
Results on Formal Stepwise Design in Z

Moshe Deutsch1, Martin C. Henson1, Steve Reeves2
1Department of Computer Science, University of Essex, UK.

2Department of Computer Science, University of Waikato, New Zealand.
fmdeuts, hensmg@essex.ac.uk, stever@cs.waikato.ac.nz

Abstract

Stepwise design involves the process of deriving a con-
crete model of a software system from a given abstract one.
This process is sometimes known as refinement.

There are numerous refinement theories proposed in the
literature, each of which stipulates the nature of the rela-
tionship between an abstract specification and its concrete
counterpart.

This paper considers six refinement theories in Z that
have been proposed by various people over the years. How-
ever, no systematic investigation of these theories, or results
on the relationships between them, have been presented or
published before. This paper shows that these theories fall
into two important categories and proves that the theories
in each category are equivalent.

1. Introduction

Stepwise design constitutes the underlying notion of for-
mal program development, given an abstract formal spec-
ification to start with (see [10]). It has various different
names in the Software Engineering literature, one of which
is the transformational software process model, in which
design decisions are, gradually, incorporated into the initial
abstract mathematical specification of the system in ques-
tion, deriving a more concrete specification at each level
(see [13]). This process is also formally known as refine-
ment.

In this paper, we provide a mathematical analysis of total
correctness operation refinement for partial relation seman-
tics. An important example of such a semantics is that of
the specification language Z. We will examine refinement
when preconditions are interpreted as minimal conditions
for establishing the postconditions (they may be weakened)
or fixed conditions (they are firing or trigger conditions).
The former approach is covered in sections 3 and 4, and the
latter in sections 5 and 6.

Our aim is to understand better the various techniques
which have been proposed and to link them carefully to
what appear to be, prima facie, alternative approaches. In
particular, we will look at the standard relational completion
approaches (see, for example, [17] and [3]) and relate them
to a variety of proof theoretic approaches and to frame-
works in which specifications are interpreted to be sets of
implementations (rather in the spirit of the uses to which
Martin-Löf’s theory has been put [12], though our investi-
gation takes place in classical logic).

Such an investigation becomes possible in virtue of the
logic for Z reported in, for example, [9] and a novel and
simple technique of rendering all the theories of refinement
in a proof-theoretic form: sets of introduction and elimina-
tion rules. This leads to a uniform and simple method for
proving the various equivalence results. As such, it contrasts
with the more semantic based techniques employed in [2].

Our paper concludes with a review of what has been es-
tablished and an agenda for further investigation.

2. Preliminaries

In this first section, we will revise a little Z logic, settling
some notational conventions in the process. Additional de-
tails can be found in appendix A; however, the reader may
need to consult [9] and [4] in order to fully understand the
notational and meta-notational conventions.

2.1. Schemas

In [9], Z schemas, and operation schemas in particular,
were formalised as sets of bindings. This captures the in-
formal account to be found in the literature (e.g. [6], [17]).
In this paper, we will use the meta-variable U (with deco-
rations) to range over operation schemas. As an example,
consider the operation schema (written horizontally):

Definition 1. Ex0 b= [x;x0 : N j x = 0 ^ x0 < 10]

Ex0 has the the typeP[x : N;x 0 : N], and is understood to be
a set of bindings of schema type [x : N;x 0 : N]. The bind-

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

ings hj xV0; x0Vn ji, where n < 10, are all elements of Ex0.
In fact, there are no other elements in this case. Recall that
unprimed labels (such as x) are understood to be observa-
tions of the state before the operation takes place, whereas
primed labels (such as x0) are observations of the state af-
terwards. Each operation schema U will have a type of the
form PT where T is a schema type. The type T can, addi-
tionally, always be partitioned as the (compatible) union of
its input (or before) type Tin, and its output (or after) type
Tout0 . That is, T = Tin g Tout0 . For the schema Ex0 we have
Tin = [x : N] and Tout0 = [x0 : N]. In this paper, since
we are only dealing with operation refinement, we can as-
sume that all operation schemas have the type PT where
T = Tin g Tout0 . With this in place, we can omit the type
superscripts in most places in the sequel.

2.2. Preconditions

We can formalise the idea of the preconditions of an op-
eration schema (domain of the relation, between before and
after states, the schema denotes) to express the partiality in-
volved.

Definition 2. Let Tin � V.

Pre U xV =df 9 z 2 U � x =Tin z

Proposition 1. Let y be a fresh variable, then the following
introduction and elimination rules are immediately deriv-
able for preconditions:

t0 2 U t0 =Tin t1
Pre U t1

Pre U t y 2 U; y =Tin t ` P
P

2

Clearly, the precondition of Ex0 is not (and for operation
schemas in general, will not be) the whole of [x : N] (in
general, Tin). In this sense operation schemas denote partial
relations.

