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Abstract

Iwasawa theory is a powerful tool which describes the mysterious relationship
between arithmetic objects (motives) and the special values of L-functions.
A precise form of this relationship is neatly encoded in the so-called "Iwa-
sawa Main Conjecture". Classically the Main Conjecture (as formulated by
Iwasawa himself) involved the behaviour of ideal class groups over cyclotomic
Zp-extensions, and related this to the Kubota-Leopoldt p-adic zeta-function.
During the last two decades, the main conjecture has been greatly generalized
to admissible p-adic Lie extensions, and provides a conjectural relationship
between L-values of motives and their associated Selmer groups.

A key component of the “Non-commutative Iwasawa Main Conjecture” in
[CFK+05] predicts the existence of an analytic p-adic L-function Lan

M inside
K1

(
Zp[[G∞]]S∗

)
. To establish the existence of such an object, we need to be

able to do two things: (1) describe K1

(
Zp[[G∞]]S∗

)
in terms of the Artin repre-

sentations factoring through G∞ using p-adic congruences, and then (2) show
for each motive that the abelian fragments satisfy these congruences.

This thesis provides a complete answer to the first task (1), in the specific
situation where the pro-p-group G∞ has dimension ≤ 3 and is torsion-free.
We completely describe K1(Zp[[G∞]]) and its localisations by using an infinite
family of p-adic congruences, where G∞ is any solvable p-adic Lie group of
dimension 3. This builds on earlier work of Kato when dim(G∞) = 2, and of
Daniel Delbourgo and Lloyd Peters when G∞ ∼= Z×p ⋉Zdp with a scalar action of
Z×p . The method exploits the classification of 3-dimensional p-adic Lie groups
due to González-Sánchez and Klopsch, as well as the fundamental ideas of
Kakde, Burns, etc. in non-commutative Iwasawa theory.

We also undertake a short study of elliptic curves over GL2(Fp)-extensions,
and compile some numerical evidence in support of the first layer congruences
predicted by Kakde [Kak17] for non-CM curves.
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Chapter 1

Introduction

Over the last twenty years, the study of non-commutative Iwasawa theory

for motives has progressed rapidly, due to the work of many mathematicians

[Bur15, BV11, CFK+05, Kak13, Kak17, Kat05, Kat06, RW06]. Fix an odd

prime p, and an infinite algebraic extension F∞/F of some number field F .

We assume that G∞ = Gal(F∞/F ) is a p-adic Lie group with no element

of order p; we further suppose that F∞ contains the cyclotomic Zp-extension

F cyc of the base field F . Clearly if H∞ = Gal
(
F∞/F

cyc), then the quotient

Γ = G∞/H∞ will be isomorphic to an open subgroup of 1 + pZp, under the

p-th cyclotomic character ‘κF ’.

For a motive M with good ordinary reduction at p, the work of Coates et al

[CFK+05] associates (under the MH(G)-conjecture) a characteristic element

ξM ∈ K1

(
Zp[[G∞]]S∗

)
, where K1(−) denotes the first algebraic K-group, the

subscript ‘ S∗ ’ means the localisation at the set S∗ =
∪
n≥0 p

nS, and here S

indicates the canonical choice of Ore set

S :=
{
f ∈ Zp[[G∞]]

∣∣∣ Zp[[G∞]]/Zp[[G∞]]f is a finitely-generated Zp[[H∞]]-module
}
.

The “Non-commutative Iwasawa Main Conjecture” predicts that there exists

an element Lan
M ∈ K1

(
Zp[[G∞]]S∗

)
of the exact form Lan

M = u · ξM with u in

the image of K1

(
Zp[[G∞]]

)
; for any Artin representation ρ : G∞ → GL(V ), its

evaluation at ρ⊗ κkF should then satisfy

Lan
M

(
ρκkF

)
= the value of the p-adic L-function Lp(M,ρ, s) at s = k,
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as the variable k ranges over the p-adic integers. Note that the existence of

Lp(M,ρ, s) is in most cases still conjectural, although its interpolation prop-

erties are easy to describe.

Remark: The strategy of Burns and Kato [Bur15, Kat06] reduces this con-

jecture to the following: (1) prove the abelian Iwasawa Main Conjectures

for M over all finite layers; (2) describe K1

(
Zp[[G∞]]S∗

)
via a system of non-

commutative congruences; and (3) show that each of the abelian fragments,

Lp(M,ρ,−), in combination satisfy this system of congruences.

There seem to be two approaches to (2), either using congruences modulo

trace ideals [Bou10, Kak13, Kat06, Kim15, RW06], or instead by deriving p-

adic congruences [DP15, DW08, DW10, Har10, Kak17, Kat05]. Naturally both

approaches should be equivalent to one another.

To illustrate precisely what is meant by the terminology ‘p-adic congru-

ences’ above, for the moment suppose that G∞ is a two-dimensional p-adic Lie

group of the form

G∞ ∼= Z×p ⋉ Zp ∼=
(
F×p × Γ

)
⋉ Zp

where Γ = 1 + pZp, and the first factor Z×p acts on the second Zp via scalar

multiplication.

Let φ : Zp[[Γ]] → Zp[[Γ]], φ : γ 7→ γp denote the linear extension of the

p-power map on Γ. At integers m ≥ m′ ≥ 0, we also write Nm′,m : Zp[[Γp
m′
]]→

Zp[[Γp
m
]] for the norm map.

Kato’s Theorem. ([Kat05, 8.12]) A sequence
(
ym
)
∈
∏

m≥0 Zp
[[
Γp

m]]×
(p)

arises from an element in K1

(
Zp[[G∞]]S

)
only if the system of p-adic congru-

ences

m∏
m′=1

Nm′,m

(
ym′

φ
(
ym′−1

) · φ(N0,m′−1
(
y0

))
N0,m′

(
y0

) )pm
′

≡ 1 mod p2m·Zp
[[
Γp

m]]
(p)

hold at every integer m ≥ 1.
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Kato has obtained similar congruences when G∞ is replaced by any of the

groups Γps ⋉Zp. His work completely describes the two-dimensional situation,

since any non-commutative torsion-free pro-p-group G with dim(G) = 2 is

isomorphic to Γp
s ⋉ Zp for some s ≥ 0.

Question. Can the analogue of Kato’s p-adic congruences be proven when

dim(G) > 2?

Our goal here is to give a positive answer when dim(G) = 3 and G ̸∼= SL2(Zp),

and G ̸∼= SL1(Dp) where Dp is a certain division algebra of rank four over Zp.

We exclude the two insolvable cases as the representation theory is unpleas-

ant, although recent work of Kakde [Kak17] provides hope that an answer for

GL2(Zp) is not too far away.

We shall also give some fragmentary numerical evidence supporting Ma-

hesh Kakde’s modulo p congruences in [Kak17], which are formulated for ellip-

tic curves over GL2(Fp)-extensions. These calculations are undertaken using

MAGMA, but for efficiency reasons we considered only p = 3 in Chapter 8.



Chapter 2

Background

Iwasawa theory is a powerful tool to study the hidden secrets contained in zeta

values. Almost 100 years after Dirichlet’s celebrated class number formula,

Iwasawa theory gave a new way to study the connection between analytic

objects and arithmetic objects, by interpreting the class number formula in

terms of Galois actions on towers of ideal class groups.

There has been much interest in the study of non-commutative Iwasawa

theory over the last decade, in particular due to the GL2-Main Conjecture

formulated by Coates et al [CFK+05]. Coates et al associated in op. cit. a

characteristic element to a certain class of finitely generated Λ(G)-modules,

where G is a p-torsion free p-adic Lie group. In this chapter, we will briefly

recall the background material necessary to set up this Main Conjecture, in

the context of elliptic curves.

2.1 The Birch and Swinnerton-Dyer Conjec-

ture

We start this section by recalling some basic facts on elliptic curves; see Sil-

verman’s book for more details [Sil09].

Definition 2.1 An elliptic curve E over a field K is a non-singular projective

curve of genus one, equipped with a specified K-rational point.
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As a consequence of the Riemann-Roch theorem, the elliptic curve can be also

described as a cubic Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ K, where OE = [0, 1, 0] is the point at infinity. If the characteristic

of K is different from 2, we can simplify the equation above by changing the

coordinate y 7→ 1
2(y−a1x−a3) , which gives a new equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6

where b2 = a21 + 4a4, b4 = 2a4 + a1a3, and b6 = a23 + 4a6. We define the

quantities,

b8 = a21a6 + 4a2a6 − a2a23 − a24,

c4 = b22 − 2b4,

c6 = −b32 + 36b2b4 − 216b6,

∆ = b22b8 − 8b34 + 9b2b4b6,

j = c34/∆,

ω = dx/(2y + a1x+ a3) = dy/(3x2 + 2a2x+ a4 − a1y)

In particular, note that

4b8 = b2b6 − b24 and 1728∆ = c34 − c26.

If the characteristic of K is different from 2 and 3, again we change the coor-

dinate via (x, y) 7→ (x − 3b2/36, y/108), thus providing the short Weierstrass

form

y2 = x3 + Ax+B

where A = 27c4, B = −54c6 and ∆ = −16(4A3 + 27B2).

Remark: Note that ∆1 is called the discriminant of E over K, which is an

important invariant of the Weierstrass form. Since E is non-singular, thus

∆ ̸= 0 and x3+Ax+B has three distinct roots. The quantity j defined above
1Clearly ∆ depends on the choice of Weierstrass model E : y2 = 4x3+ b2x

2+2b4x+ b6.
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is called the j-invariant of the elliptic curve, and ω is called the invariant

differential associated to the Weierstrass equation.

A natural question to ask about elliptic curves is, given two points on the

elliptic curve, is there a way to produce a third point? The answer is positive,

since an elliptic curve has a group structure.

Define E(K) to be the set of points on the elliptic curve E

E(K) = {P = (x, y) ∈ K ×K : y2 = x3 + Ax+B} ∪ {OE}

where OE is the point of infinity. The set E(K) forms an abelian group, with

the following properties:

1. OE is the identity element

2. If P,Q ∈ E(K) and P ̸= OE, Q ̸= OE, and R = (x, y) is the intersection

between the elliptic curve and the line passing through P and Q, then

the point P +Q = (x,−y) ∈ E(K)

3. If P = (x, y) ∈ E(K), P ̸= OE then the inverse of P is (x,−y.)

From now, we assume K is a number field (i.e. a finite extension of Q). The

first deep result concerning the group E(K) is the Mordell-Weil Theorem,

which appeared in 1922.

Theorem 2.1 (Mordell-Weil) The abelian group E(K) is finitely generated.

It follows that there is an isomorphism

E(K) ∼= ZrK ⊕ TK

where rK = rankZ(E(K)) is called the rank of E, and TK = E(K)tor is a finite

abelian group (the torsion group of E).

For a non-archimedean prime v of K, let kv denote the residue field at v.

We say that E has good reduction at v if v does not divide the discriminant

∆ = −16(4A3 + 27B2). For each finite place v, we write Ẽ for the reduction
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of E at v (which may or may not be a non-singular curve over kv), and then

define

av(E) := qv + 1−#Ẽ(kv)

where qv is the size of the finite field kv.

Definition 2.2 The local L-factor of the Hasse-Weil L-function of E at v is

the polynomial defined by

Lv(E/K,X) =



1− av(E)X + qvX
2 if E has good reduction at v

1−X if E is split multiplicative at v

1 +X if E is non-multiplicative at v

1 if E has additive reduction at v.

The Hasse-Weil L-function of E over K has the Euler product form

L(E/K, s) =
∏
v

Lv(E/K, q
−s
v )−1 for Re(s)≫ 0

where the product varies over all non-archimedean primes of K. By Hasse’s

theorem, if v is a prime of E/K of good reduction and

1− av(E)X + qvX
2 = (1− αX)(1− βX)

then |α| = |β| = √qv, and av(E) ≤ 2|√qv|. Furthermore, this result implies

that the Euler product converges in the right half plane Re(s) ≥ 3/2.

The L-series L(E/K, s) satisfies a functional equation relating the value at

s with its value at 2− s. More precisely, define the completed L-series as

Λ(E/K, s) = L(E/K, s)L∞(E/K, s),

where L∞(E/K, s) = N s/2((2π)−sΓ(s))[K:Q], with N being the conductor of E

over K. Then

Λ(E/K, s) = ωE/KΛ(E/K, 2− s), with ωE/K = ±1.

The L-series of E can also be defined in terms of the torsion points on E,

which is quite important when defining the Selmer group of E, and also in the
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proof of Mordell-Weil theorem. Let l be a rational prime, and define

Tl(E) = lim
←
Eln , Vl(E) = Tl(E)⊗Zl

Ql, H1
l (E) = Hom(Vl(E),Ql)

where the inverse limit is taken with respect to multiplication by l. Here

Tl(E) is called the l-adic Tate module, and Vl(E) denotes the l-adic Galois

representation of E.

The trace of the Frobenius morphism is equal to the coefficient av(E) we

defined above. It follows that the factor at v could be also written as

det
(
1− Frob−1v X|H1

l (E)
Iv
)∣∣∣

X=q−s
v

whence

L(E/K, s) =
∏
v

det
(
1− Frob−1v X|H1

l (E)
Iv
)−1∣∣∣

X=q−s
v

.

This description is quite useful when we define p-adic L-functions later on.

For a field K, we writeMK for the set of places of K, and Kv denotes the

completion of K at a place v; let us define

GK := Gal(K̄/K) and GKv := Gal(K̄v/Kv).

Note that both of GK and GKv are equipped with the profinite topology, and

GKv can be realised as a subgroup of GK .

Now consider the Galois module

Em := {P ∈ E(K̄) : mP = OE},

equipped with the discrete topology. There is an exact sequence of discrete

GK-modules

0→ Em → E(K̄)
[m]−−→ E(K̄)→ 0

where [m] denotes the morphism of multiplication by m on E. This induces a

short exact sequence in GK-cohomology

0→ E(K)/mE(K)
δ−→ H1(GK , Em)→ H1(GK , E(K̄))m → 0,

where H1(GK , E(K̄))m is the m-torsion in H1(GK , E(K̄)), and δ indicates the

coboundary map.
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Definition 2.3 1. The m-Selmer group of E/K is given by

Selm(E/K) = ker
(
H1(GK , Em) 7→

∏
v

H1(GKv , E(K̄v))m

)
where the product is over all places of K.

2. The Shafarevich-Tate group of E/K equals

X(E/K) := ker
(
H1(GK , E(K̄)) 7→

∏
v

H1(GKv , E(K̄v))
)
.

Hence, one obtains the short exact descent sequence

0→ E(K)/mE(K)→ Selm(E/K)→X(E/K)m → 0.

We now introduce various terms appearing the BSD conjecture. First a height

function is defined on affine points P = (x, y) in E(K), with x = r/s such

that (r, s) = 1, by setting

h(P ) = log(max{|r|, |s|}).

Also note that h(OE) = 0. Now, we exploit the naive height function to

produce a truly quadratic function, the so-called Néron-Tate height, by the

formula

ĥNT (P ) =
1

2
lim
n→∞

4−nh(2nP ).

The Néron-Tate height plays an important role in the statement of Birch and

Swinnerton-Dyer conjecture, and it satisfies the following properties:

1. 2ĥNT (P ) = h(P ) +O(1);

2. ĥNT (P ) ≥ 0 for all P ;

3. ĥNT (P ) = 0 if and only if P is a torsion point;

4. ĥNT (mP ) = m2ĥNT (P ).

One constructs the bilinear Néron-Tate non-degenerate pairing

⟨ , ⟩NT : E(K)/E(K)tors × E(K)/E(K)tors 7→ R,

via the formula ⟨P,Q⟩NT = ĥNT (P +Q)− ĥNT (P )− ĥNT (Q).
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Definition 2.4 With {P1, · · · , Pr} a Z-basis for E(K)/E(K)tor, the regulator

Reg(E/K) of E is the discriminant of the Néron-Tate pairing, ie.

Reg(E/K) := det(⟨Pi, Pj⟩NT ).

If the elliptic curve E has the Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then the archimedean period of E over K is the non-zero complex number

ΩE/K :=
s∏
i=1

∫
E(R)
|ωσi | ×

t∏
j=1

2

∫
E(C)

ωτj ∧ ω̄τj

where ω = dx/(2y + a1x + a3) is the Néron differential associated to a global

minimal Weierstrass equation, and σi and τj range over the real/complex em-

beddings of K.

Definition 2.5 For each place v of K, the Tamagawa number at v is defined

to be

cv := #(E(Kv)/E0(Kv))

where E0(Kv) is the subgroup of E(Kv) which consists of points which reduce

to non-singular points at v. Thus cv(E) = 1 if v ̸ |N .

Conjecture 2.2 (Birch, Swinnerton-Dyer) For a number field K and an el-

liptic curve E over K,

1. ords=1L(E/K, s) = rK(E);

2. the Shafarevich-Tate group X(E/K) is finite;

3. the following equality holds

lim
s→1

L(E/K, s)

(s− 1)rK(E)
=

ΩE/K ×Reg(E/K)×#X(E/K)
∏

v cv
(#E(K)tor)2

×
√

discK

Some special cases of the BSD conjectures have been proven, due to the work

of Coates-Wiles, Gross-Zagier, Kolyvagin, Rubin, and many others.

Theorem 2.3 (Coates-Wiles)[CW77] If E is an elliptic curve defined over a

quadratic imaginary extension K over Q, and if E has complex multiplication

by K with L(E/K, s) is non-zero at 1, then E(K) is finite.
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Theorem 2.4 (Kolyvagin,Gross-Zagier)[KL89, Kol07, GZ86] Let K = Q.

Then

1. If L(E/Q) ̸= 0, then both E(Q) and X(E/Q) are finite.

2. If orders=1L(E/Q, s) = 1, then X(E/Q) is finite and E(Q) has rank

one.

2.2 Iwasawa theory over Zp-extensions

The class number formula, obtained by Dirichlet and Dedekind, was considered

as the first example of a deep interplay between zeta functions and ideal class

groups. In fact Iwasawa theory, which was developed in the middle of 20th

century, is actually an upgraded version of Dirichlet’s class number formula!

Iwasawa constructed the p-adic zeta function as an element of the Iwasawa

algebra, and thereby formulated the classical Iwasawa Main Conjecture, which

was then proven by Mazur and Wiles twenty years later. Over the last thirty

years, versions of the Iwasawa Main Conjecture have been formulated for ar-

bitrary motives over Q. In this section, we will introduce the Iwasawa theory

of both Tate motives and elliptic curves, over Zp-extensions at least.

Historically, the p-adic L-function was first constructed by Kubota and

Leopoldt in the 1950’s by interpolating the Riemann zeta function ζ(s) p-

adically. Recall that a multiplicative homomorphism χ : (Z/MZ)× 7→ C×

is called a Dirichlet character modulo M . Then the χ-twisted L-function

attached to χ is given by

L(s, χ) =
∞∑
n=1

χ(n)n−s, Re(s) > 1.

Recall also the Bernoulli numbers are defined by the Taylor series expansion

t

et − 1
=

∞∑
m=0

Bm
tm

m!
,

and the generalized Bernoulli numbers by
M∑
j=1

χ(j)tejt

ent − 1
=

∞∑
m=0

Bm,χ
tm

m!
.
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The generalized Bernoulli numbers are related to the special values of χ-twisted

L-functions, as follows. For every integer m ≥ 1, we have

L(1−m,χ) = −Bm,χ

m
.

Upon interpolating these values through a fixed embedding ι : Q̄ ↪→ Q̄p,

Kubota and Leopoldt then obtained:

Theorem 2.5 ([Was97] Theorem 5.11) Let χ be a Dirichlet character. There

exists a p-adic meromorphic function (analytic if χ ̸= 1) Lp(s, χ) defined on

{s ∈ Cp : |s| < p1−
1

p−1} such that

Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n
, for all n ≥ 1.

In particular, for every n ≥ 1 we therefore have

Lp(1− n, χ) = (1− χω−n(p)pn−1)L(1− n, χω−n),

where ω : F×p 7→ µp−1 is the Teichmüller character mod p, and χω−n means the

associated primitive character. Iwasawa showed that such a p-adic L-function

belongs to an Iwasawa algebra, and he formulated his main conjecture in this

setting.

Definition 2.6 1. A Galois extension F∞ of F is called a Zp-extension if

Gal(F∞/F ) ∼= Zp.

2. If Γ = Gal(F∞/F ) ∼= Zp, then the Iwasawa algebra Λ(Γ) = Zp[[Γ]] is

defined to be the inverse limit lim←−m Zp
[
Γ/Γp

m].
As an example, consider G∞ = Gal(Q(ζp∞)/Q), where Q(ζp∞) = ∪n≥1Q(ζpn).

Then Λ(G∞) = Zp[[G∞]], which is isomorphic to p − 1 copies of Zp[[T ]], the

ring of formal power series over Zp. Let us henceforth abbreviate Λ(Γ) just by

Λ.
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Proposition 2.6 Let X be a finitely generated Λ-module. Then there exists

e, s, t, nj,mi ∈ Z, and irreducible distinguished polynomials fj(T ) ∈ Zp[T ],

such that

X ∼ Λr ⊕
( s⊕

i=1

Λ/pmiΛ
)
⊕
( t⊕
j=1

Λ/fj
njΛ
)

where ∼ means a pseudo-isomorphism of Λ-modules.

A proof of this proposition can be found in Washington’s book [Was97].

The rank of X is just written as rankΛ(X) = r. The µ-invariant equals

µ(X) =
∑s

i=1mi, and the λ-invariant is given by λ(X) =
∑t

j=1 nj · deg(fj).

Lastly, the characteristic power series of X is defined to be

CharΛ(X) = pµ(X) ·
t∏

j=1

f
nj

j ,

which is well-defined up to an element of Λ×, of course.

Main Conjecture If X = Homcont(Gal(M∞/Q(ζp∞)),Qp/Zp), where M∞ is

the maximal abelian pro-p-extension of Q(ζp∞) unramified outside p, then the

characteristic power series of the ωi-eigenspace for X , i.e.

X (ωi) =
1

p− 1

∑
σ∈Gal(Q(ζp)/Q)

ω−i(σ) · X
∣∣σ,

equals the p-adic zeta-function Lp(ω1−i) for each i, up to an element of Λ×.

This conjecture was proved by Mazur and Wiles in 1984 [MW84]. Wiles then

extended the proof to totally real fields in 1990 [Wil90]. Around the same time,

Rubin gave an easier proof by using the properties of Euler systems [Rub91].

We now switch to studying elliptic curves; indeed the BSD conjecture can

be considered as an elliptic curve version of Dirichlet’s class number formula.

In the early 1970s, Mazur studied the Iwasawa theory of these curves over cy-

clotomic Zp-extensions, and formulated an Iwasawa main conjecture for elliptic

curves over Q.

Let E be an elliptic curve over Q. For the number field Q(ζpn), we have

the following exact sequence

0→ E(Q(ζpn))⊗Qp/Zp → Selp∞(E/Q(ζpn))→Xp∞(E/Q(ζpn))→ 0,
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where Selp∞(E/Q(ζpn)) = lim−→m
Selpm(E/Q(ζpn)).

Definition 2.7 The Pontrjagin dual of the Selmer group over Q(ζp∞) is de-

noted by

XE = Hom(Selp∞(E/Q(ζp∞)),Qp/Zp)

where Selp∞(E/Q(ζp∞)) = lim−→n
Selp∞(E/Q(ζpn)).

Here XE naturally has the structure of a finitely generated Λ(G∞)-module.

Mazur conjectured it to be a torsion Λ(G∞)-module, and this was subsequently

proven by Kato [K+05].

In order to formulate a p-adic version of the BSD conjecture, Mazur,

Tate and Teitelbaum considered a p-adic analogue of the Hasse-Weil function

L(E, s) in [MTT86]. We briefly describe their construction, for the newform

fE of weight two associated to E. Let r be any rational number. Then one

defines

λ+(r) = −πi · (
∫ i∞

r

fE(τ)dτ +

∫ i∞

−r
fE(τ)dτ) ∈ R.

For all r ∈ Q, the modular symbol [r]+ is given by

[r]+ =
λ+(r)

ΩE

,

where ΩE is a Néron period for E over Z.

Let p be a prime of good ordinary reduction for E, and let ap be the trace

of Frobenius, so that Np = p+ 1− ap is the number of points in Ẽ(Fp). Write

X2−apX+p for the characteristic polynomial of Frobenius, and α will denote a

root such that ordp(α) ≤ 1
2
. To construct the p-adic L-function as in [MTT86],

we define a measure µα on Z×p by

µα(a+ pkZp) =
1

αk
· [ a
pk

]+ − 1

αk+1
· [ 1

pk−1
]+

for any k ≥ 1 and a ∈ Z×p .

Definition 2.8 The analytic p-adic L-function is given by the Mazur-Mellin

transform

Lα(E, s) =

∫
Z×
p

⟨x⟩s−1dµα(x) for all s ∈ Zp,
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where ⟨x⟩s−1 = expp
(
(s − 1) · logp(⟨x⟩)

)
, and expp and logp are the p-adic

exponential and logarithm, and ⟨−⟩ : Z×p ↠ 1 + pZp.

If G∞ = Gal(Q(µp∞)/Q) again, then κ : G∞ 7→ Z×p denotes the pth-cyclotomic

character. We can choose a topological generator γ in Γ = Gp−1
∞ , so that κ(γ)

will be a generator of 1+ pZp. Now, we can convert the function Lα(E, s) into

a p-adic power series as follows.

Definition 2.9 We define Lα(E, T ) in Qp(α)[[T ]] to be the power series

Lα(E, T ) =
∫
Z×
p

(1 + T )
logp(⟨x⟩)
logp(κ(γ))dµα(x).

Since p is a prime of good reduction, we shall denote the p-adic multiplier by

ϵp = (1− 1

α
)2.

Note the p-adic L-function 2.9 can be seen to p-adically interpolate the complex

L-function. For example,

Lα(E, 0) =
∫
Z×
p

dµα = ϵp ·
L(E, 1)

ΩE

.

In general, if χ ̸= 1 is a character on Γ sending γ to ζpn , then

Lα(E, ζ − 1) =
1

αn+1
· pn+1

G(χ−1)
· L(E, χ, 1)

Ω
sign(χ)
E

,

where G(χ−1) is the Gauss sum, and L(E, χ−1, 1) is the Hasse-Weil L-function

of E twisted by χ−1.

If we further assume that the elliptic curve has good ordinary reduction at

p, then in fact

Lα(E, T ) ∈ Zp[[T ]][
1

p
].

Mazur’s version of the Main Conjecture predicts the following:

Conjecture 2.7 If E has good ordinary reduction at p, then the p-adic L-

function Lα(E, T ) is a generator for the characteristic ideal CharΛ(Xω0
), i.e.

there exists an element u(T ) ∈ Λ× such that Lα(E, T ) = u(T )×CharΛ(Xω0
).

This conjecture has now been proved in many cases, thanks to the work of

Kato, Rubin, Greenberg and Skinner-Urban [K+05, Rub91, Gre94, SU14].
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2.3 Algebraic K-theory

In this section, we introduce the formal definition of the Grothendieck group

K0, and of the Whitehead group K1.

Definition 2.10 For a ring R with identity element 1R, the Grothendieck

group K0(R) is the free abelian group generated by the isomorphism classes [P ]

of finitely generated projective left R-modules P , modulo the subgroup generated

by the classes

[P ] + [Q]− [P ⊕Q].

Note that two isomorphism classes [P ] and [Q] are equal in K0(R), if and only

if P and Q are stably isomorphic, namely P ⊕Rn ∼= Q⊕Rn for some n ∈ N.

Recall that a nonzero R-submodule I of Quot(R) is called a fractional

ideal of R if there exists some non-zero a ∈ R with aI � R. A ring R is a

Dedekind domain if the fractional ideals form a group under multiplication.

Example 2.8 1. If R is a local ring or PID, then K0(R) = Z.

2. If R is a Dedekind domain, then there is a natural isomorphism

K0(R) ∼= Z⊕ Cl(R),

where Cl(R) is the class group of R.

Let R be a ring, and I ⊂ R a two-sided ideal. The double of R along I is

the subring of the Cartesian product R×R given by

D(R, I) := {(x, y) ∈ R×R : x− y ∈ I}.

If p1 denotes the projection onto the first coordinate, then there is a short

exact sequence

0→ I → D(R, I)
p1−→ R→ 0,

where I embeds into D(R, I) via the map x 7→ (0, x).
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Definition 2.11 The relative K0 group of a ring R and an ideal I is defined

to be

K0(R, I) := ker
(
(p1)∗ : K0(D(R, I))→ K0(R)

)
.

Again let R be a ring and I ⊂ R an ideal. Then there exists a short exact

sequence

K0(R, I)→ K0(R)
q∗−→ K0(R/I),

where q∗ is induced by the quotient map q : R→ R/I, and the mapK0(R, I)→

K0(R) is induced by p1. The idea behind relative K-theory is to lift a matrix

over R/I to a matrix over R, in the situation where R is not necessarily

commutative.

Lemma 2.9 If A ∈ GLn(R/I), then the 2n × 2n matrix

A 0

0 A−1

 lifts to

a matrix in GL2n(R)

Proof. First note thatA 0

0 A−1

 =

In A

0 In


 In 0

−A−1 In


In A

0 In


 0 −In

In 0

 .

Clearly the matrix

 0 −In

In 0

 lifts to an invertible matrix over R. Let B and

C be any two matrices in Mn(R) lifting A and A−1 respectively. ThenIn B

0 In

 and

 In 0

−C In


are both invertible, and liftIn A

0 In

 and

 In 0

−A−1 In

 respectively.

Then the result follows after taking the product of these lifts. 2
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For M ∈ GLn(R), we define an injection

ι : GLn(R) 7→ GLn+1(R)

M 7→

M 0

0 1


and call GL(R) := lim−→n

GLn(R) the �infinite general linear group.

Definition 2.12 The abelian group K1(R) is defined as the abelianization of

the infinite general linear group GL(R), namely

K1(R) =
GL(R)[

GL(R), GL(R)
] .

Let En(R) be the subgroup of GLn(R) which is generated by all elementary

matrices

Eij(a) = In + aeij,

where 1 ≤ i ̸= j ≤ n, a ∈ R, and eij denotes the standard matrix with a 1 on

the ith-row and jth-column and 0 everywhere else.

If E(R) = lim−→n
En(R), then one can show that

E(R) =
[
GL(R), GL(R)

]
and therefore as a corollary,

K1(R) = GL(R)/E(R).

Now, whenever the ring R is commutative, taking the determinant yields a

group homomorphism from GL(R) onto the abelian group R×, and so induces

a surjective map

det : K1(R) 7→ R×.

The kernel of the map is defined to be the abelian subgroup SK1(R).

Example 2.10 1. Let R be a commutative ring. Then

K1(R) ∼= R× ⊕ (SL(R)/E(R)) ∼= R× ⊕ SK1(R).
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2. If R = K is a field or a division ring, then

K1(K) ∼= K×.

3. If R = R1 ×R2, then K1(R) = K1(R1)⊕K1(R2).

Note that if R = Z, then SL(Z) = E(Z), so we have K1(Z) ∼= Z× = {−1, 1}.

Similarly K1(Z[i]) ∼= {1,−1, i,−i} and K1(Z[−1+
√
3i

2
]) ∼= µ6.

There is also a homological interpretation of K1(R) given by

K1(R) = H1(GL(R),Z),

where the right hand side denotes the first homology group of GL(R) with

integer coefficients. Just as we did with K0, we want to relate K1 of the

quotient ring R/I to K1(R).

Definition 2.13 Let R be a ring with unit, and let I be a two-sided ideal in

R. The relative K1 group of a ring R and an ideal I is defined by

K1(R, I) := ker
(
(p1)∗ : K1(D(R, I))→ K1(R)

)
.

We define GL(R, I) to be the kernel of the map GL(R) 7→ GL(R/I) induced

by the quotient map R 7→ R/I. We also denote by E(R, I) the smallest normal

subgroup of E(R) containing the elementary matrices Eij(a), for all a ∈ I.

Clearly as each such elementary matrix is congruent to the identity matrix

modulo I, thus E(R, I) ⊂ GL(R, I).

Remark: The subgroup E(R, I) is normal in GL(R, I), and

GL(R, I)/E(R, I) ∼= K1(R, I),

In fact, GL(R, I)/E(R, I) is the center of GL(R)/E(R, I), and furthermore,

E(R, I) = [E(R), E(R, I)] = [GL(R), E(R, I)] (see [Ros95, Theorem 2.5.3]).

Theorem 2.11 Let R be a ring and I ⊂ R an ideal. Then there exists a long

exact sequence

K1(R, I)→ K1(R)
q∗−→ K1(R/I)

∂−→ K0(R, I)→ K0(R)
q∗−→ K0(R/I),

where q∗ is induced by the quotient map q : R→ R/I, and the maps Kj(R, I)→

Kj(R) are induced by p1.
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2.4 Iwasawa algebras of p-adic Lie groups

Iwasawa algebras are completed group algebras of compact p-adic Lie groups,

so we will introduce the latter first. (We already met them in Section 2.2 in

the special case G ∼= Zp.)

Definition 2.14 (i) A profinite group is a compact Hausdorff topological

group G whose open subgroups form a base for the open neighbourhoods of the

identity.

(ii) The group G is said to be topologically finitely generated if G =
⟨
X
⟩

for

some finite subset X of G. Here X is said to be a topological generating set

for G, and d(G) will denote the minimal cardinality of such an X.

A pro-p group is a profinite group whose open subgroups each have index

equal to some power of p.

Definition 2.15 Let G be a pro-p group. Define the subgroups

P1(G) = G1 = G and Pi+1(G) = Gi+1 = Pi(G)p[Pi(G), G], for i ≥ 1.

The decreasing chain of subgroups G = P1(G) ≥ P2(G) ≥ · · · ≥ Pk(G) ≥ · · ·

is called the lower p-series of G. Furthermore,

1. G is powerful if p is odd and G/Gp is abelian, or if p = 2 and G/G4 is

abelian.

2. G is uniform if G is powerful, finitely generated and [G : P2(G)] =

[Pi(G) : Pi+1(G)] for all i ≥ 1.

Recall from [DDSMS03] that a topological group G is a compact p-adic Lie

group, if and only if G contains a normal open uniformly powerful pro-p-

subgroup of finite index. If G is a compact p-adic Lie group, then its Iwasawa

algebra is given by the inverse limit

Λ(G) = Zp
[
[G]
]
:= lim←−

U

Zp
[
G/U

]
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where U runs over all open normal subgroups of G.

Lastly, let T be a multiplicative closed subset consisting of nonzero divisors

in Λ(G), such that for each s ∈ T and a ∈ Λ(G) there exist t1, t2 ∈ T and

b1, b2 ∈ Λ(G) satisfying

sb1 = at1, b2s = t2a.

