technical results corresponding to Steps 1, 2, 3 in the text below are
respectively Proposition [, Lemma [ and Lemma [Z3. We shall then give

an even more concrete description in two special situations, namely Case (II)

and Case (III) - see Corollary 72 and Corollary 3.
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Definition 7.1 (a) We set the non-negative integer pair <e[*1”1m],e[*17’2m]> equal

to

° (O, 1)

s+m
o (2T
/\IH,:i: -1
ps+m 1 1 szrm 1 1
o pm + pm 9 P - pm
2 \ My, =1 Ny =1/ 2v/d \ My, -1 My -1

. ps+m+ordp(d) I %;)—AT + 1+ 21’_@ p5+m+0rdp(d) 1 B 1
2 XNoo—1 0 -1 2y/Ay AN, —1 A -1

szrm pTJrordp(t) prJrordp(t) ps+m pTJrordp(t) prJrordp(t)
° pm + pm 3 - P - pm
20\ Mg =1 A1) 2V Ay -1 Ay -

in Cases (II), (I11), (IV), (V) and (VI) respectively.

2,m] _[2,m]

(b) Likewise, we shall define a second pair (ehl ;€55 ) by setting it equal to

° (1,0)

° O,Iji>
)‘%I,:t_l

(5 =) 7 )
2 Ny, —1 My —1)7 2 \ N7 -1 A -1

. p5+md< L1 )ps+”L<1+%+1—%>)
2VAY \ N -1 AL -1 )7 2 AL -1 A -1

T 1 1 pom Lo,
L4 m - m 9 m m
2 )‘1?/1,+ —1 /\I\D/I,— -1 2 /\]x?/1,+ -1 )‘I\J/I,— -1

again in Cases (11), (III), (IV), (V) and (VI) respectively.

Proposition 7.1 For integers n > 0, one has the character relations

(
X1 Xom if x=II
em’t o ;
X1,s4+m " X2,54+m Zf*:II]
. Jlml  lm)
X1,N§f§” - Xl,jgim : X2,I;/’+2m if %=1V
[1,m] [1,m]
X‘le,‘;im—l-ordp(d) : XS,‘;’—Q&—m-I—ordp(d) if %=V
[1,m] [1,m]

evr,1 €evr,2 e
Xl,s+m+r+ordp(t) ) X2,s+m+r+ordp(t) Zf*_ VI
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and
.

X%,s—}-m ’ Xg,s-i-m Zf*:][
ol2m]
X(l],s—‘rm : XQ,I;I—{—Qm lf*:]I[
3 Q2ml  g2ml
Xz,N*(f’;) - le;/im : XQ,I;/fm if x=I1V
[2,m] [2,m]
Xoehm  Xotim i *=V
evin _eviy
Xt,sim * Xosim U *=VIL.

Proof. The situation where x =II has already been dealt with in §62, cf.
Equation (522). Let us instead suppose x € {IIL,IV,V,VI}. We first recall from

Definition B that

- z 10 T
® Xinm = XN Tem , and
y 00 y
- z 00 T
o X27N£’"21> = XZ,N&;) 7;,m,2
Yy 01 Y

(m) m -1
where T, ,,; 1= p’\*i <(12 +M)" - [2> . Further, one can diagonalise the

y-action via

(12 + M)pm = P* Dme*il with D* = 7 and P* € GLZ(@p)
0 A_

)

The next objective is to calculate the matrices 7, ,,; on an individual, case-
by-case basis.

Case (III). Here Py = I and ]\TI(Im)1 = NI(}% = s+ m, so that

ps+m

pNg}L)] <(]2 + M)pm _ Ig) -1 _ (1+ps)pm‘_1 0
ps+m
0 p)™ 1
L. (m) _ ()
Case (IV). Here Py = and Ny = Npyy = s+ m, so that

Vi Vi

(m) m -
for each j € {1,2}, the matrix p™1vJ <([2 + M)P — 12> equals

141 1 11
s+m m m ™ mn
P My —1 0 My -1 Va \ Mgl -1 AR -1
2
\/E 1 - ml 1 ! + ml

P P P P
vl A Avaeml o Ao

-1
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1 1

5+ VAy - VAy

with Ay = d + p*" /4 € Z,, while N‘(}Z) = s+ m + ord,(d) and N‘(/fg) =s+m;

Case (V). Assume that n > s+m+ord,(d). Then Py, =

(m) m -1
consequently for each choice j € {1,2}, the matrix p™vs <([2 + M)P" — 1})

equals
o [ 2 L L Y (R E
pNva | N - A{}’_— Ay (A;+_ T Vav \ NI T T
2 d 1L 11
VAy ,\P ,\V”i—1 2VAy \ NPT -1 T
Case (VI). Assume that n > s +m + r + ord,(¢). Then one has Py; =

1 1
, while Nx(/T)1 = s+ m+r + ordy(t) and N‘(/T)Q = s+ m;

NN

-1
consequently, for each j € {1,2} the matrix p N7 (([2 + M)P" — Ig) equals

(m) 1 1 1 11
N, T + —m Tt ™
b VD A%I#_ )‘I\]/I,f_l A%IJr >‘]\'>17 1
2 1 1 1 1
prt - D D + —m
)‘1\7/1-;- 1 Ay, —1 Ay 41 Ay, —1
. ~ x
Since we know the form of each 7y ., ;, one now computes X, (m and
7,1
Y
Xo n (™) . To illustrate the calculation, suppose we are in the last case
T %, 2
Y

* =VI; then one obtains

x 1 0 T

X1 NG = Xy n0m Tvim
VI,1 VI,1 0 0

) Y

Y

ps+m+r+ordp(t) (m—i_\/ﬁ + :E—\/th)
)\pm

2 )\1‘7;; 1 VI -1
= X1,s+m+r+ordy(t) * '
0
s+m r4-ordp(t) r+ordyp (t)
p 2 p p""/ + p p""/ x
— Ayr+—1 Ayr,——1
= X1,s+m+r+ordy(t)
0
0

™ T
P

D
2vpTt \ NP 1 Ay -1

. X2,s+m+T+0rdP(t) p5+m r+ordp(t) pr+ordp(t)
VI, +
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[1,m] €T [1,m]
. evr,1 evr1,2 . .
which equals x; (7o dy () " Xo,stm-r-tordy (1) Likewise, one can
Y Y
show that
~ T 00 T
Xo N\(/T)2 = X2,5+m 7;/I,m,2
“\y 01 (1
ps+m /prt 1 _ 1 x
2 Moo=l My -1
o Xl,s—i—m 3 3
0
0 (2,m] [2,m]
. eyr,1 x eyr,2 €
: X2,s+m ps+m 1 1 - Xl,s—}—m : X275+m
m —"_ m y
2 DY Y Y

The other remaining cases » =III, x =IV and x =V follow in an analogous

fashion. O

)

For Step 2, we introduce an equivalence relation * ~ ’ on ordered pairs of

integers (a, b).

Definition 7.2 (i) If x € {III, 1V, V,VI}, then one sets

Z Z Z Z
Xmpn = {(a,b) < ( N X N ™) )—p' ( N x N )}/N
p *,1 Z p *,2 Z p *,1 Z p *,2 Z

where (a,b) ~ (a', V'), if and only if

a 0 a 0

0 b 0 ¥ (I2+M)j mod (([2+M)p7n—12> for some j € Z/p™Z.

(ii) If x = II, then one sets

7 / *
Xpn = {(a,b) € 7 X (p5+mZ> }/N

where (a,b) ~ (a’,b') if and only if a = a’ (mod p"~ ™).