2.3. The distinguished element

The concept of an additional element, sometimes called
bottom, used in total correctness, is well known in the liter-
ature. It is, for example, referred to as the “undefined” ele-
ment in [17] or as “nontermination” in [7]. However, neither
of these systematically investigates its mathematical role in
total correctness based refinement.

In this paper we will simply call it the distinguished el-
ement, denoted by the symbol ?. We show in appendix A
how ? terms are incorporated in the existing types of ZC

[9], in order to obtain a conservative extension framework,
Z?

C
[4]. Furthermore, we present the notion of the natural

carrier set for each Z?

C
type, which excludes ? terms or,

in case of a schema type, bindings that contain at least one
observation bound to ?.

Following the above insight, we provide the semantics
for atomic schemas:

Definition 3. [T j P] =df fz 2 T j z:Pg

Note that this definition draws bindings from the natural
carrier of the type T. As a consequence, writing t(?) for any
term of the appropriate type, which contains an instance of
the constant ?, we have:

Lemma 1.
t(?) 2 U
false

2

The mathematical analysis throughout the development,
particularly in sections 4 and 6, provides an important in-
sight regarding to the role of ? in chaotic and abortive total
correctness based refinement.

3. Refinement with preconditions considered
minimal

The partial relation semantics of operation schemas in
Z raises an immediate question: what does it mean for one
operation schema to refine another? More generally, we are
asking: what does it mean for one partial relation to refine
another?

We begin by introducing three distinct notions of refine-
ment, based on three distinct answers to the questions above
and then we go on to compare them. This serves to illumi-
nate them all, particularly the notion based on the lifted-
totalisation (see below), which is the de facto standard for
Z.

3.1. S-refinement

In this section, we introduce a purely proof theo-
retic characterisation of refinement, which is closely con-
nected to refinement as introduced by Spivey (hence “S”-
refinement) in, for example, [15] and as discussed in [11]
and [14].

This notion is based on two basic observations regard-
ing the properties one expects in a refinement: firstly, that a
refinement may involve the reduction of non-determinism;
secondly that, if preconditions are minimal, a refinement
may also involve the expansion of the domain of definition.
Put another way, we have a refinement providing that post-
conditions do not weaken (we do not permit an increase in
non-determinism in a refinement) and that preconditions do

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

not strengthen (we do not permit requirements in the do-
main of definition to disappear in a refinement).

This notion can be captured by forcing the refinement
relation to hold exactly when these conditions apply. S-
refinement is written U0 ws U1 and is given by the defini-
tion that leads directly to the following rules:

Proposition 2. Let z, z0, z1 be fresh variables.

Pre U1 z `Pre U0 z Pre U1 z0; z0 ? z01 2 U0 `z0 ? z01 2 U1

U0 ws U1

U0 ws U1 Pre U1 t

Pre U0 t
(ws

�

0
)

U0 ws U1 Pre U1 t0 t0 ? t01 2 U0

t0 ? t01 2 U1

(ws
�

1
)

2

This theory does not depend on, and makes no reference
to, the ? value. It can be formalised in the core theory ZC .

3.2. The chaotic relational completion

In this section, we review W�-refinement (written
U0 ww�

U1): this notion, adapted from, for example, [17]
(hence “W” for Woodcock), is based on a relational com-
pletion operator. For notational convenience we will write
T? for the set Tin

?
? Tout0

?
(note the use of ? for sets, as op-

posed to g used for types).
The lifted totalisation of a set of bindings can be defined

as follows:

Definition 4.
�

U =df fz0 ? z01 2 T? j Pre U z0) z0 ? z01 2 Ug

Proposition 3. The following introduction and elimination
rules are derivable for lifted totalised sets:

t0 ? t01 2 T? Pre U t0 ` t0 ? t01 2 U

t0 ? t01 2
�

U
(�+)

and:

t0 ? t01 2
�

U Pre U t0
t0 ? t01 2 U

(��0)
t0 ? t01 2

�

U
t0 ? t01 2 T?

(��1)

2

Lemma 2. The following are derivable:

U �
�

U
(i)

?2
�

U
(ii)

:Pre U t0 t0 2 Tin
?

t01 2 Tout0

?

t0 ? t01 2
�

U
(iii)

2

Lemmas 2(i), (ii) and (iii) demonstrate that definition 4
is consistent with the intentions described in [17] chapter
16: the underlying partial relation is contained in the com-
pletion; the ? element is present in the relation, and more
generally, each value outside the preconditions maps to ev-
ery value in the range of the relation. Then W�-refinement
is defined as follows:

Definition 5. U0 ww�

U1 =df

�

U0 �
�

U1

Obvious introduction and elimination rules follow from
this.