Then one can always form the Ore localisation ‘Λ(G)T ’ at the multiplicatively

closed set T . We now further assume that G has a quotient Γ ∼= Zp, and let

H denote the kernel of the surjection G↠ Γ, so that G/H
∼=−→ Zp.

Definition 2.16 Let S denote the set of all f ∈ Λ(G) such that Λ(G)/Λ(G)f

is a finitely generated Λ(H)-module; we call S a left and right Ore set in

Λ(G).

If M is a finitely generated left and right Λ(G)-module, then M is S-torsion

if and only if M is finitely generated over Λ(H). Moreover, the set S is

multiplicatively closed, and all elements of S are non-zero divisors in Λ(G)

(see [CFK+05, Section 2]).

2.5 The non-commutative Iwasawa Main Con-

jecture

In this section, we shall focus on the non-commutative Main Conjecture for-

mulated by Coates et al in [CFK+05] for GL2(Zp), but in the setting of general

p-adic Lie groups. Henceforth let G denote a compact p-adic Lie group which

is torsion-free.

2.5.1 Akashi series and Euler characteristics

To make explicit the connection between p-adic L-functions and Selmer groups,

it is not so easy to directly interpolate the complex zeta function inside a non-

commutative ring.
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Recall that S = {s ∈ Λ|Λ/Λs is a finitely generated Λ(H)−module}. Let

S∗ = ∪n≥0pnS be its p-saturation.

Lemma 2.12 [CFK+05] A Λ(G)-module M is S∗-torsion if and only if M/M(p)

is finitely generated over Λ(H), where M(p) denotes the submodule of M con-

sisting of all elements of p-power order.

We write Λ(G)S,Λ(G)S∗ for the localization of Λ(G) at S and S∗ respectively,

so that

Λ(G)S∗ = Λ(G)S[1/p].

We also write MH(G) for the category of all finitely generated Λ(G)-modules

which are S∗-torsion.

We say that a Λ(G)-module M has finite Euler characteristic if Hi(G,M)

is finite for all i. If M has finite Euler characteristic, we define

χ(G,M) =
∏
i≥0

|Hi(G,M)|(−1)i =
∏
i≥0

|TorΛ(G)
n (M,Zp)|(−1)

i

.

Theorem 2.13 [CFK+05, Lemma 3.1] For each M in MH(G), the homology

groups Hi(H,M) for i ≥ 0 are all finitely generated torsion Λ(G)-modules. If

G has no element of order p, then Hi(H,M) = 0 for i ≥ d, where d is the

dimension of the p-adic Lie group G.

Let ρ : G 7→ GLn(O) be a continuous representation, where O is the ring

of integers of a finite extension L of Qp. We define Mn(O) to be the ring of

matrices with coefficients inside O, and set ΛO(Γ) := O[[Γ]] to be the associated

completed group algebra. Then ρ induces two homomorphisms

ρ : Λ(G) 7→Mn(O) and Φρ : Λ(G) 7→Mn(ΛO(Γ)).

If QO(Γ) is the fraction field of the Iwasawa algebra ΛO(Γ), then Φρ can be

extended to a map

Φρ : Λ(G)S∗ 7→Mn(QO(Γ))

which (on the level of K-groups) induces

Φ′ρ : K1(Λ(G)S∗) 7→ K1(Mn(ΛO(Γ))) ∼= ΛO(Γ)
×.
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Let us write φ : ΛO(Γ) 7→ O for the augmentation map (sending a topological

generator γ of Γ to the value 1), and set p = Ker(φ). Clearly φ extends to a

homomorphism

φ : ΛO(Γ)p 7→ L.

Now let ξ be any element in K1(Λ(G)S∗). We can compose Φ′ρ and φ together,

so one defines the ‘evaluation of ξ at ρ’ by

ξ(ρ) =


φ(Φ′ρ(ξ) if ξ ∈ ΛO(Γ)p

∞ if ξ ̸∈ ΛO(Γ)p.

This map allows us to send element from K1(Λ(G)S∗) to L∪{∞}. One defines

the boundary map

∂G : K1(Λ(G)S∗) −→ K0(MH(G))

to be the connecting map in the long exact sequence

· · · → K1(Λ(G))→ K1(Λ(G)S∗)
∂G−→ K0(MH(G))→ K0(Λ(G))→ K0(Λ(G)S∗)→ 0

(2.1)

from [CFK+05, Eqn (24)]. Furthermore, if G has no element of order p then

∂G is surjective [CFK+05, Proposition 3.4]; henceforth we assume that G has

no element of order p.

Definition 2.17 For each M in MH(G), a characteristic element of M is

any lift ξM ∈ K1(Λ(G)S∗), such that

∂G(ξM) = [M ].

2.5.2 Non-commutative Main Conjecture

We now assume E is an elliptic curve over Q with good ordinary reduction at

p. Let ρ : GQ → GL(Vρ) be an Artin representation.

Definition 2.18 The complex Artin L-function is defined to be

L(ρ, s) =
∏
q

Pq(ρ, q
−s)−1
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where Pq(ρ, T ) is the polynomial

Pq(ρ, T ) = det(1− Frob−1q X|V Iq
ρ ).

Conjecturally, this L-function has a meromorphic continuation to the whole of

C. For a prime l, recall that

Tl(E) = lim
←
Eln , Vl(E) = Tl(E)⊗Zl

Ql, H1
l (E) = Hom(Vl(E),Ql).

The complex L-function of E twisted by the Artin representation ρ is defined

by the Euler product

LR(E, ρ, s) =
∏
q ̸∈R

Pq(E, ρ, q
−s)−1

where Pq(E, ρ,X) is the polynomial

Pq(E, ρ,X) = det(1− Frob−1q X|(H1
l (E)⊗Ql

Vρ,λ)
Iq) for Re(s)≫ 0.

Here λ is a place lying over l, and R is the finite set of primes that ramify in

the extension F∞/Q.

Let L be any algebraic extension of Q. Recall again that the classical

Selmer group S(E/L) is defined by

Sel(E/L) := ker
(
H1(L,Ep∞) 7→

∏
ω

H1(Lω, E(L̄ω))
)

where ω runs over all the non-Archimedean places of L, and Lω denotes the

union of the completions at ω of all finite extensions of Q contained in L. One

then denotes by

X(E/L) := Hom(Sel(E/L),Qp/Zp)

the Pontrjagin dual of the discrete abelian group Sel(E/L).

The following is a non-commutative generalisation of Conjecture 2.7.

Conjecture 2.14 [CFK+05] Assume that E has good ordinary reduction at p,

let G = Gal(F∞/Q) be a p-adic Lie group without p-torsion, and assume that

F∞ contains the cyclotomic Zp-extension Qcyc of Q, with Γ = Gal(Qcyc/Q) ∼=

Zp. Then
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1. X(E/F∞) belongs to MH(G);

2. there exists LE ∈ K1(Λ(G)S∗) such that for all Artin representations ρ

factoring through F∞/Q,

Φρ(LE) =
LR(E, ρ, 1)

Ω+(E)d
+(ρ)Ω−(E)d

−(ρ)
· ep(ρ) ·

Pp(ρ̂, u
−1)

Pp(ρ, ω−1)
· αp−fρ ,

where R is the set of primes that ramifies in F∞/Q;

3. ∂G(LE) = [X(E/F∞)].

2.5.3 A special case when G = Γ

In this subsection, we focus on the special case where G = Γ ∼= Zp. Let

G = Gal(Qcyc/Q) = Γ, so that H = {1}. Then the long exact sequence (2.1)

becomes

· · · → K1(Λ(Γ))→ K1(Λ(Γ)S∗)
∂G−→ K0(MH(Γ))→ K0(Λ(Γ))→ K0(Λ(Γ)S∗)→ 0

where K1(Λ(Γ)) = Λ(Γ)×, and K1(Λ(Γ)S∗) ∼= Λ(Γ)(p)[
1
p
]×. One makes the

key observation that ˜X(E/Qcyc) ∈ Λ(Γ)(p)[
1
p
]× where ˜X(E/Qcyc) is a lift of

[X(E/Qcyc)], and so it well-defined up to an element u ∈ K1(Λ(Γ)) ∼= Λ(Γ)×.

In particular, when G ∼= Zp the Main Conjecture of Coates et al. collapses

back down to the version of the Iwasawa Main Conjecture formulated by Mazur

for elliptic curves.

Conjecture 2.15 1. There exists Lα(E, T ) ∈ Zp[[T ]][1p ] ∼= Λ(Γ)[1
p
], such

that for each χ : Γ 7→ Q̄×p of finite order

Lα(E, χ(γ)− 1) =


ϵ · L(E,1)

ΩE
if χ = 1

1
αn+1 · pn+1

G(χ−1)
· L(E,χ,1)

Ω
sign(χ)
E

if χ ̸= 1, and cond(χ) = pn.

2. The p-adic L-function Lα(E, γ−1) is a characteristic element of X(E/F∞),

i.e.

∂Γ(Lα(E, γ − 1)) = [X(E/Qcyc)].

Equivalently, Lα(E, γ − 1) = CharΛ(Γ)(X(E/Qcyc) × u, where u is an

element of Λ(Γ)×.



Chapter 3

The Main Results

In order to explain our main research question, we start by introducing some

necessary notations. Then we will give statements for two of the major the-

orems in this thesis. Lastly, various applications of our theorems will be dis-

cussed at the end of the chapter, in terms of specific arithmetic situations.

3.1 Preliminaries

Fix a number field F and a prime number p ̸= 2. We shall assume that F∞

denotes a p-adic Lie extension of F satisfying:

(i) Gal(F∞/F ) is a pro-p-group without any p-torsion;

(ii) F∞ contains the cyclotomic Zp-extension F cyc of F .

The examples we have in mind here are solvable three-dimensional Galois

groups arising from algebraic geometry, or alternatively the direct product of

a two-dimensional Galois group with a group of diamond operators (in the

context of Hida’s deformation theory). We therefore suppose that either

(iiia) G∞ = Gal(F∞/F ) where dim
(
Gal(F∞/F )

)
= 3 and G∞ ̸∼= SL2(Zp), SL1(Dp);

or (iiib) G∞ = Gal(F∞/F )×W∞ where dim
(
Gal(F∞/F )

)
= 2 andW∞ ∼= Zp.

In both (iiia) and (iiib), the p-adic Lie group G∞ is three-dimensional and also

solvable; in fact G∞ is a semi-direct product of Zp with an abelian subgroup

H∞ of Zp-rank two. The following result classifies such groups.
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Classification Theorem. (González-Sánchez and Klopsch [GSK09]) If the

pro-p-group G∞ is solvable and torsion-free with dim(G∞) = 3, then G∞ must

be isomorphic to one of the following possibilities:

(I) the abelian group Zp × Zp × Zp;

(II) an open subgroup of the p-adic Heisenberg group, i.e. a group given by the

presentation
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = 1, [h2, γ] = hp

s

1

⟩
for some s ∈ N0;

(III) the group
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 , [h2, γ] = hp
s

2

⟩
for some

s ∈ N;

(IV)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 h
ps+rd
2 , [h2, γ] = hp

s+r

1 hp
s

2

⟩
for some

s, r ∈ N with d ∈ Zp;

(V)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

sd
2 , [h2, γ] = hp

s

1 h
ps+r

2

⟩
where s, r ∈ N0

and d ∈ Zp, such that either s ≥ 1, or instead r ≥ 1 and d ∈ pZp;

(VI) either one of the groups:

(a)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+r

2 , [h2, γ] = hp
s

1

⟩
or (b)

⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+rt
2 , [h2, γ] = hp

s

1

⟩
where s, r ∈ N0 such that s+ r ≥ 1, and t ∈ Z×p is not a square modulo p.

Let Γ =
{
γz
∣∣ z ∈ Zp

}
where γ is as in the previous theorem (if G∞ =

Gal(F∞/F ) satisfies condition (iiia) above, we shall identify its quotient

Gal(F cyc/F ) ∼= Zp with Γ). One defines a decreasing sequence of normal

subgroups for G∞ by

Um := Γp
m ⋉H∞ at each m ≥ 0.

Recall from [Ser12, Prop 25], every irreducible G∞-representation with finite

image is of the form ψ⊗ IndG∞Um (χ) for some m ≥ 0, with characters χ : Uab
m →

µp∞ and ψ : Γp
m → Q×p .

If G is a pro-p-group, then we write Λ(G) = lim←−P Zp[G/P ] for its Iwasawa

algebra where the inverse limit runs over open subgroups P �G. If O contains

Zp as a subring then ΛO(G) := Λ(G) ⊗Zp O. Lastly for a canonical Ore set

S, we use Λ(G)S and Λ(G)S∗ for the localisation of Λ(G) at S, and at its

p-saturation S∗ =
∪
n≥0 p

nS, respectively.
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Remark: We shall use Oχ to indicate the finite integral extension of Zp gener-

ated by the values of χ. Let us also write NUm : Λ(G∞)→ Λ(Um) for the norm

mapping on Iwasawa algebras. If
[
Um,Um

]
denotes the commutator subgroup

of Um, there is a commutative diagram

K1

(
Λ(G∞)

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )
) ∏

χ∗−→
∏
m≥0

∏
ρχ

ΛOχ

(
Γp

m)×
y y ↪→

K1

(
Λ(G∞)S

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )S
) ∏

χ∗−→
∏
m≥0

∏
ρχ

ΛOχ

(
Γp

m)×
(p)y y ↪→

K1

(
Λ(G∞)S∗

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )S∗
) ∏

χ∗−→
∏
m≥0

∏
ρχ

Quot
(
ΛOχ(Γ

pm)
)×

where the vertical arrows are induced from the inclusions Λ(G∞) ↪→ Λ(G∞)S ↪→

Λ(G∞)S∗ , and the right-most products range over irreducible non-isomorphic

G∞-representations. Here we have used S as a generic symbol, indicating the

image of the set S under each mapping
∏
NUm(−) mod [Um,Um] above.

One can then define three separate theta-maps Θ∞,χ, Θ∞,χ,S and Θ∞,χ,S∗ by

composing (respectively) the first, second and third rows in the above diagram,

so that

Θ∞,χ : K1

(
Λ(G∞)

)
−→

∏
ρχ

ΛOχ

(
Γdim(ρχ)

)×
,

Θ∞,χ,S : K1

(
Λ(G∞)S

)
−→

∏
ρχ

ΛOχ

(
Γdim(ρχ)

)×
(p)

and Θ∞,χ,S∗ : K1

(
Λ(G∞)S∗

)
−→

∏
ρχ

Quot
(
ΛOχ(Γ

dim(ρχ))
)×
.

The Main Goal. To describe the images of Θ∞,χ, Θ∞,χ,S and Θ∞,χ,S∗ by

using a family of p-adic congruences linking together the abelian fragments

yρχ∈ Quot
(
ΛOχ(Γ

pmχ
)
)×.

Note that Case (I) is devoid of any content since G∞ ∼= Γ×H∞ is abelian, in

which case

K1

(
Λ(G∞)

)
= K1

(
Λ(Γ×H∞)

) ∼= Λ(Γ×H∞)×

by Morita invariance. Hence one may ignore Case (I) completely, since

there are no non-abelian congruences to consider here.
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3.2 The non-abelian congruences

In order to describe the congruences in each of the non-empty Cases (II-VI),

we first need some means to keep track of those Artin representations induced

from characters on H∞. If χ is a finite order character on H∞ then χ extends

naturally to StabΓ(χ)⋉H∞, hence

ρχ := IndG∞StabΓ(χ)⋉H∞
(χ)

is an irreducible G∞-representation of dimension pmχ , where mχ = ordp
([
Γ :

StabΓ(χ)
])

. In all cases ⋆ ∈ {II,III,IV,V,VI}, one constructs characters χ1,n, χ2,n :

H∞ → µp∞ via

χ1,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 x/pn

)
and χ2,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 y/pn

)
for each x, y ∈ Zp. In particular, χ1,n and χ2,n together generate a basis for

Hom(H∞, µpn).

Case (II). For simplicity, let us initially assume we are in Case (II). Then

for each character χ = χa2,n · χb1,s+m′ and group element h = hx1h
y
2 ∈ H∞, one

defines e∗χ,h ∈ Z[µpn ] by the formula

e∗χ,h :=


χ−1(h) · pmax{0,m′−ordp(b)} if pm′ | by

0 if pm′ ∤ by.

Theorem 3.1 If we are in Case (II), then a sequence
(
yρχ
)
∈
∏

ρχ
ΛOχ

(
Γp

mχ
)×
(p)

belongs to the image of Θ∞,χ,S only if

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p ∤ b if m′ > 0

Nmχ,m

(
yρχ

φ
(
yρχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )e∗χ,h

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡ 1 mod ps+m+n+ordp(y) · Zp
[[
Γp

m]]
(p)

(3.1)

for all integer pairs m,n ≥ 0 with m ≤ n − s, and at every choice of h =

hx1h
y
2 ∈ H∞ with x ∈ {1, . . . , pn} and y ∈ {1, . . . , pm}.

We should point out that, a priori, it is not clear whether the p-adic power

Nmχ,m (. . . )e
∗
χ,h above should even exist, as the exponent e∗χ,h ∈ Z[µpn ] is fre-

quently not a rational integer!
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Remarks: (i) For any function f(X) ∈ 1 + p · OCp [[X]], and provided that

s ∈ Cp is chosen to lie inside the disk
∣∣s∣∣

p
< p(p−2)/(p−1), the p-adic power

series defined as

f(X)s := expp
(
s logp

(
f(X)

))
converges to an element of 1 + p · OCp [[X]]. In particular, if s ∈ Z then f(X)s

coincides with the standard definition of the s-th power.

(ii) Furthermore, this construction extends after localisation at the multiplica-

tively closed set OCp [[X]] − p · OCp [[X]], i.e. if f(X) ∈ 1 + p · OCp [[X]](p) then

f(X)s ∈ 1 + p · OCp [[X]](p).

(iii) Although not explicitly stated, it is nevertheless inbuilt into Theorem 3.1

that each of the fractions yρχ

φ(yρχp )
· φ(N0,mχ−1(y1))

N0,mχ (y1)
belongs to the multiplicative

group 1+p ·Oχ[[Γp
m
]](p). In light of this discussion, one deduces that each term

Nmχ,m (. . . )e
∗
χ,h in the above theorem exists as a well-defined element of the

multiplicative group 1 + p · OCp [[Γ
pm ]](p).

Cases (III)-(VI). Let us now instead suppose we are in Case (⋆) with ⋆ ∈

{III,IV,V,VI}. We define a non-negative integer ϵ⋆,p by the rule

ϵ⋆,p =


0 if ⋆ = (III) or (IV)

ordp(d) if ⋆ = (V)

r + ordp(t) if ⋆ = (VI).

It will be shown (in Proposition 4.4) that the abelianization of Um yields the

tricyclic group

Uab
m :=

Um[
Um,Um

] ∼= Γp
m × Cps+m+ϵ⋆,p × Cps+m

where Cd denotes the cyclic group of order d.

Note that the commutator [Um , Um] is actually a subgroup of H∞, while

Γ acts on Uab
m through the finite quotient Γ/Γp

m ; we can then partition

H(m)

∞ :=
H∞[
Um , Um

] ∼= Cps+m+ϵ⋆,p × Cps+m

into a finite disjoint union of its Γ-orbits. Similarly, the dual group Hom
(
H(m)

∞ ,C×
)
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also has an action of Γ/Γp
m ; let ‘Rm’ denote a set of representatives for its

Γ-orbits.

For each orbit ϖh =
{
γ−jhγj

∣∣ j ∈ Z/pmZ
}

, h ∈ H(m)

∞ and character

χ : H(m)

∞ → C×, we generalise the definition of e∗χ,h by computing the trace of

h over the orbits of χ:

e∗χ,ϖh
= Tr(Indχ∗)

(
ϖh

)
:=

∑
χ′∈{χg | g∈Γ}

(χ′)−1(h).

In fact, it is easy to check that e∗χ,ϖh
depends only on the representative for

χ within the set Rm and on the orbit ϖh generated by h, but not on the

individual choices of χ and h. Although these quantities might seem abstract,

they are all computable (see Lemma 7.3).

Theorem 3.2 If we are in Cases (III)–(VI), then a sequence
(
yρχ
)
∈
∏

ρχ
ΛOχ

(
Γp

mχ
)×
(p)

belongs to the image of Θ∞,χ,S only if

∏
χ∈Rm

Nmχ,m

(
yρχ

φ
(
yρχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )e∗χ,ϖ

≡ 1 mod p2s+3m+ϵ⋆,p−ordp(#ϖ) · Zp
[[
Γp

m]]
(p)

(3.2)

for every m ≥ 0, and over all Γ-orbits ϖ inside the group H(m)

∞
∼= Cps+m+ϵ⋆,p ×

Cps+m.

Note in both of these theorems, if one additionally knows that
(
yρχ
)
∈
∏

ρχ
ΛOχ

(
Γp

mχ
)×,

the modified statement should read: ‘
(
yρχ
)
∈ Im

(
Θ∞,χ

)
if and only if the

same congruences in (3.1), (3.2) hold after replacing p• · Zp[[Γp
m
]](p) with its

unlocalised version p• · Zp[[Γp
m
]]’.

We also remark that Burns and Venjakob [BV11, Prop 3.4] have con-

structed a splitting

K1

(
Λ(G∞)S∗

) ∼= K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)
so one can reduce the existence of elements in K1

(
Λ(G∞)S∗

)
to those in

K1

(
Λ(G∞)S

)
, combined with a precise growth formula for the µ-invariant of

the individual yρχ’s.
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3.3 Some arithmetic examples

Before explaining the strategy to prove our two main theorems, we first discuss

some applications to non-commutative Iwasawa theory that arise from these

K1-congruences.

Totally real extensions. Let us initially suppose that F is a totally real field,

and further:

• F∞ =
∪
n≥1 Fn is a union of totally real fields;

• only finitely many primes of F ramify inside F∞/F ;

• F∞ contains the cyclotomic Zp-extension F cyc of F ;

• the cyclotomic µ-invariant of F
(
e2πi/p

)
vanishes.

We denote by Σ the primes ramifying inside F∞/F . One also defines F (m)

to be the unique extension of degree pm contained in F cyc, so that Γ =

Gal
(
F cyc/F

) ∼= lim←−m Gal
(
F (m)/F

)
.

Let G∞ = Gal
(
F∞/F

)
, and write κF : Γ → Z×p for the p-th cyclotomic

character. By seminal work of Burns, Kakde and Ritter-Weiss [Bur15, Kak13,

RW06], there exists an element ζF∞/F ∈ K1

(
Λ(G∞)S∗

)
such that, at any Artin

representation ρ : G∞ → GL(V ), one has

ζF∞/F

(
ρκkF

)
= LΣ(ρ, 1− k)

for each k ∈ N satisfying k ≡ 0 (mod [F (µp) : F ]). By deforming the k-

variable p-adically, the above values interpolate to the Iwasawa function

Lp,Σ(ρ,−) : Zp → Qp constructed by Cassou-Noguès and Deligne-Ribet [CN79,

DR80].

Corollary 3.3 Let F∞/F be an infinite solvable Lie extension as above, with

dim(G∞) = 3. If the representation ρχ = IndG∞StabΓ(χ)⋉H∞
(χ) has dimension

equal to pmχ say, then write LD-R
p,Σ

(
ρχ
)
∈ Quot

(
ΛOχ(Γ

pmχ
)
)× for the unique

element satisfying

κkF ◦ LD-R
p,Σ

(
ρχ
)

= Lp,Σ(ρχ, 1− k) for all k ∈ Zp.
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(a) If we are in Case (II), then the system of congruences (3.1) holds for

yρχ = LD-R
p,Σ

(
ρχ
)
.

(b) In Case (⋆) with ⋆ ∈ {III,IV,V,VI}, the congruences (3.2) hold for yρχ =

LD-R
p,Σ

(
ρχ
)
.

Proof. Note that the infinite sequence
(
LD-R
p,Σ

(
ρχ
))
∈
∏

ρχ
Quot

(
ΛOχ(Γ

pmχ
)
)×

coincides with Θ∞,χ,S∗
(
ζF∞/F

)
, as they both interpolate the same L-values.

Therefore the necessity of the congruences (3.1) and (3.2) follows directly from

Theorems 3.1 and 3.2, respectively. 2

Let us now digress momentarily, and assume we are given a congruence of the

form

F (X)

G(X)
≡ 1 mod pv · Zp[[X]](p) with F,G ∈ OCp [[X]] and v ≥ 1.

Then F (X)
G(X)

= 1 + pv · R(X)
T (X)

for some R, T ∈ Zp[[X]] where the µ-invariant of T

equals zero. It follows that F · T = G · (T + pv ·R), and one works out that

µ(F ) = µ(F · T ) = µ(G) + µ(T + pv ·R) = µ(G) + 0,

i.e. µ(F ) = µ(G). Also F = G + pv ·RG
T
∈ OCp [[X]] so that T

∣∣RG, whence

F ≡ G (mod pv). Certainly if µ(F ) = µ(G) = 0, then the leading terms of

F and G are congruent mod pv. However even if µ(F ) = µ(G) > 0, their

leading terms must still be congruent modulo pv, as one can repeat the above

argument with F̃ = p−µ(F ) · F and G̃ = p−µ(F ) ·G instead.

Conclusion: If F (X)
G(X)

≡ 1 mod pv · Zp[[X]](p), the leading terms of F,G agree

modulo pv.

We are going to apply this to the congruences (3.1) and (3.2) at the trivial

orbit ϖ = {id}: specifically, F will denote the numerator of (3.1) and (3.2)

while G will be the denominator, so that F (X)
G(X)

≡ 1 mod pv · Zp[[X]](p) with

X = γp
m − 1, and v = s+ 2m+ n when ⋆ =II whilst v = 2s+ 3m+ ϵ⋆,p when

⋆ ̸=II.
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To individually describe the leading terms, if r(ρ, x0) = orderx=x0
(
Lp,Σ(ρ, x)

)
then

L
(p)
Σ (ρ, 1− k) :=


LΣ(ρ, 1− k) if r(ρ, 1− k) = 0

limx→1−k
(
x−r(ρ,1−k) · Lp,Σ(ρ, x)

)
if r(ρ, 1− k) > 0

yields the p-adic residue of Lp,Σ(ρ, x) at the non-positive critical value x = 1−k.

Notations: (i) At integers m ≥ m′ ≥ 0, let us define rm′,m = IndF (m′)

F (m) (1) to be

the regular representation for Gal
(
F (m)/F (m′)

)
.

(ii) Furthermore, we shall write r(m
′)

0,m as an abbreviation for IndF
F (m′−1)

(
ψp ◦ rm′,m

∣∣∣
F (m′)

)
,

where ψp is the p-th Adams operator (strictly speaking ψp only acts on the

trace of a virtual representation, but the abuse of notation makes sense in the

context of ζ-functions).

(iii) Lastly set ρ(m)
χ := IndFF (m)

(
χ
∣∣
F (m)

)
and ρ(m)

χp := IndF
F (mχ−1)

(
ψp ◦ IndF (mχ)

F (m)

(
χ
∣∣
F (m)

))
.

Theorem 3.4 Let F∞/F be as above, with dim(G∞) = 3 and also ζF∞/F ∈

K1

(
Λ(G∞)S

)
.

(a) If we are in Case (II), then for every m,n, k ∈ N:

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p ∤ b if m′ > 0

(
L
(p)
Σ

(
ρ(m)
χ , 1− k

)
· L(p)

Σ

(
r
(mχ)
0,m , 1− k

))pmχ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡
m∏

m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p ∤ b if m′ > 0

(
L
(p)
Σ

(
ρ
(m)
χp , 1− k

)
· L(p)

Σ

(
r0,m, 1− k

))pmχ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

modulo ps+2m+n.

(b) In Case (⋆) with ⋆ ∈ {III,IV,V,VI}, for every m, k ∈ N:

∏
χ∈Rm

(
L
(p)
Σ

(
ρ(m)
χ , 1− k

)
· L(p)

Σ

(
r
(mχ)
0,m , 1− k

))pmχ

≡
∏
χ∈Rm

(
L
(p)
Σ

(
ρ
(m)
χp , 1− k

)
· L(p)

Σ

(
r0,m, 1− k

))pmχ

mod p2s+3m+ϵ⋆,p .

Because p-adic zeta-functions of totally real fields do not vanish at odd negative

integers, a nice consequence is that whenever k ≡ 0 (mod [F (µp) : F ]), these
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congruences actually involve bona fide complex zeta-values, not simply their

p-adic residues.

Heisenberg extensions. Let us now suppose we are in Case (II) with the

parameter s ≥ 0, in which case G∞ is an open subgroup of the Heisenberg

group, i.e.

G∞ � H3(Zp) :=


1 Zp Zp

0 1 Zp

0 0 1

 where
[
H3(Zp) : G∞

]
= ps.

In an unpublished preprint [Kat06], Kato derives different but equivalent con-

gruences to (3.1), as ideal congruences in the group algebras associated to

finite sub-quotients of H3(Zp). Thus Theorem 3.4(a) gives a concrete descrip-

tion for the most basic of these ideal relations, as a congruence modulo ps+2m+n

connecting the special values of Artin L-functions.

False-Tate extensions. Fix an integer s ≥ 1. We shall now set F = Q(µps)

and F∞ = Q
(
µp∞ , q

1/p∞

1 , q
1/p∞

2

)
where q1, q2 > 1 are distinct p-power free

integers satisfying gcd(p, q1q2) = gcd(q1, q2) = 1. Then G∞ = Gal
(
F∞/F

)
is a three-dimensional pro-p-group, which corresponds precisely to Case (III)

covered by the Classification Theorem (note that F∞ is not a union of totally

real fields so there is no element ζF∞/F ∈ K1

(
Λ(G∞)S∗

)
available, and therefore

no Iwasawa Main Conjecture can be formulated for Tate motives here).

Now if s = 1, the congruences (3.2) specialise down to yield the congruences

labelled (1.1)m,h and (1.2)m in [DP15, p3]. If E/Q denotes a semistable elliptic

curve with good ordinary reduction at p, then p-adic L-functions Lp(E, ρχ) ∈

Λ
(
Γp

mχ
)[
1/p
]

interpolating the algebraic part of L{pq1q2}(E, ρχ, 1) have been

constructed in Theorem 1.5 of op. cit. Furthermore, there are three ‘first

layer congruences’ to check for each tuple (E, p, q1, q2). These were verified

numerically for the elliptic curves 11a3, 77c1, 19a3 and 56a1 using MAGMA

at the primes p = 3, 5 and at small values of q1 and q2, in §6 of op. cit.
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On the algebraic side, let us further assume that q1 and q2 are both chosen

to be primes of non-split multiplicative reduction for E, such that

(−1)(p−1)/2 ×
∏

l|cond(E), l ̸=q1,q2

(
l

p

)
= −1

where
(
−
p

)
denotes the Legendre symbol at p. Then if the cyclotomic λ-

invariant of Selp∞
(
E/Q(µp∞)

)
equals one and if Selp∞(E/F∞)

∧ belongs to the

category MH∞(G∞), it is shown in [DL17, Corollary 2.6] that

rankZ
(
E(Fn)

)
= p2n−1 or p2n,

provided the p-Sylow subgroup of X(E/Fn) is finite at each layer Fn =

Q
(
µpn , q

1/pn

1 , q
1/pn

2

)
. Alternatively, by studying the λ-invariants of each χ-part

Selp∞(E/Fn(µp∞))∧ ⊗Zp,χ Oχ using the congruences in Theorem 3.2, one can

produce the same estimate for the rank (current work of the first named author

[Del18]).

Heegner-type extensions. Consider an imaginary quadratic field k = Q
(√
−D

)
and let us suppose k∞ denotes its Z2

p-extension, so that Gal(k∞/k) ∼= Γ×H1,∞

where H1,∞ is the Galois group of the anticyclotomic Zp-extension of k. For

any choice of odd prime q ≠ p with q ∤ D, one may set F = Q
(√
−D,µp

)
and

F∞ = k∞
(
µp, q

1/p∞
)
, in which case

G∞ := Gal(F∞/F ) ∼= Γ⋉
(
H1,∞ ×H2,∞

) ∼= (
Γ×H1,∞

)
⋉H2,∞.

Here h1 acts trivially on H2,∞ = ⟨h2⟩ = Gal
(
F∞/k∞(µp)

)
, while γ acts on

h2 through multiplication by 1 + p (we must therefore be in Case (V) with

s = d = 0 and r = 1).

Let E/Q be a semistable elliptic curve with ordinary reduction at p, split

multiplicative reduction at q, and with non-split multiplicative reduction at all

other primes dividing the conductor of E. We also suppose that q generates(
Z/p2Z

)× so that q is inert in Q(µp∞), and that the various Heegner condi-

tions (DT1)–(DT7) described in [DL17, Sect 2.4] hold. Then it is shown in

Proposition 2.14 of op. cit. that for n≫ 0,

p2n ·
(
1− 2p2 + 2p+ 1

(p+ 1)3

)
≤ rankZ

(
E(Fn)

)
≤ p2n + 4
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with no hypotheses whatsoever on the finiteness of X(E/Fn)[p
∞].

The upper bound essentially comes from a growth formula for the λ-

invariant of Selp∞(E/Fn(µp∞))∧ as n becomes large. In fact if one exploits

the congruences (3.2), this yields another way to obtain the upper bound on

rankZ
(
E(Fn)

)
, and establishes finer bounds on the χ-part of E(Fn). However

the lower bound relies heavily on the properties of Heegner points, following

the same approach as Darmon and Tian [DT10] in dimension 2.

pn-division fields of CM curves. Let E/Q be an elliptic curve with complex

multiplication by k = Q
(√
−D

)
, and select a good ordinary prime p ̸= 2

for E which splits inside Z
(√
−D

)
. If one takes F = Q

(√
−D,µp

)
, Fn =

Q
(
E[pn], q1/p

n) and F∞ =
∪
n≥1 Fn for an auxiliary prime q not dividing

cond(E), then G∞ := Gal(F∞/F ) corresponds to Case (V) with s = d = 0

and r = 1 again. By using the congruences (3.2) to study the λ-invariants

of Selp∞(E/Fn)
∧, one can bound the rank of E(Fn) from above by p2n if the

cyclotomic λ-invariant is one. Whilst Heegner points are no longer useful here,

a lower bound on the Z-rank of E(Fn) of the form cp × p2n (with cp ̸= 0 and

cp ∼ 1 if p≫ 0) should still be feasible, if one exploits the non-triviality of the

Euler system of elliptic units in place of the Heegner points.



Chapter 4

Representation Theory for

Dimension Three

We begin by reviewing some representation theory for the three-dimensional

group G∞. We next calculate the stabilizer of a character χ on a case-by-case

basis. We shall also need a nice system of subgroups on which to realize our

theta-maps, so we define such a system. Finally, following the blueprint of

Kakde’s seminal paper [Kak13], we introduce the transfer map Ver, the shift

map π, the trace map and the norm map.

