

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Improving the performance of

Hierarchical Hidden Markov

Models on Information Extraction

tasks

Lin-Yi Chou

A thesis submitted in fulfilment of the requirements for the degree of

PhD, The University of Waikato, 2006.

Abstract

This thesis presents novel methods for creating and improving hierarchical hidden Markov

models. The work centers around transforming a traditional tree structured hierarchical

hidden Markov model (HHMM) into an equivalent model that reuses repeated sub-trees.

This process temporarily breaks the tree structure constraint in order to leverage the

benefits of combining repeated sub-trees. These benefits include lowered cost of testing

and an increased accuracy of the final model—thus providing the model with greater per-

formance. The result is called a merged and simplified hierarchical hidden Markov model

(MSHHMM).

The thesis goes on to detail four techniques for improving the performance of MSHHMMs

when applied to information extraction tasks, in terms of accuracy and computational

cost. Briefly, these techniques are: a new formula for calculating the approximate proba-

bility of previously unseen events; pattern generalisation to transform observations, thus

increasing testing speed and prediction accuracy; restructuring states to focus on state

transitions; and an automated flattening technique for reducing the complexity of HH-

MMs.

The basic model and four improvements are evaluated by applying them to the well-

known information extraction tasks of Reference Tagging and Text Chunking. In both

tasks, MSHHMMs show consistently good performance across varying sizes of training

data. In the case of Reference Tagging, the accuracy of the MSHHMM is comparable to

other methods. However, when the volume of training data is limited, MSHHMMs main-

iv Abstract

tain high accuracy whereas other methods show a significant decrease. These accuracy

gains were achieved without any significant increase in processing time. For the Text

Chunking task the accuracy of the MSHHMM was again comparable to other methods.

However, the other methods incurred much higher processing delays compared to the

MSHHMM. The results of these practical experiments demonstrate the benefits of the

new method—increased accuracy, lower computation costs, and better performance.

Acknowledgments

I would like to thank all the people in Digital Library Lab in the Department of Com-

puter Science at the University of Waikato for being supportive in every way, socially and

educationally.

Many thanks to my family for their love and support, especially my husband John Thomp-

son who encouraged me throughout these years of study, and members of DL group, in

particular Katherine Don, Michael Dewsnip and Chi-Yu Huang.

Most of all I would like to thank my supervisors Ian Witten, Tony Smith and Michael

Mayo for their generous support and encouragement. I also would like to thank Alan Holt

for his help and thesis writing expertise.

Contents

Abstract iii

Acknowledgments v

Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Reference Tagging . 3

1.1.2 Text Chunking . 4

1.2 Research Overview . 6

1.3 Thesis Statement . 9

1.4 Contributions . 9

1.5 Thesis Structure . 10

2 Background 13

2.1 Markov Chains . 14

2.2 Hidden Markov Models . 15

2.2.1 Techniques . 18

2.2.2 Application . 19

viii Contents

2.3 Hierarchical Hidden Markov Models . 20

2.3.1 Techniques . 22

2.3.2 Application . 23

2.4 Related Work . 25

2.4.1 Stochastic Context-Free Grammar . 25

2.4.1.1 Techniques . 28

2.4.1.2 Application . 29

2.4.2 Dynamic Bayesian Networks . 31

2.4.2.1 Techniques . 33

2.4.2.2 Application . 34

2.4.3 Other Related Techniques . 35

2.5 Summary . 37

3 Hidden Markov Models 39

3.1 The Elements of HMM . 40

3.2 The Basic Algorithms of HMM . 43

3.2.1 Evaluation Problem . 44

3.2.1.1 Forward Algorithm . 44

3.2.1.2 Backward Algorithm . 46

3.2.2 Testing Algorithm of HMM . 47

3.2.3 Training Algorithm of HMM . 49

3.3 Limitions of HMM . 50

3.4 Summary . 51

4 Hierarchical Hidden Markov Models 53

4.1 Model Description . 54

4.1.1 Merging Repeated Sub-models (M) . 57

4.1.2 Simplifying the Sub-models (S) . 62

4.2 Notation . 64

4.3 Sub-models . 66

4.3.1 Elements of a Sub-model (λ̄(i)) . 67

4.3.2 Sub-model Calculation . 71

Contents ix

4.4 Sequence Likelihood . 75

4.5 Structural Issues of HHMMs . 78

4.5.1 Comparison between HHMM and SCFG model 80

4.6 Processes Involved in HHMM Modeling . 81

4.6.1 The Training Process . 82

4.6.2 The Testing Process . 85

4.7 Summary . 87

5 Applications 89

5.1 Background to the Evaluation Process . 89

5.2 Reference Tagging . 92

5.2.1 Evaluation . 95

5.2.2 Accuracy Performance on Individual Sentences 100

5.2.3 Discussion . 105

5.3 Text Chunking . 108

5.3.1 Evaluation . 110

5.3.2 Accuracy Performance on Individual Sentences 116

5.3.3 Discussion . 120

5.4 Summary . 121

6 Techniques for Refining HHMMs 123

6.1 Smoothing Techniques . 124

6.1.1 The Methods . 126

6.1.1.1 Bayesian Smoothing using Dirichlet Priors 126

6.1.1.2 Absolute Discounting . 127

6.1.1.3 Jelinek-Mercer . 127

6.1.1.4 C-smoothing . 128

6.1.2 Evaluation . 131

6.1.3 Discussion . 136

6.2 Pattern Generalisation . 137

6.2.1 The Methods . 138

6.2.2 Evaluation . 140

x Contents

6.2.3 Discussion . 145

6.3 Structure Formation . 145

6.3.1 Evaluation . 146

6.3.2 Discussion . 150

6.4 Partial Flattening Process for HHMM . 150

6.4.1 Developing a Partial Flattening Process 152

6.4.2 Evaluation . 155

6.4.3 Discussion . 158

6.5 Summary . 159

7 Conclusions 163

7.1 Contributions . 163

7.2 Applications . 165

7.3 Techniques . 166

7.4 Future Work . 167

A Appendix 169

A.1 Input . 169

A.2 Results for Reference Tagging Task . 171

A.3 Results for Text Chunking Task . 176

Bibliography 183

List of Tables

2.1 Summary of four main models . 38

4.1 Table of notations . 66

4.2 Information for HHMM and SCFG models . 81

4.3 Types of tag for the reference tagging task . 83

5.1 Summary of states and observations for Figure 5.3 94

5.2 Significances test for different size of datasets 99

5.3 F-measure for different models . 101

5.4 Six test sentences from reference tagging task 102

5.5 Three test sentences from reference tagging task 104

5.6 Significance test for different volume of data sets 114

5.7 F-measures of text chunking for CoNLL-2000. 115

5.8 Results of the top four systems that participated in shared task and the

MSHHMM results for CoNLL-2001. 116

6.1 Number of observation symbols for reference tagging task 129

6.2 F-measure for different smoothing results at 600 sentences. 135

6.3 F-measure of C-smoothing and constant model at 600 sentences. 136

6.4 Annotated tags for reference tagging task . 139

6.5 Micro-averaged F-measure of 5× 10 fold cross-validation with 600 sentences . 144

6.6 Micro-averaged F-measure of structure formation for reference tagging task . . 149

6.7 Observation dependency values of part-of-speech tags 154

6.8 Number of ranked terms for observation dependency flattening 155

6.9 Summary of state dependency value . 157

List of Figures

1.1 Example of a reference section . 4

1.2 Example of HHMM and HMM . 7

1.3 Types of hierarchical hidden Markov model 8

2.1 Two-state Markov process . 15

2.2 Two-coins hidden Markov model . 15

2.3 Example of a standard HMM . 18

2.4 Example of part-of-speech tags . 20

2.5 Example of part-of-speech ambiguities . 20

2.6 Example of an HHMM . 22

2.7 Example of the reference tagging task . 24

2.8 Example of a copied model . 25

2.9 SCFG for the language anbn . 26

2.10 Diagram of the parse tree from Penn treebank 30

2.11 Markov process as a Bayesian network . 32

2.12 Markov process as a Bayesian network . 33

2.13 Dynamic Bayesian Network for robot mapping task 35

3.1 Simple HMM for reference tagging task . 43

3.2 Forward Algorithm . 46

3.3 Backward Algorithm . 47

3.4 Viterbi Algorithm . 49

4.1 HHMM tree structure . 54

4.2 Example of (a) HMM (b) HHMM . 55

xiv List of Figures

4.3 Example of reference tagging task with (a) HMM (b) HHMM 56

4.4 Example of (a) HHMM with (b) a copied model 58

4.5 Example of a reused sub-model for the reference tagging task 59

4.6 Example of probability distribution for repeated sub-model (A) 60

4.7 Example of a HMM . 61

4.8 Example of an HHMM with duplicated sub-models 61

4.9 Example of a repeat sequence . 62

4.10 The general representation of HHMM . 63

4.11 Example of a simplified model . 64

4.12 List of three science research published papers 65

4.13 Example of state sequences for a simplified HHMM. 69

4.14 A three level HHMM: (a) regular HHMM (b) simplified HHMM 70

4.15 Example of state sequences for a three level SHHMM. 71

4.16 Example of different sub-states . 79

4.17 Example of pre-processed data for the reference tagging task 82

4.18 Flowchart of training process . 84

4.19 Flowchart of the HHMM testing process . 86

5.1 Evaluation process . 91

5.2 Example of a raw reference form . 93

5.3 Example of the reference-tagging task . 94

5.4 Graph of F-measure for 5× 10-fold cross validation 96

5.5 Graph of F-measure for 5×10-fold cross validation for small volumes of training

data . 97

5.6 Graph of standard deviation on F-measure for 5× 10-fold cross validation . . 98

5.7 Average processing time of reference tagging 100

5.8 F-measure for MSHHMM against HMM . 101

5.9 F-measure for MSHHMM against SHHMM . 103

5.10 F-measure for HHMM against MSHHMM . 105

5.11 HHMM for syntax roles . 110

5.12 Overall results of F-measure for text chunking task 111

5.13 Overall results of F-measure for text chunking task on small volume of data . 112

List of Figures xv

5.14 Standard deviation of F-measure for text chunking task 113

5.15 Average processing time of testing for text chunking tasks 115

5.16 F-measure for MSHHMM against HMM . 117

5.17 F-measure for MSHHMM against SHHMM . 118

5.18 F-measure for MSHHMM against RHHMM 119

6.1 Distribution of observation symbols with (a) low probability (b) high proba-

bility of encoutering unseen events . 130

6.2 Smoothing results for Dirichlet Priors . 132

6.3 Smoothing results for Absolute Discounting 133

6.4 Smoothing results for Jelinek-Mercer . 134

6.5 C-smoothing of different threshold of ε (epsilon) 135

6.6 F-measure of the RHHMM for pattern generalisation. 141

6.7 F-measure of the SHHMM for pattern generalisation. 142

6.8 F-measure of the MSHHMM for pattern generalisation. 143

6.9 F-measure of the HMM for pattern generalisation. 144

6.10 Structure formation for state title . 146

6.11 Process of structure formation; (a) original HHMM (b) HHMM with structure

formation . 147

6.12 Graph of F-measure for structure formation. 148

6.13 Graph of F-measure for structure formation. 149

6.14 Graph of F-measure for structure formation. 150

6.15 Graph of F-measure for structure formation. 151

6.16 Partial flattening process for state SBAR and NP 154

6.17 F-measure for observation dependency . 156

6.18 F-measure for state dependency . 158

7.1 Example of different sub-states. (Same as Figure 4.16) 168

A.1 Graph of F-measure for state author . 171

A.2 Graph of F-measure for state editor . 172

A.3 Graph of F-measure for state title . 172

A.4 Graph of F-measure for the state year . 173

A.5 Graph of F-measure for state publisher . 173

xvi List of Figures

A.6 Graph of F-measure for state address . 174

A.7 Graph of F-measure for state volume . 174

A.8 Graph of F-measure for state institution . 175

A.9 Graph of F-measure for state NP . 176

A.10 Graph of F-measure for state O . 177

A.11 Graph of F-measure for state VP . 178

A.12 Graph of F-measure for state PP . 179

A.13 Graph of F-measure for state ADVP . 180

A.14 Graph of F-measure for state PRT . 181

CHAPTER 1

Introduction

I find that a great part of the information I have was acquired by looking up

something and finding something else on the way.

Franklin P. Adams

This thesis focuses on improving the efficiency and accuracy of hierarchical hidden Markov

models (HHMMs) on natural language processing and other text mining tasks. With

the use of a hierarchical model structure, the thesis demonstrates that HHMMs closely

reflect the underlying structure of the text being processed. In addition to extracting the

meaning of individual events, this structure provides other benefits, such as the ability to

merge repeated parts of the model and the ability to process sequences of observations

that contain unseen events. HHMMs can be developed to expose the hidden structure

in a wide range of real-world sequences, such as speech recognition [Chien, 1999], DNA

sequences [Hu et al., 2000], handwriting [Fine et al., 1998], robot navigation [Theocharous

et al., 2001] and video structure discovery [Xie et al., 2002; Bui et al., 2004].

1.1 Motivation

Automated text mining has increased in importance due to the rapid growth of online

documents. The ability to obtain useful knowledge from unstructured text is now a key

technique for handling and organising textual data. Each document is processed to find

2 Introduction

entities and relationships that are likely to be meaningful within a particular context,

and the extracted information can provide more distinct and specific data for text mining

processes. The main types of tasks in text mining are Information Extraction (IE) [Eikvil,

1999] and Information Retrieval (IR) [Greengrass, 2001].

Information Extraction is the process of identifying information within natural language

text based on predefined knowledge [Eikvil, 1999]. The knowledge can be predefined

using training data to which structured information has previously been added, and is

particularly useful for locating specific information from a natural language document.

Information Retrieval is the process of determining which documents from a collection are

related to a users query based on predefined categories [Greengrass, 2001]. The IR model

is trained using a set of sample data, where each training document is hand labelled with

its own categories.

The key difference between IE and IR tasks is that the former extracts relevant facts out of

documents for users to analyse, whereas the latter returns relevant documents for users to

analyse. A trained IE system can extract pre-specified types of entities and relationships

from new texts and store this information into a structured database record. When the

data has pre-specified entities it can also undergo automatic analysis, providing a means

for further interpretation of these patterns.

This research is based on using several variations of hierarchical hidden Markov model

(HHMM)—before and after the application of improvement techniques—to perform IE

tasks, in particular:

• reference tagging

• text chunking.

The results from these tasks are evaluated against the equivalent hidden Markov model

(HMM) and the regular hierarchical hidden Markov model (RHHMM) [Fine et al., 1998].

The performance of the model can be measured in terms of efficiency—volume of training

1.1 Motivation 3

data needed and processing time—and also in terms of accuracy—stability and precision

of results.

1.1.1 Reference Tagging

It is common for researchers to publish their papers and other research materials on-

line. To locate these, and other similar materials, one generally uses a search engine

like Google Scholar1, or perhaps a more specialized engine like CiteSeer2. The drawback

of these sources is that they often provide an excessive number of documents—indeed a

searcher may spend a considerable amount of time filtering out documents that have no

relevance. A searcher may eventually find the documents desired—often also discovering

that the documents themselves cite, or refer to, further relevant documents. Caplan [2001]

defines this reference or citation relationship as “the ability to go directly from a cita-

tion to the work cited, or to additional information about the cited work”. Given this

situation, it would seem beneficial to present as many forms of connection between sim-

ilar materials as possible, both to aid in general reference searching—such as grouping

research materials together by author’s name—and to ensure greater relevance of the ma-

terials that are linked to. The greater relevance is due to the fact that the writers of the

material will already have gone to some lengths to find only matching or closely related

work. Moreover, these references (assuming they have reviewed before being published)

have already been checked and moderated by several expert referees. Thus the growth

in online information availability needs to be matched by systems that create these links

between documents, preferably in an automated fashion. There are, however, difficulties

in doing so. For instance, the links may appear in various different contexts, like citations

in published research versus references from a bibliography.

Figure 1.1 [Slomin et al., 2002] is an example of a reference section as it appears in a sci-

entific paper. The information allows the system to extract relevant linking information

[Bergmark, 2000] within online documents. Such relationships will enable readers to gain

information on related articles.

1Google Scholar/scholar.google.com
2CiteSeer.IST Scientific Literature Digital Library, http://citeseer.ist.psu.edu/

4 Introduction

������ ���	
�
��� ��
�	����� �� ��� �����
��������
�
�	�����
���� ����� �
��� ��� �����
��� 	����� ������
��� ������
���
��� 	����
���
�� ���
�� �� ��� ����

�� ���
�� ���� ��
	��������� ��
 ��	���

 ���
!�
���� 	������
��� ��
� ��

� ��� "	���
��� ������#�
$� ��������� ���	
��� ���
� ��
���
 ���� ��� ���
!�
���� 	������
��� ��	����� �� %��
�
 ��
�� &''(���
���

�� �

!�)� ��
� ���! ���
�����
 ���	
��� ���
��*����� ��

���
����
��������
+ ������	 "
 �
��
��
�� ,������-
 ������#�
���
 ���
�� ���
� �
��� �
�
������ ��

�
�� ���� �� "��������#
���
��� 	���
����
��� �� ��� ��
� ���� ���� �.�/�� �.��� �0�1�

�� ���0�� ��
	��������� �� ���� �
 ���

�	�����
�� ���	
�
��� ��
�� ���
� ����� �� ����
��������
����� ���	������
 ��� ���� �

 ��� ��� ����
��
��
��� 	������
��� �� �1��

$�
�� ���
� ��
���

 �
	���
��� ������
�����

��
�� ���
����
��������
 ���� �
�� ���� ��� ����� ��	�
��
���
����� ����� ��� ���� �

 �
��� ��� ��� �����
��
�
���� ��	��
���
�����

�� ���������	
	� ��
��� ����

 �� �
�� ������������ �� ���
 ���! �
 �� ��
�������

 ���� ������ ��
�����! ��� ��
����� �
��
��� ����
��� 2
�!�� �����
 �� ��� �����3� �� ��
������
����

�
��
�
� �� �� ����
�������� ��
���
 �� �3�
��
�� ��
����
 ���� �
��
��� ������ ��	��������
 �����

�� ������ ��
������
���� ���� ��
	��� �� ���
�
��
���
�

�����

� �
��� ��
� ��
����

�� !�	� ����� ������
	�

���� �������
 ��
����
 ������ ��
�� ��

�
�
��

���� ��� �
�
�
� �
�� �

�������
� ��
����
 ����
��� �
���� �� ��� ����� �
�
�

 ��
�������� �
 �Æ�����
�� ����� ��
		���� ��
��
!��� �� �
�
 "����� �3�����
 ��� 2
�!�� 	��	����#�

����

 ��

��
��� ��������� �� "�� 4�
���5
���� ��#

 �

��
�	�
��� �
� �� �������� �� ������ �
 �
	��
��
���
		�
���� ����� �� �
���
� ��������� �� ������
����� ��
����
 �3�
�
�
�� �� ��

���
���� �

!
 �����
��� ��*����� �
�������

�
��
 ��� ��
�������� "�����
�����
���� �����
 ���� �
	����� �� �
��#�

�����
� ��	���
�� ���������

�� ���� ��� ������ ���!�
6� ��� ��	����
�
���� ���� �3���
��� �3	�������

��
��4������ 7�� ��� 	������ �
�
�
 ��������
�
��
�

�� ��� ��	 ��
������
���� ��
����

�� ����� 	�

����
��������
� �������� �

		�
�����

6� ��� ���������
�

	����
 ����
�
�
��
�
 �� ���
��
������� �
 ��

����)� �
� ���� �� 	�

���� �� �3����
��� ���������
� ��
���
 	��
����� �� &'0(� �� ��� �����3�

����� � ������� �		���
� �� ��

����������� �
���
���
	������� �������� �� ���������� ����

�� ����

�� ��
������
���� ��� �����
�

��������	
����

8
���� ��
��

��� ���� 9� :���� ,� :
���
��� ;� �������
��
�
�� ;� ��
��� �
 ���
���
		����
���� ��
��
����
 �����
�
� ��!� �� ��
�! <� �����!� ��� ���	 ��
�
��� ��� ����� ����!���

������	���

��� �� ��	
����	 �
� ���� ����������� ����
�
� ���� 	�
� ������
���
� ����
���� �
 �!�� "�� #��� $!
�� !
 �� %����&' �""��

�(� ��)� ����!!� �� ��� *�#�+ �
� *�#�+�+ ���� ����� !

,�!���
 �
������� #
����� ����� *���' -!�� ./' #!� �' (//(�

�.� �� *� 0���' � 1� 0�!�
' � -� �� +!
2� �
� *� �� 3������
3�4�	
	 3
�
�� �
�!�	���!
 5���	���!
 !� �����
 3��6!�
3!��� ���	����� �!� +,���� *��!�
���!
� �
 ����� �� ����
�	
��
�	�� ������� ������ � ���� ������� ��
�����' �"78�

��� *� 0������� 9��
� 3
�
�� �
�!�	���!
 �!� +������
� 1���
���
�
 +
,������� #�
��� #�� ����
�
�� ���� ���	���
��	� �	
������ ��
�����' :%�&;:.<=::/' �""��

�:� �� 0�>���
! �
� �� ?!
�� -������!
� !
 ,�!@�@������� �
Æ4
�����; ����������� 	!����
� �
� ,�������!
 !� ,�!���
 ��	������
0�!�
�!�	�����' �<%�&;(.=�.' (//��

�8� �� 0�>���
!' ?� +����
' �� 3�������' �
� #� ����@�� 3��6!�
���
 �!	��
 A
���,��
��
�; ����������� ���	�
����!
 !� ,�!���

��B
�
���� 0�!�
�!�	�����' �<%�/&;"(<�".�' (//��

�<� 5� 0� 0�
	 �
� �� ��
������ C��� +�2� #�� ����� -���� ��
�
�����2���!
 D ������
� ��
�
��	' �%�&;�:�=�8/' �"7"�

�7� ��3� $!��� �
� E��� ��!	��� 5��	�
�� !� �
�!�	���!
 ���!���
E!�
 C���� F +!
�' #�� ?!�6' �""��

�"� +� 1� $��
 �
� E� �� �!!�	�
� �
 5	,������ +�
�� !� +	!!���
�
� ����
�B
�� �!� ��
�
��� 3!����
�� ����
���� *�,!��; �*�
�/�"7' ������� 9
��������' �""7

��/� +� ����� �����' -� ����� �����' �
� E� ��G����� �
�
��
� 1���
�
��� !� *�
�!	 1������ �555 ���
�� !
 �����
 �
������ �
�
3����
� �
�������
��' -!�� �"' #!� �' �""<�

���� +� �
	���' E' ����' �� ���6��	�
' �
� 3� +���	�� �
�
�����
����
�
� ���!����	� �
� ��,����
����!
� �!� ��4� �����!��2���!
�
�
 ����� �	
�
�	�� �	 �	��� � �	! "	����!�� #�	����' �""7�

��(� *� 3� �!!�	�
 �
� +	���� ������!
 ���� �����
 ��!	
$!		

�����!
 ���!�� +��
� !�
�� ���� ���	�� �	 ��'
.�%:&;"<"=""�' �"77�

��.�)� ��
�� ����
�
� �! A����
��
���� �
 ����� �� �
#$� %&&'�

���� ��)� 3�$���
	� *��
�!���	�
� ����
�
� ���� +�������� ���
��,��!
 �
� �����
 +������ ��� ������' �""8�

��:� 1� ������' ?� +�
��� �
� #� ����@�� 0��!
� C!�� �����	��
�
 #��
��� ��
�
��� �!�����
� 9��
� -��� ����� $!�,!���)�
$�
��� �� ��� %5���&')�
��� �����	��
@��������

��8� �� *!
' ?� +�
���' �
� #� ����@�� ��� !��� !� �	
��
���; ����
�
� �!@�@������� �
�!	��� ���� -����@�� 3�	!��
��
���� 3����
� ����
�
�' (:;(.<=(8(%�""<&

��<� �� +�!��6�� 5
��!,��@���� �

�
� !� 0��6!G ��
�
��� 3!��
���� �
 ����� �� (�)�� *���!���
 ���� ���	�����
��	 �	!
+	!���
�	!�	� ,������� ,,� (</�(<�' �""7�

��7� � $� C!!���
� �
� �� !���� ����� +���� ������	�
�����
����
�
� �!� +,���� *��!�
���!
� �
 ����� �� �	
� ,�������
�	 ��
� �
�� ������)����	�
��	 ���)�' (///�

��"� ?� ?�
� � ��
�� !
 ������!���
� ���������� �!� ��4� �����!�
��2���!
� �!�� !� ��� (��� �
�� �$3 +���*' (//��

Figure 1.1: Example of a reference section

1.1.2 Text Chunking

Text chunking [Abney, 1991] is an important component of information extraction, as well

as many other natural language processing systems. It involves grouping information into

chunks, and is often a preliminary step for full parsing. For example, consider a sentence

1.1 Motivation 5

from a CoNLL-20003 corpus:

He reckons the current account deficit will narrow to only $1.8 billion in

September.

The output from the chunking process would be:

(NP He) (VP reckons) (NP the current account deficit) (VP will narrow) (PP

to) (NP only $1.8 billion) (PP in) (NP September) (O .)

The sentence has been divided into part-of-speech chunks of different types, and the chunk

information is identified by symbols of: NP (noun phrase), VP (verb phrase), PP (prepo-

sitional phrase) and O (null complementiser).

The chunking process includes identifying the non-recursive portions of phrases, such as

noun phrases or verb phrases. It can also be useful for other purposes, including term

indexing. For example, noun phrase chunking has proven to be favourable for web search-

ing, where the topics or the focus of a text document can be represented by a list of

noun phrases [Chen and Chen, 1994]. Collecting the noun phrases in a text document

can provide a better understanding of the text. There is growing interest in Question

Answering (QA) systems [Saggion et al., 2004], which analyse a question to locate noun

phrases and main verbs, and return documents that match these features. START [Katz,

1997] is one of the first QA systems to use natural language processing (NLP) to match

questions, where documents are segmented into chunks and phrases that are then used to

describe the content of the data.

The outcome of applying the techniques investigated in this research to the reference

tagging and text chunking tasks are explored in Chapter 5. The performance of several

models, namely the HMM, RHHMM (regular HHMM by Fine [Fine et al., 1998]), SHHMM

(simplified HHMM) and the MSHHMM (merged and simplified HHMM) are measured

during this exploration.

3A workshop in conjunction with ICGI-2000 and LLL-2000 at the Instituto Superior Técnico in Lisbon,

Portugal on September 13 and 14, 2000, http://www.cnts.ua.ac.be/conll2000/

6 Introduction

1.2 Research Overview

This section introduces the main concepts of HMMs and HHMMs in a non-mathematical

way, and discusses existing research related to the application of these methods to infor-

mation extraction tasks. A formal discussion of these two models is given in Chapters 3

and 4 respectively.

A text document can be structured in many different ways. For instance, it can be divided

into sections. The specific structure addressed by this thesis occurs in documents with

hierarchical nature, such as those found in natural language documents. A good example,

pertinent to the reference linking mentioned above, is the reference section at the end

of papers or journal articles. The task of finding structure in this section requires the

application of a hierarchical model to extract some information, where the higher levels of

hierarchy contain sectioning information, and the lower levels express the model of section

content. The models covered in this thesis focus on identifying the syntactic structure of

the reference section, often referred to as the grammar, rather than attempting to gain

some understanding of the semantics of the words involved.

A hierarchical model would seem well suited to natural language tasks because it identifies

and makes use of repeated structure in different parts of the grammar, and in doing so,

should outperform a standard non-hierarchical model. Similar to a tree structure, the

hierarchical model consists of parent states (non-leaf nodes) and child states (leaf nodes).

In order to realise the model’s structural potential, it is likely to be beneficial to model

the grammar in a hierarchical manner.

HMMs are often used when predicting the most likely state sequence for a given sequence

of observations, where the states may contain unseen events. The Markov model provides

transition information between states. When the sequence contains unseen events, the

Markov model can predict these events by knowing the state before and after them.

An HHMM is a special kind of HMM that is designed to model tasks hierarchically. Any

1.2 Research Overview 7

(a)

1 2 7 8

3 4 5 6 3 4 5 6

9

(b)

1 7 93−2 4−2 5−2 6−2 6−83−8 4−8 5−8

Figure 1.2: Example of HHMM and HMM

HHMM can be converted to a HMM by creating a state for every possible observation, a

process is often referred to as “flattening”. Figure 1.2 demonstrates the flattening process.

Figure 1.2(a) is the HHMM version and Figure 1.2 is the HMM version. After this process

there is no difference between parent states and child states (Chapter 4 elaborates on this

process).

This thesis proposes that, because of the fundamental difference in structure between

HMMs and HHMMs, an HHMM should be capable of outperforming the non-hierarchical

version at mark-up tasks such as reference tagging, text chunking or clause identification

[Moline and Pla, 2001]. In general, a well-trained model requires a substantial amount

of training data before it can deliver acceptable levels of accuracy. Hierarchical hidden

Markov models offer the potential to overcome this problem by exploiting repeated struc-

tures in the training data. Specifically, building and re-using sub-models for repeated

structure better utilises the training data, which allows HHMMs to converge on more

accurate predictions more quickly than conventional HMMs can.

This thesis explains the shortcomings of existing methods, and explains what is needed

to make HHMMs work correctly. It proposes an efficient probabilistic estimation method

to calculate the transition distribution between different levels of hierarchical structure,

along with several new approaches to their construction and use, namely merging and sim-

plifying. These techniques are applied to a variant of the HHMM called the merged and

8 Introduction

simplified hierarchical hidden Markov model (MSHHMM). Its performance is evaluated

in terms of accuracy and processing time efficiency against RHHMMs (regular HHMMs),

SHHMMs (HHMMs that have only had the simplification technique applied) and regular

HMMs. The RHHMM is constructed in a fashion similar to that laid out by Fine [1998],

while the HMMs were developed in accordance with the work of Rabiner [1986]. Figure

1.3 displays the taxonomy of HHMMs evaluated during this thesis, in order to illustrate

the relationship between the different variations of the model.

RHHMM

HHMM

SHHMM

MSHHMM

Figure 1.3: Types of hierarchical hidden Markov model

During the training process, the system takes input from user-defined data to construct

the model. Optimising the transition between state and observation matrix within each

state for better extraction accuracy can be a difficult task. This thesis presents four new

techniques to improve the performance of the model: smoothing, pattern generalisation,

structure formation and partial flattening. These are investigated based on building effi-

ciency and prediction accuracy (discussed in Chapter 6). To validate the main proposal of

the thesis, the results of applying each of the models to several different natural language

tasks are compared in terms of the performance cost of applying the model to the test

data, and in terms of accuracy of the final model in processing unseen data.

1.3 Thesis Statement 9

1.3 Thesis Statement

This thesis investigates the use of the merging and simplification techniques for improving

the performance of hierarchical hidden Markov models (MSHHMMs). It proposes that

since MSHHMMs can make use of repeated sub-state sequences within the model, thus

increasing the number of observations within each state, they should produce more efficient

and accurate results than regular HHMMs (RHHMMs). It will be demonstrated that

the MSHHMM is a more accurate model than the HMM for tasks that are based upon

information of a hierarchical nature. Furthermore, by taking advantage of repeated sub-

models, the MSHHMM shall be shown to require less processing time than either the

RHHMM or the HMM.

1.4 Contributions

The thesis makes contributions in the form of new techniques for improving hierarchical

hidden Markov models, and applying these techniques to a range of sequences.

• A novel Merging, applied during training, that combines the information in sub-

models that represent repeated structure in the input data, thus increasing obser-

vation counts and accuracy.

• A novel Simplification, applied during testing, that calculates a summary of the

sub-model elements of a particular internal state, simplifying them into three trans-

formed states: state-in, state-stay and state-out. This decreases the processing time

required.

• A novel Smoothing that increases the extraction accuracy. The technique involves

adjusting the observation probability distributions for states in the model to account

for unseen events.

• A novel Pattern Generalisation that reduces the amount of training data required

for a reliable model.

• A novel Structure Formation that reduces the dependency of observation symbols

10 Introduction

within each state. This process involves splitting states that contain different sig-

nificant features.

• A novel Partial Flattening that reduces the complexity of the model. This process

involves the application of a phrase extraction algorithm followed by observation

and state dependency calculation.

1.5 Thesis Structure

Chapter 2 begins with a brief review of existing research relating to HHMMs. The chapter

is divided into five key areas: hidden Markov models, hierarchical hidden Markov mod-

els, Stochastic Context-Free Grammars, Dynamic Bayesian Networks, and other related

techniques.

Chapter 3 describes the details of the HMM. The first section introduces its elements.

Section 3.2 explains the basic algorithms, and the problems associated with HMM use:

evaluation, alignment and training. All three problems are studied, along with algorithms

to solve them. A discussion of the limitations of the model is provided in Section 3.4. The

discussion also addresses difficulties inherent in source data with certain characteristics,

such as large numbers of states.

Chapter 4 describes HHMMs, including the method for training and testing the MSHHMM

used during this research and information on how its hierarchical structure is created. The

chapter begins with an introduction to the model and then describes its standard notation

in Section 4.2. Section 4.3 introduces the elements of the sub-model and details an effi-

cient way of reforming the transition matrix for the sub-model. Section 4.4 describes the

process of combining sub-states. Section 4.5 discusses the structural issues of the HHMM,

and Section 4.6 applies the HHMM to extract information from unstructured data.

Chapter 5 applies MSHHMMs to various natural language tasks. Section 5.2 discusses

the reference tagging task. Section 5.3 shows how HHMMs can be applied to the text

1.5 Thesis Structure 11

chunking task, where the sequence of observations is represented by part-of-speech tags.

In both sections the results of applying the MSHHMM are compared to the results from

equivalent RHHMMs, SHHMMs and HMMs.

Chapter 6 discusses techniques for further refining HHMMs. Section 6.1 introduces a

new smoothing technique, called C-smoothing. The approach is based on estimating the

probability distribution of how frequently low count states can be expected to encounter

an unseen variable. The results are compared against various smoothing techniques, such

as Bayesian smoothing using Dirichlet Priors [Berger, 1985], Absolute Discounting [Ney

et al., 1994] and Jelinek-Mercer [Jelinek and Mercer, 1980]. Section 6.2 demonstrates a

pattern generalisation for input data when applied to the reference tagging task. Section

6.3 illustrates a new technique to improve the HHMMs on reference tagging tasks, called

structure formation. The process involves splitting a state when it contains different

features, thus providing more independent features for each resulting state. Section 6.4

presents a new automatic partial flattening process that uses a term extractor method

[Pantel and Lin, 2001]. The partial flattening process can reduce the depth of the hierar-

chical structure for HHMMs by moving sub-trees from one node to another.

CHAPTER 2

Background

Computing already provides well established automated mechanisms for storing, index-

ing, searching and retrieving structured data. However the proliferation of other formats

of data, such as natural language media, has created great interest in automated systems

that would offer accessibility similar to that of structured data. The problem is that,

while computers can process the rigid structure of fixed formats, they are far less ac-

curate in understanding unstructured natural language formats—something humans are

better at. This gap between human and machine understanding is the focus of several

areas of study; for example, Machine Learning and Natural Language Processing are used

to assign structure to natural language media.

This thesis focuses on the use of hierarchical hidden Markov models (HHMMs) as a

method of automated NLP and text mining. However there are several other interesting

approaches that were considered during the development of this model. Each of these

approaches has various advantages and disadvantages which are discussed in this chapter.

By combining lessons learned from previous research, the HHMM attempts to address the

drawbacks of other models and to exploit the structural nature of NLP in order to model

the structure in a way that is more robust and offers deeper understanding of the problems.

This chapter gives a brief history of the Markov Chain, the HMM and the HHMM,

then discusses two related hierarchical models: Stochastic Context-free Grammars and

14 Background

Dynamic Bayesian Networks, along with other related techniques. All of these sections

describe the theory behind each technique and give examples of some real-world applica-

tions.