3.3. F-refinement

To a logician, a specification resembles a theory; so a
natural question is: what are the models of the theory? A
computer scientist may ask a closely related question: when
is a program an implementation of the specification? We
will, in this section, consider deterministic programs and
model them as (total) functions.

From the logical perspective, we are interested in all the
models of a theory, so given a putative model g and a theory
U, we would be inclined to write:

g j= U

to represent the statement that g is a model of U. Within
our application area in computer science, we might prefer
to read this as a relation of implementation. To signal this
interpretation, we shall, in fact, write this judgement as:

g � U

to be pronounced “g implements (is an implementation of)
U”.

Our third approach to refinement is to consider specifi-
cations as sets of implementations and then to define refine-
ment as containment of implementations.

Definition 6.

g �f U =df (8 z 2 Tin
?
� Pre U z) z ? (g z)0 2 U) ^

g 2 Tin
?
! Tout0

?

Then we can prove the following.

Proposition 4. Let z be a fresh variable, then the following
introduction and elimination rules are derivable:

z 2 Tin
?
;Pre U z ` z ? (g z)0 2 U g 2 Tin

?
! Tout0

?

g �f U
(�+f)

g �f U Pre U t t 2 Tin
?

t ? (g t)0 2 U
(��f0)

g �f U

g 2 Tin
?
! Tout0

?

(��f1)

2

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

This is sufficient technical development to allow us to
explore refinement. We can answer the question: when is
U0 a refinement of U1? A reasonable answer is: when any
implementation of U0 is also an implementation of U1. Af-
ter all, we wish to be able to replace any specification U1

by its refinementU0, and if all potential implementations of
the latter are implementations of this former we are quite
safe. Thus we are led to:

Definition 7. bU =df fz j z �f Ug

Then we have F-refinement (“F” for function).

Definition 8. U0 wf U1 =df cU0 � cU1

Obvious introduction and elimination rules for F-refinement
follow from this definition.

4. Three equivalent theories

In this section, we demonstrate that our three theories
of refinement are all equivalent. In doing this, we will see
clearly the critical role that the ? value plays.

We shall be showing that all judgements of refinement
in one theory are contained among the refinements sanc-
tioned by another. Such results will always be established
proof-theoretically. Specifically, we will show that the re-
finement relation of a theory T0 satisfies the elimination
rule (or rules) for refinement of another theory T1. Since
the elimination rules and introduction rules of a theory en-
joy the usual symmetry property, this is sufficient to show
that all T0-refinements are also T1-refinements.

4.1.W�-refinement and S-refinement are equivalent

We begin by showing that W�-refinement satisfies the
two S-refinement elimination rules. Firstly the rule for pre-
conditions.

Proposition 5. The following rule is derivable:

U0 ww�

U1 Pre U1 t

Pre U0 t

Proof.

U0 ww�

U1

Æ....

t? ?02
�

U0

t? ?02
�

U1 Pre U1 t
t? ?02 U1

false
(Lem: 1)

Pre U0 t
(1)

Where Æ stands for the following branch:

:Pre U0 t
(1)

Pre U1 t

t 2 Tin
?

?02 Tout0

?

t0? ?02
�

U0

(Lem: 2(iii))

2

Turning now to the second elimination rule in S-
refinement.

Proposition 6. The following rule is derivable:

U0 ww�

U1 Pre U1 t0 t0 ? t01 2 U0

t0 ? t01 2 U1

Proof.

U0 ww�

U1

t0 ? t01 2 U0

t0 ? t01 2
�

U0

(Lem: 2(i))

t0 ? t01 2
�

U1 Pre U1 t0
t0 ? t01 2 U1

2

Theorem 1. U0 ww�

U1) U0 ws U1

Proof. This follows immediately, by (w+

s
), from proposi-

tions 5 and 61. 2
We now show that S-refinement satisfies the W�-

elimination rule.

Proposition 7.

U0 ws U1 t 2
�

U0

t 2
�

U1

Proof.

t 2
�

U0

t 2 T?

U0 ws U1 Pre U1 t
(1)

Æ....
t 2 U0

t 2 U1

t 2
�

U1

(1)

Where Æ is:

t 2
�

U0

U0 ws U1 Pre U1 t
(1)

Pre U0 t
t 2 U0

2

1 The proofs of such theorems are always automatic by the struc-
tural symmetry between introduction and elimination rules. We
shall not give them in future.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

Theorem 2. U0 ws U1) U0 ww�

U1 2

Theorems 1 and 2 together establish that the theories of
S-refinement and W�-refinement are equivalent.

