WAIKATO Research Commons

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

Te Whare Wānanga o Waikato

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from the thesis.

U-Pb Dating of Silicic Volcanic Rocks of the Eastern Coromandel Peninsula

A thesis submitted in partial fulfilment of the requirements for the degree of

> Master of Science in Earth and Ocean Sciences at The University of Waikato

by Kirsty Anne Vincent

THE UNIVERSITY OF WAIKATO Te Whare Wananga o Waikato

2012

The eastern Coromandel Volcanic Zone (CVZ) is an area of predominantly andesite-dacite-rhyolite volcanism which was erupted and subsequently hydrothermally altered in parts during the Late Miocene to Early Pleistocene. Many of the andesitic host rocks and products of hydrothermal alteration have been dated, but there are few ages on the rhyolites. This study was undertaken to help better constrain the age of selected rhyolite lavas and ignimbrites of the onshore eastern CVZ. 21 units were sampled for U-Pb dating of zircon using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This method was chosen because most CVZ rhyolites are known to contain zircon. In this study, 18 of the 21 samples contained sufficient zircons for dating, and 18 new zircon U-Pb ages are presented. These ages are the age of crystallisation and therefore represent the maximum eruption age. This method has not previously been used in the CVZ, so was also chosen to assess if it is an appropriate method for dating CVZ rhyolites. This was determined by comparing the new ages generated in this study with any previous ages. They mostly agree, which supports the validity of the method, and also provides new age data of several units which had not previously been dated.

In order to set the new ages into a geological context, it was necessary to describe the units sampled. The petrography, mineralogy and petrochemistry were assessed by petrographic microscope, electron microprobe and whole rock X-ray diffraction and fluorescence. 21 new whole rock major and trace element XRF analyses are presented.

I would like to thank the following people who have been a part of this project:

Thanks first to my supervisors, Assoc. Professor Roger Briggs and Dr Adrian Pittari for suggesting the topic and being great mentors.

Dr Ganqing Xu, Annette Rodgers and Renat Radosinsky for help with sample preparation. Also Xu for running the XRD analyses and Annette for the XRF analyses. Thank you to everyone else in the department who has given me advice and support.

Steve Cameron and Megan Grainger from the Chemistry Department for guiding me through the use of the LA-ICP-MS.

Stephanie Lee and Sean Jones for advice on zircons and age data processing.

Ritchie Sims from the University of Auckland for assistance with the microprobe.

Dr Stuart Rabone from Broken Hills Mine for showing me around the mine and allowing me to take samples from it.

Rick Streiff and Lorrance Torckler from Martha Mine for advice about the Wharekirauponga Prospect.

Dr Fiona Petchey from the Carbon Dating Unit for advice about comparing radiometric ages.

My fellow graduates for all the fun times, lunch breaks, discussions and memories. Thanks to Megan, Anna and Sarah for helping me in the field. Thanks to Simon for help with GIS. Thanks to Kerri for help with proof reading.

My parents who have supported and encouraged me all this time. Thank you for just being there.

Funding was received from the University of Waikato Masters Research Scholarship, the Broad Memorial Fund, and the Minerals Industry Student Scholarship (AusIMM).

Abstrac	:ti	ii
Acknow	wledgements	v
Table o	of Contents	ii
List of	Figures	τi
List of	Tablesxi	ii
Chapter	r 1: Introduction	1
1.1	Introduction	1
1.2	Research objectives and methodology	1
1 3	Tectonic and geological setting	- ว
1.5		_
1.4	Previous work	7
1.5	Location of study area	9
	Ferry Landing Ignimbrite 1	2
	Shakespeare Ignimbrite 1	2
	Wharepapa Ignimbrite	2
	Paku Rhyolite 1	2
	Pauanui Dome Complex	3
	Timata Dome1	3
	Staircase Dome1	3
	Broken Hills Rhyolite	3
	Broken Hills Mine Rhyolite 1	3
	Hikuai Ignimbrite 1	4
	Pokohino Dome Complex 1	4
	The Knob 1	4
	Pohakahaka Dome Complex 1	4
	Te Karaka Rhyolite	5
	Papakura Bay Dome1	5
	Maratoto Rhyolite – Wharekirauponga Dome	5
	Homunga Rhyolite – Whale Bone Bay and Shark Bay Domes 1	5
	Owharoa Ignimbrite	6

1.6 The	sis outline16
Chapter 2: Pe	etrography and Mineralogy17
2.1 Intro	oduction and methodology17
2.2 Slig	htly altered rhyolite lavas
2.2.1	Phenocrysts
Quart	z
Plagio	clase
Relict	mafic minerals
Biotit	e
Opaq	ues
Zirco	n
2.2.2	Groundmass
2.3 Inte	nsively altered rhyolite lavas23
2.3.1	Phenocrysts
Quart	z
Altere	ed plagioclase
Relict	mafic minerals
Biotit	e
Opaq	ues
Zirco	n
2.3.2	Groundmass
2.3.3	Effects of hydrothermal alteration
2.4 Igni	mbrites
2.4.1	Ferry Landing Ignimbrite
2.4.2	Shakespeare Ignimbrite
2.4.3	Wharepapa Ignimbrite
2.4.4	Hikuai Ignimbrite
2.4.5	Owharoa Ignimbrite

Chapter	: 3: Pe	trochemistry	35						
3.1	Intro	oduction	35						
3.2	Met	hodology	35						
3.3	Maj	Major element chemistry							
3.4	Trac	e element chemistry	40						
Chapter	r 4: U-	Pb Dating of Zircons	45						
4.1	Intro	oduction	45						
4.2	Met	hodology	47						
4.2	2.1	Mineral separation	48						
4.2	2.2	Grain selection	48						
4.2	2.3	Laser Ablation Inductively Coupled Plasma Mass Spectrome	try						
(L	A-ICF	P-MS)	49						
4.2	2.4	Data processing	50						
4.3	Petro	ography of zircons	51						
4.4	Resi	ılts	53						
4.4	4.1	U-Pb ages	53						
4.4	4.2	Inherited zircons	54						
Chapter	r 5: Di	scussion	57						
5.1	Intro	oduction	57						
5.2	Min	eralogy and petrochemistry	57						
5.2	2.1	K ₂ O vs. SiO ₂	57						
5.2	2.2	Hydrothermal alteration	57						
5.2	2.3	Petrography and petrochemistry of Broken Hills Rhyolite	59						
5.3	U-P	b dating of zircons	60						
5.3	3.1	Results from this study	60						
5.3	3.2	Errors and uncertainties	61						

5.3.3	Comparison with previous studies	62
5.3.4	Age of CVZ volcanics	65
5.3.5	Silicic centres of the CVZ	67
5.3.6	Origin of inherited zircons	68
5.3.7	Physical properties of zircons	70
5.3.8	Comparison to the TVZ	71

Chapter	hapter 6: Summary and Conclusions							
6.1	Inti	Introduction7						
6.2	Pet	rography, mineralogy and petrochemistry	.75					
6.2	2.1	Slightly altered rhyolite lavas	.75					
6.2	2.2	Intensively altered rhyolite lavas	.76					
6.2	2.3	Ignimbrites	.76					
6.3	U-l	Pb dating	.76					

References

Appendix I: Sample catalogue	
Appendix II: Hand specimen and thin section descriptions	
Appendix III: Microprobe analyses	
Appendix IV: XRD traces	
Appendix V: Equipment settings	
Appendix VI: LA-ICP-MS specifications	
Appendix VII: Certificates of authenticity	
Appendix VIII: Isotope ratios	
Appendix IX: Concordia and probability density plots	
Appendix X: CVZ age data	

List of Figures

Fig. 1.1: The Hauraki Volcanic Region, North Island, New Zealand
Fig. 1.2: Simplified geology of the CVZ
Fig. 1.3: Division of the Hauraki Goldfield into the Northern, Eastern and Southern Epithermal Provinces
Fig. 1.4: Simplified geology of the eastern CVZ with sample sites marked9
Fig. 1.5: Characteristic rhyolite sections of Eastern CVZ 10
Fig. 2.1: Phenocrysts of slightly altered rhyolite lavas
Fig. 2.2: A) Orthoclase – albite – anorthite ternary diagram for plagioclase phenocrysts of rhyolite lavas. B) Composition of representative phenocrysts of plagioclase, ordered from north to south
Fig. 2.3: Al – Mg – Fe+Mn ternary diagram for biotite phenocrysts of Papakura Bay Dome and Owharoa Ignimbrite
Fig. 2.4: Groundmass features of slightly altered rhyolite lavas
Fig. 2.5: Phenocrysts and groundmass features of intensively altered rhyolite lavas
Fig. 2.6: Orthoclase – albite – anorthite ternary diagram for all plagioclase crystals (free matrix crystals, pumice phenocrysts and crystals in lithics) of ignimbrites analysed in this study, ordered from north to south
Fig. 2.7: Orthoclase – albite – anorthite ternary diagram for representative plagioclase crystals (free matrix crystals, pumice phenocrysts and crystals in lithics) of ignimbrites in this study, highlighting the variations between core (c) and rim (r) compositions
Fig. 2.8: Features of ignimbrites
Fig. 2.9: Wollastonite – enstatite – ferrosilite ternary diagram for pyroxene crystals of the Wharepapa Ignimbrite
Fig. 3.1: Plot of K ₂ O vs. SiO ₂ wt % of all samples
Fig. 3.2: Harker variation diagrams of selected major elements
Fig. 3.3: Harker variation diagrams of selected trace elements
Fig. 3.4: Selected element-element plots 43
Fig. 4.1: Typological classification of zircons
Fig. 4.2: Colourless, light pink and pink zircons, Wharekirauponga Dome, reflected light
Fig. 4.3: Colour of zircon crystals that were ablated by LA-ICP-MS

Fig.	4.4:	Morpholo	ogy of	crystals	that	were	ablated	and	the	percentage	of	each
prese	ent						•••••		•••••		••••	53

Fig. 5.1: Plot of K_2O vs. SiO ₂ of all samples in this study. Shaded areas show the range of compositions of CVZ and TVZ volcanics for comparison
Fig. 5.2: Map of the central Eastern CVZ and the samples that were dated in this study
Fig. 5.3: Age of CVZ volcanics dated in this study, with respect to location from north to south
Fig. 5.4: Map of the igneous rocks of the CVZ that have been dated using all available data
Fig. 5.5: Age versus distance through the CVZ of the igneous rocks of the CVZ that have been dated using all available data
Fig. 5.6: Tephra thickness at offshore site 1124 (Carter <i>et al.</i> 2003), including tephras from both CVZ and TVZ, and age of silicic centres in the CVZ68
Fig. 5.7: Locations in New Zealand where inherited zircons of Late Cretaceous to Early Miocene age could have originated
Fig. 5.8: Age of ablated zircons by location. Observed colour as indicated71
Fig. 5.9: Silicic centres and calderas of the CVZ and TVZ72

List of Tables

Table 1.1: Summary of regional stratigraphy of the CVZ. 7
Table 1.2: A selection of previous studies that have dated volcanic rocks of the CVZ.
Table 3.1: Whole rock XRF geochemical analyses of selected rhyolite lavas and ignimbrites, eastern CVZ. 36
Table 4.1: Optical and physical properties of zircon crystals (Zr[SiO ₄])
Table 4.2: U-Pb ages (My, 1 σ errors) for samples dated in this study, listed north to south.54

Table	5.1:	Ages	(My)	from	samples	dated	in	this	study	with	comparison	to
previo	us ago	e estim	ates					•••••		•••••		62

Chapter 1

Introduction

1.1 Introduction

The Coromandel Volcanic Zone (CVZ) is the easternmost part of the Hauraki Volcanic Region (HVR), which is the largest and longest lived region of andesite-dacite-rhyolite volcanism in New Zealand. The CVZ was active from c. 18 to 1.9 Ma (Adams *et al.* 1994; Briggs *et al.* 2005). Many of the intermediate volcanics of the CVZ have been dated but the ages of the silicic volcanics are poorly constrained. Most silicic volcanism of the CVZ occurs in the central-east of the Coromandel Peninsula, where the landscape is dominated by rhyolite domes, flows and ignimbrites. In this study, 16 rhyolite lavas and 5 rhyolitic ignimbrites were sampled from the eastern CVZ to generate new U-Pb ages by dating of zircon.

1.2 Research objectives and methodology

The focus of this study was to determine eruption ages for selected silicic volcanic rocks of the eastern CVZ in order to constrain the geochronological evolution of the CVZ. Some of these samples have not previously been dated.

The objectives of the study were:

- To determine maximum eruption ages for selected rhyolite lavas and ignimbrites of the eastern CVZ by U-Pb dating of zircon using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).
- To assess the feasibility of the U-Pb dating of zircon method for dating silicic volcanic rocks of the CVZ.
- To determine if there is any relationship between the physical properties of zircon (i.e. colour and morphology) and age, location and host rock type.

These were achieved by:

- Characterising the rocks sampled to place them into a geological context by determining their chemical composition and mineralogy using a petrographic microscope, electron microprobe, whole rock X-ray diffraction and X-ray fluorescence spectrometry;
- Comparing the new ages generated in this study with any existing ages (fission track on zircon/obsidian, Ar-Ar on adularia, K-Ar on plagioclase/biotite/hornblende/whole rock, U-Pb on zircon). Prior to this study, the zircon U-Pb method had only been used on one sample in the CVZ by ion probe (Hoskin *et al.* 1998); and
- Identifying colour and morphology of zircons using a petrographic microscope.

1.3 Tectonic and geological setting

The CVZ is a continental volcanic arc more than 200 km long by 35 km wide within the HVR (Fig. 1.1). The HVR is the largest and longest lived region of andesite-dacite-rhyolite volcanism in New Zealand and includes the Kiwitahi Volcanic Zone (KVZ, active during the Late Miocene), central Hauraki Rift and the CVZ (Skinner 1986). Volcanism in the CVZ began c. 18 Ma in response to the southwest-dipping Hikurangi subduction zone (King 2000) where the Pacific Plate had already begun subducting beneath the Australian Plate c. 25 Ma (Furlong & Kamp 2009). The CVZ was active from the late-Early Miocene (c. 18 Ma, Adams et al. 1994) until the Early Pleistocene (1.9 Ma, Briggs et al. 2005). It extends from Great Barrier Island in the north to Te Puke in the south. The Coromandel Peninsula is not in itself a volcanic arc, but is the sub-aerial expression of Neogene volcanism and tectonics which have been superimposed on a fundamental horst structure (Skinner 1986). The CVZ was active at the same time as the off-shore Colville Ridge, a NE-SW trending ridge parallel and to the west of the Kermadec Ridge. When volcanism of the CVZ shifted to the Taupo Volcanic Zone (TVZ) in the Early Pleistocene, volcanism along the Colville Ridge shifted to the Kermadec Ridge (Wright 2008). The CVZ is considered to be a tectonic precursor to the presently active TVZ (Skinner 1986; Adams et al. 1994).

Fig. 1.1: The Hauraki Volcanic Region, North Island, New Zealand. The HVR includes the KVZ, Hauraki Rift and the CVZ. Plate boundary c. 20 Ma is prior to the commencement of the CVZ and is shown relative to the present day position of the CVZ. After Skinner (1986) and Furlong & Kamp (2009).

The CVZ basement is a Jurassic metagreywacke sequence (Manaia Hill Group) which is exposed mainly in northwestern CVZ (Adams *et al.* 1994). The basement is overlain by Oligocene coal measures and calcareous marine rocks (Skinner 1986). Minor volcanogenic marine conglomerate, sandstone and siltstone of Early Miocene age (Colville Formation, Waitemata Group) precede the oldest exposed volcanic rocks of the CVZ (Skinner 1986).

The volcanic rocks of the CVZ range from basalt flows to rhyolite domes and ignimbrites, as well as hypabyssal and plutonic complexes (Cole *et al.* 1987) (Fig. 1.2). Volcanism began in the CVZ in the end of the Early Miocene with a predominantly andesitic-dacitic sequence throughout the west of the peninsula (Adams *et al.* 1994). Volcanism shifted to the east-central part of the peninsula in the Late Miocene (c. 12 Ma, Carter *et al.* 2003) with bimodal episodes of rhyolite and basalt/basaltic andesite. There was significant caldera formation and ignimbrite production during this time. The basaltic-andesitic cones and flows (Kerikeri Volcanic Group) of the Late Miocene to Pliocene are localised and occur on the Kuaotunu Peninsula, Mercury Islands, and south of Whitianga (Adams *et al.* 1994).