4.1 The general set-up in dimension three

Observe that H∞ = H1,∞ ×H2,∞ ∼= Zp × Zp is generated by h1 = (1, 0)T and

h2 = (0, 1)T topologically. The action of each g = γz ∈ Γ on an arbitrary

element (x, y)T = hx1h
y
2 ∈ H∞ can be described through a 2× 2-matrix of the

form I2 +M :

γz
(
(x, y)T

)
= γ−z

(
hx1h

y
2

)
γz =

(
I2 +M

)z x

y

 for all g = γz ∈ Γ

where I2 =

 1 0

0 1

 is the identity, and M ∈ Mat2×2
(
Zp
)

is topologically

nilpotent.
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Proposition 4.1 Applying the Classification Theorem for G∞, the matrix M

equals 0 ps

0 0

 ,

 ps 0

0 ps

 ,

 ps ps+r

ps+rd ps

 ,

 0 ps

psd ps+r

 and

 0 ps

ps+rt 0


(4.1)

in Cases (II), (III), (IV), (V) and (VI) respectively (note in Case (VIa) we

have set t = 1).

Proof. Let us treat these on a case-by-case basis. We shall switch between

group notation and vector notation throughout.

In Case (II),

γ−1
(
hx1h

y
2

)
γ = hx+p

sy
1 hy2 =

x+ psy

y

 =

1 ps

0 1


x
y

 ,

hence I2 +M =

1 ps

0 1

 .

In Case (III),

γ−1
(
hx1h

y
2

)
γ = (hx1h

y
2)

(1+ps) =

(1 + ps)x

(1 + ps)y

 =

1 + ps 0

0 1 + ps


x
y

 ,

hence I2 +M =

1 + ps 0

0 1 + ps

 .

In Case (IV),

γ−1
(
hx1h

y
2

)
γ = h

(1+ps)x+ps+ry
1 h

ps+rdx+(1+ps)y
2 =

1 + ps ps+r

ps+rd 1 + ps


x
y

 ,

hence I2 +M =

1 + ps ps+r

ps+rd 1 + ps

 .

In Case (V),

γ−1
(
hx1h

y
2

)
γ = hx+p

sy
1 h

psdx+(1+ps+r)y
2 =

 1 ps

psd 1 + ps+r


x
y

 ,
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hence I2 +M =

 1 ps

psd 1 + ps+r

 .

In Case (VI),

γ−1
(
hx1h

y
2

)
γ = hx+p

sy
1 hp

s+rtx+y
2 =

 1 ps

ps+rt 1


x
y

 ,

hence I2 +M =

 1 ps

ps+rt 1

 .

2

4.1.1 Determining the stabilizer of a character on H∞

Note each element g ∈ Γ acts naturally (on the left) on each χ ∈ Hom(H∞, µp∞)

by sending χ 7→ g ⋆ χ, where g ⋆ χ(h) := χ(g−1hg) for all h ∈ H∞. The Γ-

stabilizer of χ is given by the subgroup

StabΓ(χ) :=
{
g ∈ Γ

∣∣∣ χ(g−1(hx1hy2)g) = χ
(
hx1h

y
2

)
for all h = hx1h

y
2 ∈ H∞

}
.

Proposition 4.2 If χ = χe1
1,n × χe2

2,n : H∞ ↠ µpn is a surjective character,

then [
Γ : StabΓ(χ)

]
= pmax{0,mχ}

where, using the case-by-case description in the Classification Theorem, one

has:

(II) mχ = n− s− ordp(e1); (III) mχ = n− s; (IV) mχ = n− s;

(V) mχ = n− s−min
{

ordp(e2) + ordp(d), ordp(e1 + pre2)
}

; and

(VI) mχ = n− s−min
{
r + ordp(e2), ordp(e1)

}
.

Proof. Firstly, let us denote by ζpn the primitive pn-th root of unity exp(2π
√
−1/pn).

Case (II). Here I2 +M =

 1 ps

0 1

, so that γ−pi(hx1h
y
2)γ

pi = hx+p
s+iy

1 hy2.

Consequently

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)

= χ1,n

(
hx+p

s+iy
1 hy2

)e1×χ2,n

(
hx+p

s+iy
1 hy2

)e2 = ζ
e1x+(e2+e1×ps+i)y
pn
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equals χ
(
hx1h

y
2

)
= ζe1x+e2y

pn for all x, y ∈ Z, if and only if e1×ps+i ≡ 0 (mod pn).

Case (III). Here I2 + M =

 1 + ps 0

0 1 + ps

 with repeated eigenvalue

λIII,± = 1 + ps, and it follows that

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)

= χ(hx1h
y
2)

(1+ps)p
i

= ζ
(e1x+e2y)×(1+ps)p

i

pn .

However (1 + ps)p
i ≡ 1 (mod ps+i) but (1 + ps)p

i ̸≡ 1 (mod ps+i+1), in which

case χ
(
γ−p

i
(hx1h

y
2)γ

pi
)

equals χ(hx1h
y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if and only

if

ordp
(
(1 + ps)p

i − 1
)
= s+ i ≥ n, i.e. if and only if i ≥ n− s.

Case (IV). Here I2 +M =

 1 + ps ps+r

ps+rd 1 + ps

; let λIV,± := 1 + ps ± ps+r
√
d

be the two distinct eigenvalues of I2 +M , so that

I2+M = PIVDIV P
−1
IV with DIV =

 λIV,+ 0

0 λIV,−

 and PIV =

 1 1
√
d −

√
d

.
Since (I2 +M)p

i
= PIVD

pi

IV P
−1
IV , one readily computes

γ−p
i(
hx1h

y
2

)
γp

i

=

1 + ps ps+r

ps+rd 1 + ps


pix

y



=

 1 1
√
d −

√
d


λIV,+ 0

0 λIV,−


pi 1 1
√
d −

√
d


−1x

y


=

 λp
i

IV,++λp
i

IV,−
2

λp
i

IV,+−λ
pi

IV,−
2
√
d

λp
i

IV,+−λ
pi

IV,−
2

√
d

λp
i

IV,++λp
i

IV,−
2


x
y


= h

(λ
pi

IV,+
+λ

pi

IV,−
2

)
x+
(λ

pi

IV,+
−λ

pi

IV,−
2
√
d

)
y

1 h

(λ
pi

IV,+
−λ

pi

IV,−
2

)√
d x+
(λ

pi

IV,+
+λ

pi

IV,−
2

)
y

2

(4.2)

To study both λp
i

IV,++λp
i

IV,−
2

and λp
i

IV,+−λ
pi

IV,−
2

, note that

λpIV,± =
(
1+ps(1±pr

√
d)
)p

= 1+

 p

1

 ps(1±pr
√
d)+

p∑
j=2

 p

j

 psj(1±pr
√
d)j
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and (1± pr
√
d)j = 1± jpr

√
d+O

(
p2r+δp

)
where δp = ordp(d), hence

λpIV,± = 1 + ps+1 ± ps+r+1
√
d+

p∑
j=2

 p

j

 psj ± pr
√
d

p∑
j=2

 p

j

 jpsj +O
(
p2s+2r+1+δp

)
= 1 + ps+1 ± ps+r+1

√
d+

(
(1 + ps)p − 1− ps+1

)
±O

(
p2s+r+1+δp/2

)
+O

(
p2s+2r+1+δp

)
.

It follows that λpIV,++λpIV,−
2

will equal 1 + ps+1 +
(
(1 + ps)p − 1 − ps+1

)
+

O
(
p2s+r+1+δp/2

)
, or less accurately λpIV,++λpIV,−

2
= 1+ ps+1 +O

(
p2s+1

)
; applying

an induction argument:

λp
i

IV,+ + λp
i

IV,−

2
= 1 + ps+i +O

(
p2s+i

)
. (4.3)

On the other hand, the difference term λpIV,+−λ
p
IV,−

2
equals ps+r+1

√
d+O

(
p2s+r+1+δp/2

)
,

and therefore λpIV,+−λ
p
IV,−

2
√
d

= ps+r+1 +O
(
p2s+r+1

)
; applying induction again:

λp
i

IV,+ − λ
pi

IV,−

2
√
d

= ps+r+i +O
(
p2s+r+i

)
. (4.4)

Recalling the chosen character χ = χe1
1,n×χe2

2,n, from Equation (4.2) one obtains

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
= χ1,n

(
γ−p

i

(hx1h
y
2)γ

pi
)e1

× χ2,n

(
γ−p

i

(hx1h
y
2)γ

pi
)e2

= ζ

e1

(λ
pi

IV,+
+λ

pi

IV,−
2

)
+e2

(λ
pi

IV,+
−λ

pi

IV,−
2

)√
d

x+
e1

(λ
pi

IV,+
−λ

pi

IV,−
2
√
d

)
+e2

(λ
pi

IV,+
+λ

pi

IV,−
2

)y
pn .

As a corollary of our estimates in (4.3) and (4.4), γpi⋆χ(hx1h
y
2) = χ

(
γ−p

i
(hx1h

y
2)γ

pi
)

equals χ(hx1h
y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if and only if

e1p
s+i + e2p

s+r+id ≡ 0 ( mod pn) and e1p
s+r+i + e2p

s+i ≡ 0 ( mod pn),

i.e. if and only if i ≥ n−s−min
{

ordp(e1+p
rde2) , ordp(pre1+e2)

}
= n−s.

Case (V). Here I2 +M =

 1 ps

psd 1 + ps+r

; let λV,± := 1 + ps+r

2
± ps
√
∆V

with ∆V = d + p2r/4 denote the eigenvalues of I2 +M . Indeed for all i ≥ 0,

one may write

(I2 +M)p
i

= PV

 λp
i

V,+ 0

0 λp
i

V,−

P−1V
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where PV =

 1 1

pr

2
+
√
∆V

pr

2
−
√
∆V

, and its inverse P−1V = 1
2

1− pr

2
√
∆V

1√
∆V

1 + pr

2
√
∆V

− 1√
∆V

.

Using this decomposition, we next deduce

γ−p
i(
hx1h

y
2

)
γp

i

=

 1 ps

psd 1 + ps+r


pix

y



=

 1 1

pr

2
+
√
∆V

pr

2
−
√
∆V


λV,+ 0

0 λV,−


pi

1

2

1− pr

2
√
∆V

1√
∆V

1 + pr

2
√
∆V

− 1√
∆V


x
y


=

λp
i

V,++λp
i

V,−
2

− λp
i

V,+−λ
pi

V,−
2
√
∆V

× pr

2

λp
i

V,+−λ
pi

V,−
2
√
∆V

λp
i

V,+−λ
pi

V,−
2
√
∆V

d
λp

i

V,++λp
i

V,−
2

+
λp

i

V,+−λ
pi

V,−
2
√
∆V

× pr

2


x
y


= h

(
λ
pi

V,+
+λ

pi

V,−
2

−
λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
x+

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
y

1

× h

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
dx+

(
λ
pi

V,+
+λ

pi

V,−
2

+
λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
y

2 (4.5)

Now from the binomial theorem,

λpV,± = 1 +
ps+r+1

2
± ps+1

√
∆V +

p∑
j=2

 p

j

 psj
(pr
2
±
√
∆V

)j
.

• If ordp(
√
∆V ) ≥ r then

(
pr

2
±
√
∆V

)j
=
(
pr

2

)j±j (pr
2

)j−1√
∆V +O

(
pr(j−2)+δ

′
p
)

where δ′p = ordp(∆V ), hence

∑p
j=2

 p

j

 psj
(
pr

2
±
√
∆V

)j

=
∑p

j=2

 p

j

 psj
((

pr

2

)j ± j (pr
2

)j−1√
∆V

)
+O

(
p2s+1+δ′p

)
=
(
1 + pr+s

2

)p
−
(
1 + pr+s+1

2

)
± ps+1

√
∆V ×

((
1 + pr+s

2

)p−1
− 1

)
+ O

(
p2s+1+δ′p

)
.

It follows that λpV,++λpV,−
2

= 1 + ps+r+1

2
+ O

(
p2s+2r+1

)
and λpV,+−λ

p
V,−

2
√
∆V

= ps+1 +

O
(
p2s+r+1

)
upon using the condition δ′p ≥ 2r, so by induction:

λp
i

V,+ + λp
i

V,−

2
= 1+

ps+r+i

2
+O

(
p2s+2r+i

)
and

λp
i

V,+ − λ
pi

V,−

2
√
∆V

= ps+i+O
(
p2s+r+i

)
.

(4.6)
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• Alternatively, if r ≥ ordp(
√
∆V ) then

(pr
2
±
√
∆V

)j
=
(
±
√
∆V

)j
+
jpr

2

(
±
√

∆V

)j−1
+O

(
pδ

′
p(j−2)/2+2r

)
and arguing in an identical fashion to before, one deduces that

λp
i

V,+ + λp
i

V,−

2
= 1+

ps+r+i

2
+O
(
p2s+δ

′
p+i
)

and
λp

i

V,+ − λ
pi

V,−

2
√
∆V

= ps+i+O
(
p2s+δ

′
p/2+i

)
.

(4.7)

Again as χ = χe1
1,n × χe2

2,n, this time Equation (4.5) implies

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
= ζ

e1

(
λ
pi

V,+
+λ

pi

V,−
2

−
λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
+e2d

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)x
pn

× ζ

e1

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
+e2

(
λ
pi

V,+
+λ

pi

V,−
2

+
λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)y
pn .

Exploiting our eigenvalue estimates in Equations (4.6) and (4.7) appropriately,

it follows that χ
(
γ−p

i
(hx1h

y
2)γ

pi
)

equals χ(hx1h
y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if

and only if

e2d× ps+i ≡ 0 ( mod pn) and e1 × ps+i + e2 × ps+i+r ≡ 0 ( mod pn);

the latter holds precisely when

s+ i ≥ n− ordp(e2d) and s+ i ≥ n− ordp(e1 + e2p
r).

Case (VI). Here I2 +M =

 1 ps

ps+rt 1

; let λVI,± := 1 ± ps
√
prt be its

eigenvalues (note that t = 1 in (a) of the Classification Theorem, and t ∈ Z×p

is not a square in (b)). Then

(I2+M)p
i

= PVID
pi

VIP
−1
VI with DVI =

 λVI,+ 0

0 λVI,−

 and PVI =

 1 1

√
prt −

√
prt

.
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A straightforward calculation shows

γ−p
i(
hx1h

y
2

)
γp

i

=

 1 ps

ps+rt 1


pix

y



=

 1 1

√
prt −

√
prt


λV I,+ 0

0 λV I,−


pi 1 1

√
prt −

√
prt


−1x

y


=

 λp
i

VI,++λp
i

VI,−
2

λp
i

VI,+−λ
pi

VI,−
2
√
prt

√
prt

λp
i

VI,+−λ
pi

VI,−
2

λp
i

VI,++λp
i

VI,−
2


x
y


= h

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
x+

(
λ
pi

VI,+
−λ

pi

VI,−
2
√

prt

)
y

1 × h
√
prt

(
λ
pi

VI,+
−λ

pi

VI,−
2

)
x+

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
y

2

(4.8)

and clearly λpV,± = 1 ± ps+1
√
prt + p2s+1

(
p−1
2

)
prt + . . . = 1 ± ps+1

√
prt +

O
(
p2s+r+1

)
. Using a now familiar mathematical induction,

λp
i

VI,+ + λp
i

VI,−

2
= 1+O

(
p2s+r+i

)
and

λp
i

VI,+ − λ
pi

VI,−

2
√
prt

= ps+i+O
(
p2s+r/2+i

)
.

(4.9)

If the character χ = χe1
1,n×χe2

2,n, by Equation (4.8) the value χ
(
γ−p

i
(hx1h

y
2)γ

pi
)

equals

ζ

e1

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
+e2
√
prt

(
λ
pi

VI,+
−λ

pi

VI,−
2

)x+e1

(
λ
pi

VI,+
−λ

pi

VI,−
2
√

prt

)
+e2

(
λ
pi

VI,+
+λ

pi

VI,−
2

)y
pn .

Plugging Equation (4.9) into the above, one can then deduce χ
(
γ−p

i
(hx1h

y
2)γ

pi
)
=

χ (hx1h
y
2) for all x, y ∈ Z, if and only if both

e2 × ps+i ×
(√

prt
)2 ≡ 0 ( mod pn) and e1 × ps+i ≡ 0 ( mod pn),

which is itself equivalent to ensuring that

s+ i ≥ n− ordp(e2p
rt) = n− r − ordp(e2) and s+ i ≥ n− ordp(e1).

2

4.1.2 How to choose a “good system” of subgroups

The theory in [CSRV12, Har10, Kak13, RW06] operates best in the setting of

one-dimensional Lie groups. Throughout we choose an integer n, and work
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with the p-adic group G∞,n := Γ⋉
(
H∞
Hpn

∞

)
. In later sections we will allow n to

vary, but for the time being n is fixed.

Lemma 4.3 If Z(G) denotes the centre of a group G, then

Z(G∞,n) =



Γp
n−s × H1,∞×Hpn−s

2,∞

Hpn
∞

in Case (II)

Γp
n−s × H

pn−s

∞
Hpn

∞
in Cases (III) and (IV)

Γp
n−s × H

pn−s

1,∞ ×Hpn−s−r

2,∞

Hpn
∞

in Case (V)

Γp
n−s × H

pn−s−r−ordp(t)
1,∞ × Hpn−s

2,∞

Hpn
∞

in Case (VI).

In particular, Z(G∞) ∼= lim←−nZ(G∞,n) =


H1,∞ in Case (II)

{1} otherwise.

Proof. We first note from the semi-direct product structure on G∞,n that

Z(G∞,n) = StabΓ

(
H∞
Hpn
∞

)
×

hx1hy2
∣∣∣∣ (I2 +M)

 x

y

 ≡
 x

y

 mod pnZ2
p


Hpn
∞

.

One then computes the right-hand side on a case-by-case basis, using the form

of the matrix M listed in Equation (4.1), as follow.

Firstly in Case (II), one has

(I2 +M)

x
y

 =

1 ps

0 1


x
y

 =

x+ psy

y

 ,

so the congruence (I2 +M)

x
y

 =

x
y

 (mod pn) holds if and only if y ≡ 0

(mod pn−s).

In Case (III),

(I2 +M)

x
y

 =

1 + ps 0

0 1 + ps


x
y

 =

(1 + ps)x

(1 + ps)y


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and the condition

x
y

 ≡
0

0

 (mod pn−s) ensures that (I2 +M)

x
y

 ≡
x
y

 (mod pn).

In Case (IV),

(I2 +M)

x
y

 =

1 + ps ps+r

ps+rd 1 + ps


x
y

 =

 x+ psx+ ps+ry

y + psy + ps+rdx

 .

Therefore, we deduce that (I2 + M)

x
y

 ≡
x
y

 (mod pn) if and only if

 x+ pry

y + prdx

 ≡
0

0

 (mod pn−s). Since x + pry ≡ 0 (mod pn−s) and y +

prdx ≡ 0 (mod pn−s), we may write

x = kpn−s − pry for some integer k,

in which case

y + prdx = y + prd(kpn−s − pry) = y − p2rdy + kprdpn−s

≡ y − ps+rdy (mod pn−s) ≡ (1− p2rd)y ≡ 0 (mod pn−s).

Lastly because 1− p2rd is invertible, one concludes that y ≡ 0 ( mod pn−s).

Next in Case (V),

(I2 +M)

x
y

 =

 1 ps

psd 1 + ps+r


x
y


=

 x+ psy

y + psdx+ ps+ry



and therefore one deduces that (I2 + M)

x
y

 ≡

x
y

 (mod pn) if and

only if

 y

dx+ pry

 ≡
0

0

 (mod pn−s). The later is equivalent to x ≡ 0

(mod pn−s−ordp(d)) and y ≡ 0 (mod pn−s).
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Finally in Case (VI),

(I2 +M)

x
y

 =

 1 ps

ps+rt 1


x
y

 =

 x+ psy

ps+rtx+ y



Hence, (I2 + M)

x
y

 ≡
x
y

 (mod pn) is equivalent to the congruence

 y

prtx

 ≡
0

0

 (mod pn−s), and this becomes x ≡ 0 (mod pn−s−r−ordp(t))

and y ≡ 0 (mod pn−s). 2

Bearing in mind Kakde’s subgroups should always contain the centre of G∞,n,

we define

Um,n := Γp
m ⋉

(
H∞
Hpn
∞

)
where the integer m ∈ {0, . . . , n− s},

so: (i) Z(G∞,n) ⊂ Um,n, and (ii) Γp
n−s⊂ StabΓ(χ) for any χ : H∞↠ µpm by

Proposition 4.2. It follows that such χ extend to Um,n if m ∈ {mχ, . . . , n− s},

and will thus factor through

Uab
m,n =

Um,n
[Um,n,Um,n]

=
Γp

m ⋉H∞/Hpn

∞⟨[
hx1h

y
2 mod Hpn

∞ , γp
m
] ∣∣∣ x, y ∈ Z

⟩ .
Therefore, by determining the nature of Uab

m,n in each case, we may calculate

the number of irreducible representations ψ ⊗ IndG∞,n

Um,n
(χ) with ψ : Γ→ C× of

finite order. (Remember that every irreducible Artin representation ρ on G∞

is of this form for suitable m,n, χ, ψ.)

Proposition 4.4 For each pair m,n ∈ Z with 0 ≤ m ≤ n− s,

Uab
m,n

∼=



Γp
m × H1,∞

Hps+m

1,∞
× H2,∞

Hpn

2,∞
in Case (II)

Um,s+m in Cases (III) and (IV)

Γp
m × Z

pmin{n,s+m+ordp(d)}Z ×
Z

ps+mZ in Case (V)

Γp
m × Z

pmin{n,s+m+r+ordp(t)}Z ×
Z

ps+mZ in Case (VI);

in fact, the first two lines are actual equalities, not just isomorphisms.
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Proof. We proceed by working through the different cases (II)–(VI) in nu-

merical order.

Case (II). Here one simply exploits the commutator relation
[
hx1h

y
2, γ

pm
]
=

(hy1)
ps+m .

Case (III). Here we use the relation
[
hx1h

y
2, γ

pm
]
= (hx1h

y
2)

(1+ps)p
m−1 and the

fact that ordp
(
(1 + ps)p

m− 1
)
= s+m.

Case (IV). Recall from Equation 4.2 that

γ−p
m

(hx1h
y
2)γ

pm = h

(λ
pm

IV,+
+λ

pm

IV,−
2

)
x+
(λ

pm

IV,+
−λ

pm

IV,−
2
√

d

)
y

1 × h
(λ

pm

IV,+
−λ

pm

IV,−
2

)√
d x+
(λ

pm

IV,+
+λ

pm

IV,−
2

)
y

2

=
(
hp

s+m+...
1 × hp

s+r+md+...
2

)x
×
(
hp

s+r+m+...
1 × hp

s+m+...
2

)y
× hx1h

y
2

upon using the estimates in (4.3) and (4.4); consequently

H∞⟨
[h1, γp

m ], [h2, γp
m ]
⟩ ∼= Zp ⊕ Zp

Zp ·
{
(ps+m + . . . , ps+r+md+ . . . ), (ps+r+m + . . . , ps+m + . . . )

}
which means Uab

m,n = Um,n⟨
[h1,γp

m ],[h2,γp
m ]
⟩ ∼= Γp

m× Zp

ps+mZp
× Zp

ps+mZp
.

Case (V). This time Equation (4.5) combined with the estimates (4.6) and

(4.7) yields

γ−p
m

(hx1h
y
2)γ

pm = h

(
λ
pm

V,+
+λ

pm

V,−
2

−
λ
pm

V,+
−λ

pm

V,−
2
√

∆V
× pr

2

)
x+

(
λ
pm

V,+
−λ

pm

V,−
2
√

∆V

)
y

1

× h

(
λ
pm

V,+
−λ

pm

V,−
2
√

∆V

)
dx+

(
λ
pm

V,+
+λ

pm

V,−
2

+
λ
pm

V,+
−λ

pm

V,−
2
√

∆V
× pr

2

)
y

2

=

(
h

ps+r+m

2
− ps+r+m

2
+...

1 × hp
s+md+...

2

)x
×
(
hp

s+m+...
1 × h

ps+r+m

2
+ ps+r+m

2
+...

2

)y
× hx1h

y
2

so that Uab
m,n = Um,n⟨

[h1,γp
m ],[h2,γp

m ]
⟩ ∼= Γp

m× Zp

pnZp∪ ps+mdZp
× Zp

ps+mZp
.

Case (VI). Lastly, Equation (4.8) in tandem with the estimates in (4.9) im-

plies

γ−p
m

(hx1h
y
2)γ

pm = h

(
λ
pm

VI,+
+λ

pm

VI,−
2

)
x+

(
λ
pm

VI,+
−λ

pm

VI,−
2
√

prt

)
y

1 × h
√
prt

(
λ
pm

VI,+
−λ

pm

VI,−
2

)
x+

(
λ
pm

VI,+
+λ

pm

VI,−
2

)
y

2

=
(
h0+...1 × hp

s+m+rt+...
2

)x
×
(
hp

s+m+...
1 × h0+...2

)y
× hx1h

y
2 ,

hence Uab
m,n = Um,n⟨

[h1,γp
m ],[h2,γp

m ]
⟩ ∼= Γp

m× Zp

pnZp∪ ps+m+rtZp
× Zp

ps+mZp
. 2

We remark in Cases (II-VI), each Uab
m,n has the form Γp

m×H(m,n)

∞ where H(m,n)

∞

is obtained from quotienting H∞/Hpn

∞ = ⟨h1, h2⟩ with the subgroup generated

by
{
[h1, γ

pm ], [h2, γ
pm ]
}

.
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Definition 4.1 Let “ orbΓ

(
H(m,n)

∞
)
” denote the orbits under the action of

Γ
/
Γp

m in H(m,n)

∞ . In particular, if h ∈ H(m,n)

∞ then ϖh ∈ orbΓ

(
H(m,n)

∞
)

consists

of the set
{
γ−ihγi

∣∣ i ∈ Z
}

; we shall sometimes abuse notation, and write h

in place of ϖh.

4.1.3 Maps between the abelianizations of Um,n

We now outline the various mappings that appear in the description of Ψ and

Φ in [CSRV12, Kak13]. Rather than give their full definitions, we specialise

them to the specific three-dimensional situation we are considering.

The conditions (A1)-(A3) and (M1)-(M4) in the exposition [CSRV12, p79-

123] degenerate into some fairly simple rules, which can be expressed in terms

of an explicit basis for the image of Kakde’s map “σN(U)
U ”. In subsequent sec-

tions we will then study how these expressions transform, once the completed

group algebras Λ
(
Uab
m,n

)
are evaluated at a system of characters χ on H∞.

The mapping σm: Note that the normaliser of each subgroup U = Um,n ⊂ G∞,n

is the whole of G∞,n, so the Zp-linear map labelled σ
N(U)
U in [CSRV12, p85]

becomes

σ
G∞,n

Um,n
: Λ
(
Uab
m,n

)
−→ Λ

(
Uab
m,n

)
where f 7→

pm−1∑
i=0

γ−ifγi.

If we use the shorthand σm for this linear mapping, clearly σm(f) ∈ H0
(
Γ,Λ

(
Uab
m,n

))
corresponds to the sum over the orbits of f under the action of the finite group

Γ/Γp
m .

Definition 4.2 For any h = hx1h
y
2 mod

[
Um,n,Um,n

]
, one defines A(m,n)

h
∈

Zp
[
Uab
m,n

]
by

A(m,n)

h
:=

pm−1∑
i=0

h
xi
1 h

yi
2 where

 xi

yi

 ≡ (I2 +M)i

 x

y

 mod pn.

In fact, we could alternatively have definedA(m,n)

h
to be equal to the summation∑pm−1

i=0 γ−ihγi which coincides, of course, with σm(h); we will see that these

form a basis for Im(σm).



51

Proposition 4.5 (i) Each element A(m,n)

h
depends only on the Γ-orbit of h

inside H(m,n)

∞ ;

(ii) The image of σm is freely generated over Zp
[[
Γp

m]] by the A(m,n)

h
’s, in other

words

Im
(
σm
) ∼= Zp

[[
Γp

m]]⊗Zp Zp
{
A(m,n)

h

∣∣∣ h = hx1h
y
2 mod

[
Um,n,Um,n

]}
;

(iii) If r(n)σm := rankZp[[Γpm ]]

(
Im(σm)

)
, then

r(n)σm =



pn+s−1 × (mp+ p−m) in Case (II)

p2s−1 × (pm+1 + pm − 1) in Cases (III) and (IV)

pmin{n−m,s+ordp(d)}+s−1 × (pm+1 + pm − 1) in Case (V)

pmin{n−m,s+r+ordp(t)}+s−1 × (pm+1 + pm − 1) in Case (VI).

Proof. Let h = hx1h
y
2 mod [Um,n,Um,n], and put h′ = γ−jhγj for some fixed

j, so that h′ has the same Γ-orbit as h. By definition,

A(m,n)

h
′ =

pm−1∑
i=0

γ−ih
′
γi =

pm−1∑
i=0

γ−iγ−jhγjγi =

pm−1∑
i=0

γ−(i+j)hγi+j

so that

A(m,n)

h
=

pm−1∑
i=0

γ−ihγi =

pm−1∑
i=0

γ−(i+j)hγi+j = A(m,n)

h
′ ,

which completes the proof for part (i).

To establish (ii), first note that Uab
m,n = Γp

m × H(m,n)

∞ where H(m,n)

∞ is the

previous quotient of H∞ equipped with the action of the group Γ
/
Γp

m; part (ii)

now follows becauseH(m,n)

∞ is generated by hx1h
y
2 mod

[
Um,n,Um,n

]
for x, y ∈ Z.

Finally, to prove (iii) we just need to count the number of distinct A(m,n)

h
’s,

which coincides with the total number of
(
Γ/Γp

m)-orbits inside H(m,n)

∞ . In fact

by Burnside’s lemma,

#
{
Γ-orbits in H(m,n)

∞
}

= #
(
Γ/Γp

m)−1 × pm∑
j=1

#
{
h ∈ H(m,n)

∞

∣∣∣ γ−jhγj = h
}
.

From Proposition 4.4, in each case ⋆ ∈ {II,III,IV,V,VI} one knows

H(m,n)

∞
∼=

Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z
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where N (m)
⋆,1 , N

(m)
⋆,2 ∈ N satisfy m+ s ≤ N

(m)
⋆,1 ≤ n and m+ s ≤ N

(m)
⋆,2 ≤ n in all

five scenarios.

• If ⋆ = II then γ acts trivially on the first direct factor in H(m,n)

∞ , whence

#
{
Γ-orbits in H(m,n)

∞
}
= p−m ×

pm∑
j=1

pN
(m)
II,1 × pN

(m)
II,2+ordp(j)−m

= p−m ×
pm∑
j=1

ps+m × pn+ordp(j)−m = pn+s−m ×
pm−1∑
j=0

pordp(j)

= pn+s−m ×
(
(p0 · φ(pm) + p1 · φ(pm−1) + · · ·+ pm−1 · φ(p1) + pm)

)
= pn+s−m × pm−1(mp−m+ p) = pn+s−1 × (mp+ p−m).

• Assuming that ⋆ ̸= II, one discovers that

#
{
Γ-orbits in H(m,n)

∞
}

= p−m ×
pm∑
j=1

pN
(m)
⋆,1 +ordp(j)−m × pN

(m)
⋆,2 +ordp(j)−m

Now in Cases (III) and (IV), N (m)
II,1 = s+m and N

(m)
II,2 = s+m, and it follows

that

#
{
Γ-orbits in H(m,n)

∞
}
= p−m ×

pm∑
j=1

ps+m+ordp(j)−m × ps+m+ordp(j)−m

= p2s−m ×
pm−1∑
j=0

p2ordp(j)

= p2s−m ×
(
p0 · φ(pm) + p2 · φ(pm−1) + · · ·+ p2(m−1) · φ(p1) + p2m

)
= p2s−1 × (pm+1 + pm − 1).

Similarly, one can also determine that the #
{
Γ-orbits in H(m,n)

∞
}

in Cases (V)

and Case (VI) are

pmin{n,s+m+ordp(d)}+s−m−1 × (pm+1 + pm − 1)

and

pmin{n,s+m+r+ordp(t)}+s−m−1 × (pm+1 + pm − 1)

respectively. So, we conclude that for ⋆ ̸= II,

#
{
Γ-orbits in H(m,n)

∞
}

= p

(
N

(m)
⋆,1 −m

)
+
(
N

(m)
⋆,2 −m

)
−1 ×

(
pm+1 + pm − 1

)
where N (m)

⋆,1 and N
(m)
⋆,2 can be read off from Proposition 4.4. 2
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Corollary 4.6 The number of irreducible representations of the form IndG∞,n

StabΓ(χ)⋉H∞/pn(χ)

where χ factors through H(m,n)

∞ but not through H(m−1,n)
∞ is given by r(n)σm−r

(n)
σm−1.

Proof. Note that any two characters χ, χ′ as above induce the same G∞,n-

representation, if and only if χ′ belongs to the Γ-orbit of χ inside Hom
(
H(m,n)

∞ ,C×
)
;

since the latter group is (non-canonically) isomorphic to H(m,n)

∞ , its Γ-orbits

are in one-to-one correspondence with the finite set orbΓ

(
H(m,n)

∞
)
. It follows

immediately that

“the no. of Ind(χ)’s primitive on H(m,n)

∞ ” = #orbΓ

(
H(m,n)

∞
)
−#orbΓ

(
H(m−1,n)
∞

)
,

which equals r(n)σm−r
(n)
σm−1 because Im(σm) = Zp[[Γp

m
]]·
{
A(m,n)

h

∣∣ ϖh ∈ orbΓ

(
H(m,n)

∞
)}

.

2

The transfer map Verm,m′: Consider the subgroups Um,n ⊂ Um′,n of G∞,n with

m > m′. The transfer homomorphism (Verlagerung) VerUm′,n
Um,n

relative to these

subgroups maps Uab
m′,n −→ Uab

m,n by sending

g
[
Um′,n,Um′,n

]
7→

∏
τ∈R

cg,τ
[
Um,n,Um,n

]
where R is a fixed set of left coset representatives for Um′,n

/
Um,n, and gτ =

rgcg,τ with cg,τ ∈ Um,n and rg ∈ R.

Henceforth one writes Verm′,m : Λ
(
Uab
m′,n

)
→ Λ

(
Uab
m,n

)
for the Zp-linear and

continuous extension of the transfer map to the completed group algebras.