4.2. F-refinement andW�-refinement are equivalent
(in Z?

C
+ AC)

4.2.1. R-refinement. We begin this analysis by defining,
by way of an intermediate stage, the set of total functions
compatible with an operation schema. This forms a bridge
between F-refinement and W�-refinement.

Definition 9. U =df fz 2 Tin
?
! Tout0

?
j z �

�

U g

Then we have:

Definition 10. g �r U =df g 2 U

Then R-refinement is simply: U0 wr U1 =df U0 � U1

with the obvious introduction and elimination rules.

4.2.2. R-refinement and W�-refinement are equivalent.
We show that R-refinement satisfies the W�-refinement
elimination rule and that W�-refinement satisfies the R-
refinement elimination rule.

Proposition 8. The following rules are derivable:

U0 wr U1 t 2
�

U0

t 2
�

U1

(i) U0 ww�

U1 g 2 U0

g 2 U1

(ii)

Proof. For (i), the proof requires the axiom of choice (see
the step labelled (AC) below).

t 2
�

U0

9 g 2 Tin
?
! Tout0

?
� t 2 g ^ g �

�

U0

(AC)

Æ....

t 2
�

U1

t 2
�

U1

(1)

Where Æ is:

U0 wr U1

y 2 Tin
?
! Tout0

?

(1)
y �

�

U0

(1)

y 2 U0

y 2 U1

y �
�

U1 t 2 y (1)

t 2
�

U1

For (ii), consider the following derivation:

g 2 U0

g 2 Tin
?
! Tout0

?

U0 ww�

U1

g 2 U0

g �
�

U0 t 2 g (1)

t 2
�

U0

t 2
�

U1

g �
�

U1

(1)

g 2 U1

2

From this we immediately get implication in both direc-
tions:

Theorem 3. U0 wr U1 , U0 ww�

U1 2

4.2.3. R-refinement and F-refinement are equivalent.
In this case, we show that the notions of implementation
(rather than refinement) are equivalent by the same strat-
egy involving elimination rules. We first establish that F-
implementation implies R-implementation:

Proposition 9. The following rules are derivable:

g �f U

g �
�

U

g �f U

g 2 Tin
?
! Tout0

?

Proof.

g �f U

g 2 Tin
?
! Tout0

?
z0 ? z01 2 g

(1)

z0 ? z01 2 T?

Æ0....
z0 ? z01 2 U

z0 ? z01 2
�

U
(2)

g �
�

U
(1)

Where Æ0 is:

g �f U Pre U z0
(2)

Pre U z0
(2)

z0 2 Tin
?

z0 ? (g z0)0 2 U

Æ1....
z0
1
= (g z0)0

z0 ? z01 2 U

Where Æ1 is:

g �f U

g 2 Tin
?
! Tout0

?
z0 ? z01 2 g

(1)

z0
1
= (g z0)0

The second rule is immediate. 2

Theorem 4. g �f U) g �r U 2

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

Now we show that R-implementation implies F-
implementation.

Proposition 10.

g �r U Pre U t t 2 Tin
?

t ? (g t)0 2 U

g �r U

g 2 Tin
?
! Tout0

?

Proof.

g �r U

g �
�

U

g �r U

g 2 Tin
?
! Tout0

?
t 2 Tin

?

t ? (g t)0 2 g

t ? (g t)0 2
�

U Pre U t

t ? (g t)0 2 U

The second rule is immediate. 2

Theorem 5. g �r U) g �f U 2

Then, from theorems 4 and 5, we see that the two no-
tions of implementation are equivalent. Hence, so are the
two notions of refinement.

Despite their superficial dissimilarity, all three theories
are, then, equivalent. We will examine in section 7 some
consequences of these results.

5. Refinement with preconditions considered
fixed

We now introduce three further notions of refinement;
in this case, where non-determinism may be reduced but
where the preconditions are considered fixed.

5.1. SP-refinement

This is an alternative proof theoretic characterisation of
refinement, which is closely connected to refinement in the
behavioural approach, as discussed, for example, in [3] and
[16].

This special case of S-Refinement may involve reduction
of non-determinismbut insists on the stability of the precon-
ditions. SP-refinement is written U0 wsp U1 and is given by
the definition that leads directly to the following rules:

Proposition 11. Let z; z0; z1 be fresh variables.