The youngest products of the CVZ are to the south of the peninsula, where andesitic eruptions continued into the Late Pliocene and dacitic-rhyolitic eruptions into the Early Pleistocene (Briggs *et al.* 2005). The Kaimai and Tauranga Volcanic Centres mark the end of rhyolitic volcanism in the CVZ, with the Papamoa Ignimbrite from the Tauranga Basin as the youngest dated product of the CVZ at 1.9 Ma (Briggs *et al.* 2005). There was a period of transition following this until the first rhyolitic eruption in the TVZ at c. 1.55 Ma from the Mangakino Volcanic Centre (Houghton *et al.* 1995). This time period with no recorded rhyolitic volcanism is also reflected in the offshore tephra record, which is often more complete than the onshore record (Carter *et al.* 2003). The proportion of mafic (basalt to andesite) versus silicic (dacite to rhyolite) volcanism is approximately 40:60 for the CVZ (Briggs *et al.* 2005). The locus of volcanism migrated irregularly c. 3 mm per year eastwards and c. 8 mm per year southwards over time (Adams *et al.* 1994).

Hydrothermal alteration and Au-Ag mineralisation took place episodically throughout the CVZ from at least 10 Ma in the northern Coromandel Peninsula (Christie *et al.* 2006a) until the Late Pliocene/Early Pleistocene near Te Puke (Rabone 2006b). The Hauraki Goldfield hosts the largest concentration of precious metal mineralisation in New Zealand (Brathwaite *et al.* 1989). The region has been divided into three epithermal provinces based on a number of factors, including age of the deposits, host rock type, alteration and vein minerals, Au:Ag ratios, and vein types and textures (Fig. 1.3) (Christie *et al.* 2006a).

Fig. 1.2: Simplified geology of the CVZ. After Briggs & Krippner (2006).

Fig. 1.3: Division of the Hauraki Goldfield into the Northern, Eastern and Southern Epithermal Provinces (Christie *et al.* 2006a).

Most faults in the Neogene rocks of the region trend NNW and NE; these structures are inherited from NNE-striking extensional rift structures, dilation jogs and pull-apart basins formed in the Early Cretaceous Rangitata Orogeny (Briggs & Krippner 2006). The block fault geometry of the basement is common throughout the North Island (Spörli *et al.* 2006). Many of the NE trending faults are downthrown to the south, creating a difference in basement elevation of over 900 m in the north of the peninsula to below sea level in the south (Spörli *et al.* 2006).

Three lithostratigraphic groups have been defined for volcanics of the CVZ: Coromandel Group (andesite/dacite/rhyodacite), Whitianga Group (rhyolite and ignimbrite) and Kerikeri Volcanic Group (basalt/basaltic andesite) (Skinner 1986) (Table 1.1). These three are further divided into subgroups; of significance to this study are the Minden, Coroglen and Ohinemuri Subgroups of the Whitianga Group (Skinner 1993; Skinner 1995; Brathwaite & Christie 1996). The Minden Subgroup includes flow and dome-building rhyolites. The Coroglen Subgroup includes ignimbrites, pumice breccias and associated sediments. The Ohinemuri Subgroup includes ignimbrites of the Waihi Basin.

Group	Subgroup	Formation	Age	Comments
Whakamarama		Waiteariki Ignimbrite Aongatete Ignimbrite	Mid Pleistocene	Dacitic; only in Kaimai Range; young Papamoa Ignimbrite near Te Puke is also dacitic
	"Waitawheta Dacite"	informal	Plio-Pleistocene	Informal "bag" unit south of Waihi; includes andesite and ignimbrite
Kerikeri Volcanic	Mercury Basalts	Several centres	Late Upper Miocene and/or younger	Known only in north Coromandel particularly in Mercury Islands; bimodal association with Whitianga Group; basalt and basaltic andesite
Whitianga	Minden Rhyolite Coroglen (ignimbrites)	5 formal units + many informal centres Several flow sheets + 7 formal units	Late Miocene to Pliocene Late Miocene to Early Pliocene	Group includes all pre TVZ rhyolitic rocks; Minden are rhyolite dome complexes and flows; Coroglen are ignimbrites, pumice breccias, airfall tuffs and breccias, and epiclastic sediments; associated in the north with caldera formation and collapse
Coromandel	Omahine Kaimai Kiwitahi Waiwawa Kuaotunu	 formal + few informal units formal units formal units formal units Paritu and Cuvier Plutonics 	Late Miocene to Pliocene Late Miocene to Pliocene Mid to Late Miocene Early late Miocene Early to Mid Miocene Late early Miocene	Group includes all predominantly "andesitic" rocks of HVR; compositions range up to dacite and even rhyodacite; Omahine includes all post Whitianga Group andesites but in Kaimai. Range may be indistinguishable from Kaimai Subgroup; Kaimai Subgroup in south only; Waiwawa and Kuaotunu are central to north only, separated by regional erosional unconformity; plutonics are subvolcanic intrusive complexes in north only; Kiwitahi applies only to west of Hauraki Graben.
Waitemata	Kawau and Warkworth	Colville	Early Lower Miocene	Conformable below earliest exposed andesite
Te Kuiti		Torehina	Mid to upper Oligocene	Predates all volcanic activity
Manaia Hill		Several formal units	Late Jurassic	Basement to region

Table 1.1: Summary of regional stratigraphy of the CVZ. After Skinner (1986).

1.4 Previous work

The first gold lode to be found in New Zealand was discovered in 1852 at Coromandel (Skinner 1993) and much gold and silver has been mined since then from the Hauraki Goldfield. Martha, Favona and Broken Hills Mines are still active today and other areas are being further explored. This interest in mineral production prompted the first geological studies of the CVZ in the mid 19th century (Skinner 1986). The earliest works on CVZ geology include reports and maps by Sollas & McKay (1905; 1906), Fraser & Adams (1907), Fraser (1910), Bell & Fraser (1912), Henderson & Bartrum (1913) and Morgan (1924). Other more general works on New Zealand geology which mention the economic significance of the CVZ include von Hochstetter (1864), Park (1910) and Marshall (1912a; 1912b). Since then there has been large scale mapping and studies by students of the Universities of Waikato and Auckland, including Moore (1976), Fisher (1986), Stevenson (1986), Fulton (1988), Hunt (1991), Adams (1992), Haworth (1993), Parsons (1993), Rogers (1994), Aldrich (1995), McGunnigle (1995), Trotter (1995), Hawthorn (1996), Karl (1996), Bardebes (1997), Guay (1999), Krippner (2000), Cullingford (2003) and Fitzgerald (2004). Smaller scale geological mapping has been published of the Coromandel Harbour Area (Skinner 1993), Mercury Bay Area (Skinner 1995), Waihi Area (Brathwaite & Christie 1996) and the entire Coromandel Peninsula (Edbrooke 2001).

Previous dating work in the CVZ has been mostly on andesitic rocks. Some other volcanic and intrusive rocks have also been dated. Some previous studies are presented in Table 1.2.

	1	
Author	Method	Rocks dated
Rutherford (1978)	Fission track	rhyolite (glass)
Seward & Moore (1987)	Fission track	rhyolite (glass)
Adams et al. (1994)	Fission track	ignimbrite (zircon)
	K-Ar	basalt, dolerite, basaltic andesite, andesite, diorite, dacite, rhyolite, ignimbrite
Takagi (1995)	K-Ar	basalt, basaltic andesite, andesite, dacite, rhyolite
Brathwaite & Christie (1996)	K-Ar	andesite, dacite, rhyolite
Hoskin et al. (1998)	U-Pb	ignimbrite
Krippner (2000)	K-Ar	andesite, rhyolite, ignimbrite
Briggs et al. (2005)	Ar-Ar	dacite, rhyolite, ignimbrite
Ward <i>et al.</i> (2005)	Ar-Ar	andesite, diorite, dacite, rhyolite

Table	1.2: A	sel	ection of	previo	ous	studies that h	ave dated	volcanio	c rock	ts of the
CVZ.	Ar-Ar	=	adularia	(age	of	hydrotherma	alteratio	on), K-4	Ar =	biotite,
hornbl	ende or	pla	gioclase,	U-Pb	= zi	rcon.				

1.5 Location of study area

In this study, 16 rhyolite lavas and 5 rhyolitic ignimbrites were sampled from the eastern CVZ where rhyolitic volcanism has occurred through the Late Miocene and Pliocene (Fig. 1.4). The northernmost sample is from Front Beach (Mercury Bay) and the southernmost one is from near Waikino. They are from both coastal and inland sections. This range in locations was sampled in anticipation that a range of ages would be represented as predicted by the geological history.

Fig. 1.4: Simplified geology of the eastern CVZ with sample sites marked.

The morphology of the eastern CVZ is dominated by the products of rhyolitic volcanism; rhyolite lavas form flows, domes and dome complexes, and ignimbrite sheets produce rolling hills, cliffs and bluffs. Some characteristic features are shown in Fig. 1.5. Many of the units are poorly exposed due to extensive vegetation coverage by native bush and exotic pine forests. The best exposures are often at the coast. There are also small areas of dairy farming. All the localities sampled are described in the following paragraphs.

Fig. 1.1: Characteristic rhyolite sections of Eastern CVZ. A) Shakespeare Ignimbrite at Shakespeare Cliff, > 60 m high. B) Steeply dipping flow banded Paku Rhyolite. C) Jointed rhyolite of Pauanui Dome Complex at Flat Rock; Paku Rhyolite Dome in background. D) Pauanui Dome Complex at Flat Rock.

Fig. 1.5 cont.: E) Hikuai Ignimbrite bluffs. F) Pohakahaka Dome Complex at Whitipirorua Point, southern headland of Onemana Beach. G) Papakura Bay Dome. H) Wharekirauponga Dome.

Ferry Landing Ignimbrite

The Ferry Landing Ignimbrite has been mapped by Fisher (1986) and Bardebes (1997). It is only exposed at Whakapenui Point (Mercury Bay) but is inferred to cover much of the Whitianga Volcanic Centre as many of the overlying units contain lithics of Ferry Landing Ignimbrite. It consists of two main conformable flow units. It has also been mapped by Skinner (1995) as Wharepapa Ignimbrite.

Shakespeare Ignimbrite

The Shakespeare Ignimbrite has been mapped and informally named by Fisher (1986) and Bardebes (1997). It forms the Shakespeare Cliffs to the west of Cooks Beach. It has previously been included as the uppermost unit of the Pumpkin Rock Ignimbrite as described by Skinner (1995), but this subdivision is now assumed to be incorrect as there is evidence for large periods of erosion between the units of the Pumpkin Rock Ignimbrite (Bardebes 1997). It consists of three flow units which appear to have been produced in different episodes (Bardebes 1997). It contains charred logs and is occasionally cross cut by clastic dykes.

Wharepapa Ignimbrite

The Wharepapa Ignimbrite has been mapped and described by Skinner (1995) and Krippner (2000). It is part of the Wharepapa Eruptive Sequence and is the youngest explosive eruptive event from the Kapowai Caldera Complex (Krippner 2000). It forms flow sheets, breccias and associated airfall and phreatomagmatic deposits. It infilled and overflowed the Kapowai Caldera, which has an area of 110 km², and its deposits extend more than 20 km west to east. It is one of the most widespread and voluminous caldera-forming ignimbrites of the CVZ (Briggs & Krippner 2006) with a minimum calculated volume of c. 40 km³ (Krippner 2000).

Paku Rhyolite

Paku Rhyolite forms Paku "Island", a tombolo at the entrance to Tairua Harbour. It covers an area of less than 1 km^2 and has a height of 179 m a.s.l.. Paku Island consists of an outer flow banded dome (bands are steeply dipping to vertical) and an inner more weakly flow banded inner spine. It has been described in Homer & Moore (1992) and mapped by Skinner (1995).

Pauanui Dome Complex

The Pauanui Dome Complex has been mapped by Trotter (1995) and described by Fitzgerald (2004) as a series of lobes to the south of Pauanui that are inferred to have originated from several vents. The complex is overall at least 4 km north to south and 3.5 km west to east and peaks at a height of 380 m a.s.l.. The lobes are likely formed from extrusive events but it is possible that endogenous activity has contributed to the height of the dome. Its geotechnical properties have been described by Stevenson (1986).

Timata Dome

This is a dome of the Ruahine Rhyolite, which consists of many flows and domes to the south and southeast of the Kapowai Caldera. It has been mapped and described by Rogers (1994) and Skinner (1995). The dome that was sampled in this study was mapped by Karl (1996); it is located on the west side of the Tairua River about 5.5 km SW of Tairua. It is intruded by the Woody Hill Basaltic Andesite. It has been named here after Timata Road which cuts through it.

Staircase Dome

The Staircase Dome Rhyolite has been mapped by Trotter (1995) as part of the Staircase Rhyolite Complex (Fitzgerald 2004). Multiple lava flows contribute to this dome. It lies to the west of Ohui and Opoutere Beach. It extends from Opoutere to about 5 km north of there, and 3 km west to east with a peak height of 303 m a.s.l..

Broken Hills Rhyolite

The Broken Hills Rhyolite has been mapped by McGunnigle (1995) and has here been divided into non-altered (Broken Hills Flow Banded Rhyolite) and hydrothermally altered (Broken Hills Mine Rhyolite). It consists of a series of lava flows in the Hikuai Region. It is bound to the west by the Tairua River and to the east by a large NNE fault and has a total length of about 7 km north to south. Its source is unknown. One sample was collected of the non-altered Broken Hills Flow Banded Rhyolite.

Broken Hills Mine Rhyolite

The Broken Hills Mine area has been mapped by Moore (1976) and has been further described by others including Moore (1979) and Rabone (2006a). There

are multiple rhyolite flows in this area and not all of them have been distinguished. The mine itself is located about 5 km SW of the Hikuai settlement, on the east side of the Tairua River. It is a Au-Ag mine and was the largest producer of Au in the Hauraki Goldfield from rhyolite hosted mineralisation (Rabone 2006a). Three samples were collected from within Broken Hills Mine for this study, and they are from the same dome as the Flow Banded Rhyolite.

Hikuai Ignimbrite

The Hikuai Ignimbrite has been mapped by McGunnigle (1995). It forms pyroclastic density currents and fall deposits with characteristic bluffs (some of which are c. 100 m high) to the east of the Tairua River. McGunnigle (1995) mapped it as covering an area around Hikuai, extending for at least 16 km to the south and an unknown distance to the north. It covers an estimated area of 50 km² with a volume of at least 7 km³; this is however a minimum estimate as much of it has been eroded or covered by younger volcanic rocks (McGunnigle 1995). Its source is unknown. Its western extent has been hydrothermally altered and silicified in the area of Broken Hills Mine.

Pokohino Dome Complex

The Pokohino Dome Complex has been mapped by Aldrich (1995) as a series of rhyolite domes and flows from multiple vents extending 2 km to the north of Onemana. The flows cover an area about 2 km wide, with a peak height of 180 m a.s.l.. It occurs within a region of hydrothermal alteration.

The Knob

This rhyolite dome forms the westernmost part of the Pokohino Dome Complex (Aldrich 1995). It has been intensively hydrothermally altered and silicified and has a peak height of 156 m a.s.l..

Pohakahaka Dome Complex

The Pohakahaka Dome Complex has been mapped by Aldrich (1995) as a series of rhyolite domes and flows from multiple vents extending about 3 km to the south of Onemana. The complex is 1.5 km wide with a peak height of 128 m a.s.l.. The southern extent of the complex is not defined but is inferred to be between Tokakahakaha Island and Te Ananui Point, based on samples collected by Aldrich (1995), Takagi (1995), and in this study.

Te Karaka Rhyolite

This rhyolite has here been named after Te Karaka Point at the southern end of the Southern Onemana Peninsula. Takagi (1995) collected a sample from Te Ananui Point (on the east of the peninsula) which is a petrographic match for this sample. Cullingford (2003) mapped the entire Southern Onemana Peninsula as the Te Ananui Dome Complex, which includes Whitipirorua and Te Karaka Points. This is here assumed to be an incorrect definition as the minerals present and their abundances in the rhyolite at Whitipirorua Point are different to that which was observed in the southern part of the peninsula (see Appendix II).

Papakura Bay Dome

This is one of the intracaldera rhyolite lava domes of the Tunaiti Caldera (Briggs & Fulton 1990) and has here been named after the bay in which it is located. Such domes were referred to as Unit 10 by Fulton (1988). Aerial photographs suggest that there are up to six domes which have heights of over 100 m a.s.l. (Fulton 1988).