Lemma 4.7 Suppose g ∈ Uab
m′,n, and let ĝ = (γp

m′
)j · (hx1h

y
2) ∈ Γp

m′
⋉H∞ be

any lift. Then

Verm′,m(g) ≡ (γp
m

)j · hx′1 h
y′

2 mod
[
Um,n,Um,n

]
where (x′, y′) =

(
pm−m

′
x, pm−m

′
y
)

in Case (II), and in the same notation as

the proof of Proposition 4.2: x′

y′

 = P⋆


λp

m

⋆,+−1

λp
m′

⋆,+ −1
0

0
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆

 x

y

 in Case (⋆), with ⋆ ∈ {III,IV,V,VI}.
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Proof. Since Um′,n

/
Um,n ∼= Γp

m′/
Γp

m , its coset representatives are
{
r0, r1, . . . , rpm−m′−1

}
where ri = γp

m′
i. One can represent ĝ in the form γp

m′
j ·(hx1h

y
2) for some choice

of j ∈ Zp, in which case

ĝ ri = γp
m′
j(hx1h

y
2)γ

pm
′
i = γp

m′
(j+i)

(
γ−p

m′
i(hx1h

y
2)γ

pm
′
i
)

= γp
m′

(j+i)·
(
h
x
pm

′
i

1 h
y
pm

′
i

2

)

where

 xpm′ i

ypm′ i

 =
(
I2 +M

)pm′
i

 x

y

.

In fact, if ι : Zp → {0, 1, . . . , pm−m
′ − 1} so that ι(z) ≡ z mod pm−m

′ , then

one has γpm
′
(j+i) = rι(j+i) · γp

m′
(j+i−ι(j+i)); consequently

ĝ ri = rι(j+i)

(
γp

m′
(j+i−ι(j+i)) ·

(
h
x
pm

′
i

1 h
y
pm

′
i

2

))
.

By definition, the transfer is congruent to

Verm′,m(g) ≡
pm−m′−1∏

i=0

γp
m′

(j+i−ι(j+i)) · h
x
pm

′
i

1 h
y
pm

′
i

2 mod
[
Um,n,Um,n

]
and as j+i ≡ ι(j+i) mod pm−m

′ clearly γpm
′
(j+i−ι(j+i)) ∈ Γp

m , hence γpm
′
(j+i−ι(j+i))

and hxi1 h
yi
2 commute modulo

[
Um,n,Um,n

]
. It follows that

Verm′,m(g) ≡ γp
m′
c · hx′1 h

y′

2 mod
[
Um,n,Um,n

]
where c =

∑pm−m′−1
i=0 j + i− ι(j + i), and the vectorx′
y′

 =

∑xpm′ i∑
ypm′

i

 =

pm−m′−1∑
i=0

(
I2 +M

)pm′
i

 x

y

 .

To calculate the term c, without loss of generality assume j ∈ Z, which implies

c =

pm−m′−1∑
i=0

j + i− ι(j + i) = pm−m
′ ×

pm−m′−1∑
i=0

⌊ j + i

pm−m′

⌋
.

The right-hand sum then yields

pm−m′−1∑
i=0

⌊ j + i

pm−m′

⌋
= pm−m

′
⌊ j

pm−m′

⌋
+

pm−m′−1∑
i=0

⌊ι(j) + i

pm−m′

⌋

= pm−m
′
⌊ j

pm−m′

⌋
+

pm−m′−ι(j)−1∑
i=0

0 +

pm−m′−1∑
i=pm−m′−ι(j)

1 = pm−m
′
⌊ j

pm−m′

⌋
+ ι(j) = j
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and as an immediate consequence, c = pm−m
′ × j so that γpm

′
c = γp

mj as

required.

To compute x′ and y′, in Case (II) we find that

pm−m′−1∑
i=0

(
I2+M

)pm′
i
=

pm−m′−1∑
i=0

 1 ps × ipm′

0 1

 =

 pm−m
′
ps+m × pm−m′−1

2

0 pm−m
′

 .

In all other cases ⋆ ∈ {III,IV,V,VI} one has
(
I2+M

)pm′
i
= P⋆

 λp
m′
i

⋆,+ 0

0 λp
m′
i

⋆,−

P−1⋆ ,

which means

pm−m′−1∑
i=0

(
I2 +M

)pm′
i

 x

y

 = P⋆

 ∑pm−m′−1
i=0 λp

m′
i

⋆,+ 0

0
∑pm−m′−1

i=0 λp
m′
i

⋆,−

P−1⋆ .

Note that PIII = I2 because I2 +M is already diagonalised.

The result follows upon summing up the relevant geometric progression,

i.e.
∑pm−m′−1

i=0 λp
m′
i

⋆,± equals λp
m

⋆,±−1

λp
m′

⋆,± −1
. 2

The shift πm,m′: For integers m > m′, we now look for a reverse mapping to

Verm′,m. The commutator [hx1h
y
2, γ

pm ] corresponds to
(
(I2+M)p

m−I2
) x

y


as a vector in Z2

p; however Xpm − 1 = (Xpm
′
− 1)×

∏m
d=m′+1 ϕpd(X) where ϕpd

denotes the pd-th cyclotomic polynomial, therefore

[hx1h
y
2, γ

pm ] = [hx
′′

1 h
y′′

2 , γ
pm

′

] with

 x′′

y′′

 =
m∏

d=m′+1

ϕpd
(
I2 +M

) x

y

 .

As a consequence, we have the containments

[
Um,n,Um,n

]
⊂
[
Um′,n,Um′,n

]
⊂ H∞

/
Hpn

∞ .

The natural inclusion Um,n ↪→ Um′,n then yields the composition

πm,m′ : Uab
m,n =

Um,n[
Um,n,Um,n

] ↪→ Um′,n[
Um,n,Um,n

] proj
↠ Um′,n[

Um′,n,Um′,n

] = Uab
m′,n.

Moreover this shift homomorphism induces a map (πm,m′)∗ : orbΓ

(
H(m,n)

∞
)
→

orbΓ

(
H(m′,n)

∞
)
, sending each orbit ϖh =

{
γ−ihγi

∣∣ i ∈ Z
}

to the direct image

ϖπm,m′ (h).
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Recall from Proposition 4.5(ii) that a typical element of Im(σm) has the

form ∑
ϖ∈orbΓ(H

(m,n)
∞ )

fϖ(γ
pm − 1) · A(m,n)

ϖ =
∑
ϖ

fϖ · A(m,n)
ϖ say,

where each fϖ(X) ∈ Zp[[X]] and A(m,n)
ϖ :=

∑pm−1
i=0 γ−ihγi for any h ∈ ϖ.

Lemma 4.8 If m > m′, then πm,m′

(∑
ϖ fϖ · A

(m,n)
ϖ

)
= pm−m

′ ×
∑

ϖ fϖ ·

A(m′,n)
(πm,m′ )∗(ϖ).

Proof. If h ∈ ϖ with ϖ ∈ orbΓ

(
H(m,n)

∞
)
, then within the algebra Λ

(
Uab
m′,n

)
one has

πm,m′

(
fϖ ·

pm−1∑
i=0

γ−ihγi

)
= fϖ(γ

pm − 1) · πm,m′

pm−m′−1∑
i1=0

pm
′−1∑

i2=0

γ−p
m′
i1−i2hγp

m′
i1+i2


= fϖ(γ

pm − 1) ·
pm−m′−1∑
i1=0

pm
′−1∑

i2=0

γ−i2πm,m′(h)γi2

since γ−pm
′
πm,m′(h)γp

m′
= πm,m′(h) inside Uab

m′,n, which gives the result. 2

The norm and trace homomorphisms: We now introduce two final maps that

occur in the definition of both of Kakde’s groups Ψ and Φ. Firstly, if G is a

group and Conj(G) denotes it set of conjugacy classes, then Λ
(
Conj(G)

) ∼=
Λ(G)

/
[Λ(G),Λ(G)] as an isomorphism of Zp-modules [CSRV12, §2]. For an

integer pair m,m′ with m ≥ m′:

• the norm mapping K1

(
Λ
(
Uab
m′,n

))
−→ K1

(
Λ
(
Um,n

/[
Um′,n,Um′,n

]))
relative

to the subgroup Um,n

[Um′,n,Um′,n]
⊂ Um′,n

[Um′,n,Um′,n]
= Uab

m′,n is abbreviated by Nm′,m;

and

• similarly, the additive trace map Λ
(

Conj
(
Uab
m′,n

))
−→ Λ

(
Conj

(
Um,n

/[
Um′,n,Um′,n

]))
relative to Um,n

[Um′,n,Um′,n]
⊂ Um′,n

[Um′,n,Um′,n]
= Uab

m′,n is denoted by Trm′,m.

The following lemma describes the effect of the second of these maps on

the image of σm′ . Let charΓpm : Λ(Γ) → Λ(Γp
m
) denote the Zp-linear and

continuous extension of the map which sends γi 7→ γi if pm divides i, and

sends γi 7→ 0 if pm does not divide i.
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Lemma 4.9 For any element am′ =
∑

ϖ fϖ(γ
pm

′
− 1) · A(m′,n)

ϖ ∈ Im
(
σm′
)
,

Trm′,m

(
am′
)
= pm−m

′×
∑
ϖ

charΓpm

(
fϖ
(
γp

m′

−1
))
·A(m′,n)

ϖ ∈ Λ

(
Um,n

[Um′,n,Um′,n]

)

where the sum is taken over all ϖ ∈ orbΓ

(
H(m′,n)

∞
)
.

Proof. From [CSRV12, Rk iii], one knows

Trm′,m

(
γp

m′
jh
)
=


pm−m

′ × γpm
′
jh if γpm

′
j ∈ Γp

m

0 if γpm
′
j ̸∈ Γp

m,

so that for any h ∈ ϖ:

Trm′,m

(
γp

m′
j · A(m′,n)

ϖ

)
=


pm−m

′ ×
∑pm

′−1
i=0 γp

m′
j ·
(
γ−ihγi

)
if γpm

′
j ∈ Γp

m

0 otherwise.

The stated formula then follows by linearity and continuity. 2



Chapter 5

The Additive Calculations

We begin by recalling Kakde’s definition of the subset Ψ ⊂
∏

mQp

[[
Uab
m,n

]]
given in [Kak13]. For a fixed n ≥ s, the Zp-module Ψ consists of sequences(
am
)

satisfying the conditions:

(A1) Trm′,m

(
am′
)
= πm,m′

(
am
)

for any m > m′;

(A2) am = gamg
−1 at every g ∈ G∞,n;

(A3) am ∈ Im(σm) for each m ∈ {0, . . . , n− s}.

In fact, the general definition of Ψ involves more than just this system of sub-

quotients. However for our purposes these are sufficient, as every irreducible

representation of G∞,n is a finite twist of a representation obtained from in-

ducing down a character χ on Um,n, for an appropriate choice of m and χ.

5.1 The image of Ψ under the characters on

H(m,n)
∞

The main task is to see how Ψ transforms if we evaluate its constituent el-

ements at a system of characters χ = {χ} on H∞/Hpn

∞ . In particular, we

want to translate the conditions (A1)–(A3) involving the am’s into equivalent

conditions involving aχ := χ(amχ) instead, and thereby complete the middle
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square in the diagram

K ′1
(
Zp[[G∞,n]]

) Θ∞,n−→ Φ
“twisted log”−→ Ψ ↪→ Q⊗

( ∏
0≤m≤n−s

Zp
[[
Uab
m,n

]])
Evχ↘

y
χ

y
χ

y
χ

χ
(
Φ
) ??99K χ(Ψ) ↪→ Q⊗

(∏
m,χ

Oχ
[[

StabΓ(χ)
]])

which at this stage we make no attempt to explain in detail! The objects and

maps above will be properly introduced later, although we should perhaps

point out that, in general, K ′1(−) := K1(−)/SK1(−) (see [SV10, Section 4]).

The following key result describes χ(Ψ) ⊂
∏

χCp

[[
StabΓ(χ)

]]
using p-adic

congruences.

Theorem 5.1 A collection of elements aχ ∈ OCp

[[
StabΓ(χ)

]]
arises from a

sequence (am) ∈ Ψ ∩
∏

0≤m≤n−s Zp
[[
Uab
m,n

]]
, if and only if for each m ≥ 0 and

ϖ ∈ orbΓ

(
H(m,n)

∞
)
:

(C1) the compatibility χ(am) = TrStabΓ(χ)/Γpm (aχ) holds if m ∈ {mχ, . . . , n− s},

(C2) the equality aχ′ = aχ holds at each character χ′ ∈ Γ ∗ χ,

(C3)
∑

χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ) · Tr
(
Indχ∗

)
(ϖ) ∈ Zp

[[
Γp

m]]
, and

(C4)
∑

χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ) · Tr
(
Indχ∗

)
(ϖ) ≡ 0 mod pordp(#H

(m,n)
∞ )+m−ordp(#ϖ)

where Rm,n denotes a set of representatives for the Γ-orbits inside Hom
(
H(m,n)

∞ ,C×
)
.

To calculate #H(m,n)

∞ in property (C4) above, one just applies Proposition 4.4.

On the other hand, to calculate #ϖ we use the orbit-stabilizer theorem, so

that for any h ∈ ϖ one obtains

#ϖ =
[
Γ/Γp

m

: StabΓ/Γpm (h)
]
=
[
Γ : StabΓ(h)

]
.

Also by property (C2), an element aχ depends only on the representative for χ

in Rm,n, hence the last two summations in the above theorem are independent

of any choices.
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Proof. We begin with the ‘only if’ part of the argument. Suppose we are given

an arbitrary element am ∈ Zp
[[
Uab
m,n

]]
, and let us put a

(m)
χ := χ (am) for any

character χ : H∞ → µpn (note that if StabΓ(χ) = Γp
m , then we will drop the

superscript (m) above completely). Assuming that (am) ∈ Ψ ∩
∏

m Zp
[[
Uab
m,n

]]
,

we claim the following statements hold:

(a) there are equalities a
(m)
χ = a

(m)
χ′ for any χ′ ∈ Γ ∗ χ, where Γ ∗ χ :={

g ∗ χ
∣∣ g ∈ Γ

}
;

(b) we can express am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

C
(m)
ϖ · A(m,n)

ϖ , where for any h ∈ ϖ

one has

C(m)
ϖ =

#ϖ

pm ·#H(m,n)

∞

×
∑

χ∈Rm,n

a(m)
χ ·

(
#(Γ ∗ χ)

pm
·
pm−1∑
i=0

χ−1
(
γ−ihγi

))
∈ Λ

(
Γp

m)
;

(c) −ordp
(

#ϖ

pm·#H(m,n)
∞

)
= ordp

(
#H(m,n)

∞
)
+m− ordp(#ϖ) ≥ 0;

(d) Tr
(
Indχ∗

)
(ϖ) = #(Γ∗χ)

pm
·
∑pm−1

i=0 χ−1
(
γ−ihγi

)
;

(e) one has a
(m)
χ = TrStabΓ(χ)/Γpm (aχ) for each m ≥mχ, i.e. (C1) is true.

Deferring their proof temporarily, let us first understand why they yield the

three assertions in our theorem. Clearly statement (C2) is implied by (a)

with m = ordp[Γ : StabΓ(χ)]. Moreover both (C3) and (C4) will now follow

upon combining (b), (c), (d) and (e) together, and then observing that the

p-integrality of the C(m)
ϖ ’s is equivalent to each sum

∑
χ∈Rm,n

a(m)
χ ·

(
#(Γ ∗ χ)

pm
·
pm−1∑
i=0

χ−1
(
γ−ihγi

))
=

∑
χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ)·Tr
(
Indχ∗

)
(ϖ)

belonging to the lattice pm·#H(m,n)
∞

#ϖ
·Zp
[[
Γp

m]]
= pordp(#H

(m,n)
∞ )+m−ordp(#ϖ)·Zp

[[
Γp

m]].
We are left to prove these five assertions. Part (a) is a consequence of

property (A2). To prove statement (b), let us write am =
∑

h∈H(m,n)
∞

c
(m)

h
· h

where each c
(m)

h
∈ Λ

(
Γp

m). Since the characteristic function of h can be

decomposed into a sum over the characters of the abelian group H(m,n)

∞ , one

can express each coefficient above as

c
(m)

h
=

1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · a(m)
χ .
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Using property (A3) and Proposition 4.5, we know that am is a Λ(Γp
m
)-linear

combination of A(m,n)
ϖ ’s, which indicates c(m)

h
is constant-valued for all h inside

a prescribed orbit ϖ. If we denote this common value as ‘c(m)
ϖ ’, then

am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

∑
h∈ϖ

c(m)
ϖ ·h =

∑
ϖ

c(m)
ϖ ·

∑
h∈ϖ

h =
∑
ϖ

c(m)
ϖ ·

#ϖ

pm
·A(m,n)

ϖ .

N.B. In this situation, the term c
(m)
ϖ · #ϖ

pm
corresponds to the coefficient C(m)

ϖ

of A(m,n)
ϖ .

Now we can break
∑

χ:H(m,n)
∞ →µpn

into a double summation
∑

χ∈Rm,n

∑
χ′∈Γ∗χ.

Furthermore, a(m)
χ′ = a

(m)
χ whenever χ′ ∈ Γ ∗ χ from (a), hence for any h ∈ ϖ:

c(m)
ϖ =

1

#H(m,n)

∞

·
∑

χ:H(m,n)
∞ →µpn

χ−1(h)·a(m)
χ =

1

#H(m,n)

∞

·
∑

χ∈Rm,n

a(m)
χ

∑
χ′∈Γ∗χ

(
χ′
)−1

(h).

Splicing together these last two equations, we therefore conclude

am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

 #ϖ

pm ·#H(m,n)

∞

×
∑

χ∈Rm,n

a(m)
χ ·

∑
χ′∈Γ∗χ

(
χ′
)−1

(h)

 · A(m,n)
ϖ .

Lastly
∑

χ′∈Γ∗χ
(
χ′
)−1

(h) coincides with the scaled value #(Γ∗χ)
pm
·
∑pm−1

i=0 χ−1
(
γ−ihγi

)
,

which means (b) is also established.

To show part (c) is easy since the size of each orbit ϖ ∈ orbΓ

(
H(m,n)

∞
)

divides into pm. In order to establish (d) we define ρm := IndG∞,n

Γpm⋉H∞/pn
(χ), so

that ρm ∼=
⊕

ψ Ind(χ)⊗ψ where the sum is over all characters ψ : StabΓ(χ)/Γ
pm →

C×. Thus for h ∈ ϖ ⊂ H(m,n)

∞ ,

[
StabΓ(χ) : Γ

pm
]
· Tr
(
Indχ∗

)
(h) = Tr

(
ρ∗m
)
(h) =

pm−1∑
i=0

χ−1
(
γ−ihγi

)
and the orbit-stabilizer theorem for Γ/Γp

m acting on Hom
(
H(m,n)

∞ , µpn
)

then

implies

[
StabΓ(χ) : Γ

pm
]
=

[
Γ : Γp

m][
Γ : StabΓ(χ)

] =

[
Γ : Γp

m][
Γ/Γpm : StabΓ/Γpm (χ)

] =
pm

#
(
Γ ∗ χ

) .
The assertion (e) follows from property (A1): if we set m′ = mχ then

TrStabΓ(χ)/Γpm (aχ) = χ
(
Trm′,m

(
am′
)) by (A1)

= χ
(
πm,m′

(
am
))

= a(m)
χ .

This completes the ‘if’ portion of the ‘if and only if’ statement.
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Now, let us focus on the ‘only if’ part, which means we must show that

“(C1) and (C2) and (C3) and (C4) =⇒ (A1) and (A2) and (A3) ”.

We start with establishing (A2); in fact it is enough to show that γ−1amγ = am,

for all γ ∈ Γ.

By a direct computation,

γ−1c
(m)

h
γ =

1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

γ−1χ−1(h) · a(m)
χ γ

=
1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · γ−1a(m)
χ γ

=
1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · a(m)
χ since γ acts trivially on Γp

m

,

which coincides with c
(m)

h
. Consequently,

γ−1amγ =
∑

h∈H(m,n)
∞

γ−1c
(m)

h
hγ =

∑
h∈H(m,n)

∞

γ−1c
(m)

h
γγ−1hγ

=
∑

h∈H(m,n)
∞

c
(m)

h
γ−1hγ =

∑
h∈H(m,n)

∞

c
(m)

h
h
γ
.

On the other hand,

c
(m)

h
γ =

1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

χ−1(h
γ
) · a(m)

χ =
1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

(γ ⋆ χ)−1(h) · a(m)
χ

=
1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

(γ ⋆ χ)−1(h) · a(m)
γ⋆χ by (C2).

which implies that c(m)

h
γ = c

(m)

h
. It follows directly that

γ−1amγ =
∑

h∈H(m,n)
∞

c
(m)

h
h
γ
=

∑
h∈H(m,n)

∞

c
(m)

h
γ h

γ
= am,

which means that (A2) now follows.

Secondly, we try to deduce (A3). Since c(m)

h
only depends on ωh,

as c(m)

h
γ = c

(m)

h
, thus one can write

am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

∑
h∈ϖ

c(m)
ϖ ·h =

∑
ϖ

c(m)
ϖ ·

∑
h
′∈ϖ

h
′

=
∑
ϖ

c(m)
ϖ ·

#ϖ

pm
·A(m,n)

ϖ .
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As shown before,

c(m)
ϖ =

1

#H(m,n)

∞

·
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · a(m)
χ =

1

#H(m,n)

∞

·
∑

χ∈Rm,n

a(m)
χ

∑
χ′∈Γ∗χ

(
χ′
)−1

(h)

=
1

#H(m,n)

∞

·
∑

χ∈Rm,n

a(m)
χ Tr

(
Indχ∗

)
(ϖ) (by C2)

Lastly, combining (C3) and (C4) together implies

c(m)
ϖ · #ϖ

pm
· A(m,n)

ϖ =
#ϖ

pm#H(m,n)

∞

·
∑

χ∈Rm,n

a(m)
χ Tr

(
Indχ∗

)
(ϖ) ∈ Λ(Γp

m

),

so that am ∈ Im(σm).

Lemma 4.8 and Lemma 4.9 tell us that to prove (A1), it is enough to show

that for each ϖ′ ∈ orbΓ(H
(m,n)

∞ ),

∑
ϖ∈orbΓ(H

(m,n)
∞ ),

(πm,m′ )∗(ϖ)=ϖ′

C(m)
ϖ ×

(#ϖ
#ϖ′

)
= pm−m

′ × charΓpm (C
(m′)
ϖ′ ).

Without loss of generality, we assume that m′ = m− 1 for now. Then

TrΓpm−1/Γpm (C
(m−1)
ϖ′ ) = TrΓpm−1/Γpm (

1

#H(m−1,n)
∞

×
∑

χ̃:H(m−1,n)
∞ 7→C×

a
(m−1)
χ̃ · χ̃−1

(
π(h))

)
=

1

#H(m−1,n)
∞

∑
χ̃:H(m−1,n)

∞ 7→C×

TrΓpm−1/Γpm

(
a
(m−1)
χ̃

)
· χ̃−1

(
π(h)

)
=

1

#H(m−1,n)
∞

∑
χ̃:H(m−1,n)

∞ 7→C×

TrΓpm−1/Γpm

(
TrStabΓ(χ̃)/Γpm−1 (aχ̃)

)
χ̃−1
(
π(h)

)
where TrΓpm−1/Γpm

(
TrStabΓ(χ̃)/Γpm−1 (aχ̃)

)
= TrStabΓ(χ̃)/Γpm (aχ̃). Therefore, one

has

TrΓpm−1/Γpm (C
(m−1)
ϖ′ ) =

1

#H(m−1,n)
∞

∑
χ̃:H(m−1,n)

∞ 7→C×

a
(m)
χ̃ · χ̃−1

(
π(h)

)
=

1

#H(m−1,n)
∞

∑
χ̃:H(m−1,n)

∞ 7→C×

χ̃
(
am mod [U (m−1,n),U (m−1,n)]

)
· χ̃−1

(
π(h)

)
On the other hand, the characteristic function of h charh(−) : Γ × H 7→ Γ

extends to a map

charh(−) : Zp[[Γ×H]] 7→ Zp[[Γ]].
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Hence one my deduce that,

TrΓpm−1/Γpm (C
(m−1)
ϖ′ ) = charπ(h)( am mod [U (m−1,n),U (m−1,n)])

= charπ(h)(π(am))

=
∑

ϖh∈orbΓ(H
(m,n)
∞ ),

π(ϖh)=ϖ
′
π(h)

#ϖ′
π(h)

#ϖh

× charh(am)

=
∑

π(ϖ)=ϖ′

#ϖ′

#ϖ
× 1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ 7→C×

a(m)
χ · χ−1(h)

=
∑

π(ϖ)=ϖ′

#ϖ′

#ϖ
× C(m)

ϖ = p× charΓpm (Cm−1
ϖ′ ).

We have therefore shown that (A1) holds for m′ = m − 1, and the general

situation follows by a simple induction on m. 2

5.2 A transfer-compatible basis for the set Rm,n

Assume again that ⋆ ∈ {II,III,IV,V,VI}. We can express H(m,n)

∞ as the double

quotient

H(m,n)

∞
∼=

H∞/Hpn

∞⟨
[h1, γp

m ] , [h2, γp
m ]
⟩

where h1 and h2 denote the image inside H∞/Hpn

∞ of the subgroup generators

h1, h2 ∈ H∞, as outlined in the Classification Theorem.

Clearly any character χ defined on H(m,n)

∞ must satisfy

χ
(
[h1, γ

pm ]
)
= χ

(
[h2, γ

pm ]
)
= 1.

Also H(m,n)

∞
∼= Z

p
N

(m)
⋆,1 Z

× Z

p
N

(m)
⋆,2 Z

where N
(m)
⋆,1 , N

(m)
⋆,2 ∈ N can be read off from

Proposition 4.4; one may then write

[
h1, γ

pm
]
=
(
hx̃11 h

ỹ1
2

)pN(m)
⋆,1

and
[
h2, γ

pm
]
=
(
hx̃21 h

ỹ2
2

)pN(m)
⋆,2

for integer pairs (x̃1, ỹ1) and (x̃2, ỹ2), neither of which is p-divisible in Z

p
N

(m)
⋆,1 Z
×

Z

p
N

(m)
⋆,2 Z

. To precisely determine them, we note that the commutator
[
hx1h

y
2, γ

pm
]
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corresponds to the vector
(
(I2 +M)p

m − I2
) x

y

 inside Zp ⊕ Zp, whence

 x̃1 x̃2

ỹ1 ỹ2

 =
((
I2 +M

)pm − I2)
 p−N

(m)
⋆,1 0

0 p−N
(m)
⋆,2

 . (5.1)

To construct a basis for Hom
(
H(m,n)

∞ ,C×
)
, we therefore need a pair of

characters χ̃1 and χ̃2, sending h
x̃j
1 h

ỹj
2 to a primitive pN

(m)
⋆,j -th root of

unity for each j ∈ {1, 2}.

Recall the definition of the generating characters χ1,n, χ2,n : H∞ → µpn

from Chapter 3, namely

χ1,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 x/pn

)
and χ2,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 y/pn

)
.

As an illustration, in Case (II) we know H(m,n)

∞
∼= H1,∞

Hps+m

1,∞
× H2,∞

Hpn

2,∞
from

Proposition 4.4, thus one may set

χ̃
1,N

(m)
II,1

(
hx1h

y
2

)
:= χ2,n

(
hx1h

y
2

)
= ζypn and χ̃

2,N
(m)
II,2

(
hx1h

y
2

)
:= χ1,s+m

(
hx1h

y
2

)
= ζxps+m .

(5.2)

We will now abuse our notation, and employ χ

x
y

 as an abbreviation for

χ(hx1h
y
2).

Definition 5.1 For j ∈ {1, 2}, we define characters χ̃
j,N

(m)
⋆,j

: H(m,n)

∞ ↠ µ
p
N

(m)
⋆,j

through:

• if ⋆ ∈ {III, IV, V, VI}, then

χ̃
1,N

(m)
⋆,1

x
y

 := χ
1,N

(m)
⋆,1


 pN

(m)
⋆,1 0

0 0

((I2 +M
)pm − I2)−1

 x

y




and

χ̃
2,N

(m)
⋆,2

x
y

 := χ
2,N

(m)
⋆,2


 0 0

0 pN
(m)
⋆,2

((I2 +M
)pm − I2)−1

 x

y


 ;

• if ⋆ = II, one uses Equation (5.2) instead to define χ̃
1,N

(m)
II,1

and χ̃
2,N

(m)
II,2

.



66

In particular, from Equation (5.1) we see that χ̃
1,N

(m)
⋆,1

(
hx̃11 h

ỹ1
2

)
= χ

1,N
(m)
⋆,1

(
h11h

0
2

)
=

ζ
p
N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

(
hx̃21 h

ỹ2
2

)
= χ

2,N
(m)
⋆,2

(
h01h

1
2

)
= ζ

p
N

(m)
⋆,2

, which satisfies our stated

requirement. The main reason why we prefer using the character set
{
χ̃
1,N

(m)
⋆,1
, χ̃

2,N
(m)
⋆,2

}
over the more naive choice

{
χ
1,N

(m)
⋆,1
, χ

2,N
(m)
⋆,2

}
is motivated by the following

compatibility result.

Proposition 5.2 (a) The elements of Hom
(
H(m,n)

∞ ,C×
)

are explicitly given

by the set{
χ̃e1
1,N

(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

where e1 ∈ Z
/
pN

(m)
⋆,1 Z and e2 ∈ Z

/
pN

(m)
⋆,2 Z

}
.

(b) If ⋆ = II and m > m′, then

χ̃
1,N

(m)
⋆,1
◦ Verm′,m =

(
χ̃
1,N

(m′)
⋆,1

)pm−m′

and χ̃
2,N

(m)
⋆,2
◦ Verm′,m = χ̃

2,N
(m′)
⋆,2

.

(c) If ⋆ ∈ {III, IV, V, VI} and m > m′, then χ̃
j,N

(m)
⋆,j
◦Verm′,m = χ̃

j,N
(m′)
⋆,j

at each

j ∈ {1, 2}.

Proof. Let us first suppose ⋆ = II. Here one has [h1, γ
pm ] = 1 and [h2, γ

pm ] =

h
ps+m

1 with N
(m)
II,1 = n and N

(m)
II,2 = s + m, whilst χ̃

1,N
(m)
II,1

(
h
x

1h
y

2

)
= ζypn and

χ̃
2,N

(m)
II,1

(
h
x

1h
y

2

)
= ζxps+m . Part (a) then follows as χ̃

1,N
(m)
II,1

and χ̃
2,N

(m)
II,1

are inde-

pendent, while #H(m,n)

∞ = pn · ps+m. To show (b) one notes for j = 1, 2 that

χ̃
j,N

(m)
II,j
◦ Verm′,m

∣∣∣
H(m′,n)

∞
= χ̃p

m−m′

j,N
(m)
II,j

by Lemma 4.7, in which case

χ̃
1,N

(m)
II,1

(
(h

x

1h
y

2)
pm−m′)

=
(
ζypn
)pm−m′

and χ̃
2,N

(m)
II,2

(
(h

x

1h
y

2)
pm−m′)

=
(
ζxps+m

)pm−m′

= ζx
ps+m′ .

Let us instead suppose ⋆ ∈ {III,IV,V,VI}. Since
(
I2+M

)pm
= P⋆

 λp
m

⋆,+ 0

0 λp
m

⋆,−

P−1⋆ ,

we deduce that pN
(m)
⋆,1 0

0 0

((I2+M)pm−I2)−1 =

 1 0

0 0

P⋆


p
N

(m)
⋆,1

λp
m

⋆,+−1
0

0 p
N

(m)
⋆,1

λp
m

⋆,−−1

P−1⋆ .

On the other hand, again from Lemma 4.7 the matrix corresponding to Verm′,m

∣∣∣
H(m′,n)

∞

is given by P⋆


λp

m

⋆,+−1

λp
m′

⋆,+ −1
0

0
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆ . An elementary calculation reveals the
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identities pN
(m)
⋆,1 0

0 0

((I2 +M
)pm − I2)−1 · P⋆


λp

m

⋆,+−1

λp
m′

⋆,+ −1
0

0
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆

 x

y



=

 1 0

0 0

P⋆


p
N

(m)
⋆,1

λp
m

⋆,+−1
0

0 p
N

(m)
⋆,1

λp
m

⋆,−−1




λp
m

⋆,+−1

λp
m′

⋆,+ −1
0

0
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆

 x

y



= pN
(m)
⋆,1 −N

(m′)
⋆,1

 pN
(m′)
⋆,1 0

0 0

((I2 +M
)pm′

− I2
)−1 x

y

 .

These matrix identities directly imply that χ̃
1,N

(m)
⋆,1
◦ Verm′,m

 x

y

 equals

(
χ
1,N

(m)
⋆,1

)pN(m)
⋆,1 −N

(m′)
⋆,1


 pN

(m′)
⋆,1 0

0 0

((I2 +M
)pm′

− I2
)−1 x

y


 .

Since
(
χ
1,N

(m)
⋆,1

)pN(m)
⋆,1 −N

(m′)
⋆,1

= χ
1,N

(m′)
⋆,1

the above quantity is none other than

χ̃
1,N

(m′)
⋆,1

 x

y

, which establishes that χ̃
1,N

(m)
⋆,1
◦ Verm′,m = χ̃

1,N
(m′)
⋆,1

.

The argument for the second composition χ̃
2,N

(m)
⋆,2
◦Verm′,m follows identical

lines. 2

Lemma 5.3 (i) If h
x

1h
y

2 ∈ H
(m′,n)

∞ and f(X) ∈ Zp[[X]], then

Verm′,m

(
f
(
γp

m′

− 1
)
· A(m′,n)

h
x
1h

y
2

)
= p−(m−m

′) × f
(
γp

m − 1
)
· A(m,n)

h
x′
1 h

y′
2

where x′, y′ are as in Lemma 4.7.

(ii) Using exactly the same notation,

χ̃e1
1,N

(m′)
⋆,1

· χ̃e2
2,N

(m′)
⋆,2

(
A(m′,n)

h
x
1h

y
2

)
= p−(m−m

′) × χ̃e1
1,N

(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

(
A(m,n)

h
x′
1 h

y′
2

)
unless ⋆ =II, in which case one replaces χ̃e1

1,N
(m′)
⋆,1

·χ̃e2
2,N

(m′)
⋆,2

instead with χ̃e1p
m−m′

1,N
(m′)
⋆,1

·

χ̃e2
2,N

(m′)
⋆,2

on the left-hand side of this formula.
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Proof. Let us start by establishing (i). If

 xi

yi

 =
(
I2 +M

)i x

y

 for all

i ≥ 0, then

Verm′,m

(
γp

m′
j · A(m′,n)

h
x
1h

y
2

)
=

pm
′−1∑
i=0

Verm′,m

(
γp

m′
j · hxi1 h

yi
2

)
= γp

mj ·
pm

′−1∑
i=0

h
x′i
1 h

y′i
2

upon applying Lemma 4.7. Here in Case (⋆) with ⋆ ∈ {III,IV,V,VI}, the

vector x′i

y′i

 = P⋆


λp

m

⋆,+−1

λp
m′

⋆,+ −1
0

0
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆

 xi

yi



= P⋆

 λi⋆,+ ·
λp

m

⋆,+−1

λp
m′

⋆,+ −1
0

0 λi⋆,− ·
λp

m

⋆,−−1

λp
m′

⋆,− −1

P−1⋆

 x

y

 =
(
I2 +M

)i x′

y′


so that Verm′,m

(
γp

m′
j · A(m′,n)

h
x
1h

y
2

)
equals γpmj·

∑pm
′−1

i=0 γ−ih
x′

1 h
y′

2 γ
i = γp

mj·pm′−mA(m,n)

h
x′
1 h

y′
2

(the same identity for the Verlagerung holds in Case (II) also). The result ex-

tends to the completed group algebra by linearity and continuity.