The following result describes how to produce an explicit set of representatives
for R, .. Again we assume that the integer n > 0 is chosen sufficiently large

with respect to m.
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Lemma 7.2 (a) Up to isomorphism, the exact number of irreducible Guoo -

goo,n

_ induced from primitive characters
Stabr(x)xH((;n,n) (X) f p

representatz’ons py = Ind

X : 7—[ ) o~ equals
)

p"Tlx (p—1) in Case (II)

PEF=2 5 (p? — 1) in Cases (III) and (IV)
#mmm_#%mfl,n = <
prstmordp(d)=2 5 (p2 1) 4n Case (V)

prstmirtordo()=2 5 (2 1) in Case (VI).

\

(b) If we define REI™ = Ry, y— Ry_1,n for every m € {1,...,n — s}, then we
(a,0) € X |

can take as representatives for %p“m the set {X N Xg N
,2

Proof. Part (a) follows (with n > m) on combining Proposition B7A(iii) and

Corollary 3. To show (b), first suppose that x # II. Then x“ x°

NP A2 N
i e _y ' o azx ~ bx
I % (Xl,Nf"f) . Xz,Ni’?) if and only if X nm “NXo i) equals
’ ’ ay by
3 | dz ~ | Ve
X v (I, + M) / o vl (I + MY y for all z,y € Z,.
a'y Y

This latter equality is equivalent to the pair of congruences

(m)
p * ,1 —1 axr
(L + M) - 12>

ay

pr"f) -1 | dzx A
—~ 12+M —12) (I + MY mod p™ei

/

a'y
and
0 0 -1 bz
o ((12 M) - 12)
0 pte by
0 O pm —1 . b/x (m)
= o | (42" = B) (5 + My mod p+2
0 phea by

holding for all z,y € Z,; here we have exploited the construction of )21 ™)
T 1

and )22 N(m) given in Definition B1l. Because (IQ + M)pm — Iy and (I + M)j
7 %,2
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commute with each other, the above may be rewritten as a single congruence

0 m _
! ((+ )" — 1) 1
0 b
a , m -1
= (I, + MY ((12 + M) - 12> mod Matay(Z,).
0 v

Note this congruence is satisfied for some j € Z/p™Z precisely when (a,b) ~
(a',b).

Let us instead suppose that x = I1. Then )ch” N )Zg N = v x <>Z(IZ:N<W) .

*,2

~b/ . .
X2,fo§)> if and only if

ax bx d(x+pijy) | _ b (z+p°jy)

*,1 ay *,2 by *,1 a/y *,2 b/y

at every z,y € Z,. Again using Definition b7, we can rewrite this as

a b a b (z+p°5y)
Gt - Ctem = G- Cpsim for each z,y € Z,,

which is itself equivalent to the congruences

b=V (mod p™) and  a=d+jp" ™ (mod p") for some j € Z/p™Z.

These last two congruences then reduce to b = ¥ (mod p*™™) and a = d’ (
mod p"~ ™).

Therefore in all possible cases x € {ILII,IV,V,VI}, one concludes that

~a ~b ~a/ "’b/ . . . . .
. and . lie in the same I'-orbit if and only if

X1,N£f’f’ Xz,fo;) Xl,Nﬁf;” X2,N£fg) Y

(a,b) ~ (a',b). 0

Consequently Steps 1 and 2 have now been resolved, and it therefore only
remains to complete Step 3. The latter task is covered by the next result, which
enables us to compute both the size of @ and also the exponent e} _ occurring
in Theorems B0 and B2, for each orbit w and representative character y €

R
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(m

o ’n)) contains an element h = Ffﬁg, then

Lemma 7.3 (i) If w € orbr(#H

e a m Z j4
w = hlhg such that € Yy mod ((]2+M)p —_[2) it 8

b Ly "Ly

| ox
where the set Y., consists of the vectors (]2 + M)] with 7 =0,1,...,p" —1
Y
)

a

(ii) For each character x = Xl,fo?)

~b ——(m,n " .
Xy im0 Mo , the number €} . =

Tr(Indx*)(w) can be computed via the exponential sum formula

p"—1 ae[lvlm} be[Qvlm] ae[lvzm] be[272m}
m,—m *, *, x, *,
px z; exp | —2mv—1 N + NC) Tj+ N + N Y
]:

p *,1 p *,2 p *,1 p *,2
l’j j T
where the integer m, is given in Proposition [{.8, and = ([2+M)
Yj Y
for all j.

(1ii) In particular, if w consists of just the identity element, then € o =p" e

N.

Proof. To establish assertion (i), we remark that v acts on the quotient group

—(mn Hoo/HP. Z Z
<[h9fhg mod H5, 7*" ] ‘ x,y € Zp> p L pt2 4

I

[e.9]

through the matrix I, + M, hence our description for the I'-orbit follows im-

mediately.
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To show part (ii), by the definition of Tr(Indx*)(w) one calculates that

T rl o T Stabr(y)] e -
e;,w _ #(pn’: X) . Z ! (,-Y*Jh,-}/]) _ [ T anF Z X ( J_yj)
=0

Pl a b
by m, — Z < TTTYi\ < FTITYI)
= px m, Xl,N(Wll) (hl ]’L2 X XZ,N(’IS) hl hQ
=0 ’ ’

(1,m] [1,m] a [2 m] [2,m] b
by 1 m, —m x,1 *,2 <E%’E%> *,2 <_f’51 _y]>
= E ’ X . hy"h
p X, N " Xy ylm {112 X N(m 2N 112
i=0 ’
p"—1
_gelt:™l _pel2m . [1,m] _pel2m] -
— m, —m a‘e*,l *,1 (h:c] hy]> % *,2 *, (h Jhy]>
p E XLN*(m) Xl,me) 1 1t N X27N£m) 1 2
iz : : : :
and the last line is then equivalent to the stated formula.
Finally (iii) is a special case of (ii), corresponding to z = y = 0 and
T;=1Y; = 0. O

7.1 A worked example for Case (II)

We end by using Steps 1-3 to yield an explicit expression for the congruences
in Case (II). Firstly by Lemma [2(b) and Definition [A(ii), if one takes m > 1

then

9{{%}21 = {X;,n ) Xlis_,_m ’ ac Z/pnimz and b € (Z/ps+mZ)><}

while Ry ,, coincides with { Xsn-Xis|a€Z/p"Z and be Z/ pSZ}. It follows

that
H NStabF(X)/FPm ( o H H H Nm)o
XERm,n =1y, X=X3,0 XY g pmt

ptbifm’ >0

Now suppose an orbit wy, € orbr (ﬁ(m’ )) contains an element h = h h Then

ap = {v7hy |jez} = { B h y_y‘ EZ} = E-{Eipsy

j=1,--- 7pm—0rdp(y)}

in which case #wy = p™ %@ with § € {1,...,p™} chosen so that § = y (

mod p™).
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mmb

Finally, if we consider a typical character x = x5, - le,s+m X5n XY s+m

and the orbit w = wy; as above, then Lemma [3(ii) implies

Sy = P -pil exp( 2my/~1 (( ms:nb) (@ +0') + (z%) y))

=0
e bx ay pel by
= p"™" . exp | 27V — X Z exp | —2mv—1 | =
s+m pn 4 pm
7=0
b pm o if p™ | by
= pmxm~exp< 2w — < S_f:m ag)) X
P 0 if p™ 1 by.

S+m

However the exponential term exp (—27r\/—_1 ( LU ay)) is then just equal
to y ! (E) Because x = x5, XILSJFW, can be written as xY!, - x55, with e; =
P band e, = a, one calculates via Proposition B2 that m, = max{0, i, }
where

m, RS ord,, (p”_s_m,b) = m’ — ord,(b).