2.1 Markov Chains

A Markov chain is a sequence of X0, X1, . . . , Xt of random variables, which has the prop-

erty that the conditional distribution of Xn+1 is given by:

P (Xn+1 = k|X0 = h, . . . , Xn = j) = P (Xn+1 = k|Xn = j), (2.1)

where h, j, . . . , k are values belonging to the discrete state space [Rabiner, 1989], and the

probability distribution of Xn+1 is only dependent upon the previous state probability

distribution Xn. If the state space is finite, the transitional distribution can be represented

in matrix form, called the transition matrix, where the element in row i and column j is

equal to:

P (Xn+1 = i|Xn = j). (2.2)

Example : Consider a two-state Markov process with state variables a and b. The

transition probabilities can be written in matrix form:

a b

P =

⎡
⎣ α 1− α

1− β β

⎤
⎦ a

b
(2.3)

where α, β ∈ [0, 1], and the value in cell (i,j) represents the conditional probability of

transition from state i at time t to state j at time t + 1. For example in Figure 2.1, the

probability 1− α represents the transition probability from state a to state b.

A Markov Chain is a specialized type of Finite State Automata (FSA) [Carroll and Long,

1989]. An FSA is a computational model that consists of a finite number of states and

the transitions between them. When the transitions between the states are controlled by

probability distributions, the model is called a Probabilistic Finite State Automata [Ron

2.2 Hidden Markov Models 15

β

ba

α

1−β

1−α

Figure 2.1: Two-state Markov process

et al., 1994]. Probabilistic Finite State Automata have been widely used in many areas of

computational linguistics because of their benefits in the process of representing a series

of lexical rules.

2.2 Hidden Markov Models

The models discussed in the previous section contain only one observation per state—that

is, each state would be associated with a single ‘event’ in the source data. That said, the

question arises about where it is more useful and efficient to construct a model where

each state contains several different observations.

P(H)=Pa P(H)=Pb

aP(T)=1−P bP(T)=1−P

b

α

1−β

1−α β

a

Figure 2.2: Two-coins hidden Markov model

Consider a simple coin tossing experiment on a two-state Markov process as in Figure 2.1,

where state a represents person performing the coin tossing experiment and state b rep-

resents a second person performing the coin tossing. Figure 2.2 represents the two-state

model with the observation symbols being heads (H) or tails (T). The transition repre-

sents the probabilities of changing the person throwing the coin. Each state may output

either heads or tails based on the probability distribution (Pa or Pb) for each state. When

16 Background

the model transitions into one of these states, the state will match against one of its obser-

vations according to some probabilistic function—a function based upon the state itself.

Such a model makes more efficient use of repeated structure in the source data, rather

than becoming distracted by the individual ‘events’. However as a consequence of con-

structing a model in this fashion, observations are no longer directly observable from the

model but, instead, can only be observed by making a transition through the set of states.

This, in turn, will produce the sequence of observations. For example, in the coin tossing

experiment the person throwing the coin is known (i.e. the state) but the outcome of a

coin throw (the observations head and tails) are hidden. A model of this form is called a

hidden Markov model (HMM), named so because of the ‘hidden’ nature of its observations.

HMMs are often used to address sequential problems [Chang and Martinsek, 2004], where

the states must sometimes be matched against unobserved ‘events’. The Markov model

component provides the transition probabilities between these states. When encountering

an unobserved event, the model can predict a matching state by knowing the state prior

to and immediately following the event.

The basic theory of HMM was published by Baum et. al. [1966; 1967; 1968; 1970] in

the late 1960s. It built upon the standard Markov Model by providing the means for

constructing a model for the situation where only the sequence of observations is visible,

with the events themselves being hidden. However the theory, published in mathematical

journals, was not easily understood and did not attract the attention of the speech recog-

nition engineers—who would ultimately make use of its modelling power—until several

years later. Indeed, it was the later efforts of Rabiner [1986; 1989] and others, who de-

veloped tutorials to explain the theory of hidden Markov models and illustrate how they

could be applied in speech recognition, that generated for HMMs a huge amount of inter-

est in the computer science world. The tutorials further helped foster the understanding

of the theoretical aspects of the various types of HMM, by giving detailed instructions

for their implementation. As a result, several research labs, now armed with a better

understanding of the basic mathematical theory, began their work using HMMs in speech

processing applications and other related research areas.

2.2 Hidden Markov Models 17

Now that the foundations of HMM were understood, researchers could begin experi-

menting with methods of model construction that were either more accurate (correct

information extracted) or more efficient (in terms of training and processing time, and

in the amount of training data required). McCallum [1999; 2000] and others [Seymore et

al., 1999; Freitag and McCallum, 2000] investigated training a model from data using an

HMM, where the accuracy of the HMM extractor is affected by how the transition states

are selected. The goal of the research was to develop an automated process for selecting

the best model structure in order to maximise the extraction accuracy, the hypothesis

being that state structure is a major factor in the final model accuracy. The process itself

would begin with a simple model and then split into one or more states and evaluate the

resulting model in terms of its accuracy, repeating this process until a maximum result

is achieve (as determined by a hill-climbing algorithm). Freitag and McCallum [1999]

also developed an HMM which made use of shrinkage—a statistical technique capable of

improving HMM parameter estimation—to address the problem of balancing the need to

construct complex models against sparse training data, a problem that this research also

addresses.

Bikel [1999] and Borkar [2001] illustrated the use of HMMs to extract names and numeric

tags from a free text document. For example, their model extracted tags like Title,

Author, and Affiliation from the titles of computer science research papers. Bikel used

the HMM to recognise and classify names, dates, times and numerical quantities from

English, Spanish and speech inputs. This application of an HMM is repeated in this

research, and is called Reference Tagging. Borkar made use of a two-level nesting of

HMMs to improve accuracy. The ‘lower’ models are small and capture the information

surrounding a sequence of highly dependant words (such as a name), whereas the ‘higher’

model captures the overall structure of the observation sequence using the lower models

as building blocks. By doing so, Borkar tied together the smaller independent models

into one sequence—an idea that is analogous to the structured use of the sub-groupings

of states in this research, although the use of sub-groupings is not limited to two levels.

18 Background

2.2.1 Techniques

In most applications of HMMs, the model parameters are estimated by an Expectation-

Maximization (EM) procedure called the Baum-Welch algorithm [Baum and Petrie, 1966;

Baum and Egon, 1967; Baum and Sell, 1968; Baum et al., 1970]. The method is based

on calculating and utilising the maximum-likelihood estimation for the model parameters

until those parameters have been locally maximised. A model trained in such a way can

then be used to find the most likely hidden state sequence.

Given an observation sequence O = {o1, o2, . . . , ot}, the HMM system must identify the

best sequence of states S = {s1, s2, . . . , st} that would produce such a sequence. There

are many different ways of determining the best sequence of states. The most common

algorithm is the Viterbi algorithm [Viterbi, 1967], which uses a set of model parameters

to generate the most likely probabilistic model and state sequence. The Viterbi algorithm

involves finding the highest likelihood path among those states searched. Rabiner [1986]

has shown that this is an effective process for general language processing tasks.

31

O 3

O 4 O 6

O 5

O 2

O 1

S S2S

Figure 2.3: Example of a standard HMM

Figure 2.3 shows a simple HMM with three states {S1, S2, S3}, with observation symbols

inside the rectangles, where state S1 contains {O1, O2} as observations. The intention

of this model is to correctly ‘fit’ a sequence of values, or observations. Each state of

the sequence contains an observation, and thus the sequence is really just some path

transition through one or more states. For example, a sequence of observations with its

corresponding sequence of states for the model in Figure 2.3 might be:

O = {o1, o3, o4, o5} → S = {s1, s2, s2, s3}

2.2 Hidden Markov Models 19

where there is a one-to-one correspondence between the observations and states. A more

detailed description of the model will be presented in Chapter 3.

2.2.2 Application

HMMs are useful when considering a part-of-speech tagging task. A model can be con-

structed by associating each word with a tag, such as assigning “apples” a Noun tag,

where each tag will then become a state in the finished model. Each state will have

as its observations a set of words whose likelihood of being matched is controlled by a

probability distribution. The model learns this distribution from the relative number of

occurrences of each word in the training data. In order to label a new sentence with

part-of-speech tags, the sentence is treated as a sequence of observations, one per word,

against which the model attempts to match the most likely state sequence. It does so

by using the Viterbi algorithm as mentioned previously. Each state in the resulting state

sequence represents the part-of-speech tag that will be associated with the word from the

sentence.

Figure 2.4 (from McCallum talk [McCallum, 2004]) shows a list of part-of-speech tags

with their corresponding tag symbols and some examples of words. Consider an example

of part-of-speech ambiguities as shown in Figure 2.5. The figure shows that the word

“flies” can be tagged as either VBP or NN. Likewise the word “like” can be tagged as

either JJR or VBP. The sequential nature of the HMM allows it to resolve such ambi-

guities by identifying the context of the word in terms of its position in the sequence of

part-of-speech tags. It does so by first deciding upon a state, taking into account the

previous and following states. In sentence (a), the word “flies” is tagged as VBP in the

proximity of the previous state NN and the following state JJR, whereas, in sentence (b),

it is tagged as NN in the proximity of the previous state NN and the following state VBP.

20 Background

Part-of-speech TAG Examples

Adjective JJ cold, kind

Adjective, comparative JJR less, more

Adjective, cardinal number CD 2, eleven

Adverb RB sideways, differently

Conjunction, coordination CC for, and, nor, but

Conjunction, subordinating IN after, although, if

Determiner DT a, an, the

Determiner, post-determiner JJ all, few, many

Noun NN engine, corpus

Noun, plural NNS men, apples

Noun, proper, singular NNP Hamilton, John

Noun, proper, plural NNPS Australians, gods

Pronoun, personal PRP you, we, she, it

Pronoun, question WP who, whoever

Verb, base present form VBP walk, jump

Verb, the -s form of the verb VBZ is, ‘is

Figure 2.4: Example of part-of-speech tags

sentence (a): time flies like a banana

tags NN VBP JJR DT NN

sentence (b): fruit flies like a banana

tags NN NN VBP DT NN

Figure 2.5: Example of part-of-speech ambiguities

2.3 Hierarchical Hidden Markov Models

An HHMM is a structured multi-level stochastic process that can be visualised as a tree

structured variant of the HMM. There are two types of hidden states: production states

(a child state or leaf node of the tree structure); and internal states (a parent state or node

2.3 Hierarchical Hidden Markov Models 21

that contains the leaf node), which contain production states or other internal states. The

difference between a standard HMM and a hierarchical HMM is that individual states in

the hierarchical model can contain sequences of nested states or observations, whereas

each state in the standard HMM can contain only linear sequences of observations, due

to its linear nature.

HHMMs were first proposed by Fine [1998] to resolve the complex multi-scale structures

that pervade natural language, such as speech [Rabiner and Juang, 1986], handwriting

[Nag et al., 1985], and text. The main idea is to allow HHMMs to correlate structures

that are arbitrarily far apart and to handle the statistical inhomogeneities for different

sub-models. The sub-models of HHMMs can be used to spot frequent letter combinations,

punctuation and the ending of phrases in natural English text. For example, the states at

different levels can be seen as expert. The production states produce high probabilities

on short frequent strings, such as: ing th wh ou. Internal states produce frequent words

and phrases, such as ‘will’, ‘such’, ‘not’, and the root state produces a sentence. Based on

Fines’ work, Skounakis [2003] describes the HHMM as multiple “levels” of HMM states,

where the lower levels represent each individual output symbol, and upper levels repre-

sent the combinations of lower level sequences. Skounakis [2003] also introduced a novel

modification of HHMMs, where phrases and states must have matching types, and that

phrase states must contain complete phrases. The observations can be treated as feature

vectors, which lead to the observation and grammatical knowledge cooperating within IE

models.

The original HHMM by Fine [1998] is restricted to a tree structure that does not allow the

sharing of common sub-structures in the model. Bui [2004] presents a general HHMM in

which the state hierarchy can be a lattice allowing the arbitrary sharing of a sub-structure

at the lower levels of the model; for example, the models for hand-written scripts where

different sub-models of word level states should be able to share the same sub-models

of letter level states. For the alignment aspect, the inside-outside algorithm [Lari and

Young, 1990] is used to determine the beginning and the end for each of sub-model. The

inside-outside algorithm is similar to a technique used in probabilistic context-free gram-

22 Background

mar, where the outside observations are grouped into one.

’
8

18 19 2017

8

18 19 2017

8

18 19 2017

1

2 3

4 5 6 7

10 11 128’

9

14 15

16

13

8’

8’

’

’

Figure 2.6: Example of an HHMM

Using a hierarchical structure has the advantageous of being able to merge together re-

peated parts of the structure. Figure 2.6 shows that state 8 is repeated at three different

positions in the HHMM, denoted as state 8′, 8′′ and 8′′′, which are the children of states

5, 3 and 15 respectively. The three states share the common child states 17, 18, 19 and

20. For the HHMM, the system is only required to train state 8 once, instead of states 8′,

8′′ and 8′′′ separately, resulting in less computational costs in building compared to the

HMM. Other advantages of the HHMM over the HMM include a smaller total number

of states needing to be identified and the fact that each merged state has an increased

amount of training data (‘events’ from all three positions in the model) leading to better

probability estimates, and, therefore the system is capable of more stable predictions.

2.3.1 Techniques

In most applications of HHMMs, the model parameters are estimated by an Expectation-

Maximisation (EM) procedure called the Baum-Welch (or forward-backward) algorithm

2.3 Hierarchical Hidden Markov Models 23

[Baum and Petrie, 1966] (which is the same algorithm that is used in HMMs), and trained

models are used to find the most likely hidden state sequence by the Viterbi [Viterbi, 1967]

search algorithm. However, due to the multi-level nature of the HHMM, the parameters

used in these algorithms are more complicated to estimate. As a consequence the sys-

tem needs to re-calculate the observational and transitional probabilities for each level.

This procedure involves calculating the observation distribution for each level and then

reforming the transition matrix by including estimated values for each level.

The probabilistic information for each internal state is determined by a bottom-up algo-

rithm, where lower levels of the hierarchy tree are calculated first to provide information

for the upper level states. Once all the internal states have been calculated, the top-level

of the hierarchy tree can be used to estimate the probability sequences. This means the

model will now become a linear HMM for the final Viterbi search process [Viterbi, 1967].

A more detailed description of this process will be provided in Chapter 4.

2.3.2 Application

In recent years automated reference linking has become widely developed in documents

like journal articles, digital libraries, hypertext and web publishing. For example, the

Open Journal Project [Hitchcock et al., 1998] provides a web based repository that system-

atically marks up documents with reference links, thus providing faster access to related

information, such as associated journals or other online information. Another example of

journal reference linking is the popular dynamic delivery system IngentaConnect1, which

extends the search content to full text, abstract and indexing services. The “Forward

citation linking” agent provides a pathway to other articles that cite the article currently

being read. Connetea2 provides a free online reference management service created by

the Natural Publishing Group3. Connetea allows users to store and share their reference

lists online. The Open Citation Project4 analyses the operational semantics of documents

1IngentaConnect, http://www.ingentaconnect.com/about/publishers/reference linking services
2Connotea, http://www.connotea.org/
3Nature Publishing Group, http://npg.nature.com/
4Open Citation project, http://opcit.eprints.org/

24 Background

to determine the features for ‘optimal linking’. Many digital library communities have

adopted the OpenURL [Sompel, 2001] standard as a basis for enabling reference linking,

for example the National Information Standards Organization5 (NISO).

Reference

[1] T. Moloney, A. C. Lea, and C. Kowalchuk. Manufacturing and packaged goods.

In G. H. Castle, editors, Profiting from a Geographic Information System.

GIS World, Inc., Fort Collins, CO, 1993.

States

author: T. Moloney, A. C. Lea, and C. Kowalchuk.

title: Manufacturing and packaged goods.

editor: In G. H. Castle, editors,

booktitle: Profiting from a Geographic Information System.

publisher: GIS World, Inc.,

address: Fort Collins, CO,

year: 1993.

Figure 2.7: Example of the reference tagging task

Traditionally, the reference linking task is solved using an HMM, where HMM states mark

up the reference [Bikel et al., 1999; Miller et al, 1998; Zhou and Su, 2002]. The reser-

ach will show that an HHMM, when applied to this task, is more efficient and accurate

because it can make use of repeated structure of sub-groups that are only exposed by a

hierarchical model.

5National Information Standards Organization, http://www.niso.org/

2.4 Related Work 25

In Figure 2.7, the reference is segmented into useful fragments as; author, title, editor,

booktitle, publisher, address and date. Figure 2.8 illustrates a hierarchical relationship be-

tween author, editor and persons’ name, where both author and editor can be the parent

node of the person’s name, and the model can also split the name into different sub-states,

such as first name and last name. By identifying these properties, the system can make

use of the information to perform the Reference Linking tasks.

publisherauthor title yearaddresseditor

name name

name

first middle last
name

con
name name

name

first middle last
name

con

booktitle

Figure 2.8: Example of a copied model

2.4 Related Work

2.4.1 Stochastic Context-Free Grammar

A stochastic context-free grammar (SCFG) is a variant of an ordinary context-free gram-

mar where each production is assigned a probability. SCFGs express context-free gram-

mars in the same way that HMMs express regular grammars, where regular grammars

are the weakest class of grammar in the Chomsky Hierarchy [Chomsky, 1965]. The model

is frequently used in tasks such as natural language processing [Stolcke, 1994], speech

recognition [Jelinek and Lafferty, 1991] and RNA sequencing [Jurafsky and Martin, 2000].

26 Background

Rule Probability

S → AB 1.0

A → a 0.6

A → CS 0.4

B → b 1.0

C → a 1.0

Figure 2.9: SCFG for the language anbn

A context free grammar (CFG) is a formal grammar that consists of a set of rules to

describe the language grammar, and production rules are represented in the form:

Ri → si

Ri → RjRk

where Ri represents a non-terminal symbol and si represents the terminal symbol. The

non-terminal symbol Ri can always be replaced by terminal symbols si in context-free

form. Figure 2.9 shows an example of a simple SCFG, where each production is assigned

with a probability in the second column, and the probability for a non-terminal symbol

must sum to one. The SCFG model generates the language of {anbn} with n ≥ 1. The

probability of a string ab can be calculated as product of probabilities for rules used. For

example,

a b → A b → AB → S

(0.6) (1.0) (1.0)

where the process starts from the beginning of the string, and recursively replaces the

production rules provided in Figure 2.9 until the end of the string. The probability of

string ab is equal to P (ab) = 0.6 × 1.0 × 1.0 = 0.6, and the probability for string aabb

is equal to P (aabb) = 0.24. The probabilities of all possible strings sum to 1. The

probabilities are calculated using the recursive Inside-Outside algorithm [Lari and Young,

1990]. The Inside-Outside algorithm is related to the Forward algorithm and Backward al-

gorithm, and is used to calculate the probability of a sequence based on some SCFG rules.

2.4 Related Work 27

A particular implementation of the SCFG model makes use of push-down automata, where

possible rules are recursively refined as they are encountered on a stack of unbounded size.

By doing so, the SCFG accurately uncovers the hidden embedded structure within speech

and other natural language data—exactly the ability required to bridge the understanding

gap when automatically analysing and processing natural language. A second advantage

of SCFGs is that they are robust against ambiguities created when forming the grammar

rules. Ambiguity is caused when there is more than one possible parse tree, and thus mul-

tiple trees that could match the input data. A SCFG addresses this problem by selecting

the highest probability tree, as determined during the recursive process.

However this same ability becomes a disadvantage when a SCFG is applied to data which

does not have a complex hidden structure—such as those that have the property of a

finite regular grammar. In such a case the SCFG will still use the complex and expen-

sive Inside-Outside recursive algorithm. The algorithm involves a complexity of O(N3),

whereas a simple modelling language could be used to solve the problem more efficiently.

SCFGs, much like HHMMs, have the potential to identify patterns within natural lan-

guage data, such as speech. The main uses of the SCFGs are:

• solving sequential problems that contain hierarchical structures.

• identifying the occurrence of sub-sequences.

• predicting combinations of sub-sequences, e.g. the secondary structure in RNA

sequence.

There are issues to consider when applying these models to data, problems common to

both HHMMs and SCFGs. These problems can be grouped into three distinct categories:

evaluation, alignment and training.

1. Evaluation Problem: This problem involves estimating the probability P (O|λ)

of an observed sequence O = {O1, O2, . . . , OT}. This procedure allows the system

to choose a suitable model (λ) for the observation sequence. For the HHMM, this

problem can be solved by the Forward Algorithm. For the SCFG model, the problem

28 Background

is solved by providing an estimation for the set of rules by using the Inside-Outside

algorithm [Lari and Young, 1990].

2. Alignment Problem: This problem involves assigning the most likely state se-

quence Q = {q1, q2, . . . , qT} for a given observation sequence O = {O1, O2, . . . , OT}
using model parameters λ. This procedure identifies the most likely state sequence

and estimates the best possible solution. For the HHMMs model, this problem can

be solved by the Viterbi algorithm described in Chapter 4, where the algorithm com-

putes the most likely state sequence given an observation sequence. For the SCFGs

model, this problem is solved by the Cocke-Younger-Kasami (CYK) algorithm [Lari

and Young, 1990], where the process proceeds bottom-up by assigning non-terminal

symbols to combination of terminal symbols.

3. Training Problem: This problem involves finding the most likely set of model

parameters λ to maximise P (O|λ). For the HHMM, this problem can be solved

using the Baum-Welch algorithm [Baum and Petrie, 1966], where the procedure re-

iterates several times to reach to a local maximum set of λ∗. For the SCFG model,

the observation sequence is determined by the set of grammar rules, where the rule

probabilities can be estimated iteratively using the Expectation-Maximisation (EM)

procedures to find the local maximum likelihood value for the model parameters.

2.4.1.1 Techniques

To find the best model for a given sentence, the SCFG uses a variant of the Cocki-Younger-

Kasami algorithm [Lari and Young, 1990] to determine the most likely parse tree (which

is formed by both terminal and non-terminal symbols). This algorithm is commonly used

to logically fold RNA sequences [Durbin et al., 2001], where the important grouping factor

is not the sequence itself but the underlying secondary structure. Thus it can be applied

to natural language problems in much the same way to uncover the hidden structure.

The Cocki-Younger-Kasami variant is similar to the Viterbi algorithm for HMMs in that

it calculates the most likely path between different hidden states. This variant is widely

known as the Inside-Outside algorithm [Lari and Young, 1990] and is comparable to the

forward algorithm [Baum and Egon, 1967] in the HMM. The procedure involves calcu-

2.4 Related Work 29

lating the probability of a given sequence by summing up the probabilities of the most

probable parse trees. The processing complexity of this algorithm is O(N3), where N is

the number of non-terminal symbols.

The application of the Inside-Outside algorithm is again similar to that of the Forward

and Backward algorithm in the HMM. The process uses the Expectation-maximisation

algorithm to compute the maximum likelihood of the grammar parameters, and each step

of the process produces an estimation of the model parameters for the SCFG model. The

Inside-Outside algorithm is a computationally expensive process that runs in O(N3T 3)

time, where N is the number of non-terminal symbols and T is the length of the sentence.

2.4.1.2 Application

The following is an example of a SCFG built to address the well known Natural Language

task of text chunking. Consider a sentence from CoNLL-20046 for text chunking process:

He PRP reckons VBZ the DT current JJ account NN deficit NN will MD

narrow VB to TO only RB # # 1.8 CD billion D in IN September NNP

. .

where the part-of-speech tag associated with each word is attached with an underscore.

Text parsed is represented by the part-of-speech tags as:

PRP VBZ DT JJ NN NN MD VB TO RB # CD D IN NNP .

This thesis addresses the problem of modelling the structure of the sentence. Only the

part-of-speech tags and grammar information are considered for the extraction tasks. The

output of the tagged text is expressed as:

(S (NP He PRP) (VP reckons VBZ) (S (NP the DT current JJ account NN

deficit NN) (VP will MD narrow VB) (PP to TO) (NP only RB # #

1.8 CD billion D) (PP in IN) (NP September NNP)) (O . .)).

6The 2004 Conference on Computational Natural Language Learning, Boston, MA, USA, 2004,

http://cnts.uia.ac.be/conll2004

30 Background

where the sentence involves the clause information identified by the S symbol, and the

chunking information is identified by the symbols of NP (noun phrase), VP (verb phrase),

PP (prepositional phrase) and O (null complementizer). The brackets are in Penn Tree-

bank II style.7

NIL

SVPNP

PRP VBZ NP

JJ NN NN

VP

MDDT TO

PP NP

RB # CD D

PP

IN .

O

Figure 2.10: Diagram of the parse tree from Penn treebank

Figure 2.10 shows the structure of the sentence in the tree form, where the leaf nodes of

the tree are the part-of-speech tags, which are in turn are associated with the words of

the sentence, and NIL represents the root of the sentence. The sentence contains only

the part-of-speech tags and syntactic information. The SCFG production rules for this

sentence can be represented in the form:

NIL → NP VP S (1.0)

S → NP VP PP NP PP O (1.0)

NP → PRR (0.33)

NP → DT JJ NN NN (0.33)

NP → RB # CD D (0.33)

VP → VBZ (0.5)

VP → MD (0.5)

PP → TO (0.5)

PP → IN (0.5)

O → . (1.0)

7The Penn Treebank Project, http://www.cis.upenn.edu/˜ treebank/home.html

2.4 Related Work 31

where the items in bold represent the terminal symbols (i.e. part-of-speech tag) in the

sentence, and the probability associated with each rule is given in parentheses. The

probabilities of a set of productions are calculated by the possible non-terminal rules that

are associated to it. For example, a non-terminal symbol NP is associated with three

rules; PRR, DT JJ NN NN and RB # CD D, and the sum of all probabilities must be

equal to one (1
3

+ 1
3

+ 1
3

= 1).

2.4.2 Dynamic Bayesian Networks

A Bayesian network is a directed acyclic graph that represents the dependence relations

between the variables in a probabilistic model. The graph is constructed with nodes and

arcs; a node represents a variable that contains an observation and/or probability distri-

bution parameters; an arc represents the dependency relations amongst the variables; and

the network is formed by the nodes and arcs between them. The probability distribution

for a sequence of variables can be estimated by the joint probability distribution under

the Bayesian formalism [Heckerman et al., 1995],

p(x1, . . . , xn|λ) =

n−1∏
i=1

p(xi|
∏

i
, λ) (2.4)

where
∏

i represents the set of variables {x1, . . . , xn−1} and λ represents the model infor-

mation.

The Dynamic Bayesian Network (DBN) was introduced by Schaefer [1997] as an extension

of Bayesian Networks. The network graph of DBN represents a model that deals with se-

quential time events. Murphy [2002] describes different models that can be represented as

DBNs, and how to approximate inference and learn DBN models from sequential events.

For example, Murphy considers HHMMs as a special kind of dynamic Bayesian network

and derives a simpler inference algorithm. The complexity of such a DBN is linear in

time, but exponential in relation to the depth of the HHMM.

The network graph of a DBN represents event flow over time [Ghahramani and Jordan,

1997], where each variable within the model is assigned a time index as an extra param-

eter. This index parameter allows the probability distribution to be modified depending

32 Background

on the current time. Note that the model does not change over time; only the probability

distribution within the variables changes.

Consider the case of DBN where the set of variable at time t is dependent on only the

previous time index’s variable (t − 1). In this instance, the model does not require ‘his-

tory’, which allows it to be approximated to a Markov model. Figure 2.11 represents

this DBN, which is now structured similar to a Markov model, where the model contains

states {x1, x2, x3, x4} associated with observations {y1, y2, y3, y4} respectively.

x 2x 3x 4x

1y 2y 3y 4y

1

Figure 2.11: Markov process as a Bayesian network

The main difference between a DBN model and a HMM is that of the representation of

state and state history. In a HMM the hidden state is assigned a probability distribution

based on the variables which have occurred in a single, discrete, state. In contrast, a DBN

state represents the hidden state with a set of probability distributions that are dependant

on the variables of the previous states. Figure 2.12 is a three level HMM represented as

a DBN (as described by Murphy [2002]), where Qd
t is the state at time t and level d. The

F d
t is the binary indicator variable to identify the status of the current node for time t,

where the current node is still at level d or finished level d.

As with all techniques mentioned in this section, there are advantages and disadvantages

to the DBN technique. The DBN model makes use of historical parameter information; it

can also make use of temporal dependency controls, whereas a HHMM cannot. Consider

the case where a certain sequence has a far greater probability of occurring after another

sequence—a fact that could be leveraged in the DBN model as the model remembers the

previous state. In terms of computational complexity, the DBN model performs relatively

well, with its cost being O(QDT), where D is the total number of levels and T is the time

2.4 Related Work 33

2

Y1 Y Y2

F

F

F

Q

Q

Q

F

F

F

Q

Q

Q

F

F

F

Q

Q

Q
1

1

1

2

1

3

1

3

2

1

1

1

1

2

2

2

3

3

3

3

3

2

2

2

3

2

1

3

1

3
1

2

3

3

3

2

Figure 2.12: Markov process as a Bayesian network

period. Also the structure of the model is easily changed, for example, by removing arcs

between states.

The disadvantages of a DBN arise when learning a probabilistic distribution for a large

sparse network, which contains a large set of parent variables. The learning process for

each individual relation can be computationally expensive.

2.4.2.1 Techniques

Constructing a Bayesian Network model involves learning the structure of the network,

and estimating the parameters for each variable within the model. Given a set of training

data, the model attempts to learn the distribution of probabilities for transition between

variables, and also the probability distribution within each state, which is equivalent to

the transition distribution and observational distribution for the hidden Markov model.

Different tasks require different methods to compute the distribution. Cheng [1997] de-

scribes an algorithm for learning structure by using the mutual information value to

calculate the joint probability of adjacent variables. Mutual information is a measure-

ment of the information of event Xi that is shared by event Xj. The formula for mutual

34 Background

information (I) is given as:

I(Xi, Xj) =
∑
xi,xj

P (xi, xj) log
P (xi, xj)

P (xi)P (xj)
, (2.5)

where P (xi) represents the probability of variable xi within the training data, and the

higher values of I(Xi, Xj) indicate that more information is shared between these two

variables (xi and xj).

The probability distribution within states can be estimated by calculating the expected

value of each event encountered. The Dirichlet distribution is the conjugate prior of the

parameters of the multinomial distribution [Gelman et al., 1995]. The Dirichlet distri-

bution is often used to adjust probability distributions for each event, and the algorithm

provides the flexibility to set the probability density in each individual variable.

2.4.2.2 Application

A DBN can be used when attempting to solve the Robot Localisation task—a popular

topic in AI—which concerns the task of orienting a robot with respect to its surroundings.

The problem can be summed up as identifying the location of a robot based on possibly

inaccurate sensor data [Thrun, 2002]. There are two aspects of the localization task;

estimating the global position and estimating the local position. The global position esti-

mation task involves estimating the position of the robot on a predefined map (e.g., robot

navigation [Borenstein et al., 1996; Kortenkamp et al., 1998]). The local position estima-

tion task is where the robot keeps track of its position relative to the starting point over

a period of time. Theocharous [2001] uses a DBN to provide a faster learning algorithm

than the Hierarchically Partially Observable Markov Decision process (HPOMPDs) for

indoor robot navigation, and Murphy [2001] demonstrates the usage of DBN on particle

filters, which can provide a good learning algorithm to determine colour—an important

observation when attempting to estimate the local position of a robot.

Consider a local position estimation task involving a robot which can only move in one

dimension; left or right depending on the control unit, Ut, where the location of the robot

can be obtained from a range of data, such as, sonar, stereo camera, or laser range-finders.

2.4 Related Work 35

When the initial location of the robot is known for a given map, the system can deduce

the local position after movement by using a DBN model.

T0

L 0

O0 OT

. . .L 1

O1 O2

L 2 L T

0
SO

0LA LA

SO SO

LA TLA

T
SO

U1

1

1 2

2

U U2U

Figure 2.13: Dynamic Bayesian Network for robot mapping task

Figure 2.13 shows the DBN model used in the map learning task, where Lt represents the

location at time t, Ot represents the observation, Ut represents the control unit and SOt,

LAt represent the sources for information about the location of the robot, for instance the

sonar sensor and the laser range-finder. In each time step t, the robot collects the data

from SOt and LAt, where these two sources of data are independent of each other, and

then interprets them using a set of information from the observation Ot (as the sensor

inputs). The robot gathers information from each input source, and then identifies the

location based on the learned DBN model.

2.4.3 Other Related Techniques

A Markov process is governed by the Markov property, which states that the future be-

haviour of the process given its path depends only on its present state. There are many

related variations on the Markov process and this section will briefly outline a few of these.

This is done in order to provide the reader with an idea of some of the other techniques

for improving or modifying an HHMM.

36 Background

A Markov Decision Process (MDP) [Berteskas and Tsitsiklis, 1989] is a four-tuple with

parameters (S, A, P, R), where S represents the state space, A is the action space, P is

the state-transition and R represents the reward function. This process is widely applied

to planning under uncertainty [Boutilier et al., 1999] and reinforcement learning [Sutton

and Barto, 1998]. For example, a robot navigates the environment based upon some form

of sensor data and reacts to the environment accordingly. In general, the information

that a robot can identify is restricted to observations obtained from the sensor data—

observations that may be less than perfect. There is a model called Partially Observable

Markov Decision Process (POMDP) to deal with this type of problem. When a task in-

volves a large state-space with a more complex structure, a hierarchical model called the

Hierarchically Partially Observable Markov Decision Process (HPOMDP) [Theocharous

and Mahadevan, 2002] can be applied. Relational Markov Models (RMM) [Anderson et

al., 2002] are a variation of Markov Models that attempt to expose other hidden relation-

ships by clustering together states that represent observations that share some similar

feature. These ‘related’ states can then further be processed by having their parameters

clustered together. The resulting model can be effective under large sparse data, and

makes good predictions of unseen events.

Freitag [2000] implements a statistical technique called ‘shrinkage’ into the HMM, which

provides a more robust HMM on sparse data, where the data is represented in some hi-

erarchical form with similar sub-states. Raiko [2002] presents the logical hidden Markov

model (LHMM) to enhance the rules learned from the model and give more specific con-

straints. Coupled hidden Markov models (CHMM) [Brand et al., 1997] consist of modelling

N processes for N HMMs, which models the system with multiple interacting processes

to suit the needs of systems that have a structure in both time and space. Meanwhile,

Ghahramani [1997] generalises an HMM state by factoring in multiple state variables

and representing them in a distributed manner. This is called a factorial hidden Markov

model. The model consists of multiple independent causes or factors by collaborating with

a learning architecture called Cooperative Vector Quantization (CVQ) by Zemel [1993].

The process generalises mixture models by allowing the mixture components to cooper-

2.5 Summary 37

ate in modelling the data set. The abstract hidden Markov model (AHMM) [Bui et al.,

2002] consists of HMM states, where the state variables depend on a hierarchy of action

variables. The structure contains the properties of DBN models and can model in a sim-

ilar manner. Vogler [1999] presents a novel approach to American Sign Language based

on parallel hidden Markov models (PaHMMs). It is able to model the parallel processes

independently as the process does not require consideration of different combinations at

training time. Adibi [2001] uses embedded information about self-similar structure to re-

duce the complexity of learning and increase the accuracy of the learned model, creating

a self-similar layered hidden Markov model (SLHMM).

These approaches were considered when developing this research, but their model con-

struction methods were too dissimilar to integrate with the ones implemented.

2.5 Summary

This chapter outlines a brief history of the HHMM and discusses two closely related mod-

els: Stochastic Context-free Grammars (SCFG) and Dynamic Bayesian Networks (DBN).

The theory behind each of these techniques is discussed along with some real-world appli-

cations of those techniques. The chapter has also made mention of several other related

hierarchy based models. Table 2.1 represents the summary of four main models in the

chapter, along with the algorithm used for each of the three fundamental problems, and

the time complexity of testing using the model. The following chapters will discuss both

the HHMM and its predecessor, the HMM, in greater depth.