Secondly to show part (ii) is true, we first set f(X) = 1 and then evaluate

the identity from (i) at the character χ̃e1
1,N

(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

. We next use Proposition

5.2(b)-(c) to rewrite the transformed left-hand side in terms of the powers of

χ̃
1,N

(m′)
⋆,1

and χ̃
2,N

(m′)
⋆,2

. 2



Chapter 6

The Multiplicative Calculations

To complete the proof of the main theorem, our strategy is to establish the

existence, commutativity and row-exactness of the diagram

1 → F×p × Gab
∞,n → K ′1

(
Zp[[G∞,n]]

) LOG−→ Zp
[[

Conj(G∞,n)
]]
→ Gab

∞,n → 1∣∣∣∣ y
Θ∞,n

y
Θ+

∞,n

∣∣∣∣
1 → F×p × Gab

∞,n → Φ
L−→ Ψ → Gab

∞,n → 1∣∣∣∣ y
χ

y
χ

1 → F×p × Gab
∞,n → χ

(
Φ
) Lχ

−→ χ
(
Ψ
)

↪→ ↪→

∏
m,χ

OCp

[[
StabΓ(χ)

]]× (∏
m,χ

OCp

[[
StabΓ(χ)

]])
⊗ZpQp. (6.1)

The top two lines of this diagram are precisely those occurring in [CSRV12,

p80]. The vertical arrows labelled as “χ” denote evaluation at a system of

representatives Rm,n, and as Gab
∞,n
∼= Γ, the whole ensemble χ therefore restricts

to being the identity map on F×p × Gab
∞,n. At this preliminary stage, we make

no attempt to explain the maps LOG, L and Lχ.

From Chapter 5, the module Ψ ⊂
∏

m Zp
[[
Uab
m,n

]]
will consist of elements

satisfying Kakde’s additive conditions (A1)-(A3). Analogously, Φ ⊂
∏

m Zp
[[
Uab
m,n

]]×
consists of those elements

(
ym
)

satisfying the multiplicative conditions (M1)-

(M4) below, which we have specialised from [CSRV12, p107] to our particular
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situation:

(M1) Nm−1,m
(
ym−1

)
= πm,m−1

(
ym
)

for all m ≥ 1;

(M2) ym = gymg
−1 at every g ∈ G∞,n;

(M3) ym ≡ Verm−1,m(ym−1) mod Im
(
σ̃m
)

for each m ≥ 1;

(M4)
(
y
(ν)
m

)p
Nm,m+1

(
y
(ν)
m

) − φ

( (
y
(ν)
m−1
)p

Nm−1,m
(
y
(ν)
m−1
)) ∈ p · Im

(
σ(ν)
m

)
for every m ≥ 0.

Here in condition (M3), the homomorphism σ̃m : Zp
[[
Uab
m,n

]]
→ Zp

[[
Uab
m,n

]]
denotes the additive map sending f 7→

∑p−1
i=0 γ

−pm−1ifγp
m−1i.

Warning: If a sequence
(
ym
)

satisfies conditions (M1)-(M4), then its image

under L automatically satisfies (A1)-(A3) by [CSRV12, p107, Lemma 4.5].

Unfortunately, because the family of abelianizations
{
Uab
m,n

}
0≤m≤n−s we use is

coarser than that considered in [CSRV12, Kak13], we cannot directly apply

the results in op. cit. to obtain a converse statement such as

L
(
(ym)

)
∈
(∏

m

Zp
[[
Uab
m,n

]])
(A1)-(A3)

?
=⇒

(
ym
)
∈
(∏

m

Zp
[[
Uab
m,n

]]×)
(M1)-(M4)

.

The salvage is to show that K1

(
Zp[[G∞,n]]

)
splits into a direct product of

K1

(
Zp[[Γ]]

)
with with a complementary factor W†; we shall then construct

a section S : p · Ψ → Θ∞,n
(
W†
)

for which L ◦ S and S ◦ L
∣∣
Θ∞,n(W†)

are both

identity maps. One concludes that
(
ym
)

arises from K ′1
(
Zp[[G∞,n]]

)
if and only

if L
(
(ym)

)
∈ p · Ψ, which is itself equivalent to the sequence χ ◦ L

(
(ym)

)
satisfying constraints (C1)–(C4) from Theorem 5.1.

6.1 Convergence of the logarithm on Im(σm)

We will shortly introduce the Taylor-Oliver logarithm, which is usually de-

fined in terms of group algebras arising from finite groups. Since the profinite

groups G∞,n and Um,n are both infinite, one should instead consider their finite

counterparts

G(ν)∞,n := Γ/Γp
ν⋉H∞/Hpn

∞ and more generally U (ν)
m,n := Γp

m

/Γp
ν⋉H∞/Hpn

∞ ,
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at each integer triple m,n, ν ∈ Z with 0 ≤ m ≤ n− s ≤ ν. For example, U (ν)
0,n

equals G(ν)∞,n.

Remark: Using Proposition 4.4, one has Uab
n−s,n

∼= Un−s,n; in other words Un−s,n

is abelian. It follows that Γpν acts trivially on H∞/Hpn

∞ for all ν ≥ n−s, so the

semi-direct products above make good sense. Whenever we write the super-

script (ν) above an object or a map, we mean the analogue of that object/map

for the corresponding finite group (providing the object/map descends to its

finite version, of course).

Now recall from Proposition 4.5(ii) that Im(σm) is freely generated over Zp[[Γp
m
]]

by the elements A(m,n)
ϖ with ϖ ∈ orbΓ

(
H(m,n)

∞
)
. It is therefore trivially true

that Im
(
σ
(ν)
m

)
must be generated over Zp

[
Γp

m
/Γp

ν] by the same A(m,n)
ϖ ’s. If

ϖ1, ϖ2 ∈ orbΓ

(
H(m,n)

∞
)

contain h1 and h2 respectively, then

A(m,n)
ϖ1
·A(m,n)

ϖ2
=

pm−1∑
i=0

γ−ih1γ
i·
pm−1∑
j=0

γ−jh2γ
j =

pm−1∑
i=0

pm−1∑
j=0

γ−i
(
h1h

γj−i

2

)
γi =

pm−1∑
t=0

A(m,n)

h1h
γt

2

which belongs to the image of σ(ν)
m . It follows that Im

(
σ
(ν)
m

)
is an ideal of

Zp
[
U (ν),ab
m,n

]
. Iterating the above calculation N -times, one deduces that

A(m,n)
ϖ1

· A(m,n)
ϖ2

· · · A(m,n)
ϖN+1

=

pm−1∑
t1=0

pm−1∑
t2=0

· · ·
pm−1∑
tN=0

A(m,n)

h1h
γt1

2 ···hγ
tN

N+1

which means for each ϖ ∈ orbΓ

(
H(m,n)

∞
)

and element h ∈ ϖ,

(
A(m,n)
ϖ

)N+1
=

pm−1∑
t1=0

· · ·
pm−1∑
tN=0

A(m,n)

h h
γt1 ···hγ

tN
=

N+1∏
j=2

pm

#ϖ
·
∑
w2∈ϖ

· · ·
∑

wN+1∈ϖ

A(m,n)

hw2···wN+1
.

• Clearly if #ϖ < pm, then
(
A(m,n)
ϖ

)N+1

∈ pN · Im
(
σ
(ν)
m

)
⊂ p · Im

(
σ
(ν)
m

)
.

• Alternatively, if #ϖ = pm so that StabΓ/Γpm (h) =
{
γp

m}, then

(
A(m,n)
ϖ

)N+1
=
∑
w2∈ϖ

· · ·
∑

wN+1∈ϖ

A(m,n)

hw2···wN+1
=

∑
(t1,...,tN )∈(Z/pmZ)⊕N

A(m,n)

h h
γt1 ···hγ

tN
.

There are at most pmN distinct elements of the form h h
γt1 · · ·hγ

tN

, whilst

the total number of elements in H(m,n)

∞ is p2s+2m+ϵ⋆,p if (⋆) ̸=(II), where by
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Proposition 4.4 the term

ϵ⋆,p := N
(m)
⋆,1 +N

(m)
⋆,2 − 2s− 2m =


0 in Cases (III),(IV)

ordp(d) in Case (V)

r + ordp(t) in Case (VI)

is independent of m and n.

Consequently for mN ≥ 2s + 2m + ϵ⋆,p these elements h hγ
t1

· · ·hγ
tN

will

start repeating, in which case
(
A(m,n)
ϖ

)N+1

∈ p · Im
(
σ
(ν)
m

)
. Note that the latter

inequality is equivalent to N + 1 ≥ 3 + 2s+ϵ⋆,p
m

, so we arrive at the following

estimate: (
A(m,n)
ϖ

)j
j

∈ p

⌊
j

3+
2s+ϵ⋆,p

m

⌋
− log(j)

log(p) · Im
(
σ(ν)
m

)
. (6.2)

If one sets ϵ⋆,p = −s and n = m, a similar argument implies (6.2) also holds

for (⋆) =(II).

Proposition 6.1 (a) The two formal power series log(1+y) =
∑∞

j=1(−1)j+1 yj

j

and (1 + y)−1 =
∑∞

j=0(−1)jyj converge for all y ∈ Im
(
σ
(ν)
m

)
.

(b) If δm :=
⌈
3+

2s+ϵ⋆,p
m

p

⌉
then for every N ≥ 1, the logarithm induces a natural

isomorphism

log :
1 + Im

(
σ
(ν)
m

)δm·N
1 + Im

(
σ
(ν)
m

)δm·N+1

∼−→
Im
(
σ
(ν)
m

)δm·N
Im
(
σ
(ν)
m

)δm·N+1
;

in particular, if p ≥ 5 and one chooses m ≥ 2s+ ϵ⋆,p, then δm = 1 above.

(c) There are isomorphisms 1+ p · Im
(
σ
(ν)
m

) log→ p · Im
(
σ
(ν)
m

)
and p · Im

(
σ
(ν)
m

) exp→

1 + p · Im
(
σ
(ν)
m

)
which are mutually inverse maps to one another.

Proof. To show (a) one uses the estimate (6.2) together with the fact that the

exponent
⌊

j

3+
2s+ϵ⋆,p

m

⌋
− log(j)

log(p)
→∞ as j →∞, which implies both limj→∞(−1)j+1 yj

j
=

0 and limj→∞(−1)jyj = 0. In fact, since Im
(
σ
(ν)
m

)j ⊂ p · Im
(
σ
(ν)
m

)
for j ≫ 0,

the topology induced by the neighborhoods
{

Im
(
σ
(ν)
m

)j}
j∈N coincides with the

p-adic topology.

The assertion in (c) can be proved by following an identical argument to

[CSRV12, p106], which leaves us to tackle (b).
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For simplicity we suppose that p ≥ 5 and m ≥ 2s+ ϵ⋆,p, so that (A(m,n)
ϖ )p

p
∈

Im
(
σ
(ν)
m

)
by the estimate (6.2), whence yp

p
∈ Im

(
σ
(ν)
m

)
for all y ∈ Im

(
σ
(ν)
m

)
.

Consider the homomorphism

log† : 1 + Im
(
σ(ν)
m

)N → Im
(
σ
(ν)
m

)N
Im
(
σ
(ν)
m

)N+1
⊗Zp Qp

given by log†(1+ y) := log(1+ y) mod Im
(
σ
(ν)
m

)N+1. Assuming that j > 1, let

us examine the p-integrality of (−1)j+1 yj

j
for each y = a1 · · · aN ∈ Im

(
σ
(ν)
m

)N :

• If p ∤ j then (−1)j+1 yj

j
= ±aj1···a

j
N

j
∈ Im

(
σ
(ν)
m

)Nj ⊂ Im
(
σ
(ν)
m

)N+1;

• If j = p then (−1)p+1 yp

p
=

ap1
p
·ap2 · · · a

p
N ∈ Im

(
σ
(ν)
m

)1+p(N−1) ⊂ Im
(
σ
(ν)
m

)N+1;

• If j = pk with k > 1, then

(−1)pk+1y
pk

pk
=

(
ap1
p

)k
· ap

k−pk
1 · ap

k

2 · · · a
pk

N ∈ Im
(
σ(ν)
m

)k+pkN−pk ⊂ Im
(
σ(ν)
m

)N+1
.

Lastly, the general case where j = pkc with p ∤ c and j > 1 reduces to the

previous cases, upon replacing y with yc throughout.

We therefore conclude (−1)j+1 yj

j
∈ Im

(
σ
(ν)
m

)N+1 for every y ∈ Im
(
σ
(ν)
m

)N
and j > 1. Because log†(1 + y) ≡ y mod Im(σ

(ν)
m )N+1, clearly log† : 1 +

Im
(
σ
(ν)
m

)N → Im(σ
(ν)
m )N

Im(σ
(ν)
m )N+1

must be a surjective map; further, one easily checks

that 1+ Im
(
σ
(ν)
m

)N+1 ⊂ Ker
(
log†

)
. Assertion (b) now follows immediately for

p ≥ 5 and m ≥ 2s+ ϵ⋆,p.

Finally, to treat assertion (b) when p = 3 or m < 2s + ϵ⋆,p, one simply

observes that if δm ≥
3+

2s+ϵ⋆,p
m

p
then (yδm )p

p
∈ Im

(
σ
(ν)
m

)
for all y ∈ Im

(
σ
(ν)
m

)
,

using the estimate (6.2) again. One then repeats the previous arguments,

with y replaced by yδm everywhere. 2

6.2 Interaction of the theta-maps with both φ

and log

We now derive some technical results describing how the Frobenius mapping

φ and the logarithm commute with the theta-homomorphisms. Let us recall

that in our situation, the trace and norm maps from G(ν)∞,n down to U (ν)
m,n have
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the simple description

TrG(ν)∞,n/U
(ν)
m,n

(α) =

pm−1∑
k=0

γ−kαγk and NormG(ν)∞,n/U
(ν)
m,n

(x) =

pm−1∏
k=0

γ−kxγk.

Definition 6.1 (a) The additive theta-map θ(ν),+m,n : Zp
[
Conj

(
G(ν)∞,n

)]
→ Zp

[
U (ν),ab
m,n

]
is given by the composition

θ(ν),+m,n (−) := TrG(ν)∞,n/U
(ν)
m,n

(−) mod
[
U (ν)
m,n,U (ν)

m,n

]
.

(b) The multiplicative theta-map θ
(ν)
m,n : K1

(
Zp
[
G(ν)∞,n

])
→ Zp

[
U (ν),ab
m,n

]× is de-

fined by

θ(ν)m,n(−) := NormG(ν)∞,n/U
(ν)
m,n

(−) mod
[
U (ν)
m,n,U (ν)

m,n

]
.

Let ι : Zp
[
Γ/Γp

ν]
↪→ Zp

[
G(ν)∞,n

]
be the map on group algebras induced from

the sequence Γ/Γp
ν ∼→ Γ/Γp

ν ⋉ {1} ↪→ G(ν)∞,n that identifies Γ/Γp
ν with a non-

normal subgroup of G(ν)∞,n.

Lemma 6.2 There exists a splitting of abelian groups

K1

(
Zp
[
G(ν)∞,n

]) ∼−→ Zp
[
Γ/Γp

ν]× ×W(ν)
† sending x 7→

(
xcy, x†

)
,

where xcy = ι∗ ◦ θ
(ν)
0,n(x), x† = x

xcy , and the complement W(ν)
† :=

{
x†
∣∣ x ∈

K1

(
Zp
[
G(ν)∞,n

])}
.

Proof. Firstly θ(ν)0,n coincides with the quotient mapping modulo
[
U (ν)
0,n ,U

(ν)
0,n

]
=

H∞/Hpn

∞ . The composition Γ/Γp
ν ι

↪→ G(ν)∞,n
mod H∞/pn

↠ Γ/Γp
ν equals the

identity, and this induces

K1

(
Zp
[
Γ/Γp

ν]) ι∗−→ K1

(
Zp
[
G(ν)∞,n

]) θ
(ν)
0,n−→ K1

(
Zp
[
Γ/Γp

ν])
which must then be the identity map on K1

(
Zp
[
Γ/Γp

ν]) ∼= Zp
[
Γ/Γp

ν]×. The

latter group is therefore isomorphic to a direct factor of K1

(
Zp
[
G(ν)∞,n

])
, and

the rest follows easily. 2

For a group G, the ring homomorphism φG : Zp[Conj(G)] → Zp[Conj(G)]

denotes the linear extension of the map [g] 7→ [gp] on Conj(G) (note if G is

abelian, then Conj(G) = G).
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Lemma 6.3 For all α ∈ Qp

[
Conj

(
G(ν)∞,n

)]
,

θ(ν),+m,n ◦φG(ν)∞,n
(α) =


p · φU(ν)

m−1,n
◦ TrG(ν)∞,n/U

(ν)
m−1,n

(α) mod
[
U (ν)
m,n,U (ν)

m,n

]
if m ≥ 1

φG(ν)∞,n
(α) mod

[
U (ν)
0,n ,U

(ν)
0,n

]
if m = 0.

Proof. If m = 0, the formula is straightforward to establish.

We therefore suppose that m ≥ 1. It is enough to consider conjugacy

classes of the form α = [γj · h] with j ∈ Z/pνZ and h ∈ H∞
Hpn

∞
, since these will

generate Qp

[
Conj

(
G(ν)∞,n

)]
.

Key Claims: (I) For all j ∈ Z/pνZ, one has
(
γj · h

)p
= γpj ·

∏p−1
i=0 h

γji inside

Γ/Γp
ν⋉ H∞

Hpn
∞

.

(II) If k, k′ ∈ Z satisfy k ≡ k′ (mod pm−1), then

φU(ν)
m−1,n

([
γj · hγ

k])
≡ φU(ν)

m−1,n

([
γj · hγ

k′])
mod

[
U (ν)
m,n , U (ν)

m,n

]
. (6.3)

Postponing their proof for the moment, one calculates that

θ(ν),+m,n ◦ φG(ν)∞,n

(
[γj · h]

) by (I)
= θ(ν),+m,n

([
γpj ·

p−1∏
i=0

h
γji
])

=


γpj ·

∑pm−1
k=0 γ−k

(∏p−1
i=0 h

γji
)
γk mod

[
U (ν)
m,n,U (ν)

m,n

]
if γpj ∈ Γp

m

0 otherwise

=


γpj ·

∑pm−1
k=0

∏p−1
i=0 γ

−kh
γji

γk mod
[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

by (I)
=


φU(ν)

m−1,n

(
γj ·

∑pm−1
k=0 h

γk
)

mod
[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

by (II)
=


φU(ν)

m−1,n

(
γj · p ·

∑pm−1−1
k′=0 h

γk
′)

mod
[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

= p · φU(ν)
m−1,n

◦ TrG(ν)∞,n/U
(ν)
m−1,n

(
[γj · h]

)
mod

[
U (ν)
m,n,U (ν)

m,n

]
.

The full lemma now follows for each m ≥ 1, as Qp

[
Conj

(
G(ν)∞,n

)]
is generated

by [γj · h]’s.
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It remains to establish Claims (I) and (II). To prove (I) we know that

h · γj = γj · hγ
j

, in which case

(
γj · h

)p
= γj ·

(
h · γj

)
· h · γj · h · · · γj · h = γ2j · hγ

j

·
(
h · γj

)
· h · · · γj · h

= γ2j ·
(
h
γj · γj

)
· hγ

j

· h · · · γj · h = γ3j · hγ
2j

· hγ
j

· h · · · γj · h

= . . . = γ(p−1)j · hγ
(p−2)j

· hγ
(p−3)j

· · ·
(
h · γj

)
· h = . . . = γpj ·

p−1∏
i=0

h
γji

.

To show (II) note that the L.H.S. of (6.3) by (I)
= γpj ·

∏p−1
i=0 (h

γk

)γ
ji

= γpj ·∏p−1
i=0 h

γji+k

, while the R.H.S. of (6.3) = γpj ·
∏p−1

i=0 h
γji+k′

by an identical argu-

ment; one deduces that

L.H.S. of (6.3)
R.H.S. of (6.3)

= γpj ·

(
p−1∏
i=0

h
γji+k

(h
−1
)γ

ji+k′
)
· γ−pj

= γpj ·

(
p−1∏
i=0

γ−(ji+k
′) ·
(
γk

′−k · h · γ−(k′−k) · h−1
)
· γji+k′

)
· γ−pj.

However hk,k′ := γk
′−k · h · γ−(k′−k) · h−1 ∈

[
U (ν)
m−1,n,U

(ν)
m−1,n

]
because γk−k′ ∈

Γp
m−1 whenever k ≡ k′ (mod pm−1), which in turn implies L.H.S. of (6.3)

R.H.S. of (6.3) =(∏p−1
i=0 h

γji+k′

k,k′

)γ−pj

. This latter product is divisible by p, in fact

L.H.S. of (6.3)
R.H.S. of (6.3)

∈
[
U (ν)
m−1,n , U

(ν)
m−1,n

]p ⊂ [
U (ν)
m,n , U (ν)

m,n

]
.

Therefore L.H.S. ≡ R.H.S. mod
[
U (ν)
m,n , U (ν)

m,n

]
, which establishes Claim (II)

as well. 2

We now examine how the Frobenius map φ commutes with θ
(ν)
m−1,n. Consider

the sequence

Γp
m−1

Γpν
× H∞[
U (ν)
m−1,n,U

(ν)
m−1,n

] (−)p−→ Γp
m

Γpν
× (H∞)p[
U (ν)
m−1,n,U

(ν)
m−1,n

]p ↠ Γp
m

Γpν
× (H∞)p[
U (ν)
m,n,U (ν)

m,n

]
induced from the p-power map, and the containment

[
U (ν)
m−1,n,U

(ν)
m−1,n

]p
↪→[

U (ν)
m,n,U (ν)

m,n

]
. If we label the composition as φ̃ : U (ν),ab

m−1,n → U
(ν),ab
m,n , by linearly

extending φ̃ one obtains

φ̃U(ν),ab
m−1,n

: Qp

[
U (ν),ab
m−1,n

]
→ Qp

[
U (ν),ab
m,n

]
,

∑
g∈U(ν),ab

m−1,n

cg · [g] 7→
∑

g∈U(ν),ab
m−1,n

cg · φ̃[g]

as a homomorphism of commutative algebras.
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Lemma 6.4 (i) For each integer m ≥ 1 and every x ∈ K1

(
Zp
[
G(ν)∞,n

])
,

φ̃U(ν),ab
m−1,n

◦ logZp[U(ν),ab
m−1,n]

◦ θ(ν)m−1,n(x)

= φU(ν),ab
m−1,n

(
logZp[U(ν),ab

m−1,n]
◦ NormG(ν)∞,n/U

(ν)
m−1,n

(x)
)

mod
[
U (ν)
m,n , U (ν)

m,n

]
.

(ii) For each integer m ≥ 0 and every x ∈ K1

(
Zp
[
G(ν)∞,n

])
,

θ(ν)m,n

(
x†
)
=

θ
(ν)
m,n(x)

τ
(m,ν)
∗ ◦ N0,m

(
θ
(ν)
0,n(x)

) and θ(ν)m,n

(
xcy) = τ (m,ν)∗ ◦ N0,m(θ

(ν)
0,n(x))

where τ (m,ν) denotes the natural inclusion Qp

[
Γp

m
/Γp

ν]
↪→ Qp

[
U (ν),ab
m,n

]
.

At first glance these statements are rather technical in nature, and their

demonstrations could easily be skipped on an initial reading. However they

will become important tools for us in the next section, when we calculate the

Taylor-Oliver logarithm composed with the family of theta-maps
{
θ
(ν),+
m,n

}
0≤m≤n−s.

Proof. Starting with assertion (i), since
[
U (ν)
m−1,n , U

(ν)
m−1,n

]p ⊂ [U (ν)
m,n , U (ν)

m,n

]
one deduces

φU(ν),ab
m−1,n

◦ TrG(ν)∞,n/U
(ν)
m−1,n

(α) mod
[
U (ν)
m,n , U (ν)

m,n

]
= φ̃U(ν),ab

m−1,n

(
TrG(ν)∞,n/U

(ν)
m−1,n

(α) mod
[
U (ν)
m−1,n , U

(ν)
m−1,n

])
= φ̃U(ν),ab

m−1,n
◦ θ(ν),+m−1,n(α) (6.4)

for every α ∈ Qp

[
Conj

(
G(ν)∞,n

)]
. Evaluating both sides at α = log(x), it is easily

verified

φU(ν),ab
m−1,n

◦ log ◦ NormG(ν)∞,n/U
(ν)
m−1,n

(x) ≡ φU(ν),ab
m−1,n

◦ TrG(ν)∞,n/U
(ν)
m−1,n

(
log(x)

)
by (6.4)
= φ̃U(ν),ab

m−1,n
◦ θ(ν),+m−1,n

(
log(x)

)
= φ̃U(ν),ab

m−1,n
◦ log ◦ θ(ν)m−1,n(x).

To prove (ii), one simply observes that

τ (m,ν)∗ ◦ N0,m

(
θ
(ν)
0,n(x)

)
= τ (m,ν)∗ ◦ NormΓ/Γpm

(
x mod H∞/Hpn

∞
)

= NormG(ν)∞,n/U
(ν)
m,n

(
τ (0,ν)∗

(
x mod H∞/Hpn

∞
))

mod
[
U (ν)
m,n,U (ν)

m,n

]
= θ(ν)m,n ◦ ι∗

(
x mod H∞/Hpn

∞
)

= θ(ν)m,n

(
xcy).

Consequently θ
(ν)
m,n

(
x†
)
=

θ
(ν)
m,n(x)

θ
(ν)
m,n(xcy)

=
θ
(ν)
m,n(x)

τ
(m,ν)
∗ ◦N0,m(θ

(ν)
0,n(x))

, and the two identities

follow. 2
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6.3 The image of the Taylor-Oliver logarithm

For a finite group G, the Taylor-Oliver logarithm LOGG : K1

(
Zp[G]

)
→

Zp
[
Conj(G)

]
is defined by

LOGG(x) := logZp[G](x)−
1

p
φG
(
logZp[G](x)

)
where logZp[G] is the unique extension of logJac(Zp[G]) (see [Oli88] for more de-

tails). Note that G need not necessarily be a p-group, even though it happens

to be so in this paper.

If G = G(ν)∞,n then LOGG(ν)∞,n
denotes the ν-th layer of the map ‘LOG’ oc-

curring in (6.1). Our task is to calculate the mappings L and Lχ which make

the diagram (6.1) commutative. The former of these maps may be determined

from the following formulae.

Proposition 6.5 (a) If m ∈ {1, . . . , n− s} and x ∈ K1

(
Zp[[G(ν)∞,n]]

)
, then

θ(ν),+m,n ◦ LOGG(ν)∞,n
(x) = logZp[U(ν),ab

m,n ]

 θ
(ν)
m,n(x)

φ̃U(ν),ab
m−1,n

◦ θ(ν)m−1,n(x)

 .

(b) Furthermore, if x† = x
xcy ∈ W (ν)

† then

θ(ν),+m,n ◦ LOGG(ν)∞,n

(
x†
)

= logZp[U(ν),ab
m,n ]

(
θ
(ν)
m,n(x)

τ
(m,ν)
∗ ◦ N0,m

(
θ
(ν)
0,n(x)

) · φ̃U(ν),ab
m−1,n

(
τ
(m−1,ν)
∗ ◦ N0,m−1

(
θ
(ν)
0,n(x)

)
θ
(ν)
m−1,n(x)

))
.

Proof. Using the definition of the Taylor-Oliver logarithm and our previous

results,

θ(ν),+m,n ◦ LOGG(ν)∞,n
(x) = θ(ν),+m,n ◦ logZp[G(ν)∞,n]

(x)− 1

p
· θ(ν),+m,n ◦ φG(ν)∞,n

(
logZp[G(ν)∞,n]

(x)
)

by 6.3
= θ(ν),+m,n

(
log(x)

)
− 1

p
· p · φU(ν)

m−1,n
◦ TrG(ν)∞,n/U

(ν)
m−1,n

(
log(x)

)
mod

[
U (ν)
m,n,U (ν)

m,n

]
= θ(ν),+m,n

(
log(x)

)
− φU(ν)

m−1,n
◦ log

(
NormG(ν)∞,n/U

(ν)
m−1,n

(x)
)

mod
[
U (ν)
m,n,U (ν)

m,n

]
by 6.4(i)
= θ(ν),+m,n

(
logZp[G(ν)∞,n]

(x)
)
− φ̃U(ν),ab

m−1,n
◦ logZp[U(ν),ab

m−1,n]
◦ θ(ν)m−1,n(x)

= logZp[U(ν),ab
m,n ]

(
θ(ν)m,n(x)

)
− logZp[U(ν),ab

m,n ]

(
φ̃U(ν),ab

m−1,n
◦ θ(ν)m−1,n(x)

)
which establishes assertion (a).

To prove (b), one simply combines part (a) with the formula from Lemma

6.4(ii). 2
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Remark: As a direct consequence, in order to make the left-hand square in the

diagram

K1

(
Zp[G(ν)∞,n]

) ∏
θ
(ν)
m,n−→ Φ(ν)

∏
χ−→ χ

(
Φ(ν)

)
yLOG

G(ν)
∞,n

y
L(ν)

y
L(ν)χ

Zp
[
Conj(G(ν)∞,n)

] ∏
θ
(ν),+
m,n−→ Ψ(ν)

∏
χ−→ χ

(
Ψ(ν)

)
commutative, it follows from Proposition 6.5(a) that one should define

L(ν)
((

y(ν)
m

))
m
:= logZp[U(ν),ab

m,n ]

 y
(ν)
m

φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1
)
 for all

(
y(ν)
m

)
∈

∏
0≤m≤n−s

Zp
[
U (ν),ab
m,n

]×.

(6.5)

To make the right-hand square commutative, we need to work out the map

L(ν)
χ explicitly. Fix a finite order character χ :H∞→ µp∞ factoring through

the quotient group H(m,n)

∞ , which one may interpret as a homomorphism

χ : U (ν),ab
m,n

∼= Γp
m

/Γp
ν ×H(m,n)

∞ −→ Γp
m

/Γp
ν × Im(χ)

sending an element γj ·h to γj ·χ(h). It follows that its extension to Zp
[
U (ν),ab
m,n

]
satisfies

χ
(
θ(ν),+m,n ◦ LOGG(ν)∞,n

(x)
)

= log
Oχ

[
Γpm

Γpν

]
 χ ◦ θ(ν)m,n(x)

φ
Γpm−1

Γpν

(
χp ◦ θ(ν)m−1,n(x)

)
 .

Moreover by Proposition 6.5(b), for any x† = x/xcy ∈ W (ν)
† one has

χ
(
θ(ν),+m,n ◦ LOGG(ν)∞,n

(
x†
))

= log
Oχ

[
Γpm

Γpν

] ( χ ◦ θ(ν)m,n(x)

N0,m

(
θ
(ν)
0,n(x)

) · φΓpm−1

Γpν

(
N0,m−1

(
θ
(ν)
0,n(x)

)
χp ◦ θ(ν)m−1,n(x)

))

as χ acts trivially on Zp[Γp
m
/Γp

ν
], and thus also on N0,m−1

(
θ
(ν)
0,n(x)

)
and

N0,m

(
θ
(ν)
0,n(x)

)
.

Since y
(ν)
m,χ corresponds to χ ◦ θ(ν)m,n(x), the preceding formulae imply one

should define

L(ν)
χ

(
(y(ν)

m,χ)
)
m,χ

:= log
Oχ

[
Γpm

Γpν

]
 y

(ν)
m,χ

φ
Γpm−1

Γpν

(
y
(ν)
m−1,χp

)
 where

(
y(ν)
m,χ

)
∈
∏
m,χ

Oχ
[
Γp

m

Γpν

]×
.
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Indeed if
(
y
(ν)
m,χ

)
∈
∏

m,χ χ ◦ θ
(ν)
m,n

(
W(ν)
†
)
, then one can further say

L(ν)
χ

(
(y(ν)

m,χ)
)
m,χ

= log
Oχ

[
Γpm

Γpν

] ( y
(ν)
m,χ

N0,m

(
y
(ν)
0,1
) · φΓpm−1

Γpν

(
N0,m−1

(
y
(ν)
0,1
)

y
(ν)
m−1,χp

))
.

(6.6)

In fact y
(ν)
m,χ

N0,m

(
y
(ν)
0,1

) ∈ 1 + p · Oχ
[
Γpm

Γpν

]
for all m, so the full expression occurring

inside the logarithm in Equation (6.6) must automatically be congruent to 1

modulo p · OCp

[
Γpm

Γpν

]
.

Corollary 6.6 If
(
y
(ν)
m

)
∈ Θ

(ν)
∞,n
(
W(ν)
†
)

and one sets
(
y
(ν)
m,χ

)
= χ

(
(y

(ν)
m )
)
, then

both

L(ν)
(
(y(ν)

m )
)
∈ Ψ(ν)∩p·

∏
m

Im
(
σ(ν)
m

)
and L(ν)

χ

(
(y(ν)

m,χ)
)
∈ χ
(
Ψ(ν)

)
∩p·
∏
m,χ

OCp

[
Γp

m

/Γp
ν]
.

Proof. To address the first assertion, Proposition 6.5(b) implies that

L(ν)
(
(y(ν)

m )
)
m
= logZp[U(ν),ab

m,n ]

(
y
(ν)
m

N0,m

(
y
(ν)
0

) · φ̃U(ν),ab
m−1,n

(
N0,m−1

(
y
(ν)
0

)
y
(ν)
m−1

))

and as each of the two fractions inside the logarithm belongs to the group

1 + p · Im(σ
(ν)
m ), the containment follows directly from Proposition 6.1(c).

To establish the second assertion, one combines the discussion after Equa-

tion (6.6) together with the isomorphism log : 1 + p · OCp

[
Γp

m
/Γp

ν] ∼−→

p · OCp

[
Γp

m
/Γp

ν]. 2

6.4 A proof of Theorems 3.1 and 3.2

Recall from earlier that if a sequence
(
y
(ν)
m

)
satisfies conditions (M1)-(M4),

then its image under L(ν) always satisfies (A1)-(A3). We shall now establish

a converse statement

L(ν)
(
(y(ν)

m )
)
∈ p ·Ψ(ν) =⇒

(
y(ν)
m

)
∈ Φ(ν).