Maratoto Rhyolite – Wharekirauponga Dome

The Maratoto Rhyolite forms dome complexes at Maratoto, Paiakarahi, Karangahake and Wharekirauponga (Brathwaite & Christie 1996). It is variably hydrothermally altered and parts of it host gold-bearing quartz veins. It has a maximum exposed thickness of 240 m. The Wharekirauponga Dome is hydrothermally altered and occurs in the gorge section of the Wharekirauponga Stream. It was mapped in the 1980s-90s by various mining companies (Christie *et al.* 2006b).

Homunga Rhyolite - Whale Bone Bay and Shark Bay Domes

The Homunga Rhyolite includes four lava dome complexes to the east of Waihi: Whale Bone Bay, Ruahorehore, Shark Bay and Hikurangi Domes. They have been mapped by Brathwaite & Christie (1996). The Whale Bone Bay Dome forms the northern headland of Homunga Bay, 4 km north of Waihi Beach. Shark Bay Dome is the northern headland at Waihi Beach; it is silicified and hosts goldbearing quartz veins.

Owharoa Ignimbrite

The Owharoa Ignimbrite was first mapped by Rabone (1975), having renamed it from Grange's Owharoaite (Brathwaite & Christie 1996). Its source is from within the Waihi Basin and it is distributed between Waihi and Waikino. It consists of several flow units including lenticulite and vitric-rich tuff. It is up to 80 m thick.

1.6 Thesis outline

In Chapter 2 the petrography and mineralogy of the samples is described. The petrochemistry (X-ray fluorescence results) is presented in Chapter 3. An outline of the U-Pb dating method and the age results is presented in Chapter 4. The physical properties of the zircon crystals are also described in Chapter 4. In Chapter 5 the results of this study are compared to those of previous ones and the overall geochronology of the CVZ.

Chapter 2

Petrography and Mineralogy

2.1 Introduction and methodology

The units of this study have been subdivided into three groups: slightly altered rhyolite lavas, intensively altered rhyolite lavas, and ignimbrites. An unpolished thin section of each lava and ignimbrite was used to determine its petrographic characteristics (see Appendix II).

Polished thin sections were made of samples that had fresh, unaltered phenocrysts, namely plagioclase and biotite (see Appendix III). They were analysed using the JEOL JXA-840A electron probe micro-analyser at the School of Environment, the University of Auckland. The thin sections were coated with 25 η m carbon film in an Edwards vacuum evaporator. The analysis conditions included an electron gun accelerating voltage of 15 kV, a 1000 pA beam current, and an electron spot diameter of approximately 2 μ m. The X-ray analysis system used included an eumeX Si(Li) Be-window detector and Moran Scientific pulse-processor and software. Each spectrum was collected for 100 seconds of live time. A set of Astimex mineral standards was used for standardisation.

Hydrothermally altered samples and those which it was suspected contained polymorphs of SiO_2 were analysed by X-ray diffraction (XRD) in the Faculty of Science and Engineering, the University of Waikato (see Appendix IV).

The lavas were divided based on the following reasons: the hand specimen appeared altered or silicified, the sample contained quartz \pm illite veins or pyrite, and any plagioclase had been altered. XRD analysis indicated in some cases if products of alteration were present. XRF analysis (see Chapter 3) also confirmed if samples had been hydrothermally altered or silicified if samples had an SiO₂ content of at least 76-78 wt %.

2.2 Slightly altered rhyolite lavas

The slightly altered rhyolite lavas are the Paku, Pauanui Dome Complex, Timata Dome, Staircase Dome, Broken Hills Flow Banded, Pohakahaka Dome Complex, Te Karaka and Papakura Bay Dome rhyolites. These lavas are grey – pink, poorly to moderately porphyritic to vitrophyric, medium-grained phenocrysts, and have textures that vary between vesicular, flow banded, spherulitic and glassy. Mineral assemblage is variable but is generally quartz – plagioclase \pm relict mafic minerals \pm biotite – Fe-Ti oxides \pm zircon. Groundmass is dominantly devitrified glass. Spherulites are also present in most samples.

2.2.1 Phenocrysts

Quartz

Quartz is the dominant phenocryst in the slightly altered rhyolites. Quartz occurs up to 2 mm in diameter and is typically subhedral to anhedral and irregular.

Plagioclase

Plagioclase (An₄₉₋₂₃) occurs in some of these rhyolites as tabular to irregular subhedral phenocrysts up to 3 mm long. Most display polysynthetic twinning and simple twinning is less common (Fig. 2.1 A). Plagioclase in Staircase Dome is rare and highly altered with a resorbed texture (Fig. 2.1 B). Normal, reverse and oscillatory zoning are common, with the exception of Timata Dome where zoning appears to be negligible.

The plagioclase phenocrysts have a range in compositions from oligoclase to andesine feldspars (Fig. 2.2). There appears to be a general trend towards more sodic-rich compositions from north to south. These compositions are within the range of plagioclase compositions for other Whitianga Group Rhyolites, e.g. Tunaiti rhyolite lavas (An₅₀₋₂₃) (Fulton 1988), Cooks Beach/Hahei rhyolite lavas (An₅₃₋₂₂) (Rogers 1994), Pohakahaka (An₂₅₋₃₃) and Wharekawa Dome Complexes (An₃₂₋₄₅) (Aldrich 1995), Boom Rhyolite (An₃₂₋₂₉) (McGunnigle 1995) and Flaxmill Dome rhyolite lavas (An₄₇₋₂₄) (Bardebes 1997).

Relict mafic minerals

Pseudomorphs of relict mafic minerals occur in most of these rhyolites and have been altered to chlorite-smectite (Fig. 2.1 C and D). They are anhedral and up to 1 mm in length. Relict mafic minerals have also been observed in other CVZ rhyolites, e.g. Purangi Dome, lavas of Motueka, Centre and Poikeke Islands (Rogers 1994), and Pohakahaka Dome Complex (Aldrich 1995).

Fig. 2.1: Phenocrysts of slightly altered rhyolite lavas: A) Zoned plagioclase, Papakura Bay Dome, cross-polarised light. B) Resorbed, sieve-textured plagioclase, Staircase Dome, plane-polarised light. C) Relict mafic minerals, Pauanui Dome Complex, plane-polarised light, and D) cross-polarised light. E) Biotite with plagioclase inclusions, Papakura Bay Dome, plane-polarised light. F) Oxidised biotite in basal sections, Staircase Dome, plane-polarised light.

Fig. 2.2: A) Orthoclase – albite – anorthite ternary diagram for plagioclase phenocrysts of rhyolite lavas. Classification according to Deer *et al.* (1992). B) Composition of representative phenocrysts of plagioclase, ordered from north to south. Core (c) and corresponding rim (r) compositions are indicated.

Biotite

Biotite occurs as subhedral flakes up to 1.5 mm long. They may contain rare plagioclase inclusions and are sometimes oxidised (Fig. 2.1 E and F). Biotite phenocrysts from Papakura Bay Dome have a chemical composition which plots within the composition of other biotite phenocrysts from CVZ rhyolites, e.g. Tunaiti lavas (Fulton 1988), Boom Rhyolite (McGunnigle 1995) and Flaxmill Dome rhyolite lavas (Bardebes 1997) (Fig. 2.3).

Fig. 2.3: Al - Mg - Fe+Mn ternary diagram for biotite phenocrysts of Papakura Bay Dome and Owharoa Ignimbrite, and comparisons with other CVZ rhyolites and ignimbrites.

Opaques

Fe-Ti oxides occur in variable abundances and have been identified in some samples as titanomagnetite and ilmenite. They are commonly cubic and hexagonal euhedral to anhedral phenocrysts up to 0.25 mm wide. Ilmenite is sometimes acicular.
Zircon

These rhyolites all contain zircon, with the exception of Paku Rhyolite. It was not always observed in thin section.

2.2.2 Groundmass

The groundmass is generally devitrified glass and is sometimes crystalline quartz or SiO_2 polymorphs \pm feldspar. SiO_2 polymorphs are difficult to identify, and the following have been evaluated from XRD analysis: Pauanui Dome Complex contains tridymite, Staircase Dome contains cristobalite, and Paku and Timata potentially contain both.

Spherulites are common with spherical spherulites occurring up to 2.5 mm in diameter. Timata Dome contains many spherulites that can be up to 8 mm in diameter (Fig. 2.4 A and B). Flow banding is prominent in Staircase Dome and Pohakahaka Dome Complex and particularly in Paku and Broken Hills Flow Banded Rhyolites where bands can be less than 1 mm wide and very laminar (Fig. 2.4 C and D). Vesicles are also common in Pohakahaka Dome Complex and they are often lined with the same currently unidentified quartz-like mineral that is present in the Broken Hills Mine samples. Papakura Bay Dome also has some vesicles but these are unfilled. Pohakahaka Dome Complex, Te Karaka Rhyolite and Papakura Bay Dome have crystallites, which in Pohakahaka Dome Complex are aligned with the flow bands (Fig. 2.4 E).

Papakura Bay Dome is vitrophyric with phenocrysts of quartz – plagioclase – biotite set in a groundmass of non-devitrified glass with perlitic cracks (Fig. 2.4 F). The edges of the vesicles are devitrified. Pauanui and Pohakahaka Dome Complexes have quartz veins which have been oxidised in some places to limonite.

Fig. 2.4: Groundmass features of slightly altered rhyolite lavas: A) Spherulites, Timata Dome, plane-polarised light. B) Spherulite, Te Karaka Rhyolite, plane-polarised light. C) Plagioclase phenocryst and spherulites aligned with flow bands, Pohakahaka Dome Complex, plane-polarised light. D) Laminated flow bands of devitrified glass which are now polymorphs of SiO₂, Paku Rhyolite, cross-polarised light. E) Chain-like arrangements of crystallites aligned with flow bands, Pohakahaka Dome Complex, enlargement of centre of C, plane-polarised light. F) Perlitic cracks in glass and devitrified edges of vesicles, Papakura Bay Dome, plane-polarised light.

2.3 Intensively altered rhyolite lavas

The intensively altered rhyolite lavas include Broken Hills Mine (three samples), Pokohino Dome Complex, The Knob, Wharekirauponga Dome and Homunga (Whalebone Bay and Shark Bay Domes) rhyolites. These lavas are cream – orange – pink, poorly to moderately porphyritic, have fine- to medium-grained phenocrysts, and textures that vary between flow banded, vesicular and lithophysal. Mineral assemblages are variable but are generally quartz – altered plagioclase \pm Fe-Ti oxides – zircon. Groundmass textures are dominantly granular quartz + feldspar which is sometimes devitrified glass. Spherulites are also common. Some of these lavas have been silicified.

2.3.1 Phenocrysts

Quartz

Quartz is the dominant phenocryst in the intensively altered rhyolites. Quartz is generally up to 1 mm in diameter, but can be up to 4 mm, and is typically anhedral and embayed (Fig. 2.5 A).

Altered plagioclase

Altered plagioclase occurs in most intensively altered rhyolites and has been entirely altered to quartz/adularia \pm sericite (Fig. 2.5 B). They are up to 2.5 mm in length. Only one of these samples contains relatively unaltered plagioclase: the Whale Bone Bay Dome (An₃₁₋₂₀) of the Homunga Rhyolite, where phenocrysts can occur up to 2 mm long and are often in clusters (Fig. 2.2). They are subhedral to anhedral with polysynthetic twinning, sieve textures and both normal and reverse zoning (Fig. 2.5 C). Brathwaite and Christie (1996) cite a plagioclase composition of An₅₀₋₃₀ for Homunga Rhyolite.

Relict mafic minerals

Pseudomorphs of relict mafic minerals occur in some of the intensively altered rhyolites where they have been altered to chlorite-smectite. They are anhedral and up to 0.5 mm in length. They are less common here than in the slightly altered lavas.

Biotite

Biotite only occurs in one of the intensively altered rhyolites: the Pokohino Dome Complex, where it occurs as rare altered flaky phenocrysts up to 0.6 mm long.

Opaques

Fe-Ti oxides occur in variable abundances and generally only occur in the intensively altered rhyolite lavas where plagioclase or altered plagioclase is

present. They are sometimes associated with relict mafic minerals and often occur in clusters. Fe-Ti oxides have been identified in some samples as titanomagnetite and ilmenite where they occur as cubic/acicular subhedral to anhedral crystals up to 0.25 mm.

Fig. 2.5: Phenocrysts and groundmass features of intensively altered rhyolite lavas: A) Embayed, anhedral quartz, Whale Bone Bay Dome, cross-polarised light. B) Plagioclase that has been altered to quartz + adularia + sericite, Wharekirauponga Dome, cross-polarised light. C) Plagioclase, Whale Bone Bay Dome, cross-polarised light. D) Crystalline spherulites that nucleated on (now altered) plagioclase phenocrysts with quartz veins cutting through them, Broken Hills Mine, cross-polarised light. E) Crystalline spherulite, Broken Hills Mine, plane- and cross-polarised light. F) Colourless, anisotropic crystals with golden coating lining a cavity, Broken Hills Mine, plane-polarised light.

Zircon

Zircon occurs in all the intensively altered rhyolites, even though it was not always observed in thin section. It is sometimes associated with opaques and relict mafic minerals.

2.3.2 Groundmass

The groundmass commonly consists of glass that has been devitrified to polymorphs of SiO₂. The Pokohino Dome Complex is the least devitrified and also contains crystallites. Most of the intensively altered rhyolites are spherulitic to varying degrees and most of the spherulites are now crystalline (Fig. 2.5 D and E). They are spherical (rarely fan shaped) and can be up to 5 mm in diameter but are typically less than 1 mm. The lavas from Broken Hills Mine are flow banded and lithophysal to varying degrees. The vesicles are lined with a currently unidentified quartz-like mineral (Fig. 2.5 F). These crystals are euhedral, up to 0.25 mm long and sometimes coated in an orange-brown material. Some of the samples have quartz veins, which are in parts oxidised to limonite or chlorite-illite.

2.3.3 Effects of hydrothermal alteration

Hydrothermal alteration affects the mineralogy and overall texture of a rock. Some of the minerals observed in the intensively altered rhyolite lavas only occur as a result of hydrothermal alteration. Mafic minerals, such as pyroxenes and amphiboles, are the first minerals to alter in hydrothermal alteration; they alter to chlorite-smectite. Biotite is the next mineral affected by hydrothermal alteration, however the only altered biotite observed in these samples was oxidised. Plagioclase then alters to fine-grained sericite \pm adularia. Titanomagnetite alters to pyrite, which was observed in Broken Hills Mine sample 3 and Shark Bay Dome. Finally in the intensely silicified zone SiO₂ is enhanced as other minerals are leached out.

Resulting textures and structures typical of hydrothermal alteration include recrystallised spherulites. Quartz veins are also common and are sometimes seen to be cross-cutting phenocrysts, which shows that they are a post-depositional feature. Quartz veins have sometimes been altered to chlorite-illite, which are products of hydrothermal alteration.

2.4 Ignimbrites

2.4.1 Ferry Landing Ignimbrite

The Ferry Landing Ignimbrite is a densely welded, jointed, pumice-rich, lithicpoor lenticulite. Pumice is subrounded and streaky or flattened with fiamme ends and clusters of anhedral plagioclase (An_{39-27} , Fig. 2.6) phenocrysts. There are also a few dense pumices which are obsidian-like.

The matrix contains non-devitrified glass shards which are platy and Y-shaped. Plagioclase (An₃₈₋₂₇, Fig. 2.7) crystals are mostly subhedral to anhedral, tabular to irregular, up to 1 mm long, normally zoned with polysynthetic twinning. This composition is comparable to that determined by Bardebes (1997) of An₄₄₋₃₀. Rare relict mafic minerals are altered to chlorite-smectite. Titanomagnetite and ilmenite occur in clusters as cubic and acicular anhedral crystals, up to 0.25 mm long. Zircon crystals are rare and occur as euhedral crystals up to 0.05 mm.

Lithics are angular and up to 4 mm and include the following types: trachytic rhyolite, hydrothermally altered rhyolite, plagioclase rhyolite with quartz-feldspar groundmass, and spherulitic and glassy rhyolite with many Fe-Ti oxides.

2.4.2 Shakespeare Ignimbrite

The Shakespeare Ignimbrite is a non- to partially-welded, widely jointed, pumiceand lithic-rich ignimbrite. Pumice is rounded and very vesicular. It contains some cumulophyric plagioclase (An₂₉, Fig. 2.6) which has polysynthetic twinning and normal zoning. It also contains rare cubic Fe-Ti oxides.