38 Background

Model Evaluation Alignment Training Time

Complexity

HMM Forward Viterbi Baum-Welch O(N2T)

[Rabiner and Juang, 1986]

HHMM Foward Viterbi Baum-Welch O(N3T)

[Fine et al., 1998]

SCFG Inside CYK EM O(N3T 3)

[Lari and Young, 1990]

DBN Bayesian Dirichlet Forwards-Backwards EM O(N2DT)

[Murphy, 2002]

Table 2.1: Summary of four main models

CHAPTER 3

Hidden Markov Models

Hidden Markov Models (HMMs) were introduced in the late 1960s, and are widely used

as a probabilistic tool for modelling sequences of observations [Rabiner and Juang, 1986].

They have proven to be capable of identifying semantic labels and assigning appropriate

tokens over a wide variety of input types. This is useful for text-related tasks that involve

some uncertainty, including part-of-speech tagging [Brill, 1995], reference tagging [Sey-

more et al., 1999], text segmentation [Borkar et al., 2001], event tracking [Theocharous et

al., 2001], named entity recognition [Bikel et al., 1999] and information extraction tasks

[McCallum et al., 1999; Craven et al., 2000; Eikvil, 1999].

In a regular Markov model, the state transition probabilities are the only parameter since

the state is directly observed—in other words each state will output exactly one obser-

vation symbol. The “hidden” aspect of the HMM arises from the fact that the state is

no longer directly observed because each state does not hold a single observation symbol.

Instead each state may output one of several symbols dependent on a second probability

distribution. As previously mentioned, transitions from one state to another are repre-

sented by a set of transition probability distributions. The system starts with an initial

state, then transitions to a new state as “predicted” by the transition probabilities. As

it enters each state, the system produces an observation symbol from a set of possible

observation symbols as in proportion to the observation probabilities distribution. Once

completed, the model can be applied to a previously unseen sequence of observation sym-

40 Hidden Markov Models

bols in order to calculate the most likely sequence of states required to output such a

sequence.

This chapter presents a brief overview of HMMs by first introducing the building blocks or

elements of HMMs in Section 3.1. Section 3.2 then describes the algorithms applied to the

HMM. These algorithms are separated into three distinct stages: training, alignment and

evaluation. A brief discussion of the limitations follows in Section 3.3. Finally, Section

3.4 provides a summary for this chapter.

3.1 The Elements of HMM

The basic building blocks of any Markov model can be represented as a set of discrete

states and the transitions between them. These building blocks are often called “ele-

ments”, and a typical HMM generally consists of five elements.

With respect to the Hidden Markov model process, the model is characterised by the

following elements [Rabiner and Juang, 1986]:

• Set of hidden states:

S = {S1, S2, . . . , SN},

where N is the number of states in the model.

• Set of observation symbols per state:

V = {v1, v2, . . . , vM},

where M is the number of distinct observation symbols per state.

• State transition probability distribution:

A = {ai,j}, i = 1, 2, . . . , N, j = 1, 2, . . . , N

where ai,j is the probability of transition from state i to j.

3.1 The Elements of HMM 41

• Observation symbol probability distribution:

B = {bj(k)}, j = 1, 2, . . . , N, k = 1, 2, . . . , M

where bj(k) is the probability of kth observation in state j.

• Initial state distribution

π = {πi}, i = 1, 2, . . . , N

where πi is the probability that the first observation starts in state i.

The complete set of parameters for a HMM involves identifying the number of states N

and the number of observation symbols M and calculating the probability distribution for

A, B and π. The complete parameter set of the HMM can be represented in a compact

notation of the form:

λ = (A, B, π). (3.1)

The model itself is limited to a certain set of states—termed hidden states in a HMM—

and S is this set. V is the finite set of symbols emitted by the states as observations.

The A and B are the transition probability distribution and the observation probability

distribution. The mathematical control is the matrix that predicts the transition between

two states. This state transition probability distribution matrix is used by the Markov

process, along with knowledge of the states prior to and following the event being mod-

elled to predict which state the model will enter next. When the model focus is in a

particular state, the observation emitted by that state can be predicted by the observa-

tion probability distribution matrix for that state. The final element π of a HMM is a

probability distribution that predicts the state the model will initially be in. This is called

the initial state probability distribution matrix.

Consider an observation sequence:

O = {O1, O2, . . . , OT}

with corresponding set of states S = {S1, S2, . . . , ST}. For a HMM, the probability of the

42 Hidden Markov Models

sequence can be calculated as:

P (O|λ) = P (S1, S2, . . . , ST |λ)

= P (S1) · P (S2|S1) · P (S3|S2) . . . P (ST |ST−1)

= π1 · a1,2 · a2,3 . . . aT−1,T (3.2)

where π1 represents the probability of initially starting in state S1 and a1,2 represents the

transition probability from state S1 to S2. The transition probability of state ST at time

T is only dependent on previous state ST−1 at T − 1 (as P (ST |ST−1)).

When using an HMM to perform an information extraction task, the goal is to determine

the most likely sequence of states that generates the required output, where the output is

broken into a sequence of observation symbols taken from the set of all possible observa-

tion symbols. Thus given a sequence of observation symbols, O, the system calculates the

most likely state sequence, S, which maximises the model parameter P (O|S, λ) (Equation

(3.2)). For example in a reference tagging task, the main goal is to identify reference tags

(such as author, editor, title, year etc.) as output symbols. This process was introduced

in Chapter 2. The model treats the reference tags as states in the HMM and the total

number of reference tags will be set as the total number of states, N = 8, as in Figure

3.1. The system takes an observation sequence from the references section of a research

paper, then tries to determine the best possible state sequence S for the given observation

O which maximises the model P (O|S, λ).

Figure 3.1 shows a simple HMM for a reference tagging task. The model contains a total

of eight states with the set of hidden states given by S = {author, title, booktitle, volume,

page, number, month, year}. In Figure 3.1, the transition probabilities (A) are labelled on

the edges in the diagram. For example, the probability of transitioning from author to title

is 0.19. The total probability of transitioning out of a state Si is equal to
∑N

j=1 ai,j = 1.

In the model, the state transition starts with an initial state author, then transitions to

the state title, then to pages and so on. Each state outputs an observation from a set

of observation symbols in a probabilistic way. For example, state Author might contain

observation symbols representing names (A. C. Smith, M. Banko and E. Brill.), where

3.2 The Basic Algorithms of HMM 43

booktitle
0.81

0.19

0.08

0.89

volume

month

0.85

0.33

0.07

1.00

1.00

1.00

0.36

0.11

author

page number

year

title

0.31

Figure 3.1: Simple HMM for reference tagging task

an observation symbol of “A.” (as first name) is more likely to appear in state Author as

part of the first name symbol. Here is an example of an input/output sentence for testing

process:

Input: S. K. Gadia. Weak temporal relations. pages 70-77, year 1986.

The output of the system gives the state sequence corresponding to the input sentence:

Output: (author S. K. Gadia.) (title Weak temporal relations.) (pages

pages 70-77,) (year year 1986.)

The output state sequences are generated by applying the Viterbi Algorithm [Viterbi,

1967] to predict the most likely state sequence. The details of this algorithm and several

others used during the HMM process will be described in the next section.

3.2 The Basic Algorithms of HMM

The basic algorithms for HMMs were developed to provide solutions to the three funda-

mental problems associated with the HMM: calculating the probability of a state sequence

and observation with given model parameters; predicting the most likely state sequence

for a given observation; and determining the model parameters. Rabiner [1986] describes

the three fundamental problems for HMM as:

44 Hidden Markov Models

• Evaluation

• Alignment

• Training

Evaluation provides a measurement of how close a given observation sequence matches

against the model (Equation (3.2) in Section 3.1), alignment determines the most likely

state sequence (path) for a given observation sequence, and training involves estimating

the model parameter, λ, to maximise the probabilistic function P (O|λ) against given

observation sequences.

3.2.1 Evaluation Problem

The evaluation problem arises when attempting to compute P (O|λ), which is the prob-

ability that the model will output a certain observation symbol sequence. This can be

viewed as the similarity of a given sequence to the model—the higher the probability,

the closer it matches the model. For example, consider a general research paper which is

processed through a HMM as part of a reference tagging task (as mentioned in the pre-

vious section). The results might show that the last section of the paper contains higher

probabilities against the model—an expected result considering that references generally

appear at the end of a paper. Calculating the evaluation problem of the HMM allows

the system to select the most similar model for a given observation sequence. The most

common way to solve the evaluation problem is to use the Forward-Backward algorithm

[Baum and Egon, 1967], which calculates the forward (α) and backward (β) probability

measures variables for each time step. The forward and backward variables are the proba-

bility of the sequence P (O|λ) against the model in two directions, one from the beginning

of the sequence, and the other from the end of the sequence.

3.2.1.1 Forward Algorithm

The forward algorithm involves computing the probability of a particular output se-

quence given the model parameters λ = (A, B, π) and the observation sequence O =

{O1, O2, . . . , OT}. This can be solved by the forward algorithm [Baum and Egon, 1967].

3.2 The Basic Algorithms of HMM 45

The forward algorithm consists of calculating the probability of an observation sequence

with forward variable αt for each time t:

αt(i) = P (O1, O2, . . . , Ot, qt = Si|λ) (3.3)

where qt represent the state (Si) at time t at given model λ. The parameter αt(i) can be

calculated using induction:

1 Initialization:

α1(i) = πibi(O1), i = 1, 2, . . . , N. (3.4)

2 Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), t = 1, 2, . . . , T − 1 and j = 1, 2, . . . , N.

(3.5)

3 Termination:

P (O|λ) =

N∑
i=1

αT (i). (3.6)

Equation (3.4) computes the initial forward probability for each state Si. Equation (3.5)

calculates the probability for every possible state transition from Si to Sj at t + 1, where

the formula αt(i)aij calculates the joint probability for a particular observation Ot. The

last step of the procedure, known as termination, involves summing the joint probabilities

αT (i) for each state. The resulting probability provides an estimate of a given observation

sequence of {O1, O2, . . . , Ot} for P (O|λ), determined using Equation (3.6). The compu-

tation involved in the calculation of αt(j), 1 ≤ t ≤ T , 1 ≤ j ≤ N , requires in the order of

N2T calculations.

Figure 3.2 illustrates the possible state transitions from Si to Sj at t+1, where αt+1(j) is

the joint probability estimation of the observation sequence {O1, O2, . . . , Ot+1} and state

Sj at time t + 1. Calculating the forward variable allows the system to evaluate the

sequence for the resulting HMM.

46 Hidden Markov Models

(j)

S 1

S 2

S 3

S N

α t t+1α(i)

a

a3,j

a2,j

a1,j

S j

N,j

Figure 3.2: Forward Algorithm

3.2.1.2 Backward Algorithm

The backward procedure consists of calculating the probability of an observation sequence.

The backward variable βt for the observation sequence calculates the probabilities from

time t + 1 to the final output at time T . The backward variable βt(i) can be expressed

as:

βt(i) = P (Ot+1, Ot+2, . . . , OT , qt = Si|λ) (3.7)

where qt represents the state (Si) at time t in the model λ. The parameter αt(i) can be

calculated using induction:

1 Initialization:

βT (i) = 1, i = 1, 2, . . . , N. (3.8)

2 Induction:

βt(j) =
N∑

i=1

aijβt+1(j)bj(Ot+1), t = T, T − 1, . . . , 1 and i = 1, 2, . . . , N. (3.9)

3 Termination:

P (O|λ) =

N∑
i=1

πibi(O1)β1. (3.10)

Equation (3.8) computes the initial backward probability for each state Si at the last step

t = T . Equation (3.9) calculates the probability of state Sj being the destination of a

3.2 The Basic Algorithms of HMM 47

transition from state Si for each state at time t + 1 for times t = T, T − 1, T − 2, . . . , 1,

and the formula aijβt+1(j) calculates the joint probability for a transition from state Si to

state Sj as well as the observation probability in state Sj. As with the forward algorithm,

the computation involved in the calculation of bt(j), t = 1, 2, . . . , T , j = 1, 2, . . . , N , re-

quires on the order of O(N2T) calculations.

β

S i

t+1(j)

i,1

ai,2

a

ai,N

S N

β (i)

S 2

1S

S 3

a

i,3

t

Figure 3.3: Backward Algorithm

3.2.2 Testing Algorithm of HMM

Every state in the HMM is associated with exactly one observation; therefore each sym-

bol is associated with the state that outputs the symbol. In order to solve the alignment

problem for the observation sequence O = {O1, O2, . . . , OT} the system finds a state se-

quence with length T from the initial state to the end state, such that the ith symbol

Oi is output by the ith state in the path. The Viterbi algorithm is then used to find the

highest probability state path generated by the observation symbols.

Given the model parameters λ = (A, B, π) with N being the total number of states, and

the observation sequence O = {O1, O2, . . . , OT}, find the most likely sequence of states

that could have output the given observation sequence. This can be solved by the Viterbi

Algorithm [Viterbi, 1967]. The four formulae for the Viterbi algorithm are:

48 Hidden Markov Models

1 Initialization:

δ1(i) = πibi(O1), i = 1, 2, . . . , N (3.11)

φ1(i) = 0 (3.12)

2 Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij]bj(Ot), t = 2, . . . , T and j = 1, 2, . . . , N (3.13)

φt(j) = arg max
1≤i≤N

[δt−1(i)aij], t = 2, . . . , T and j = 1, 2, . . . , N (3.14)

where bj(Ot) is the probability of outputting symbol Ot at state Sj , and aij is the

transition probability from state Si to Sj . The parameter δt(j) takes the maximum

value among all states of HMM at time t, where φt(j) records the most probable

path for each state Sj .

3 Termination:

P ∗
T = max

1≤i≤N
δT (i) (3.15)

q∗T = arg max
1≤i≤N

δT (i) (3.16)

where P ∗
T records the maximum probability distribution for parameter δ, and q∗T

keeps track of the path based on the value calculated by δT (i).

4 Path tracking:

q∗t = φt+1(q
∗
t+1), t = T − 1, T − 2, . . . , 1 (3.17)

The most likely path can be determined by finding q∗T for arg max1≤i≤N δT (i) at each

time step.

Given an HMM with N states, the computational cost of this process is O(TN2). Com-

pare this to the brute force full path search algorithm which searches every possible path

for every state at time t, whose cost is O(T N).

Figure 3.4 shows the path tracking of five output symbols (t = 5) with four states (S =

{S1, S2, S3, S4}). The solid line between states indicates the most probable path predicted

by the Viterbi algorithm, and the states touched upon by the path being the ‘preferred’

or most likely state sequence.

3.2 The Basic Algorithms of HMM 49

S

t=1 t=4 t=5t=2 t=3

1S

2S

3S

4

Figure 3.4: Viterbi Algorithm

3.2.3 Training Algorithm of HMM

The goal of training the model is to determine values for the model parameters (A, B, π)

that maximise the probability of matching the observation sequences in training data.

That is, find the most likely set of state transitions and output probabilities by adjusting

the model λ = (A, B, π) to maximise Pr(O|λ) for a given output sequence O. This can

be solved by the Baum-Welch algorithm [Baum and Petrie, 1966]. The process involves

re-estimating the parameters A and B to improve the model.

Firstly, the system defines ξt(i, j) as the probability of transitioning from state Si to Sj

at time t + 1 (given the model and the observation sequence) as:

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (3.18)

where ξ is calculated from the forward and backward variables, as shown by:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)

(3.19)

The probability of being in state Si at time t is:

γt(i) =

N∑
j=1

ξt(i, j) (3.20)

50 Hidden Markov Models

The model re-estimation can be calculated using Equations (3.19) and (3.20), where the

model parameters are now defined as:

π̄i = γ1(i) (3.21)

āij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(3.22)

b̄j(k) =

T∑
t=1

s.t. Ot=vk

γt(j)

T∑
t=1

γt(j)

(3.23)

After the parameters have been re-calculated, the compact notation for the model be-

comes λ̄ = (Ā, B̄, π̄). By iteratively applying the Baum-Welch algorithm, the parameters

improve to a point where a local maximum point is found based on Baums’ auxiliary

function:

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) log(P (O, Q|λ̄)). (3.24)

This implies:

Q(λ, λ̄) ≥ Q(λ, λ) =⇒ P (O|λ̄) ≥ P (O|λ) (3.25)

3.3 Limitions of HMM

As with most mathematical models, there are drawbacks to the HMM. For instance

the model cannot easily handle problems with recursive characteristics, and it becomes

computationally expensive when there are a large number of states. The limitations of

HMM are:

• the observation probability distribution is independent between states, because of

the independence assumption; thus the model cannot take advantage of the situation

when there are relationships between observations for different states.

• the states in the HMM cannot be dynamic, which means the probability distribution

within a state cannot be changed over a period of time.

3.4 Summary 51

• the probability of the model being in a particular state at time t only depends on

the state at t − 1. This is known as the Markov property. For example, in the

reference tagging task, the knowledge of a name like “A. C. Smith” forming the

state sequence of { first name, middle name, family name }. When the sequence

has transited to the third observation “Smith”, the model does not know that it is

in the third state of the sequence. The model only remembers the previous state.

Also, because of the independence assumption, states cannot share information.

3.4 Summary

The chapter started with the fundamental elements of HMM, and discussed the training

and testing process for HMMs, followed by a brief discussion of the limitations of HMMs.

This research explores the use of hierarchical hidden Markov models (HHMMs), which

offer to incorporate and resolve some of the limitations of HMMs.

CHAPTER 4

Hierarchical Hidden Markov Models

This chapter expands upon the ideas covered in the introduction to HHMMs presented

in Chapter 2, and puts forward a new approach to their construction and use in or-

der to improve processing time and extraction accuracy. The improvement is based on

merging repeated state sub-models during training, and the simplifying process involves

re-expressing the various transitions within the sub-models during the testing process.

A model that has undergone this merging and simplification process is referred to as a

merged and simplified hierarchical hidden Markov model (MSHHMM).

The concept of the hierarchical hidden Markov model (HHMM) was introduced by Fine [1998]

as a generalisation of the HMM modelling tool described in Chapter 2. The model itself

makes use of hierarchical structure and gives the potential benefit of reusing sub-state

information when the same subsequence occurs. For example, in reference tagging prob-

lems, the author and editor fields both contain names as their state observations (this will

be discussed further in the Chapter 5). The model also provides a better fit than a linear

model to data that is hierarchically structured, such as DNA sequences [Hu et al., 2000],

handwriting [Fine et al., 1998], robot navigation [Theocharous et al., 2001], and natural

language processing [Rabiner and Juang, 1986]. Some of these examples were discussed

in Chapter 1.

54 Hierarchical Hidden Markov Models

This chapter describes the nature of HHMMs and presents an efficient probabilistic es-

timation method to calculate the transition distribution between different levels of the

hierarchical structure. Section 4.1 provides a description of HHMMs. Section 4.2 de-

scribes the notation of the HHMM. Section 4.3 describes the algorithm to compute the

output distribution for each level. Section 4.4 describes the likelihood relations between

the parameters and the models. Section 4.5 discusses structural issues of HHMMs with

some comparison against the stochastic context-free grammar (SCFG) model, and Section

4.6 gives a summary explaining the processes of training and testing HHMMs.

4.1 Model Description

An HHMM is a structured multi-level stochastic process and can be visualised as a tree

structured HMM (see Figure 4.1). For a regular HMM, there is only one type of state:

that which contains an output observation. There are two types of states for the HHMM:

• Production state: a leaf node of the tree structure that contains only output

observations (represented in Figure 4.1 as the empty circle ©).

• Internal state: a node that contains production states or other internal states

(represented in Figure 4.1 as a circle with a cross inside
⊕

).

Figure 4.1: HHMM tree structure

The output of an HHMM is generated by a process of traversing some sequence of states

within the model. At each internal state, the process traverses down the tree, possibly

through further internal states, until it encounters a production state. Thus, as it contin-

ues through the tree, the process matches a sequence of observations. The process ends

4.1 Model Description 55

when a final state is reached. The difference between a standard HMM and a hierarchical

HMM is that individual states in the hierarchical model can traverse to a sequence of

production states, whereas each state in the regular HMM corresponds to a single pro-

duction state, which, in turn, can only contain a single observation.

(a)

AA

(b)

A A

Figure 4.2: Example of (a) HMM (b) HHMM

Figure 4.2(a) and Figure 4.2(b) illustrate the process of reconstructing a HMM as a hi-

erarchical HMM. Figure 4.2(a) shows an HMM with 11 states. The two dashed boxes

(A) indicate regions of the model that have a repeated structure. These regions are fur-

thermore independent of the other states in the model. Figure 4.2(b) models the same

structure as a hierarchical HMM, where those repeated structures are now grouped to-

gether under a state called an internal state. This HHMM uses a two level hierarchical

structure to expose more information about the transitions and probabilities within the

internal states. These internal states, as discussed earlier, produce no observation of

their own. Instead, this is left to the child production states within them. Figure 4.2(b)

is an example of HHMM with two internal states that each contain four production states.

Example : Consider the reference tagging task from Figure 2.7, where the reference is

segmented into useful fragments. The output of the model can expressed as:

[1] (author T. Moloney, A. C. Lea, and C. Kowalchuk.) (title Manufacturing

and packaged goods.) (editor In G. H. Castle, editors,) (booktitle Profiting

56 Hierarchical Hidden Markov Models

(a)

yeartitleauthor editor publisherbooktitle address

(b)

name

author title editor booktitle publisher address year

name name
first middle last

name name name
middle

name
lastfirst con

name

Figure 4.3: Example of reference tagging task with (a) HMM (b) HHMM

from a Geographic Information System.) (publisher GIS World, Inc.,)

(address Fort Collins, CO,) (year 1993.)

where both author and editor contain a sequence of people’s name as part of their obser-

vation.

Figure 4.3(a) shows an HMM with seven states that represents the example. Figure 4.3(b)

represents an equivalent model built in a hierarchical manner. The dashed boxes in Figure

4.3(b) indicate regions of the model that have a repeated structure, which correspond to

the dashed box (A) in Figure 4.2(b). From Figure 4.2, there is a hierarchical relationship

between author, editor and name, where name is represented by the states; first name,

middle name, last name and con. The state con corresponds to observations that do not

involve actual names, but instead describe connecting words, such as the observations

“In” and “editors,”.

During the construction of an HHMM, two key factors considered are:

4.1 Model Description 57

• merging repeated sub-models (M)

• simplifying the sub-models (S)

This research makes use of these two factors, and constructs a new Merged and Simplified

hierarchical hidden Markov model (MSHHMM). The merging process involves merging

repeated sub-models during training to increase prediction accuracy for the extraction

task. The simplifying process involves re-expressing the various transitions within the

sub-models during the testing process.

4.1.1 Merging Repeated Sub-models (M)

In some cases, different internal states of a hierarchical HMM correspond to exactly the

same structure in the output sequence. This repeated structure was denoted by the dashed

box in Figure 4.2. A hierarchical model lends itself to the merging of this repeated struc-

ture, the act of which improves the model in several ways. It makes more observations

available for each internal state of the sub-model and, at the same time, requires fewer

observations in order to achieve a given level of accuracy. However, a merged model no

longer adheres to the Markov assumption as the model would now have to remember

which parent state the sub-model was entered from. Also, such a model would no longer

be, strictly speaking, a tree, as it would contain cyclic paths. Thus the MSHHMM pro-

vides a post-training stage where each sub-model is cloned so each parent node receives

its own copy, thus restoring both the tree and the Markov assumption.

The sharing of model states has been put forward in previous HHMM research. Work

by Fine [1998] and Murphy [2001] used repeated states by temporarily transforming the

tree into a lattice. The subsequent transform from lattice back into a tree, unfortunately,

incurred an exponential growth in model size and complexity. Recall that, in Figure

4.3(b), both the states author and editor contained the state name as their child state.

In a hierarchical model, the state name is needs to be expanded into two sub-states as

name-author and name-editor, so that each relation within the model structure satisfies

the 1 : N mapping constraint (where N represents the number of child states). Recent

research by Bui [2004] once again addressed the matter of shared states by developing new

58 Hierarchical Hidden Markov Models

methods to allow processing against the lattice model itself (rather than reverting to a

tree form). The new methods included formulas for handling multiple parent states. This

new lattice research was published in 2004, a year after the development of the merging

employed in this thesis.

The merged model makes use of a series of repeated states—termed a sub-model—where

all sub-models of equivalent structure are merged into one. The system introduces control

transitions into the sub-model, via calculated probabilities. This is done before the merg-

ing process. For example, in Figure 4.4(a) both internal states have the same sequence of

states (A), and the model can make use of repeated parts to gain more information for

the sub-models.

(a)

A A

(b)

A

Figure 4.4: Example of (a) HHMM with (b) a copied model

Figure 4.4(b) is a simple representation of Figure 4.4(a), where the system has merged

the two repeating sub-models into one (that is, state A). When two repeating sub-states

are merged, the model requires less computation for the building process, with a fewer

total states needing to be identified than the regular HMM. It produces a more reliable

system by having an increased amount of training data (observations) for those merged

states. A bold double arrow (←→←→←→) is used in the figure to indicate that the original state

4.1 Model Description 59

of the transition is (temporarily) remembered so that the transition from the sub-model

can be directed back to the correct parent state. Figure 4.5 shows an example for the

reference tagging task, where the HHMM contains three internal states author, editor and

name and the state name is the shared internal state. The eight production states are;

first name, middle name, last name, title, booktitle, publisher, address and year.

publisherauthor title editor booktitle address year

name

name name
middle

name
lastfirst

Figure 4.5: Example of a reused sub-model for the reference tagging task

Using a hierarchical structure has the benefit of merging repeated parts of the structure,

whereupon a larger number of observations are available for each sub-state. Figure 4.6 il-

lustrates the probability distribution for the merging process for two repeating sub-states

A. The top part of the figure shows the probability distribution before the merging pro-

cess, and the bottom part of the figure shows the probability distribution after the model

is merged. The observation count is shown inside each production state. The dotted

lines represent merged nodes from both sub-states A. For example, the first sub-state A

contains an observation count of 30 after states are merged. It combines the observations

from the two sub-states A before they are merged, where 20 observations are collected

from the first sub-state of A and 10 from the second. The combined sub-states that make

up A, contains a higher observation count, which leads to a more accurate and stable

model when applied to extraction tasks.

Figure 4.7 shows a HMM which is visually similar to the one shown in Figure 4.4(b).

60 Hierarchical Hidden Markov Models

After

A

10 10

2102 220 5 36

30 11 4 5

A

10 10 10

A

10

10/80 10/80 10/80

10/80

10/8010/8010/80

20/80

30/80

5/80

5/80

2/80 3/80

4/8011/80

6/80 2/80 2/80

Before

Figure 4.6: Example of probability distribution for repeated sub-model (A)

However there are significant differences between these two diagrams. Each state in the

HMM outputs a single probabilistic observation, whereas an internal state for an HHMM

can output either another internal state or a production state. Also in the HMM, the

transition can be made from one state to another state without the restriction of the

bold double arrow as shown in Figure 4.4(b), where the HHMM must transit back to the

parent state from which the process originates.

So far, this chapter has discussed the HHMM as a hidden Markov model extended by al-

lowing a hierarchy of states similar to the form of a tree. However a pure tree structured

model would be inefficient where each sub-state can only contain a 1 : N relation. Nat-

ural language contains many repeated sequences of observations and the regular model

cannot gain any efficiency from this fact as it does not allow the merging of these repeated

sub-models. Thus an improvement can be made to the HHMM by merging sub-models,

but only at the expense of the non-cyclic property of pure trees. This consequence of the

merging process, means that the model is no longer a tree as at least one node of the tree

now has two or more parents.

4.1 Model Description 61

Figure 4.7: Example of a HMM

Strictly speaking, the model shown in Figure 4.4(b) no longer adheres to one of the

Markov properties [Cox and Miller, 1965], that the current state should only depend on

the previous state: the bold arrow (←→←→←→) is used so that the transition is remembered. If

a model is to conform to the Markov property, the probabilities for each state should be

independent of each other. For example, if the system used the structure in Figure 4.7

without restoring the tree property, it would need to keep track of the previous state (at

least while in the repeated sub-states), so that the process could return to the appropriate

position in the ‘root level’ sequence of states.

publisherauthor title yearaddresseditor

name name

name

first middle last
name

con
name name

name

first middle last
name

con

booktitle

Figure 4.8: Example of an HHMM with duplicated sub-models

In order to restore the Markov property to a model that has been merged, it is necessary

62 Hierarchical Hidden Markov Models

to clone multiple copies of the shared sub-model—one for each parent state. Figure 4.8

shows a hierarchical model that no longer needs to remember the parent states of the

repeated sub-models, because the sub-model name has been duplicated into two sub-

models. The information within each sub-model is still shared, but the sub-model holds

two positions in the HHMM. Therefore the model conforms to the Markov property, but

still retains the benefits of reusing sub-model information.

4.1.2 Simplifying the Sub-models (S)

During the course of this research, a method was developed to simplify the sub-models

during the testing process. It was primarily developed to re-express the various transitions

within the sub-models. The simplification involves transforming an internal state qi into

three transformed states:

{q(i)
in , q

(i)
stay, q

(i)
out}

where q
(i)
in represents the vertical transition of moving into sub-model i, q

(i)
stay represents the

horizontal transition of moving within the sub-model and q
(i)
out is the vertical transition of

moving out the sub-model. In this manner, the sub-model information, and in particular

the calculations involved in generating the transition probability distribution matrix, can

be summarised in just three transformed states.

Consider an example of an output sequence that iterates two times through the states of

a sub-sequence A (as shown in Figure 4.9). The first sub-sequence of A is {p2, p3, p4, p5}
and the second sub-sequence of A is {p6, p3, p4, p4}. Notice the first sub-sequence A starts

with sub-state p2, and the second starts with sub-state p6. The two sub-sequences A have

states p4 and p5 as the exit state respectively.

7

AA

p p p p p p p1 2p 3 4p 5 6p 3 4 4

Figure 4.9: Example of a repeat sequence

4.1 Model Description 63

Figure 4.10 shows the general graphical representation of the HHMM for the state se-

quence from Figure 4.9. The top level of the model consists of three states {p1, qA, p7}
with five production states {p2, p3, p4, p5, p6} as the child states of the internal state qA.

p

Aq1p

2p 6 3p 4p 5p

7p

Figure 4.10: The general representation of HHMM

When two repeated sub-sequences exist in the state sequence, a single representation is

no longer able to define when a sub-sequence finishes or starts another sub-sequence. A

simple solution is to use further representations for the internal state, so as to clearly de-

note the entry and exit points of the sequence. Figure 4.11 demonstrates the structure of

the internal states of sub-model A, where the states have been simplified into three trans-

formed state q
(A)
in , q

(A)
stay and q

(A)
out . The transformed state q

(A)
in represents the entry point of

the sub-model (A), and the observation probability is dependent on the two entry states

of p2 and p6. The transformed state q
(A)
stay represents the situation where the sub-sequence

is neither entering nor leaving the sub-model (A). The observation probability of trans-

formed state q
(A)
in is dependent on two production states {p3, p4}. The transformed state

q
(A)
out represents the exit point of the sub-model (A), and the observation probability is

dependent on two exit states of p4 and p5. The simplified states, in, stay and out, be-

come placeholders for multiple ‘actual’ states. The transition between these three internal

states are estimated by summing the transition between child states. Detailed calculation

of each sub-model is discussed in Section 4.3.

The three transformed internal states (q
(A)
in , q

(A)
stay and q

(A)
out) represent the child state tran-

sition for the sub-model A (as shown in Figure 4.11). They represent the status of the

sub-model: whether it is the beginning of the sub-state, staying within the sub-state or

leaving the sub-state. Transitions from the internal state stay are limited to the sub-

64 Hierarchical Hidden Markov Models

p

qstay

(A) qout

(A)qin

(A)

1p

2p 6 3p 4p 5p

7p

Figure 4.11: Example of a simplified model

states of A, thus making transition only to other states within the same sub-model. In

this manner, the model adheres to the rules of a tree-like structure: child states of the

sub-model cannot make transitions to other sub-models. The top level of the model in

Figure 4.11 is now equivalent to a regular HMM with five states (p1, q
(A)
in , q

(A)
stay, q

(A)
out and p7).

In the reference tagging task, the entry state to the author sub-model (state first name)

depends on how the reference is written. Figure 4.12 lists references for three published

science research papers. The first reference starts with the first name “T” under the

author state, the second starts with the last name “Nahm” and the third starts with

something different again. In order to correctly merge the initial sub-models that rep-

resent the name, the internal state must allow multiple entrances into the sub-model,

including transitions to the state first name (“T”), and last name (“Nahm”).

While the structure, and hence observations, of a sub-model may be repeated several times

within a particular output sequence, no transitions are shared between occurrences of the

sub-model. Thus each transition of the sub-model is independent of previous or future

transitions. This property extends to the probabilities and other information calculated

for the sub-model.

4.2 Notation

According to [Rabiner and Juang, 1986], a HMM can be defined in terms of five elements,

as mentioned in Chapter 3; the set of hidden states S, the transition probability distribu-

4.2 Notation 65

T. Moloney, A. C. Lea, and C. Kowalchuk. Manufacturing and packaged goods.

In G. H. Castle, editors, Profiting from a Geographic Information System. GIS

World, Inc., Fort Collins, CO, 1993.

Nahm, U. Y., and Mooney, R. J. 2000. Using information extraction to aid the

discovery of prediction rules from texts. In Proceedings of the Sixth International

Conference on Knowledge Discovery and Data Mining (KDD-2000) Workshop on

Text Mining, 51-58.

[Wilks et al., 1989] Yorick Wilks, D. Fass, C. Guo, J. McDonald, T. Plate and

B. Blator. A tractable machine dictionary as a resource for computational

semantics. In Bran Boguraev and Ted Briscoe, editors, Computational

Lexicography for Natural Language Processing, pages 193-228. Longman

Group UK Limited, London, 1989.

Figure 4.12: List of three science research published papers

tion A, the set of observation symbols V , an observation probability distribution B and

the initial state probability distribution π. For the HHMM, there is one extra element:

the final probability distribution over every internal state τ , which represents the prob-

ability of leaving a sub-model. In Table 4.1, most of the notations of the HHMM (and

the sub HHMM) are similar to the HMM, but with an extra set of internal states (q).

For example the set of hidden states now becomes {p1, . . . , pN , q1, . . . , qD}, where p is the

set of production states (those that contain observations) and q is the new set of internal

states (those that contain other states). N represents the total number of production

states p, D represents the total number of internal states q, and M represents the total

number of observation symbols. The transition probability distribution for the HHMM

is āij , where ā contains a standard transition probability from state to state, plus the

probability of transitioning to, and within, internal states. The initial state probability

includes πi as the probability of a sequence starting with production state pi, and π̄i as

the probability of entering internal state qi.

66 Hierarchical Hidden Markov Models

HMM HHMM

set of hidden states S: {s1, . . . , sN} {p1, . . . , pN , q1, . . . , qD}

set of output symbols V : {v1, . . . , vM} {v1, . . . , vM}

transition distribution A: {aij} {āij}

observation distribution B: {bj(1), . . . , bj(N)} {bj(1), . . . , bj(N), b̄j(1), . . . , b̄j(D)}

initial distribution π: {π1, . . . , πN} {π1, . . . , πN , π̄1, . . . , π̄D}

final distribution τ : - {τ̄1, . . . , τ̄D}

Compact notation: λ = (A,B, π) Λ = (Ā(i), B̄(i), π̄(i), τ̄ (i))

Table 4.1: Table of notations

Table 4.1 shows the elements of the HMM and the HHMM, and it can be seen that the

HHMM has one extra element—the final state probability distribution τ :

τ̄ = {τ̄1, . . . , τ̄D} (4.1)

where τ̄d represents the final probability distribution of leaving the internal state qd, and

D is the total number of internal states in the model. The corresponding π̄d expresses the

probability of entering the internal state qd.