If we are successful, the question as to whether or not
(
y
(ν)
m

)
arises from

K1

(
Zp[G(ν)∞,n]

)
under the mapping Θ

(ν)
∞,n reduces to determining whether or

not L(ν)
χ

(
(y

(ν)
m,χ)

)
∈ χ

(
Ψ(ν)

)
. To achieve this goal, we will explicitly construct
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a section

S(ν) :

( ∏
0≤m≤n−s

p · Zp
[
U (ν),ab
m,n

])
(A1)-(A3)

−→

( ∏
0≤m≤n−s

1 + p · Zp
[
U (ν),ab
m,n

])
(M1)-(M4)

for which L(ν) ◦ S(ν)
∣∣∣
p·Ψ(ν)

and S(ν) ◦ L(ν)
∣∣∣
Θ

(ν)
∞,n(W

(ν)
† )

are the respective identity

mappings.

To produce this map S(ν), first fix a sequence
(
a
(ν)
m

)
∈
∏

0≤m≤n−s p ·

Zp
[
U (ν),ab
m,n

]
. Recall that exp : p · Zp

[
U (ν),ab
m,n

] ∼−→ 1 + p · Zp
[
U (ν),ab
m,n

]
is an

isomorphism of abelian groups.

Definition 6.2 Given the sequence
(
a
(ν)
m

)
above, one recursively defines y(ν)

0 :=

1 and

y(ν)
m := φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1
)
× expZp[U(ν),ab

m,n ]

(
a(ν)
m

)
for each m ≥ 1,

so that
(
ym
)
∈
∏

m 1+p ·Zp
[
U (ν),ab
m,n

]
. We label this association

(
a
(ν)
m

)
7→
(
y
(ν)
m

)
by S(ν).

Lemma 6.7 (i) The composition L(ν) ◦ S(ν) is the identity map on
∏

m p ·

Zp
[
U (ν),ab
m,n

]
.

(ii) The composition S(ν)◦L(ν) yields the identity map on
∏

m 1+p·Zp
[
U (ν),ab
m,n

]
.

Proof. To establish the first assertion, one simply calculates that

L(ν) ◦ S(ν)
(
(a(ν)

m )
)
m
= L(ν)

(
(y(ν)

m )
) by (6.5)

= logZp[U(ν),ab
m,n ]

 y
(ν)
m

φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1
)


by 6.2
= logZp[U(ν),ab

m,n ]

(
expZp[U(ν),ab

m,n ]

(
a(ν)
m

))
= a(ν)

m .

The proof of the second assertion follows along identical lines. 2

For the rest of this section, we assume that
(
a
(ν)
m

)
∈
∏

m p ·Zp
[
U (ν),ab
m,n

]
satisfies

(A1)–(A3). The goal now is to prove that properties (M1)–(M4) all hold

for
(
y
(ν)
m

)
= S(ν)

(
(a

(ν)
m )
)
. Three of them are straightforward to deduce, but

property (M3) requires more effort.
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Establishing that S(ν)
(
(a

(ν)
m )
)

satisfies (M1),(M2),(M4). Let us begin by

obtaining (M1). Since (A1) holds for the sequence
(
a
(ν)
m

)
, clearly

Nm−1,m ◦ expZp[U(ν),ab
m−1,n]

(
a
(ν)
m−1
)

= expZp[U(ν),ab
m,n ]

◦ Trm−1,m
(
a
(ν)
m−1
)

by (A1)
= expZp[U(ν),ab

m,n ]
◦ πm,m−1

(
a(ν)
m

)
= πm,m−1 ◦ expZp[U(ν),ab

m,n ]

(
a(ν)
m

)
i.e. Nm−1,m

(
y
(ν)
m−1

)
Nm−1,m

(
φ̃(y

(ν)
m−2)

) =
πm,m−1

(
y
(ν)
m

)
πm,m−1

(
φ̃(y

(ν)
m−1)

) for each m ≥ 1. The latter is equivalent

to

Nm−1,m
(
y
(ν)
m−1
)

= πm,m−1
(
y(ν)
m

)
× φ̃U(ν),ab

m−1,n

(
Nm−2,m−1

(
y
(ν)
m−2
)

πm−1,m−2
(
y
(ν)
m−1
) ) .

The equality between Nm−1,m
(
y
(ν)
m−1
)

and πm,m−1
(
y
(ν)
m

)
now follows by induc-

tion on m, thereby yielding (M1) as a consequence.

Focussing instead on (M2), the semi-direct product structure on G(ν)∞,n =

Γ/Γp
ν⋉ H∞

Hpn
∞

implies the subset of G(ν)∞,n-invariant elements in Zp[U (ν),ab
m,n ] consists

of

H0
(
G(ν)∞,n,Zp[U (ν),ab

m,n ]
)

= H0
(
Γ,Zp[U (ν),ab

m,n ]
)

=
(

Im
(
σ(ν)
m

)[
1/p
])
∩Zp

[
U (ν),ab
m,n

]
.

Now (A2) states that a(ν)
m belongs to this subset, hence y

(ν)
m ∈ Im

(
σ
(ν)
m

)[
1/p
]
∩

Zp[U (ν),ab
m,n ]× upon combining the recurrence in Definition 6.2 with induction on

m, and (M2) follows.

To show that (M4) holds true, consider the trace mapping Trm,m+1 acting

on Zp
[
U (ν),ab
m,n

]
. For each integer m ≥ 0, one may decompose

Zp
[
U (ν),ab
m,n

] ∼= Zp
[
Γp

m+1/
Γp

ν ×H(m,n)

∞

]
⊕Ker

(
Trm,m+1

)
where by Lemma 4.9, the trace acts through multiplication by p on the first

factor and kills off the second factor.

Note that a(ν)
m ∈ p·Zp

[
U (ν),ab
m,n

]
so 1

p
Trm,m+1

(
a
(ν)
m

)
≡ a

(ν)
m mod p·Ker

(
Trm,m+1

)
.

Moreover the sequence
(
a
(ν)
m

)
satisfies (A3), thus p · a(ν)

m − Trm,m+1

(
a
(ν)
m

)
∈

p · Im
(
σ
(ν)
m

)
and applying Proposition 6.1:

expZp[U(ν),ab
m,n ]

(
p · a(ν)

m − Trm,m+1

(
a(ν)
m

))
∈ 1 + p · Im

(
σ(ν)
m

)
.
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It is easy to see exp
(
p ·a(ν)

m −Trm,m+1(a
(ν)
m )
)
= exp(a

(ν)
m )p

Nm,m+1◦ exp(a(ν)
m )

. Also, recalling

from earlier that exp
(
a
(ν)
m

)
= y

(ν)
m

φ̃(y
(ν)
m−1)

, we therefore conclude

(
y
(ν)
m

)p
φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1
)p ×

 Nm,m+1

(
y
(ν)
m

)
Nm,m+1 ◦ φ̃U(ν),ab

m,n

(
y
(ν)
m−1
)
−1 ∈ 1 + p · Im

(
σ(ν)
m

)
.

Equivalently
(
y
(ν)
m

)p
Nm,m+1

(
y
(ν)
m

) × φ̃U(ν),ab
m−1,n

( (
y
(ν)
m−1

)p
Nm−1,m

(
y
(ν)
m−1

))−1∈ 1 + p · Im
(
σ
(ν)
m

)
, so

(M4) holds.

Establishing that S(ν)
(
(a

(ν)
m )
)

satisfies (M3). We begin with a technical

result describing the image of the map σ̃m(ν): Zp
[
U (ν),ab
m,n

]
→ Zp

[
U (ν),ab
m,n

]
sending

f 7→
∑p−1

i=0 γ
−pm−1ifγp

m−1i.

Lemma 6.8 For each m ∈ {0, . . . , n−s}, the Γ-invariant submodule H0
(
Γ, Im

(
σ̃m

(ν)))
is finitely generated over Zp

[
Γ/Γp

ν] by the combined set

{
A(m,n)
ϖ

∣∣∣ ϖ ∈ orbΓ

(
H(m,n)

∞
)
,#ϖ = pm

}
∪
{

#ϖ

pm−1
·A(m,n)

ϖ

∣∣∣ ϖ ∈ orbΓ

(
H(m,n)

∞
)
,#ϖ < pm

}
and in particular, Im

(
σ
(ν)
m

)
⊂ H0

(
Γ, Im

(
σ̃m

(ν))) ⊂ Im
(
σ̃m

(ν)).
Proof. Because a generator γ ∈ Γ acts trivially on Γp

m
/Γp

ν and through

I2 +M on H(m,n)

∞ ,

H0
(
Γ,Zp

[
U (ν),ab
m,n

])
= Zp

[
Γp

m

/Γp
ν]⊗Zp H

0
(⟨
I2 +M

⟩
,Zp
[
H(m,n)

∞
])

= Zp
[
Γp

m

/Γp
ν] ·⟨∑

h
′∈ϖ

h
′
∣∣∣∣ ϖ ∈ orbΓ

(
H(m,n)

∞
)⟩

= Zp
[
Γp

m

/Γp
ν] ·⟨#ϖ

pm
· A(m,n)

ϖ

∣∣∣ ϖ ∈ orbΓ

(
H(m,n)

∞
)⟩

where we have employed the basic identity A(m,n)
ϖh

=
∑pm−1

i=0 γ−ihγi = pm

#ϖh
·∑

h
′∈ϖh

h
′.

Now pick an element #ϖh

pm
· A(m,n)

ϖh
=
∑

h
′∈ϖh

h
′ belonging to H0

(⟨
I2 +

M
⟩
,Zp
[
H(m,n)

∞
])

. Then one easily sees that

#ϖh

pm
·A(m,n)

ϖh
=

#ϖh

pm
·
pm−1∑
j=0

γ−jhγj =

p−1∑
i=0

pm−1−1∑
j=0

#ϖh

pm
·γ−pm−1i

(
γ−jhγj

)
γp

m−1i



84

which coincides exactly with σ̃m
(ν)(fh), where fh :=

#ϖh

pm
·
∑pm−1−1

j=0 γ−jhγj ∈

Qp

[
H(m,n)

∞
]
. It follows that pz ·

(
#ϖh

pm
· A(m,n)

ϖh

)
∈ Im

(
σ̃m

(ν)) if and only if

pz · fh ∈ Zp
[
H(m,n)

∞
]
, and as

pz · fh =


pz ·

∑pm−1−1
j=0 γ−jhγj if #ϖh = pm

pz−1 ·
∑

h
′∈ϖh

h
′ if #ϖh < pm,

the latter condition occurs when z ≥ 0 if #ϖ = pm, or alternatively z ≥

1 if #ϖ < pm. Therefore the union of the sets
{
fh
∣∣ #ϖh = pm

}
and{

p · fh
∣∣ #ϖh < pm

}
will generate the Γ-invariant part of Im

(
σ̃m

(ν)) over

Zp
[
Γ/Γp

ν], as asserted.

Finally, the inclusion Im
(
σ
(ν)
m

)
↪→ H0

(
Γ, Im

(
σ̃m

(ν))) occurs as the genera-

tors A(m,n)
ϖ of the left-hand module are p-integral multiples of generators for

the right-hand module. 2

Proposition 6.9 For each m ≥ 1, the transfer sends p · Im(σm−1)
Verm−1,m−→

Im
(
σ̃m

(ν)).
Proof. If we choose any h = h

x

1h
y

2 ∈ H
(m−1,n)
∞ and f(X) ∈ Zp[[X]], then from

Lemma 5.3:

Verm−1,m
(
f
(
γp

m−1 − 1
)
· A(m−1,n)

h
x
1h

y
2

)
= p−1 × f

(
γp

m − 1
)
· A(m,n)

h
x′
1 h

y′
2

where

 x′

y′

 ∈ Z2
p is given in Lemma 4.7. Setting f(X) = p, it follows

immediately that

Verm−1,m
(
p · A(m−1,n)

h
x
1h

y
2

)
= A(m,n)

h
x′
1 h

y′
2

∈ Im
(
σ(ν)
m

) by 6.8
↪→ Im

(
σ̃m

(ν)).
Lastly applying Proposition 4.5(ii), we know p · Im

(
σ
(ν)
m−1
)

is freely generated

over the algebra Zp
[
Γp

m−1
/Γp

ν] by the set of p · A(m−1,n)
h
x
1h

y
2

’s, hence the result is

proven. 2
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Let us now establish that (M3) holds for
(
y
(ν)
m

)
= S(ν)

(
(a

(ν)
m )
)
. For each integer

m ≥ 2,

y
(ν)
m

Verm−1,m
(
y
(ν)
m−1
) by 6.2

=
φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1
)
× expZp[U(ν),ab

m,n ]

(
a
(ν)
m

)
Verm−1,m

(
φ̃U(ν),ab

m−2,n

(
y
(ν)
m−2
)
× expZp[U(ν),ab

m−1,n]

(
a
(ν)
m−1
))

= φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1

Verm−2,m−1
(
y
(ν)
m−2
))× expZp[U(ν),ab

m,n ]

(
a(ν)
m − Verm−1,m

(
a
(ν)
m−1
))

and the term a
(ν)
m −Verm−1,m

(
a
(ν)
m−1
)
∈ Im

(
σ̃m

(ν)), using Lemma 6.8 and Propo-

sition 6.9.

An identical argument to Proposition 6.1(b) shows that

expZp[U(ν),ab
m,n ]

:
Im(σ̃m

(ν))N

Im(σ̃m
(ν))N+1

∼−→ 1 + Im(σ̃m
(ν))N

1 + Im(σ̃m
(ν))N+1

is an isomorphism for every N ≥ 1, in which case

y
(ν)
m

Verm−1,m
(
y
(ν)
m−1
) = φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1

Verm−2,m−1
(
y
(ν)
m−2
))× (1 + dm

)
for some dm ∈ Im

(
σ̃m

(ν)).
Furthermore, one easily checks the containment φ̃U(ν),ab

m−1,n

(
Im
(
σ̃m−1

(ν))) ⊂
Im
(
σ̃m

(ν)). Therefore, if we inductively assume y
(ν)
m−1

Verm−2,m−1

(
y
(ν)
m−2

) ∈ 1+Im
(
σ̃m−1

(ν)),
one may conclude y

(ν)
m

Verm−1,m

(
y
(ν)
m−1

) ∈ 1+ Im
(
σ̃m

(ν)). Property (M3) then follows

for all m ≥ 2 by induction. (If m = 1 the same argument works fine, except

one omits the denominator terms above.)

Proof of Theorem 3.2. As mentioned earlier, now that we have constructed the

section S(ν) mapping p ·Ψ(ν) into Φ(ν), to check whether
(
y
(ν)
m

)
arises from an

element of K1

(
Zp[G(ν)∞,n]

)
it is the same as verifying if L(ν)

χ

(
(y

(ν)
m,χ)

)
∈ χ
(
Ψ(ν)

)
.

However, the latter is equivalent to checking whether L(ν)
χ

(
(y

(ν)
m,χ)

)
satisfies the

conditions (C1)–(C4) listed in Theorem 5.1.

Theorem 6.10 If ⋆ ∈ {III,IV,V,VI}, then L(ν)
χ

(
(y

(ν)
m,χ)

)
satisfies conditions

(C1)–(C4) in Theorem 5.1 if and only if:

(i) NStabΓ(χ)/Γpm

(
y
(ν)
mχ,χ

)
= y

(ν)
m,χ at each m ∈ {mχ, . . . , n− s},
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(ii) y
(ν)
m,χ′ = y

(ν)
m,χ whenever χ′ ∈ Γ ∗ χ, and

(iii)
∏

χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )Tr(Indχ∗)(ϖ)

≡ 1 mod pN
(m)
⋆,1 +N

(m)
⋆,2 +m−ordp(#ϖ) · Zp

[
Γp

m

/Γp
ν]

for every integer m ∈ {0, . . . , ν}, and every orbit ϖ ∈ orbΓ

(
H(m,∞)

∞
)
.

Proof. If one chooses the sequence
(
a
(m,ν)
χ

)
:= L(ν)

χ

(
(y

(ν)
m,χ)

)
, then (C1) is

readily seen to be equivalent to (i), while condition (C2) is equivalent to

(ii). Focussing therefore on conditions (C3) and (C4), if one puts e∗χ,ϖ =

Tr
(
Indχ∗

)
(ϖ) then

∑
χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
· Tr
(
Indχ∗

)
(ϖ) =

∑
χ∈Rm,n

e∗χ,ϖ × TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
by (6.6)
=

∑
χ∈Rm,n

e∗χ,ϖ × TrStabΓ(χ)/Γpm ◦ log

(
y
(ν)
χ

N0,mχ

(
y
(ν)
1
) · φ

Γpmχ−1

Γpν

(
N0,mχ−1

(
y
(ν)
1
)

y
(ν)
χp

))

= log
Zp

[
Γpm

Γpν

] ∏
χ∈Rm,n

NStabΓ(χ)/Γpm

(
y
(ν)
χ

N0,mχ

(
y
(ν)
1
) · φ

Γpmχ−1

Γpν

(
N0,mχ−1

(
y
(ν)
1
)

y
(ν)
χp

))e∗χ,ϖ

.
Recall that (C3) and (C4) together imply

∑
χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a
(ν)
χ

)
·Tr
(
Indχ∗

)
(ϖ)

is congruent to zero modulo pordp(#H
(m,n)
∞ )+m−ordp(#ϖ) · Zp[Γp

m
/Γp

ν
], for m ∈

{0, . . . , n − s} and at each orbit ϖ ∈ orbΓ

(
H(m,n)

∞
)
. Now for all integers

i ≥ 1, the mappings log : 1 + pi · Zp[Γp
m
/Γp

ν
]
∼−→ pi · Zp[Γp

m
/Γp

ν
] and

exp : pi · Zp[Γp
m
/Γp

ν
]
∼−→ 1 + pi · Zp[Γp

m
/Γp

ν
] are inverse isomorphisms to

each other. As an immediate consequence,

∑
χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
·Tr
(
Indχ∗

)
(ϖ) ≡ 0 mod pordp(#H

(m,n)
∞ )+m−ordp(#ϖ)·Zp

[
Γp

m

Γpν

]

if and only if
∏

χ∈Rm,n
NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1

(
y
(ν)
1

))
N0,mχ

(
y
(ν)
1

) )Tr(Indχ∗)(ϖ)

be-

longs to 1 + pordp(#H
(m,n)
∞ )+m−ordp(#ϖ) · Zp[Γp

m
/Γp

ν
].

Finally, both H(m,n)

∞
∼= H(m,∞)

∞ and Rm,n = Rm,∞ provided that ⋆ ∈

{III,IV,V,VI}; moreover ordp
(
#H(m,n)

∞
)
= N

(m)
⋆,1 +N

(m)
⋆,2 , therefore the equiva-

lence is fully established. 2
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The reader will notice that these congruences are independent of the choice of

n ≥ m + s. They also behave well if we take the projective limit as ν → ∞,

hence one can obtain analogous congruences for the completed group algebras

Zp
[[
Γp

m]]
= lim←−ν Zp[Γ

pm/Γp
ν
], i.e. those congruences labelled Equation (3.2)

in Chapter 3.

The proof of the ‘non-S-localised version’ of Theorem 3.2 has therefore been

completed, i.e. a sequence
(
ym,χ

)
∈
∏

m,χ ΛOCp

(
Γp

m)× belongs to Θ∞,χ
(
K ′1(Λ(G∞))

)
if and only if NStabΓ(χ)/Γpm

(
y
(ν)
mχ,χ

)
= y

(ν)
m,χ if m ≥ mχ, secondly y

(ν)
m,χ′ = y

(ν)
m,χ

for χ′ ∈ Γ ∗ χ, and lastly

∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
yχ

φ
(
yχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )Tr(Indχ∗)(ϖ)

≡ 1 mod pN
(m)
⋆,1 +N

(m)
⋆,2 +m−ordp(#ϖ) · Zp

[[
Γp

m]]
for every positive integer m, and at every orbit ϖ ∈ orbΓ

(
H(m,∞)

∞
)
.

Remarks: (a) If ⋆ =II, the proof of Theorem 3.1 runs along identical lines –

the only point of departure is that N (m)
II,1 = n and N

(m)
II,2 = s + m, so Rm,n

is no longer independent of n. Nevertheless in Case (II), the multiplicative

conditions equivalent to (C3) and (C4) are

∏
χ∈Rm,n

NStabΓ(χ)/Γpm

(
yχ

φ
(
yχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )Tr(Indχ∗)(ϖ)

≡ 1 mod ps+2m+n−ordp(#ϖ) · Zp
[[
Γp

m]] (6.7)

for every positive integer m ≤ n− s, and at every orbit ϖ ∈ orbΓ

(
H(m,n)

∞
)
.

(b) To transform these into the congruences labelled Equation (3.1), one must

calculate each of Rm,n, #ϖ and Tr(Indχ∗)(ϖ) precisely – we refer the reader

to the worked example given later in §7.1, for the full details.

(c) Of course, this still only gives us a non-S-localised version of Theorem 3.1,

describing Θ∞,χ
(
K ′1(Λ(G∞))

)
rather than Θ∞,S,χ

(
K ′1
(
Λ(G∞)S

))
, which is an

issue we address below.
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Extending these congruences to the localisations. Finally, we explain how

to extend these results from K ′1
(
Λ(G∞)

)
, to both of the Ore localisations

K ′1
(
Λ(G∞)S

)
and K ′1

(
Λ(G∞)S∗

)
. Let us focus first on K1

(
Λ(G∞)S

)
, and write

Θ∞,S : K1

(
Λ(G∞)S

)
→
∏
m≥0

K1

(
Λ(Uab

m )S
)

for the corresponding collection of morphisms
∏
θm,S , with θm,S := NUm(−)

mod [Um,Um].

In order to extend the arguments in §6.1-§6.3 so as to produce non-abelian

congruence conditions ‘ΦS ’ describing Im
(
Θ∞,S

)
, one must first extend the

Taylor-Oliver logarithm to a homomorphism

LOGG∞,n,S : K1

(
̂Λ(G∞,n)S

)
−→

̂Λ(G∞,n)S[ ̂Λ(G∞,n)S , ̂Λ(G∞,n)S
] for every n ≥ 1,

where ̂Λ(G∞,n)S denotes the Jac
(
Zp[H∞,n]

)
-adic completion of the localisation

Λ(G∞,n)S . This task has already been partially accomplished (see for example

[CSRV12, Section 5] or [Kak13]), but not enough is known about the kernel

and cokernel of these maps on the completion. Indeed by [CSRV12, Lemma

5.2], the extension of the logarithm sits inside a commutative square

K1

(
Λ(G∞,n)

)
−→ K1

( ̂Λ(G∞,n)S
)

yLOGG∞,n

yLOGG∞,n,S

Zp
[[

Conj(G∞,n)
]]
−→

̂Λ(G∞,n)S[ ̂Λ(G∞,n)S , ̂Λ(G∞,n)S
]

where the horizontal arrows are induced from the natural inclusion Λ(G∞,n) ↪→

̂Λ(G∞,n)S .

We simply observe that the properties of the Taylor-Oliver logarithm we

derived in §6.3 extend to the Jac
(
Zp[H∞,n]

)
-adic completion if one ignores their

kernels/cokernels, and omit the details (which are anyway identical to Section

5 of op. cit.). The remainder of the proof of Theorems 3.1 and 3.2 in the

S-localised situation then follows readily, albeit the congruences in Equations

(3.1) and (3.2) are now taken modulo p• ·Zp
[[
Γp

m]]
(p)

rather than just modulo

p• · Zp
[[
Γp

m]], and we unfortunately lose their sufficiency in the process.
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We now turn our attention to the S∗-localisation, Λ(G∞)S∗ , which is less

problematic. Recall that G∞ has no element of order p, in which case Burns

and Venjakob [BV11, Prop 3.4] have constructed a splitting

K1

(
Λ(G∞)S∗

) ∼= K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)
.

Furthermore, there exists another commutative diagram

K1

(
Λ(G∞)S∗

) ∼−→ K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)
y

Θ∞,S∗

y
(Θ∞,S ,Θ0)∏

m≥0

K1

(
Λ(Uab

m )S∗
)
←↩

∏
m≥0

K1

(
Λ(Uab

m )S
)
⊕K0

(
Fp[[Uab

m ]]
)

where the map Θ0 : K0

(
Fp[[G∞]]

)
→
∏

m≥0K0

(
Fp[[Uab

m ]]
)

encodes how the non-

commutative µ-invariant information in K0

(
Fp[[G∞]]

)
gets distributed amongst

its abelian fragments.

Thus a sequence (yS∗,m) lies in the image of Θ∞,S∗ , if and only if each term

factorises into yS∗,m =
(
yS,m, µm

)
where the components (yS,m) ∈ Im

(
Θ∞,S

)
and (µm) ∈ Im(Θ0). Note that G∞ is a pro-p-group so that K0

(
Fp[[G∞]]

) ∼= Z,

and similarlyK0

(
Fp[[Uab

m ]]
) ∼= Z. Consequently a tuple (µm) ∈

∏
mK0

(
Fp[[Uab

m ]]
)

arises from the image of Θ0 if and only if for every integer m ≥ 0, one has

µm = [G∞ : Um]× µ for some fixed µ ∈ Z.

Because the bottom arrow in the above diagram may possibly not be sur-

jective, the most one can say is that any (yS∗,m) ∈ Im
(
Θ∞,S∗

)
must of necessity

satisfy (M1)–(M4). If we denote this subset of
∏

m≥0K1

(
Λ(Uab

m )S∗
)

satisfying

(M1)–(M4) by ‘ΦS∗ ’, then this potential lack of surjectivity yields another ob-

struction to Θ∞,S∗ : K ′1
(
Λ(G∞)S∗

)
→ ΦS∗ being an isomorphism. In terms

of Θ∞,χ,S∗ = χ ◦ Θ∞,S∗ from the Introduction, this translates into the ne-

cessity of the congruences written down in Theorems 3.1 and 3.2 holding for

χ(yS∗,m) ∈
∏

m,χ Quot
(
ΛOχ(Γ

pm)
)×, but not their sufficiency regrettably.



Chapter 7

Some Explicit Computations

The various quantities Rm,n, ϖ and e∗χ,ϖ occurring in the congruences (3.1)

and (3.2) are easy to define in theory, but it is not quite so evident how to work

them out in practice. We shall now give a step-by-step guide to calculating

these terms algorithmically.

Step 1: We first explain how to express χ̃
1,N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

in terms of χ1,n

and χ2,n.

Step 2: We next explicitly list representatives for Rm,n in the form χ̃a
1,N

(m)
⋆,1

·

χ̃b
2,N

(m)
⋆,2

.

Step 3: We end by giving formulae to compute both #ϖ and e∗χ,ϖ = Tr
(
Indχ∗

)
(ϖ).

The technical results corresponding to Steps 1, 2, 3 in the text below are

respectively Proposition 7.1, Lemma 7.2 and Lemma 7.3. We shall then give

an even more concrete description in two special situations, namely Case (II)

and Case (III) - see Corollary 7.4 and Corollary 7.8.
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Definition 7.1 (a) We set the non-negative integer pair
(
e
[1,m]
⋆,1 , e

[1,m]
⋆,2

)
equal

to

•
(
0, 1
)

•

(
ps+m

λp
m

III,± − 1
, 0

)

•

(
ps+m

2

(
1

λp
m

IV,+ − 1
+

1

λp
m

IV,− − 1

)
,
ps+m

2
√
d

(
1

λp
m

IV,+ − 1
− 1

λp
m

IV,− − 1

))

•

(
ps+m+ordp(d)

2

(
1− pr

2
√
∆V

λp
m

V,+ − 1
+

1 + pr

2
√
∆V

λp
m

V,− − 1

)
,
ps+m+ordp(d)

2
√
∆V

(
1

λp
m

V,+ − 1
− 1

λp
m

V,− − 1

))

•

(
ps+m

2

(
pr+ordp(t)

λp
m

VI,+ − 1
+
pr+ordp(t)

λp
m

VI,− − 1

)
,
ps+m

2
√
prt

(
pr+ordp(t)

λp
m

VI,+ − 1
− pr+ordp(t)

λp
m

VI,− − 1

))

in Cases (II), (III), (IV), (V) and (VI) respectively.

(b) Likewise, we shall define a second pair
(
e
[2,m]
⋆,1 , e

[2,m]
⋆,2

)
by setting it equal to

•
(
1, 0
)

•

(
0 ,

ps+m

λp
m

III,± − 1

)

•

(
ps+m

√
d

2

(
1

λp
m

IV,+ − 1
− 1

λp
m

IV,− − 1

)
,
ps+m

2

(
1

λp
m

IV,+ − 1
+

1

λp
m

IV,− − 1

))

•

(
ps+md

2
√
∆V

(
1

λp
m

V,+ − 1
− 1

λp
m

V,− − 1

)
,
ps+m

2

(
1 + pr

2
√
∆V

λp
m

V,+ − 1
+

1− pr

2
√
∆V

λp
m

V,− − 1

))

•

(
ps+m

√
prt

2

(
1

λp
m

VI,+ − 1
− 1

λp
m

VI,− − 1

)
,
ps+m

2

(
1

λp
m

VI,+ − 1
+

1

λp
m

VI,− − 1

))

again in Cases (II), (III), (IV), (V) and (VI) respectively.

Proposition 7.1 For integers n≫ 0, one has the character relations

χ̃
1,N

(m)
⋆,1

=



χ0
1,n · χ1

2,n if ⋆=II

χ
e
[1,m]
III,1

1,s+m · χ0
2,s+m if ⋆=III

χ
e
[1,m]
IV,1

1,s+m · χ
e
[1,m]
IV,2

2,s+m if ⋆=IV

χ
e
[1,m]
V,1

1,s+m+ordp(d)
· χe

[1,m]
V,2

2,s+m+ordp(d)
if ⋆=V

χ
e
[1,m]
VI,1

1,s+m+r+ordp(t)
· χe

[1,m]
VI,2

2,s+m+r+ordp(t)
if ⋆=VI
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and

χ̃
2,N

(m)
⋆,2

=



χ1
1,s+m · χ0

2,s+m if ⋆=II

χ0
1,s+m · χ

e
[2,m]
III,2

2,s+m if ⋆=III

χ
e
[2,m]
IV,1

1,s+m · χ
e
[2,m]
IV,2

2,s+m if ⋆=IV

χ
e
[2,m]
V,1

1,s+m · χ
e
[2,m]
V,2

2,s+m if ⋆=V

χ
e
[2,m]
VI,1

1,s+m · χ
e
[2,m]
VI,2

2,s+m if ⋆=VI.

Proof. The situation where ⋆ =II has already been dealt with in §5.2, cf.

Equation (5.2). Let us instead suppose ⋆ ∈ {III,IV,V,VI}. We first recall from

Definition 5.1 that

• χ̃
1,N

(m)
⋆,1

x
y

 = χ
1,N

(m)
⋆,1


 1 0

0 0

 T⋆,m,1
 x

y


, and

• χ̃
2,N

(m)
⋆,2

x
y

 = χ
2,N

(m)
⋆,2


 0 0

0 1

 T⋆,m,2
 x

y




where T⋆,m,j := pN
(m)
⋆,j

((
I2 +M

)pm − I2)−1. Further, one can diagonalise the

γ-action via

(
I2 +M

)pm
= P⋆ D

pm

⋆ P−1⋆ with D⋆ =

 λ⋆,+ 0

0 λ⋆,−

 and P⋆ ∈ GL2(Qp).

The next objective is to calculate the matrices T⋆,m,j on an individual, case-

by-case basis.

Case (III). Here PIII = I2 and N
(m)
III,1 = N

(m)
III,2 = s+m, so that

pN
(m)
III,j

(
(I2 +M)p

m − I2
)−1

=

 ps+m

(1+ps)pm−1 0

0 ps+m

(1+ps)pm−1

 .

Case (IV). Here PIV =

 1 1
√
d −

√
d

 and N
(m)
IV,1 = N

(m)
IV,2 = s +m, so that

for each j ∈ {1, 2}, the matrix pN
(m)
IV,j

(
(I2 +M)p

m − I2
)−1

equals

ps+m

2


1

λp
m

IV,+−1
+ 1

λp
m

IV,−−1
1√
d

(
1

λp
m

IV,+−1
− 1

λp
m

IV,−−1

)
√
d

(
1

λp
m

IV,+−1
− 1

λp
m

IV,−−1

)
1

λp
m

IV,+−1
+ 1

λp
m

IV,−−1

 .
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Case (V). Assume that n ≥ s+m+ordp(d). Then PV =

 1 1

pr

2
+
√
∆V

pr

2
−
√
∆V


with ∆V = d+ p2r/4 ∈ Zp, while N (m)

V,1 = s+m+ ordp(d) and N
(m)
V,2 = s+m;

consequently for each choice j ∈ {1, 2}, the matrix pN
(m)
V,j

(
(I2 +M)p

m − I2
)−1

equals

pN
(m)
V,j

2


1

λp
m

V,+−1
+ 1

λp
m

V,−−1
− pr

2
√
∆V

(
1

λp
m

V,+−1
− 1

λp
m

V,−−1

)
1√
∆V

(
1

λp
m

V,+−1
− 1

λp
m

V,−−1

)
d√
∆V

(
1

λp
m

V,+−1
− 1

λp
m

V,−−1

)
1

λp
m

V,+−1
+ 1

λp
m

V,−−1
+ pr

2
√
∆V

(
1

λp
m

V,+−1
− 1

λp
m

V,−−1

)
 .

Case (VI). Assume that n ≥ s + m + r + ordp(t). Then one has PVI = 1 1

√
prt −

√
prt

, while N (m)
VI,1 = s + m + r + ordp(t) and N

(m)
VI,2 = s + m;

consequently, for each j ∈ {1, 2} the matrix pN
(m)
VI,j

(
(I2 +M)p

m − I2
)−1

equals

pN
(m)
VI,j

2


1

λp
m

VI,+−1
+ 1

λp
m

VI,−−1
1√
prt

(
1

λp
m

VI,+−1
− 1

λp
m

VI,−−1

)
√
prt

(
1

λp
m

VI,+−1
− 1

λp
m

VI,−−1

)
1

λp
m

VI,+−1
+ 1

λp
m

VI,−−1

 .