_1(E> . pmax{O,m’—ordp(b)} if pm’ | by
Consequently, if y = X(zl,n'le,s 4m then e;wﬁ =
0 if p™ 1 by.

Corollary 7.4 The congruences described in Equation (LX) are equivalent to

o #MNomi(v2) )
{1 T Tl < 50) Mo (30

m'=0 a=1 ,_

_ b
XFXG 0 X o4
ptbifm’ >0

= 1 mod ps+m+n+0rdp(gj) .7, [[Fpmﬂ »

for all integer pairs m,n > 0 with m < n — s, and at every choice of h =

Efﬁgeﬂf;”’”) with x € {1,...,p"} and g € {1,...,p™}.

This completes the proof of Theorem BT, in the precise form stated in the
Chapter 3.
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7.2 A worked example for Case (III)

We now turn our attention to the situation where the I'-action is scalar, and

relate our congruences to those derived by Delbourgo and Peters in [DPTH].
Proposition 7.5 If we are in Case (III), then
1. A set of representative primitive characters is given by
R = (M | (@0) € Ko |

where X, = X}, UX,,, with

m,n

= (5)
mn psZ ps—l—mZ

and

%= 2L (LY
m,n szrmZ psZ

2. For an orbit @y € orbr (ﬁf;”’”)) containing an element h = Efﬁg, we

have #og; = pm—mindords(@)ords ()} apith 7. 5 € {1,...,p™} chosen so that

=z (mod p™) and y =y (mod p™).
3. For a typical character x = thl,s+le2),s+m7

N L(R) - pOn=) i < ond (az + by)

X Wy -
0 otherwise.

Proof. First of all, the set of representatives RE™™ is abstractly described
in Proposition [, but it is not trivial to determine X,,,. From Definition

72, we know that the equivalence relation (a,b) ~ (a’,b") holds if and only if

a=d x (1+p%) (mod p*™™) and b = ' x (1 + p*)’ (mod p*™™) for some

. Z
jEpTZ'

In order to describe the set X,,, completely, we shall separate it into two

cases. In the first case, where p { a, it follows that % = (14 p®)7 (mod p**™).

At the same time, because of the fact that p* | (1 + p*)/ — 1, we deduce that

=€ 1+%. This means one may take a € {1,2,--- ,p*}NZ,; and b € pSJFLmZ.
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Similarly, in the second case for p 1 b, we may choose b € {1,2,--- ,p°}NZ) .
(Note as a part of the previous case, the sub-case that p { @ and p 1 b has already
been treated, which leaves us only with the sub-case where a € Z/p*™™Z is a
multiple of p and p 1 b.)

In general, we conclude that if p 1 a, then one may take a € (SLZ)X and

be s+mz On the other hand, if p | @ and p 1 b, then we may choose a € H,,LZ
and b € (55

) . This gives us the stated decomposition X,,,, = X}, UX,, ,
as above and completes part (i).
Looking instead at part (ii), suppose that an orbit w; € orbr (ﬁfjj ’n))

contains an element h = h h Then

oy = {7 |jez) = { Py jeZ} — 7. {E(”psy’l jeZ}
= h- {h1 (49 - hy( e ‘j € {1,2,--- min{ord,(Z), ord,( }}}
in which case #wy; = pm o (@orde@} with 7,5 € {1,...,p™} chosen so

that # = = (mod p™) and § = y (mod p™). (Note for example, if h is the

identity then #w; = 1.)

. s+m’ . .
Finally, let us put wu,, = fm, € Z,. If we consider a typical character
HLi_l
/ !
X = Xis WXI;,S ! Xl’”;;m X2f§/+m and an orbit @w = wy as above,

then Lemma [33(ii) implies

. e umqf%mﬂa Qhwpmfm%
e = 3o (2 (5 (5 )
=0

m, —m um/pm_mla . um/pm_m,b .
= pxm. Z exp (—27r\/—1 ((—pHm ) )\Jmix + (—ps+m ) )\}Hiy)>

j=0
pm—1 A
= p™m. exp <— 27T\/—_1<$(CLJJ + by)))
J=0 )‘?II +— 1
pm—1

I
=
5
ﬁ
3
XI
=
X
i
©)

A 1
Xp (— 2/ —1 (Hi;(ax + by)))
Jj=0 )‘P}H,ﬂ: 1

_ s+m/
Since A, -+ — 1 runs over the elements of 27 s+mZ and p | A2 +—1, we deduce
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that

_ p™ it m! <ord,(ax + by)
0 otherwise.
Alm, bum,

Consequently, if x = x{'%{,,Xo'et,, then m, = max{0,n — s}by Proposition

A2, in which case

xL(h) - pradOn=st if i’ < ord,(ax + by)
X Wy -
0 otherwise.

The same argument works fine if we replace x by X{ ;X5 s> since the map

¢ — (" extends linearly to yield an element of Gal(Q(u,m)/Q).

Corollary 7.6 The congruences described in Equation (82) are equivalent to

ﬁ( ﬁpﬁ/\/ ( Yx .w(Novmxl(yl))yX’”h
b=1 AN (yxp) Nom, (Y1)

m/=0

—\a )
a=1, X_Xl,s+m’ X2,s+m/

pta

[T (g 2o}

p(yw)  Nom,(y1)

—\a )
a=1, b=1, XZXY s4m! X2, s4m!

pla pfb

1 mod p23+2m+min{ordp(:i),ordp @)} . Zp [[Fpm :H

(p)

for all integer pairs m,n > 0 with m < n — s, and at every choice of h =

Whl e HO with 7,5 € {1,...,p"}.

7.2.1 Comparison with the Delbourgo-Peters congru-

€ernces

~

Recall that for all integers i > 1, the twin mappings log : 14p®-Z,[[?" /T?"] —
p' - Z,[TP" JTP"] and exp : p* - Z,[IP" /TP'] — 1+ p' - Z,[[P" /TP"] are inverse
isomorphisms to each other. Note also that, for a character x : Hoo — ppr, we

have Ch(ﬁ,)x = Trstapy () /rem (agg))'
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Now, as an example, let us further assume that a%)x = a%}xu for any

u e ZLx

~» which corresponds to the scenario considered in [DPT5].

Then #w = 1 if h is the identity, and p*~* otherwise for some v > s+1. Let
%mm denote a set of representatives for the orbits in Hom(ﬁg: ), CX) under

the natural action of Z. Taking the product over all characters in Ry, oo,

” v Tr(Indx*)(w)
e e
a X v v
N P()  Nowm, (%)

v) N o (v) Tr(Indx*)(w)
:expolog( H Nistabp (/1o (SDYX(V) ,‘P( 0,m, 1 (¥1 ))) )

- &) Nom, (7))

v) N y(u)
:exp( Z Tr(Indx*)(w) « TrStabp(X)/FPm 010g< YX( ; ‘90( 0,my 1( 1 ))))

XERmM, 00 2 (yXZ) ) NO,mX (ygV))

Recalling that

v e Nom, (Y§”)))>

Tr . m a(l/) =Tr a mOlOg
stabe 0/ (2 Stabrbo/Ly (SO(Y;?) Noan, (¥1)

from Equation B8, it follows directly that,

v v Tr(Indx™*)(w)
( o (NOmx—l(Y§’))> "
() Nom, (v1”)

IT Mstabeosrem

Xemm,oo
= exp Z Trstaby () /o™ (a;”)) - Tr(Indx ™) (e ) = exp < Z a) . Tr(Indy")(w ))

XERm, 00 XERm, 0o

pm—1

= exp Z a ,x Z X~ Hp )

XENRm, 00

p"—1 .

oo 0% S

XED}m,oo X' =x" =0

X

23
with v € m

= exp ( Z agz?x X Z Xl(l_l)”>
XERm, 00 zy

ue 1+PS+UZP

upon exploiting the fact that anZ)X = am e it uw € Z;. We may therefore
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conclude

v v Tr(Indx™*)(w)
H NSt br(x)/TP™ ( y;) . (’N’Omx_l(yg ))>) '
abp(x v v
T P(yy))  Nom, (¥1”)

(¥) Nom 1 (v _
:exp< Z Trstaby (x)/rom olog( x ( i 1(?:1 ))> X Z Xl(h)u>

e o) Nom, (v?)