PreU1 z ` PreU0 z z0 ? z01 2 U0 ` z0 ? z01 2 U1

U0 wsp U1

(w+

sp
)

U0 wsp U1 PreU1 t

PreU0 t
(w�

sp0
)

U0 wsp U1 t0 ? t01 2 U0

t0 ? t01 2 U1

(w�

sp1
)

2

5.2. The abortive relational completion

In this section we review W�-refinement (written
U0 ww�

U1). This notion is based on a relational comple-
tion operator, but this time takes an abortive approach with
respect to values outside the preconditions (see, for exam-
ple, [1] and [3]). The abortive lifted totalisation of a set of
bindings is defined as follows:

Definition 11.

�

U =df fz0?z
0

1 2 T? j z0?z
0

1 2 U _ (: PreU z0 ^ z01 =?
0)g

Proposition 12. The following introduction and elimina-
tion rules are derivable:

t0 ? t01 2 U

t0 ? t01 2
�

U
(�+
0
)

t0 ? t01 2 T? : PreU t0 t01 =?
0

t0 ? t01 2
�

U
(�+
1
)

t0 ? t01 2
�

U t0 ? t01 2 U ` P : PreU t0; t01 =?
0` P

P
(��
0
)

t0 ? t01 2
�

U
t0 ? t01 2 T?

(��1)

2

Note that it is, sometimes, useful to use the following
version of (�

+) rule (e.g. in the proof of proposition 18(i)),
which is based upon implication introduction, rather than
disjunction introduction.

Proposition 13.

t0 ? t01 2 T? PreU t0 _ t01 6=?
0` t0 ? t01 2 U

t0 ? t01 2
�

U
(�+)

2

Lemma 3. The following are derivable:

�

U �
�

U
(i)

?2
�

U
(ii)

: PreU t t 2 Tin
?

t? ?02
�

U
(iii)

t0 ? t01 2
�

U t01 6=?
0

t0 ? t01 2 U
(iv)

t0 ? t01 2
�

U t0 =?

t01 =?
0

(v)

2

W�-refinement is then defined as follows:

Definition 12. U0 ww�

U1 =df

�

U0 �
�

U1

Obvious introduction and elimination rules follow from
this.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

5.3. FP-refinement

Like F-refinement, FP-refinement considers specifica-
tions to be sets of implementations, and then we define
refinement as containment of implementations. Unlike F-
refinement, implementations abort outside the domain of
definition, rather than behave chaotically.

Definition 13.

g �fp U =df (8 z 2 Tin
?
� Pre U z _ (g z)0 6=?0)

z ? (g z)0 2 U) ^ g 2 Tin
?
! Tout0

?

Then we can prove the following.

Proposition 14. Let Æ be g 2 Tin
?
! Tout0

?
and z be a fresh

variable, then the following introduction and elimination
rules are derivable:

z 2 Tin
?
;Pre U z _ (g z)0 6=?0` z ? (g z)0 2 U

Æ....

g �fp U
(�+fp)

g �fp U t 2 Tin
?

Pre U t

t ? (g t)0 2 U
(��fp

0

)

g �fp U t 2 Tin
?

(g t)0 6=?0

t ? (g t)0 2 U
(��fp

1

)
g �fp U

g 2 Tin
?
! Tout0

?

2

Definition 14.
�

U =df fz j z �fp Ug

Then we have FP-refinement.

Definition 15. U0 wfp U1 =df

�

U0 �
�

U1

Obvious introduction and elimination rules for FP-
refinement follow from this definition.

6. Three equivalent theories

In this section, we demonstrate that this second set of
three theories of refinement are all equivalent.

6.1. W�-refinement and SP-refinement are equiva-
lent

We begin by showing that W�-refinement satisfies the
two SP-refinement elimination rules.

Proposition 15. The following rules are derivable:

U0 ww�

U1 PreU1 t

PreU0 t
(i)

U0 ww�

U1 t0 ? t01 2 U0

t0 ? t01 2 U1

(ii)

Proof. For (i), consider the following derivation:

Æ0....

t? ?02
�

U1

t? ?02 U1

(2)

false
PreU1 t : PreU1 t

(2)

false
false

(2)

PreU0 t
(1)

Where Æ0 stands for the following branch:

U0 ww�

U1

: PreU0 t
(1)

PreU1 t

t 2 Tin
?

t? ?02
�

U0

(Lem: 3(iii))

t? ?02
�

U1

For (ii), consider the following derivation:

Æ1....

t0 ? t01 2
�

U1 t0 ? t01 2 U1

(1)

t0 ? t01 2 U0 t01 =?
0

(1)

t0? ?02 U0

false

t0 ? t01 2 U1

t0 ? t01 2 U1

(1)

Where Æ1 is:

U0 ww�

U1

t0 ? t01 2 U0

t0 ? t01 2
�

U0

t0 ? t01 2
�

U1

2

Theorem 6. U0 ww�

U1) U0 wsp U1 2

We now show that SP-refinement satisfies the W�-
elimination rule.