Since we know the form of each T⋆,m,j, one now computes χ̃
1,N

(m)
⋆,1

x
y

 and

χ̃
2,N

(m)
⋆,2

x
y

. To illustrate the calculation, suppose we are in the last case

⋆ =VI; then one obtains

χ̃
1,N

(m)
VI,1

x
y

 = χ
1,N

(m)
VI,1


 1 0

0 0

 TVI,m,1
 x

y




= χ1,s+m+r+ordp(t)


 ps+m+r+ordp(t)

2

(
x+ y√

prt

λp
m

VI,+−1
+

x− y√
prt

λp
m

VI,−−1

)
0




= χ1,s+m+r+ordp(t)


 ps+m

2

(
pr+ordp(t)

λp
m

VI,+−1
+ pr+ordp(t)

λp
m

VI,−−1

)
x

0




· χ2,s+m+r+ordp(t)


 0

ps+m

2
√
prt

(
pr+ordp(t)

λp
m

VI,+−1
− pr+ordp(t)

λp
m

VI,−−1

)
y



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which equals χe
[1,m]
VI,1

1,s+m+r+ordp(t)

x
y

 · χe
[1,m]
VI,2

2,s+m+r+ordp(t)

x
y

. Likewise, one can

show that

χ̃
2,N

(m)
VI,2

x
y

 = χ2,s+m


 0 0

0 1

 TVI,m,2
 x

y




= χ1,s+m


 ps+m√prt

2

(
1

λp
m

VI,+−1
− 1

λp
m

VI,−−1

)
x

0




· χ2,s+m


 0

ps+m

2

(
1

λp
m

VI,+−1
+ 1

λp
m

VI,−−1

)
y


 = χ

e
[2,m]
VI,1

1,s+m

x
y

 · χe
[2,m]
VI,2

2,s+m

x
y

 .

The other remaining cases ⋆ =III, ⋆ =IV and ⋆ =V follow in an analogous

fashion. 2

For Step 2, we introduce an equivalence relation ‘ ∼ ’ on ordered pairs of

integers (a, b).

Definition 7.2 (i) If ⋆ ∈ {III, IV, V, VI}, then one sets

Xm,n :=

{
(a, b) ∈

(
Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

)
− p ·

(
Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

)}/
∼

where (a, b) ∼ (a′, b′), if and only if a 0

0 b

 ≡
 a′ 0

0 b′

(I2+M)j mod
((
I2+M

)pm−I2) for some j ∈ Z/pmZ.

(ii) If ⋆ = II, then one sets

Xm,n :=

{
(a, b) ∈ Z

pnZ
×
(

Z
ps+mZ

)×}/
∼

where (a, b) ∼ (a′, b′) if and only if a ≡ a′ (mod pn−m).

The following result describes how to produce an explicit set of representatives

for Rm,n. Again we assume that the integer n≫ 0 is chosen sufficiently large

with respect to m.
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Lemma 7.2 (a) Up to isomorphism, the exact number of irreducible G∞,n-

representations ρχ = IndG∞,n

StabΓ(χ)⋉H
(m,n)
∞

(χ) induced from primitive characters

χ : H(m,n)

∞ → C× equals

#Rm,n−#Rm−1,n =



pn+s−1 × (p− 1) in Case (II)

p2s+m−2 × (p2 − 1) in Cases (III) and (IV)

p2s+m+ordp(d)−2 × (p2 − 1) in Case (V)

p2s+m+r+ordp(t)−2 × (p2 − 1) in Case (VI).

(b) If we define Rprim
m,n := Rm,n−Rm−1,n for every m ∈ {1, . . . , n− s}, then we

can take as representatives for Rprim
m,n the set

{
χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

∣∣∣ (a, b) ∈ Xm,n

}
.

Proof. Part (a) follows (with n ≫ m) on combining Proposition 4.5(iii) and

Corollary 4.6. To show (b), first suppose that ⋆ ̸= II. Then χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

=

γj ∗
(
χ̃a

′

1,N
(m)
⋆,1

· χ̃b′
2,N

(m)
⋆,2

)
if and only if χ̃

1,N
(m)
⋆,1

 ax

ay

 · χ̃2,N
(m)
⋆,2

 bx

by

 equals

χ̃
1,N

(m)
⋆,1

(I2 +M)j

 a′x

a′y


·χ̃2,N

(m)
⋆,2

(I2 +M)j

 b′x

b′y


 for all x, y ∈ Zp.

This latter equality is equivalent to the pair of congruences pN
(m)
⋆,1 0

0 0

((I2 +M
)pm − I2)−1

 ax

ay


≡

 pN
(m)
⋆,1 0

0 0

((I2 +M
)pm − I2)−1(I2 +M)j

 a′x

a′y

 mod pN
(m)
⋆,1

and  0 0

0 pN
(m)
⋆,2

((I2 +M
)pm − I2)−1

 bx

by


≡

 0 0

0 pN
(m)
⋆,2

((I2 +M
)pm − I2)−1(I2 +M)j

 b′x

b′y

 mod pN
(m)
⋆,2

holding for all x, y ∈ Zp; here we have exploited the construction of χ̃
1,N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

given in Definition 5.1. Because
(
I2 +M

)pm − I2 and (I2 +M)j
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commute with each other, the above may be rewritten as a single congruence a 0

0 b

((I2 +M
)pm − I2)−1

≡

 a′ 0

0 b′

 (I2 +M)j
((
I2 +M

)pm − I2)−1 mod Mat2×2
(
Zp
)
.

Note this congruence is satisfied for some j ∈ Z/pmZ precisely when (a, b) ∼

(a′, b′).

Let us instead suppose that ⋆ = II. Then χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

= γj ∗
(
χ̃a

′

1,N
(m)
⋆,1

·

χ̃b
′

2,N
(m)
⋆,2

)
if and only if

χ̃
1,N

(m)
⋆,1

 ax

ay

·χ̃2,N
(m)
⋆,2

 bx

by

 = χ̃
1,N

(m)
⋆,1

 a′(x+ psjy)

a′y

·χ̃2,N
(m)
⋆,2

 b′(x+ psjy)

b′y


at every x, y ∈ Zp. Again using Definition 5.1, we can rewrite this as

ζaypn · ζbxps+m = ζa
′y
pn · ζ

b′(x+psjy)
ps+m for each x, y ∈ Zp,

which is itself equivalent to the congruences

b ≡ b′ (mod ps+m) and a ≡ a′+jpn−mb′ (mod pn) for some j ∈ Z/pmZ.

These last two congruences then reduce to b ≡ b′ (mod ps+m) and a ≡ a′ (

mod pn−m).

Therefore in all possible cases ⋆ ∈ {II,III,IV,V,VI}, one concludes that

χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

and χ̃a
′

1,N
(m)
⋆,1

· χ̃b′
2,N

(m)
⋆,2

lie in the same Γ-orbit if and only if

(a, b) ∼ (a′, b′). 2

Consequently Steps 1 and 2 have now been resolved, and it therefore only

remains to complete Step 3. The latter task is covered by the next result, which

enables us to compute both the size of ϖ and also the exponent e∗χ,ϖ occurring

in Theorems 3.1 and 3.2, for each orbit ϖ and representative character χ ∈

Rm,n.
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Lemma 7.3 (i) If ϖ ∈ orbΓ

(
H(m,n)

∞
)

contains an element h = h
x

1h
y

2, then

ϖ =

 h
a

1h
b

2 such that

 a

b

 ∈ Y(x,y) mod
((
I2 +M

)pm− I2)
 Zp

Zp

+

 pnZp

pnZp




where the set Y(x,y) consists of the vectors

(I2 +M
)j x

y

 with j = 0, 1, . . . , pm − 1

.

(ii) For each character χ = χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

on H(m,n)

∞ , the number e∗χ,ϖ =

Tr
(
Indχ∗

)
(ϖ) can be computed via the exponential sum formula

pmχ−m·
pm−1∑
j=0

exp

(
−2π
√
−1

((
ae

[1,m]
⋆,1

pN
(m)
⋆,1

+
be

[2,m]
⋆,1

pN
(m)
⋆,2

)
xj +

(
ae

[1,m]
⋆,2

pN
(m)
⋆,1

+
be

[2,m]
⋆,2

pN
(m)
⋆,2

)
yj

))

where the integer mχ is given in Proposition 4.2, and

 xj

yj

 :=
(
I2+M

)j x

y


for all j.

(iii) In particular, if ϖ consists of just the identity element, then e∗χ,ϖ = pmχ ∈

N.

Proof. To establish assertion (i), we remark that γ acts on the quotient group

H(m,n)

∞ =
H∞/Hpn

∞⟨[
hx1h

y
2 mod Hpn

∞ , γp
m
] ∣∣∣ x, y ∈ Zp

⟩ ∼=
Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

through the matrix I2 +M , hence our description for the Γ-orbit follows im-

mediately.
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To show part (ii), by the definition of Tr
(
Indχ∗

)
(ϖ) one calculates that

e∗χ,ϖ =
#(Γ ∗ χ)

pm
·
pm−1∑
j=0

χ−1
(
γ−jhγj

)
=

[Γ : StabΓ(χ)]

[Γ : Γpm ]
·
pm−1∑
j=0

χ−1
(
h
xj
1 h

yj
2

)
by 4.2
= pmχ−m ·

pm−1∑
j=0

χ̃
1,N

(m)
⋆,1

(
h
xj
1 h

yj
2

)−a
× χ̃

2,N
(m)
⋆,2

(
h
xj
1 h

yj
2

)−b
by 7.1
= pmχ−m ·

pm−1∑
j=0

χ
e
[1,m]
⋆,1

1,N
(m)
⋆,1

· χe
[1,m]
⋆,2

2,N
(m)
⋆,1

(
h
xj
1 h

yj
2

)−a
× χe

[2,m]
⋆,1

1,N
(m)
⋆,2

· χe
[2,m]
⋆,2

2,N
(m)
⋆,2

(
h
xj
1 h

yj
2

)−b
= pmχ−m ·

pm−1∑
j=0

χ
−ae[1,m]

⋆,1

1,N
(m)
⋆,1

· χ−be
[2,m]
⋆,1

1,N
(m)
⋆,2

(
h
xj
1 h

yj
2

)
× χ−ae

[1,m]
⋆,2

2,N
(m)
⋆,1

· χ−be
[2,m]
⋆,2

2,N
(m)
⋆,2

(
h
xj
1 h

yj
2

)
and the last line is then equivalent to the stated formula.

Finally (iii) is a special case of (ii), corresponding to x = y = 0 and

xj = yj = 0. 2

7.1 A worked example for Case (II)

We end by using Steps 1–3 to yield an explicit expression for the congruences

in Case (II). Firstly by Lemma 7.2(b) and Definition 7.2(ii), if one takes m ≥ 1

then

Rprim
m,n =

{
χa2,n · χb1,s+m

∣∣∣ a ∈ Z/pn−mZ and b ∈
(
Z/ps+mZ

)×}
while R0,n coincides with

{
χa2,n ·χb1,s

∣∣∣ a ∈ Z/pnZ and b ∈ Z/psZ
}

. It follows

that

∏
χ∈Rm,n

NStabΓ(χ)/Γpm (· · · )e
∗
χ,ϖ =

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p ∤ b if m′ > 0

Nmχ,m (· · · )e
∗
χ,ϖ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

.

Now suppose an orbit ϖh ∈ orbΓ

(
H(m,n)

∞
)

contains an element h = h
x

1h
y

2. Then

ϖh =
{
γ−jhγj

∣∣ j ∈ Z
}

=
{
h
x+jpsy

1 h
y

2

∣∣∣ j ∈ Z
}

= h·
{
h
jpsy

1

∣∣∣ j = 1, · · · , pm−ordp(y)
}

in which case #ϖh = pm−ordp(ỹ), with ỹ ∈ {1, . . . , pm} chosen so that ỹ ≡ y (

mod pm).
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Finally, if we consider a typical character χ = χa2,n ·χb1,s+m′ = χa2,n ·χ
pm−m′

b
1,s+m

and the orbit ϖ = ϖh as above, then Lemma 7.3(ii) implies

e∗χ,ϖh
= pmχ−m ·

pm−1∑
j=0

exp

(
−2π
√
−1
((

pm−m
′
b

ps+m

)
(x+ jpsy) +

(
a

pn

)
y

))

= pmχ−m · exp
(
−2π
√
−1
(

bx

ps+m′ +
ay

pn

))
×

pm−1∑
j=0

exp

(
−2π
√
−1
(
bjy

pm′

))

= pmχ−m · exp
(
−2π
√
−1
(

bx

ps+m′ +
ay

pn

))
×


pm if pm′ | by

0 if pm′ ∤ by.

However the exponential term exp
(
−2π
√
−1
(

bx
ps+m′ +

ay
pn

))
is then just equal

to χ−1
(
h
)
. Because χ = χa2,n · χb1,s+m′ can be written as χe1

1,n · χe2
2,n with e1 =

pn−s−m
′
b and e2 = a, one calculates via Proposition 4.2 that mχ = max{0, m̃χ}

where

m̃χ
by 4.2
= n− s− ordp

(
pn−s−m

′
b
)

= m′ − ordp(b).

Consequently, if χ = χa2,n·χb1,s+m′ then e∗χ,ϖh
=


χ−1(h) · pmax{0,m′−ordp(b)} if pm′ | by

0 if pm′ ∤ by.

Corollary 7.4 The congruences described in Equation (6.7) are equivalent to

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p ∤ b if m′ > 0

Nmχ,m

(
yχ

φ
(
yχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )e∗χ,ϖ

h

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡ 1 mod ps+m+n+ordp(ỹ) · Zp
[[
Γp

m]]
(p)

for all integer pairs m,n ≥ 0 with m ≤ n − s, and at every choice of h =

h
x̃

1h
ỹ

2 ∈ H
(m,n)

∞ with x̃ ∈ {1, . . . , pn} and ỹ ∈ {1, . . . , pm}.

This completes the proof of Theorem 3.1, in the precise form stated in the

Chapter 3.
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7.2 A worked example for Case (III)

We now turn our attention to the situation where the Γ-action is scalar, and

relate our congruences to those derived by Delbourgo and Peters in [DP15].

Proposition 7.5 If we are in Case (III), then

1. A set of representative primitive characters is given by

Rprim
m,n =

{
χa1,s+mχ

b
2,s+m

∣∣∣ (a, b) ∈ Xm.n

}
where Xm,n := X+

m,n ∪ X−m,n with

X+
m,n =

( Z
psZ

)×
× Z
ps+mZ

and

X−m,n =
pZ

ps+mZ
×
( Z
psZ

)×
.

2. For an orbit ϖh ∈ orbΓ

(
H(m,n)

∞
)

containing an element h = h
x

1h
y

2, we

have #ϖh = pm−min{ordp(x̃),ordp(ỹ)}, with x̃, ỹ ∈ {1, . . . , pm} chosen so that

x̃ ≡ x (mod pm) and ỹ ≡ y (mod pm).

3. For a typical character χ = χa1,s+mχ
b
2,s+m,

e∗χ,ϖh
=


χ−1(h) · pmax{0,n−s} if m ≤ ordp(ax+ by)

0 otherwise.

Proof. First of all, the set of representatives Rprim
m,n is abstractly described

in Proposition 7.1, but it is not trivial to determine Xm,n. From Definition

7.2, we know that the equivalence relation (a, b) ∼ (a′, b′) holds if and only if

a ≡ a′ × (1 + ps)j (mod ps+m) and b ≡ b′ × (1 + ps)j (mod ps+m) for some

j ∈ Z
pmZ .

In order to describe the set Xm,n completely, we shall separate it into two

cases. In the first case, where p ∤ a, it follows that a
a′
≡ (1 + ps)j (mod ps+m).

At the same time, because of the fact that ps | (1 + ps)j − 1, we deduce that
a
a′
∈ 1+ psZ

ps+mZ . This means one may take a ∈ {1, 2, · · · , ps}∩Z×p and b ∈ Z
ps+mZ .
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Similarly, in the second case for p ∤ b, we may choose b ∈ {1, 2, · · · , ps}∩Z×p .

(Note as a part of the previous case, the sub-case that p ∤ a and p ∤ b has already

been treated, which leaves us only with the sub-case where a ∈ Z/ps+mZ is a

multiple of p and p ∤ b.)

In general, we conclude that if p ∤ a, then one may take a ∈
( Z
psZ

)× and

b ∈ Z
ps+mZ . On the other hand, if p | a and p ∤ b, then we may choose a ∈ pZ

ps+mZ

and b ∈
( Z
psZ

)× . This gives us the stated decomposition Xm,n = X+
m,n ∪X−m,n

as above and completes part (i).

Looking instead at part (ii), suppose that an orbit ϖh ∈ orbΓ

(
H(m,n)

∞
)

contains an element h = h
x

1h
y

2. Then

ϖh =
{
γ−jhγj

∣∣ j ∈ Z
}

=
{
h
(1+ps)j

∣∣∣ j ∈ Z
}

= h ·
{
h
(1+ps)j−1

∣∣∣ j ∈ Z
}

= h ·
{
h
x((1+ps)j−1)
1 h

y((1+ps)j−1)
2

∣∣∣ j ∈ {1, 2, · · · ,min{ordp(x̃), ordp(ỹ)}
}}
,

in which case #ϖh = pm−min{ordp(x̃),ordp(ỹ)} with x̃, ỹ ∈ {1, . . . , pm} chosen so

that x̃ ≡ x (mod pm) and ỹ ≡ y (mod pm). (Note for example, if h is the

identity then #ϖh = 1.)

Finally, let us put um′ = ps+m′

λp
m′

III,±−1
∈ Z×p . If we consider a typical character

χ = χ̃a1,s+m′χ̃b2,s+m′ = χ
um′pm−m′

a
1,s+m χ

um′pm−m′
b

2,s+m and an orbit ϖ = ϖh as above,

then Lemma 7.3(ii) implies

e∗χ,ϖh
= pmχ−m ·

pm−1∑
j=0

exp

(
−2π
√
−1
((

um′pm−m
′
a

ps+m

)
xj +

(
um′pm−m

′
b

ps+m

)
yj

))

= pmχ−m ·
pm−1∑
j=0

exp

(
−2π
√
−1
((

um′pm−m
′
a

ps+m

)
λjIII,±x+

(
um′pm−m

′
b

ps+m

)
λjIII,±y

))

= pmχ−m ·
pm−1∑
j=0

exp

(
− 2π

√
−1

(
λjIII,±

λp
m′

III,± − 1
(ax+ by)

))

= pmχ−m · χ−1(h)×
pm−1∑
j=0

exp

(
− 2π

√
−1

(
λjIII,± − 1

λp
m′

III,± − 1
(ax+ by)

))
.

Since λjIII,±−1 runs over the elements of psZ
ps+mZ and ps+m′ || λp

m′

III,±−1, we deduce
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that

e∗χ,ϖh
= pmχ−m · χ−1(h)×


pm if m′ ≤ ordp(ax+ by)

0 otherwise.

Consequently, if χ = χaum1,s+mχ
bum
2,s+m then mχ = max{0, n − s}by Proposition

4.2, in which case

e∗χ,ϖh
=


χ−1(h) · pmax{0,n−s} if m′ ≤ ordp(ax+ by)

0 otherwise.

The same argument works fine if we replace χ by χa1,s+m′χb2,s+m′ , since the map

ζ 7→ ζum extends linearly to yield an element of Gal(Q(µpm)/Q).

2

Corollary 7.6 The congruences described in Equation (3.2) are equivalent to

m∏
m′=0

(
ps∏

a = 1,

p ∤ a

ps+m′∏
b=1

Nmχ,m

(
yχ

φ
(
yχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )e∗χ,ϖ

h

∣∣∣∣∣
χ=χa

1,s+m′ ·χb
2,s+m′

×
ps+m′∏
a = 1,

p | a

ps∏
b = 1,

p ∤ b

Nmχ,m

(
yχ

φ
(
yχp

) · φ(N0,mχ−1
(
y1
))

N0,mχ

(
y1
) )e∗χ,ϖ

h

∣∣∣∣∣
χ=χa

1,s+m′ ·χb
2,s+m′

)

≡ 1 mod p2s+2m+min{ordp(x̃),ordp(ỹ)} · Zp
[[
Γp

m]]
(p)

for all integer pairs m,n ≥ 0 with m ≤ n − s, and at every choice of h =

h
x̃

1h
ỹ

2 ∈ H
(m,n)

∞ with x̃, ỹ ∈ {1, . . . , pm}.

7.2.1 Comparison with the Delbourgo-Peters congru-

ences

Recall that for all integers i ≥ 1, the twin mappings log : 1+pi·Zp[Γp
m
/Γp

ν
]
∼−→

pi · Zp[Γp
m
/Γp

ν
] and exp : pi · Zp[Γp

m
/Γp

ν
]
∼−→ 1 + pi · Zp[Γp

m
/Γp

ν
] are inverse

isomorphisms to each other. Note also that, for a character χ : H∞ → µpν , we

have a(ν)m,χ = TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
.



103

Now, as an example, let us further assume that a
(ν)
m,χ = a

(ν)
m,χu for any

u ∈ Z×p , which corresponds to the scenario considered in [DP15].

Then #ω = 1 if h̄ is the identity, and pν−s otherwise for some ν ≥ s+1. Let

R̃m,∞ denote a set of representatives for the orbits in Hom
(
H(m)

∞ ,C×
)

under

the natural action of Z×p . Taking the product over all characters in Rm,∞,

∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )Tr(Indχ∗)(ϖ)

= exp ◦ log

( ∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )Tr(Indχ∗)(ϖ))

= exp

( ∑
χ∈Rm,∞

Tr(Indχ∗)(ϖ)× TrStabΓ(χ)/Γpm ◦ log

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) ))

.

Recalling that

TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
= TrStabΓ(χ)/Γpm ◦ log

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )

from Equation 6.6, it follows directly that,

∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )Tr(Indχ∗)(ϖ)

= exp

( ∑
χ∈Rm,∞

TrStabΓ(χ)/Γpm

(
a(ν)
χ

)
· Tr(Indχ∗)(ϖ)

)
= exp

( ∑
χ∈Rm,∞

a(ν)
m,χ · Tr(Indχ∗)(ϖ)

)

= exp

( ∑
χ∈Rm,∞

a(ν)
m,χ ·

pm−1∑
i=0

χ−1(h̄)(1+p
s)i

)

= exp

( ∑
χ∈R̃m,∞

∑
χ′ = χu,

with u ∈
Z×p

1+psZp

a
(ν)
m,χ′ ·

pm−1∑
i=0

(χ′)−1(h̄)(1+p
s)i

)

= exp

( ∑
χ∈R̃m,∞

a(ν)
m,χ ×

∑
u∈ Z×p

1+ps+νZp

χ−1(h̄)u

)

upon exploiting the fact that a
(ν)
m,χ = a

(ν)
m,χu if u ∈ Z×p . We may therefore
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conclude

∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )Tr(Indχ∗)(ϖ)

= exp

( ∑
χ∈R̃m,∞

TrStabΓ(χ)/Γpm ◦ log

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )

×
∑

u∈ Z×p
1+ps+νZp

χ−1(h̄)u

)

=
∏

χ∈R̃m,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1
(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )∑

u∈
Z×p

1+ps+νZp

χ−1(h̄)u

.

Lemma 7.7 The summation term above is equal to

∑
u∈ Z×p

1+ps+νZp

χ−1(h̄)u =


ϕ(pν+s) if h̄ ∈ Ker(χ),

−ps+ν−1 if h̄ ̸∈ Ker(χ) but h̄p ∈ Ker(χ),

0 otherwise.

Proof. We begin by supposing that h̄ ∈ Ker(χ), so that χ−1(h̄)u = 1 for all

u ∈ Z×
p

1+ps+νZp
. Here the sum equals the number of elements in Z×

p

1+ps+νZp
, which

is exactly ϕ(pν+s) = (p− 1)pν+s−1.

We next consider the case where h̄ ̸∈ Ker(χ) but h̄p ∈ Ker(χ), which means

that χ−1(h̄) ∈ µp with χ−1(h̄) ̸= 1. Since the group Z×
p

1+ps+νZp
is isomorphic to

F×p ×
1+pZ×

p

1+ps+νZp
, consequently

∑
u∈ Z×p

1+ps+νZp

χ−1(h̄)u =
∑

u∈ Z×p
1+ps+νZp

(e
2πi
p )u = ps+ν−1 ×

∑
ξ∈µp, ξ ̸=1

ξ

= ps+ν−1 ×
(∑
ξ∈µp

ξ − 1
)
= ps+ν−1 · (0− 1) = −ps+ν−1.

Lastly, if h̄p ̸∈ Ker(χ) then an easy exercise in cyclotomy shows that the sum

is zero. 2
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Corollary 7.8 Under the assumption that a
(ν)
m,χ = a

(ν)
m,χu for all u ∈ Z×p , the

congruences in Theorem 3.2 are equivalent to:

• if h̄ ̸= id, one has

∏
χ ∈ R̃m,∞,

h̄ ∈ Ker(χ)

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1

(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )ps+ν

≡
∏

χ ∈ R̃m,∞,

h̄p ∈ Ker(χ)u

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1

(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )ps+ν−1

mod p3s+3m−ν

• and in the trivial case, if h̄ = id we have

∏
χ∈R̃m,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1

(
y
(ν)
1
))

N0,mχ

(
y
(ν)
1
) )(p−1)ps+ν−1

≡ 1 mod p2s+3m,

which agree (after re-normalisation) with the congruences lebelled (1.1)m,h and

(1.2)m in [DP15].



Chapter 8

Some numerical calculations for

GL2(Fp)-extensions

Let p ≥ 3 be a prime. Consider now an elliptic curve E defined over Q without

complex multiplication. By a famous result of Serre [Ser72], the Galois group

of Q(E[p∞]) over Q is an open subgroup of GL2(Zp), i.e.

G∞ = Gal(Q(E[p∞])/Q) � GL2(Zp).

Since GL2(Zp) ∼= lim←nGL2(Z/pnZ), we may then identify Gal(Q(E[p])/Q)

with a subgroup of the finite group GL2(Fp) ∼= Aut(E[p]).

There is an exact sequence of groups

1→

1 + pZp pZp

pZp 1 + pZp

→ GL2(Zp)
mod p−−−→ GL2(Fp)→ 1,

which induces on the level of K-groups a sequence

K1

(
Λ

1 + pZp pZp

pZp 1 + pZp

)→ K1(Λ(GL2(Zp)))
pr1−−→ K1(Zp[GL2(Fp)]).

In particular, we have the commutative square

K1(Λ(GL2(Zp)))

K1(Λ(Gal(Q(E[p∞])/Q)))

K1(Zp[GL2(Fp)])

K1(Zp[Gal(Q(E[p])/Q)])

pr1
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where the downward arrows are induced by the inclusion Gal(Q(E[p])/Q) ↪→

GL2(Fp).

As in Chapter 2, suppose there exists an element LE ∈ K1(Λ(G∞)S∗)

satisfying the interpolation properties

Φρ(LE) =
LR(E, ρ, 1)

Ω+(E)d
+(ρ)Ω−(E)d

−(ρ)
· ep(ρ) ·

Pp(ρ̂, u
−1)

Pp(ρ, ω−1)
· αp−fρ

for all Artin representations

ρ : Gal(Q̄/Q)→ G∞ → GL(Vρ)

in the specific notation of Conjecture 2.14 in Chapter 2. If we restrict to

considering only those ρ’s factoring through Gal(Q(E[p])/Q), then there is a

factorisation

K1(Λ(G∞)S)

Q̄p ∪ {∞},

K1(Zp[Gal(Q(E[p])/Q)]S̄)pr1

Φρ
ρ

so that the value Φρ(LE) depends only on pr1(LE).

Question: How can we describe pr1(LE) inside K1(Zp[GL2(Fp)]) using con-

gruences?

In fact, if one restricts to the p-primary part of K1(Zp[GL2(Fp)] then the

answer is given by recent work of Kakde, which we now recall.

8.1 Review of Kakde’s GL2(Fp)-paper

Let G denote the finite group GL2(Fp). In the paper [Kak17], Kakde calculated

Conj(G) explicitly and derived a relationship between the multiplicative theta-

map θ and the additive theta-map ψ, via an integral logarithm.
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Let us firstly write S(G) = {Z,C, T,K}, where Z,C, T,K are the abelian

subgroups of G given by

Z : =

{
ia =

a 0

0 a

∣∣∣∣∣ a ∈ F×p

}

C : =

{
ca,b =

a b

0 a

∣∣∣∣∣ a ∈ F×p , b ∈ Fp

}

T : =

{
ta,d =

a 0

0 d

∣∣∣∣∣ a, d ∈ Fp

}

K : =

{
ka,b =

a ϵb

b a

∣∣∣∣∣ a, b ∈ F×p

}

with ϵ ∈ Fp − Fp2 , a non-square element. In this context, the multiplicative

theta-map is defined by

θ : K1(Zp[G]) −→
∏

U∈S(G)

Zp[U ]×,

where each component xU , indexed by the subgroup U , is given by sending

x 7→ NormZp[G]/Zp[U ](x) mod [U,U ] inside Zp[Uab].

Condition (F) Let χU be representations of U , and nU be integers, such that

∑
U∈S(G)

nU IndGUχU = 0.

Note that this sum takes place in the group of virtual characters of G. Then

we say that a tuple (xU) ∈
∏

U∈S(G) Zp[U ]× satisfies (F) if and only if for any

χU and nU as above, ∏
U

χU(xU)
nU = 1.

Let φ denote the ring homomorphism induced by the p-power map g 7→ gp.

Definition 8.1 Let Θ be the set of all tuples xU ∈
∏

U∈S(G) Zp[U ]
×
(p) which are

not torsion, and such that:

• (xU) satisfies (F);

• xZ ≡ φ(xC)( mod pZp[Z]).
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We should point out that Cp = Z, whence ϕ : Zp[C]→ Zp[Cp] = Zp[Z], so the

above congruence makes good mathematical sense.

Theorem 8.1 (Thm 18,[Kak17]) The map θ induces an isomorphism between

K1(Zp[G])(p) and Θ.

For the remainder of this chapter, our task is to verify this congruence numer-

ically for LE, once these elements have been correctly evaluated at the trivial

character.

8.2 The basic structure of GL2(Fp)

We now derive some useful facts about GL2(Fp), which will be needed later.

Lemma 8.2 #GL2(Fp) = (p− 1)2 · p · (p+ 1).

Proof. Since G = GL2(Fp), one may rewrite G as

G =

{a b

c d

∣∣∣∣∣ a, b, c, d ∈ Fp and ad ̸= bc

}

=

{a b

c d

∣∣∣∣∣ a ∈ F×p , b, c ∈ Fp, d ̸= bca−1 ∈ Fp

}∪{0 b

c d

∣∣∣∣∣ b, c ∈ F×p , d ∈ Fp

}
.

To calculate the size of the full group of G, it is enough to determine the size of

the disjoint subsets above. For the first subset, we have p− 1 different choices

for a, p choices for b and c, and p− 1 choices for d. For the second subset, a is

fixed to be 0, we have p− 1 choices for b and c, and p choices for d. Therefore,

#G = (p− 1) · p · p · (p− 1) + (p− 1) · (p− 1) · p

= (p− 1)2 · p · (p+ 1)

which establishes the result.

2
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Lemma 8.3 The only element of S(G) that is a normal subgroup of G is Z.

Proof. Let A =

x y

z w

 be an arbitrary element in GL2(Fp). Then we may

undertake the following conjugations:

• For an arbitrary ia ∈ Z, one has

AiaA
−1 =

a 0

0 a

 ∈ Z.

• Let c =

a b

0 a

 ∈ C, then

AcA−1 =
1

wx− yz

awx− bxz − ayz bx2

−bz2 awx+ bxz − ayz

 .

It is clear that AcA−1 ̸∈ C if bz2 ̸≡ 0 mod p.

• Let t =

a 0

0 d

 ∈ T , then

AcA−1 =
1

wx− yz

awx− dyz dxy − axy

awz − dwz dwx− ayz

 .

It is clear that AcA−1 ̸∈ T if dxy − axy ̸≡ 0 mod p or awz − dwz ̸≡ 0

mod p.

• Let k =

a ϵb

b a

 ∈ K. Then

AkA−1 =
1

wx− yz

awx+ bwy − ayz − ϵbxz ϵbx2 − by2

bw2 − ϵbz2 awx− bwy − ayz + ϵbxz

 .

So AkA−1 ̸∈ K if w2 ≡ ϵz2 mod p.

Clearly only Z above is a normal subgroup of G. 2
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Lemma 8.4 The sizes of the subgroups Z, C, T and K are respectively:

(i) #Z = p− 1 ;

(ii) #C = (p− 1)p;

(iii) #T = (p− 1)2;

(iv) #K = (p− 1)(p+ 1).

Proof. (i) First let us consider the center Z. Since Z = {ia | a ∈ F×p },

clearly #Z = #F×p = p− 1.

(ii) Next we focus on C, which contains all upper triangular matrices. Since

there are p − 1 different a’s and p choices for b, then the size of C is

simply (p− 1)p.

(iii) Similarly, for the split Cartan subgroup T , there are (#F×p ) · (#F×p ) =

(p− 1)2 elements.

(iv) Finally, we focus on the non-split Cartan subgroup K. As all its matrices

have the form

a ϵb

b a

, we have to guarantee that a2−ϵb2 ̸= 0, otherwise

it fails to be an element in GL2(Fp). It turns out the only situation

we need to worry about is the case when a = b = 0, thus there are

(#Fp)2 − 1 = p2 − 1 matrices in K.

2

8.3 Evaluating at the trivial character

We want to translate Kakde’s GL2(Fp)-congruences into a concrete statement,

at least at the trivial character. Recall that his second congruence states that

xZ ≡ φ(xC) mod pZp[Z].

Question: What does this imply when we assume that xZ and xC are the

respective images of pr1(LE) inside Zp[Z] and Zp[C]?
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Recall the predicted p-adic interpolation properties of LE ∈ K1(Λ(GL2(Zp)))

in Chapter 2. Specifically, if ρ : GQ → Gal(Q(E[p])/Q)→ GL(V ) is an Artin

representation factoring through G = GL2(Fp), then

LE(ρ) =
L{pNE}(E, ρ, 1)

Ω+(E)d
+(ρ)Ω−(E)d

−(ρ)
· ϵp(ρ) ·

Pp(ρ̂, u
−1)

Pp(ρ, ω−1)
· u−fρ .

Now for any Galois extension K/Q with K ⊂ Q(E[p]), we can plug in the

regular representation ρ = regK/Q of Gal(K/Q). Moreover, if the field K does

not have any real embeddings then d+(ρ) = d−(ρ) = [K : Q]/2, in which case

LE(regK/Q) =
L{pNE}(E/K, 1)

(Ω+(E)Ω−(E))[K:Q]/2
·
√
| △K | ·

ζK,p(u
−1)

ζK,p(w−1)

because p does not ramify in K so that u−fρ = u−0 = 1.

As an example, if F = Q(E[p]) and K = FZ then K/Q is Galois as

Z � GL2(Fp) by Lemma 8.3; hence the value of xZ at the trivial character

should be

L(xZ) : = LE(regFZ/Q)

=
L{pNE}(E/F

Z , 1)

(Ω+(E)Ω−(E))(p−1)p(p+1)/2
·
√
| △FZ | ·

ζFZ ,p(u
−1)

ζFZ ,p(w−1)
.