The matrix contains non-devitrified glass shards which are lunate, platy and Y-shaped. Plagioclase (An₄₅₋₂₉, Fig. 2.7) is the dominant crystal which is tabular, subhedral, fragmented and up to 1.75 mm long. This composition is comparable to that determined by Bardebes (1997) of An₄₆₋₂₈. It exhibits polysynthetic twinning and has normal zoning. There are also rare cubic and acicular Fe-Ti oxides, some of which were identified as ilmenite. It contains zircons, even though they were not observed in thin section.

Fig. 2.6: Orthoclase – albite – anorthite ternary diagram for all plagioclase crystals (free matrix crystals, pumice phenocrysts and crystals in lithics) of ignimbrites analysed in this study, ordered from north to south. Classification according to Deer *et al.* (1992).

Fig. 2.7: Orthoclase – albite – anorthite ternary diagram for representative plagioclase crystals (free matrix crystals, pumice phenocrysts and crystals in lithics) of ignimbrites in this study, highlighting the variations between core (c) and rim (r) compositions. Classification according to Deer *et al.* (1992).

Lithics are subrounded to angular and up to 30 mm wide. Many varieties were observed by Fisher (1986), including grey, flow laminated non-vesicular rhyolite, light-grey-purplish finely vesicular rhyolite, mustard-coloured baked pyroclastic rock, other rhyolite and pyroclastic lithics, and rare andesite and sandstone. In this study the following types where observed: spherulitic/glassy rhyolite, rhyolite with plagioclase phenocrysts, felted feldspar rhyolite, flow banded devitrified rhyolite, vesicular rhyolite, ignimbrite, andesite and altered greywacke.

2.4.3 Wharepapa Ignimbrite

The Wharepapa Ignimbrite is a partially welded pumice-poor and lithic-rich ignimbrite. Pumice is rounded and very vesicular. Plagioclase (An₃₉₋₃₆, Fig. 2.6) phenocrysts in pumice are rare. An average composition for plagioclase phenocrysts in pumice of An₄₀ is cited by Skinner (1995).

The matrix contains many non-devitrified glass shards which are lunate, cuspate, platy and Y-shaped. Plagioclase (An₄₁₋₃₁) is the dominant crystal and is tabular, subhedral and can be greater than 2 mm long (Fig. 2.7). This composition is similar to that cited by Skinner (1995) of An₅₀₋₃₆. Some crystals have an irregular fragmented habit. Polysynthetic twinning is more common than simple. The crystals have normal zoning. Plagioclase sometimes occurs in clusters \pm orthopyroxene (Fig. 2.8 A). Orthopyroxene (En₅₄) is prismatic or sometimes irregular and can be up to 1.6 mm long (Fig. 2.9). Augite (Wo₄₂En₄₂Fs₁₅) is subhedral, prismatic and up to 0.5 mm wide (Fig. 2.9). These pyroxene compositions are similar to those of other CVZ ignimbrites, e.g. Hikuai and Momoparaua Ignimbrites (McGunnigle 1995). Cubic and acicular titanomagnetite and ilmenite occur up to 0.1 mm long. It contains zircons, even though they were not observed in thin section.

There are many lithics up to 4 mm wide and the following varieties were observed: felted feldspar rhyolite, some of which have oxidised rims, devitrified rhyolite rich in Fe-Ti oxides, pyroxene rhyolite in a glassy groundmass, and flow banded rhyolite rich in Fe-Ti oxides.

2.4.4 Hikuai Ignimbrite

The Hikuai Ignimbrite is a partially welded crystal-rich ignimbrite. Pumice is rounded and plagioclase (An₄₅₋₂₅) phenocrysts are rare (Fig. 2.6).

The matrix contains glass shards which are slightly devitrified and platy, lunate and Y-shaped. Plagioclase (An₅₀₋₂₃) is the dominant crystal and is tabular, sometimes fragmented, anhedral and can be greater than 2.5 mm long (Fig. 2.7). McGunnigle (1995) determined a plagioclase composition of An₄₃₋₃₈. Polysynthetic twinning is more common than simple twinning and they are normally zoned. Quartz is rare, fragmented, anhedral and up to 0.6 mm in diameter. Rare relict mafic minerals are altered to chlorite-smectite. Titanomagnetite and ilmenite are common; they are mostly cubic, sometimes hexagonal and acicular, and up to 0.2 mm wide. They often occur in clusters and are associated with relict mafic minerals. A zircon crystal was observed in association with a cluster of Fe-Ti oxides.

Lithics are up to 60 mm in diameter and the following varieties were observed: hydrothermally altered ignimbrite with plagioclase, quartz and chlorite crystals and a hydrothermally altered andesite lithic (Fig. 2.8 B), glassy rhyolite, spherulitic rhyolite, and sandstone.

Fig. 2.8: Features of ignimbrites: A) Plagioclase + orthopyroxene cluster, Wharepapa Ignimbrite, cross-polarised light. B) Andesite lithic in an ignimbrite lithic, Hikuai Ignimbrite, plane-polarised light. C) Pumice with fiamme ends, Owharoa Ignimbrite, plane-polarised light. D) Relict mafic mineral and titanomagnetite, Owharoa Ignimbrite, plane-polarised light.

Fig. 2.9: Wollastonite – enstatite – ferrosilite ternary diagram for pyroxene crystals of the Wharepapa Ignimbrite. Classification according to Morimoto *et al.* 1988 (Deer *et al.* 1992).

2.4.5 Owharoa Ignimbrite

The Owharoa Ignimbrite is a densely welded, jointed, pumice-rich lenticulite. Most of the pumices are flattened and have fiamme ends and some of them are very dense and obsidian-like (Fig. 2.8 C). The flattened pumices are aligned which is evidence of the unit being densely welded. Some are still slightly rounded and rarely include phenocrysts of plagioclase.

The matrix is vitroclastic and contains non-devitrified glass shards which are lunate and Y-shaped. Plagioclase (An_{37-26}) is the dominant phenocryst (Fig. 2.6). It is mostly tabular, anhedral and can be irregular and fractured. It has polysynthetic twinning, normal zoning and is up to 1 mm long. It rarely occurs in clusters \pm quartz. Quartz is anhedral, almost tabular and up to 1 mm. Biotite occurs as subhedral flakes up to 0.5 mm long. Biotite has a similar composition to other CVZ rhyolites, e.g. Boom Rhyolite (McGunnigle 1995) and Flaxmill Dome rhyolite lavas (Bardebes 1997) (Fig. 2.3). There are some relict mafic minerals that have been altered to chlorite-smectite and occur either as solitary crystals up

to 1 mm long or as part of a lithic (Fig. 2.8 D). This indicates that the rock is incipiently hydrothermally altered, even though the plagioclase and biotite crystals and the glassy matrix appear fresh and unaltered. There is some titanomagnetite up to 0.25 mm wide. It contains zircons, even though they were not observed in thin section.

The following varieties of lithics were observed: spherulitic and flow banded rhyolite, and felted feldspar rhyolite.

Chapter 3

Petrochemistry

3.1 Introduction

New major and trace element analyses were determined for all 21 samples in this study. All samples (whole rock) were analysed for major element oxides and trace elements by X-ray fluorescence (XRF), using a SPECTRO X-LAB 2000 in the Faculty of Science and Engineering, University of Waikato. As these samples are from selected sites in the eastern CVZ and are only related by the tectonic setting, it is not possible to determine any genetic or chemical trends or associations. Full analytical results are given in Table 3.1. Errors are 1 % for major elements and 1-5 % for trace elements. The Whale Bone Bay Dome did not produce reliable major element data so an XRF analysis from the same site from Brathwaite & Christie (1996) has been used instead.

3.2 Methodology

Crushed powdered samples were prepared using a tungsten-carbide ring-mill. For major element analysis, glass fusion beads were made by fusing approximately 0.3 g of powdered sample with 2.50-2.55 g flux (pure 100 % Li-metaborate) and a few grains of NH₄I in Pt/Au crucibles in a furnace at progressive heating steps (650, 720, 780 and 825 °C) for 15 minutes at each stage and finally for at least 20 minutes at 1000 °C with the shaker on. The sample was then poured onto a graphite disc and pressed to make a glass disc. It was left to anneal on a hot plate at 230 °C for at least 1-2 hours, then on a cooler hot plate at 160 °C for at least 2 hours, preferably overnight. Loss on ignition was determined by calculating the per cent weight lost for 1-2 g of sample after having been in the furnace at 1100 °C for about 1 hour.

For trace element analysis, pressed pellets were made by mixing about 5 g of sample with 12-15 drops of PVA binder. This was pressed into an aluminium cap with an hydraulic press. The pressed pellet was left in an oven at 70 °C for about 2 hours to evaporate off the binder.

Table 3.1: Whole rock XRF geochemical analyses of selected rhyolite lavas and ignimbrites, eastern CVZ. Major elements normalised to 100 %, volatile free. * = Total Fe. # = Original values. - = below detectability limit.

Sample						
number	13	14	21	01	03	02
Sample	Ferry				Pauanui	
name	Landing	Shakespeare	Wharepapa	Paku	Dome	Timata
	Ignimbrite	Ignimbrite	Ignimbrite	Rhyolite	Complex	Dome
Major elen	nents (wt %)					
SiO ₂	82.06	78.36	72.57	78.08	75.73	77.95
TiO ₂	0.10	0.12	0.43	0.08	0.40	0.18
Al_2O_3	11.00	12.66	14.97	12.88	16.03	13.85
Fe ₂ O ₃ *	1.03	1.52	3.37	0.77	0.24	1.51
MnO	0.01	0.01	0.08	0.01	0.03	0.01
MgO	0.15	0.18	0.73	0.13	0.19	0.14
CaO	0.06	0.80	2.03	0.74	1.11	0.44
Na ₂ O	0.32	2.74	3.36	3.28	3.22	2.28
K ₂ O	5.25	3.59	2.39	3.91	2.97	3.62
P_2O_5	0.01	0.04	0.04	0.11	0.09	0.02
LOI #	3.02	4.14	5.13	0.85	2.35	2.20
Total #	99.59	99.67	101.19	99.33	98.02	99.86
Trace elem	ents (ppm)					
S	311	445	179	431	145	147
Cl	1019	1304	1437	118	40	88
V	-	3.7	21	-	6.5	-
Cr	6	4.8	-	9.9	5.6	7.7
Со	62	43	57	15	25	13
Ni	5.8	5.4	6.3	5.5	5.2	4.2
Cu	1.3	-	3.4	-	-	0.7
Zn	67	65	67	18.2	70	40
Ga	18.4	18	18	15	18.3	15.1
Ge	-	-	1.9	-	2.2	1.6
As	4.3	3.7	4	4.1	2.1	2.5
Se	1	1.1	1.5	1.6	0.5	0.8
Br	4	4.5	4.1	1.4	0.5	0.8
Rb	75	88	82	143	106	141
Sr	181	181	162	65	103	57
Y	35	42	35	22	29	24
Zr	261	257	250	112	207	184
Nb	9.7	9.7	9.3	7.6	7.8	9.3
Мо	2.3	2.4	2.4	1.8	1.5	1.7
Sn	1.8	1.4	2.4	0.8	1.7	1.2
Sb	-	-	1.8	-	-	-
Ва	591	619	644	820	526	777
La	26	38	57	35	35	33
Ce	44	71	88	59	39	50
Nd	22	38	53	29	30	28
Hf	9.9	9.8	8.2	7.5	8.9	9.2
T1	1.8	2.2	2.5	3.2	1.4	2.2
Pb	17.1	17.9	16.3	17.1	15.8	21
Bi	1.1	1.3	2	2	0.7	1.2
Th	13.3	12.8	11.4	18.5	14.9	19.5
U	5.8	6	4.8	7.6	6.3	8

Table 3.1 cont.: Whole rock XRF geochemical analyses of selected rhyolite lavas and ignimbrites, eastern CVZ. Major elements normalised to 100 %, volatile free. * = Total Fe. # = Original values. - = below detectability limit.

Sample								
number	20	09	06	07	08	10	05	18
Sample		Broken						
name		Hills	Broken	Broken	Broken			
	a	Flow	Hills	Hills	Hills		Pokohi-	T
	Staircase	Banded	Mine	Mine	Mine	Hikuai	no Dome	The
Matanal			sample 1	sample 2	sample 5	Ig.	Complex	KIIOD
Major el	ements (wt	%) 70.70	96 15	72.26	02 24	74.02	02.20	79.20
SIO_2	//.00	12.12	80.15	12.30	85.24	/4.03	82.28	/8.29
110_2	0.15	15 24	0.09	0.28	0.09	15.07	0.05	12.29
Al_2O_3	14./3	13.24	0.01	10.04	9.55	13.07	0.52	15.50
re_2O_3	1.73	2.20	1.42	2.94	0.90	1.73	0.52	0.74
MaO	0.01	0.05	0.01	0.05	0.01	0.02	0.00	0.00
MgO CaO	0.10	0.20	0.15	0.27	0.12	0.10	0.15	0.11
CaO No O	1.86	1.07	0.00	1.70	0.09	2.47	0.10	0.90
K O	1.00	4.50	3.05	4.10	5.66	2.15	1.14	3.25
R_2O	0.18	2.73	0.02	2.12	0.02	2.00	4.00	5.20 0.05
$1_{2}O_{5}$	3 20	1.30	2.08	1.86	1.40	3.72	2.04	1.02
LOI #	08 33	100.86	100.15	101 51	08.16	101 11	100.63	100.88
$10ta1\pi$	90.55	100.00	100.15	101.51	90.10	101.11	100.05	100.00
Trace ele	ments (nnr	n)						
S	229	125	241	137	4704	257	212	145
Cl	213	46	115	106	27	192	41	54
V	11.2	-	-	-			-	8.5
Ċr	4.3	8.6	8.1	7.2	8	12	10.1	7.8
Co	21	31	30	29	43	29	26	49
Ni	3.6	4.8	4.2	4	5.6	7.8	3	5.5
Cu	-	-	1	1.7	5.7	2.2	-	1.8
Zn	28	31	19	16.3	13.9	60	14.2	5.1
Ga	17.1	15.8	9.6	10.9	11.1	19.5	15.6	5
Ge	1.8	-	2.2	1.7	-	-	1.7	-
As	4.8	9.9	50	15.3	35	1.4	42	23
Se	0.6	1.3	1.2	1.2	2.1	1.2	1.1	2.8
Br	0.8	1.2	1.1	1	1.5	1.5	2.5	2.1
Rb	159	137	181	313	289	119	179	16
Sr	29	77	27	43	35	285	22	9
Y	33	30	24	33	26	37	30	8
Zr	126	172	142	152	142	217	102	87
Nb	8.2	8.3	6	6.9	6.5	7.9	7.1	6.9
Mo	1.4	1.2	3.2	2.2	1.8	1.1	0.7	2.3
Sn	2.4	-	-	-	2.1	-	1.3	2.1
Sb	-	1.1	5.4	2.6	3.5	-	8	28
Ba	698	767	609	801	803	480	630	99
La	56	31	22	27	34	21	24	13
Ce	61	56	43	49	58	46	47	21
Nd	52	23	23	19	38	23	22	27
Hf	6.2	6.8	6.4	6.1	5.5	8.4	6.1	3.9
TI	2.1	2.4	2.9	3.8	4.6	1.5	2.1	3.1
Pb	18.5	18.7	11.8	5.5	9	14.7	15.9	21
Bi	0.8	1.3	1.3	1.6	3.2	1.2	0.8	3.3
Th	22	15.6	12.6	13.8	13.9	9	15.8	8.2
U	8.6	6	5.8	7.3	7.3	3.9	7.3	5.6

Table 3.1 cont.: Whole rock XRF geochemical analyses of selected rhyolite lavas and ignimbrites, eastern CVZ. Major elements normalised to 100 %, volatile free. * = Total Fe. # = Original values. - = below detectability limit. Whale Bone Bay Dome major element data is from Brathwaite & Christie (1996).