Proposition 16.

U0 wsp U1 t0 ? t01 2
�

U0

t0 ? t01 2
�

U1

Proof.

t0 ? t01 2
�

U0

Æ0....

t0 ? t01 2
�

U1

Æ1....

t0 ? t01 2
�

U1

t0 ? t01 2
�

U1

(1)

Where Æ0 stands for the following branch:

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

U0 wsp U1 t0 ? t01 2 U0

(1)

t0 ? t01 2 U1

t0 ? t01 2
�

U1

and Æ1 stands for the following branch:

t0 ? t01 2
�

U0

t0 ? t01 2 T?
U0 wsp U1 : PreU0 t0

(1)

: PreU1 t0 t0
1
=?0

(1)

t0 ? t01 2
�

U1

2

Theorem 7. U0 wsp U1) U0 ww�

U1 2

Theorems 6 and 7 together establish that the theories of
SP-refinement and W�-refinement are equivalent.

6.2. FP-refinement and W�-refinement are equiva-
lent (in Z?

C
+ AC)

6.2.1. RP-refinement. As in section 4.2, we begin the anal-
ysis by defining the set of total functions, compatible with
an operation schema, which forms a bridge between FP-
refinement and W�-refinement.

Definition 16. eU =df fz 2 Tin
?
! Tout0

?
j z �

�

U g

Then we have:

Definition 17. g �rp U =df g 2 eU

Then RP-refinement is simply: U0 wrp U1 =df fU0 � fU1

with the usual introduction and elimination rules.

6.2.2. RP-refinement andW�-refinement are equivalent.
Likewise, we show that RP-refinement satisfies the W�-
refinement elimination rule and that W�-refinement satisfies
the RP-refinement elimination rule.

Proposition 17. The following rules are derivable:

U0 wrp U1 t 2
�

U0

t 2
�

U1

(i)
U0 ww�

U1 g 2 fU0

g 2 fU1

(ii)

Proof. The proofs are identical to the ones of proposition

8(i) and (ii) (respectively), where every
�

Ui is substituted

by
�

Ui , every Ui is substituted by eUi (i 2 2) and wr , ww�

are respectively substituted by wrp , ww�

. 2
From this we have:

Theorem 8. U0 wrp U1 , U0 ww�

U1 2

6.2.3. RP-refinement and FP-refinement are equiva-
lent. We now show that the notions of implementation
are equivalent by the same strategy involving elimination
rules. We first establish that FP-implementation implies RP-
implementation:

Proposition 18. The following rules are derivable:

g �fp U

g �
�

U
(i) g �fp U

g 2 Tin
?
! Tout0

?

(ii)

Proof. We do not provide the proof for (i), due to its sub-
stantial length and complexity. Notwithstanding, should the
reader is interested, a complete account for that is provided
in [5]. The second rule is immediate. 2

Theorem 9. g �fp U) g �rp U 2

Now we show that RP-implementation implies FP-
implementation.

Proposition 19. The following rules are derivable:

g �rp U t 2 Tin
?

Pre U t

t ? (g t)0 2 U
(i)

g �rp U t 2 Tin
?

(g t)0 6=?0

t ? (g t)0 2 U
(ii)

g �rp U

g 2 Tin
?
! Tout0

?

(iii)

Proof. The first rule:

Æ....

t ? (g t)0 2
�

U

t ? (g t)0 2
�

U
(Lem: 3(i))

Pre U t

t ? (g t)0 2 U

The second rule:

Æ....

t ? (g t)0 2
�

U (g t)0 6=?0

t ? (g t)0 2 U
(Lem: 3(iv))

Where Æ is:

g �rp U

g �
�

U

g �rp U

g 2 Tin
?
! Tout0

?
t 2 Tin

?

t ? (g t)0 2 g

t ? (g t)0 2
�

U

The third rule is immediate. 2

Theorem 10. g �rp U) g �fp U 2

Then, from theorems 9 and 10, we see that the two no-
tions of implementation are equivalent. Hence, so are the
two notions of refinement.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

7. Conclusions and future work

The model of schemas introduced in W�-refinement
not only totalises the schema as a set of bindings, it also
introduces the ? values and extends the domains and
co-domains accordingly. The totalisation then stipulates
chaotic behaviour outside the precondition and additionally
for the ? values.

Why is it necessary to include the new distinguished val-
ues? What are the consequences of totalisation without lift-
ing?