We should also warn the reader that FC is not a Galois extension over Q (by

Lemma 8.3 again), so we cannot set ρ := regFC/Q as this does not make sense.

Let us therefore abuse notation, and put

L(xC) :=
L{pNE}(E/F

C , 1)

(Ω+(E)Ω−(E))(p−1)(p+1)/2
·
√
| △FC | ·

ζFC ,p(u
−1)

ζFC ,p(w−1)
.

The following statement should then follow from Kakde’s ‘mod p’ congruence:

L(xZ) ≡ L(xC) mod p,

assuming the existence of the analytic element pr1(LE) ∈ K1(Zp[GL2(Fp)]) of

course. In other words, one should have the congruence

L{pNE}(E/F
Z , 1)

(Ω+(E)Ω−(E))(p−1)p(p+1)/2
·
√
| △FZ | ·

ζFZ ,p(u
−1)

ζFZ ,p(w−1)

≡
L{pNE}(E/F

C , 1)

(Ω+(E)Ω−(E))(p−1)(p+1)/2
·
√
| △FC | ·

ζFC ,p(u
−1)

ζFC ,p(w−1)
mod p. (⋆)
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8.4 A numerical strategy for p = 3

Recall that p ≥ 3 is a prime, and let E[p] be the group of p-torsion points on the

non-CM elliptic curve E. Note that the p-torsion field Q(E[p]) is an extension

of the splitting field of the p-division polynomial, ψp(x), whose roots are the x-

coordinates of the non-trivial p-torsion points. Using the algorithm in [Sut16],

we constructed the splitting field of ψp(x), and then took the appropriate

quadratic extension to obtain Q(E[p]).

Now, let F = Q(E[p]) be the extension of Q which contains all x-coordinates

and y-coordinates of the p-torsion points on the elliptic curve E. Assume that

Gal(Q(E[p])/Q) ∼= GL2(Fp), and write FZ , FC , F T , FK for the fixed fields of

Z,C, T,K respectively. In this setting, there is the field diagram

Q

FC

F T

FZ

FK

F = Q(E[p])

p − 1

p
p − 1

p + 1

(p + 1)(p − 1)

p(p + 1)

(p − 1)p

GL2(Fp)

.

We devote the rest of this chapter to numerically verifying (⋆) at the prime

p = 3.
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Lemma 8.5 Assume that E has good ordinary reduction at p = 3, and that

F = Q(E[3]) is a GL2(F3)-extension of Q.

(i) Z is the only normal subgroup of GL2(F3) with 2 elements.

(ii) If p = 3, then FZ = Q(ψ3).

(iii) FZ is a degree 3 extension of FC, and FZ ∼= FC( 3
√
∆E).

Proof. (i) Suppose there exists a subgroup H inside GL2(F3) with 2 ele-

ments, e.g. H = {id, τ}. Then we must have

gidg−1 = id and gτg−1 = τ for all g ∈ G.

It follows that H is a subset of the center Z, and as #Z = 2 clearly

H = Z

(ii) For simplicity, suppose that the elliptic curve is given by the equation

y2 = x3 + Ax + B. Since F = Q(ψ3)(
√
x3 + Ax+B), one must have

[F : Q(ψ3)] = 2, where H = Gal(F/Q(ψ3)) ∼= Z/2Z. However Q(ψ3)/Q

is Galois, thus H �G and H = Z by the previous argument.

(iii) Recall that for an elliptic curve E, the 3-division polynomial ψ3 has the

form

ψ3(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8 = 0,

where b2, b4, b6, b8 are the coefficients defined in Chapter 2, Section 2.1.

Assume that x1, x2, x3, x4 are the roots of ψ3, and make a choice of la-

belling {i, j, k, l} = {1, 2, 3, 4}. Serre showed in [Ser72, 48] that these

roots satisfy the relation

3
√

∆E = b4 − 3(xixj + xkxl).

It is clear that Q( 3
√
∆E) must be contained in Q(ψ3), where Q(ψ3) = FZ

as shown in part (ii). Therefore FC( 3
√
∆E) is a subfield of FZ , and it

must coincide with it since both fields have degree 24 over Q.

All three parts of the result have now been shown.

2
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In summary, one obtains the following field diagram:

Q

FZ

FC

Q(µ3,
3
√
∆E)

F

2

3 4

8

6

We should now point out that if L(E/FC , 1) = 0 then (assuming the BSD

conjecture) it will also be the case that L(E/FZ , 1) = 0 as FC is a subfield

of FZ . Consequently, the congruence labeled (⋆) is automatically true in this

situation.

We therefore searched for numerical examples with both L(E/FC , 1) ̸= 0

and L(E/FZ , 1) ̸= 0 using MAGMA. In fact, to cut down the number of

curves to consider, we first looked for examples with L
(
E/Q(µ3,∆

1/3
E ), 1

)
̸= 0

using the Dokchitser’s existing code. Up to conductor NE ≤ 400, below are

the examples that we calculated. They each confirm that Kakde’s congruence

holds numerically.

8.4.1 An example at level 128

Let p = 3, and suppose that E is the elliptic curve defined by

y2 = x3 − x2 − x− 1

which is labelled as E128C1 in Cremona’s tables. We first calculated the

3-division polynomial

ψ3 = 3x4 − 4x3 + 6x2 − 12x+ 3,
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where the roots of the polynomial are just the x-coordinates of the 3-torsion

points on the curve. Then one computes its splitting field Q(ψ3).

Now, let us pick up a 3-torsion point P on the curve with x-coordinate x1,

a root of ψ3. We can evaluate the respective y-coordinates, ±y1, corresponding

to x1 on the curve. Lastly, we obtain the 3-torsion group Q(E[3]) by adjoining√
x31 − x21 − x1 − 1 to Q(ψ3) (if y1 is non-square), i.e. Q(E[3]) = Q(ψ3, y1).

Once one has determined the 3-torsion group of E, we are able to compute

the appropriate fixed fields. Recall that if H is a subgroup of G, then the fixed

field of H is

FH = {x ∈ F : h(x) = x for all h ∈ H}.

Since Gal(F/Q) ∼= GL2(F3), and each of Z,C, T,K are subgroups of GL2(F3),

we can therefore realize Z,C, T,K as subgroups of the automorphism group

Aut(F ) ∼= GL2(F3).

Recall that

L(xZ) :=
L{pNE}(E/F

Z , 1)

(Ω+(E)Ω−(E))(p−1)p(p+1)/2
·
√
| △FZ | ·

ζFZ ,p(u
−1)

ζFZ ,p(w−1)
,

and

L(xC) :=
L{pNE}(E/F

C , 1)

(Ω+(E)Ω−(E))(p−1)(p+1)/2
·
√
| △FC | ·

ζFC ,p(u
−1)

ζFC ,p(w−1)
,

Using MAGMA and the commands Lseries, Discriminant and TensorProduct,

we numerically calculated the L-values

L∗(FZ , 1) =

∣∣∣∣∣L(pNE)(E/F
Z , 1)
√
∆FZ

(Ω+(E)Ω−(E))12

∣∣∣∣∣ ≈ 12934114635

2048

and

L∗(FC , 1) =

∣∣∣∣∣L(pNE)(E/F
C , 1)
√
∆FC

(Ω+(E)Ω−(E))4

∣∣∣∣∣ ≈ 390051

1070
.

The Euler factors are easily determined to be

ζFZ ,p(u
−1)

ζFZ ,p(w−1)
= 3122 ∗ 33 +O(311) and

ζFC ,p(u
−1)

ζFC ,p(w−1)
= 2786 ∗ 3 +O(39).

Combining all this separate information together, one eventually concludes
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that

L(xZ) = L∗(FZ , 1) ·
∏
q=2

Pq(E, q
−1) ·

ζFZ ,p(u
−1)

ζFZ ,p(w−1)

=
12934114635

2048
· 4
9
·
ζFZ ,p(u

−1)

ζFZ ,p(w−1)

= −1487 ∗ 32 +O(310)

= [0, 0, 1, 2, 2, 1, 2, 2, 2],

and

L(xC) = L∗(FC , 1) ·
∏
q=2

Pq(E, q
−1) ·

ζFC ,p(u
−1)

ζFC ,p(w−1)

=
390051

1070
· 1 ·

ζFC ,p(u
−1)

ζFC ,p(w−1)

= −1784 ∗ 33 +O(311)

= [0, 0, 0, 1, 2, 2, 2, 1, 2],

which verifies the congruence (⋆) for p = 3, as predicted!

8.4.2 An example at level 248

Let us instead look at the situation in which p = 3 and E an elliptic curve

defined by

y2 = x3 + x2 + 8x

with Cremona reference E248B1.

Using the same method as the previous example, we numerically calculated

the L-values

L∗(FZ , 1) =

∣∣∣∣∣L(pNE)(E/F
Z , 1)
√
∆FZ

(Ω+(E)Ω−(E))12

∣∣∣∣∣ ≈ 6083742632477

2301

and

L∗(FC , 1) =

∣∣∣∣∣L(pNE)(E/F
C , 1)
√
∆FC

(Ω+(E)Ω−(E))4

∣∣∣∣∣ ≈ 115361

9791
.

The Euler factors are easily found to be

ζFZ ,p(u
−1)

ζFZ ,p(w−1)
= −1676785∗322+O(336) and

ζFC ,p(u
−1)

ζFC ,p(w−1)
= −12960058636∗36+O(328).
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Combining all this separate information together, one eventually concludes

that

L(xZ) = L∗(FZ , 1) ·
∏
q=2

Pq(E, q
−1) ·

ζFZ ,p(u
−1)

ζFZ ,p(w−1)

=
6083742632477

2301
· 167168

11
·
ζFZ ,p(u

−1)

ζFZ ,p(w−1)

= 1278287 ∗ 321 +O(335) = [0, 0, 0, 0, 0, 0, 0, 0, 0],

and

L(xC) = L∗(FC , 1) ·
∏
q=2

Pq(E, q
−1) ·

ζFC ,p(u
−1)

ζFC ,p(w−1)

=
115361

9791
· 416844

9017
·
ζFC ,p(u

−1)

ζFC ,p(w−1)

= 12169322354 ∗ 38 +O(330)

= [0, 0, 0, 0, 0, 0, 0, 0, 2],

which verifies the congruence (⋆) for p = 3, again as predicted.



Appendix A

Computer code

In this Appendix, we have included the Magma code that we used to verify

the p-adic congruences of Kakde [Kak17] for those examples in Chapter 8.

1 // Returns poly who ’ s r oo t s are p r e c i s e l y the x−coords o f the

po in t s o f order m on E ( t h i s means removing f a c t o r s that are n

−d i v i s i o n po lys f o r n d i v i d i n g m)

2 Pr imi t iveDiv i s i onPo lynomia l := func t i on (E,m)

3 l o c a l f ;

4 f := Div i s ionPolynomia l (E,m) ;

5 f o r d in D i v i s o r s (m) do i f d gt 1 and d l t m then f :=

ExactQuotient ( f , $$ (E, d) ) ; end i f ; end f o r ;

6 re turn f ;

7 end func t i on ;

8

9 // Magma r e a l l y wants number f i e l d s to be de f ined by i n t e g r a l

monic polynomials , so we make sure t h i s happens

10 I s I n t e g r a l l y D e f i n e d := func t i on (K)

11 l o c a l f ;

12 i f K eq Rat iona l s ( ) then return true ; end i f ;

13 i f not I sAbso lu t eF i e ld (K) then return f a l s e ; end i f ;

14 f := Def in ingPolynomia l (K) ;

15 re turn IsMonic ( f ) and &and [ c in I n t e g e r s ( ) : c in C o e f f i c i e n t s ( f )

] ;

16 end func t i on ;

17
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18 // Rede f ines a number f i e l d so that i t i s de f in ed in terms o f the

abso lu t e minimal polynomial o f a generator that i s an

a l g e b r a i c i n t e g e r

19 MakeIntegra l lyDef ined := func t i on (K)

20 l o c a l g ;

21 whi le not I s I n t e g r a l l y D e f i n e d (K) do

22 g := SimpleExtension (K) . 1 ;

23 f := MinimalPolynomial ( g ) ;

24 g ∗:= &∗PrimeDiv i sors (LCM( [ Denominator ( c/ Le a d i ng C o e f f i c i en t ( f )

) : c in C o e f f i c i e n t s ( f ) ] ) ) ;

25 K:=NumberField ( MinimalPolynomial ( g ) ) ;

26 end whi le ;

27 re turn K;

28 end func t i on ;

29

30

31 // Returns a pa i r [P,Q] o f independent gene ra to r s f o r E[m] ( the

po in t s P and Q w i l l n e c e s s a r i l y have order m) , where E i s an

e l l i p t i c curve y^2=x^3+Ax+B with A,B in Q

32 // Be warned that t h i s i s p a i n f u l l y slow : un l e s s the m−d i v i s i o n

f i e l d Q(E[m] ) has very smal l degree you w i l l need to be

pa t i en t

33 Tors ionFie ld := func t i on (E,m)

34 l o c a l C, K, L , EL, x1 , y1 , y1s , x2 , y2 , y2s , Q, P, S , phi , f , b ,

g ;

35

36 C := C o e f f i c i e n t s (E) ;

37 a s s e r t C[ 1 ] eq 0 and C[ 2 ] eq 0 and C[ 3 ] eq 0 and C[ 4 ] in

Rat iona l s ( ) and C[ 5 ] in Rat iona l s ( ) ;

38 // To s i m p l i f y matters , we r e q u i r e E to be in the form y^2=x

^3+Ax+B with A,B in Q

39 phi := Pr imi t iveDiv i s i onPo lynomia l (E,m) ;

40 r oo t s := Roots ( phi ) ;

41 i f #roo t s ne Degree ( phi ) then

42 K:= S p l i t t i n g F i e l d ( phi ) ;

43 re turn $$ ( ChangeRing (E, MakeIntegra l lyDef ined (K) ) ,m) ;
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44 end i f ;

45 K:=BaseRing (E) ;

46 L:=K;

47 R<x>:=PolynomialRing (K) ;

48 // Our f i r s t b a s i s po int P ( o f order m) w i l l have x−coord equal

to the f i r s t root o f phi

49 x1:= roo t s [ 1 ] [ 1 ] ;

50 f :=x^3+C[ 4 ] ∗ x+C [ 5 ] ;

51 y1s := Evaluate ( f , x1 ) ;

52 b , y1:= IsSquare ( y1s ) ; // t h i s s tep i s time−consuming

53 // i f y1 i s not in L , extend L so that i t i s

54 i f not b then L := NumberField ( x^2−y1s ) ; end i f ;

55 i f L ne Rat iona l s ( ) and not I sAbso lu t eF i e ld (L) then L:=

Abso luteFie ld (L) ; end i f ;

56 re turn MakeIntegra l lyDef ined (L) ;

57 end func t i on ;

58

59

60

61

62

63 // func t i on to f i n d a l l non−square e lements in GF(m)

64 NonSquare := func t i on (m)

65 S : = [ ] ;

66 f o r e in GF(m) do

67 i f not I sSquare ( e ) then

68 Inc lude (~S , e ) ;

69 end i f ;

70 end f o r ;

71

72 re turn S ;

73 end func t i on ;

74

75

76

77
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78

79 // Returns the f i x e d f i e l d s o f Z ,C,T,K.

80 F i x e d f i e l d s := func t i on (E,m)

81 l o c a l F , Gal ,G,A, Z , Za ,C, Ca ,T, Ta ,K,Ka ;

82 F:= Tors ionFie ld (E,m) ;

83 Gal:=GaloisGroup (F) ;

84 G:=GL(2 ,GF(m) ) ;

85 A:=AutomorphismGroup (F) ;

86 Z:= Center (G) ;

87 Za:= Center (A) ;

88 C:=sub<G | [ [ a , b , 0 , a ] : a in [ 1 . .m−1] ,b in [ 0 . .m−1]] >;

89 f o r i in [ 1 . .# Subgroups (A) ] do

90 i f I s I somorph ic (C, Subgroups (A) [ i ] ‘ subgroup ) then

91 Ca:=Subgroups (A) [ i ] ‘ subgroup ;

92 end i f ;

93 end f o r ;

94

95 T:=sub<G | [ [ a , 0 , 0 ,d ] : a in [ 1 . .m−1] ,d in [ 1 . .m−1]] >;

96 f o r i in [ 1 . .# Subgroups (A) ] do

97 i f I s I somorph ic (T, Subgroups (A) [ i ] ‘ subgroup ) then

98 Ta:=Subgroups (A) [ i ] ‘ subgroup ;

99 end i f ;

100 end f o r ;

101

102 K:=sub<G | [ [ a , e∗b , b , a ] : a in [ 1 . .m−1] ,b in [ 1 . .m−1] , e in

NonSquare (m) ] >;

103 f o r i in [ 1 . .# Subgroups (A) ] do

104 i f I s I somorph ic (K, Subgroups (A) [ i ] ‘ subgroup ) then

105 Ka:=Subgroups (A) [ i ] ‘ subgroup ;

106 end i f ;

107 end f o r ;

108

109

110 re turn [ F ixedFie ld (F , Za ) , F ixedFie ld (F , Ca) , F ixedFie ld (F , Ta) ,

F ixedFie ld (F ,Ka) ] ;

111 end func t i on ;
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112

113 ////////////////////////////////////////////////////////////////

114 // MAGMA code to compute L−va lues o f e l l i p t i c curves , tw i s t ed by

r e g u l a r r e p r e s e n t a t i o n s f a c t o r i n g through the f i r s t l e v e l o f F

^z and F^C.

115

116 // We use MAGMA’ s L−s e r i e s funct i ons , and methods from Tim and

Vladimir Dokchitser ’ s paper " Computations in Non−Commutative

Iwasawa Theory " .

117 ///////////////////////////////////////////////////////////////

118

119 SetVerbose ( " LSe r i e s " , 0 ) ;

120 // Set the ve rbo s i t y at 1 , 2 or 3 i f you want to f o l l o w prog r e s s

o f the L−s e r i e s f u n c t i o n s

121

122

123 // ELLIPTIC CURVES:

124

125 // Worked example from Dokchitsers ’ paper

126 E21 := E l l i p t i c C u r v e ( "21 a4 " ) ;

127

128 // Other curves used by Dokch i t s e r s

129 E11 := E l l i p t i c C u r v e ( "11 a3 " ) ;

130 E20 := E l l i p t i c C u r v e ( "20 a3 " ) ;

131 E26 := E l l i p t i c C u r v e ( "26 a1 " ) ;

132 E77 := E l l i p t i c C u r v e ( "77C1" ) ;

133 E19 := E l l i p t i c C u r v e ( "19 a3 " ) ;

134 E56 := E l l i p t i c C u r v e ( "56 b1 " ) ;

135 E128 := E l l i p t i c C u r v e ( "128 c1 " ) ;

136

137 // Set the prime p

138 p :=3;

139

140 // Set the e l l i p t i c curves to use

141 f o r E in [ E128 ] do

142
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143 E;

144

145 //Find the f i x e d f i e l d s

146 time Fix := F i x e d f i e l d s ( WeierstrassModel (E) ,p ) ;

147

148 Fz:= Fix [ 1 ] ;

149

150 Fc:= Fix [ 2 ] ;

151

152 Ft:= Fix [ 3 ] ;

153

154 Fk:= Fix [ 4 ] ;

155

156

157

158

159

160

161

162 // Set the p r e c i s i o n s

163

164 prec := 25 ; // ’ prec ’ i s the number o f d i g i t s p r e c i s i o n f o r

computing the L−va lues .

165 // The h igher the p r e c i s i o n , the s lower the

computations w i l l be .

166

167 prec2 := 4 ; // ’ prec2 ’ i s p r e c i s i o n f o r r e c o g n i s i n g the L−va lues

as r a t i o n a l numbers

168

169 bound := 8 ; // ’ bound ’ i s the degree o f p r e c i s i o n f o r our p−ad ic

f i e l d s

170

171 /////////////////////////////////////////////////////////////

172

173 NE:=Conductor (E) ;

174 LE:= LSer i e s (E) ;
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175 LSetPrec i s i on (LE, prec ) ;

176

177 // Check the curve i s ord inary at p

178

179 apE := LGetCoe f f i c i en t s (LE, p) [ p ] ;

180 a s s e r t (apE mod p) ne 0 ;

181

182 ///////////////////////////////////////////////////////////////

183

184

185 // Create r i n g s and f i e l d s

186

187 QQ := Rat i ona lF i e ld ( ) ;

188 C<i >:=ComplexField ( prec ) ;

189 ZZ := I n t e g e r s ( ) ;

190 PCC<x> := PolynomialRing (C) ;

191 PZZ<y> := PolynomialRing (ZZ) ;

192

193 QQp := pAdicFie ld (p , bound ) ;

194

195 // ’ per iod ’ i s Omega(E,+)∗Omega(E,−)

196

197 per iod := Per iods (E : P r e c i s i o n := prec ) [ 1 ] ∗ Im( Per iods (E : P r e c i s i o n

:= prec ) [ 2 ] ) ;

198

199

200 // Discr iminant o f the f i e l d s

201 DFz:=Abs( Discr iminant ( MaximalOrder (Fz ) ) ) ;

202

203 DFc:=Abs( Discr iminant ( MaximalOrder (Fc ) ) ) ;

204

205

206

207 // L−f u cn t i on f o r the f i e l d s

208 LFz:= LSer i e s (Fz ) ;

209
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210 LFc:= LSer i e s (Fc ) ;

211

212 LEFz:=TensorProduct (LE, LFz , [ ] ) ;

213 LSetPrec i s i on (LEFz , prec ) ;

214 " Coe f f reqd f o r LEFz= " , LCfRequired (LEFz) ;

215

216

217 LEFc:=TensorProduct (LE, LFc , [ ] ) ;

218 LSetPrec i s i on (LEFc , prec ) ;

219 " Coe f f reqd f o r LEFc= " , LCfRequired (LEFc) ;

220

221

222 lEFz:= Evaluate (LEFz , 1 ) ;

223

224 lEFc:= Evaluate (LEFc , 1 ) ;

225

226 lEFz2 := Abs ( ( lEFz∗ Sqrt (DFz) ) / ( (2∗ per iod ) ^( Degree (Fz ) div 2) ) ) ;

227 lEFc2 := Abs ( ( lEFz∗ Sqrt (DFc) ) / ( (2∗ per iod ) ^( Degree (Fc ) div 2) ) ) ;

228

229 lEFz3 := BestApproximation ( Re( lEFz2 ) , 10^ prec2 ) ;

230 lEFc3 := BestApproximation ( Re( lEFc2 ) , 10^ prec2 ) ; // t h i s

g i v e s the value o f L∗ in Dokchitsers ’ paper

231

232

233

234 // Function to f a c t o r i s e a r a t i o n a l number :

235

236 f unc t i on f a c t o r s ( a )

237 i f a eq 0 then

238 re turn 0 ;

239 end i f ;

240 re turn F a c t o r i z a t i o n ( Numerator ( a ) ) cat [ <vv [1 ] ,− vv [2] > : vv in

F a c t o r i z a t i o n ( Denominator ( a ) ) ] ;

241 end func t i on ;

242

243 ///////////////////////////////////////////////
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244

245 // D i r i c h l e t L−s e r i e s o f c o r r e c t p r e c i s i o n :

246 f unc t i on Lchi ( char )

247 L := LSer i e s ( char ) ;

248 LSetPrec i s i on (L , prec ) ;

249 re turn L ;

250 end func t i on ;

251

252 // D i r i c h l e t tw i s t o f E to c o r r e c t p r e c i s i o n :

253 f unc t i on LEtwist ( char )

254 i f I s D i v i s i b l e B y ( Conductor ( char ) ,2 ) eq t rue then

255 L := TensorProduct (LE, Lchi ( char ) , [ <2 ,5 ,1 >]) ;

256 LSetPrec i s i on (L , prec ) ;

257 re turn L ;

258 end i f ;

259 L := TensorProduct (LE, Lchi ( char ) , [ ] ) ;

260 LSetPrec i s i on (L , prec ) ;

261 re turn L ;

262 end func t i on ;

263

264 //////////////////////////////////////////////////////

265

266

267 ////////// L−FACTORS /////////////

268

269 // Compute l o c a l f a c t o r : P_q(E, Reg_F, s )

270

271 f unc t i on L fac to r (EE,FF, s , q )

272 aqE := FrobeniusTraceDirect (EE, q ) ;

273 i f Degree (FF) eq 1 then

274 re turn (1 − aqE∗( q^(−s ) ) + ( q^(1−2∗ s ) ) ) ;

275 end i f ;

276 alpha , beta := Explode ( [ v [ 1 ] : v in Roots ( x^2−aqE∗x+q ) ] ) ;

277 degs := [ Degree (w [ 1 ] ) : w in Decomposition (FF, q ) ] ;

278 re turn &∗[ 1 − ( alpha^dd + beta^dd) ∗( q^(−dd∗ s ) ) + q^(dd∗(1−2∗ s ) )

: dd in degs ] ;
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279 end func t i on ;

280

281 // Local poly o f Dedekind zeta o f FF over the prime q

282

283 f unc t i on Lpoly (FF, q )

284 i f Degree (FF) eq 1 then

285 re turn (1−y ) ;

286 end i f ;

287 degs := [ Degree (w [ 1 ] ) : w in Decomposition (FF, q ) ] ;

288 re turn &∗[ 1−y^dd : dd in degs ] ;

289 end func t i on ;

290

291

292

293

294 ///////////////////////////////////////////////////

295

296

297 // This g i v e s the product o f P_q at bad primes q

298 eulFz1 := &∗[ L fac to r (E, Fz , 1 , q ) : q in Pr imeDiv isors (p∗(ZZ ! Abs (

Discr iminant (E) ) ) ) ] ;

299 eulFz := &∗[ BestApproximation ( L fac to r (E, Fz , 1 , q ) , 10^ prec2 ) : q

in Pr imeDiv i sors (p∗(ZZ ! Abs ( Discr iminant (E) ) ) ) ] ;

300

301

302

303

304 eulFc1 := &∗[ L fac to r (E, Fc , 1 , q ) : q in Pr imeDiv isors (p∗(ZZ ! Abs (

Discr iminant (E) ) ) ) ] ;

305 eulFc := &∗[ BestApproximation ( L fac to r (E, Fc , 1 , q ) , 10^ prec2 ) : q

in Pr imeDiv i sors (p∗(ZZ ! Abs ( Discr iminant (E) ) ) ) ] ;

306

307

308

309

310
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311

312 /////////////////////////////////////////////

313

314 // FUNCTIONS FOR COMPUTING P−ADIC EXPANSIONS

315 ///////////////////////////////////////////////

316

317 // Computes q−ad ic expansion o f a , up to q^N

318 f unc t i on padicexpans ion (a , q ,N)

319 v := [ ] ;

320 a := a mod q^(N+2) ;

321 f o r i := 0 to N do

322 v := Append(v , ( a mod q ) ) ;

323 a := (a−(a mod q ) ) div q ;

324 end f o r ;

325 re turn v ;

326 end func t i on ;

327

328 // Compute a q−ad ic expansion o f a root o f f v ia Hensel ’ s lemma

329 f unc t i on hense l ( f , a , q ,N)

330 a := a mod q ;

331 v := [ a ] ;

332 g := Der iva t i ve ( f ) ;

333 f o r k := 1 to N do

334 t := −(Evaluate ( f , a ) div q^k ) ∗ InverseMod ( Evaluate ( g , a ) ,

q ) ;

335 t := t mod q ;

336 a := a + t ∗( q^k ) ;

337 v := Append(v , t ) ;

338 end f o r ;

339 re turn v ;

340 end func t i on ;

341

342 // Turns q−ad ic expansion v back in to an i n t e g e r

343 f unc t i on expansiontonumber (v , q )

344 ans := 0 ;

345 f o r k := 1 to #v do
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346 ans := ans + v [ k ] ∗ ( q^(k−1) ) ;

347 end f o r ;

348 re turn ans mod p^bound ;

349 end func t i on ;

350

351 // q−ad ic expansion o f a p−i n t e g r a l r a t i o n a l number

352

353 f unc t i on f ra c toexp (a , q , bound )

354 i n v e r s e 1 := InverseMod ( Denominator ( a ) ,p^bound ) ;

355 re turn padicexpans ion ( Numerator ( a ) ∗ i nver se1 , p , bound ) ;

356 end func t i on ;

357

358 ////////////////////////////////////////////

359

360 // Write a p−ad ic expansion out in LaTeX

361 //////////////////////////////////////////

362

363 procedure texexpans ion ( v )

364 p r i n t f " $ " ;

365 f o r k in [ 1 . .# v ] do

366 i f v [ k ] ne 0 then

367 p r i n t f " %o.%o^{%o} + " , v [ k ] , p , k−1;

368 end i f ;

369 end f o r ;

370 p r i n t f " + O(%o^{%o }) $ \n " , p,#v ;

371 end procedure ;

372

373 // Write the f a c t o r i s a t i o n o f a r a t i o n a l number in LaTeX

374

375 procedure t e x f a c t o r s ( a )

376 i f a eq 0 then

377 p r i n t f " $0$ \n " ;

378 e l s e

379 vv := f a c t o r s ( a ) ;

380 p r i n t f " $ " ;

381 f o r k in [ 1 . .# vv−1] do
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382 p r i n t f "%o^{%o} . " , vv [ k ] [ 1 ] , vv [ k ] [ 2 ] ;

383 end f o r ;

384 p r i n t f "%o^{%o}$ \n " , vv[#vv ] [ 1 ] , vv[#vv ] [ 2 ] ;

385 end i f ;

386 end procedure ;

387

388 /////////////////////////////////////////////////

389

390

391 " " ; " " ; " " ;

392 "E = " , CremonaReference (E) , " p = " , p , " P r e c i s i o n = " , prec ;

// Delta = " , de l ta , "

393 " " ;

394

395 // SANITY CHECK: we d i sp l ay the prime f a c t o r s o f the a l g e b r a i c

par t s o f the tw i s t ed L−va lues . In smal l t e s t ca s e s we do not

expect them to be d i v i s i b l e by enormous primes . I f they are ,

i t i s l i k e l y that the ’ BestApproximation ’ func t i on has not

i d e n t i f i e d them as the c o r r e c t r a t i o n a l numbers .

396

397

398 "L(EFz , 1 ) = " , lEFz ;

399 " " ;

400 "L∗(E, Fz ) = " , lEFz2 ;

401 " = " , lEFz3 ;

402 " = " , f a c t o r s ( lEFz3 ) ;

403 " " ;

404 "L(EFc , 1 ) = " , lEFc ;

405 " " ;

406 "L∗(E, Fc ) = " , lEFc2 ;

407 " = " , lEFc3 ;

408 " = " , f a c t o r s ( lEFc3 ) ;

409 " " ;

410

411 " Check : " , [ Denominator ( lEFz3 ) ∗ lEFz2 , Denominator ( lEFc3 ) ∗ lEFc2 ] ;

412 " " ;
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413

414

415

416 " Euler f a c t o r o f L(E, Fz , 1 ) at p∗ Discr iminant (E) = " , eulFz ;

417 " Euler f a c t o r o f L(E, Fc , 1 ) at p∗ Discr iminant (E) = " , eulFc ;

418 " " ;

419

420 // Ca lcu la te our l o c a l r oo t s u and w

421 // uu = uni t root ( in the ord inary case )

422 // ww = non−uni t root

423

424 expu := hense l ( y^2−apE∗y+p , apE , p , bound ) ;

425 expw := hense l ( y^2−apE∗y+p , 0 , p , bound ) ;

426

427 uu := QQp! expansiontonumber ( expu , p) ;

428 ww := QQp! expansiontonumber (expw , p) ;

429

430 //////////////////////////////////////////////////

431

432 // N.B. We have P_p(Fz ,T) = 1−T, so the Euler f a c t o r in the

i n t e r p o l a t i o n formula f o r the Coates et a l p−ad ic L−value i s

(1− i n v e r s e (u) ) /(1− i n v e r s e (w) ) . Mul t ip l ing top and bottom by

p = u∗w, we get = (p−w) /(p−u) , which we c a l c u l a t e below .

433

434

435

436 Fzpoly := PZZ ! ( Lpoly (Fz , p) div (1−y ) ) ;

437 EEFz := Evaluate ( Fzpoly ,1/ uu) / Evaluate ( Fzpoly ,1/ww) ;

438 Fcpoly := PZZ ! ( Lpoly (Fc , p) div (1−y ) ) ;

439 EEFc := Evaluate ( Fcpoly ,1/ uu) / Evaluate ( Fcpoly ,1/ww) ;

440

441

442

443 /// XFz and XFc are the va lue s o f the c o n j e c t u r a l Coates−Fukaya−

Kato−Sujatha−Venjakob p−ad ic L−f unc t i on at Fz and Fc

r e s p e c t i v e l y
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444

445 XFz := EEFz∗ eulFz ∗ lEFz3 ;

446

447 XFc := EEFc∗ eulFc ∗ lEFc3 ;

448

449

450

451 /////////////// RESULTS //////////////////

452

453 " " ; "/////////////////////////////////////" ; " " ;

454 " e u l e r f a c t o r f o r Fz = " , EEFz ;

455

456 " e u l e r f a c t o r f o r Fc = " , EEFc ;

457

458 " Lcal (Fz ) = " , XFz ;

459 padicexpans ion (ZZ ! XFz , p , bound ) ;

460 " " ;

461 texexpans ion ( padicexpans ion (ZZ ! XFz , p , bound ) ) ;

462 " " ;

463 " Lcal (Fc ) = " , XFc ;

464 padicexpans ion (ZZ ! XFc , p , bound ) ;

465 " " ;

466 texexpans ion ( padicexpans ion (ZZ ! XFc , p , bound ) ) ;

467 " " ;

468

469 " D i f f e r e n c e = " , XFc−XFz ;

470

471

472 " " ;

473

474 i f lEFc3 eq 0 and Valuat ion (XFz) gt 0 then

475 "L(E, Fc , 1 ) i s ze ro and Lcal (Fz ) i s ze ro mod pi , that ’ s OK. " ;

476 e l i f lEFz3 eq 0 and Valuat ion (XFc) gt 0 then

477 "L(E, Fz , 1 ) i s ze ro and Lcal (Fc ) i s ze ro mod pi , that ’ s OK. " ;

478 e l s e
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479 check := Valuat ion (XFc−XFz) gt Valuat ion (XFc) and Valuat ion (

XFc−XFz) gt Valuat ion (XFz) ;

480 " D i f f e r e n c e i s more p−i n t e g r a l ? " , check ;

481 end i f ;

482

483 " " ;

484

485 "/////////////////////////////////////" ; " " ;

486

487

488 end f o r ;
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