Sample								
number	04	19	15	11	16	17	12	
Sample	D - 1 1			Whare	Whale			
name	Ponaka-	Te Karaka	Panakura	kiraupo-	Rone Bay	Shark Bay	Owharoa	
		Rhyolite	Bay Dome	nga Dome	Done Day	Dome	Ionimbrite	
Major elements (wt %)								
SiO ₂	76 76	, 86.46	76.96	84 57	77 69	77 27	82 20	
TiO ₂	0.13	0.12	0.10	0.08	0.12	0.07	0.06	
	12.76	10.12	12.87	8 74	12.80	13 35	11 58	
FeaOa*	12.70	0.70	1.46	0.83	0.73	1 70	0.53	
M_{nO}	0.03	0.70	0.02	0.05	0.75	0.03	0.00	
MgO	0.03	0.01	0.02	0.00	0.01	0.05	0.00	
CaO	1.03	0.24	1 10	0.07	1 17	0.05	0.15	
Na O	1.05	0.14	1.10	0.08	2.84	2.07	0.20	
Na ₂ O	4.23	1.86	3.04	5.10	3.64	2.97	1.12	
	0.01	1.80	0.04	0.15	0.03	0.10	4.09	
$1_{2}O_{5}$	0.01	0.00	1.02	0.15	1.22	0.19	3.68	
LOI # Total #	0.80	1.55	1.92	1.24	1.22	2.54	00 27	
10tal #	97.02	100.87	100.90	100.00		90.42	<i>99.21</i>	
Trace eler	nents (nnm)							
S S	443	140	94	102	294	3467	179	
Cl	1241	775	755	- 102	177	74	844	
V	-	-		42	-	-	-	
Cr	67	64	12	63	10.5	4	8 9	
Co	41	27	38	24	28	16	26	
Ni	63	47	50	3.9	4 5	3.2	49	
Cu	2.5	13	15	0.6	1.2		-	
Zn	61	41	42	8.6	43	15.4	46	
Ga	18	18.2	17.1	9.0	18.1	11.3	17.4	
Ge	29	2.4	2.5		2.1	-	2	
As	83	11.2	12.5	96	4 5	13.8	49	
Se	17	13	2.3	15	1.6	14	1.2	
Br	4.4	2.5	3.4	1.5	2.1	1.1	3	
Rb	97	147	139	242	134	121	129	
Sr	71	26	81	49	76	18	86	
Y	35	34	27	16	28	13	26	
Zr	167	146	113	77	125	104	109	
Nh	7.8	91	67	62	7 5	59	74	
Mo	2.2	2.2	2.2	1.4	1.8	2	1.9	
Sn	1.7	2.8	3.3	-	1.4	1.3	1.6	
Sh	-		1.7	11.6	-	4.9	-	
Ba	772	815	731	517	721	415	792	
La	36	36	69	31	34	49	41	
Ce	62	72	107	46	61	77	65	
Nd	34	42	69	23	34	61	34	
Hf	7	.2	5.4	4.4	5.5	4.9	6.2	
T1	2.6	2.6	3.2	4.8	2.8	2.4	2.6	
Pb	19.3	21	22	13.7	17.4	7.3	19.5	
Bi	1.8	1.4	2.1	1.3	1.8	1.6	1.3	
Th	14.7	18	17.8	13.8	16.7	17.7	18.7	
U	6.3	8.4	8.2	9.4	7.8	8.7	9	

3.3 Major element chemistry

SiO₂ values in this study range from 72 % in Broken Hills Mine sample 2 to 86 % in the Te Karaka Rhyolite. All the samples are therefore rhyolites. The range in SiO₂ values is comparable to other CVZ rhyolites and ignimbrites (e.g. Fulton (1988), Adams (1992), Rogers (1994), McGunnigle (1995) and Bardebes (1997)). All those that have a SiO₂ wt % value greater than 78 % have been hydrothermally altered, and possibly even those that have values of 76-78 %. The Te Karaka Rhyolite has such a high SiO₂ wt % value because it consists mostly of glass and rare quartz phenocrysts. The Ferry Landing and Owharoa Ignimbrites have rather high SiO₂ values of 82 %; however, neither of them show any evidence of hydrothermal alteration in thin section or hand specimen. Bardebes (1997) produced an average SiO₂ wt % value for Ferry Landing Ignimbrite pumices from the Shakespeare Ignimbrite and produced SiO₂ values between 73 and 78 % and K₂O of c. 3.3 %, which are comparable to that which was determined in this study.

Harker variation diagrams plot the weight per cent of a given oxide against the weight per cent of SiO_2 and can be used to classify volcanic rocks. The K_2O vs. SiO_2 plot is used to distinguish between high-K, medium-K and low-K rhyolites (Fig. 3.1) (Rollinson 1993). Te Karaka is the only low-K rhyolite. Ferry Landing Ignimbrite, Paku, Staircase Dome, Broken Hills Mine sample 3, Papakura Bay Dome, Wharekirauponga Dome and Shark Bay Dome Rhyolites have high-K compositions. The other 13 samples are medium-K rhyolites. CVZ rhyolites typically have high-K compositions (e.g. Adams (1992), Rogers (1994), McGunnigle (1995) and Bardebes (1997)).

Intensively hydrothermally altered rhyolites (i.e. high SiO₂) can be high-K because minerals such as plagioclase will have been altered to sericite or adularia, which are K-micas and K-feldspars respectively, in the potassic zone. After further alteration in the intensely silicified zone, K_2O is leached out and SiO₂ is further enhanced. This is shown in Fig. 3.1 where Ferry Landing Ignimbrite, Broken Hills Mine sample 3 and Wharekirauponga Dome appear to be intensively hydrothermally altered and are rich in K_2O . Sericite was observed in Wharekirauponga Dome. Broken Hills Mine sample 1 and Te Karaka Rhyolites

are very silicified and have lower K_2O ; quartz and polymorphs of SiO₂ were the dominant minerals in each of these samples.

Fig. 3.1: Plot of K_2O vs. SiO₂ wt % of all samples. Divided into high-K, medium-K and low-K volcanics according to Le Maitre *et al.* (2002). Grey-filled markers = slightly hydrothermally altered rhyolite lavas. Hollow markers = intensively hydrothermally altered rhyolite lavas. Solid markers = ignimbrites.

Harker variation plots can also be used to determine the geochemical processes that may have occurred in the magma chamber (Rollinson 1993). This is only applicable however if the rocks being analysed are from the same magma chamber, and in this study they are not. Some trends can still be observed; the major elements in Fig. 3.2 all decrease with increasing SiO₂ and hydrothermal alteration (i.e. wt % SiO₂ > 76-78 %). Sodium and Ca are particularly depleted in the highly altered rocks as they are generally replaced by K. There do not appear to be any trends with location or age through the CVZ.

3.4 Trace element chemistry

As with major elements, trace element variation plots can be used to determine the geochemical processes that may have occurred in the magma chamber, but as these units are not from the same magma chamber, this is irrelevant here. Some other trends have still been observed.

Rubidium usually geochemically follows K, so the Rb vs. SiO_2 plot should be similar to the K₂O vs. SiO_2 plot; that is, Rb and K₂O increase with increasing SiO_2

(Fig. 3.1 and Fig. 3.3). Therefore, K_2O vs. Rb should plot along a straight line with a positive trend which is more or less the case (Fig. 3.4).

Fig. 3.2: Harker variation diagrams of selected major elements. Symbols are the same as in Fig. 3.1.

Arsenic and Sb generally increase with hydrothermal alteration; samples that have been previously defined as intensively altered plot above 13.8 ppm As and 2.6 ppm Sb (Fig. 3.3).

Major element compositions can be used to classify volcanic rocks, but this is not true for altered rocks as many major elements are mobile during alteration, as was shown in section 3.3 (Gifkins *et al.* 2005). However, immobile elements, such as Ti, Zr, Nb, Y and Th, do not change significantly with alteration so can be used to classify altered rocks. TiO_2 vs. Zr can be used to discriminate what the unaltered parent rock was. All of the samples in this study are within (or very close to) the rhyolite field (Fig. 3.4).

Fig. 3.3: Harker variation diagrams of selected trace elements. Any points plotted on the horizontal axis were below the limit of detection. Symbols are the same as in Fig. 3.1.

HFSE such as Zr, Y, Nb and Th do not change significantly with hydrothermal alteration because they are generally immobile, so there is no relationship between them and SiO_2 (Gifkins *et al.* 2005). When plotted as Zr vs. Y or Nb or Th, they plot along a straight line (Fig. 3.4). There do not appear to be any trends with location or age through the CVZ.

Fig. 3.4: Selected element-element plots. Symbols are the same as in Fig. 3.1. Boundary between dacite and rhyolite on TiO₂ vs. Zr plot is after Gifkins *et al.* (2005).

Chapter 4

U-Pb Dating of Zircons

4.1 Introduction

U-Pb ages are considered to be the "gold standard" in geochronology because the decay constants involved have been measured very precisely and the ages provide internal validation of the fundamental assumptions for an isotopic age determination (Ludwig 1998; Dickin 2005). U-Pb dating is theoretically similar to most isotopic dating techniques and is based on the accumulation of ²⁰⁶Pb and ²⁰⁷Pb over time due to the radioactive decay of ²³⁸U and ²³⁵U respectively (Cooper & Reid 2008). U-Pb dating, especially of zircons, has been used widely to date igneous, metamorphic and sedimentary rocks and is considered to be an accurate way of dating igneous rocks (Cooper & Reid 2008). This method has only been used for one sample in the CVZ prior to this study, the Owharoa Ignimbrite, which was dated by SIMS on SHRIMP ion microprobe (Hoskin *et al.* 1998). One of the objectives of this study was to assess whether this is an appropriate method for dating silicic volcanics of the CVZ; this will be discussed in Chapter 5 (section 5.3.3).

Zircons are ideal for U-Pb dating because they crystallise with a high concentration of uranium and no initial lead, and retain the daughter products of radioactive decay (Dickin 2005). They are a common accessory mineral in most igneous (intermediate to Si-saturated composition generally), metamorphic and sedimentary rocks (Richards 2009; Perkins 2011) and are known to occur in most CVZ rhyolites. Zircons are very hard and resistant to mechanical weathering and hydrothermal alteration (Wilson *et al.* 2008; Wilson *et al.* 2010), which is significant for geochronological studies of the CVZ as many of the units have been hydrothermally altered. Table 4.1 outlines some characteristics and properties of zircons.

Table 4.1: Optic	cal and physical	properties of	zircon cry	stals (Zr[Si	O ₄]). Adapted
from Deer et al.	(1992) and Perk	ins (2011).			

Optical properties					
Colour	Generally colourless under plane-polarised light, but may be vellow, grey, green, pale brown and faintly pleochroic. Very				
	high interference colours. Colourless, vellow, pink, brown,				
	green, blue, purple in hand specimen.				
Relief	Extreme				
Crystal system	Tetragonal				
Cleavage	Poor to imperfect				
Extinction	Straight				
Physical properties					
Hardness	7.5				
Specific gravity	4.68				
Abundant elements	Uranium, thorium, lead and hafnium isotopes				
Inclusions	Apatite, liquid or opaque				

Zircon characteristics in general may be location-specific and dependent on origin (Siyanbola *et al.* 2005). Zircons can occur in a variety of colours, including colourless, yellow, pink, brown, and even rare green and blue (Deer *et al.* 1992; Garver & Kamp 2002). Colour can be related to radiation damage, trace element composition and impurities (Garver & Kamp 2002). Relative colour loss may be caused because the zircon has reached a discrete temperature at some point in its history (Gastil *et al.* 1967). At near-surface temperatures, zircons will gradually become darker coloured with age as uranium and thorium decay, but significant changes may only happen after several 100 million years (Garver & Kamp 2002). If a zircon is rich in REE, or from a felsic melt (which tend to be richer in REE), colour can be acquired more quickly (Garver & Kamp 2002). However, the role of REE in colour generation is poorly understood and further studies are needed to fully understand this relationship (Garver & Kamp 2002).

There have been numerous attempts to systematically relate zircon morphology to petrogenesis (Hoskin & Schaltegger 2003). A widely used scheme was created by Pupin (1980) that relates relative development of crystal forms with temperature and host-rock type (Fig. 4.1). Zircons are of the tetragonal crystal system and can consist of zero, one or two prisms ({100} and {110}) and pyramid forms ({101}, {211} and {301} most commonly) (Pupin 1980). This scheme was originally devised to classify zircons of granitic rocks, but may be applied to other studies

(e.g. detrital and volcanic). Even though this scheme is still widely used, three ongoing observations have also seen it not to be used: (1) a single rock and age population may have a variety of morphologies; (2) zircons from different rocks can have similar to identical morphologies; and (3) the external morphology of a crystal may change during a single growth event (Hoskin & Schaltegger 2003).

Fig. 4.1: Typological classification of zircons (Pupin 1980). Temperature is that of crystallisation. The morphologies within the bolded square are those which occur most commonly in nature.

The optical classification of zircon crystals (i.e. by colour and morphology) can be useful if undertaking a qualitative analysis (to use an unbiased representation of all colours and morphologies), but may not necessarily prove to be of any significance (Roddick & Bevier 1995; Fedo *et al.* 2003).

4.2 Methodology

The 21 samples (16 rhyolite lavas and 5 ignimbrites) used in this study were collected during 2010-2011 from rhyolites of the eastern CVZ that are known to have good outcrops. At each site 2-4 kg of rock was collected from an unweathered section. The samples were processed in the Department of Earth and

Ocean Sciences at the University of Waikato using techniques based on Richards (2009).

4.2.1 Mineral separation

The bulk rock was crushed to 500 μ m using a rock crusher, jaw crusher and Bico mill. The powdered sample was separated by weight using a Gemini Table. The oven-dried heavy mineral fraction was separated using a vertical Frantz Isodynamic magnetic separator. The non-magnetic fraction was processed through sodium polytungstate (SPT) (density 3.0 g.cm³). The resultant air-dried heavy mineral fraction was processed on an inclined Frantz separator (15 ° front-to-back, 10 ° side-to-side) to produce a final non-magnetic, heavy mineral fraction. Zircons are assumed to be robust enough that they will not be broken during sample crushing, nor is any bias caused by the Gemini Table or heavy liquid separation (Fedo *et al.* 2003). For equipment settings, see Appendix V.

4.2.2 Grain selection

All equipment used in grain selection was cleaned using ethyl alcohol before picking began and between samples. A portion (approximately 150 grains) of the non-magnetic, heavy mineral fraction was poured into one of the cavities of a double cavity glass slide. The population also sometimes contained pyrite, other opaque minerals and micas. This initial population was observed through a petrographic microscope using reflected and/or transmitted light. Reflected light is useful for determining zircon colour and morphology and assessing the presence of inclusions or fractures. Transmitted light is useful for determining the morphology of grains and assessing the presence of inclusions. Zircons can readily be identified at this stage by their extreme relief and euhedral (to subhedral) tetragonal morphology. Paku Rhyolite was the only sample in which no zircons were found. Less than 10 zircons were found in both Pauanui Dome Complex and Wharepapa Ignimbrite so these samples were processed no further. Their zircons were also full of inclusions and/or too small for ablation.

A representative selection of zircons (50-70) was separated from the initial population and photographed under reflected light. The crystals needed to be at least 50 μ m in width and length. Larger crystals are preferable as they produce a lower expected U-Pb age error and it is easier to ablate them (laser spot-size = 30 μ m) (Richards 2009). The crystals were divided by colour into colourless, light

pink and pink, and photographed under reflected light (Fig. 4.2), so that it could later be investigated whether there is a relationship between zircon colour and age. Up to 60 crystals that were of an appropriate size (i.e. as large as possible) and whose centres were free of inclusions and fractures were mounted onto a prepared glass slide. The glass slide was cut to 25 x 25 mm (to fit in the sample chamber of the LA-ICP-MS), on top of which was attached a 10 x 10 grid on OHT paper with double-sided tape. On top of this was a square of double-sided tape, onto which the zircons were mounted. The outer squares of the grid were left empty. The colour and location on the grid of each crystal was noted on a mount map. The length and width of the crystal were estimated and the morphology was determined if possible based on Pupin's (1980) classification (see section 4.3). The sample was then ready for laser ablation.

Fig. 4.2: Colourless, light pink and pink zircons, Wharekirauponga Dome, reflected light.

4.2.3 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

Laser ablation was carried out based on the methods of Richards (2009). U-Pb isotopes ²³⁸U, ²³⁵U, ²³²Th, ²⁰⁸Pb, ²⁰⁷Pb and ²⁰⁶Pb were measured using a New Wave UP-213 Deep Nd YAG (Tempest 20 Hz) Laser Ablation system and an Elan 6100 DRCII Inductively Coupled Plasma Mass Spectrometer in the Faculty of Science and Engineering, the University of Waikato. For full LA-ICP-MS specifications and settings see Appendix VI.