4.3 Sub-models

Each internal state qi in a simplified hierarchical hidden Markov model (SHHMM) is

simplified by resolving each child production state into one of three transformed states to

4.3 Sub-models 67

identify the status of either entering, staying or exiting a sub-model, such that:

qi ⇒ {q(i)
in , q

(i)
stay, q

(i)
out} (4.2)

These transformed states are not production states themselves but instead contain either

production states or other internal states. The three transformed states are:

• q
(i)
in : the entry state to the sub-model, where the model transitions from a state in

the upper level model into this model,

• q
(i)
stay: a state that represents all other states within the sub-model that are neither

entry nor exit states,

• q
(i)
out: the exit state, where the model transitions from a state in the sub-model out

into the upper level model.

Each model, and the sub-models within it, can be expressed in terms of a state set to

represent the structure of the model and a parameter set to determine the best sequence

of model states. These elements of the model combine to produce both the observation

and transition probabilities for a particular state. But as a consequence of the transfor-

mation method mentioned above, the model will need to re-calculate the new observation

distributions and the transition probabilities from the elements of each of these trans-

formed states. While determining the state set is straightforward—in that each internal

state is transformed into three states—the estimation process of the parameter set for a

multi-level HHMM is a complex process. This section will first introduce the elements for

a sub-model, followed by a probability estimation method for internal states that works

by transforming each internal state into three production states.

4.3.1 Elements of a Sub-model (λ̄(i))

The elements of a SHHMM sub-model are represented using the basic notation and the

superscript label (d) to represent the internal state qd. For example, π̄(3) represents the

initial probability distribution of entering state q3, τ̄ (3) represents the initial probability

distribution of leaving state q3, and ā
(3)
ij represents the transition probability distribution

68 Hierarchical Hidden Markov Models

within the internal state q3.

The elements of a sub-model (i) can be characterised as follows.

1 Transition probability distribution (transition matrix) Ā(i):

Ā(i) = {ā(3)
ij } for i = 1, 2, . . . , ni, j = 1, 2, . . . , ni,

=

⎡
⎢⎢⎢⎣

a11 . . . a1ni

...
. . .

...

ani1 . . . anini

⎤
⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎣

ā
(i)
in,in ā

(i)
in,stay ā

(i)
in,out

ā
(i)
stay,in ā

(i)
stay,stay ā

(i)
stay,out

ā
(i)
out,in ā

(i)
out,stay ā

(i)
out,out

⎤
⎥⎥⎥⎦ (4.3)

Here, āi,j represents the transition probability for the child states {p1, . . . , pni
} of

the internal state qi, ni is the total number of child states for internal state qi and

ā(i) represents the 3× 3 transformed matrix.

2 Observation probability distribution (observation matrix) B̄(i):

B̄(i) = {b̄(i)
j (k)} for j = 1, 2, . . . , ni, k = 1, 2, . . . , mj , (4.4)

=

⎡
⎢⎢⎢⎣

b1,1 . . . b1,T

...
. . .

...

bni,1 . . . bni,T

⎤
⎥⎥⎥⎦ (4.5)

⇒

⎡
⎢⎢⎢⎣

b̄
(i)
in,1 . . . b̄

(i)
in,t

b̄
(i)
stay,1 . . . b̄

(i)
stay,t

b̄
(i)
out,1 . . . b̄

(i)
out,t

⎤
⎥⎥⎥⎦ for t = 1, 2, . . . , T (4.6)

Here, mj represents the total number of observation symbols in state pj and ā(i)

represents the transformed observation probability matrix having been reformed

into a 3 × T matrix to correspond to three transformed states for each internal

state, where T represents the length of the test observations.

3 Initial state probability distribution π̄(i):

π̄(i) = {π̄(i)
j } for j = 1, 2, . . . , ni. (4.7)

4.3 Sub-models 69

Here, π̄
(i)
j represents the probability of entering internal state qi by way of child

state pj, and ni is the number of sub-states for state qi.

4 Final state probability distribution:

τ̄ (i) = {τ̄ (i)
j } for j = 1, 2, . . . , ni. (4.8)

Here, τ̄
(i)
j represents the probability of leaving internal state qi at state pj.

The compact notation for a sub-model of an SHHMM is:

λ̄(i) = (Ā(i), B̄(i), π̄(i), τ̄ (i)) (4.9)

The structure for a SHHMM contains the property that each internal state is sub-divided

into three transformed states {in, stay, out}. When a state sequence appears, the model

must identify the entry and exit point of each internal state. Consider a SHHMM trained

using the repeated sequences of A in Figure 4.9, where these sequences are represented

by three transformed states as shown in Figure 4.11. Given such a state sequence, Figure

4.13 demonstrates the output representation for the SHHMM, where the internal states

are labelled by {q(A)
in , q

(A)
stay, q

(A)
out}. Notice that the sequences of A are linked one after the

other, with a transition from q
(A)
out to q

(A)
in . The sequence of top level states consists of six

transformed states {q(A)
in , q

(A)
stay, q

(A)
out} and two production states {p1, p7}. The sequence of

each transformed state consists of four of the five production states {p2, p3, p4, p5, p6}.

q1p

2p 3p 4p 5p 6p 3p 4p 4p

7p
AA

q(A)q(A)
in instay

(A)q qout
(A)

stay
(A)q stay

(A)q qout
(A)

stay
(A)

Figure 4.13: Example of state sequences for a simplified HHMM.

Figure 4.14(a) shows a more complex HHMM with a depth of three. The sub-model of

q2 has two occurrences in the model: as a child state of sub-model q1 and at the root

level of the model. When the sub-models are merged, the total number of observations

70 Hierarchical Hidden Markov Models

in sub-model q2 is increased. Figure 4.14(b) illustrates the model after the simplification

is applied. Sub-models are transformed into three states:

q1 → {q(1)
in , q

(1)
stay, q

(1)
out}

q2 → {q(2)
in , q

(2)
stay, q

(2)
out}

State q
(1)
in represents the entry activities for sub-state q1, and the probability of q

(1)
in oc-

curing is dependent on state p2. State q
(1)
stay represents the inner transitions of q1 and the

observation probability is dependent on the two internal states of q
(2)
in and q

(2)
stay.

(a)

p1 q1 p7 p8 q2 p9 p10

p6p4 p5p3q2p2

p3 p4 p5 p6

(b)

p1

p2

(1)q stay

(1)q out p7 p8 p10p9
(1)q in

(2)q in

(2)q stay

(2)q out

p3 p4 p5 p6

(2)q stay

(2)q out

p3 p4 p5 p6

(2)q in

Figure 4.14: A three level HHMM: (a) regular HHMM (b) simplified HHMM

Example : Transformed state sequence for the SHHMM. An example of state sequence

for a three level SHHMM as shown in Figure 4.14(b). Consider a sequence of production

4.3 Sub-models 71

states:

{p1, p2, p3, p6, p7, p8, p4, p4, p5, p6, p9, p10}

After the model had transformed into a SHHMM, each internal state is represented by

three sub-states as the status of the child states. Figure 4.15 illustrates how the state

sequence would be labelled using the model from Figure 4.14(b), where the observational

probability of q
(2)
in is dependent on state p3, and the observational probability of q

(1)
stay is

dependent on state q
(2)
in .

p1 q(1)
in

qstay
(1) (1)qout p7 8p q(2)

in
qstay

(2) qstay
(2) (2)qout p9 p10

p6p5p4p4
(2)qout

q(2)
inp2

p3 6p

Figure 4.15: Example of state sequences for a three level SHHMM.

The detailed calculation of each sub-model is discussed in the next section.

4.3.2 Sub-model Calculation

As mentioned earlier, each internal state qi has its child production states pj resolved into

one of three transformed states, qi ⇒ {q(i)
in , q

(i)
stay, q

(i)
out}. The transformation requires re-

calculating the new observational and transition probabilities for each of these transformed

states. The procedure to transform internal states is: 1) reform the transition matrix by

including estimated values for additional transformed internal states; then 2) apply the

Viterbi algorithm to estimate the state probabilities for the three transformed states.

1 Reform transition probability Ā(i)

Each internal state qi is transformed into a new 3× 3 transition probability matrix

Ā(i), which records the transition state for the transform matrix. The formula for

72 Hierarchical Hidden Markov Models

the estimated cells in Ā(i) are:

ā
(i)
in,stay =

ni∑
j=1

πj (4.10)

ā
(i)
in,out =

ni∑
j=1

πj

2
(4.11)

ā
(i)
stay,stay =

ni,ni∑
k=1,j=1

ak,j (4.12)

ā
(i)
stay,out =

ni∑
j=1

τj (4.13)

ā
(i)
out,stay = ai,i (4.14)

where ni is the number of child states for state qi and the remaining cells of the

transition matrix Ā(i) are equal to zero.

Example : Consider the simple HHMM from Figure 4.10, where the model has a

depth of two. The top level of the model contains three states {p1, qA, p7}, and the

bottom level contains the production states for internal state qA. In this example

the internal state qA will be labelled as q1. The transition matrix of the top level

can be expressed as:

A =

p1 q1 p7

p1

q1

p7

⎡
⎢⎢⎢⎣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤
⎥⎥⎥⎦

(4.15)

where the transition only involves three states. The boxed cell represents the lo-

cation for the internal state which will be expanded further into a 3 × 3 matrix

for those transformed states {q(1)
in , q

(1)
stay, q

(1)
out}. The transition matrix for the internal

state q1 consists of the five production states {p2, p3, p4, p5, p6}, and the matrix can

4.3 Sub-models 73

be expressed as:

A(1) =

p2 p3 p4 p5 p6

p2

p3

p4

p5

p6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)

The transition matrix records transition probabilities for the child states of the

internal state q1, and the purpose of this matrix is to treat each internal state as

an individual HMM. This allows application of the Viterbi search algorithm for the

internal state q1. To coordinate the sub-model of HMM with the three transformed

states, the transition matrix is reformed into a transformed matrix for the internal

state q1:

Ā(1) =

a
(1)
in a

(1)
stay a

(1)
out

a
(1)
in

a
(1)
stay

a
(1)
out

⎡
⎢⎢⎢⎣

0 a
(1)
in,stay a

(1)
in,out

0 a
(1)
stay,stay a

(1)
stay,out

a2,2 0 0

⎤
⎥⎥⎥⎦

(4.17)

The values of each element of Ā(i) are calculated by Equations (4.10)-(4.14), and

this can then be combined into a new transformed matrix of Ā:

Ā =

p1 q
(1)
in q

(1)
stay q

(1)
out p7

p1

q
(1)
in

q
(1)
stay

q
(1)
out

p7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 0 0 a1,3

a2,1 0 a
(1)
in,stay a

(1)
in,out a2,3

0 0 a
(1)
stay,stay a

(1)
stay,out a2,3

0 a2,2 0 0 a2,3

a3,1 a3,2 0 0 a3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.18)

The value in the second, third and fourth rows contain the transformed matrix for

internal state q1, and the first and fifth rows contain the original transition from

Equation (4.15). The resulting matrix can be used to keep track of entering and

leaving the sub-model.

74 Hierarchical Hidden Markov Models

2 Apply the Viterbi algorithm to estimate the transformed observation

value B̄(i)

Each internal state qi reforms a new 3 × T observation matrix B̄(i), which records

the probabilities of the three transformed states. First, calculate the adjustment

weight for each internal state Ō
(i)
t by summing up all the observation probabilities

in each production state pj :

Ō
(i)
t =

ni∑
j=1

Oj,t, (4.19)

where time t corresponds to a position in the sequence, Oj,t is the observation proba-

bility for state pj at t, and ni represents the number of production states for the inter-

nal state qi. The transformed observation values are simplified to {b̄(i)
in,t, b̄

(i)
stay,t, b̄

(i)
out,t},

which are then given as the observation values for the three transformed states

{q(i)
in , q

(i)
stay, q

(i)
out}. The probability of entering state qi at time t (i.e. production state

q
(i)
in) is given by:

b̄
(i)
in,t = max

j=1..ni

[πj ×Oj,t] , (4.20)

where πj represents the transition probabilities of entering child state pj . The second

probability, that of staying in state qi at t (i.e. production state q
(i)
stay), is given by:

b̄
(i)
stay,t = max

j=1..ni

[
Aĵ∗,j × Oj,t

]
, (4.21)

ĵ = arg max
j=1..ni

[
Aĵ∗,j × Oj,t

]
,

where ĵ∗ is the state corresponding to ĵ calculated at the previous time t − 1, and

Aĵ∗,j represents the transition probability from state pĵ∗ to state to pj . The third

probability, that of exiting state qi at time t (i.e. production state q
(i)
out), is given by:

b̄
(i)
out,t = max

j=1..ni

[
Aĵ∗,j ×Oj,t × τj

]
, (4.22)

where τj is the transition probability for leaving state pj.

After Equations (4.20)-(4.22) have been calculated, the model then normalises the

matrix and multiplies it by Equation (4.19) to estimate the value for B̄(i):

B̄(i) =
b̄
(i)
j,t∑ni

j=1 b̄
(i)
j,t

× Ō
(i)
t for j = 1, 2, 3, and t = 1, 2, . . . , T. (4.23)

4.4 Sequence Likelihood 75

Example : Consider the simple HHMM from Figure 4.10. The observation matrix

for each internal state is transformed into three states as previously mentioned. The

observation matrix for the top level states can be expressed as:

B =

p1

q1

p7

⎡
⎢⎢⎢⎣

b1,1 b1,2 . . . b1,T

b2,1 b2,2 . . . b2,T

b3,1 b3,2 . . . b3,T

⎤
⎥⎥⎥⎦ (4.24)

where the state q1 is an internal state that contains sub-model information. The

probability distribution of the internal state q1 is stored in the middle three rows in

the observation matrix.

B̄ =

p1

q
(1)
in

q
(1)
stay

q
(1)
out

p7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 b1,2 . . . b1,T

b
(1)
in,1 b

(1)
in,2 . . . b

(1)
in,T

b
(1)
stay,1 b

(1)
stay,2 . . . b

(1)
stay,T

b
(1)
out,1 b

(1)
out,2 . . . b

(1)
out,T

b3,1 b3,2 . . . b3,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.25)

The value for the transformed state is calculated using Equations (4.19)-(4.23),

where the values in row 1 and row 5 remain the same.

Each internal state is calculated by a bottom-up algorithm using the values from

Equations (4.19)-(4.22), where the lower levels of the tree are calculated first to

provide information for upper level states. Once all the internal states have been

calculated, the process need only use the top-level of the tree to solve the alignment

problem for the sequence. This means the model can be approximated by a linear

HMM for the final Viterbi search process [Viterbi, 1967].

4.4 Sequence Likelihood

Consider an observation sequence O = {O1, O2, . . . , OT}. The task is to determine the

most likely sequence (Ŝ) of states S = {s1, s2, . . . , sT} within the model:

Ŝ = arg max
S

P (S|O, λ). (4.26)

From Bayes’ Theorem, the formula of Equation (4.26) can be expressed as:

P (S|O, λ) =
P (O|S, λ)P (S, λ)

P (O|λ)
, (4.27)

76 Hierarchical Hidden Markov Models

where the probability of observations, given that sequence, is:

P (O|S, λ) = P (s1s2 . . . st = Si|O1O2 . . . OT , λ) (4.28)

= bs1(O1)bs2(O2) . . . bsT
(OT).

The probability of such a state sequence S can be written as:

P (S, λ) = πq1as1,s2as2,s3 . . . asT−1sT
. (4.29)

The joint probability of O and S is written as:

P (O|λ) =
∑
∀S

P (O|S, λ)P (S|λ) (4.30)

= πs1bs1(O1)as1,s2bs2(O2)as2,s3 . . . bsT
(OT)asT−1,sT

. (4.31)

For every internal state si and a given observation sequence O, the model evaluates

arg maxS P (O|S, λ(i)) by finding the best path with a sequence of states that only in-

volves child states. The model uses the Viterbi search algorithm to determine the best

path for each internal state (mentioned in Section 4.3). After the values have been cal-

culated, the internal state provides three estimated values for each observation to match

the transformed states (b̄
(i)
in (Ot), b̄

(i)
stay(Ot), b̄

(i)
out(Ot)).

The computational cost of applying the Viterbi search algorithm to each of the internal

states is O(M2T) calculations, where M represents the total number of child states for

that internal state and T is the length of the observation sequence. The cost of apply-

ing the algorithm to the entire model is approximately O(NM2T), where N represents

the number of states in the model. In the worst case the number of child states M will

approach the total number of states N , and thus the worst case computation cost for an

HHMM can be simplified to be in the order of O(N3T) calculations.

Let g(θi) represent the observation probability distribution:

g(θi) = bqi
(Oi) for i = 1, 2, . . . , T (4.32)

where the probability of the observations given a sequence is:

P (O|S, λ) =

T∏
i=1

g(θi) (4.33)

4.4 Sequence Likelihood 77

Taking the logarithms of both sides, the log probability of the observations equals the

sum of f(θi), where f(θi) = log g(θi):

log P (O|S, λ) =
T∑

i=1

log g(θi), (4.34)

=

T∑
i=1

f(θi). (4.35)

Definition 4.1 Assume θ1, . . . , θN to be i.i.d. Then

EN [f(θ)] =
1

N

N∑
i=1

f(θi) (4.36)

with a standard deviation of

σ2 =
1

N

N∑
i=1

(f(θi)−EN [f(θ)])2 (4.37)

Theorem 4.1 Assume that {θ(j)}∞j=1 is a stationary, irreducible, aperiodic Markov chain

with limiting distribution π, and that V ar[f(θ)] < ∞. Let a positive integer M be

given, and suppose that a geometric subsample of size M is used to estimate E[f(θ)].

Formally, let v1, . . . , vM+1 be i.i.d. geometric variates with mean p−1
1 , jk =

∑k
i=1 vi,

N =
∑M+1

i=1 vi − 1, e1 = (1/N)
∑N

j=1 f(θ(j)), and e3 = (1/M)
∑M

j=1 f(θ(jk)). Then

V arN [e3] ≥ V arN [e1], for every N ≥ M , and V ar[e3] ≥ V ar[e1]. [MacEachern and

Peruggia, 2000].

For a HHMM, when two or more different sub-states contain the same probabilistic dis-

tributions, then the combined sub-states will produce more stable predictions. This is

expressed by the following lemma.

Lemma 4.1 For any M ≤ N which contains the same distribution of X and Y , var(X̄) ≥
var(Ȳ).

Proof : Given two normal distributions of X and Y :

X ∼ Normal(M, p)

Y ∼ Normal(N, p)

78 Hierarchical Hidden Markov Models

with M ≤ N . According to Equation (4.37), the variance of expected values can be

written as:

var(X̄) =
s2

M − 1

var(Ȳ) =
s2

N − 1

Hence, for any M ≤ N , the var(X̄) ≥ var(Ȳ).

4.5 Structural Issues of HHMMs

HHMMs were introduced to manage the complexity of data structures occurring in many

extraction tasks. For the HHMM, the model itself makes use of hierarchical structure and

the potential benefit is that sub-state information can be reused.

When reusing sub-state information extracted from pre-tagged source information, there

are situations where different sub-models have the same parent state. This research takes

a simple approach and combines those sub-models, reusing the information within them.

While this method is simple and provides some increase in accuracy and stability, it may

also obfuscate the importance of sub-states, which should carry greater weight during

alignment. Consider the tree structure representation of a HHMM in Figure 4.16, where

different sub-states that share the same parent state are labelled state 8. Notice that state

8′′ contains internal state 8 with sub-states 21, 22 and 23, whereas the other occurrences

of state 8 contain sub-states of 17, 18, 19 and 20. In order to resolve this issue the system

needs to be able to identify when merging of such sub-states has occurred and rename

the internal state 8 to a different name.

Due to the Markov property, the transition probabilities depend only on the current event,

and are independent of past events; therefore the HHMM itself does not provide a strong

relationship between long sequential events. For example, the transition probabilities

depend only on the current state, and this leads to the side effect of losing relationship

information; not from the previous state, but from past states.

4.5 Structural Issues of HHMMs 79

’
8

18 19 2017

2221 23

1

2 3

4 5 6 7

10 11 128’

8

18 19 2017

9

14 15

16

138

8’

8’’

’

Figure 4.16: Example of different sub-states

Another issue encountered when building models of natural language text is recursive

patterns within a text. During the HHMM building process described above, the model

could be applied to text that contains recursive structure. For example, a language text

with the following rules:

S → ab

S → aSb

The Markov model is ill-suited to handle recursive situations, due to the independence

property—which states that the next state is only dependent upon the current state.

Thus an HHMM is unlikely to correctly identify—and resolve—recursive behaviour. This

is one instance where a CFG model may be better suited for this task. Furthermore,

in keeping with the required property of independence between sub-models, the current

model building process does not merge any repeating sequences within an existing sub-

model; in other words it never descends more than one layer of recursion. Therefore the

HHMM is ill-suited to model recursively structured data.

80 Hierarchical Hidden Markov Models

The main applications of HHMMs are:

• solving sequential problems that may contain hierarchical structures, such as text

chunking, which marks up the logical structure of the sentence.

• characterising states and sub-state information. For example, in the reference tag-

ging problem the MSHHMM can make use of repeated structure under the state

author and the state editor, such as the state first name, state middle name, state

last name and the state con, to provide more accurate prediction for states that

contain names.

• identifying new sequences as states or sub-models, such as identifying words or terms

which do not appear in the training data (unseen terms).

4.5.1 Comparison between HHMM and SCFG model

A very similar modelling technique to HHMMs is Stochastic Context-Free Grammars

(SCFG) [Jelinek and Lafferty, 1991]. An interesting way to compare an HHMM to a

SCFG is to look at the similarities and differences in the algorithms used during their

application. First, consider the task of determining the probabilities of a particular ob-

servation sequence against the model. An HHMM uses a standard forward algorithm to

accomplish this, as explained above, while a SCFG uses a similar method called the inside

algorithm. Moreover variants of each of these algorithms, called the Viterbi algorithm and

the CYK algorithm respectively, can be applied to the model to calculate the best path or

most likely sequence. Finally the forward and backward variables of the HHMM are used

in conjunction with EM methods to re-estimate the probability parameters in much the

same way as inside and outside variables are used in the SCFG. Thus the inside-outside

algorithm [Lari and Young, 1990] for a SCFG is analogous to the forward-backward algo-

rithm of HHMMs.

However, there is one critical difference between the two algorithms. While the forward-

backward algorithm used in HHMMs is computationally straightforward, in that each

calculation performed is independent of any other calculation within the model, the

4.6 Processes Involved in HHMM Modeling 81

inside-outside algorithm uses dynamic calculations based upon sub-model values, cal-

culated recursively. This dynamic, recursive nature means that the computational cost of

the inside-outside algorithm is substantially greater.

HHMM SCFG

optimal alignment Viterbi CYK

P (X|λ) forward inside

EM parameter estimation forward-backward inside-outside

memory complexity O(NT) [Fine et al., 1998] O(NT 2) [Lari and Young, 1990]

time complexity O(N3T) [Fine et al., 1998] O(N3T 3) [Lari and Young, 1990]

Table 4.2: Information for HHMM and SCFG models

Table 4.2 shows that more memory and computation time are required for the SCGF

model than the HHMM. Lari [1990] suggests that the solution is to decrease the time

complexity by introducing more non-terminals to reduce the re-estimation process in the

inside-outside algorithm.

4.6 Processes Involved in HHMM Modeling

The aim of the HHMM is to extract or mark up some target information in data as part

of an automated process. The HHMM process generally consists of two stages.

• Training, which involves performing some calculation on a set of hand processed

data to extract information and structures, then using that information to create

the model.

• Testing, which makes use of this model by applying it to unprocessed data to extract

or mark up the intended target information.

This section discusses these two processes and presents flow charts to illustrate them.

82 Hierarchical Hidden Markov Models

4.6.1 The Training Process

The goal of the HHMM training process is to form an extraction model that is capable of

exploiting hierarchical structure (in contrast to HMMs). In general, parameter estimation

for HMM uses the Baum-Welch re-estimation algorithm, where the model is given initial

seed parameters, and trained iteratively with the Baum-Welch algorithm to maximise

P (O|λ) as discussed in Section 3.

There are various types of pre-tagged data that can be easily accessed on the Internet.

For example, the Penn Treebank1 has large quantities text pre-tagged with syntactic and

semantic information for natural language tasks. This thesis concentrates only on training

from pre-tagged data to estimate model parameters.

(A (N (F T.)(L Moloney,)) (N (F A. C.) (L. Lea,))

(C and)(N (F C.) (L Kowalchuk.)))(T Manufacturing

and packaged goods.) (ED (N (C In)) (N (F G. H.) (L

Castle,)) (C editor,)) (BT Profiting from a Geographic

Information System.) (PU GIS World, Inc.,) (AD Fort

Collins, CO,) (Y 1993.)

Figure 4.17: Example of pre-processed data for the reference tagging task

In order to build an HHMM, the user provides pre-processed data. Consider the ref-

erence tagging example previously shown in Section 4.1, where the tag associated with

each word begins with an open parenthesis “(” followed by the tag. Table 4.3 provides a

complete list of the possible types of tag. Figure 4.17 illustrates a sequence contains three

internal states, such as author (A), editor (ED) and name (N), where the state name has

the shared internal state, and the remaining states are production states as mentioned in

Figure 4.13. The training process for a MSHHMM includes simplification, which involves

transforming the internal state into three transformed states. For example, state name (N)

1The Penn Treebank Project, http://www.cis.upenn.edu/˜ treebank/home.html

4.6 Processes Involved in HHMM Modeling 83

Types of tag tag

author A

title T

booktitle BT

volume V

number NUM

pages P

month M

year Y

editor ED

publisher PU

address AD

name N

first name F

last name L

conjugate C

Table 4.3: Types of tag for the reference tagging task

can be transformed into name
(3)
in , name

(3)
stay and name

(3)
out as described earlier in Section 4.3.

Training consists of taking pre-tagged data to form the hierarchical model, and using the

hierarchical structure proposed in Section 4.1 to build the model. Figure 4.18 shows the

flowchart of the HHMM training process. Once the training process has completed, it

outputs the model parameters λ. The steps involved are as follows:

1 Model Initialisation: Collect pre-processed training data from the user.

2 Data Conversion: Select the type of conversion for the input text. A simple

approach for this task is not to convert any input text, but keep it in its original

form. In practice, keeping the text in its original form can be a problem when

the amount of text is large. The system can reduce the memory required to store

the input text by converting it in some way, such as transforming observations into

84 Hierarchical Hidden Markov Models

YES

NO

TRAINING

DATABASE

DATA

CONVERSION

MODEL

INITIALISATION

ESTIMATE

PARAMETERS

TUNING

PROCESS

DATA

MEMORY

DATA

VALIDATION

MODEL

PARAMETERS

OUTPUT

RESULTS

Figure 4.18: Flowchart of training process

patterns, then searching for identical patterns within the training data (a process

described in Chapter 6).

3 Estimate Parameters: Model parameters are formed by calculating the transition

probability distribution and the observation probability distribution. The system

records each transition path for each state and updates the model parameters λ

when the process has finished.

4 Tuning Process: Model parameters are tuned using model smoothing. Smoothing

provides probabilistic estimation for occurrences of unseen events. This technique

will be further described in Chapter 6.

4.6 Processes Involved in HHMM Modeling 85

5 Output Results: The final step outputs the validated model parameters to a text

file. The output data provides the initial transition probability (π), the transition

probability distribution (A), and the observation probability distribution (B) for

each state, along with observation symbols that has occurred in that state. The

structure file contains the hierarchical structure of the model with a list of state

relationships between parent and child states.

4.6.2 The Testing Process

Testing the HHMM involves using the model to extract untagged data, assigning tag in-

formation to the testing data and producing output with tagged data. The goal of this

process is to extend knowledge about the sentence by providing meaningful information

about the input data.

Consider, as an example, the following observation sequence:

Nahm, U. Y., and Mooney, R. J. 2000. Using information extraction to aid

the discovery of prediction rules from texts. In Proceedings of the Sixth Inter-

national Conference on Knowledge Discovery and Data Mining (KDD-2000)

Workshop on Text Mining, 51-58.

The task is to determine the most likely sequence (Ŝ) of states (A, T , EM , V , NUM , P ,

M , Y , ED, PU , AD, N , F , L, C), where the model can be expressed as:

Ŝ = arg max
S

P (S|O, λ). (4.38)

The output is:

(A (N (L Nahm,) (F U. Y.,)) (C and) (N (L Mooney,) (F R. J.))) (Y

2000.) (T Using information extraction to aid the discovery of prediction

rules from texts.) (EM In Proceedings of the Sixth International Conference

on Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text

Mining,) (P 51-58.)

86 Hierarchical Hidden Markov Models

NO

TESTING

DATABASE

DATA

CONVERSION

ERROR

ESTIMATION

CALCULATE

OBSERVATION

DISTRIBUTION

TRAINING

DATABASE

SENTENCE

FINISHED?

OPTIMAL

PATH

NO

YES

EVALUATE

AGAINST

MODEL

OBSERVATION

MATRIX

WORD

IDENTIFIED?

PATH

SEARCH

PROCESS

OUTPUT

RESULTS

YES

Figure 4.19: Flowchart of the HHMM testing process

Figure 4.19 shows the flowchart of the HHMM testing process, where the system starts

with the test sequence, reforms the transition matrix Ā, then reforms the observation

matrix for each internal state (B̄(i)) to create a HMM of transformed states. This is

followed by a standard Viterbi search process. Finally, the system outputs the results.

The processes involved are list as follow:

1 Data Conversion: This step is the same as in training. It takes input text and

converts it into user pre-defined format as required for each task.

2 Evaluate Against Model: The system then evaluates against the trained model

by matching each word with an existing state. When words are not identified by

4.7 Summary 87

the trained model, the system estimates the probability using the error estimation

method.

3 Error Estimation: The error estimation method is used to predict the probability

of the unseen observation. The method and the threshold value are evaluated during

the training process.

4 Calculate Observational Distribution: Once all the observation values are col-

lected for each state, the system normalises the observation matrix B so that the

probability of the matrix for each column is summing up to 1 and stores the data.

5 Path Search Process: For every internal state qi and observation sequence O,

the single best state sequence can be found by using the Viterbi algorithm, which

maximises P (O|Q, λ).

6 Output Result: Output the result to a file. In the reference tagging task, the

output for a test sequence is labelled with reference tags, such as:

(A P. Borras, J. C. Mamou, D. Plateau, B. D. Tallot.) (T Building user

interfaces for database applications: the O/sub 2/ experience.) (BT

SIGMODRecord (ACM Special Interest Group on Management of Data),

) (V 21) (NUM (1):) (P 32-38,) (M Mar.) (Y 1992.)

where each output result is compared against the actual answer to estimate the

extraction accuracy of the model.

4.7 Summary

This chapter outlines the process by which HHMMs, and in particular the Merged and

Simplified hierarchical hidden Markov models, are built, and explains the difference be-

tween HHMMs and non-hierarchical HMMs. It started by explaining the fundamental

properties of an HHMM, where the information in sub-states with the same parent can

be re-used, and then followed with an explanation of the merging technique used for the

MSHHMM to increase this information reuse. The idea of using copied sub-states to

88 Hierarchical Hidden Markov Models

restore the Markov property is then discussed. In this way the model can both adhere to

the Markov property and also take advantage of the benefits of repeated sub-states. This

chapter also describeed a new transformation for each internal state:

qi ⇒ {q(i)
in , q

(i)
stay, q

(i)
out}. (4.39)

along with how the transformed states were calculated. The transformed internal state

represents the status of the sub-model, whether entering, staying or exiting the sub-model.

Section 4.4 describes how variance of expected values can be reduced by increasing the

number of observations available for a state. This leads to a gain in stability for the model.

Thus a second benefit of the merging process is to increase the number of observations

per state. Chapter 5 will develop these ideas and apply them to two different applications

and Chapter 6 will suggest some techniques to improve the model.

In summary, the fundamental properties of the HHMM require the sub-models to be in-

dependent of each other, and the current state can only depend on previous states. This

research proposes that when repeated sub-models occur, the information within those

states should be shared, as part of a ‘merging process’, whereupon a larger number of

observations are available for each sub-state. In order to restore the Markov property,

the system provides duplicate copies for combined sub-states, so that those sub-states can

still retain the Markov property of being independent of each other without needing to

remember which sub-states have been merged.

CHAPTER 5

Applications

Chapter 4 discusses the theoretical aspects of the merged and simplified hierarchical hid-

den Markov model (MSHHMM) and its construction method. This chapter will describe

the practical application of the MSHHMM to two problems:

• reference tagging, and

• text chunking.

The results are compared to those of the regular tree structured hierarchical hidden

Markov model (RHHMM) and the tree structured HHMM with the simplified in-stay-

out states (SHHMM). The results are also compared to a simple HMM to determine the

effects of using a hierarchical structure as compared to the linear structure of the HMM.

Section 5.1 introduces the evaluation process that will be used for these two tasks. Sec-

tion 5.2 then evaluates the performance of all four types of model when applied to the

reference tagging task. The reference tagging task contains only a small number of layers

in the hierarchical structure. The second evaluation moves to a task that involves a higher

number of layers in the hierarchy structure, the text chunking task, as explored in Section

5.3.

5.1 Background to the Evaluation Process

When evaluating any extraction task, the performance of a model can be gauged using

two standard measures: Precision (P) and Recall (R) [Rijsbergen, 1979]. Precision mea-

90 Applications

sures the proportion of the extracted tags that were correct, while recall measures the

proportion of the correct tags that were extracted. Although the best situation is a model

that exhibits both high precision and high recall, in practice these two measures are often

inversely related. In other words, achieving high precision often requires having a smaller

result set and thus lower recall. Conversely high recall is easier to achieve with a larger

result set but only at the sacrifice of precision. Because of the relation between precision

and recall, we can derive a combined performance measure called the F-measure [Rijs-

bergen, 1979], which is the geometric mean of recall and precision. The formula for the

F-measure is:

F =
2× P × R

P + R
(5.1)

where F ∈ [0, 1], with 1 being the best score.

There are two possible ways of averaging this measure, called the macro-average and

micro-average [Rijsbergen, 1979]. The macro-average is a measurement based on each

individual state. The average performance is calculated by summing over all individual

states, where each state carries equal weight. The micro-average value is a measurement

of global effectiveness. The average performance is calculated by globally summing all of

the individual observations, where each state carries a weight in proportion to its size.

In this research the model is measured by micro-average, in other words based on total

effectiveness rather than that of individual states. The results of all four models; the

MSHHMM, the SHHMM, the RHHMM and the HMM, are compared using the micro-

averaged F-measure.

During the evaluation process a significance test is performed to determine the validity

of comparing the results of two different models. There are two types of issue that can

be addressed by the test of significance:

• the probability that a relationship exists, and

• the strength of said relationship.

In general the significance test can be obtained by re-sampling methods such as cross-

validation. The k×n cross-validation test [Bouckaert and Frank, 2004] is used to compare

5.1 Background to the Evaluation Process 91

the performance estimates, where the evaluation process repeats n-fold cross-validation

k times. During the evaluation process, a Type I error (false positive) occurs when a

positive result is reported where none really exists, and a Type II error (false negative)

occurs when a negative result is reported when it was really present. By using a k × n-

fold cross-validation the results are more resilient to Type I and Type II errors for each

individual data set.

A N -fold cross validation involves partitioning the input data into n subsets. The first

n − 1 sub-sets are put aside as training data leaving one sub-set as testing data. The

cross-validation process is then repeated n times, with each of the n sub-sets used exactly

once as the validation data.

INPUT

TRAINING

DATA

RANDOMLY SELECT K SUBSETS

SUBSET K

N-FOLD

CROSS-

VALIDATION

COMBINE

RESULTS

DATABASE

OUTPUT

RESULTS

SUBSET 1

SUBSET 2

SUBSET 3

Figure 5.1: Evaluation process

In this research, k × n cross-validation is used to compare performance among different

models. Figure 5.1 illustrates the evaluation process of k×n cross-validation. The process

begins by randomly selecting k sub-sets of data, then each sub-set is used in n-fold cross

92 Applications

validation against the evaluation model. The amount of training data for each fold is

proportional to n−1
n

. The purpose of this evaluation is to examine the amount of training

data that is required for a stable model and also to measure the variance of accuracy.