1T MNswbroosrr

Xefkm,oo

v (v > x “L(h)w
(y;> o Noam, 1 (5 >>>> -
o) Nom, (v)

Lemma 7.7 The summation term above is equal to

/

o(p’**) if h € Ker(x),

E XHR) = —ptl ifh ¢ Ker(x) but h? € Ker(x),
ZX
UE —F
T 0 otherwise.

\

Proof. We begin by supposing that h € Ker(x), so that y~}(h)* = 1 for all

Zy
1+ps+uzp .

Here the sum equals the number of elements in which

u € —1+ps+”Z )

is exactly ¢(p”*%) = (p — 1)pv L.
We next consider the case where h € Ker(x) but h? € Ker(x), which means

X

that x~1(h) € p, with x~*(h) # 1. Since the group Hp%% is isomorphic to

Fx 14-pZy
p 7 14ps Ty

Z X_l(B)u _ Z (6%)11 s+u 1 Z 5

consequently

e o E€up, £41
UE T sz, UE e,
s+1/1 (§:£_1> s+1/1 (0_1> s+y1
E€E1p

Lastly, if h? ¢ Ker(x) then an easy exercise in cyclotomy shows that the sum

1S zero. O
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Corollary 7.8 Under the assumption that a,(ﬁ,)x = a%}xu Jor all w € Z, the

congruences in Theorem B3 are equivalent to:
e if h # id, one has

s+v

1 b(wm< ) ,so(No,mxl(yi“m)”
ta P v v
o PV)  Nom, (0”)

X € &m,oov
h € Ker(x)
(I./) (l/) ps+1/—l
= H NStabl«(X)/rpm ( yX(V) . (p(No’mxil((Z)l ))> mod p38+3m—u
- tp(yxp ) 'N'O:mx (yl )
X S mm,oo,
hP € Ker(x)"
e and in the trivial case, if h = id we have
) N, ) (p—1)p* !
L4 e Y s+3m

H NStabF(X)/Fpm < yx(l’) ’ ( — 1((11)1 ))> =1 mod p2 +3 3

XERm, 00 (p(yxl’ ) N07mx (y1 )

which agree (after re-normalisation) with the congruences lebelled (1.1),, 5 and

(1.2), in [DPT3].



Chapter 8

Some numerical calculations for

G Lo(F))-extensions

Let p > 3 be a prime. Consider now an elliptic curve F defined over Q without
complex multiplication. By a famous result of Serre [Ser72|, the Galois group

of Q(E[p™]) over Q is an open subgroup of GLy(Z,), i.e.
Gr = GAQUEF)/Q) < GLu(Z,).

Since GLo(Z,) = lim,,, GLy(Z/p"7Z), we may then identify Gal(Q(E[p])/Q)
with a subgroup of the finite group GLy(F,) = Aut(E|p)]).

There is an exact sequence of groups

1+ pZ pZ mo
1— Y " 5 GLy(Z,) BB GLy(F,) — 1,
DLy 1+ pZ,

which induces on the level of K-groups a sequence
14+ pZ pZ .
K, (A 3 ’ ) — K\(AMGLa(Z,))) 25 K1(Z,[GLo(F,))).
DLy 1 + pZ,

In particular, we have the commutative square

Ki(AMGal(Q(E[P™])/Q))) K (Zp|Gal(Q(E[p])/Q)])

K1(MGL2(Zy))) K1 (2| G Lo (Fp)))

pr
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where the downward arrows are induced by the inclusion Gal(Q(E[p])/Q) —
GLy(F,).
As in Chapter B, suppose there exists an element Lp € K;(A(Gw)s+)

satisfying the interpolation properties

o LR(E7P7 1) Pp(lav uil)
P, (LE) = QL (E)T 0Q_(E) @) “ep(p) - Py(p,w 1) ’

for all Artin representations
p: Gal(Q/Q) = Goo — GL(V,)

in the specific notation of Conjecture ZI4 in Chapter B. If we restrict to

considering only those p’s factoring through Gal(Q(E[p])/Q), then there is a

factorisation
K1(AGw)s) o K1(Z,[Gal(Q(E[p])/Q)]s)
D,
p
@p U {00}7

so that the value ®,(Lg) depends only on pri(Lg).
Question: How can we describe pri(Lg) inside K;(Z,|GLy(F,)]) using con-

gruences?

In fact, if one restricts to the p-primary part of K;(Z,[GLy(F,)| then the

answer is given by recent work of Kakde, which we now recall.

8.1 Review of Kakde’s GLy(F,)-paper

Let G denote the finite group GLy(IF,). In the paper [Kak17], Kakde calculated
Conj(G) explicitly and derived a relationship between the multiplicative theta-

map 6 and the additive theta-map ), via an integral logarithm.
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Let us firstly write S(G) = {Z,C,T, K}, where Z,C,T, K are the abelian

{ aEIF;}
a b
C:=<cCup= aEIF;,bEIFp

a 0
ta,d: CL,dEIFp

subgroups of GG given by

a eb
K .= {k&b =
b a

a,bEIF;}

with € € F, — )2, a non-square element. In this context, the multiplicative
theta-map is defined by
0:K\(2,[G) — ][] zU,
Ues(@)

where each component xy, indexed by the subgroup U, is given by sending
x — Normg, (¢1/z,v)(z) mod [U, U] inside Z,[U*].
Condition (F) Let yy be representations of U, and ny be integers, such that

Z nUIndng =0.

Ues(@)

Note that this sum takes place in the group of virtual characters of G. Then
we say that a tuple (zv) € [[jc5(q) Zp[U]™ satisfies (F) if and only if for any
xu and ngy as above,

H XU(Z'U)HU = 1.

Let ¢ denote the ring homomorphism induced by the p-power map g — ¢”.

Definition 8.1 Let © be the set of all tuples xy € [[yes(q) ZolU ;) which are

not torsion, and such that:
o (xy) satisfies (F);

o v; = ¢(xc)( mod pZ,[Z)).
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We should point out that C? = Z, whence ¢ : Z,[C] — Z,[C?] = Z,|Z], so the

above congruence makes good mathematical sense.

Theorem 8.1 (Thm 18,[Kak1’l]) The map 0 induces an isomorphism between

K1 (ZP[G])(p) and ©.

For the remainder of this chapter, our task is to verify this congruence numer-
ically for L, once these elements have been correctly evaluated at the trivial

character.

8.2 The basic structure of GLy(FF))

We now derive some useful facts about G La(F,), which will be needed later.
Lemma 8.2 #GLy(F,)=(p—1)*-p-(p+1).