Two analytical standards and a zircon of known age were used as a check against the data for a sample of unknown age (i.e. the crystals being dated in this study) (see Appendix VII for certificates of authenticity). The NIST610 is a glass standard that is completely homogeneous in 61 trace elements and was used as a base check for the concentration of elements in the unknown samples (Richards 2009). The second standard, GJ1, is a large homogenous zircon of gem quality (Jackson *et al.* 2004) obtained from the School of Earth and Planetary Sciences, Macquarie University, Australia. The GJ1 is used as a calibration to correct for any mass discrimination by the ICP-MS and has a TIMS age of 608.5 \pm 0.4 My (Jackson *et al.* 2004). Temora2 zircon crystals were used as a zircon of known age (416.78 \pm 0.33 My) and as a method check (Black *et al.* 2004). Temora2 zircons are from the Middledale Gabbroic Diorite of the Paleozoic Lachlan Orogen in eastern Australia (Black *et al.* 2004).

The NIST610 glass standard was run twice at the start of every ablation session, followed by four runs of the GJ1 standard, then two runs of the Temora2. After every 10-12 unknowns (or 1 hour of ablating), the GJ1 was analysed twice more to correct for any machine drift. At the end of the session, two runs were done of each: Temora2, GJ1, NIST610. A "session" is a single day of ablating, during which a single sample (i.e. one rock unit) was dated.

Laser ablation analyses were undertaken in time-resolved mode; this means that the acquisition of data is a function of time (i.e. ablation depth) (Jackson *et al.* 2004). An 80 second background signal was taken while the laser was not firing. This was followed immediately by turning on the laser and ablating the sample for 45 seconds. During data collection the laser was fired continuously with a constant power output of 60 % and 20 Hz repetition rate with a spot size of 30 μ m on unknown samples. 40-60 unknown crystals were analysed per sample.

4.2.4 Data processing

Raw data was processed using GLITTER, a data reduction software which calculates the relevant isotope ratios (207 Pb/ 206 Pb, 208 Pb/ 206 Pb, 208 Pb/ 232 Th, 206 Pb/ 238 U and 207 Pb/ 235 U) (Jackson *et al.* 2004). The most concordant, or stable, section of each ablation signal for the GJ1 standard is automatically selected (Jackson *et al.* 2004), but this can also be manually adjusted, especially if the 206 Pb/ 238 U and 207 Pb/ 235 U age estimates are far apart (more than c. 20 My in this study). Standards can also be "turned off", and are therefore not included in the calibration, if the estimated age produced is considered too young/old (c. 600 ± 50)

My). GLITTER then automatically selects an identical ablation time segment for the unknown analyses (Jackson *et al.* 2004).

Calculated ratios were then exported to Isoplot v. 3.10, an Excel add-in developed by Ken Ludwig, where concordia plots can be constructed to give age results (Ludwig 2003). Ages are calculated for each unknown in terms of concordance between the measured isotope ratios of 206 Pb/ 238 U and 207 Pb/ 235 U with 1 σ internal errors (see Appendix VIII). Any discordant analyses, or analyses with a probability of concordance of < 5.0 %, were rejected. Crystals can give discordant ages because of lead loss (Dickin 2005; Richards 2009). Analyses that were not rejected were then plotted together on a U-Pb concordia plot, removing any outliers (i.e. potentially inherited zircons), until a concordant age was produced (see Appendix IX). Final age calculations were supported by a probability of concordance value and spot mean standard weighted deviation (MSWD) (generated within the concordia plot), and probability density plots and weighted average plots (using the estimated/calculated 206 Pb/ 238 U ages and the associated 1 σ errors of concordant analyses with a probability of concordance of > 5.0 %, and no outliers).

No correction was made for common lead (i.e. non-radiogenic lead). Košler and Sylvester (2003) cite studies in which zircons from a wide range of rocks were sampled and were found to contain little common lead, and the correction for it always proved insignificant.

4.3 Petrography of zircons

The zircons that were prepared for U-Pb dating were classified prior to dating by colour and morphology (where possible).

All the zircon crystals observed in this study were from the common pink series (Garver & Kamp 2002). The proportion of each colour in each sample was variable (Fig. 4.3). Colourless, light pink and pink were observed. 52 % of all crystals ablated were classified as light pink, 29 % as pink and 19 % as colourless. Three particularly dark coloured ones were observed in the Owharoa Ignimbrite and were described as "rusty".

Fig. 4.3: Colour of zircon crystals that were ablated by LA-ICP-MS.

The original morphology of zircon crystals can be difficult to identify as they may be broken or rounded. In three samples, the original morphology of more than half of the crystals in each could not be documented. However, wherever possible, the primary crystal morphology was still recorded, and where this was not possible, was noted as "unidentified". Hoskin and Schaltegger (2003) state that igneous zircon that has crystallised rapidly can have high width-to-length ratios (up to 1:12); the length of some crystals may have attributed to them breaking. Also, zircons in igneous rocks may become rounded by magmatic resorption (Deer *et al.* 1992). Fig. 4.4 shows the percentage of each morphological type that was observed in each sample. Only P and S types were observed, with P2 being the overall dominant morphology.

Fig. 4.4: Morphology of crystals that were ablated and the percentage of each present. Based on Pupin's (1980) classification (Fig. 4.1).

4.4 Results

4.4.1 U-Pb ages

The age of crystallisation has thus been determined for the following 18 samples (Table 4.2). This age represents the age of crystallisation for primary magmatic material and is therefore a maximum eruption age (Wilson *et al.* 2008). A

summary of the isotope ratios, age estimates, calculated ages, probability of concordance, spot MSWD and 1 σ errors is in Appendix VIII.

Sample	Age (My)
Ferry Landing Ignimbrite	8.20 ± 0.25
Shakespeare Ignimbrite	5.80 ± 0.81
Timata Dome	6.75 ± 0.40
Staircase Dome	6.43 ± 0.08
Broken Hills Flow Banded Rhyolite	5.94 ± 0.21
Broken Hills Mine sample 1	5.98 ± 0.42
Broken Hills Mine sample 2	6.32 ± 0.11
Broken Hills Mine sample 3	6.61 ± 0.26
Hikuai Ignimbrite	6.80 ± 0.60
Pokohino Dome Complex	5.77 ± 0.33
The Knob	4.44 ± 0.22
Pohakahaka Dome Complex	4.71 ± 0.11
Te Karaka Rhyolite	4.10 ± 0.06
Papakura Bay Dome	5.51 ± 0.23
Maratoto Rhyolite – Wharekirauponga Dome	6.34 ± 0.27
Homunga Rhyolite – Whale Bone Bay Dome	5.58 ± 0.21
Homunga Rhyolite – Shark Bay Dome	4.85 ± 0.36
Owharoa Ignimbrite	3.76 ± 0.05

Table 4.2: U-Pb ages (My, 1 σ errors) for samples dated in this study, listed north to south.

4.4.2 Inherited zircons

Most of the samples dated contained zircons that pre-date the determined age of crystallisation. These are shown as concordia and probability density plots in Appendix IX. Older zircons may be incorporated into the magma if the magma is derived by partial melting of the crust or assimilates crustal material (Dickin 2005).

Some of these zircons are within error of when rhyolitic volcanism began in the CVZ (c. 12 Ma in the Middle Miocene (Carter *et al.* 2003)) so are most likely to be antecrysts, a crystal that is derived from the same magma chamber but crystallised prior to the most recent eruption or in a previous eruption cycle (Charlier *et al.* 2005; Saunders *et al.* 2010; Folkes *et al.* 2011). The Staircase Dome appears to have had two significant crystallisation and/or eruption events. These zircons of Middle Miocene and younger age could also be derived from

rhyolite lithics within ignimbrites. It is, however, not possible to determine the exact origin of these crystals.

Some samples had zircons that gave ages that pre-date the CVZ, i.e. Late Cretaceous to Early Miocene (78.2-19.5 My). Their potential origin will be discussed in Chapter 5.

The oldest zircons in this study produced Late Jurassic to Cretaceous ages (> 93.8 My), and they are interpreted to be inherited from the Mesozoic basement. It is common for some rhyolites to contain basement-derived zircons (e.g. Unit G rhyolite from Taupo caldera (Charlier *et al.* 2005)). Fossils have been found in the sedimentary basement of the CVZ from the Puaroan Stage (Latest Jurassic, 148.5-145.5 My, Skinner 1993), but these were in clasts in conglomerate, so represent a maximum age for the enclosing sediments.

Chapter 5

Discussion

5.1 Introduction

In this chapter the results obtained in this study will be discussed and compared to previous studies, with particular reference to mineralogy, petrochemistry, U-Pb age data and the TVZ.

5.2 Mineralogy and petrochemistry

5.2.1 K₂O vs. SiO₂

The CVZ volcanic rocks, particularly dacites and rhyolites, have a high-K composition. This differs from TVZ volcanics which typically have medium-K compositions (Fig. 5.1). The rhyolites and ignimbrites in this study are all medium- and high-K rhyolites, with the exception of Te Karaka Rhyolite which is a low-K rhyolite. This range in K_2O wt % is comparable to other CVZ rhyolites.

5.2.2 Hydrothermal alteration

Hydrothermal alteration is the mineralogical, textural and chemical response of rocks in a changing thermal and chemical environment by the presence of hot water, steam or gas (Henley & Ellis 1983). Geothermal systems and fossil ore-forming hydrothermal systems are often associated with caldera structures, such as in the CVZ, TVZ and Yellowstone (U.S.A) (Henley & Ellis 1983). Hydrothermal alteration took place episodically throughout the CVZ from at least 10 Ma until the Late Pliocene/Early Pleistocene (Christie *et al.* 2006a; Rabone 2006b).

The rhyolite lava samples in this study were divided into slightly altered and intensively altered. They were initially classified based on petrographic observations and mineral assemblages. XRF analysis further confirmed if a sample had been hydrothermally altered or not. Samples with an SiO₂ content of at least 76-78 wt % are hydrothermally altered, although not all those that had previously been identified as altered had such high SiO₂. Broken Hills Mine
Sample 2 had the lowest value of all the samples in this study of 72.36 wt %. Even some samples that were not considered altered had very high SiO₂, i.e. Ferry Landing and Owharoa ignimbrites.

Fig. 5.1: Plot of K_2O vs. SiO₂ of all samples in this study. Shaded areas show the range of compositions of CVZ and TVZ volcanics for comparison. After Briggs (2004).

Other geochemical features indicated whether samples were altered or not. Arsenic and Sb generally increase with hydrothermal alteration and may indicate the occurrence of Au-Ag mineralisation (Henley & Ellis 1983). In this study it was found that the intensively altered lavas, except for Whale Bone Bay Dome, could be separated from those that were not altered by using As vs. SiO₂ and Sb vs. SiO₂. Aldrich (1995) and Fitzgerald (2004) also found that As increased with increasing hydrothermal alteration in the Pokohino Dome Complex and Ohui region respectively. They also noted that As was not always associated with high grade Au-Ag mineralisation and could occur in the outer weakly altered propylitic zone, and alternatively rocks could be intensely altered but have low As values.

The TVZ also has areas of hydrothermal alteration with at least 20 active systems and some relatively recent fossil systems (Grieve *et al.* 2006). It has been known since the 1930s that there is Au-Ag mineralisation in the TVZ, but exploration and detailed investigations only began in the late 1960s (Simmons *et al.* 2006). There has been no mining of precious metals in the TVZ to date (Grieve *et al.* 2006).

Studies of TVZ geothermal systems in the 1980s led to new conceptual models on epithermal mineralisation, e.g. Henley & Ellis (1983).

5.2.3 Petrography and petrochemistry of Broken Hills Rhyolite

The three samples from Broken Hills Mine are hydrothermally altered and produced very similar XRD traces indicating the presence of quartz and possibly illite, chlorite and plagioclase. Samples 1 and 2 contain an unidentified euhedral hexagonal mineral (? tridymite) that is coated in an orange-brown material of varying thickness and is assumed to be an alteration product (Fig. 2.5 F). Samples 1, 2 and 3 also contain "ghosts" of spherulites that are now mostly crystalline quartz, having been hydrothermally altered. Samples 2 and 3 contain a network of quartz veins, and also plagioclase crystals that have been entirely altered and are now fine-grained sericite. Sample 3 contains illite, as wisps and thin veins, which is evidence of hydrothermal alteration. Sample 3 contains pyrite, as observed in the heavy mineral fraction when picking for zircons and by the high S content (4704 ppm).

On the other hand, Broken Hills Flow Banded Rhyolite appears to be only slightly altered. It contains pyrite and oxidised biotite. The Broken Hills Flow Banded Rhyolite also produced a very similar XRD trace to the samples from the mine, indicating the presence of quartz, plagioclase and possibly illite.

The four samples of Broken Hills Rhyolite each have different features in hand specimen including flow banding, vesicularity and alteration. Broken Hills Flow Banded Rhyolite has laminar flow banding. Sample 1 has the finest banding of the altered samples. Sample 2 is very vesicular and is called the "bubbly" rhyolite by the miners. Sample 1 and 3 appear to be more silicified than sample 2 and the Broken Hills Flow Banded Rhyolite, based on their SiO₂ wt % (86.15, 83.24 and 72.36, 72.72 respectively).

Based on the above observations, all four samples of Broken Hills Rhyolite are considered to be the same lava, but have experienced different degrees of postdepositional alteration.

5.3 U-Pb dating of zircons

5.3.1 Results from this study

Volcanism in the CVZ has migrated southwards over time (Brothers 1984; Skinner 1986; Adams *et al.* 1994). This is also shown in the samples dated in this study but it is not a simple systematic progression. Fig. 5.2 and Fig. 5.3 show a general trend of younging from north to south throughout the study area. Shakespeare Ignimbrite, Te Karaka Rhyolite and Wharekirauponga Dome do not quite follow the systematic younging to the south. This is probably because they originated from centres that were active for a long time, e.g. the Whitianga Volcanic Centre which was active for c. 3 My (Adams *et al.* 1994), and the Kapowai Caldera Complex which was active for 3.6 My (Krippner 2000).

Fig. 5.2: Map of the central Eastern CVZ and the samples that were dated in this study. Ages are in millions of years, errors are 1σ . No age data was obtained in this study for Wharepapa Ignimbrite, Paku Rhyolite or Pauanui Dome Complex.

Fig. 5.3: Age of CVZ volcanics dated in this study, with respect to location from north to south. Errors are 1σ .

Hydrothermal alteration of samples in this study took place sporadically from 6.32 \pm 0.06 Ma (Ward *et al.* 2005) at Wharekirauponga Dome until after the formation of The Knob (4.44 \pm 0.22 Ma). This is within the age range that has previously been determined for mineralisation in the Hauraki Goldfield, i.e. from at least 10 Ma in the northern Coromandel Peninsula (Christie *et al.* 2006a) until the Late Pliocene to Early Pleistocene near Te Puke (Rabone 2006b).

5.3.2 Errors and uncertainties

It is common practice to cite 2 σ errors when generating radiometric ages. However this was not done in this study. The data output from GLITTER is by default 1 σ so this is the way it was treated in Isoplot.

The number of crystals that each age determination was based on varies between samples. The number of crystals used was constrained by the size of the initial population that was obtained from each sample. After ablation, some analyses were omitted because the isotope ratios were discordant, which in some cases was up to about half the ablated population. The probability of concordance of some samples (especially for inherited zircons which may only be based on one or two crystals) is very small, but the cited ages were supported by probability density plots and weighted average plots. If a larger population had been ablated, the errors could be smaller, and the older zircons may be better represented with a greater confidence of their accuracy.

5.3.3 Comparison with previous studies

Only eight of the samples dated in this study have previously been dated. The ages from previous studies are presented in Table 5.1. They are minimum eruption age estimates, except for the Ar-Ar ages which are ages of mineralisation of adularia.

Table 5.1: Ages (My) from samples dated in this study with comparison to previous age estimates. Errors are 1σ for this study.