The significance test [Wild and Seber, 1995] applied during this research, a t − test, is

used to test whether there are differences between two sets of data (d1 and d2). The t-test

hypothesis states that the extraction accuracy from the two sets of data is the same at a

95% confidence interval. Formal calculation is then performed in order to determine the

threshold for accepting or rejecting this hypothesis. The test formula is:

t0 =
x̄d1 − x̄d2

se(x̄d1 − x̄d2)
(5.2)

The two separate sets of data should be independent to each other. Therefore the standard

error (se(x̄)) is calculated as:

se(x̄d1 − x̄d2) =

√
sd2

d1

Nd1

+
sd2

d2

Nd2

(5.3)

where sdd1 is the standard deviation for the data set d1, and Nd1 is the total number of

results. In a 5 × 10-fold cross-validation, the evaluation process produces 50 results for

each model. The value of t0 for a 95% confidence interval is thus equal to

t49(0.025) = 2.0009

so the significance test will reject the t-test hypothesis when the absolute value of |t0| is
greater than 2.0009.

5.2 Reference Tagging

This section applies the various HMMs to the reference tagging task and compares the

results. The section begins by explaining how reference tagging has been applied. It then

explains how the reference tagging problem is tested against the four model variations—

MSHHMM, SHHMM, RHHMM and HMM. The section concludes with the evaluation of

these models on the same set of data supplied by Seymore [1999].

5.2 Reference Tagging 93

The reference tagging task involves parsing a document in order to extract the information

required to determine what other documents are related to this one—information which

can then be used, for instance, to automatically generate web links to related online doc-

uments. This linking also enables the reader to gain other information about the related

documents, such as the publisher or year of publication. For example, the reference sec-

tion of an online research paper allows for relevant linking information [Bergmark, 2000]

to be extracted. These reference sections often appear at the end of a document under a

section heading, such as Reference, Bibliography, or List.

Reference

[1] T. Moloney, A. C. Lea, and C. Kowalchuk. Manufacturing and packaged goods.

In G. H. Castle, editors, Profiting from a Geographic Information System.

GIS World, Inc., Fort Collins, CO, 1993.

Figure 5.2: Example of a raw reference form

Example : Figure 5.2 is an example of a reference from the end of a research paper,

where the problem is to segment the reference into useful fragments such as author, title,

editor, booktitle, publisher, address and date. Both author and editor contain a person’s

name as their observation. Figure 5.3 represents the HHMM for the reference entry, and

shows the hierarchical similarity between the states author and editor, where both can be

the parent of a shared sub-tree rooted at the state name. The model also displays the

splitting of the single state name into a sequence of sub-states; first name, middle name,

last name and con (which represents connecting observations such as “and” and “In”).

This splitting should allow the structure to model more correctly the underlying sentence

structure, and the purpose of this splitting process is to define a model structure that

more accurately reflects the sentence structure.

Table 5.1 summarises the states and observations in the example. By identifying which

parts of the hierarchical structure have the potential for repeated sub-states the system

can promote sub-model reuse, thus hopefully increasing the efficiency of the model created

94 Applications

during training.

booktitleauthor title yearaddresseditor

name name

name

first middle last
name name

name

first last
name

middle
name

con con

publisher

Figure 5.3: Example of the reference-tagging task

state observations

first name T. C. G.

middle name C. H.

last name Moloney, Lea, Kowalchuk. Castle,

con and In editors,

title Manufacturing and packaged goods.

booktitle Profiting from a Geographic Information System.

publisher GIS World, Inc.,

address Fort Collins, CO,

year 1993.

Table 5.1: Summary of states and observations for Figure 5.3

It is worth mentioning that, because of the small depth of the underlying structure of

this task, it was anticipated that the HMM would, in some cases, perform better than

the HHMMs. The HMM should have the advantage in terms of both accuracy measure,

5.2 Reference Tagging 95

as the simple linear model is less likely to misidentify state boundaries as compared

to HHMMs, and in performance time, as the algorithms run on the linear HMM are

significantly less complex than those of HHMMs. To explain the possible confusion over

state boundaries, consider the example in Table 5.1. An HMM, having correctly matched

“C. Kowalchuk.” to a name state need only consider whether ”Manufacturing” is a name

or a title state, whereas the HHMMs would have to consider whether it were a new

name, another part of the name they were currently matching, or a new title. This extra

complexity should offer another opportunity where HHMMs could misidentify a state

leading to extra processing time and lower accuracy. However, the HMM did not exhibit

these properties, as evidenced in the following results.

5.2.1 Evaluation

In order to explore the modelling potential of the HHMM for reference tagging, this sec-

tion evaluates the various HHMMs and compares their performance in terms of accuracy

(as measured by the micro-average F-measure), stability (as measured by the standard

deviation of F-measure) and processing time (measured in seconds). Each of these factors

was further plotted against different volumes of training data (as measured in number of

sentences). The models were evaluated on a dataset from Seymore [1999], which contains

600 references with 13 types of pre-inserted tags: title, author, institution, location, note,

editor, publisher, date, pages, volume, journal, booktitle, and technical report.

It is already known that the volume of training data has a significant influence on the

stability of the model. In general, the model’s stability increases with the size of the

training data. The first experiment tested the impact of varying volumes of training data

on accuracy over the four types of model (MSHHMM, SHHMM, RHHMM, HMM). Fig-

ure 5.4 shows a graph of the micro-averaged F-measure for four types of models when

evaluated using 5× 10-fold cross-validation and with the volume of training data ranging

from 60 to 600 sentences. The results show that the MSHHMM achieves better accuracy

than the other three models when the training data is less than 300 sentences. For the

same range of training data volume, the HMM has the lowest accuracy. As the number of

96 Applications

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.4: Graph of F-measure for 5× 10-fold cross validation

training sentences increases, the accuracy for the different models converges to a similar

performance. The results for individual states can be found in Appendix A.2.

In reality, training data is sometimes very expensive to obtain. Furthermore, many of the

interesting applications of HHMM involve small training and testing data or situations

where resources (memory andor processing time) are limited, such as speech recognition

[Chien, 1999].

To further explore the ability of the MSHHMM to perform even over limited volumes of

training data, experiments with training data volumes ranging from 10 to 100 were car-

ried out. The results, given in Figure 5.5 show the MSHHMM performs better than the

other three models when applied to very small volumes of training data. For example, the

MSHHMM achieves 0.783 on micro-averaged F-measure with only 10 sentences, compared

to the results of 0.678, 0.706 and 0.634 for RHHMM, SHHMM and HMM respectively.

5.2 Reference Tagging 97

20 40 60 80 100

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.5: Graph of F-measure for 5 × 10-fold cross validation for small volumes of

training data

Figure 5.6 shows the value of standard deviation on F-measure for MSHHMM, SHHMM,

RHHMM and HMM for different volumes of dataset when again evaluated using 5×10-fold

cross-validation. The results show that as the volume of dataset increases, the accuracy

of all models increase, and the variances decrease, as they approach the point where they

converge. Note though, that the MSHHMM achieved better accuracy and less variance

with smaller amounts of training data than the three other models—SHHMM, RHHMM

and HMM.

Table 5.2 shows the t-test for three pairs of comparisons; MSHHMM verses RHHMM,

MSHHMM verses SHHMM and MSHHMM verses HMM. When the volume of training

data is 60 sentences the MSHHMM has strong evidence of better performance over the

RHHMM, as the value of t0 is equal to 2.392 (greater than 2.0009 under 95% confidence

98 Applications

100 200 300 400 500 600

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

number of sentences

st
an

da
rd

 d
ev

ia
tio

n
(F

)
MSHHMM
SHHMM
RHHMM
HMM

Figure 5.6: Graph of standard deviation on F-measure for 5× 10-fold cross validation

interval). The results show the MSHHMM displays strong evidence of better accuracy

than other models on sparse data (when there is an insufficient data during the training

process). The remaining results show weak evidence that the MSHHMM achieved better

performance than RHHMM, SHHMM and HMM for volumes of training data greater

than 300 sentences.

For each cross validation, 1
10

was used as testing data and the remaining 9
10

’s were used

as training data. Figure 5.7 represents the average processing time of testing (in seconds)

for the 5 × 10-fold cross validation. The x-axis represents the number of sentences that

have been used for 10-fold cross validation. The tests were carried out on a dual P4-D

computer running at 3GHz and with 1Gb RAM. The results show that, in general, there is

little processing time difference in using a MSHHMM rather than a HMM for the process-

ing task, due to there being only a small amount of sub-model sharing between different

sub-states. This is an interesting result given that the algorithms used on the MSHHMM,

5.2 Reference Tagging 99

MSHHMM MSHHMM MSHHMM

vs vs vs

RHHMM SHHMM HMM

no. of sentences t0 P − value t0 P − value t0 P − value

60 2.392 0.019 3.099 0.003 5.9238 6.572−8

120 1.191 0.236 0.662 0.509 4.661 1.084−5

180 1.443 0.152 1.349 0.181 3.504 0.001

300 0.451 0.653 −0.327 0.748 1.328 0.188

360 −3.362 0.718 −1.761 0.081 0.569 0.570

420 −0.744 0.459 −1.151 0.880 1.600 0.113

480 −2.351 0.021 −0.600 0.550 1.093 0.277

540 0.553 0.581 −0.076 0.937 1.076 0.285

600 −3.289 0.001 −0.719 0.474 −0.979 0.330

Table 5.2: Significances test for different size of datasets

including the various improvements, are more complex than those of the RHHMM.

Table 5.3 lists the extraction accuracies for the different models when applied to the

reference tagging task. 400 sentences were used for training and 200 sentences for test-

ing. The HMM achieved an extraction accuracy of 0.902, while the regular HHMM had

poorer performance only managing an accuracy of 0.714. Although the data exhibited a

shallow hierarchy, the MSHHMM provided better extraction accuracy than HMM with a

F-measure of 0.912. However, Seymore [1999] used a HMM with distantly-labelled data

to set the model parameters, thus improving the performance of the model to achieve an

extraction accuracy of 0.929. The performance of the MSHHMM can be further improved

by applying the techniques of structure formation, pattern generalisation and smoothing.

After the techniques are applied the MSHHMM achieves an extraction accuracy of 0.958,

which is the best result surpassing even the Seymore model. This improvement technique

will be discussed later in Chapter 6.

100 Applications

100 200 300 400 500 600

2
3

4
5

number of sentences

se
co

nd
s

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.7: Average processing time of reference tagging

5.2.2 Accuracy Performance on Individual Sentences

In order to uncover what properties of sentences favour one model above another, as se-

ries of experiments were conducted using a set of test sentences where each sentence was

uniquely identified by a number. The accuracy performance of one model when attempt-

ing to resolve each sentences is plotted against the performance of a second model on the

same sentence—thus quantifying which model had superior performance when tagging

that sentence. In theory, sentences with more complex and repeated structure should

be better handled by a hierarchical model, while simplier, shorter sentences should lend

themselves to the linear HMM. To examine what type of sequence is better suited for

what model, 400 sentences were used for training and 200 sentences for testing.

Figure 5.8 illustrates the extraction performance for 200 test sentences for two different

models—HMM and MSHHMM. The numbers on Figure 5.8 are the unique identifier given

to each of the 200 test sentences. The sentences that are located above the diagonal line

5.2 Reference Tagging 101

Model F-measure

RHHMM 0.714

HMM 0.902

SHHMM 0.912

MSHHMM 0.914

Seymore [Seymore et al., 1999] 0.929

MSHHMM(structure formation + pattern generlisation + smoothing) 0.958

Table 5.3: F-measure for different models

0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

MSHHMM (F)

H
M

M
 (

F
)

12 3

4

5

6 78

9

10
11

12

13

14

15

16 17

18
19

20
21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36
37

3839 4041

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

767778

79

80

81

82 83

84

8586

87

88 8990 9192

93 94

9596

97

9899 100

101

102

103

104

105

106

107

108

109

110111

112

113

114

115
116

117

118
119

120

121 122

123

124

125

126

127

128

129
130

131

132

133134

135

136

137

138

139

140

141

142

143

144

145

146 147148

149

150

151

152

153

154

155

156

157 158
159

160

161

162

163

164

165

166

167

168169 170

171

172

173 174175

176

177
178

179

180

181

182

183 184

185
186

187
188

189

190191

192

193

194

195

196

197

198

199

200

Figure 5.8: F-measure for MSHHMM against HMM

indicate the test sentences that resulted in better extraction accuracy under the HMM.

The test sentences 82, 146 and 150 achieved 1.0 of F-measure when processed by the

HMM, but performed more poorly under the MSHHMM. On the other hand, the test

sentences 46, 59 and 143 performed poorly under the HMM but could be extracted accu-

102 Applications

rately under the MSHHMM.

82 (author L. Press.) (title Software export from developing nations.)

(booktitle IEEE Computer,) (volume 26) (number (12):) (pages 62,)

(month Dec.) (year 1993.)

146 (author G. Gardarin.) (title Relational database and knowledge base

systems.)

150 (author M. Stonebraker.) (title The INGRES Papers.) (publisher

Addison-Wesley,) (address Reading, MA,) (year 1986.)

59 (author G. Wright and P. Ayton.) (title Eliciting and Modelling

Expert Knowledge.) (booktitle DecisionSupport Systems,) (volume 3)

(number (3):) (pages 13-26,) (year 1987.)

46 (author S. Jaenischen, G. Hommel, and C. H. A. Koster.) (title

Methodisches programmieren: Algorithmenentwicklung durch schrittweise

Verfeinerung.) (publisher DeGruyter Verlag,) (address Berlin,)

(year 1983.)

143 (author P. A. Bernstein, V. Hadzilacos, and N. Goodman.) (title

Concurrency Controland Recovery in Database Systems.) (publisher

Addison-Wesley,) (address Reading, MA,) (year 1987.)

Table 5.4: Six test sentences from reference tagging task

Table 5.4 contains the six testing sentences mentioned, where the top three sentences

represents the three sentences above the diagonal line from Figure 5.8, and the bottom

three sentences represents the three sentences from below. In the reference tagging task,

hierarchical structure only occurs during the states author and editor. The results indi-

cated that the HMM had better extraction accuracy when encountering shorter names

within the state author, such as “(author L. Press.)”. Meanwhile the MSHHMM per-

forms better when sentence contains a longer length of the state author, such as “(author

P. A. Bernstein, V. Hadzilacos, and N. Goodman.)”. The hierarchy labelling present

in training sequence enhances the extraction accuracy for the MSHHMM as it can make

5.2 Reference Tagging 103

use of both the child state, which controls the observation, and also has the advantage of

using the parent state, which provides a strong coupling relation between the child states.

0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

MSHHMM (F)

S
H

H
M

M
 (

F
)

12

3

456

7

89

10

11

12

13

14

15

16

17

18
19

20
21

22

23

24

25

26

27

28

29

30

31
3233

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

4950

5152

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76
777879
80

81

82

83
84

85

8687
88

89

90

9192

93

9495

96979899
100101

102
103

104

105

106

107

108

109110

111

112

113

114

115
116

117

118

119

120

121

122

123124
125

126

127

128

129
130

131

132

133134135

136

137

138139140

141

142

143144145

146

147148

149

150

151

152

153

154

155

156

157

158
159

160

161

162

163

164

165

166

167

168169

170

171172173

174

175176

177

178

179

180

181

182

183

184

185
186

187
188

189

190

191

192

193

194

195

196

197

198
199200

Figure 5.9: F-measure for MSHHMM against SHHMM

In the reference tagging task, there is only small amount of data that could be reused,

where the state name combined observation from both the author and editor states. Fig-

ure 5.9 shows the results of F-measure for the SHHMM against the MSHHMM. Most

sentences lie on the diagonal line, as the extraction accuracy is the same for both of the

methods. However, the sentences numbered 55 and 58 favour the MSHHMM while the

sentence 87 instead favours the SHHMM.

Table 5.5 lists the three test sentences of 55, 58 and 87. Note that sentences 55 and 58

have both an author and an editor field. Given this fact, and the model’s high accuracy

when tagging these sentences, the results suggest that the merging process allows the

MSHHMM to benefit from the repeated name structure.

104 Applications

55 (author U. Hohenstein, L. Neugebauer, G. Saake, and H.-D. Ehrich.)

(title Three-Level - Specification of Databases using an extended

Entity-Relationship Model.) (editor In R. R. Wagner, R. Traunm?uller

and H. C. Mayr, editors,) (booktitle Informationsbedarfsermittlungand -analyse

f?ur den Entwurf von Informationssystemen,) (pages pages 58-88,)

(address Berlin, Germany,) (year 1987.) (publisher Springer-Verlag.)

58 (author D. J. Penney and J. Stein.) (title Class Modification in the

GemStone Object - OrientedDBMS.) (editor In N. Meyrowitz, editor,)

(booktitle Proceedings of the ACM Conferenceof Object-Oriented

Systems, Languages and Applications (OOPSLA),) (pages pages 111-117,)

(address Orlando, Florida,) (month Oct.) (year 1987.)

87 (author S. J. Finkelstein, M. Schkolnick, and P. Tiberio.)

(title DBDSGN - A physicaldatabase design tool for system R.)

(booktitle IEEE Data Eng. Bull.,) (volume 5) (number (1),)

(month Mar.) (year 1982.)

Table 5.5: Three test sentences from reference tagging task

Figure 5.10 plots the relationship of F-measure for RHHMM against MSHHMM on 200

test sentences. The graph shown the MSHHMM provides better extraction accuracy

than RHHMM, where most of sentences lie on or below the diagonal line. There is only

one sentence that achieved better extraction accuracy under the RHHMM. Here is that

sentence:

(editor T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart, editors.) (title Infor-

mation SystemsDesign Methodologies: A Comparative Review.) (publisher

North-Holland/IFIP,) (address Amsterdam, The Netherlands,) (year 1982.

)

In sentence number 48, the reference starts with state editor and doesn’t contains an

author state at all—a unique case within this dataset. While the RHHMM has a lower

F-measure—compared with other sentences—it still has a higher extraction accuracy of

5.2 Reference Tagging 105

0.5 0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

MSHHMM (F)

R
H

H
M

M
 (

F
)

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26
27

28

29

30

31

32
33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49
50

51

52 53

54

55

56

57

58
59

60

61
62

63

64

65

66

67

68

69

70

71 72
73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

9192

93

94

95

96

97

98

99

100

101

102

103

104

105

106
107

108

109

110

111
112

113
114

115116

117

118

119

120

121

122

123
124

125

126
127

128

129

130

131

132

133134

135
136

137

138

139

140

141

142

143

144

145

146

147

148
149

150

151

152

153

154

155

156

157
158

159

160

161

162

163

164

165

166

167

168

169

170
171

172

173

174

175

176

177

178

179

180

181

182

183

184

185186

187

188

189

190

191

192

193
194

195

196

197

198

199
200

Figure 5.10: F-measure for HHMM against MSHHMM

0.636 compared to 0.500 for the MSHHMM. This is one case where the simplification

technique applied to the MSHHMM, which results in tighter coupling between the child

states of an internal state, results in poorer performance. While both models initially

mis-identify the names as being from the author state, the RHHMM more easily ‘breaks

out’ when it encounters the “editors.” observation moving quickly to a correctly identified

editor state. The MSHHMM, meanwhile, has a higher chance of incorrectly indentifying

the observation “editors.” due to its position in the child states of the author.

5.2.3 Discussion

The results above show that the MSHHMM typically outperforms either of the other

two HHMM models, in terms of accuracy, stability and processing time. Furthermore

it suggests that the MSHHMM can also outperform the HMM when there is a lim-

106 Applications

ited volume of training data—at least in accuracy. For larger training data sets, the

MSHHMM, at worst, performs comparably to the HMM. This evidence would suggest

that the MSHHMM presents a better ‘general’ model for tasks such as reference tagging.

This advantage is due to two optimisations or improvements over the standard HHMM;

Merging and Simplification.

Merging involves finding two or more states which display the same sub-model structure,

and then merging the sub-models, with the resulting combined sub-model shared between

the parent states. In the experiment above, the MSHHMM, by way of its hierarchical

nature, can take advantage of the repeated structure in the editor and author states by

merging the probabilistic information and observations within them into a combined sub-

model under the single shared internal state name.

The overall results show that the MSHHMM provides better extraction accuracy, stabil-

ity and processing performance than the RHHMM’s. Furthermore the MSHHMM often

performs the same as, or better than, the HMM.

It is again worth mentioning that when training data is limited, the MSHHMM has the

most significant increase in performance, as compared to the other models—SHHMM,

RHHMM and HMM. Remember that training data sparsity is one of the fundamental

problems in modelling natural language, and so any techniques that increases the accu-

racy of a MSHHMM under these circumstances is most desirable.

However, the results also show that, when the volume of the training data is increased,

the benefits of using a MSHHMM for the reference tagging task decrease. Eventually all

of the models converge at a certain accuracy and variance. Moreover the results for the

SHHMM do not show any significant advantage in using the simplification improvement

during this task despite the reasoning that it might. This is due to the reference tagging

task only having one level of hierarchy, with the only repeated structure being a person’s

name—a repeated hierarchy, which while well-defined, tends to contain only three states.

These two properties result in little opportunity for the simplification and merging of

5.2 Reference Tagging 107

repeated sub-models.

The results shown by the individual analysis of sentences reveal that certain properties

of a sentence favour one model above another. For example, a sentence with a repeated

structure of longer lengths typically is processed more accurately by the MSHHMM. This

is because it can reuse this repeated structure to merge sub-model information. Further-

more, by focusing on the boundary observations that demark entry and exit points to a

sub-sequence, the model gains accuracy by having tighter coupling between the parent

and child states.

The final point to discuss regards the seemingly poor performance of the HMM when

applied to this task. It was earlier mentioned that because of the shallow hierarchy and

simple information it was believed the HMM should perform well on this task. However the

results show the HMM is often outperformed by the HHMM. The cause of this discrepancy

was investigated and it was found that the HMM was more easily confused about the

boundary between name information (such as editor and author) and title information

and that, once it incorrectly identified a first name as a title, it had no way to recover

from this error. In contrast, the MSHHMM, due to the advantage of more observations

for the entry state to a person’s name, was less susceptible to making the identification

error in the first place. Even if the MSHHMM did identify the wrong state it was able

to recover, by use of its hierarchical nature, and correctly match the remainder of the

reference. This investigation uncovered another interesting benefit of using a hierarchical

approach rather than a linear one. It also highlights that, although its algorithms are

more complex, a MSHHMM can still have a lower processing cost due to it being able to

more correctly match the testing data, thus avoiding the extra processing time caused by

a model attempting to match a testing sentence once the model has already misidentified

a state.

108 Applications

5.3 Text Chunking

A mathematical model can be used to identify syntactic roles in text chunking for the

purpose of propositional analysis. The aim of text chunking is to divide a sentence into

non-overlapping part-of-speech phrases, for instance, noun phrases and verb phrases. Due

to the nesting nature of such phrases, this task involves modelling a much deeper hierar-

chy than that shown in the previous application.

Noun phrases are often used for extraction and retrieval purposes, and it is often beneficial

to explore text documents in terms of these phrases rather than individual words. For

instance, searching for the noun phrase “stock market” may be more useful compared to

search for the single word “stock”. This approach can be useful for tasks such as document

analysis and document indexing. The subject of a text document can often be distilled

from a set of noun phrases. Thus, if the noun phrases of the text are collected, they can

provide a better understanding of the text. Noun phrases are used in text chunking, to

avoid having to develop a complete parse tree of the text, a process which can prove to be

very difficult and computationally expensive. Research has shown that a shallow parsing

tree such as that applied during text chunking can extract enough information for the

basic understanding of text. Church [1988], for example, proposes a noun phrase extrac-

tor that makes estimates of the position at each noun phrase within a sentence according

to the two probability matrices: the starting noun phrase matrix, and the ending noun

phrase matrix. There are also more recent approaches, such as shallow parsing [Thollard

and Clark, 2002], where the algorithm finds the most likely chunking sequences and uses

them as a preliminary step to full parsing.

Text chunking involves producing non-overlapping segments of low-level noun groups.

The system uses clause information to construct the hierarchical structure of text chunks,

where clauses represent the phrases within the sentence. Clauses can be embedded in

other clauses but cannot overlap one another. Furthermore, each clause contains one or

more text chunks.

5.3 Text Chunking 109

Consider a sentence from a CoNLL-20041 corpus:

(S (NP He PRP) (VP reckons VBZ) (S (NP the DT current JJ account NN

deficit NN) (VP will MD narrow VB) (PP to TO) (NP only RB # #

1.8 CD billion D) (PP in IN) (NP September NNP)) (O . .)).

The part-of-speech tag associated with each word is attached with an underscore. The

clause information is identified by the S symbol and the chunk information is identified by

the remaining symbols: NP (noun phrase), VP (verb phrase), PP (prepositional phrase)

and O (null complementizer). The brackets are in Penn Treebank II style2. The sentence

can be re-expressed in terms of its part-of-speech tags:

PRP VBZ DT JJ NN NN MD VB TO RB # CD D IN NNP

The part-of-speech tags are the inputs for the text chunking task. This is done so that

the system can minimise the computational cost involved in learning a large number of

observation symbols. This approach maximises the efficient use of the training data by

learning the syntactic pattern that underlies the words rather than the words themselves.

The part-of-speech tag is determined by using tagging software, such as Brill’s part-of-

speech tagger (available from the Microsoft research home website3).

Figure 5.11 shows the HHMM tree representation for the text chunking task. This example

involves a hierarchy with a depth of three. Note that the state NP appears in two different

levels of the hierarchy, a common occurrence given the nested nature of the phrases. In

order to build a HHMM the sentence shown above must be restructured as:

(S (NP PRP) (VP VBZ) (S (NP DT JJ NN NN) (VP MD VB) (PP TO) (NP

RB # CD D) (PP IN) (NP NNP)) (O .))

where the model makes no use of the word information contained in the sentence. Once

the training data has been converted to the input format it is used to train the tree-

1The 2004 Conference on Computational Natural Language Learning, Boston, MA, USA, 2004,

http://cnts.uia.ac.be/conll2004
2The Penn Treebank Project, http://www.cis.upenn.edu/˜ treebank/home.html
3http://research.microsoft.com/˜ brill/

110 Applications

NIL

SVPNP

PRP VBZ NP

JJ NN NN

VP

MDDT TO

PP NP

RB # CD D

PP

IN .

O

Figure 5.11: HHMM for syntax roles

structured HHMM.

The second HHMM, the simplified HHMM (SHHMM), is created during testing, by trans-

forming the children of each internal state Si into three production states, S
(i)
in , S

(i)
stay and

S
(i)
out, as described in Chapter 4. Finally, the merging technique is applied in this research

are applied to the RHHMM to generate the MSHHMM.

5.3.1 Evaluation

When an English sentence is converted into a part-of-speech sequence, the number of

observation symbols reduces dramatically. In order to explore the stability of the various

HHMMs, the following set of experiments were conducted. First, the affect of the volume

of training data was evaluated. Second, the performance of each of the three models was

analysed on sentences of different lengths. The models were evaluated by analysing the

results of performing the text chunking task on the data from CoNLL-2004. The dataset

contains 8936 training sentences and 1671 test sentences.

As shown earlier, the amount of training data dramatically affects prediction accuracy.

When developed from training data with a limited number of observation symbols, the

resulting model suffers. In the text chunking task the number of observation symbols is

5.3 Text Chunking 111

the number of part-of-speech tags in the training data.

500 1000 1500 2000

0.
88

0.
89

0.
90

0.
91

0.
92

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.12: Overall results of F-measure for text chunking task

Figure 5.12 plots the graph of micro-averaged F-measures for 5× 10-fold cross-validation

for different volumes of dataset ranging from 200 to 2000, for each of the models. In

Figure 5.12, the MSHHMM achieves the best performance, due to the large amount of

repeated structure within the text chunking data. Figure 5.14 plots the standard de-

viations for each subset when evaluated using the four models (MSHHMM, SHHMM,

RHHMM and HMM). The MSHHMM generally has higher extraction accuracy according

to micro-averaged F-measure on volumes of data ranging from 200 to 2000, compared to

the other models. During this range the MSHHMM also has a lower standard deviation

in its results implying a more stable model. Results for some of the individual states are

listed in Appendix A.3.

There is a limited number of observations within each state for the text chunking task,

112 Applications

due to there being only 38 types of part-of-speech tags for the set of data. Later results,

during significant testing, show there is no strong evidence of difference on F-measure

between the MSHHMM and the RHHMM.

20 40 60 80 100

0.
75

0.
80

0.
85

0.
90

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.13: Overall results of F-measure for text chunking task on small volume of data

In order to more closely determine the various models performance when applied to sparse

datasets they were applied to smaller volumes of training data. Figure 5.13 plots the re-

lationship of micro-averaged F-measure on the small volumes of data, which ranged from

10 to 100 sentences. The figure shows that although the MSHHMMs accuracy may be

slightly better than the other models, the advantage of its use is not as significant as it

was for the reference tagging task. It is interesting to note that the SHHMM has the

poorest accuracy of all four models.

Significance testing allows us to determine whether or not the results are a genuine dif-

ference between two (or more) groups, or whether it is just due to chance. For the text

5.3 Text Chunking 113

500 1000 1500 2000

0
 e

+
00

1
 e

−
04

2
 e

−
04

3
 e

−
04

4
 e

−
04

5
 e

−
04

number of sentences

st
an

da
rd

 d
ev

ia
tio

n
(F

)

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.14: Standard deviation of F-measure for text chunking task

chunking task, the null hypothesis of this test is to find out whether the MSHHMM is

better than the other three models—SHHMM, RHHMM and HMM. The significance eval-

uation process for text chunking is done in the same manner as in the reference tagging

task. For a 5 × 10-fold cross-validation, the value of t0 to reject the hypothesis within

95% confidence interval is when |t49(0.025)| ≤ 2.0009.

Table 5.6 provides a summary of t0 values and p-value over different volumes of training

data. The result shows that there is strong evidence that MSHHMM performs better

than the RHHMM on training data of 1400 sentences, as the values of t0 are greater than

2.0009. The difference between MSHHMM vs. RHHMM starts with negative values of t0

(−2.237 and −0.792), then gradually increases to 0.425. The MSHHMM gains extraction

accuracy as the volume of data is increased. The results also show there is strong evidence

that the MSHHMM performs better than the SHHMM and the HMM, as the t0 values

are greater than 2.0009 for most of the different volumes of data.

114 Applications

MSHHMM MSHHMM MSHHMM

vs vs vs

RHHMM SHHMM HMM

no. of sentence t0 P − value t0 P − value t0 P − value

200 −2.237 0.028 2.825 0.001 1.089 0.279

400 −0.792 0.431 0.288 0.774 3.305 0.001

600 0.425 0.672 1.334 0.185 2.100 0.038

800 0.769 0.444 1.452 0.150 3.712 0.001

1000 0.586 0.559 3.105 0.002 5.657 1.527−7

1200 0.749 0.456 4.897 3.834−6 5.924 4.811−8

1400 3.348 0.001 4.926 3.749−6 6.581 2.433−9

1600 1.858 0.066 2.792 0.006 5.459 4.408−7

1800 1.896 0.061 5.468 4.676−7 7.101 1.994−10

2000 1.278 0.204 5.427 4.169−7 6.7892 1.094−9

Table 5.6: Significance test for different volume of data sets

Figure 5.15 plots the relationship of computational cost (in seconds) of processing each

task, in respect to the alignment problem. The tests were carried out on the same dual

P4 − D computer running at 3GHz and with 1GB RAM. These results show the dra-

matic effect of applying the improvement techniques to a HHMM. Both the tree-structured

RHHMM and the SHHMM require extra processing time due to the greater complexity

of the models. However the MSHHMM offsets the extra complexity by reusing parts of

the model. Even though there is further cost involved in merging and later cloning out

the repeated models, the MSHHMM outperforms the other hierarchical models and the

linear HMM.

Table 5.7 lists the extraction accuracies for the different models with applied to the text

chunking tasks on CoNLL-20004 data set. The results show the MSHHMM can provide

4http:www.cnts.ua.ac.beconll2000chunking

5.3 Text Chunking 115

500 1000 1500 2000

20
40

60
80

number of sentences

se
co

nd
s

MSHHMM
SHHMM
RHHMM
HMM

Figure 5.15: Average processing time of testing for text chunking tasks

model Chunking Development Chunking Test

HMM 0.907 0.895

HHMM 0.915 0.911

HMM by Molina [2001] 0.922 0.921

Table 5.7: F-measures of text chunking for CoNLL-2000.

better extraction accuracy than the simple HMM. But, the HMM system by Molina [2001]

achieved higher accuracy than the MSHHMM. Moline’s system takes advantage of selected

words corresponding to certain tags (such as SBAR and PP), then adds those word

towards the original tag. For example,

observation POS chunk tags → observation POS chunk tags

You PRP NP You PRP PRP-NP

shows NNS NP shows NNS NNS-NP

where the chunk tag transformed to new chunk tag of “PRP-NP” and “NNS-NP”. During

116 Applications

the transformation process, the chunk tag “NP” is divided into different types of “NP”

by joining with POS tag, which results in one-to-one relationship between chunk tag and

observation symbol (rather than one-to-many relationship between chunk tag and obser-

vation symbols). In other words, the chunk tag “NP” is sub-divided along the boundaries

of part-of-speech tags to reduce the number of observation symbols within each tag. In

this manner, the model provided higher quality results than the MSHHMM on text chunk-

ing task. Conversely, when the same system is applied to the task of clause identification

on the ConLL-20015 data set the MSHHMM outperformed the HMM [2001]. Table 5.8

lists the extraction accuracies for the clauses identification on two different models. The

results indicated that the MSHHMM achieved a better extraction accuracy for F-measure

of 0.7621 compared to 0.7068.

Model P R F

MSHHMM 0.8047 0.7238 0.7621

HMM by Molina [2001] 0.7085 0.7051 0.7068

Table 5.8: Results of the top four systems that participated in shared task and the

MSHHMM results for CoNLL-2001.

Hierarchical model has benefit of flexibility for merging repeated sub-models, also provided

better handling for data that has hierarchical representation of tagged data. Overall, the

results have indicated that the MSHHMM is better suited on the clause identification

compared to the linear HMM.

5.3.2 Accuracy Performance on Individual Sentences

To explore properties of sentences for text chunking task, a series of experiments were

conducted using a set of data from CoNLL-2000. The dataset contains 8936 training

sentences and 1671 test sentences. The experiment was performed in a manner similar to

those from the previous section, where the accuracy performance of one model is plotted

5http:www.cnts.ua.ac.beconll2001clauses

5.3 Text Chunking 117

against the performance of a second model on the same sentence.