Our analysis provides a very clear mathematical expla-
nation for lifting: with non-lifted totalisation it is not possi-
ble to prove proposition 5. Note that the proof of that result
made explicit use of ? value. Indeed, we can do better: the
following is an explicit counterexample:

Definition 18.

(i)
�

U =df fz 2 T j Pre U z) z 2 Ug
(ii) True =df [T j true]
(iii) Chaos =df [T j false]

Proposition 20.
�

True =
�

Chaos 2

It is an immediate consequence that the more permissive
notion of refinement (based on containment of non-lifted
totalised operations according to definition 18(i)) does not,
for example, insist that preconditions do not strengthen. We
have, however, only begun to provide answers to the natural
questions that arise. For example, although lifting appears to
be necessary, why does it have to be non-strict with respect
to ?? Proposition 20 also raises a question: why is there a
distinction between implicit (Chaos) and explicit (True) per-
mission to behave? Note that in the Woodcock-completion,
�

True 6=
�

Chaos .
Much the same observation can be made for the other

family of refinement theories: again the lifting is critical in
preventing the preconditions from strengthening.

Our refinement theories S-refinement and SP-refinement
are entirely proof-theoretic, characterising refinement di-
rectly in terms of the behaviour of the predicates involved.
These are quite closely related to conditions proposed orig-
inally by Spivey (these roughly correspond to the premises
of our introduction rule for S-refinement). By reformulat-
ing this approach as a theory, rather than sufficient condi-
tions, we establish an equivalent framework in which the
model extension with the lifting and completions involved
are unnecessary. Although we have not shown it here, there
are very simple connections between S-refinement and an
equivalent theory of refinement based on weakest precondi-
tions: this will be reported in future work.

The approach to specification based on sets of imple-
mentations is a well established but somewhat different tra-
dition, and is most usually investigated in a constructive set-
ting. We have demonstrated that what look like radically
different models of specification and refinement are, in fact,
intimately related.

What we have not reported here is an extension to data
refinement in which data simulation relations play a signif-
icant role. This is rather in the spirit of [8], except that our
investigation is even more general by taking data simula-
tions to be partial relations, by default. There is much to
say on this topic, but that requires the present work as a
necessary precursor. We will, in future work, show that it is
possible to formulate S-like theories which are equivalent
to generalisations of the W-frameworks (the obvious gen-
eralisations are only equivalent for restricted forms of sim-
ulation). Moreover, there are interesting results in weakest
precondition data refinement to be developed and explored.

Finally, we have not mentioned the implications for the
schema calculus. In considering Z as a prime example of a
specification language that fits the technical development
explored in this paper, one will want to know how the
schema operations interact with refinement: in particular, a
treatment of monotonicity properties. It is quite well-known
that the Z schema calculus has poor monotonicity properties
in the relational model. Our results demonstrate that this is
not a special feature of the relational model (because all the
alternative approaches are equivalent). Indeed, these poor
properties are, it seems, intimately linked with the under-
lying partial relation semantics of Z. One interesting set of
approaches which needs to be fully investigated is the con-
sequence of restricting any one of the refinement theories
we have outlined here to atomic schemas only; and then to
redefine the semantics of the schema operators over the new
semantics (rather than over partial relations). In this way, re-
finement would reduce to the subset relation on the seman-
tics and would be fully monotonic. Naturally, the nature of
the schema algebra would change, but those changes would
be very interesting to explore.

8. Acknowledgements

We would like to thank the New Zealand Founda-
tion for Research, Science and Technology (grant refer-
ence: UOWX0011) for financially supporting this research.
Moshe Deutsch is supported by the British Council through
an ORS award. Special thanks for particularly important
discussions and comments go to Lindsay Groves, Greg
Reeve, David Streader, Ray Turner, Mark Utting and Jim
Woodcock.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

References

[1] C. Bolton, J. Davies, and J. Woodcock. On the refinement
and simulation of data types and processes. In K. Araki,
A. Galloway, and K. Taguchi, editors, Integrated Formal
Methods (IFM’99). Springer, 1999.

[2] W. P. DeRoever and K. Engelhardt. Data refinement: model-
oriented proof methods and their comparison. Prentice Hall
International, 1998.

[3] J. Derrick and E. Boiten. Refinement in Z and Object-
Z: Foundations and Advanced Applications. Formal Ap-
proaches to Computing and Information Technology –
FACIT. Springer, May 2001.

[4] M. Deutsch, M. C. Henson, and S. Reeves. An analysis of
total correctness refinement models for partial relation se-
mantics I. University of Essex, technical report CSM-362
(Submittted to: J. Logic and Computat), 2001.

[5] M. Deutsch, M. C. Henson, and S. Reeves. Six theories of
operation refinement for partial relation semantics. Univer-
sity of Essex, technical report CSM-363, 2002.