Proof. Since G = GLy(F,), one may rewrite G as
a b
G = a,b,c,d € IF, and ad # be

0 b

a b
:{ ae]F;,b,CGIFp,d#bca_lEFP}U{

b,ceIF;,de]Fp}.
c d

To calculate the size of the full group of G, it is enough to determine the size of
the disjoint subsets above. For the first subset, we have p — 1 different choices
for a, p choices for b and ¢, and p — 1 choices for d. For the second subset, a is

fixed to be 0, we have p — 1 choices for b and ¢, and p choices for d. Therefore,

#G=@—-1)-p-p-p-D+@-1)-p—-1)-p

=(p—-17%p-(p+1)

which establishes the result.
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Lemma 8.3 The only element of S(G) that is a normal subgroup of G is Z.

x
Proof. Let A = Y be an arbitrary element in GLy(F,). Then we may
z w

undertake the following conjugations:

e For an arbitrary i, € Z, one has

a 0
Ai A7 = € Z.

0 a

a b

e Let c= € C, then
0 a
1 awzr — brz — ayz ba?
AcAt = ——
wr—y= —bz? awz + brz — ayz

It is clear that AcA~! € C if bz?> £ 0 mod p.

a 0
o Lett= € T, then
0 d
1 awzx — dyz dxy — ax
AeA-t o 1 Y Y Y
wr — Yz

awz —dwz dwr — ayz

It is clear that AcA~! & T if doy — axy # 0 mod p or awz — dwz Z 0

mod p.

a €b
o et k= € K. Then

2 2

1 awzx + bwy — ayz — ebrz ebx® — by
ARA™ = ——
wr — Yz 2 2

bw* — ebz awzr — bwy — ayz + ebrz

So AkA™' ¢ K if w? = €2?> mod p.

Clearly only Z above is a normal subgroup of G. O
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Lemma 8.4 The sizes of the subgroups Z, C', T and K are respectively:
(i) #Z =p—1;

(ii) #C = (p— L)p;

(iii) #T = (p —1)*;

(iv) #K = (p—1D(p+1).

Proof. (i) First let us consider the center Z. Since Z = {i, | a € F)},

clearly #2 = #F; =p— 1.

(ii) Next we focus on C, which contains all upper triangular matrices. Since

there are p — 1 different a’s and p choices for b, then the size of C' is

simply (p — 1)p.

(iii) Similarly, for the split Cartan subgroup 7', there are (#F,) - (#F)) =

(p — 1)? elements.

(iv) Finally, we focus on the non-split Cartan subgroup K. As all its matrices

a €b
have the form , we have to guarantee that a?—eb? # 0, otherwise

b a

it fails to be an element in GLy(F,). It turns out the only situation
we need to worry about is the case when ¢ = b = 0, thus there are

(#F,)* — 1 = p* — 1 matrices in K.

8.3 Evaluating at the trivial character

We want to translate Kakde’s G Ly (F),)-congruences into a concrete statement,

at least at the trivial character. Recall that his second congruence states that
rz = ¢(xc) mod pZ,|Z].

Question: What does this imply when we assume that x; and xz¢ are the

respective images of pry(Lg) inside Z,[Z] and Z,[C]?
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Recall the predicted p-adic interpolation properties of Lg € K1(A(GLs(Z,)))
in Chapter B. Specifically, if p: Gg — Gal(Q(E[p])/Q) — GL(V) is an Artin

representation factoring through G = GLy(F,), then

L{PNE}(E?pa 1) e ( ) . Pp(ﬁv u_l)
QBT OO (E)T 0 PP B (0T

cu e,

Lr(p) =

Now for any Galois extension K/Q with K C Q(E[p]), we can plug in the
regular representation p = regg /g of Gal(//Q). Moreover, if the field K does

not have any real embeddings then d*(p) = d~(p) = [K : Q]/2, in which case

Liny (B K, Kplu
EE(?"QQK/Q):(QJF({pE,)g-;((/ [Kl@ V| Ak |- C wl))

because p does not ramify in K so that u™/» =40 =1.
As an example, if F' = Q(E[p]) and K = FZ then K/Q is Galois as
Z < GLy(F,) by Lemma BZ3; hence the value of x; at the trivial character

should be

L(fKZ) P= EE(WQFZ/@)

o L{PNE}(E/F CFZ u- )
= (L (B)Q_(B)r b VT T Crrp(ur D)’

We should also warn the reader that F'¢ is not a Galois extension over Q (by

Lemma B33 again), so we cannot set p := reggpc g as this does not make sense.

Let us therefore abuse notation, and put

L{pNE}(E/F 1 CFC u 1)
Lire) = @ ma_myeveme VI A gy

The following statement should then follow from Kakde’s ‘mod p’ congruence:
L(zz) = L(zc) modp,

assuming the existence of the analytic element pri(Lg) € Ki(Z,[GLy(F,)]) of

course. In other words, one should have the congruence

Lipng) (E/F%, 1) Crr 1
(0 (B)Q_(E)) e DprrD/2 ] Bz |- 222

= o e (B oo
T Q4 (E)Q_(E))r-De+D)/2 ] Dpe |- SFOp\t )
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8.4 A numerical strategy for p =3

Recall that p > 3 is a prime, and let E[p] be the group of p-torsion points on the
non-CM elliptic curve E. Note that the p-torsion field Q(E[p]) is an extension
of the splitting field of the p-division polynomial, ¢, (x), whose roots are the z-
coordinates of the non-trivial p-torsion points. Using the algorithm in [Sufl6],
we constructed the splitting field of ¢,(z), and then took the appropriate
quadratic extension to obtain Q(E[p]).

Now, let F' = Q(F|[p]) be the extension of Q which contains all z-coordinates
and y-coordinates of the p-torsion points on the elliptic curve E. Assume that
Gal(Q(E[p))/Q) =& GLy(F,), and write FZ, FC, FT FX for the fixed fields of

Z,C, T, K respectively. In this setting, there is the field diagram

F=Q(E[p))
FZ
GL, (Fp) ’ p+1
FT
FC
p(p+1) FK
(p+1)(p—1)
(p—1)p

Q

We devote the rest of this chapter to numerically verifying (=) at the prime

p=3.
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Lemma 8.5 Assume that E has good ordinary reduction at p = 3, and that

F =Q(E[3)) is a GLy(F3)-extension of Q.

(i) Z is the only normal subgroup of GLo(F3) with 2 elements.

(i) Ifp= 3, then F” = Q(us).
(iii) FZ is a degree 3 extension of FC, and FZ = F°(/Ag).

Proof. (i) Suppose there exists a subgroup H inside GLy(F3) with 2 ele-

ments, e.g. H = {id, 7}. Then we must have

1 1

gidg" =id and grg~" =7 forall g € G.
It follows that H is a subset of the center Z, and as #7 = 2 clearly

H=7

(ii) For simplicity, suppose that the elliptic curve is given by the equation
y*> = 23 + Az + B. Since F = Q(¢3)(/23 + Az + B), one must have

[F: Q(v3)] =2, where H = Gal(F/Q(v3)) = Z/2Z. However Q(13)/Q
is Galois, thus H < G and H = Z by the previous argument.

(iii) Recall that for an elliptic curve E, the 3-division polynomial 13 has the
form

77[)3(1') = 31‘4 + bg[[‘g + 3()41’2 + 3b6l' + bg = 0,

where by, by, bg, bg are the coefficients defined in Chapter B, Section P
Assume that x, xo, 3, x4 are the roots of 13, and make a choice of la-
belling {i,7,k,1} = {1,2,3,4}. Serre showed in [Ser72, 48] that these

roots satisfy the relation

\3/ AE = b4 — 3(33Z.CEJ + .Tkxl).
It is clear that Q(</Ag) must be contained in Q(33), where Q(¢)3) = F?
as shown in part (ii). Therefore FC(/Ag) is a subfield of FZ, and it

must coincide with it since both fields have degree 24 over Q.