0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

MSHHMM (F)

H
M

M
 (

F
)

1

2
3

4

5

6

7

89

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32 33

34

35

36

37

38

39
40

41

42
43

44

45

46

4748

49

50

51

52
53

54

55 56

57

58

59

60

61

62

6364

65

66

67

68

6970

71

72

73

74

75

76
77

78

79
80

81
82

83

84

85868788

89

90

91

92
93

94

95

96

97

98 99

100

101

102 103

104

105

106

107108109

110

111

112

113
114

115

116
117

118

119120

121

122123

124

125

126
127

128

129

130

131 132

133
134

135
136

137

138

139

140

141

142

143144

145

146

147

148149

150
151

152

153

154
155

156

157

158 159

160

161

162

163164

165

166

167

168

169
170

171

172

173

174175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
201

202

203

204

205

206 207

208

209

210

211

212213
214215

216

217

218

219

220
221

222

223

224

225

226

227

228

229

230

231

232
233234

235

236

237

238

239240

241

242

243

244

245

246

247

248

249

250

251
252

253 254

255

256

257

258

259

260

261

262

263

264

265

266
267

268

269270271

272

273

274

275

276
277

278

279

280

281

282

283 284

285

286 287 288289

290
291

292
293

294

295

296

297

298
299

300

301302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317 318319

320

321
322

323
324

325

326 327

328

329

330

331

332

333

334

335

336

337

338
339

340

341
342

343

344

345346

347

348

349

350

351

352

353
354

355

356

357

358

359

360

361

362

363364

365

366

367

368

369

370

371
372

373

374

375

376

377

378

379

380381

382
383

384

385

386

387

388

389

390

391

392

393

394
395

396
397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412
413

414

415
416

417

418

419

420

421

422

423
424

425

426427

428

429

430

431432 433

434

435

436437
438

439 440 441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458459

460

461

462

463

464

465

466

467

468

469 470471472

473

474475

476

477

478

479

480

481 482

483

484

485

486

487

488

489

490

491

492 493

494

495

496

497

498

499

500

501
502

503
504

505

506507

508

509

510

511
512

513

514515

516

517

518

519

520

521

522
523

524

525

526

527 528
529

530
531

532

533534

535
536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552553

554
555

556

557

558

559

560

561562

563

564

565

566

567

568

569

570571

572

573574

575

576

577
578

579

580

581

582
583

584

585

586

587

588

589

590591

592
593

594

595

596

597
598

599

600

601

602

603

604

605

606

607

608 609

610

611

612

613 614

615

616

617

618

619

620

621

622

623

624

625

626

627628629

630

631

632

633

634

635

636

637

638
639

640641

642

643

644

645

646

647

648

649

650

651

652

653 654655

656

657

658

659

660

661

662663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681682683

684
685

686

687

688

689
690

691

692

693

694

695

696

697 698

699

700

701

702

703

704

705

706

707

708

709
710

711

712713

714

715

716

717

718

719
720

721

722723

724

725
726

727728

729

730
731

732

733

734

735

736
737

738

739

740

741

742

743

744

745

746747

748
749

750751752

753

754

755
756

757758

759
760

761

762763

764

765

766

767 768

769

770

771

772

773

774

775

776

777

778 779

780

781

782

783

784
785

786

787

788

789

790

791

792
793794
795

796

797
798

799

800

801

802

803 804

805

806

807

808

809

810

811

812

813

814

815

816817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834
835

836

837

838 839

840

841
842

843

844

845846
847

848

849

850

851

852

853854855

856

857858859

860

861

862

863

864

865

866867

868

869

870

871

872

873

874
875

876

877

878

879

880

881

882

883
884

885

886

887

888

889

890

891

892

893

894

895

896

897
898

899
900

901

902 903

904

905 906

907908

909

910 911

912

913

914

915916

917

918

919

920 921

922

923

924

925

926
927

928

929

930 931

932933
934

935

936

937938

939

940

941

942

943
944

945

946

947

948

949

950

951

952 953

954

955

956 957

958

959
960

961

962
963

964

965

966

967
968

969

970

971

972

973

974

975

976

977

978979

980

981
982983

984

985

986

987
988
989

990991

992

993

994

995

996

997

998

999
100010011002

1003 1004

1005

1006
1007

1008 1009

1010

1011

1012

1013

1014

10151016

1017

10181019 1020

1021
1022

1023

1024

1025

1026
1027

10281029

1030

1031

1032

1033

1034

1035

1036
1037

1038

1039

1040

1041
1042

1043

1044

1045

1046

1047

10481049

1050

105110521053

1054

1055

1056

1057

1058

1059

1060
1061

1062

1063

1064

1065

1066

10671068

1069
1070

1071

1072

1073

1074

1075

1076

1077

1078
1079

10801081

1082

1083 1084

1085

1086

10871088

1089

1090
1091

1092

1093

10941095

10961097

1098 1099

1100

11011102

1103
1104

1105

1106

1107

1108

1109

1110

1111

1112

1113
1114

1115

1116

1117

1118

11191120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

11571158

1159 1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178
1179

1180

1181

1182
1183

1184

1185

1186

1187

1188

1189

1190 1191
1192

1193

1194

11951196

1197

1198

1199

1200

12011202

1203

1204

1205

1206

1207

1208

1209

1210 1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

12221223

122412251226
1227

1228

1229
1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

12441245

1246

1247

1248

1249

1250

1251
1252

1253

1254

1255

1256
1257

1258

1259

1260

12611262

1263

12641265

1266

1267

1268

1269

1270

1271

1272
1273

12741275

1276

1277

1278

1279

1280

1281

1282

1283
1284

1285

1286
1287

1288

1289
1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300
1301

1302
1303

1304

1305
1306

1307
1308

1309

1310

1311
1312

1313

1314
1315

1316

1317

1318

1319

1320

13211322

1323

1324

1325
1326

1327

1328

1329

1330

1331

1332

1333
1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

13521353

1354

1355
1356

13571358

1359

1360 1361

1362

1363
1364

1365

1366
1367

1368

1369

1370

1371

1372

1373

13741375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

13871388
1389

13901391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410
1411

1412

1413
1414

1415

14161417

1418

1419

1420

1421
1422

1423

1424

1425

1426

1427

1428

14291430

1431

1432

1433
1434

143514361437

1438

1439

1440 1441

1442

1443

1444

14451446

1447
1448

1449

1450

1451
1452

1453

14541455

1456

1457 1458

1459

1460
1461

1462

1463

1464

1465

14661467

1468

1469

1470

14711472

14731474

1475

1476
1477

1478

1479 1480

1481

1482

14831484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494 1495

1496

1497

1498

1499

1500
1501

15021503

1504

15051506 1507

1508

1509

1510

1511

1512
1513

1514

15151516

1517

1518

1519

1520

1521

1522

1523
1524

1525

1526

1527

1528

1529

1530

1531

1532
1533

1534

1535

1536

1537

1538
1539

1540

1541

1542

1543
1544

1545

1546
1547

1548

1549

1550

1551

1552

1553

1554
1555

1556

1557
1558

1559

1560

1561

1562

15631564

1565

1566

15671568

1569
1570

1571

1572

1573
1574

1575

1576

1577

1578

1579
1580

15811582
1583

1584

1585
1586

1587

1588

1589

1590

1591

1592

1593
1594

15951596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608 1609

1610

1611 1612

1613

1614

1615

1616

1617

16181619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630 1631

1632

1633

1634

1635

1636

1637
1638

1639

1640

1641

1642

1643

1644

1645

1646

1647
1648

1649

1650
1651

16521653

1654

1655
1656

1657

1658
1659

1660

1661

1662

1663
1664

1665

1666

1667

1668

1669

1670

1671

Figure 5.16: F-measure for MSHHMM against HMM

Figure 5.16 plots the relationship of F-measure for the HMM against the MSHHMM on

1671 test sentences. There are 706 sentences below the diagonal line, 373 sentences above

the diagonal line and 592 sentences lie on the diagonal line. This indicates that the

MSHHMM is more suitable then the HMM. The two circled sentences, 361 and 1385, are

the extreme cases for these two models. Here is the tagged data for these two sentences.

361 (NP NNS CC NNPS)

1385 (S (O CC) (NP PRP) (VP VBZ) (PP IN) (S (VP VBG)

(PRT RP) (NP DT NN) (O CC) (S (VP VBG) (ADVP RB)

(PP IN))))) (O . ”)))

The result once again show that shorter sentences are more likely to be better handled

118 Applications

by the linear HMM model, where longer sentences are better suited to the MSHHMM.

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

MSHHMM (F)

S
H

H
M

M
 (

F
)

1

2

3

4

56

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

4748

49

50

51

52

53
54

55

56

57

58

59
60

61

62

63

64

65

66

67

68

6970

71

72

73

74

75

76

77

787980
81

82 83

84

858687

88

89

90

91

92

93

94

95

9697

98 99
100

101
102

103

104

105

106

107108109

110111

112

113

114
115116

117

118119
120

121

122

123124

125
126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
148

149
150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
165166

167

168

169

170

171

172

173

174

175

176

177

178

179

180181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204
205206

207

208

209

210

211

212213

214

215

216

217

218

219

220

221

222223

224

225

226

227

228 229

230

231

232

233

234

235

236

237

238

239

240
241

242

243

244

245

246
247

248

249

250

251

252
253

254
255

256

257

258

259260

261

262

263264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282
283

284

285

286

287

288289

290

291

292

293

294

295

296

297

298

299

300

301

302
303

304

305

306

307

308 309

310

311

312
313

314
315

316

317 318319

320

321

322

323

324

325

326

327

328

329

330

331332

333

334

335

336

337

338

339

340

341

342

343

344

345346

347

348

349

350

351

352

353
354

355

356

357

358
359

360

361

362

363364
365

366

367

368

369
370

371

372373

374

375

376

377

378

379

380

381

382

383

384 385

386 387

388

389

390

391

392

393

394395 396

397

398399
400

401

402

403404

405

406

407

408

409

410

411

412
413

414
415

416

417

418

419

420
421

422

423

424

425426

427

428

429430

431

432

433434

435

436

437

438

439

440

441

442

443
444

445

446447

448 449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465466

467

468

469

470

471

472

473474

475

476

477

478479

480

481

482

483

484 485

486
487

488

489

490

491

492

493

494

495

496
497498 499500

501502 503
504

505

506507

508

509

510511

512

513

514

515

516

517

518

519

520
521

522

523

524

525

526

527

528
529

530
531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552553

554555

556

557

558
559

560

561
562

563
564

565
566

567

568

569

570571

572

573

574
575

576

577

578

579
580

581

582

583

584
585

586

587

588

589

590
591

592

593

594

595

596

597

598 599

600

601

602603

604

605

606

607

608

609

610611

612

613

614

615

616

617

618

619

620621

622

623624

625626

627

628629

630

631

632

633

634

635636
637

638

639
640641

642643

644

645646

647

648

649

650

651

652
653

654

655

656
657

658
659

660

661

662663

664

665

666

667

668669

670

671

672

673

674

675

676

677

678

679

680

681682

683

684

685

686

687

688

689

690

691

692

693

694
695

696
697

698

699

700
701

702

703

704

705

706
707

708

709
710

711

712

713

714

715

716

717

718

719720

721

722

723

724

725
726

727

728

729

730

731

732

733 734

735736
737

738

739

740
741

742

743

744

745

746747

748749

750751

752

753
754

755756

757758

759

760

761

762

763

764

765

766

767 768

769770

771

772773

774

775
776

777

778

779
780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796797

798

799

800

801802803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820821

822

823
824

825

826

827

828
829

830

831

832

833

834

835

836

837

838

839

840

841

842843

844

845

846

847

848

849 850

851

852

853854855

856

857858

859

860

861

862

863

864

865

866867868

869

870

871

872

873

874

875

876

877

878879

880

881
882

883

884

885

886

887

888889

890
891

892

893

894

895

896

897

898

899

900
901902

903

904

905

906907

908909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929
930

931

932

933

934

935
936

937

938

939

940

941

942

943

944

945

946

947
948

949

950

951

952

953
954

955

956

957

958

959

960

961

962

963

964

965

966

967
968

969

970

971

972

973

974

975

976

977

978

979

980
981

982983

984

985

986

987

988989990991

992

993

994

995

996

997
998

999

1000
1001

1002

1003

1004

1005

1006

1007

1008 1009

1010

1011

1012

1013

1014

1015
1016

1017

1018

1019

1020

1021
1022

1023

1024

1025

1026

1027

10281029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

10491050

105110521053

1054

1055

10561057

1058

1059

1060

1061
1062

1063

1064 1065

1066

1067

10681069
1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

10801081

1082

1083

1084

1085

1086

10871088

1089

1090

1091

1092

1093

1094
10951096

1097

1098 10991100110111021103

1104

1105

1106 1107

1108

1109

1110

1111

1112

1113

1114

11151116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126 1127

1128

1129

1130

1131

1132

1133

1134

11351136

1137

1138

1139

1140

1141

1142

1143
1144

1145

1146

1147

1148

1149

1150
1151
1152

1153

1154

1155

1156

1157

1158

1159 1160

1161

1162

1163

1164

1165

1166

11671168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178
1179

1180

1181

1182

1183

1184 1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198
1199

1200

1201

12021203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213
1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225
1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

12371238

1239

1240

1241

1242

1243

1244

1245

12461247

1248

1249

1250

1251
1252

1253

1254

1255

1256

1257
1258

1259

1260

1261

1262

1263

12641265

1266

126712681269

1270
1271

1272
1273

1274

1275

1276

1277

1278

1279

1280
1281

1282 1283
1284

1285

1286

1287
1288

1289
1290

1291
1292

1293

1294

1295

1296

1297
1298

1299

1300

1301

1302

1303

1304

13051306

1307

1308

1309

1310

1311
1312

1313

1314

1315
1316

1317

1318

1319

1320
1321

1322 1323

1324

1325
13261327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

133913401341

1342

1343

1344

1345

1346

1347

1348

1349

1350

13511352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363
1364

1365

1366
1367

1368

1369

1370

1371

1372

13731374
1375

1376

1377

1378

1379

1380

1381
1382

1383

13841385

1386

1387

1388

1389 1390

1391

1392

1393

1394

1395
1396

1397

1398

13991400

1401

1402

1403

1404
1405

1406
1407

1408

1409

1410

1411

1412

1413

1414

1415

14161417

1418

1419

1420

1421

1422

1423

1424
1425 1426

1427

1428

1429

14301431

1432
1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

14451446

1447
1448

1449

1450
1451

1452

1453

1454

1455
1456

1457

1458

1459

1460

1461

1462

1463

1464

1465
1466

1467

1468

1469

1470

14711472

14731474 147514761477

1478

1479
1480

1481

1482

14831484
1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498
14991500

1501

1502

1503

1504

1505

1506

1507

1508

1509
1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530
1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

15411542

1543

1544

1545

1546

1547
1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558
1559

1560

1561

1562

1563

1564

1565

1566

1567

1568 1569

1570

15711572

1573

1574

1575

1576

1577

1578
1579

15801581

1582
1583 1584

1585

1586
1587

1588
1589

15901591

1592

1593
1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610
1611

1612

16131614

1615

1616
161716181619

1620
16211622

16231624
1625

1626

1627

1628

1629

1630

1631

1632
1633

1634

1635

1636
1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

16531654

1655

1656

1657

1658

1659

16601661

1662

1663

1664

1665

1666

1667

1668
1669

1670
1671

Figure 5.17: F-measure for MSHHMM against SHHMM

During the merge process, the information between equivalent sub-models are merged

to provide better extraction accuracy. The results in Figure 5.17 show that there are

large number of sentences which are set on the diagonal line. From 1671 test sentences,

there are 380 sentences below the diagonal line, 268 sentences above it and the 1023

sentences lie on the diagonal line. The text chunking task is based on part-of-speech

tags as observation symbol and there are only 45 different part-of-speech tags within the

training data. Therefore, the merge process does not have as great an affect on the merged

information compared to the reference tagging task. Here are the two sentences that were

circled in Figure 5.17:

5.3 Text Chunking 119

262 (S (S (O CC) (NP DT NN) (VP VBD) (ADJP JJR) (PP IN)

(NP PRP$ NNS) (S (VP TO VB) (PRT RP) (PP IN) (NP

PRP$ JJ NNS))))) (O , CC) (S (PP IN) (S (NP JJ NN)

(VP VBD) (ADJP JJR) (PP IN) (NP PRP) (O IN) (NP VBD

NNS))))) (O .)))

1389 (S (O “) (NP EX) (VP VBZ) (NP NN) (PP IN) (NP NN)

(PP TO) (NP NN) (O .)))

The results again show that MSHHMM better handles the longer length sentence than

the SHHMM.

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

MSHHMM (F)

R
H

H
M

M
 (

F
)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

25

26

27

28

29

30
31 32

33

34

35

3637

38

39

40

41

42

43

44

45

46

47

48

4950

51

52
53

54

55

5657

58

59
60

61

62

63

64

6566

67

68

6970

71

72

73

74

75

76

77

78

7980
81

82 83

84

858687

88

89

90

91

92

93

94

95

9697

98 99
100101

102

103

104

105

106 107108109

110

111 112

113

114

115

116
117

118119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
135

136

137

138

139

140

141

142

143

144

145
146

147
148149

150

151 152

153

154
155

156

157

158

159

160

161

162

163

164
165166

167 168

169
170

171

172

173

174

175

176

177

178

179

180181

182

183

184

185

186

187

188
189

190

191

192

193 194
195

196

197

198

199

200

201

202

203

204

205

206 207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222223

224

225

226

227
228 229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
257

258

259

260

261

262

263

264 265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281
282

283

284

285

286

287

288289

290

291

292

293

294

295

296

297
298

299

300

301
302

303

304

305

306

307

308 309

310

311

312
313

314

315

316

317 318319

320

321

322

323

324

325

326

327

328

329

330

331332333334

335

336

337

338
339

340

341

342

343

344

345346

347

348

349

350

351

352

353

354

355

356

357

358
359

360

361

362

363

364

365

366

367

368

369
370

371
372373
374

375

376

377

378

379

380

381

382

383

384 385

386

387

388

389

390

391

392

393

394

395
396

397

398399
400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425426

427

428

429430

431

432

433434

435

436

437

438

439

440

441

442

443

444

445

446447

448

449

450451
452

453

454

455

456457

458

459
460

461

462

463

464

465

466

467
468

469

470

471

472

473

474475

476
477

478

479480

481

482

483

484

485

486
487

488

489

490 491

492

493

494

495

496
497498

499

500

501

502

503

504

505
506

507

508

509

510511

512

513

514

515

516

517

518

519

520

521

522523

524

525

526

527

528
529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552553

554

555

556

557

558
559

560

561

562

563

564

565

566

567

568

569

570571

572

573574

575

576577

578

579

580

581

582

583

584

585

586

587

588

589
590

591

592593

594

595

596

597

598

599
600

601

602

603

604

605

606

607

608

609

610611
612613

614

615

616

617

618

619

620

621

622

623
624

625626

627

628629

630
631

632

633

634

635636

637

638
639

640641

642643

644

645

646

647

648

649

650

651

652
653

654

655

656

657
658

659

660

661

662663

664
665

666

667

668669

670

671
672 673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694695

696
697

698

699

700

701

702

703

704

705

706

707

708
709

710
711

712

713
714

715

716

717
718

719
720

721

722

723724

725

726

727

728

729

730

731

732

733 734

735

736
737

738

739

740
741

742

743

744

745

746747
748

749

750

751

752

753
754

755756

757

758

759

760

761

762

763

764

765

766

767 768

769770

771

772773

774

775
776

777

778

779
780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796797

798

799

800

801

802803

804

805

806

807808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828
829830

831

832

833

834

835

836

837

838

839

840

841

842843

844

845

846

847

848

849 850

851

852

853854855

856

857

858859

860

861

862

863

864

865

866

867868

869

870

871

872

873

874

875876

877

878879

880

881

882

883

884
885

886

887

888889

890
891892

893

894895
896

897

898

899

900

901902

903

904

905

906907

908

909

910

911

912 913914

915

916

917

918

919

920

921

922
923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945946

947
948

949

950

951

952

953
954

955

956

957

958

959

960

961

962

963

964

965

966

967
968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988989

990991
992

993

994
995

996

997

998

999

1000
1001

1002
1003

1004

1005

1006

1007

1008 1009

1010

1011

1012

1013

1014

1015
10161017

1018

1019

1020

1021
1022

1023

1024

1025

1026

1027

10281029

1030

1031

1032

1033

1034

1035

1036

1037

10381039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

105110521053

1054

1055

10561057

1058

1059

1060

1061
1062 1063

1064 1065

1066

1067

1068

1069
1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

10801081

1082

1083

1084

1085

1086

10871088

1089

1090

1091

1092

1093

1094
1095

1096
1097

1098 1099110011011102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114
1115

1116
1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129
1130

1131

1132

1133

1134

11351136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147
1148

1149

1150

1151
1152

1153

1154

1155

1156

1157

1158

1159 1160

1161

1162

1163

11641165

1166

1167

1168

1169

1170

1171

1172
1173

1174

1175

1176

1177

1178

1179 11801181 1182

1183

1184

1185

1186

1187

1188

1189

1190

1191
1192

1193

1194

1195

1196

1197

1198
11991200

1201

1202

1203

1204

1205

1206

1207
1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

12241225
1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243 1244

1245

1246

1247

1248

1249

1250

1251
1252

1253

1254

1255

1256

1257

1258
1259

1260

1261

1262

1263

12641265

1266

126712681269

1270
1271

1272
1273

1274

1275

1276

1277

1278

1279

1280
1281

1282

1283

1284
1285

1286

1287

1288

1289

1290

1291
1292

1293

1294

1295

1296

1297

1298

1299

1300

13011302

13031304
1305

1306

1307

1308

1309

1310

1311
1312

1313
1314

1315

1316

1317

1318

1319

1320
13211322

1323

1324

1325
1326

1327

1328

1329

1330
1331

1332

1333

1334

1335

1336

1337
1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352
1353 1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374
1375

1376

1377

1378

1379

1380

1381
1382

1383

1384

1385

1386

1387

1388
1389

1390
1391

1392

1393

1394

1395
1396

1397

1398

13991400

1401

14021403
1404

1405

1406

1407

1408

14091410

1411
1412

1413
1414

1415

14161417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432
1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447
1448

1449

1450
1451

1452

1453 1454

1455

14561457

1458
1459

1460

1461

1462

14631464

1465
1466

1467
1468

1469

1470

14711472

14731474

147514761477

1478

1479
1480

1481

1482

14831484
1485

1486

1487
1488

1489

1490

1491

1492

1493

1494 1495

1496

14971498
1499

1500
1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526
1527

1528
1529

1530

1531

1532

1533

1534

1535

15361537
1538

1539

1540 1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

15581559

1560
1561

1562

1563
1564

1565

1566

1567

1568
1569

1570

15711572

1573
15741575

1576

1577

1578
1579 1580

15811582
1583 1584

1585

1586
1587

1588
1589

1590
15911592

1593

1594

1595
1596

1597

1598

1599

1600

1601

1602
1603

1604

1605

1606

1607

1608

1609

16101611

1612

1613

1614

1615

1616

1617

16181619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629
1630

1631

1632

1633
1634

1635

1636

1637

1638

1639

1640

1641 1642

1643

1644

1645

1646 1647

1648

1649 1650

1651
1652

1653

1654

1655

1656
1657

1658

1659

16601661

1662

1663

1664

1665

1666

1667

1668

1669

1670
1671

Figure 5.18: F-measure for MSHHMM against RHHMM

Figure 5.18 plots the relationship of F-measure for the RHHMM against the MSHHMM.

The figure shows a similar trend as the previous Figure 5.17, where most of the sen-

tences lies on the diagonal line. There are 958 sentences that have achieved the same

120 Applications

F-measure on both models, with 487 sentences having higher extraction accuracy under

the MSHHMM, and 226 sentences have higher extraction accuracy under the RHHMM.

5.3.3 Discussion

The accuracy results shown in the previous section are not as promising for the MSHHMM

as hoped. The accuracy of the merged and simplified model is shown to be comparable

to that of the RHHMM. Only the performance of the SHHMM is significantly different,

in that it has poorer accuracy than the other three models.

However, the significance test results suggest that the MSHHMM has achieved better

overall performance than the SHHMM and the RHHMM. This is due to the MSHHMM

having the advantage of reusing information for repeated sub-models, with all the accu-

racy benefits provided by combining observations. More importantly, these results show

that the MSHHMM also achieves major gains in processing efficiency particularly for large

training sets by sharing sub-model information—an action that reduces the complexity of

the model while maintaining the benefits of hierarchical modelling. This results in a fewer

number of states needing to be identified by the model and significant improvements in

processing time.

Simplification, to recap, is a method for expressing the vertical model transitions (in and

out of sub-models) and horizontal transitions (which stay in the sub-model). These three

simplify the transition probability matrices that must be calculated during model testing.

It was theorized that this would lead to improvements in accuracy, variance and pro-

cessing time. During the reference tagging task, the SHHMM achieves a small increase

in accuracy over the RHHMM when applied to a limited volume of training data. But,

during the text chunking task, the results indicate that the SHHMM did not perform

significantly better than the RHHMM. This is due to the type of data, where the data

contains only part-of-speech tags. In this case the data contains a number of observa-

tion symbols that occur in more than one state. Therefore, when these child states are

summarised, as in the simplification process, information about which states are shared

5.4 Summary 121

is lost, making correctly matching a sequence harder. Thus applying the simplification

process on a model built from such data results in poorer accuracy than the RHHMM.

The individual analysis of each sentence showed similar trend as in reference tagging task,

where the sentence with longer lengths typically are processed more accurately by the

MSHHMM. However the improvement in performance, in terms of accuracy and stability,

of the MSHHMM over the other HHMMs is less marked than those shown in the previous

task. This is due to this task being generally more suited to hierarchical modelling—as

evidenced by the HMM’s lower performance during the micro-averaged F-measure. In

such a situation, the hierarchical models should have better performance.

5.4 Summary

In this chapter the MSHHMM was applied to two applications; reference tagging and

text chunking. The results were compared to the SHHMM, the regular tree structured

HHMM (RHHMM) and the simple linear HMM. The MSHHMM benefits in accuracy and

stability by reusing both observation and probabilistic information for those areas of the

model where the hierarchical structure is repeated. It does so by merging these repeated

sub-models during construction, and then simplifying sub-model elements during testing.

This action also increases the MSHHMM’s efficiency as, by merging the repeated states,

fewer states need to be matched in the model, thus resulting in less computation cost

when applying the MSHHMM to the task of phrase extraction.

In the reference tagging task, the MSHHMM can take advantage of reused information

within the states author and editor. While there are only a small number of opportunities

to reuse state information, the MSHHMM still receive increased extraction accuracy. In

terms of computation cost, the MSHHMM does not prove any more efficient than the

other models since there is only one level of hierarchy in this particular task.

For the text chunking task, the MSHHMM has many opportunities to gain accuracy by

re-using information in different states, thus taking full advantage of the benefits of a

122 Applications

model structure that more closely models the underlying hierarchical sentence structure.

But, because only 38 part-of-speech tags are present in the training data, there is no sig-

nificant increase in the number of observation symbols within each state as a consequence

of the merging process. Thus the increase in accuracy is not as high as it might be given

data containing more observations. In terms of computational cost, the merging of re-

peated sub-models within the MSHHMM results in fewer states in the model. In contrast

the RHHMM is required to identify every single path, leading to more states within the

model and higher computation cost. During the experiment of calculating computational

time, the RHHMM required significantly more processing time than the MSHHMM as

the number of sentences increased. The extra costs of constructing a HHMM, which will

also have the same number of production states as the HMM plus extra internal states,

make it the least efficient.

In summary, a hierarchical model trained using limited data—as encountered in the prob-

lem of data sparseness—can benefit (in terms of accuracy) from the merging and simpli-

fication process. An example of data sparseness is the reference tagging task, where the

training data contains a smaller proportion of observation symbols as compared to those

found in the testing data. Although its structure is more complex, the MSHHMM gains

in time efficiency as the model shares sub-state information thus reducing the amount of

time required to process the testing data.

CHAPTER 6

Techniques for Refining HHMMs

This chapter focuses on four techniques for improving hierarchical hidden Markov models:

1 smoothing,

2 pattern generalisation,

3 structure formation, and

4 a partial flattening process.

The first two focus on observational aspects of the model and last two on structural as-

pects.

C-smoothing, as discussed in Section 6.1, was developed for the purpose of calculating

error estimations for unseen events. The technique predicts which states are most likely

to encounter unseen events. By doing so, the model can benefit from better probability

estimates within each state. C-smoothing is compared against three well-known smooth-

ing techniques: Bayesian smoothing [Berger, 1985], Absolute discounting [Ney et al., 1994]

and Jelinek-Mercer [Jelinek and Mercer, 1980].

Section 6.2 examines the benefits of pattern generalisation, a method for simplifying input

data, in terms of speed of training and the accuracy of prediction. The generalisation pro-

cess reduces the total number of unique observation symbols within states, and reduces

124 Techniques for Refining HHMMs

the amount of training data required for a stable model.

Section 6.3 concentrates on optimising the structure of the model using a technique called

structure formation. The process involves splitting states that contain several disparate

features and re-expressing them as individual states. The process builds on the idea of

capturing the boundary observation for each state in order to increase the extraction ac-

curacy.

Section 6.4 investigates how to improve the structure of the model by using a partial

flattening process to reduce its complexity. The flattening process is capable of trans-

forming the HHMM to a new, simpler structure resulting in more accurate information

extraction and lower processing cost. The technique involves calculating the dependency

value, between either states or observations, over a range of sequences, then determining

where the flattening process can be applied for maximum benefit. The state/observation

dependency values are calculated using both mutual information and log-likelihood. The

process also provides an estimate of the transition probability distributions for the model

by transforming its states.

The final section presents a summary of the techniques mentioned above and their effects

on model accuracy on two different tasks—reference tagging and text chunking.

6.1 Smoothing Techniques

The two fundamental problems in model estimation are the paucity of the data set [Banko

and Brill, 2001], in that there is not a sufficiently large training corpus to provide a good

estimation for the model, and data sparseness [Katz, 1987; Banko and Brill, 2001], where

unseen events appear in the test data but not in the training data. One simple solution to

resolve the first problem is to enlarge the training corpus. However this is not always fea-

sible in that further training data is not always available. The second problem is generally

addressed by providing an estimated value for the unseen event using some systematic

6.1 Smoothing Techniques 125

technique. Upon the occurrence of an unseen event, the system uses the technique chosen

to assign a non-zero probability to it, then adjusts the probability distribution for each

observation symbol. This process is collectively called smoothing [Zhai and Lafferty, 2001].

In general, smoothing techniques prevent an unseen event having zero probability. A

zero probability would cause the model to ‘break’ as there would be no further state

transitions available which matched the unseen event. They are also used to adjust the

maximum likelihood estimates to improve the model. Smoothing produces a balanced

training model by increasing the probability for infrequent events and decreasing those of

frequent events. This improves the extraction performance of the trained model. A basic

smoothing technique estimates the probability for unseen events by uniformly assigning

a small value to every event. For example, Jeffreys [1948] applied Additive Smoothing to

assign probabilities for each bigram in the corpus, where

P (wi|wi−1) =
c(wi−1wi) + 1∑

w

[c(wi−1wi)] + 1
(6.1)

≈ c(wi−1wi) + 1∑
w

[c(wi−1wi)] + |V |
(6.2)

where c(wi−1wi) is the term frequency count for term wi−1wi, and |V | is the size of

the vocabulary in the training corpora. By introducing the parameter |V |, the system

is able to increase the probability for low count events. More complex methods, such

as Katz smoothing [Katz, 1987] and Good-Turing smoothing [Good, 1953], calculate a

different value for each state depending on factors such as the number of previous unseen

events, and the number of words of the same frequency throughout the training set.

The estimations are based on applying the technique to a large corpus. The formula of

Good-Turing is written as:

P (o|q) =
No + 1

T
× E(No + 1)

E(No)
, (6.3)

where o is the event, No is the total number of events o, T is the sample size and E(n) is

an estimate of how many different events happened exactly n times. The equation takes

into consideration the difference between observations with n counts and n + 1 counts.

126 Techniques for Refining HHMMs

When encountering an unseen event, the probability is often set to approximately N1

T
.

The Good-Turing smoothing is focused on the difference between the observation that

occurred in n and n − 1 counts for the entire data set, compared to the Markov model

where the emphasis is on the observation distribution among different states. Therefore

the Good-Turing method is not an appropriate method for the MSHHMM.

6.1.1 The Methods

Several smoothing methods were considered before attempting to calculate a new vari-

ation to suit extraction tasks. These methods were chosen primarily because of their

efficient implementation.

This section discusses several smoothing techniques:

• Bayesian smoothing using Dirichlet priors (μ) [Berger, 1985]

• Absolute discounting (δ) [Ney et al., 1994]

• Jelinek-Mercer (λ) [Jelinek and Mercer, 1980]

The objective is to design an estimation method to suit different types of model, and

simultaneously determine an optimal value to replace the observation value for the unseen

variable.

6.1.1.1 Bayesian Smoothing using Dirichlet Priors

The Dirichlet distribution [Berger, 1985] of the prior distribution associates the variables

p = (p1, . . . , pn) with parameters u = (u1, . . . , un). The re-estimation formula for each

probability distribution is:

Pμ(o|q) =
c(o, q) + u(o|C)

M∑
i=1

c(oi, q) + u(o|C)

(6.4)

6.1 Smoothing Techniques 127

and the Dirichlet parameters are estimated by:

u(o|C) =
μ

M∑
i=1

c(oi, q) + μ

,

where μ is a parameter to be set by the user and μ must be greater than zero. M is

the total number of the observation symbols in the training corpus, and c(oi, q) is the

number of counts for the observation symbol oi appearing in state q. This formula scales

the probability distribution according to the size of the state (in terms of number of

observations), where a larger state has a lower probability value of u(o|C) and smaller

states have higher probability value of u(o|C). Note that u(o|C) is never 0, not even for

unseen events, as μ is greater than 0, thus addressing the zero probability problem.

6.1.1.2 Absolute Discounting

The idea of Absolute discounting [Ney et al., 1994] smoothing is to subtract a constant

from the seen words count to lower the probability rather than multiplying it by a pa-

rameter. The formula can be written as:

Pδ(o|q) =
max(c(o; q)− δ, 0)

M∑
i=1

c(oi; q)

+ σp(o|C) (6.5)

where δ ∈ [0, 1] is a discount constant and σ = δ|o|u/|o|q. The |o|u represents the number

of unique symbols in state q, |o|q is the total number of observation symbols in state q,

and p(o|C) is the probability of observation o over the entire training set. The formula

also places emphasis on an additional probability that considers the observation symbols

within each state σ, along with observation probability distribution for entire training set

(as calculated by p(o|C)). If an unseen event occurs during the testing process, Pδ(o|q)
will be set to a small probability value so as to prevent the zero probability problem.

6.1.1.3 Jelinek-Mercer

Jelinek-Mercer [1980] is a technique for smoothing n-grams in language modelling for

speech recognition. This method uses a coefficient λ to control the maximum likelihood

128 Techniques for Refining HHMMs

model and the collection model as:

Pλ(o|q) = (1− λ)Pml(o|q) + λP (o|C) (6.6)

where o represents the observation event, q represents each individual state, and C rep-

resents the entire training data. The focus for this smoothing technique is a combination

estimation of probability distribution within the state, plus the probability distribution

for the entire training data, with the estimation adjusted by using the parameter λ.

Zero probability events are handled in the same way as they are in absolute discounting

smoothing.

6.1.1.4 C-smoothing

When applied to a basic Markov model, a smoothing technique typically takes an approach

based on assigning a small value, such as:

P ∗(o|q) = P (o|q) + 10−8

to every state, in order to prevent an unseen event having zero probability. Such a method

should, preferably, focus on the transition between states. In this section, C-smoothing is

applied to provide a better estimation for unseen events for each individual state.

Consider the methods mentioned above. The problem with using a technique like the

Dirichlet Priors on HMMs is that a state containing a large number of observations does

not necessarily have a lower probability of encountering an unseen event. Likewise, a state

containing fewer observations does not absolutely imply a higher probability of encoun-

tering an unseen event. Some states might just have fewer observation symbols.

Table 6.1 summaries the number of observation symbols within each state. The last col-

umn contains the number of observation symbols which have appear less than 2 times

within each state for reference tagging task. For example, the state month in a reference

tagging task, may only contain 15 observation symbols with total number of observation

count of 258, where there are only 4 observation symbols which have observation count

less than 2. It contrast, the state publisher contains 71 observation symbols with total

6.1 Smoothing Techniques 129

number of number of number of

observation observation observation

state count symbols symbols (≤ 2)

author 2935 846 784

title 3811 1650 1444

booktitle 2460 296 189

volume 378 59 33

number 146 12 4

pages 730 329 319

month 258 15 4

year 536 27 8

editor 116 50 39

publisher 150 71 57

address 419 86 55

note 4 2 2

techtype 32 12 9

technumber 11 11 11

institution 59 30 25

organisation 7 5 5

series 12 6 4

thesistype 2 2 2

Table 6.1: Number of observation symbols for reference tagging task

observation count of 150, where there are 57 observation symbols that contains less than

two observation count. In this example, the state publisher is more likely to encounter

an unseen event than the state month. This indicates that the number of observations

within a state is not necessarily proportional to the error estimation for unseen events.