[6] A. Diller. Z: An introduction to formal methods (2nd ed.). J.
Wiley and Sons, 1994.

[7] J. Grundy. A method of program refinement. PhD thesis,
University of Cambridge, 1993.

[8] J. He, C.A.R Hoare, and J.W. Sanders. Data refinement re-
fined. In G. Goos and J. Hartmanis, editors, European Sym-
posium on Programming (ESOP ’86), volume 213 of Lec-
ture Notes in Computer Science, pages 187–196. Springer-
Verlag, 1986.

[9] M. C. Henson and S. Reeves. Investigating Z. Journal of
Logic and Computation, 10(1):1–30, 2000.

[10] C.A.R Hoare and J. He. Unifying Theories of Programming.
Prentice Hall International, 1998.

[11] S. King. Z and the Refinement Calculus. In D. Bjørner,
C. A. R. Hoare, and H. Langmaack, editors, VDM ’90 VDM
and Z – Formal Methods in Software Development, volume
428 of Lecture Notes in Computer Science, pages 164–188.
Springer-Verlag, April 1990.

[12] P. Martin-Löf. Constructive mathematics and computer pro-
gramming. In Logic, Methodology and Philosophy of Sci-
ence VI, pages 153–175. North Holland, 1982.

[13] S. L. Pfleeger. Software Engineering - Theory and Practice.
Prentice Hall, 1998.

[14] B. Potter, J. Sinclair, and D. Till. An introduction to formal
specification and Z. Prentice Hall, 2nd. edition, 1996.

[15] J. M. Spivey. The Z notation: A reference manual, 2nd ed.
Prentice Hall, 1992.

[16] B. Strulo. How firing conditions help inheritance. In J. P.
Bowen and M. G. Hinchey, editors, ZUM ’95: The Z For-
mal Specification Notation, volume 967 of Lecture Notes in
Computer Science, pages 264–275. Springer Verlag, 1995.

[17] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment and Proof. Prentice Hall, 1996.

A. Specification logic - a summary

Our mathematical account takes place in a simple conservative
extensionZ?

C ofZC the core Z-logic of [9]. The only modification

we need to make is to include the new distinguished terms which
are explicitly needed in the approach taken in [17]. Specifically:
the types of ZC are extended to include terms?T for every type T .
There are, additionally, a number of axioms which ensure that all
the new ?T values interact properly, e.g.

?[l0:T0���ln:Tn]= hj l0V ?T0 � � � lnV ?Tnji

In other words, ?[l0:T0���ln:Tn]
:li =?Ti (0 � i � n). Note that

this is the only axiom concerning distinguished bindings, hence,
binding construction is non-strict with respect to the ?T values.

Finally, the extension of Z?

C which introduces schemas as sets
of bindings and the various operators of the schema calculus is
undertaken as usual (see [9]) but the carrier sets of the types must
be adjusted to form what we call the natural carrier sets which
are those sets of elements of types which explicitly exclude the ?T

values:

Definition 19. The natural carriers for each type are defined by
closing:

N =df fz
Nj z 6=?N^ z = zg

under the operations of cartesian product, powerset and schema
set.2

As a result the schema calculus is hereditarily ?-free.
We will also need the extended carriers. These are defined for

all types as follows:

Definition 20.
T? =df T [f?Tg

We indicated in the first section that we can always write the
type of operation schemas as P(Tin

g Tout0) where Tin is the type
of the input sub-binding and Tout0 is the type of the output sub-
binding. We also permit binding concatenation, written t0?t1 when
the alphabets of t0 and t1 are disjoint. This is, in fact, exclusively
used for partitioning bindings in operation schemas into before and
after components, so the terms involved are necessarily disjoint.
We lift this operation to sets (of appropriate type):

C0 ? C1 =df fz0 ? z1 j z0 2 C0 ^ z1 2 C1g

The same restriction obviously applies here: the types of the sets
involved must be disjoint.

We will need total functions over types. These are easily intro-
duced.

Definition 21.

T0 ! T1 =df fg 2 P(T0 ? T1) j unicity(g) ^ total(g)g

Note that functions are modelled as subsets of T0 ? T1 rather
than T0 � T1, and that for notational convenience, we let g (etc.)
range over terms of type P(T0 ? T1). In fact we only do this when
such a term is a function.

When g is known to be an element of T0 ! T1 and z0 2 T0,
we will write g z (as usual) for the unique element z1 2 T1 such
that z0 ? z1 2 g.

2 The notational ambiguity does not introduce a problem, since
only a set can appear in a term or proposition, and only a type
can appear as a superscript.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