All three parts of the result have now been shown.
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In summary, one obtains the following field diagram:

F

FZ
/ 4
FC
/JJ37 Y A )

\ A

We should now point out that if L(E/F,1) = 0 then (assuming the BSD
conjecture) it will also be the case that L(E/F#,1) = 0 as F© is a subfield
of FZ. Consequently, the congruence labeled (®) is automatically true in this
situation.

We therefore searched for numerical examples with both L(E/F¢ 1) # 0
and L(E/FZ,1) # 0 using MAGMA. In fact, to cut down the number of
curves to consider, we first looked for examples with L(E/Q(us, A AY 79,1 1) #0
using the Dokchitser’s existing code. Up to conductor Ng < 400, below are
the examples that we calculated. They each confirm that Kakde’s congruence

holds numerically.

8.4.1 An example at level 128

Let p = 3, and suppose that F is the elliptic curve defined by

y2:x3—x2—x—1

which is labelled as E128C'1 in Cremona’s tables. We first calculated the

3-division polynomial

sy = 3t — 423 4 622 — 122 + 3,
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where the roots of the polynomial are just the z-coordinates of the 3-torsion
points on the curve. Then one computes its splitting field Q(v3).

Now, let us pick up a 3-torsion point P on the curve with x-coordinate x1,
a root of ¥3. We can evaluate the respective y-coordinates, £y, corresponding
to x1 on the curve. Lastly, we obtain the 3-torsion group Q(E[3]) by adjoining
Vi —af —x — 1 to Q(¢s) (if g1 is non-square), i.e. Q(E[3]) = Q(v3, 1).

Once one has determined the 3-torsion group of F, we are able to compute

the appropriate fixed fields. Recall that if H is a subgroup of G, then the fixed
field of H is
H_{recF:h(x)=aforalhecH}.

Since Gal(F/Q) = GLy(F3), and each of Z,C, T, K are subgroups of G Ly(F3),
we can therefore realize Z, C, T, K as subgroups of the automorphism group

Recall that

L (B/FZ) Craplu)
B R AR5 e N e

and

L{N }(E/F 1 CFC u- )

L P A pe

o) = e @y we VISl ey

Using MAGMA and the commands Lseries, Discriminant and TensorProduct,

we numerically calculated the L-values

LH(FZ 1) = Ly (E/F? 1)V/Apz | 12934114635
(@B (E)? | T 2048
and
«(C 1\ _ L(pNE)(E/FC’ 1)v/Apc 390051
L*(F*,1) = ~ .
(4 (B)Q_(E))* 1070
The Euler factors are easily determined to be
CFZ’p—(uj =3122% 3"+ O(3") and gFC“’—(uJ — 2786 % 3+ O(3°).
CFZ,p<w ) CFC,p@U )

Combining all this separate information together, one eventually concludes
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that
‘ CFZ,p(u_l)
gFZ,p(w_1>

12934114635 4 (pz,(u™?)
2048 9 Cpzy(wt)

L(zz) = L*(FZ1) - [[ P(E.q7")

— 1487 % 3% + O(3'9)

= [07 07 ]'727 27 1727 27 2]7

and

) CFC,p(u_l)

CFC,p(w_l)

L(zc) = L*(F°,1) - [[ P/(E,q ")

q=2
_ 390051 Cpep(u?)
~ 1070 Cre p(wt)

= —1784 % 3* + O(3")

=10,0,0,1,2,2,2,1,2],

which verifies the congruence (=) for p = 3, as predicted!

8.4.2 An example at level 248

Let us instead look at the situation in which p = 3 and F an elliptic curve
defined by

y? =2°+ 2%+ 8z
with Cremona reference £248B1.

Using the same method as the previous example, we numerically calculated

the L-values

LH(FZ.1) = Lipng) (E/F?, 1)V/Apz | 6083742632477
’ (2 (B)Q_(E))™2 2301
and
L*(FC 1) — L(pNE)(E/FCa ]-) V AFC ~ 115361
’ Q4 (B)Q_(E))* 9791

The Euler factors are easily found to be

CFZ,p(uil)
CFZ,p(wil)

CFC D (uil )

FC,p(wil)

= —1676785%3*24+-0(3%) and = —12960058636%3°+0(3%).
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Combining all this separate information together, one eventually concludes
that
CFZ (u™)
L L*(F%1 P(E, ¢ ") —2—=~
( ) H CFZ p(w 1)

_6()83742632477 167168 (pzp(u™)
B 2301 11 Cpzy(w)

= 1278287 x 3*' + O(3*®) = [0,0,0,0,0,0,0,0,0],

and

<Fc,p(u_1)
CFC,p(w_l)
115361 416844 Crep(u™)
9791 9017 CFC( 1

L(zc) = L*(F°,1) - H PE, ¢ Y-

= 12169322354 * 3% + O(3*)

=0,0,0,0,0,0,0,0,2],

which verifies the congruence (=) for p = 3, again as predicted.



Appendix A

Computer code

In this Appendix, we have included the Magma code that we used to verify

the p-adic congruences of Kakde [KakT7] for those examples in Chapter B.

1 // Returns poly who’s roots are precisely the x—coords of the
points of order m on E (this means removing factors that are n
—division polys for n dividing m)

> PrimitiveDivisionPolynomial := function (E,m)

3 local f;

] f:=DivisionPolynomial (E,m) ;

5 for d in Divisors(m) do if d gt 1 and d It m then f :=
ExactQuotient (f,$$(E,d)); end if; end for;

6 return f;

7 end function;

o // Magma really wants number fields to be defined by integral

monic polynomials, so we make sure this happens

10 IsIntegrallyDefined := function (K)
11 local f;
12 if K eq Rationals() then return true; end if;

13 if not IsAbsoluteField (K) then return false; end if;

14 f := DefiningPolynomial (K);

15 return IsMonic(f) and &and[c in Integers():c in Coefficients(f)
I

16 end function ;



®

%]

33

36

120

// Redefines a number field so that it is defined in terms of the
absolute minimal polynomial of a generator that is an
algebraic integer

MakelIntegrallyDefined := function (K)

local g;
while not IsIntegrallyDefined (K) do
g := SimpleExtension (K).1;
f := MinimalPolynomial(g);
g *:= &xPrimeDivisors (LCM([Denominator(c/LeadingCoefficient (f)
):c in Coefficients(f)]));
K:=NumberField (MinimalPolynomial(g)) ;
end while;
return K;

end function;

// Returns a pair [P,Q] of independent generators for E[m] (the
points P and Q will necessarily have order m), where E is an
elliptic curve y 2=x 3+AxB with A B in Q

// Be warned that this is painfully slow: unless the m—division
field Q(E[m]) has very small degree you will need to be
patient

TorsionField := function (E,m)

local C, K, L, EL, x1, yl1, yls, x2, y2, y2s, Q, P, S, phi, f, b,

g5

C := Coefficients (E);
assert C[1] eq 0 and C[2] eq 0 and C[3] eq 0 and C[4] in
Rationals () and C[5] in Rationals();
// To simplify matters, we require E to be in the form y 2=x
“3+AxtB with A,B in Q
phi:=PrimitiveDivisionPolynomial (E,m) ;
roots := Roots(phi);
if #roots ne Degree(phi) then
K:=SplittingField (phi);
return $$(ChangeRing (E, MakeIntegrallyDefined (K)) ,m) ;
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14 end if;

15 K:=BaseRing (E) ;

6 L:=K;

7 R<x>:=PolynomialRing (K) ;

as // Our first basis point P (of order m) will have x—coord equal
to the first root of phi

w  xl:=roots [1][1];

so f:=x"34C[4]*x+C[5];