Instead the probability estimation for unseen events should based on number of low count

observation symbols within each state.

130 Techniques for Refining HHMMs

*
1 4+32

*

*

*

*

*
*

*
* * *

*

*

*

* *

*

*

**
*

(a) (b)

1 4+32

*

*

*

* *

** *****

* *

**
**
*

Figure 6.1: Distribution of observation symbols with (a) low probability (b) high proba-

bility of encoutering unseen events

Figure 6.1 illustrates two states during the training process, where each state contains 20

observation symbols. Each star (∗) in the figure represents an observation symbol and

the radius of the circle represents the observation count. While there is one observation

symbol in Figure 6.1(a) that has a count less than two, most of observation symbols occur

four or more times. Figure 6.1(b) contains 18 observation symbols that have an observa-

tion count less than two, with most of the observation symbols lying within a radius of

one. In terms of occurrence of unseen events for these two states, Figure 6.1(b) should

have a higher probability distribution for unseen events, because most of the observation

symbols have only occurred once during the training process. There is more likely to be

a greater variance of observations for this state, and thus more chance of encountering an

unseen event.

Using this fact, the estimation formula for C-smoothing is derived as:

P (o|q) =
c(o, q)

M∑
i=1

c(oi, q)

+ Pε(q) (6.7)

where the error prediction Pε(q) calculates the estimate probability distribution of the

6.1 Smoothing Techniques 131

infrequent events within state qk. The formula for the estimation method is written as:

Pε(qk) =

M∑
j=1

f(oj, qk)

M∑
j=1

c(oj, qk)×
M∑
i=1

N∑
j=1

c(oj, qi)

(6.8)

and,

f(oj, qk) =

⎧⎪⎨
⎪⎩

1 c(oj, qk) ≤ ε

0 otherwise,

(6.9)

where c(oj , qk) represents the number of occurrences for observation symbol oj in state qk,

c(oj, qk) ≤ ε represents the number of observations of symbol oj that have occurred less

than ε times in the state qk, M represents the total number of states, and N represents

the total number of observation symbols. The maximum occurrence threshold allowed for

c(oj, qk) can be set to other values depending on the type of training data. The formula

is designed to estimate the probability of how frequently the state qk can be expected to

encounter an unseen variable. For example, in reference tagging task, which uses discrete

measurements, the value of ε is set to be 1. When a state contains only observation

symbols whose occurrence count is greater than ε, then the probability of an unseen event

will be very low.

6.1.2 Evaluation

This section investigates, empirically, the performance of the smoothing techniques dis-

cussed in Section 6.1. The aim of this evaluation is to compare the performance in

accuracy of smoothing techniques with the constant smoothing of

pε(qi) = 10−8 for ∀i, (6.10)

when applied to the reference tagging task. The techniques are evaluated on 600 sentences

of hand tagged data by Seymore [1999]. The experiment was carried out using 5×10-fold

cross validation, where the data set is randomly divided into equal sized sub-sets, and

10-fold cross validation is performed on each subset to evaluate the affect on F-measure.

This process is repeated 5 times. The results are displayed as the distribution of the

132 Techniques for Refining HHMMs

F-measurement for different smoothing methods, different smoothing parameters and dif-

ferent volumes of training data.

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of sentences

F

constant
mu=0.2
mu=0.4
mu=0.6
mu=0.8
mu=1

Figure 6.2: Smoothing results for Dirichlet Priors

Dirichlet Priors smoothing adjusts the probability of observations for each state by com-

bining the probability of observations within the state adding some factor derived from the

probability for the entire data set, u(o|C), as shown in Equation (6.4). Figure 6.2 shows

the Dirichlet Priors smoothing fails to provide better extraction accuracy for MSHHMM

model. The constant smoothing obtains higher extraction accuracy than the Dirichlet

Priors technique regardless of the value of the parameter μ (mu). The volume of training

data has only a small effect on the F-measure across all variations.

Figure 6.3 plots the F-measure against volume of training sentences for different absolute

discount constants δ (delta). The method lowers the probability of seen observations then

sums the probability of observations over the entire data set (σp(o|C)), where the size

6.1 Smoothing Techniques 133

100 200 300 400 500 600

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

constant
delta=0.2
delta=0.4
delta=0.6
delta=0.8
delta=1.0

Figure 6.3: Smoothing results for Absolute Discounting

of σp(o|C) is proportional to the discount constant δ. The Figure 6.3 shows that size

of δ is inversely related to accuracy. Figure 6.3 also shows that the constant smoothed

model achieved better extraction accuracy than any of the absolute discounting smooth-

ing variations, thus the absolute discounting smoothing does not provide good probability

estimation for the MSHHMM. Most of the techniques showed only slight improvement

as the volume of training data increased, although volume did have a more pronounced

effect for δ = 1.0.

Each of the previous two smoothing methods (Bayesian smoothing and Absolute discount-

ing) involve the observation probability for entire data set p(o|C) as part of the observation

probability within each state p(o|q). The extraction accuracy tends to drop when p(o|q)
contains a higher weight of p(o|C). In Jelinek-Mercer, the coefficient λ controls the weight

of p(o|C), which contributes to the observation probability p(o|q). The results show that

the higher the value of λ, the lower the extraction accuracy performance on the reference

134 Techniques for Refining HHMMs

100 200 300 400 500 600

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of sentences

F

constant
lambda=0.2
lambda=0.4
lambda=0.6
lambda=0.8
lambda=1.0

Figure 6.4: Smoothing results for Jelinek-Mercer

tagging task, with some significant reduction in accuracy as λ approaches 1. The overall

results show the ‘constant’ model outperforms the Jelinek-Mercer smoothing. Again, only

slight gains in accuracy can be attributed to the volume of training data.

The C-smoothing method focuses on the prediction of rare events within each state rather

than using a smoothing factor of the observation probability for the entire data (p(o|C)).

Figure 6.5 shows the results of different values of threshold (ε epsilon) for the C-smoothing

method against several volumes of training sentences. When the threshold ε is equal to

1, the smoothing achieves the highest improvement from amongst the other threshold

settings (ε = {2, 3, 4, 5}). When the volume of sentences reaches 300, the C-smoothing

method achieves 2% increases in accuracy as compared to the ‘constant’ method. This

result indicates that the C-smoothing can provide better estimation when a reasonable

volume of training data is reached. When there is an insufficient volume of training sen-

tences, the C-smoothing can not correctly estimate the low count observation symbols

6.1 Smoothing Techniques 135

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

number of sentences

F constant
epsilon=1
epsilon=2
epsilon=3
epsilon=4
epsilon=5

Figure 6.5: C-smoothing of different threshold of ε (epsilon)

within each state. The results show that the ‘constant’ model achieves better extraction

performance than C-smoothing method under sparse training data. On the other hand,

the C-smoothing method provides a good estimation for the probability for unseen events

when given larger volumes of training data.

Method parameter Micro-average F-measure

constant - 0.920 ± 0.00009

C-smoothing ε = 2 0.936 ± 0.00008

Bayesian smoothing μ = 0.2 0.285 ± 0.00267

Absolute discounting δ = 0.4 0.917 ± 0.00016

Jelinek-Mercer λ = 0.2 0.916 ± 0.00016

Table 6.2: F-measure for different smoothing results at 600 sentences.

Table 6.2 summarises the overall results for the four different smoothing techniques at a

136 Techniques for Refining HHMMs

training data volume of 600 sentences. It shows the benefit of using C-smoothing on the

reference tagging task. C-smoothing achieved 9.936 on micro-averaged F-measure com-

pared to 0.920 for the MSHHMM without the smoothing. Furthermore, the C-smoothing

has the smallest standard deviation among other smoothing methods, indicating good

stability.

Method constant smoothing

MSHHMM 0.920 ± 0.009 0.936 ± 0.009

SHHMM 0.938 ± 0.007 0.937 ± 0.011

RHHMM 0.753 ± 0.017 0.769 ± 0.015

HMM 0.939 ± 0.010 0.949 ± 0.008

Table 6.3: F-measure of C-smoothing and constant model at 600 sentences.

In Chapter 5, the results stated that MSHHMM can outperform the HMM when there

is a limited volume of training data. Table 6.3 summaries the F-measure of C-smoothing

with parameter of ε = 2 against the constant model (Pε(qi) = 10−8) for the four different

models. There are 600 reference tagging sentence and the results are calculated by 5×10-

fold cross validation. The results show that not only the MSHHMM can be benefit from

the C-smoothing error estimation for the unseen event, where two other models—RHHMM

and HMM can also benefit from it.

6.1.3 Discussion

The C-smoothing method is shown to be beneficial for the MSHHMM when applied to

the reference tagging task. The overall result shows higher prediction accuracy on micro-

average F-measure than the other smoothing techniques evaluated. The other smoothing

techniques such as the Dirichlet Priors, the Absolute Discounting, and the Jelinek-mercer

smoothing do not achieve better accuracy than the basic constant method. The results

also indicate that the smoothing techniques for MSHHMM depend on the probability

distribution of the observations within each state, and not the probability distribution of

states within the entire training data set.

6.2 Pattern Generalisation 137

The size of training data controls the observation probability distribution within each

state, where the larger the training data, the better the estimation. On the other hand,

the C-smoothing is ineffective when a small volume of training sentences is used. The

smoothing method is unable to determine a good estimate for the probability of unseen

events as it cannot identify the states most likely to encounter unseen events. This is due

to the fact that this state identification depends on observation frequency counts within

the state, and obviously with fewer training sentences most of these observation counts

are low. Therefore, when encountering a limited amount of training data, the constant

smoothing technique should be used during extraction.

6.2 Pattern Generalisation

When a model is applied to a particular sentence it must use some form of matching al-

gorithm to identify which words in the input data match some observation in the model.

Sometimes it is better to simply use plain-text matching, which takes user input in its

original form and matches it directly against the word in the training data. The method

is accurate when the training data includes the complete lexicon of words. However, in

practice, it is difficult to obtain the complete lexicon of words. Pattern generalisation

allows approximate matching against training data. Where such generalisation is applied

the process benefits from a decreased number of training symbols, which in turn increases

the system efficiency as there are less observation symbols to be matched within the model.

Comparing observations within trained data can be a difficult task. For a general text

extraction task, the pattern matching algorithm involves transforming observations into

patterns, then searching for identical patterns within the training data. When a pattern

matching algorithm is not applied, then the system needs more training data to sup-

port accurate extraction, as observations from testing data may not be included within

training data. While increasing the training data can solve this problem, as mentioned

earlier, large training sets containing an exhaustive list of observations are unlikely to be

available. Moreover, lack of training data can cause the serious problem of misidentifying

138 Techniques for Refining HHMMs

the test observations, which leads to invalid states and an unreliable model. So instead of

word-by-word matching, the system can make more efficient use of the training data by

representing observations as a pattern using a small, fixed alphabet. The resulting model

requires less training data to become reliable and has a greater accuracy when recognising

the state the correctly matches.

Consider an example of pattern generalisation from the reference in Figure 2.7:

(A (N (F T. A.)(L Moloney, Aaaaaaa,)) (N (F A. A. C. A.) (L. Lea, Aaa,

)) (C and aaa) (N (F C. A.) (L Kowalchuk. Aaaaaaaaa.))) (T

Manufacturing Aaaaaaaaaaaaa and aaa packaged aaaaaaaa goods. aaaaa.

) (ED (N (C In Aa)) (N (F G. A. H. A.) (L Castle, Aaaaaa,)) (C edi-

tor, aaaaaa,)) (BT Profiting Aaaaaaaaa from aaaa a a Geographic Gaaaaaaaaa

Information Aaaaaaaaaaa System. Aaaaaa.) (PU GIS AAA World, Aaaaa,

Inc., Aaa.,) (AD Fort Aaaa Collins, Aaaaaaa, CO, AA,) (Y 1993. iiii.)

The reference tag associated with each word begins with an open parenthesis followed by

the tag name. Each word is then attached by an underscore to its pattern generalisation,

as outlined in Table 6.4. For example, symbol “(A” represents state author and “(T”

represents title. The pattern generalisation involves transforming the input data by using

“A” to represent the capital letters, “a” for lower-case letters, “i” for integers and all

other symbols, and in particular punctuation, remain in the same form.

6.2.1 The Methods

There are two novel types of pattern generalisation that were implemented to improve

the extraction performance on the MSHHMM. The methods were based on the nature of

input characters for the reference tagging task. These methods are:

• character class pattern generalisation (CCPG), and

• regular expression pattern generalisation (REPG).

6.2 Pattern Generalisation 139

state tag

author A

title T

booktitle BT

volume V

number NUM

pages P

month M

year Y

editor ED

publisher PU

address AD

name N

first name F

last name L

conjugate C

Table 6.4: Annotated tags for reference tagging task

The CCPG converts each word based on its character class, and the REPG converts each

word on its character class and occurrence. This leads to a model with fewer observation

symbols for each state; thus computational cost is decreased, while the efficiency of the

training data is increased.

The punctuation between words and the case characters for each word are often the most

significanty influencing factors when identifying types of tag in the reference tagging task.

For instance, the first name’s pattern consists only of a capital letter and a full stop

after it (A.), while the title state often starts with a quotation mark (“Aaa). The CCPG

converts each word to a pattern based on; the number of characters, whether a character

is a letter or a number, the capitalisation and its punctuation. The conversion rules are:

• capital letters → “A”

140 Techniques for Refining HHMMs

• small letters → “a”

• integer → “i”

and the remaining symbols are unchanged. For example, “T. Moloney” is converted to

“A. Aaaaaaa”. The final step involves grouping each part of the pattern with the hand-

tagged markup. Thus “A. Aaaaaaa” is further processed into “(F A.) (L Aaaaaaa)”

with “F” representing the state first name and “L” the state last name.

A logical extension of character class its to further generalise the pattern using a similar

method to that found in regular expressions. The REPG converts each word based on its

character class and occurrence. The model provides a more efficient model than CCPG

with less observation symbols are required for the extraction tasks. The REPG conversion

rules are:

• a capital letter → “A”

• two or more capital letters → “A+”

• a small letter → “a”

• two or more small letters → “a+”

• a integer → “i”

• two or more integers → “i+”

and the remaining symbols are unchanged. For example, “T. Monloney” is converted to

“A. Aa+”, and “1993” is convert to “i+”.

6.2.2 Evaluation

The goal of pattern generalisation is to reduce the number of observation symbols in each

state, which at the same time increases the total number of observation counts. In order

to identify situations where generalisation is beneficial, this section compares the affects

on accuracy of two types of pattern generalisation—the CCPG and the REPG—against

different volumes of training data. The different generalisation techniques are evaluated

6.2 Pattern Generalisation 141

on 600 sentences of hand tagged data by Seymore [1999], with three variations of the

hierarchical hidden Markov model; the RHHMM, SHHMM and MSHHMM. The effects

of pattern generalization are also shown when applied to a HMM. The experiments were

carried out using 5× 10-fold cross validation, where the data set is randomly divided into

equal size subsets, 5 times, and 10-fold cross validation is performed on each subset on

F-measure.

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

RHHMM
RHHMM−CCPG
RHHMM−REPG

Figure 6.6: F-measure of the RHHMM for pattern generalisation.

Figure 6.6 shows the RHHMM achieves better extraction accuracy after the CCPG is ap-

plied. The RHHMM-CCPG exhibits a small rate of increase after the volume of training

sentences reaches to 240 compared to RHHMM, which achieves same as RHHMM-CCPG

accuracy at 600 sentencs, which is slightly quicker than the RHHMM. The REPG can

improve extraction accuracy for RHHMM only under smaller volumes of training data,

as the results indicate an ungeneralised RHHMM performs better than RHHMM-REPG

after the volume of training data reaches 250 sentences.

142 Techniques for Refining HHMMs

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

SHHMM
SHHMM−CCPG
SHHMM−REPG

Figure 6.7: F-measure of the SHHMM for pattern generalisation.

Figure 6.7 illustrates the result of applying the pattern generalisation techniques on the

SHHMM. Again, the performance indicates the benefit of using the CCPG method on the

reference tagging task over a range of different volumes of training data. The SHHMM-

REPG is again shown to have lower accuracy, on average, than the unaltered SHHMM.

Figure 6.8 shows the F-measure for the MSHHMM without pattern generalisation, and

then with the two types of generalisation denoted MSHHMM-CCPG and MSHHMM-

REPG. It indicates that both pattern generalisations can provide better exaction accu-

racy than the original MSHHMM for small volumes of training data, but, as the volume

increases, the difference between the MSHHMM and the MSHHMM-CCPG decreases.

The MSHHMM-REPG is less consistent over number of sentences, and is generally out-

performed by MSHHMM-CCPG and an unaltered MSHHMM.

6.2 Pattern Generalisation 143

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

MSHHMM
MSHHMM−CCPG
MSHHMM−REPG

Figure 6.8: F-measure of the MSHHMM for pattern generalisation.

Figure 6.9 shows the influence of pattern generalisation on the HMM. The results show

that while the volume of data is under 180 sentences, both pattern generalisation (HMM-

CCPG and HMM-REPG) outperform the ungeneralised HMM. When there is an insuffi-

cient volume of training sentences, the HMM can benefit from gaining observations within

each state during the pattern generalisation process. The HMM-CCPG reaches a stable

result after 300 training sentences. However as the volume of training data increases,

the results for the HMM accuracy continues to increase. Eventually, the accuracy of the

HMM and HMM-CCPG converged, while the HMM-REPG fails to improve from its ini-

tial values. In comparison with the hierarchical models, the HMM requires more training

data to achieve a stable result.

The results shown in this section indicate that pattern generalisation helps the model reach

a steady result quicker, but that the REPGs performance is eventually surpassed by the

ungeneralised data. Table 6.5 provides a summary of the overall results of micro-averaged

F-measure for the four different models at a training data volume of 600 sentences. The

144 Techniques for Refining HHMMs

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

HMM
HMM−CCPG
HMM−REPG

Figure 6.9: F-measure of the HMM for pattern generalisation.

results indicate that the CCPG improves the model accuracy when applied to the ref-

erence tagging task. The REPG method, while initially offering some improvement to

accuracy, is shown to be less favourable for this task.

Method original CCPG REPG

RHHMM 0.942 ± 0.00004 0.938 ± 0.00004 0.908 ± 0.00017

SHHMM 0.938 ± 0.00005 0.937 ± 0.00005 0.898 ± 0.00019

MSHHMM 0.937 ± 0.00007 0.940 ± 0.00008 0.896 ± 0.00011

HMM 0.939 ± 0.00007 0.937 ± 0.00005 0.907 ± 0.00015

Table 6.5: Micro-averaged F-measure of 5× 10 fold cross-validation with 600 sentences

6.3 Structure Formation 145

6.2.3 Discussion

The experimental results show the effectiveness of pattern generalisation. The pattern

generalisation process can contribute to model performance by reducing the number of

observation symbols that have to be matched. This also leads to an increase in observa-

tion symbol counts, the benefits of which have been previously discussed. Furthermore,

pattern generalisation increases the chance of testing observations matching against the

training data. The results of a model that has had pattern generalisation applied outper-

form a model built simply on the original, ungeneralised, training data. The difference

becomes more apparent if there are fewer training sentences. Theoretically, when there

is sufficient training data to describe all the observation information within each state,

the original data gives a more accurate model. This situation, however, is difficult to

achieve, as there is unlikely to be sufficient training data to be assured of encountering

every possible observation.

The experimental results also show that the REPG fails to improve performance on ref-

erence tagging task. This is due to the regular expression generalisation converting the

observation to a point where there is not enough information accurately to differentiate

between states. Although the generalisation reduces the amount of observation symbols

within each state, it makes it harder for the model to identify to which state the obser-

vation belongs.

6.3 Structure Formation

Structure formation is the process that transforms the structure of some part of the model,

those that contain an appropriate production state, to a new structure that improves ex-

traction accuracy. The process involves splitting the child states of the HHMM in order

to capture detailed information during the state transition.

For example, the title state in Figure 5.3 contains:

title: Manufacturing and packaged goods.

146 Techniques for Refining HHMMs

etitle

Manufacture and Packaged Goods Manufacture and Packaged Goods.

title titleb title m

Figure 6.10: Structure formation for state title

The beginning of the state title often starts with a uppercase word (as in “Manufacturing”)

and ends with a full stop (as in “Goods.”). The words between the first and last tend

to be lowercase. Because of these features, the single state title can be made to more

closely model the underlying structure by splitting it into beginning, middle and ending

states. Figure 6.10 illustrates the formation process for state title. The formation involves

splitting each production state to three sub-states:

Title → { titleb, titlem, titlee }

the beginning state titleb, the middle state titlem and the ending state titlee. The remain-

ing states, such as publisher, date and pages, are treated in the same manner. When a

state contains only one observation, such as state year, the splitting process assigns one

sub-state, the beginning state yearb, to represent the state.

The main idea of the splitting process is to capture the types of observation symbols

that are more likely to occur at the starting point and the ending point of the state.

Figure 6.11 illustrates the process of structure formation for a simple HHMM. Figure

6.11(a) represents the simple HHMM with five production states (p1, p2, p3, p4 and p5)

and one internal state (q1). The splitting process divides each production state pi into

three sub-states of {pi,b, pi,m, pi,e} as shown in Figure 6.11(b).

6.3.1 Evaluation

To explore the potential of structure formation, an experiment was conducted to compare

performance on accuracy between the RHHMM, SHHMM, MSHHMM and HMM and ver-

sions of the models that have undergone structure formation. The method is evaluated

on a set of data by Seymore [1999]. The data contains 600 references with 13 types of

tag: title, author, institution, location, note, editor, publisher, date, pages, volume, journal,

6.3 Structure Formation 147

1

p 2

p 1

p 3 p 4

p 5q

(a)

4,e
p4,mp4,bp3,ep3,mp3,bp2,e

p2,mp2,b

p1,b p1,m
p1,e

p5,b p5,m
p5,eq 1

p

(b)

Figure 6.11: Process of structure formation; (a) original HHMM (b) HHMM with struc-

ture formation

booktitle, and technical report.

Figure 6.12 shows the overall F-measure for the RHHMM in two different forms; one is

the model under structural formation (RHHMM-s), and the other is the RHHMM with-

out the structure formation. The figure shows an average 3% increase on micro-averaged

F-measure when structure formation is applied regardless of the volume of training data.

The structure formation has exhibits a greater improvement on the SHHMM shown in

Figure 6.13. The SHHMM-s appears to be a more stable model as the F-measure reaches

a stable result more quickly than the SHHMM. The F-measure increases when structure

formation is applied. Once the volume of data has reach to 400 sentence, the SHHMM-s

reaches to a steady results of 0.95 for its micro-averaged F-measure.

The MSHHMM can also benefit from structure formation, as shown in Figure 6.14, where

MSHHMM-s achieved better extraction accuracy than MSHHMM on volumes of train-

ing data ranging from 60 to 600 sentences. The MSHHMM-s reaches a stable result

148 Techniques for Refining HHMMs

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

RHHMM
RHHMM−s

Figure 6.12: Graph of F-measure for structure formation.

more quickly than the unaltered MSHHMM. However, in comparison with the results for

other models, the structure formation provides less benefit in extraction accuracy on the

MSHHMM. During the testing process of the MSHHMM, each internal state is simplified

into three different transformed states {in, stay, out}, such that the benefits of structure

formation are minimal for the MSHHMM.

Structure formation shows the greatest improvement in accuracy when applied to the

HMM. The HMM-s achieved a 7% increase in F-measure when the volume of training

data is approximately 60 sentences.

Table 6.6 shows the F-measure of identified tags on reference tagging task with data vol-

ume of 600 sentences. The results show the highest extraction accuracy of 0.964 belongs

to the HMM having undergone structure formation. Due to the shallow nature, in terms

of hierarchical depth, involved in reference tagging task, the HMM was able to achieve

6.3 Structure Formation 149

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

SHHMM
SHHMM−s

Figure 6.13: Graph of F-measure for structure formation.

better performance than the hierarchical models (RHHMM, SHHMM, MSHHMM) with

data volume of 600 sentences. The effect on the HMM is more marked simply because

structure formation can only be applied to production states and the HMM contains only

production states.

model original structure formation

RHHMM 0.942 ± 0.00004 0.963 ± 0.00003

SHHMM 0.938 ± 0.00005 0.957 ± 0.00004

MSHHMM 0.937 ± 0.00007 0.954 ± 0.00006

HMM 0.939 ± 0.00007 0.964 ± 0.00005

Table 6.6: Micro-averaged F-measure of structure formation for reference tagging task

150 Techniques for Refining HHMMs

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

MSHHMM
MSHHMM−s

Figure 6.14: Graph of F-measure for structure formation.

6.3.2 Discussion

The experiments show the benefit of structure formation on HHMMs. The technique

involves splitting production states into three sub-states, state-beginning, state-middle and

state-end, in order to identify the occurrence of where the state is likely to begin and end.

The results from the evaluation section show that the reference tagging task benefits from

structure formation, a technique which increased accuracy by 2% on average. The results

indicate the importance of being able to identify the state start and end, rather than the

observation itself. This technique builds on work originally proposed by Chou [2006].

6.4 Partial Flattening Process for HHMM

Partial flattening is a process for reducing the depth of hierarchical structure trees. The

process involves moving sub-trees from one node to another, with the aim of moving sub-

trees to ‘higher’ nodes in the tree, thus reducing depth and complexity. By using this

6.4 Partial Flattening Process for HHMM 151

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

HMM
HMM−s

Figure 6.15: Graph of F-measure for structure formation.

process, model construction requires less training time and the model generated is more

suitable for the intended task, leading to more accurate extraction. The basic idea is to

transform the training data to suit the training model.

Brill [1995] applied a transformation-based error-driven learning approach to a number

of natural language problems. The approach used learned linguistic information and

transformed linguistic rules to improve the model for certain analytical features of the

text. Drawing upon previous work, Krotov [1999] applied a probabilistic algorithm to

compact the derived grammar by eliminating rules. For example,

V P → V P NP PP (6.11)

V P → V P NP (6.12)

NP → NP PP (6.13)

where (6.11) is the rule resulting from (6.12) and (6.13). In this case, the system has

eliminated the need for (6.13).

152 Techniques for Refining HHMMs

6.4.1 Developing a Partial Flattening Process

This section presents an automatic partial flattening process that uses the term extractor

method [Pantel and Lin, 2001]. The method discovers ways of tightly coupling observa-

tion sequences within sub-models, thus eliminating rules from the HHMM, resulting in a

more efficient model. This technique uses the dependency measure between elements in

an observation or state sequence. This process involves calculating dependency values,

which measure the joint probability between the elements in the state sequence (or ob-

servation sequence).

This method uses mutual information and log-likelihood, which Dunning [1993] used to

calculate the dependency value between words. Where there is a higher dependency value

between words they are more likely to be treated as a term. The process involves collecting

bigram frequencies from a large dataset, and identifying the possible two word candidates

as terms. The first measurement used is mutual information, which is calculated using

the formula:

mi(x, y) =
P (x, y)

P (x)P (y)
(6.14)

where x and y are words adjacent to each other in the training corpus. The second

measurement, log-likelihood, is the ratio between x and y and is defined as:

log L(x, y) = ll(
k1

n1
, k1, n1) + ll(

k2

n2
, k2, n2)

−ll(
k1 + k2

n1 + n2
, k1, n1)

−ll(
k1 + k2

n1 + n2
, k2, n2) (6.15)

where k1 = C(x, y), n1 = C(x, ∗), k2 = C(¬x, y), n2 = C(¬x, ∗), C(x, y) is the frequency

of the two words {x, y}, ∗ represents all the words in entire training corpus and

ll(p, k, n) = k log(p) + (n− k) log(1− p) (6.16)

The system computes dependency values between states (tree nodes) or observations (tree

leaves) in the tree in the same way. The mutual information and log-likelihood values

6.4 Partial Flattening Process for HHMM 153

are highest when the words are adjacent to each other throughout the entire corpus. By

using these two values, the method is more robust against low frequency events.

Consider a sentence from the CoNLL-20041 corpus:

Although the bidding group has n’t had time to develop its latest idea fully

or to discuss it with banks , it believes bank financing could be obtained .

where the sentence can be re-expressed just as its part-of-speech tags and grammar infor-

mation thus:

(S (S (SBAR IN) (S (NP DT NN NN) (VP VBZ RB VBD) (NP NN) (S (VP

TO VB) (NP PRP$ JJS NN) (ADVP RB) (O CC) (VP TO VP) (NP PRP)

(PP IN) (NP NNS)))) (O ,) (NP PRP) (VP VPZ) (S (NP NN NN) (VP MD

VB VBN)) (O .))

Figure 6.16 is a tree representation of the HHMM, which illustrates the flattening process

for the sentence. Figure 6.16(a) shows the original structure of the sentence, and the

Figure 6.16(b) shows the transformed structure. The model’s hierarchy is reduced by one

level, where the state NP has become a sub-state of state S at the upper level of the tree.

The process is likely to be useful when state NP is highly dependent on state SBAR.

The flattening process can be applied to the model based on two types of sequence de-

pendency; observation dependency and state dependency.

• Observation dependency : The observation dependency value is based upon the

observation sequence, which in Figure 6.16 would be the sequence of part-of-speech

tags {IN DT NN NN VBZ RB VBD NN TO VB PRP$ JJS NN RB CC TO VP

PRP IN NNS , PRP VPZ NN NN MD VB VBN .}. Given observations IN and DT’s

as terms with a high dependency value, the model then re-constructs the sub-tree

at DT parent state NP moving it to the same level as state SBAR, where the states

SBAR and NP now share the same parent state S.

1The 2004 Conference on Computational Natural Language Learning, Boston, MA, USA, 2004,

http://cnts.uia.ac.be/conll2004

154 Techniques for Refining HHMMs

IN VP

S

NP

DT NN NN VBZ RB VBD NN

NP

S

S

SBAR

SBAR

S

NP VP

S

NP

IN DT NN NN NNVBZ RB VBD

(a) (b)

Figure 6.16: Partial flattening process for state SBAR and NP .

• State dependency : The state dependency value is based upon the state sequence,

which in Figure 6.16 would be {SBAR NP VP NP VP NP ADVP O VP NP PP

NP O NP VP NP VP}. The flattening process occurs when the current state has a

high dependency value with the previous state, say SBAR and NP.

term dependency value

IN DT 4532.798

DT NN 4532.798

NN VBZ 4532.798

VBZ RB 362.250

VBD NN 193.961

RB VBD 23.161

NN NN 2.334

Table 6.7: Observation dependency values of part-of-speech tags

High dependency values are determined by selecting the top n values from a list of all

terms ranked by either observation or state dependency, where n is a parameter that can

be configured by the user for better performance. Table 6.7 shows the dependency values

of terms for part-of-speech tags from the previous example. The term {IN DT} has an

6.4 Partial Flattening Process for HHMM 155

equal dependency value to {DT NN}, therefore the state NP is then joined with the state

SBAR as a sub-tree of state S at the second level of the tree as shown in Figure 6.16(b).

This technique continues on work originally proposed by Chou [2006], which presents

preliminary evidence that the partially flattened hierarchical hidden Markov model can

assign propositions to language texts (grammar parsing) at least as accurately as the

HMM.

6.4.2 Evaluation

To evaluate the effectiveness of the partial flattening process on HHMM, the model is

applied on the text chunking task from Section 5.3, using the data from CoNLL-2004.

The evaluation process is carried out upon three partially flattened hierarchical hidden

Markov model—PFRHHMM, PFSHHMM and PFMSHHMM—with 2000 training sen-

tences and 1671 test sentences.

dependency PFRHHMM/PFSHHMM/PFMSHHMM

value (770)

3000+ 15

1000+ 23

800+ 41

600+ 47

400+ 56

200+ 122

100+ 186

50+ 238

Table 6.8: Number of ranked terms for observation dependency flattening

As mentioned previously, partial flattening can be performed on two types of sequence

within the HHMM. Each calculates the dependency value, either by adjacent observations

or adjacent states, then transforms the training data for the system. Table 6.8 provides

156 Techniques for Refining HHMMs

a summary of the number of ranked terms that lie above a certain dependency value in

the training data, where the three models share common dependency values as they are

based on same set of training data. The number of ranked terms indicates the number of

dependency terms that will be used, each being selected from the observation sequence—

which in this task is the part-of-speech tags—according to the dependency measure of

Equation 6.15. There are a total of 770 ranked terms for this set of data with 15 terms

containing a dependency value greater than 3000.

0.
88

0.
89

0.
90

0.
91

0.
92

observation dependency

dependency value

F

original 3000+ 1000+ 800+ 600+ 400+ 200+ 100+ 50+

MSHHMM
SHHMM
RHHMM

Figure 6.17: F-measure for observation dependency

The first evaluation presents the effects of applying a partial flattening process, based on

observation dependency, to various hierarchical hidden Markov models, as shown in Fig-

ure 6.17. The dependency value represents the threshold chosen for a particular flattening

process, where the number of ranked terms from the table above represents the number

of terms that passed this threshold value. The results show that there is small increase in

accuracy for the MSHHMM and RHHMM, while the threshold of the dependency value is

6.4 Partial Flattening Process for HHMM 157

set at the 3000 mark. As the dependency value decreases, the accuracy of the MSHHMM

remains consistent at slightly increased accuracy, while the RHHMM appears to become

unstable. Meanwhile the SHHMM’s performance is highly erratic regardless of depen-

dency value.

dependency PFSHHMM/PFRHHMM PFMSHHMM

value (240) (37)

1000+ 27 5

800+ 30 6

600+ 34 8

400+ 42 9

200+ 64 10

100+ 93 17

50+ 124 20

Table 6.9: Summary of state dependency value

Table 6.9 provides a summary of state dependency values of ranked state terms ranging

from 1000 to 50, while the number within the parentheses represents the total number of

ranked terms available in the training data. The SHHMM and RHHMM share the same

dependency value for their training data, because both models are required to construct

each individual path of the tree in the same manner. However, due to the merging of

repeated sub-model, the MSHHMM has fewer states and thus contains only 37 ranked

terms for this training data set.

The second evaluation in Figure 6.18 shows that applying the partial flattening process,

based on state dependency, has improved extraction accuracy on two hierarchical models;

MSHHMM and RHHMM. At a dependency value of 200+ the RHHMM achieved 0.917

on extraction accuracy—the highest performance from amongst all the models. This

indicates that a complex structure model (such as the RHHMM) can achieve higher ex-

traction accuracy when partial flattening is applied. There is a less significant impact on

158 Techniques for Refining HHMMs

0.
89

5
0.

90
0

0.
90

5
0.

91
0

0.
91

5
0.

92
0

state dependency

dependency value

F

original 1000+ 800+ 600+ 400+ 200+ 100+ 50+

MSHHMM
SHHMM
RHHMM

Figure 6.18: F-measure for state dependency

the simplified and merged MSHHMM during the flattening process. From Figure 6.18

there is a significant drop in accuracy when encountering dependency values ranging from

200+ to 100+ for both models, which indicates that false flattening terms (as dependency

state terms) were used. False flattening occurs when states, that are highly independent

to each other, are incorrectly merged.

6.4.3 Discussion

Improvements on the HHMM’s performance can be achieved by applying a partial flatten-

ing process, thereby reducing the hierarchical complexity and resulting in better perfor-

mance. Furthermore, this method addresses an important issue when dealing with small

datasets: by using the hierarchical model to uncover less obvious structures we are able to

increase performance even over more limited source materials. The experimental results

have shown the potential of this method in refining a hierarchical model and providing

6.5 Summary 159

better handling of states with fewer observation counts. The flattening process has been

shown to be effective and could be applied to many kinds of data with hierarchical struc-

ture. The method is especially appealing where the model involves complex structure or

there is a shortage of training data.