		Previous	
	This study	studies	Method ¹
Ferry Landing Ignimbrite	8.20 ± 0.25		
Shakespeare Ignimbrite	5.80 ± 0.81	5.9 ± 0.7^{2}	FT zircon
Timata Dome	6.75 ± 0.40		
Staircase Dome	6.43 ± 0.08		
Broken Hills Flow Banded Rhyolite	5.94 ± 0.21		
Broken Hills Mine – sample 1	5.98 ± 0.42	7.12 ± 0.01^3	Ar-Ar adularia
Broken Hills Mine – sample 2	6.32 ± 0.11	دد	٠٠
Broken Hills Mine – sample 3	6.61 ± 0.26	دد	٠٠
Hikuai Ignimbrite	6.80 ± 0.60		
Pokohino Dome Complex	5.77 ± 0.33		
The Knob	4.44 ± 0.22		
Pohakahaka Dome Complex	4.71 ± 0.11	7.21 ± 0.84^4	FT obsidian
Te Karaka Rhyolite	4.10 ± 0.06	4.87 ± 0.11^5	K-Ar plagioclase
Papakura Bay Dome	5.51 ± 0.23	5.45 ± 0.15^{5}	K-Ar plagioclase
Wharekirauponga Dome	6.34 ± 0.27	6.32 ± 0.06^3	Ar-Ar adularia
Whale Bone Bay Dome	5.58 ± 0.21	5.51 ± 0.20^{6}	K-Ar
Shark Bay Dome	4.85 ± 0.36		
Owharoa Ignimbrite	3.76 ± 0.05	3.69 ± 0.07^7	U-Pb zircon
	5.70 ± 0.03	2.89 ± 0.38^{8}	FT glass shard

 1 FT = fission track

² Weighted mean of four ages of Pumpkin Rock Ignimbrite, Adams et al. 1994

³ Ward *et al.* 2005

⁴ Seward & Moore 1987

⁵ Takagi 1995

⁶ Brathwaite & Christie 1996

⁷ Hoskin *et al.* 1998

⁸ Kohn 1973

The Ferry Landing Ignimbrite has not previously been dated, but was deduced by Fisher (1986) to be older than the Shakespeare Ignimbrite which overlies it. It also occurs as lithics in other younger ignimbrites which overlie it (Bardebes 1997).

The age of the Shakespeare Ignimbrite determined in this study is within error of the previous age of Adams *et al.* (1994), for the Pumpkin Rock Ignimbrite. The location that the sample in this study was taken from has been mapped by Skinner (1995) as Pumpkin Rock Ignimbrite (see section 1.5).

The Timata Dome $(6.75 \pm 0.40 \text{ My})$ is part of the Ruahine Rhyolite which has an age of 7.7-8.1 My (Adams *et al.* 1994). Given the new age determined here, the age range of the Ruahine Rhyolite is now 6.75-8.1 My.

As previously concluded (section 5.2.3), the four samples from the Broken Hills Rhyolite are considered to be the same lava. It was therefore expected that the four ages determined would be within 1 σ error of each other, but they show a wider range. If, however, they had been calculated with 2 σ errors, rather than 1 σ , the ages probably would be within error. Ward & Wilson (1978) proposed a calculation for comparing and combining radiocarbon age determinations. This calculation assumes that the samples are from the same "object":

$$T = 4.96; \chi^2_{3:0.05} = 7.81$$

where 3 = number of samples – 1, and confidence interval = 95 %. To prove that the samples are statistically from the same object when the χ^2 test is applied, the result, or T-statistic, must be less than 7.81. When applied to the four ages determined here, the T-statistic is 4.96, which indicates that they are all from the same object.

When all of the concordant isotopic ratios that were used to determine the individual ages of the four samples are plotted together, they give a concordant age of 6.27 ± 0.09 My (MSWD of concordance = 0.49, probability of concordance = 48 %). This is the age that will be cited hereafter for Broken Hills Rhyolite.

In a study of mineralised deposits of the Hauraki Goldfield by Ward *et al.* (2005), an 40 Ar- 39 Ar age of adularia mineralisation of 7.12 ± 0.01 My was determined based on two adularia crystals from Night Reef, Broken Hills Mine. Adularia is a product of hydrothermal alteration and therefore should have a younger age than the age of the host rock. This is clearly not the case here with the eruption age

being 6.27 ± 0.09 My. Ward *et al.*'s (2005) age is here considered to be unreliable. Determining Ar-Ar ages by dating adularia can be difficult for a number of reasons:

- Separating pure adularia can be difficult, as it usually makes up such a small component of the sample. In this study it could not be identified by XRD analysis.
- In very young systems excess Ar can cause problems for accurate age calculations (Skinner 1986; Allègre 2008).

Mineralisation would also have to be younger than the Hikuai Ignimbrite (6.8 ± 0.60 My), as it has been hydrothermally altered in its western extent in the region of Broken Hills Mine (McGunnigle 1995), provided that this is the same hydrothermal system.

The Pohakahaka Dome Complex at Whitipirorua Point was dated by fission track on obsidian as 7.21 ± 0.84 My (Seward & Moore 1987). This is older than the age determined in this study of 4.71 ± 0.11 My. The earlier age is now considered to be unreliable because apparent fission track age can increase rapidly with temperature (Dickin 2005).

The Te Karaka Rhyolite was dated here as 4.10 ± 0.06 My. A rhyolite on the east of the peninsula was dated by K-Ar at 4.87 ± 0.11 My (Takagi 1995). Based on the similar petrography of both samples, these two rhyolites are most likely the same dome, even though the ages are not within error. The ages possibly would be within error had the age in this study been calculated to 2 σ .

Papakura Bay Dome has previously been dated by K-Ar at 5.45 \pm 0.15 My (Takagi 1995) which is within error of 5.51 \pm 0.23 My as determined in this study.

The mineralisation of Wharekirauponga Dome was dated by Ar-Ar on adularia at 6.32 ± 0.06 My (Ward *et al.* 2005), which is appropriately younger than the age of eruption determined in this study (6.34 ± 0.27 My).

Two domes of the Homunga Rhyolite have previously been dated (Brathwaite & Christie 1996). The Ruahorehore Dome has a K-Ar age of 5.29 ± 0.14 My. The

Whale Bone Bay Dome was dated as 5.51 ± 0.20 My, which is within error of the age determined in this study (5.58 ± 0.21 My). The Shark Bay Dome has not previously been dated.

The Owharoa Ignimbrite was first dated by fission track on a glass shard with an age of 2.89 ± 0.38 My (Kohn 1973). It was next dated by U-Pb dating of zircon by SIMS on the SHRIMP ion microprobe at the Australian National University with an age of 3.69 ± 0.07 My (Hoskin *et al.* 1998). The earlier age was then disregarded because the partial fading and annealing of fission tracks in volcanic glass can give a lower apparent age (Westgate 1989; Hoskin *et al.* 1998; Briggs *et al.* 2005). Partial fading of fission tracks in natural glass can occur at surface temperatures when exposed to the sun (Wagner & van den Haute 1992). This later age is within error of that determined in this study (3.76 ± 0.05 My).

The main objective of this study was to generate new ages, while also testing the feasibility of U-Pb dating of zircon using LA-ICP-MS for CVZ rocks. The fact that the existing ages mostly agree with the new ones is supportive of the validity of the U-Pb method, and therefore supports the validity of the samples that have not previously been dated.

The Wharepapa Ignimbrite, Paku Rhyolite and Pauanui Dome Complex could not be dated in this study as an insufficient quantity of zircons was separated from each sample. The Wharepapa Ignimbrite has previously been dated by fission track of zircon as 8.2 ± 0.7 and 9.2 ± 1.9 My (Adams *et al.* 1994). It was also dated by K-Ar on plagioclase with a mean age of 5.78 ± 0.3 My (Krippner 2000). Krippner (2000) questioned whether the locations sampled by Adams *et al.* (1994) were the same unit as defined by him, and it had possibly been hydrothermally altered. Rutherford (1978) attempted to date the Paku Rhyolite by fission track on obsidian, however the obsidian was found to be of an inappropriate standard and the estimated age considered unreliable.

5.3.4 Age of CVZ volcanics

Volcanism began in the CVZ c. 18 Ma in the late-Early Miocene. The earliest recorded rhyolite volcanism of the CVZ has an age of c. 12 Ma and is from an offshore tephra layer with an indistinguishable source (Carter *et al.* 2003). This age precedes the earliest onshore record of rhyolitic volcanism by 1.6-1 My.

Rhyolitic volcanism continued into the Early Pleistocene in the Tauranga and Kaimai Volcanic Centres, terminating with the Papamoa Ignimbrite 1.9 Ma (Briggs *et al.* 2005). The earliest eruption from the TVZ was 1.55 Ma from the Mangakino Volcanic Centre (Houghton *et al.* 1995). This period of transition includes significant events in the volcano-tectonic history of New Zealand, including commencement of volcanism of the Kermadec Arc, development of the Hauraki Rift, and an increase in the frequency and volume of silicic volcanic activity in the TVZ (Briggs *et al.* 2005). Fig. 5.4 and Fig. 5.5 show how the volcanics progressively young towards the south in the CVZ.

Fig. 5.4: Map of the igneous rocks of the CVZ that have been dated using all available data. Data are from Seward & Moore (1987), Adams *et al.* (1994), Takagi (1995), Brathwaite & Christie (1996), Krippner (2000), Briggs *et al.* (2005), and this study (see Appendix X).

Distance through CVZ (New Zealand Transverse Mercator northing) Fig. 5.5: Age versus distance through the CVZ of the igneous rocks of the CVZ that have been dated using all available data. Data are from Seward & Moore (1987), Adams *et al.* (1994), Takagi (1995), Brathwaite & Christie (1996), Krippner (2000), Briggs *et al.* (2005), and this study (see Appendix X).

5.3.5 Silicic centres of the CVZ

There are currently 10 identified silicic centres of the CVZ (Fig. 1.2). There may well be additional centres, which are perhaps buried by overlying deposits or are offshore (Briggs & Krippner 2006). Fig. 5.6 shows a summary of age data for these centres. Samples from this study fit within the ages that have already been determined, except for the Whitianga Volcanic Centre (WVC). The previous youngest age was c. 7.5 My, and after having dated the Shakespeare Ignimbrite in this study, which is assumed to originate from the WVC, the new time span of the WVC is c. 8.7-5.8 My. This time span is comparable to the Kapowai Caldera Complex (KCC, 8.5-4.9 My) (Krippner 2000). There was a marked increase in tephra thicknesses at the offshore site while the WVC and KCC were active, and even more so when the TVZ became active; the latter reflects the greater volumes of material erupted from TVZ centres.

Fig. 5.6: Tephra thickness at offshore site 1124 (Carter *et al.* 2003), including tephras from both CVZ and TVZ, and age of silicic centres in the CVZ. After Briggs (2004). Note that there is currently no age data for silicic rocks of Great Barrier Island and the Aldermen Islands. Duration of Whitianga Volcanic Centre modified after this study.

5.3.6 Origin of inherited zircons

As described in section 04.4.2, most of the samples dated contained zircons that significantly predated the determined age of crystallisation. The potential origin of zircons that produced ages older than the CVZ but younger than the basement, that is Late Cretaceous to Early Miocene (78.2-19.5 My), will be discussed here.

Volcanism occurred in the South Island and offshore southern islands from c. 100 Ma (Graham 2008) (Fig. 5.7). Due to its distal location, this does not seem like a possible source for zircons. There are also only a few cases of silicic volcanism, which is where zircons are more likely to be found. The only volcanism in the North Island that pre-dates the CVZ was in the Northland Volcanic Arc, which was active from c. 23-15 Ma when the Pacific Plate began to subduct beneath the

Australian Plate (Cole *et al.* 2008). The Northland Volcanic Arc produced mainly andesite stratovolcanoes, with minor basalt and rhyolite, so this is a potential source for zircons, provided they had the means to be incorporated into the CVZ volcanics.

Fig. 5.7: Locations in New Zealand where inherited zircons of Late Cretaceous to Early Miocene age could have originated.

The basement of the CVZ is overlain by Oligocene and Early Miocene sediments (Skinner 1986). The Early Miocene Colville Formation (of the Waitemata Group), a volcaniclastic mass flow from the northwest of the CVZ, precedes the oldest exposed volcanic rocks of the CVZ. It contains material from the Northland Volcanic Arc, and given the direction it travelled from, is a possible mechanism for transporting zircons that gave Early Miocene ages, provided that the minor rhyolites were incorporated into the mass flow.

The Northland Allochthon, a massive gravity deposit covering much of Northland and the continental shelf, was emplaced c. 25.5-22 Ma (Herzer *et al.* 2011) prior to the commencement of the Northland Volcanic Arc. The allochthon came from an area to the north of New Zealand and includes marine sediments and the Tangihua Volcanics (Ballance & Spörli 1979). It contains fossils that indicate some of its rocks were part of the continental slope and deep-ocean floor 90-25 Ma (Herzer 2008). The allochthon may have also contained zircons, and was possibly included in the Colville Formation. This is a potential source for the zircons that gave Late Cretaceous to Early Miocene ages.

5.3.7 Physical properties of zircons

The colour of each crystal that was ablated was noted and they are plotted in Fig. 5.8 by location. There does not appear to be any relationship between colour and age or location. Crystals of all colours were generally found in all locations. Neither does there appear to be a relationship between colour and whether the host rock is unaltered, hydrothermally altered, or an ignimbrite (Fig. 4.3).

There does not appear to be any relationship between zircon morphology and age or location. For example, the similarly aged Timata Dome and Hikuai Ignimbrite have a differing range in morphological types observed (Fig. 4.4). There does not appear to be any relationship between zircon morphology and whether the host rock is unaltered, hydrothermally altered, or an ignimbrite. For example, the three samples from Broken Hills Mine all exhibit different morphological types.

Fig. 5.8: Age of ablated zircons by location. Observed colour as indicated.

5.3.8 Comparison to the TVZ

The CVZ is considered to be the tectonic precursor to the TVZ (Adams *et al.* 1994). In this section some of the similarities and differences between the two zones will be discussed.

Major element abundances and average compositional ranges of onshore and offshore tephras of the CVZ and TVZ are very similar (Carter *et al.* 2003). Tephras from the two zones can be distinguished by dating of offshore drill-cores.

Rhyolitic volcanism in the TVZ began 1.55 Ma (Houghton *et al.* 1995). In the CVZ volcanism migrated to the southeast over time. There is no such trend in the TVZ (Fig. 5.9). TVZ volcanics are dominated by silicic volcanism. The proportion of mafic (basalt to andesite) to silicic volcanism (dacite to rhyolite) in the TVZ is about 5:95. CVZ has a greater volume of andesitic volcanism, and mafic versus silicic volcanism is approximately 40:60 (Briggs *et al.* 2005). Volcanism in the CVZ generally became more silicic with time and to the south; this has not been observed in the TVZ where the northeast and southwest ends of the zone are mostly andesitic-dacitic while the central TVZ is rhyolitic (Houghton *et al.* 1995). TVZ eruptions can be very large, producing 30 to > 300 km³ material, while CVZ eruptions were typically smaller at < 30 km³ (Briggs *et al.* 2005). This

is also reflected in the caldera sizes, which in the TVZ are typically c. 20 km diameter, and c. 8 km in the CVZ. Briggs *et al.* (2005) relate these differences to increased rates of subduction and crustal extension/thinning in the TVZ that have led to higher rates of silicic magma generation.

Fig. 5.9: Silicic centres and calderas of the CVZ and TVZ. The period that they were active for is indicated in millions of years where known. After Briggs *et al.* (2005) and this study.

More than one centre can be active at any given time. This is shown by the overlapping ages of the WVC and KCC in the CVZ. This is also seen today in the TVZ, where the Okataina and Taupo centres are both currently active. The length of time that centres of the CVZ were active for is contrasting to centres of the TVZ. For example, the WVC and KCC were active for c. 3 My and c. 3.6 My, respectively. The Mangakino Volcanic Centre of the TVZ was only active for 0.7

My from 1.6-0.9 Ma (Briggs *et al.* 2005) and is thought to now be extinct (Houghton *et al.* 1995). Longevity of silicic centres is thought to be related to rates of rifting and subduction, which are much higher in the TVZ than they were in the CVZ (Briggs 2004). The thickness of the crust in the TVZ is also much thinner than in the CVZ (c. 15 km vs. c. 25 km, Briggs 2004).

The Yellowstone system (U.S.A.) is often compared to the TVZ. It has been active for at least 2 My (Christiansen 2001), and possibly due to the thick, stable continental crust, will remain active for longer than the volcanic centres in TVZ. Its last eruption was c. 70 ka, and is still considered to be active (Christiansen 2001). Yellowstone has erupted a similar volume of material to the TVZ, but in only three major caldera forming events, unlike the TVZ which has had numerous, but smaller, caldera forming events from overlapping volcanic centres (Houghton *et al.* 1995).

Summary and Conclusions

6.1 Introduction

The Coromandel Volcanic Zone is the easternmost part of the Hauraki Volcanic Region, New Zealand's longest lived region of andesite-dacite-rhyolite volcanism. The CVZ was active from c. 18 to 1.9 Ma, with silicic volcanism being dominant from c. 12 Ma throughout the central east and southern extent of the zone. 21 selected silicic volcanic rocks of the eastern CVZ were the subject of this study, with the presentation of new U-Pb ages being the main objective. Many of the intermediate volcanics of the CVZ have been dated (e.g. Adams *et al.* 1994, Takagi 1995, and Brathwaite & Christie 1996), but there are few ages on rhyolites. The U-Pb dating of zircon using LA-ICP-MS method has not been used for CVZ volcanics previously, so was used in this study to assess whether it is an appropriate method for dating CVZ volcanics. The physical properties of zircon, i.e. colour and morphology, were observed to see if there was any relationship between them and the age, location or host rock type. The petrographic, mineralogical and petrochemical properties of the 21 samples were also assessed in order to set the samples into a stratigraphic context.