51 yls:=Evaluate (f,x1);

52 b,yl:=IsSquare(yls); // this step is time—consuming

ss// if yl is mnot in L, extend L so that it is

54 if not b then L := NumberField (x 2—yls); end if;

55 if L ne Rationals() and not IsAbsoluteField (L) then L:=
AbsoluteField (L); end if;

56 return MakelIntegrallyDefined (L) ;

57 end function;

65 //function to find all non—square elements in GF(m)

62 NonSquare := function (m)

oo Si=[];

66 for e in GF(m) do

67 if not IsSquare(e) then
68 Include (~S,e);

69 end if;

70 end for;

71

72 return S;

73 end function;
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7o //Returns the fixed fields of Z,C,T,K.
so Fixedfields := function (E,m)

81 local F,Gal,G,A,7Z,Za,C,Ca,T,Ta,K,Ka;

82 F:=TorsionField (E,m) ;

83 Gal:=GaloisGroup (F) ;

84 G:=GL(2 ,GF(m)) ;

85 A:=AutomorphismGroup (F) ;

86 Z:=Center (G) ;

87 Za:=Center (A);

88 C:=sub<G|[[a,b, 0,a]:a in [l..m—1],b in [0..m—1]]>;
89 for i in [1..# Subgroups(A)] do

90 if IsIsomorphic(C,Subgroups(A)[i]‘subgroup) then
91 Ca:=Subgroups (A) [i] ‘subgroup;
92 end if;

93 end for;

95 T:=sub<G|[[a,0, 0,d]:a in [1..m—1],d in [1..m—1]]>;

96 for i in [1..# Subgroups(A)] do

97 if IsIsomorphic (T, Subgroups(A)[i] ‘subgroup) then

08 Ta:=Subgroups (A) [i] ‘subgroup;

9 end if;

00 end for;

101

102 Ki=sub<G|[[a,exb, b,a]:a in [1..m—1],b in [1l..m—1],e in

NonSquare (m) | >;

103 for i in [1..# Subgroups(A)] do

104 if IsIsomorphic (K, Subgroups(A)[i] ‘subgroup) then
105 Ka:=Subgroups (A) [i] ‘subgroup;

106 end if;

107 end for;

108

109

10 return [FixedField (F,Za) ,FixedField (F,Ca) ,FixedField (F,Ta) ,
FixedField (F,Ka) |;

111 end function ;
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R Ny,

114 // MAGMA code to compute L—values of elliptic curves, twisted by
regular representations factoring through the first level of F

~z and F°C.

16 // We use MAGMA's L—series functions, and methods from Tim and
Vladimir Dokchitser ’s paper 'Computations in Non—Commutative
Iwasawa Theory .

wr JLIITTTTTTTTTT D100 E i i1r71171711717

119 SetVerbose ("LSeries",0) ;
120 // Set the verbosity at 1, 2 or 3 if you want to follow progress

of the L—series functions

125 // ELLIPTIC CURVES:

125 // Worked example from Dokchitsers’ paper
126 E21 := EllipticCurve ("21a4");

128 // Other curves used by Dokchitsers

120 E11 := EllipticCurve ("11a3");

130 E20 := EllipticCurve ("'20a3"

)

131 B26 := EllipticCurve ("26al"

132 E77 := EllipticCurve

133 E19 := EllipticCurve ("19a3"

)

(
( )
( )
("77C1");
( )
( )

132 EB6 := EllipticCurve ("56b1"

)

155 B128 := EllipticCurve ("128¢cl");

137 // Set the prime p

138 p 1=3;

110 // Set the elliptic curves to use

111 for E in [E128] do
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160

161

162

163

164

165

166

167

168

169

124

5 //Find the fixed fields

time Fix:=Fixedfields (WeierstrassModel (E) ,p);

Fz:= Fix[1];

Fc:= Fix[2];

Ft:= Fix [3];

Fk:= Fix [4];

// Set the precisions

prec := 25; // ’‘prec’ is the number of digits precision for
computing the L—values.
// The higher the precision, the slower the

computations will be.

prec2 := 4; // ’'prec2’ is precision for recognising the L—values

as rational numbers

bound := 8; // ’'bound’ is the degree of precision for our p—adic

fields

YNy,

; NE:=Conductor (E) ;

LE:=LSeries (E) ;
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176

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

125

LSetPrecision (LE, prec);

77 // Check the curve is ordinary at p

apE := LGetCoefficients (LE,p) [p];

assert (apE mod p) ne 0;

5 // Create rings and fields

QQ := RationalField () ;
C<i>:=ComplexField (prec);

77 := Integers();

PCC<x> := PolynomialRing(C);
PZZ<y> := PolynomialRing (ZZ);

QQp := pAdicField (p,bound);

// ‘period’ is Omega(E,+)*Omega(E,—)

period:= Periods(E : Precision:=prec )[1l]*Im(Periods(E :

:=prec )[2]);

//Discriminant of the fields

DFz:=Abs(Discriminant (MaximalOrder (Fz)) ) ;

DFc:=Abs(Discriminant (MaximalOrder (Fc)) ) ;

// L—fucntion for the fields
LFz:=LSeries (Fz) ;

N iy,

Precision
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239

240

241

242

126

LFc:=LSeries (Fc);

> LEFz:=TensorProduct (LE,LFz,[]) ;

LSetPrecision (LEFz, prec) ;

"Coeff reqd for LEFz= ", LCfRequired (LEFz);

7 LEFc:=TensorProduct (LE,LFc, []) ;

LSetPrecision (LEFc, prec) ;

"Coeff reqd for LEFe= ", LCfRequired (LEFc);

> IEFz:=Evaluate (LEFz,1) ;

IEFc:=Evaluate (LEFc,1) ;

226 1EFz2 := Abs((lEFz*Sqrt(DFz)) / ((2%period) (Degree(Fz)
7 lIEFc2 := Abs((1EFz+Sqrt (DFc)) / ((2«period)”(Degree(Fc)

1IEFz3 := BestApproximation( Re(lEFz2), 10" prec2);

lIEFc3 := BestApproximation( Re(lEFc2), 10" prec2);

gives the value of Lx in Dokchitsers

)

paper

// Function to factorise a rational number:

function factors(a)
if a eq 0 then
return 0;

end if;

return Factorization (Numerator(a)) cat

Factorization (Denominator(a))

end function ;

1;

[ <vv[l],—vv[2]>

2w [IIIITITTTTTT DT DT LT T

div 2)));
div 2)));

//this

vv in
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225 // Dirichlet L—series of correct precision:

246

247

264

265

266

function Lchi(char)

L := LSeries(char);
LSetPrecision (L, prec);

return L;

end function

> // Dirichlet twist of E to correct precision:

function LEtwist(char)

if IsDivisibleBy (Conductor(char),2) eq true then
L := TensorProduct (LE, Lchi(char) ,[<2,5,1>]);
LSetPrecision (L, prec);
return L;
end if;
L := TensorProduct (LE, Lchi(char) ,[]) ;
LSetPrecision (L, prec);

return L;

2 end function;

T iy

 /11111111] L-FACTORS /////]/]1///]

// Compute local factor: P_q(E,Reg F,s)

function Lfactor (EE,FF,s,q)

agE := FrobeniusTraceDirect (EE,q);
if Degree(FF) eq 1 then

return (1 — aqE+(q"(=s)) + (q"(1-2%s)));

end if;
alpha, beta := Explode( [ v[1] : v in Roots(x 2—aqE*x+q)] );
degs := | Degree(w[l]) : w in Decomposition (FF,q) ];

return &x*[ 1 — (alpha™dd 4+ beta™dd)*(q (—ddx*s)) + q  (ddx(1—2xs))
dd in degs ];
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279 end function ;