6.5 Summary

This chapter discusses techniques for refining the HHMMs. These techniques fall into two

categories:

• observational aspects:

smoothing technique

pattern generalisation.

• structural aspects:

structure formation

partial flattening process.

A smoothing technique was developed for the purpose of improving the model extraction

accuracy. Section 6.1 demonstrates the benefit of the C-smoothing technique. The tech-

nique calculates an approximation for the unseen observation for each state, so that the

model can provide better probabilistic estimations. The results show that the smoothing

technique can be beneficial when processing sparse data. In the reference tagging task,

the results show the advantage of using the C-smoothing technique, as an observation

in the test sequence is less likely to have been seen in the training data. The overall

results show the C-smoothing has a significant positive impact on the performance of the

MSHHMM, the RHHMM and the HMM.

Section 6.2 illustrates two types of pattern generalisation on the reference tagging task.

The methods were character class pattern generalisation and regular expression pattern

generalisation. The purpose of the generalisation is to reduce the total number of unique

160 Techniques for Refining HHMMs

observation symbols within each state. The rules of the pattern generalisation involve

transforming the input data by using “A” to represent all the capital letters in the obser-

vation sequence, “a” for lower-case letters, “i” for integers and all other symbols, and in

particular punctuation, remain in the same form. The process reduces the chance of un-

seen events occurring when approaching a new data set, and results in a faster algorithm

due to there being fewer observation symbols to compare. The overall results show that

pattern generalisation improves extraction accuracy on the reference tagging task.

Section 6.3 demonstrates the benefit of using structure formation for the extraction ac-

curacy of the model. States are split into three sub-states; state-beginning, state-middle

and state-end, where the observation symbols in each state are independent from each

other. The results show an improvement for the reference tagging task, and also highlight

the importance of being able to correctly identify state boundaries—the entry and exit

points from a state.

Section 6.4 presents the automatic partial flattening process. This process is capable of

transforming the HHMM to a simpler structure, resulting in higher performance in terms

of accuracy for the extraction task. The main idea of the partial flattening process is to

capture the repeated pattern within sequences of events (i.e. state sequences or observa-

tion sequences) and re-construct the model depending on those sequences. The process

uses both mutual information and log-likelihood values to transform states for a better

model structure.

In summary, by applying one of more of the above techniques to the two applications that

were previously mentioned in Chapter 5, the extraction accuracy of the model improves.

For example, pattern generalisation is used to increase the number of observations within

each state, whereas structure formation provides a more solid structure to identify the

starting and the ending of a state. By utilising a smoothing method, the model is able to

provide a reasonable estimation of parameters for unseen events, and partial flattening is

a flexible way to reduce the complexity of the model.

6.5 Summary 161

Chapter 5 shows the MSHHMM improves extraction accuracy by using sub-model infor-

mation to produce a more stable and more accurate model. In this chapter, the techniques

discussed offer further improvement on the extraction accuracy for the MSHHMM and

other hierarchical models (SHHMM and RHHMM).

CHAPTER 7

Conclusions

HMMs are widely used probabilistic tools for modelling sequences of observations. This

thesis investigates modelling sequences that contain hierarchical structure, and how to

make use of the structure to provide a more reliable model. The hierarchical hidden

Markov model (HHMM) is appropriate when repeated sub-state structures occur within

the sequence. By combining the repeated sub-models within hierarchies, the merged and

simplified hierarchical hidden Markov model (MSHHMM) has the benefit of being able

to merge together repeated parts of the structure, which can lead to a more reliable and

accurate model for extraction tasks.

7.1 Contributions

This thesis is based on previous work on regular hierarchical hidden Markov models

(RHHMMs) by Fine [1998], and sets out to prove that merged and simplified hierarchical

hidden Markov models (MSHHMMs) improve efficiency and accuracy over the equivalent

HMM and the RHHMM. The original contributions of this thesis are:

• Merging technique (Section 4.1). This was developed after the observation that by

combining the repeated parts of models. The process allows for repeated sub-models

to be combined during training providing more observations for that internal state,

resulting in greater extraction accuracy as shown in Section 5.2.

164 Conclusions

• Simplification technique (Section 4.1). This made the testing process more efficient

by summarising the probabilities of a sub-model into three transformed states; state-

in, state-stay, and state-out. In Section 5.2, the results show that the SHHMM

achieves a small increase in accuracy over the RHHMM.

• C-Smoothing technique (Section 6.1). This was used to calculate an approximation

for an unseen observation, so that the model provided a better probabilistic esti-

mation. The results have proven that the novel C-Smoothing technique achieved

greater extraction accuracy than other related smoothing techniques.

• Pattern generalisation (Section 6.2). This was applied to simplify observation sym-

bols. The method reduced the chances of unseen events occurring when processing

a new data set. The results in Section 6.2 show that the character class pattern

generalisation yielded greater extraction accuracy than the original data, and re-

sults in a faster algorithm due to there being few observation symbols to compare.

This makes it appealing for tasks such as Reference Tagging that contain significant

repeated patterns in their observation symbols.

• Structure formation (Section 6.3). This was built on the idea of emphasising bound-

ary information between states to improve extraction accuracy of the model. The

results showed an improvement for the reference tagging task, and also highlighted

the importance of being able to correctly identify state boundaries—the entry and

exit points from a state.

• Partial flattening process (Section 6.4). This reduced the complexity of the structure

by transforming the HHMM to a simpler structure, resulting in higher performance

in terms of accuracy for the extraction tasks.

The combination of the methods shown above, when applied to the HHMM, have been

shown to result in an increase in accuracy and efficiency.

7.2 Applications 165

7.2 Applications

Reusing sub-state information extracted from pre-tagged source information measurably

increases the accuracy and stability of a MSHHMM. Chapter 4 discusses the benefits of

reusing repeated sub-models, which yields more observations for each state than in the

equivalent HMM and HHMM. The overall result of Chapter 5 is that both the reference

tagging and text chunking tasks benefit from the use of models that more closely reflect

the hierarchical structure that exists in the source data. By increasing the number of ob-

servations for a state—a consequence of hierarchical modelling and sub-state reuse—the

model is more likely to produce a stable result than its non-hierarchical counterpart.

In the reference tagging task in Section 5.2, the MSHHMM reuses the state information

within author and editor, resulting in a more stable model than the HMM and RHHMM.

Since only a small part of the model is reused in this task, there is only a modest increase

in prediction accuracy.

The MSHHMM performs well on the text chunking task, where the model is able to

make use of the hierarchical structure, and is shown in Section 5.3 to be a more stable

model than the HMM. By using part-of-speech tags as the observation sequence instead

of the words themselves, the total number of unique observation symbols is dramatically

decreased; this results in a more stable algorithm. The number of training observations

available also affects extraction accuracy. There is a direct relationship between the num-

ber of observations within each state, in proportion to the entire data, and the extraction

accuracy, where states with more observations have superior performance. This factor

has a greater effect on the linear HMM than the MSHHMM, because the hierarchical

model provides stronger structure for each internal state. The MSHHMM also has the

best efficiency, in terms of processing time, of all the models evaluated.

For either task, the greatest gain in accuracy when using MSHHMMs occurs when the

training data is limited. This property makes MSHHMMs more suitable when dealing

with the problem of sparse data sets. Once the volume of the training data is increased,

166 Conclusions

the performance of the MSHHMM is comparable to—or better than—that of the equiv-

alent RHHMM or HMM.

7.3 Techniques

Due to the large vocabulary in a language, it is impossible to ensure that every word

appears in the training data. Various smoothing techniques have been devised to prevent

a zero probability for an unseen event. These techniques also try to adjust the probability

distributions by decreasing probabilities for larger states and increasing those for smaller

states. The model predicts how often the unseen event is likely to occur in each state.

Because the Markov model is highly sensitive to the probability distribution within each

state, over-fitting can occur when the smoothing technique is applied. To avoid this, the

MSHHMM uses the C-smoothing technique to provide a small estimate for each unseen

event (as shown in Section 6.1). This smoothing process is more likely to obtain the true

distribution of seen events, while also producing a reliable estimation for unseen events.

The reference tagging task applies two techniques to improve extraction accuracy: pattern

generalisation and structure formation (as shown in Section 6.2 and Section 6.3). Pattern

generalisation involves a pattern matching technique to reduce the total number of unique

observation symbols within each state. This results in a faster algorithm due to there being

fewer observation symbols to compare. It can also reduce the chance of unseen events

occurring when dealing with a new data set. Pattern generalisation involves transforming

the input data by using “A” to represent all capital letters in the observation sequence,

“a” for lower-case letters and “i” for integers. The remaining symbols remain unchanged.

By applying pattern generalisation, the MSHHMM achieves better extraction accuracy

than the HMM, and both models benefit from pattern matching when applied to a small

training data set. Structure formation involves separating each state into sub-states to

suit the nature of the state. For example, the state title contains structure that indicates

a capital letter for the first word and a full stop after the last word, such as:

title: Manufacturing and packaged goods.

7.4 Future Work 167

The middle states contains words with lower-case letters. At this stage separating the

states proved to be a better way of handling the structure. The technique is imple-

mented by splitting the title state into three sub-states; state-beginning, state-middle and

state-end. For example, the state title would be split into title-beginning, title-middle and

title-end. Applying structure formation using the state splitting technique improves ex-

traction accuracy. This may also indicate that in a sequential extraction task it is more

important to identify the beginning and end of the state than the state itself.

The partial flattening process implements a term extraction technique to expose structural

patterns within natural language text. It is an automated process that can reduce the

complexity of HHMMs by moving sub-trees from one node to another. It discovers ways of

more tightly coupling sequences within sub-models. The overall results have shown that

by applying the flattening process the HHMM can achieve high quality performance by re-

ducing hierarchical structure. Furthermore, it addresses an important issue when dealing

with small datasets: by using the hierarchical model to uncover less obvious structures,

the system is able to increase model performance even for limited source materials. The

experimental results show the potential of the HHMM in building a hierarchical model

and providing better handling of states with smaller observation counts.

7.4 Future Work

Several topics for future research are raised by the issues discussed in this thesis. While

it is beneficial to reuse sub-state information when common parent states occur, there is

a notable case when sub-states should not be reused. Figure 7.1 demonstrates a situation

when information within sub-states should not be reused, where the sub-models share the

same parent state, but contain different child states. In this situation, the sub-model does

not gain stability by combining non-repeated structure. Therefore a strategy is required

for identifying which sub-states should be reused, and what notation should be used to

differentiate between unmerged sub-models of the same structure.

168 Conclusions

’
8

18 19 2017

2221 23

1

2 3

4 5 6 7

10 11 128’

8

18 19 2017

9

14 15

16

138

8’

8’’

’

Figure 7.1: Example of different sub-states. (Same as Figure 4.16)

The partial flattening process has been shown to be effective and could be applied to

many kinds of data with hierarchical structure. The method is especially appealing when

the model involves complex structure or there is a shortage of training data. Further re-

search is needed in both experimental and theoretical aspects of this work, specifically in

the area of reconstructing hierarchies where recursive formations are present, and formal

analysis and testing of our flattening techniques.

During structure formation for the reference tagging task some states have been split into

three states, for example title is split into:

title → { title-beginning, title-middle, title-end}

where states are split according to patterns within them. Chapter 6 indicates the impor-

tance of being able to identify the start and end state. The boundaries of sequential events

give vital information to the formation process, and thus deserve further investigation.

Future research may uncover further proof that the boundaries between events are more

informative than the events themselves.

CHAPTER A

Appendix

A.1 Input

(A (N (F P. J. B.) (L Brown.))) (T Exploring geodemographics.) (ED (N (C In

)) (N (F I.) (L Masser)) (N (C and)) (N (F M.) (L Blakemore,)) (N (C editors,

))) (BT Handling Geographical Information: Methodology and PotentialApplications,

) (P pages 221-258.) (PU Longman Scientific & Technical,) (AD Essex,) (Y 1991.)

(A (N (F P.) (L Borras,)) (N (F J. C.) (L Mamou,)) (N (F D.) (L Plateau,)) (N

(F B.) (L Poyet,)) (N (C and)) (N (F D.) (L Tallot.))) (T Building userinter-

faces for database applications.) (BT SIGMODRecord (ACM Special Interest Group on

Management of Data),) (V 21) (NUM (1):) (P 32-38,) (M Mar.) (Y 1992.)

(A (N (F S.) (L Conrad)) (N (C and)) (N (F M.) (L Gogolla.))) (T An anno-

tated bibliography on object - orientationand deduction.) (BT SIGMOD Record (ACM

Special Interest Groupon Management of Data),) (V 21) (NUM (1):) (P 123-132,) (M

Mar.) (Y 1992.)

(A (N (F M. P.) (L Consens,)) (N (F I. F.) (L Cruz,)) (N (C and)) (N (F A. O.)

(L Mendelzon.))) (T Visualizing queries andquerying visualizations.) (BT SIGMOD

170 Appendix

Record (ACM Special Interest Group onManagement of Data),) (V 21) (NUM (1):) (P

39-46,) (M Mar.) (Y 1992.)

(A (N (F C. R.) (L Costilla,)) (N (F M. J.) (L Bas,)) (N (C and)) (N (F J.) (L

Villamor.))) (T SIRIO: A distributed informationsystem over a heterogeneous com-

puter network.) (BT SIGMOD Record (ACMSpecial Interest Group on Management of

Data),) (V 22) (NUM (1):) (P 28-33,) (M Mar.) (Y 1993.)

(A (N (F M. M.) (L David.))) (T Advanced capabilities of the outer join (SQL).

) (BT SIGMODRecord ACM Special Interest Group on Management of Data,) (V 21)

(NUM (1):) (P 65-70,) (M Mar.) (Y 1992.)

(A (N (F O.) (L Etzion.))) (T Pardes — A data driven oriented active database

model.) (BT SIGMOD Record (ACM Special Interest Group on Management of Data),

) (V 22) (NUM (1):) (P 7-??,) (M Mar.) (Y 1993.)

(A (N (F O.) (L Etzion.))) (T PARDES-a data-driven oriented active database model.

) (BT SIG - MOD Record (ACM Special Interest Group on Management of Data),) (V

22) (NUM (1):) (P 7-14,) (M Mar.) (Y 1993.)

(A (N (F B. B.) (L Flynn)) (N (C and)) (N (F D.) (L Maier.))) (T Supporting

display generation for complexdatabase objects.) (BT SIGMOD Record (ACM Special

Interest Group on Managementof Data),) (V 21) (NUM (1):) (P 18-25,) (M Mar.)

(Y 1992.)

(A (N (F S. K.) (L Gadia.))) (T Parametric databases: seamless integration of spatial,

temporal,belief and ordinary data.) (BT SIGMOD Record (ACM Special InterestGroup

on Management of Data),) (V 22) (NUM (1):) (P 15-20,) (M Mar.) (Y 1993.)

A.2 Results for Reference Tagging Task 171

A.2 Results for Reference Tagging Task

100 200 300 400 500 600

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.1: Graph of F-measure for state author

172 Appendix

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

number of sentences

F
MSHHMM
SHHMM
RHHMM
HMM

Figure A.2: Graph of F-measure for state editor

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.3: Graph of F-measure for state title

A.2 Results for Reference Tagging Task 173

100 200 300 400 500 600

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of sentences

F
MSHHMM
SHHMM
RHHMM
HMM

Figure A.4: Graph of F-measure for the state year

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.5: Graph of F-measure for state publisher

174 Appendix

100 200 300 400 500 600

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.6: Graph of F-measure for state address

100 200 300 400 500 600

0.
80

0.
85

0.
90

0.
95

1.
00

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.7: Graph of F-measure for state volume

A.2 Results for Reference Tagging Task 175

100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.8: Graph of F-measure for state institution

176 Appendix

A.3 Results for Text Chunking Task

500 1000 1500 2000

0.
92

0.
93

0.
94

0.
95

0.
96

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.9: Graph of F-measure for state NP

A.3 Results for Text Chunking Task 177

500 1000 1500 2000

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.10: Graph of F-measure for state O

178 Appendix

500 1000 1500 2000

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.11: Graph of F-measure for state VP

A.3 Results for Text Chunking Task 179

500 1000 1500 2000

0.
84

0.
86

0.
88

0.
90

0.
92

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.12: Graph of F-measure for state PP

180 Appendix

500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.13: Graph of F-measure for state ADVP

A.3 Results for Text Chunking Task 181

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of sentences

F

MSHHMM
SHHMM
RHHMM
HMM

Figure A.14: Graph of F-measure for state PRT

Bibliography

[Abney, 1991] S. P. Abney. Parsing by chunks. In R. C. Berwick, S. P. Abney, and

C. Tenny, editors, Principle-Based Parsing: Computation and Psycholinguistics, pages

257-278. Kluwer, Dordrecht, 1991.

[Adibi and Shen, 2001] J. Adibi and W. Shen. Self-Similar Layered Hidden Markov

Model. 12th European Conference on Machine Learning (ECML’01) and 5th Euro-

pean Conference on Principles and Practice of Knowledge Discovery in Databases,

PKDD’01, pp. 3-7, September 2001, Freiburg, Germany.

[Anderson et al., 2002] C. R. Anderson, P. Domingos and D. S. Weld Relational Markov

Models and their Application to Adaptive Web Navigation. In Proc. 8th ACM SIGKDD

Intl. Conf. on Knowledge Discovery and Data Mining, pages 143-152, Edmonton,

Canada, 2002.

[Banko and Brill, 2001] M. Banko and E. Brill. Mitigating the Paucity of Data Problem:

Exploring the Effect of Training Corpus Size on Classifier Performance for Natural

Language Processing. In: Proc. of the Conference on Human Language Technology,

2001.

[Banko and Brill, 2001] M. Banko and E. Brill. Scaling to very very large corpora for

natural language disambiguation. In Proceedings of the 39th Annual Meeting of the

Association for Computational Linguistics, pages 26–33. Association for Computational

Linguistics, 2001.

184 Bibliography

[Baum and Petrie, 1966] L. E. Baum and T. Petrie. Statistical Inference for Probabilistic

Functions of Finite State Markov Chains. Annals of Math. Statistics, vol. 37, pp.

1554-1563, 1966.

[Baum and Egon, 1967] L. E. Baum and J.A. Egon. An Inequality with Applications to

Statistical Estimation for Probabilistic Functions of a Markov Process and to a Model

for Ecology. Bull. Amer. Meteorology Soc., vol. 73, pp. 360-363, 1967.

[Baum and Sell, 1968] L. E. Baum and G. R. Sell. Growth Functions for Transformations

on Manifolds. Pacific J. Math, vol. 27, no. 2, pp. 211-227, 1968.

[Baum et al., 1970] L. E. Baum, T. Petrie, G. Soules and N. Weiss. A Maximization

Technique Occuring in the Statistical Analysis of Probabilistic Functions of Markov

Chains. Annals of Math. Statistics, vol. 41, no. 1, pp. 164-171, 1970.

[Berger, 1985] J. Berger. Statistical Decision Theory and Bayesian Analysis. New York:

Springer-Verlag, 1985.

[Bergmark, 2000] D. Bergmark. Automatic Extraction of Reference Linking Information

from Online Documents. Technical Report TR 2000-1821, Cornell Computer Science

Department, November 2000.

[Berteskas and Tsitsiklis, 1989] D. C. Bertsekas and N. J. Tsitsiklis. Parallel and Dis-

tributed Computation: Numerical Methods, Englewood Clifffs, New Jersey: Printice-

Hall, 1989.

[Bikel et al., 1999] D. M. Bikel, R. Schwartz and R. M. Weischedel. An Algorithm that

Learns What’s in a Name. Machine Learning, vol. 34, pp. 211-231, 1999.

[Borenstein et al., 1996] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile

Robots: Systems and Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

[Borkar et al., 2001] V. R. Borkar, K. Deshmukh and S. Sarawagi. Automatic Segmenta-

tion of Text into Structured Records. Proceedings of SIGMOD, 2001.

[Bouckaert and Frank, 2004] R. Bouckaert and E. Frank. Evaluating the replicability of

significance tests for comparing learning algorithms. Proc Pacific-Asia Conference on

Bibliography 185

Knowledge Discovery and Data Mining. H. Dai, R. Srikant and C. Zhang (eds), LNAI

3056, Sydney, Australia, 3-12. Springer-Verlag, 2004.

[Boutilier et al., 1999] C. Boutilier, T. Dean and S. Hanks. Planning under uncer-

tainty: Structural assumptions and computational leverage. In JAIR. To appear. 1999.

http://citeseer.ist.psu.edu/boutilier96planning.html

[Brand et al., 1997] N. Brand, N. Oliver and A. Pentland. Coupled Hidden Markov Mod-

els for complex action recognition. in CVPR. 1997.

[Brill, 1995] E. Brill. Transformation-Based Error-Driven Learning and Natural Lan-

guage Processing: A Case Study in Part-of-Speech Tagging. Computational Linguistics,

21(4):543–565, 1995.

[Bui et al., 2002] H. H. Bui, S. Venkatesh and G. West. Policy Recognition in the Abstract

Hidden Markov Model. Journal of Artificial Intelligence Research, 17:451-449, 2002.

[Bui et al., 2004] H. H. Bui, D. Q. Phung and S. Venkatesh. Hierarchical Hidden Markov

Models with general state hierarchy. 19th National Conference on Artificial Intelligence

(AAAI-04), 25-29 July 2004, San Jose, California, USA.

[Caplan, 2001] P. Caplan. Reference Linking for Journal Articles: Promise, Progress, and

Perils. Portal: Libraries and the Academy, vol. 1, no. 3, pp 352-356, 2001.

[Carroll and Long, 1989] J. Carroll and D. Long. Theory of Finite Automata with an

Introduction to Formal Languages. Prentice Hall. Englewood Cliffs, 1989.

[Chang and Martinsek, 2004] Y-C I. Chang and A. Martinsek. Sequential Approaches to

Data Mining. In Sequential Methodologies, Ed. Mukhopadhyay, Datta and Chattopad-

hyay, Marcel Dekker Inc.

[Chen and Chen, 1994] K-H Chen and H-H Chen. Extracting Noun Phrases from Large-

Scale Texts: A Hybrid Approach and its Automatic Evaluation. Meeting of the Asso-

ciation for Computational Linguistics, 234-241, 1994.

186 Bibliography

[Cheng et al., 1997] J. Cheng, D. Bell and W. Liu. Learning Bayesian Networks from

Data: An Efficient Approach Based on Information Theory. Proceeding of the sixth

ACM International Conference on Information and Knowledge Management, 1997.

[Chien, 1999] J-T Chien. Online hierarchical transformation of hidden Markov models

for speech recognition. IEEE Transactions on Speech and Audio Processing, vol. 7, no.

6, pp. 656-667, November 1999. (NSC89-2213-E-006-151).

[Chomsky, 1965] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge,

MA.

[Chou, 2006] L. Chou. Techniques to incorporate the benefits of a Hierarchy in a modified

hidden Markov model. Proceedings of the COLING/ACL 2006 Main Conference Poster

Sessions, July, Sydney, Australia, 2006. Association for Computational Linguistics, pp

120-127.

[Church, 1988] K. Church. A Stochastic Parts Program and Noun Phrase Parser for

Unrestricted Text. Proceedings of Second Conference on Applied Natural Language

Processing, pp. 136-143, 1988.

[Cox and Miller, 1965] D. R. Cox and H. D. Miller. The theory of stochastic processes.

London, Methuen, 1965.

[Craven et al., 2000] M. Craven, D. DiPasquo, D. Freitag, A. K. McCallum, T. M.

Mitchell, K. Nigam and S. Slattery. Learning to construct knowledge bases from the

World Wide Web. Artificial Intelligence, 118(1-2): 69-113, 2000.

[Dunning, 1993] T. Dunning. Accurate methods for the statistics of surprise and coinci-

dence. Computational Linguistics, 19(1), pp 61-74, 1993.

[Durbin et al., 2001] R. Durbin, S. R. Eddy, A. Krogh and G. Mitchison. Biological

sequence analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press, Cambridge UK, April 1998.

[Eikvil, 1999] L. Eikvil. Information extraction from the world wide web: a survey. Tech-

nical Report 945, Norwegian Computing Center, 1999.

Bibliography 187

[Fine et al., 1998] S. Fine , Y. Singer and N. Tishby. The Hierarchical Hidden Markov

Model: Analysis and Applications. Machine Learning, Vol 32, pp. 41-62, July 1998.

[Freitag and McCallum, 1999] D. Freitag and A. McCallum. Information extraction using

HMMs and shrinkage. In Papers from the AAAI-99 Workshop on Machine Learning

for Information Extraction, pp. 31-36, 1999.

[Freitag and McCallum, 2000] D. Freitag, A. McCallum. Information Extraction with

HMM Structures Learned by Stochastic Optimization. Proceedings of the Eighteenth

Conference on Artificial Intelligence (AAAI-2000), pp. 584-589.

[Gelman et al., 1995] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin. Bayesian

Data Analysis. Chapman & HallCRC, Boca Raton, 1995

[Ghahramani and Jordan, 1997] Z. Ghahramani and M. Jordan. Factorial hidden Markov

Models. Machine Learning, 2: pp.1-31, 1997.

[Good, 1953] I. J. Good. The Population Frequencies of Species and the Estimation of

Population Parameters. Biometrika, volumn 40, part 3, 4, pp. 237-264, 1953.

[Greengrass, 2001] E. Greengrass. Information retrieval: A survey. DOD Technical Report

TR-R52-008-001, 2001.

[Hitchcock et al., 1998] S. Hitchcock, L. Carr, W. Hall, S. Harris, S. Probets, D. Evans,

and D. Brailsford. Linking electronic journals: Lessons from the Open Journal project.

D-Lib Magazine, December 1998.

[Heckerman et al., 1995] D. Heckerman, D. Geiger and D. Chickering. Learning Bayesian

networks: The combination of knowledge and statistical data. Machine Learning,

20(3):197–243, 1995.

[Hu et al., 2000] M. Hu, C. Ingram, M. Sirski, C. Pal, S. Swamy, and C. Patten. A Hi-

erarchical HMM Implementation for Vertebrate Gene Splice Site Prediction. Technical

report, Department of Computer Science, University of Waterloo, 2000.

[Jeffreys, 1948] H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, second

edition, 1948.

188 Bibliography

[Jelinek and Mercer, 1980] F. Jelinek and R. Mercer. Interpolated estimation of markov

source parameters from sparse data. In S. Gelsema and L. N. Kanal, editors, Pattern

Recognition in Practice, pages 381-402, 1980

[Jelinek and Lafferty, 1991] F. Jelinek and J. D. Lafferty. Computation of the probability

of initial substring generation by stochastic context-free grammars. Computational

Linguistics, 17(3):315-323, 1991.

[Jurafsky and Martin, 2000] D. Jurafsky and J. H. Martin. Speech and Language Pro-

cessing: An Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Prentice Hall series in Artificial Intelligence. Prentice-Hall,

Englewood Cliffs, N. J. 2000.

[Katz, 1997] B. Katz. From sentence processing to information access on the World Wide

Web. In Natural Language. Processing for the World Wide Web: Papers from the 1997

AAAI Spring Symposium, pages 77-94, 1997.

[Katz, 1987] S. M. Katz. Estimation of probabilities from spares for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal

Processing, volumn ASSP-35, pp. 400-401, March 1987.

[Kortenkamp et al., 1998] D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. AI-

based Mobile Robots: Case studies of successful robot systems, Cambridge, MA, 1998.

MIT Press.

[Krotov et al., 1999] A. Krotov, M Heple, R. Gaizauskas and Y. Wilks. Compacting the

Penn Treebank Grammar. Proceedings of COLING-98 (Montreal), pages 699-703, 1999.

[Lari and Young, 1990] K. Lari and S. J. Young. The Estimation of Stochastic Context-

Free Grammars Using the Inside-Outside Algorithm. Computer Speech and Language,

vol. 4, pp. 35-56, 1990.

[MacEachern and Peruggia, 2000] S. N. MacEachern and M. Peruggia. Subsampling the

Gibbs sampler: variance reduction. Statistics & Probability Letters 47, pp. 91-98, 2000.

Bibliography 189

[McCallum et al., 1999] A. McCallum, K. Nigam, J. Rennie and K. Seymore. Building

Domain-Specific Search Engines with Machine Learning Techniques. In AAAI-99 Spring

Symposium on Intelligent Agents in Cyberspace, 1999.

[McCallum, 2004] A. McCallum. Part-of-speech Tagging & Hidden Markov Model intro-

duction. Talk: Introduction to Natural Language Process, University of Massachusetts

Amherst, CMPSCI 585, Spring 2004.

[MacCallum et al., 2000] A. McCallum, D. Freitag and F. Pereira. Maximum Entroply

Markov Models for Information Extraction and Segmentation. Proceedings 17th Inter-

national Conferebce on Machine Learning, pp.591-598, 2000.

[Miller et al, 1998] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz and R.

Stone, R. Weischedel, and the Annotation Group. Algorithms that learn to extract

information—BBN:Description of the SIFT System as Used for MUC-7 In Proceedings

of the Seventh Message Understanding Conference (MUC-7), MUC-7. Fairfax, Virginia.

1998.

[Moline and Pla, 2001] A. Molina and F. Pla. Clause Detection using HMM. In Proceed-

ings of CoNLL-2001, Toulouse, France, 2001.

[Moline and Pla, 2001] A. Molina and F. Pla. Shallow Parsing using Specialized HMMs.

In Journal of Machine Learning Research, volume 2 (March), 2002, pp. 595-613.

[Murphy and Paskin, 2001] K. P. Murphy and M. A. Paskin. Linear Time Inference in

Hierarchical HMMs. In T. Dietterich, S. Becker, and Z. Gharahmani eds., Advances in

Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2001.

[Murphy et al., 2001] K. Murphy, S. Russell, A. Doucet. Rao-Blackwellised Particle Fil-

tering for Dynamic Bayesian Networks. In Sequential Monte Carlo Methods in Practice

N. de Freitas and N.J. Gordon, editors., Springer-Verlag, New York, 2001.

[Murphy, 2002] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference

and Learning. UC Berkeley, Computer Science Division, July 2002.

190 Bibliography

[Nag et al., 1985] R. Nag, K. H. Wong, and F. Fallside. Script Recognition Using Hidden

Markov Models. Proc. of ICASSP 86, pp. 2071-1074, Toyko , 1986.

[Ney et al., 1994] H. Ney, U. Essen and R. Kneser. On structuring probabilistic depen-

dencies in stochastic language modeling. Computer Speech and Language, 8:1-38, 1994.

[Pantel and Lin, 2001] P. Pantel and D. Lin. A Statistical Corpus-Based Term Extractor.

In Stroulia, E. and Matwin, S. (Eds.) AI 2001. Lecture Notes in Artificial Intelligence,

pp. 36-46. Springer-Verlag, 2001.

[Rabiner and Juang, 1986] L. R. Rabiner and B. H. Juang. An Introduction to Hidden

Markov Models. IEEE Acoustics Speech and Signal Processing ASSP Magazine, ASSP-

3(1): 4-16, January 1986.

[Raiko et al., 2002] T. Raiko, K. Kersting, J. Karhunen, and L. De Raedt. Bayesian

Learning of Logical Hidden Markov Models. In the proceedings of the Finnish Artificial

Intelligence Conference, STeP 2002, Oulu, Finland, December 2002, pp. 64-71.

[Rabiner, 1989] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Ap-

plications in Speech Recognition. Proceedings of the IEEE, 77 (2), pp. 257-286, 1989.

[Rijsbergen, 1979] C. J. Rijsbergen. Information Retrieval, second edition. Butterworths,

1979.

[Ron et al., 1994] D. Ron, Y. Singer and N. Tishby. Learning probabilistic authomata

with variable memory length. In Proceedings of the Seventh Annual Workshop on

Computational Learning Theory. 1994.

[Saggion et al., 2004] H. Saggion, R. Gaizauskas, M. Hepple, I. Roberts and M. Green-

wood. Exploring the Performance of Boolean Retrieval Strategies for Open Domain

Question Answering. Proc 2004 SIGIR Workshop on Information Retrieval for Ques-

tion Answering, Sheffield, UK, July, 2004.

[Schaefer, 1997] R. Schaefer and T. Weyrath. Assessing Temporally Variable User Prop-

erties with Dynamic Bayesian Networks. In: A. Jameson, C. Paris and C. Tasso (eds.).

Bibliography 191

User Modeling - Proceedings of the Sixth International Conference UM. Springer, New

Work, 1997.

[Seymore et al., 1999] K. Seymore, A. McCallum and R. Rosenfeld. Learning Hidden

Markov Model Structure for Information Extraction. AAAI’99 Workshop on Machine

Learning for Information Extraction, 1999.

[Slomin et al., 2002] N. Slonim, G. Bejerano, S. Fine, and N. Tishby. Discriminative

feature selection via multiclass variable memory Markov model. In Proceedings of

ICML, 2002.

[Skounakis et al., 2003] M. Skounakis, M. Craven and S. Ray. Hierarchical Hidden

Markov Models for Information Extraction. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence, Acapulco, Mexico, Morgan Kaufmann, 2003.

[Sompel, 2001] H. V. D. Sompel. Generalizing the OpenURL Framework beyond Refer-

ences to Scholarly Works: The Bison-Futè Model. Oren Beit-Arie. D-Lib Magazine

7(7/8), 2001.

[Stolcke, 1994] A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD

thesis, University of California, Berkeley, 1994.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Reinforcement learning: An

introduction. Cambridge, MA: MIT Press. 1998.

[Theocharous et al., 2001] G. Theocharous, K. Rohanimanesh, and S. Mahadevan. Learn-

ing Hierarchical Partially Observable Markov Decision Processes for Robot Navigation.

Proceedings of the IEEE Conference on Robotics and Automation (ICRA), Seoul, South

Korea, May 2001.

[Theocharous and Mahadevan, 2002] G. Theocharous and S. Mahadevan. Approximate

planning with hierarchical partially observable markov decision processs for robot navi-

gation. In Proceedings of the IEEE International Conference on Robotics and Automa-

tion (ICRA), 2002.

192 Bibliography

[Thollard and Clark, 2002] F. Thollard and A. Clark. Shallow Parsing using PRobabilis-

tic Grammatical Inference. Proceedings of the 6th Internaltional Colloquium on Gram-

matical Inference: Algorithms and Applications, pp. 269-282, Springer-Verlag, London,

UK, 2002.

[Thrun, 2002] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,

editors. Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann,

2002.

[Viterbi, 1967] A. J. Viterbi. Error bounds for convolutional codes and an asymtotically

optimum decoding algorithm. IEEE Transactions on Information Theory IT-13:260-

267, 1967.

[Vogler and Metaxas, 1999] C. Vogler and D. Metaxas. Parallel Hidden Markov Models

for American sign Language Recognition. In International Conference on computer

Vision, Kerkyra, Greece, 1999.

[Wild and Seber, 1995] C. J. Wild and G. A. F. Seber. Introduction to Probability and

Statistics. Lecture Notes for U. of A. papers 528.18x and W. U. paper 0655.121,

Auckland, NZ, 1995.

[Xie et al., 2002] L. Xie, S-F Chang, A Divakaran, H. Sun. Learning hierarchical hidden

Markov models for video structure discovery. Tech. Rep. 2002-006, ADVENT Group,

Columbia University, December 2002.

[Zemel, 1993] R. Zemel. A minimum description length framework for unsupervised learn-

ing. Ph.D. Thesis, Department of Computer Science, University of Toronto, Toronto,

Canada, 1993.

[Zhai and Lafferty, 2001] C. Zhai and J. Lafferty. A study of Smoothing Methods for

Language Models Applied to Ad Hoc Information Retrieval. Proceedings of the 24th

annual international ACM SIGIR conference on Research and development in infor-

mation retrieval, ACM Press, pp. 334-342, (2001)

Bibliography 193

[Zhou and Su, 2002] G. Zhou , J. Su. Named entity recognition using an HMM-based

chunk tagger. Proceedings of the 40th Annual Meeting on Association for Computational

Linguistics, July 07-12, Philadelphia, Pennsylvania, 2002.