251 // Local poly of Dedekind zeta of FF over the prime q

283 function Lpoly (FF,q)
284 if Degree(FF) eq 1 then

285 return (1-y);
286 end if;
257 degs := [ Degree(w[l]) : w in Decomposition (FF,q) |;

255 return &x[ 1—y"dd : dd in degs |;

280 end function

293

i [IIITTTTTTTTTTTTTDT T D001

295

207 //This gives the product of P_q at bad primes ¢

208 eulFzl := &x[ Lfactor (E,Fz,1,q) : q in PrimeDivisors (p*(ZZ!Abs(
Discriminant (E)))) ];

200 eulFz := &«+[ BestApproximation(Lfactor (E,Fz,1,q), 10 prec2) : ¢
in PrimeDivisors (p*(ZZ!Abs(Discriminant (E)))) ];

300

301

302

303

304 eulFel := &x[ Lfactor (E,Fc,1,q) : q in PrimeDivisors (p*(ZZ!Abs(
Discriminant (E)))) ];

305 eulFe = &x*[ BestApproximation(Lfactor (E,Fc,1,q), 10 prec2) : q

in PrimeDivisors (p*(ZZ!Abs(Discriminant (E)))) ];

306

308
309

310
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s JLLIITTTTETT T T DT

314 // FUNCTIONS FOR COMPUTING P—ADIC EXPANSIONS

s S/LIITTTTTLET DD DTl i rrrrrrl 7
217 /) Computes q—adic expansion of a, up to q"N
215 function padicexpansion (a,q,N)

mo v o= [];

20 a = a mod q (N+2);

321 for 1 := 0 to N do

322 v := Append(v,(a mod q));
323 a := (a—(a mod q)) div q;
324 end for;
325 return v;

326 end function ;
327

s2s // Compute a gq—adic expansion of a root of f via Hensel’s lemma

320 function hensel (f,a,q,N)

330 a := a mod q;

st v o= [a];

3322 g := Derivative(f);

333 for k := 1 to N do

334 t := —(Evaluate(f,a) div q"k) x InverseMod( Evaluate(g,a) |,
Q) ;

335 t := t mod q;

336 a = a + t*x(q k);

337 v := Append(v,t);

338 end for;

339  return v;

340 end function ;
341

3

> // Turns gq—adic expansion v back into an integer
323 function expansiontonumber (v,q)
344 ans = 0;

345 for k := 1 to #v do
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347

348

349

350

360

361

362

363

364

365

366

367

368

369

370
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ans := ans + v]k]x(q (k=1));
end for;
return ans mod p bound;

end function;

// q—adic expansion of a p—integral rational number

function fractoexp (a,q,bound)
inversel := InverseMod(Denominator(a) ,p bound);
return padicexpansion (Numerator(a)*inversel , p, bound);

end function;

s

// Write a p—adic expansion out in LaTeX

[T T T

procedure texexpansion (v)
printf "$";
for k in [1..#v] do

if v[k] ne 0 then

printf " %o0.%o0 {%o} + ",v[k],p,k—1;
end if;
end for;
printf " 4+ O(%0 {%0})$ \n",p,#v;

end procedure;

// Write the factorisation of a rational number in LaTeX

procedure texfactors(a)

; if a eq 0 then

printf "$0$ \n';

else
vv := factors(a);
printf "$";

for k in [1..#vv—1] do



385 end if ;

390

391

393

395

396

398

399

400

101

102

403

404

105

106

407

108

109

410

111

131

printf "%o {%o} . ",vv[k][1],vv[k][2];
end for;
printf "%o {%o}$ \n',vv[#vv][1],vv[#vv][2];

b

56 end procedure;;

ss SLLITTTTTTTTE T DL LT DT T T

n n n

> "E = ", CremonaReference (E) , p=",p, Precision = ", prec;

//Delta = " delta "

// SANITY CHECK: we display the prime factors of the algebraic
parts of the twisted L—values. In small test cases we do not
expect them to be divisible by enormous primes. If they are,
it is likely that the ’'BestApproximation’ function has not

identified them as the correct rational numbers.

"L(EFz,1) = ", 1EFz;
"Lx(E,Fz) = ", 1EFz2;
! = " 1EFz3;

! =", factors(lEFz3);

'L(EFc,1) = ", lEFc;
"L#(E,Fe) = ", IEFc2;
: = ", 1EFc3;

! =", factors(lEFc3);

"Check:" ,[ Denominator (lIEFz3)*1EFz2 , Denominator (1IEFc¢3 ) «1EFc2 | ;

non,
)
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414

116

417

118

119

436

437

139

440

141

443

132

"Euler factor of L(E,Fz,1) at pxDiscriminant(E) = " ,eulFz;

"Euler factor of L(E,Fc,1) at pxDiscriminant (E) = ",eulFc;

[
)

// Calculate our local roots u and w
// uu = unit root (in the ordinary case)

// ww = non—unit root

expu := hensel( y 2—apExy+p, apE, p, bound);
5 expw := hensel( y 2—apExy+p, 0, p, bound);
7 uu = QQp!expansiontonumber (expu,p);
s ww = QQp!expansiontonumber (expw,p) ;

ITTITTTETT T T rrrry

> // N.B. We have P_p(Fz,T) = 1-T, so the Euler factor in the

interpolation formula for the Coates et al p—adic L—value is
(1—inverse(u))/(l—inverse (w)). Multipling top and bottom by

p = uxw, we get = (p—w)/(p—u), which we calculate below.

Fzpoly := PZZ!(Lpoly(Fz,p) div (1-y));
EEFz := Evaluate(Fzpoly,1/uu) / Evaluate(Fzpoly,1/ww);
Fcpoly := PZZ!(Lpoly(Fc,p) div (1-y));
EEFc := Evaluate(Fcpoly,1/uu) / Evaluate(Fcpoly,1/ww);

/// XFz and XFc¢ are the values of the conjectural Coates—Fukaya—
Kato—Sujatha—Venjakob p—adic L—function at Fz and Fc

respectively
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115 XFz := EEFzxeulFzx1EFz3;

146

147 XFe

EEFcxeulFc*x1EFc3 ;
448
149
150

s L1171 RESULTS 1171111171771

R N VN A N

1514 "euler factor for Fz = ", EEFz;
155

56 "euler factor for Fc¢ = ", EEFc;
15

158 "Leal (Fz) =", XFgz;

150 padicexpansion (ZZ!XFz,p,bound) ;

n "
160

161 texexpansion (padicexpansion (ZZ!XFz,p,bound)) ;

162 :

65 "Leal (Fe) = ", XFc;
162 padicexpansion (ZZ!XFc,p,bound) ;

165 2

66 texexpansion (padicexpansion (ZZ!XFc,p,bound));

non,

467 ;

168
6o "Difference = ", XFcXFz;

470

a7 if 1EFe3 eq 0 and Valuation (XFz) gt 0 then

75 "L(E,Fc,1) is zero and Lcal(Fz) is zero mod pi, that’s OK.";
76 elif 1EFz3 eq 0 and Valuation (XFc) gt 0 then

477 'L(E,Fz,1) is zero and Lcal(Fc) is zero mod pi, that’s OK.';

78 else
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181

134

check := Valuation (XFc—XFz) gt Valuation (XFc) and

XFc—XFz) gt Valuation (XFz);
"Difference is more p—integral? ", check;

end if;

s LIS

ass end for ;

)

Valuation (
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