6.2 Petrography, mineralogy and petrochemistry

The rocks of the eastern CVZ have been variably hydrothermally altered. The rhyolite lavas in this study were divided into slightly and intensively hydrothermally altered.

6.2.1 Slightly altered rhyolite lavas

Quartz is the dominant phenocryst in these lavas with common plagioclase and relict mafic minerals \pm biotite \pm Fe-Ti oxides \pm zircon. The groundmass is generally devitrified glass or crystalline SiO₂ polymorphs \pm feldspar. They are poorly to moderately porphyritic and have a range in textures that include vesicular, flow banded, spherulitic and glassy. These lavas range from low- to high-K rhyolites (72-86 wt % SiO₂), which is typical of CVZ rhyolites.

6.2.2 Intensively altered rhyolite lavas

Quartz is the dominant phenocryst in the intensively altered lavas. Altered plagioclase (now sericite-adularia) is common \pm relict mafics \pm biotite \pm Fe-Ti oxides \pm zircon. The groundmass is usually quartz + feldspar and is sometimes devitrified glass. They are poorly to moderately porphyritic and have a range in textures that include flow banded, vesicular, spherulitic and lithophysal. Some of these lavas have quartz veins which may be altered to chlorite-illite, both of which are evidence of hydrothermal alteration. They are medium- to high-K rhyolites (72-86 wt % SiO₂) and are typically enriched in As and Sb.

6.2.3 Ignimbrites

The five ignimbrites range from non- to densely-welded and jointed lenticulites. They also range in abundance of pumice, crystals and lithics. Pumice may be subrounded with clusters of phenocrysts or streaky and flattened so that it is obsidian-like. More than one pumice type may be present.

The matrices contain non-devitrified glass shards which are commonly platy and Y-shaped but also cuspate and lunate. Plagioclase crystals are dominant in all the ignimbrites, with some having rare quartz \pm rare relict mafics \pm titanomagnetite/ilmenite \pm zircon. The Wharepapa Ignimbrite has minor orthopyroxene \pm augite, and the Owharoa Ignimbrite has biotite.

Lithics are sub-rounded to angular, 4 to 60 mm in diameter and a variety of types were observed, including: andesite, hydrothermally altered andesite, crystalline rhyolite, glassy/spherulitic/flow banded rhyolite, hydrothermally altered rhyolite and ignimbrite.

6.3 U-Pb dating

18 new U-Pb ages were generated by U-Pb dating of zircons by LA-ICP-MS. The zircons were assumed to be primary or magmatic zircons and represent the age of crystallisation of the zircon and are therefore a maximum eruption age. Three samples did not have sufficient zircons to be dated. The new ages from this study generally agree with any existing age estimates, so this supports the validity of the method and also supports the samples that do not have existing age estimates. These samples generally young north to south, which is consistent with what is already known about the geochronological evolution of the CVZ. They also fit

within the temporal evolution of silicic centres/calderas that they occur in, except for the Whitianga Volcanic Centre, the time span of which has here been extended.

Some samples contained zircons that were older than the age of eruption. These were inferred to be inherited from a range of sources given their different ages. The zircons that were of Middle Miocene and younger age are inferred to be antecrysts, crystals that crystallised in an earlier eruption or crystallisation event. They could also be from lithics in ignimbrites. Some zircons gave Late Cretaceous to Early Miocene ages which pre-date the CVZ and could possibly be from the Northland Volcanic Arc or the Northland Allochthon, both of which could have been transported by the Colville Formation, a volcaniclastic mass flow from the northwest of the CVZ. The oldest zircons found in this study were Late Jurassic to early-Late Cretaceous and are interpreted to be inherited from the Mesozoic basement. No relationship was found between zircon colour or morphology and age, location or host rock type.

- Adams, C. J., Graham, I. J., Seward, D. & Skinner, D. N. B. 1994, 'Geochronological and geochemical evolution of late Cenozoic volcanism in the Coromandel Peninsula, New Zealand', New Zealand Journal of Geology and Geophysics, vol. 37, no. 3, pp. 359-379.
- Adams, J. C. 1992, A Facies Approach to the Geology of the Hot Water Beach -Whenuakite Region, Coromandel Volcanic Zone, MSc Thesis, University of Waikato.
- Aldrich, S. M. 1995, Volcanic Geology and Hydrothermal Alteration of the Onemana Area, Eastern Coromandel Peninsula, MSc Thesis, University of Waikato.
- Allègre, C. J. 2008, *Isotope Geology*, Cambridge University Press, New York.
- Ballance, P. F. & Spörli, K. B. 1979, 'Northland Allochthon', *Journal of the Royal Society of New Zealand*, vol. 9, no. 2, pp. 259-275.
- Bardebes, P. A. 1997, Volcanic Geology of the Rhyolitic Rocks of the Cooks Beach-Whitianga Harbour Region, Coromandel Volcanic Zone, MSc Thesis, University of Waikato.
- Bell, J. M. & Fraser, C. 1912, *The geology of the Waihi-Tairua subdivision: Hauraki, Auckland*, New Zealand Geological Survey Bulletin no. 15, Wellington.
- Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S. & Foudoulis, C. 2004, 'Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards', *Chemical Geology*, vol. 205, no. pp. 115-140.
- Bradshaw, J. D. 2004, 'Northland Allochthon: An alternative hypothesis of origin', *New Zealand Journal of Geology and Geophysics*, vol. 47, no. 3, pp. 375-382.
- Brathwaite, R. L. & Christie, A. B. 1996, *Geology of the Waihi Area 1:50 000*. Institute of Geological & Nuclear Sciences geological map 21. 1 sheet + 64 p, Institute of Geological & Nuclear Sciences Limited, Lower Hutt.
- Brathwaite, R. L., Christie, A. B. & Skinner, D. N. B. 1989, 'The Hauraki Goldfield - Regional setting, mineralisation and recent exploration', in D. Kear (ed.), *Mineral Deposits of New Zealand*, Australasian Institute of Mining and Metallurgy, Parkville, pp. 45-56.
- Briggs, R. M. 2004, 'Silicic volcanism in Coromandel Volcanic Zone: precursor to Taupo Volcanic Zone activity in the North Island, New Zealand',

Proceedings of the IAVCEI General Assembly 2004, International Association of Volcanology and Chemistry of the Earth's Interior, Pucon, Chile, pp. 147.

- Briggs, R. M. & Fulton, B. W. J. 1990, 'Volcanism, structure, and petrology of the Whiritoa-Whangamata coastal section, Coromandel Volcanic Zone, New Zealand: facies model evidence for the Tunaiti Caldera', *New Zealand Journal of Geology and Geophysics*, vol. 33, no. 4, pp. 623-633.
- Briggs, R. M., Houghton, B. F., McWilliams, M. & Wilson, C. J. N. 2005, ⁴⁰Ar/³⁹Ar ages of silicic volcanic rocks in the Tauranga-Kaimai area, New Zealand: dating the transition between volcanism in the Coromandel Arc and the Taupo Volcanic Zone', *New Zealand Journal of Geology and Geophysics*, vol. 48, no. 3, pp. 459-469.
- Briggs, R. M. & Krippner, S. J. P. 2006, 'The Control by Caldera Structures on Epithermal Au-Ag Mineralisation and Hydrothermal Alteration at Kapowai, Central Coromandel Volcanic Zone', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 101-107.
- Brothers, R. N. 1984, 'Subduction regression and oceanward migration of volcanism, North Island, New Zealand', *Nature*, vol. 309, no. 5970, pp. 698-700.
- Carter, L., Shane, P., Alloway, B., Hall, I. R., Harris, S. E. & Westgate, J. A. 2003, 'Demise of one volcanic zone and birth of another - A 12 m.y. marine record of major rhyolitic eruptions from New Zealand', *Geology*, vol. 31, no. 6, pp. 493-496.
- Charlier, B. L. A., Wilson, C. J. N., Lowenstern, J. B., Blake, S., van Calsteren, P. W. & Davidson, J. P. 2005, 'Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons', *Journal of Petrology*, vol. 46, no. 1, pp. 3-32.
- Christiansen, R. L. 2001, *The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana* U. S. Geological Survey Professional Paper, U. S. Geological Survey, Reston, VA.
- Christie, A. B., Brathwaite, R. L., Mauk, J. L. & Simpson, M. P. 2006a, 'Hauraki Goldfield - Regional Exploration Databases and Prospectivity Studies', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 73-84.
- Christie, A. B., Rabone, S. D. C., Barker, R. G. & Merchant, R. J. 2006b, 'Exploration of the Wharekirauponga Epithermal Au-Ag Deposit, Hauraki Goldfield', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 137-144.

- Cole, J. W., Briggs, R. M. & Smith, I. E. M. 2008, 'Progression', in I. J. Graham (ed.), A Continent on the Move: New Zealand Geoscience into the 21st Century, Geological Society of New Zealand in association with GNS Science, Wellington, pp. 154-157.
- Cole, J. W., Hochstein, M. P., Skinner, D. N. B. & Briggs, R. M. 1987, Tectonic setting of North Island Cenozoic volcanism, New Zealand Geological Survey, Record 21, New Zealand Geological Survey, Wellington.
- Cooper, K. M. & Reid, M. R. 2008, 'Uranium-series Crystal Ages', *Reviews in Mineralogy & Geochemistry*, vol. 69, no. pp. 479–544.
- Cullingford, M. D. 2003, The volcanism of the Alderman Islands, Ohinau Island, and Southern Onemana Peninsula, Eastern Coromandel Volcanic Zone, New Zealand, MSc Thesis, University of Waikato.
- Deer, W. A., Howie, R. A. & Zussman, J. 1992, An Introduction to the Rock-Forming Minerals (2nd ed.), Longman Scientific & Technical, Harlow.
- Dickin, A. P. 2005, *Radiogenic Isotope geology (2nd ed.)*, Cambridge University Press, Cambridge.
- Edbrooke, S. W. (compiler) 2001, *Geology of the Auckland Area. Institute of Geological & Nuclear Sciences 1:250 000 geological map 3. 1 sheet + 74 p*, Institute of Geological & Nuclear Sciences Limited, Lower Hutt.
- Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003, 'Detrital zircon analysis of the sedimentary record', *Reviews in Mineralogy & Geochemistry*, vol. 53, no. pp. 277-303.
- Fisher, G. D. 1986, Geological aspects of an area near Whitianga, Coromandel Peninsula, MSc Thesis, University of Auckland.
- Fitzgerald, M. J. 2004, Gold Mineralisation at Ohui, Eastern Coromandel, MSc Thesis, University of Waikato.
- Folkes, C. B., de Silva, S. L., Schmitt, A. K. & Cas, R. A. F. 2011, 'A reconnaissance of U-Pb zircon ages in the Cerro Galán system, NW Argentina: Prolonged magma residence, crystal recycling, and crustal assimilation', *Journal of Volcanology and Geothermal Research*, vol. 206, no. 3-4, pp. 136-147.
- Fraser, C. 1910, *The geology of the Thames subdivision: Hauraki, Auckland*, New Zealand Geological Survey Bulletin no. 10, Wellington.
- Fraser, C. & Adams, J. H. 1907, *The geology of the Coromandel subdivision : Hauraki, Auckland*, New Zealand Geological Survey Bulletin no. 4, Wellington.
- Fulton, B. W. J. 1988, The Volcanic Geology of the Whiritoa-Whangamata Area, MSc Thesis, University of Waikato.
- Furlong, K. P. & Kamp, P. J. J. 2009, 'The lithospheric geodynamics of plate boundary transpression in New Zealand: Initiating and emplacing

subduction along the Hikurangi margin, and the tectonic evolution of the Alpine Fault system', *Tectonophysics*, vol. 474, no. 3-4, pp. 449-462.

- Garver, J. I. & Kamp, P. J. J. 2002, 'Integration of zircon color and zircon fissiontrack zonation patterns in orogenic belts: application to the Southern Alps, New Zealand', *Tectonophysics*, vol. 349, no. 1-4, pp. 203-219.
- Gastil, R. G., DeLisle, M. & Morgan, J. R. 1967, 'Some Effects of Progressive Metamorphism on Zircons', *Geological Society of America Bulletin*, vol. 78, no. 7, pp. 879-906.
- Gifkins, C., Herrmann, W. & Large, R. 2005, *Altered Volcanic Rocks: a guide to description and interpretation*, Centre for Ore Deposit Research, Tasmania.
- Graham, I. J. 2008, 'Relicts of a Fiery Past', in I. J. Graham (ed.), A Continent on the Move: New Zealand Geoscience into the 21st Century, Geological Society of New Zealand in association with GNS Science, Wellington, pp. 150-153.
- Grieve, P. L., Corbett, G. J. & Leach, T. M. 2006, 'Exploration at Ohakuri North Epithermal Au-Ag Prospect, Taupo Volcanic Zone', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 197-202.
- Guay, C. M. Y. 1999, Volcanic Geology and Geochemistry of the Coroglen-Whenuakite Area, Eastern Coromandel Peninsula, New Zealand, MSc Thesis, University of Waikato.
- Haworth, A. V. 1993, Volcanic Geology and Hydrothermal Alteration of the Lower Waitekauri Valley, Waihi, New Zealand, MSc Thesis, University of Waikato.
- Hawthorn, B. M. 1996, Volcanic Geology of the Opito Bay Region, Northern Coromandel Peninsula, MSc Thesis, University of Waikato.
- Hayward, B. W., Black, P. M., Smith, I. E. M., Ballance, P. F., Itaya, T., Doi, M., Takagi, M., Bergman, S., Adams, C. J., Herzer, R. H. & Robertson, D. J. 2001, 'K-Ar ages of early Miocene arc-type volcanoes in northern New Zealand', *New Zealand Journal of Geology and Geophysics*, vol. 44, no. 2, pp. 285-311.
- Henderson, J. & Bartrum, J. A. 1913, *The geology of the Aroha subdivision : Hauraki, Auckland*, New Zealand Geological Survey Bulletin no. 16, Wellington.
- Henley, R. W. & Ellis, A. J. 1983, 'Geothermal Systems Ancient and Modern: A Geochemical Review', *Earth-Science Reviews*, vol. 19, no. 1, pp. 1-50.
- Herzer, R. 2008, 'Unrest in the North', in I. J. Graham (ed.), A Continent on the Move: New Zealand Geoscience into the 21st Century, Geological Society of New Zealand in association with GNS Science, Wellington, pp. 136-137.

- Herzer, R. H., Barker, D. H. N., Roest, W. R. & Mortimer, N. 2011, 'Oligocene-Miocene spreading history of the northern South Fiji Basin and implications for the evolution of the New Zealand plate boundary', *Geochemistry Geophysics Geosystems*, vol. 12, no. 2, pp. 20.
- Homer, L. & Moore, P. 1992, Vanishing Volcanoes: A guide to the landforms and rock formations of Coromandel Peninsula, Landscape Publications, Wellington.
- Hoskin, P. W. O. & Schaltegger, U. 2003, 'The Composition of Zircon and Igneous and Metamorphic Petrogenesis', *Reviews in Mineralogy & Geochemistry*, vol. 53, no. pp. 27-62.
- Hoskin, P. W. O., Wysoczanski, R. J. & Briggs, R. M. 1998, 'U-Pb age determination of 'lenticulite' (Owharoa Ignimbrite) at Waikino, Waihi Area, Coromandel Peninsula, and implications', *Geological Society of New* Zealand & New Zealand Geophysical Society Joint Annual Conference, University of Canterbury, Christchurch, pp. 123.
- Houghton, B. F., Wilson, C. J. N., McWilliams, M. O., Lanphere, M. A., Weaver, S. D., Briggs, R. M. & Pringle, M. S. 1995, 'Chronology and dynamics of a large silicic magmatic system: Central Taupo Volcanic Zone, New Zealand', *Geology*, vol. 23, no. 1, pp. 13-16.
- Hunt, P. 1991, The Volcanic Geology of the Whiritoa Hill Area, MSc Thesis, University of Waikato.
- Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004, 'The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology', *Chemical Geology*, vol. 211, no. pp. 47-69.
- Karl, M. L. 1996, Volcanic Geology of the Tairua Region, Eastern Coromandel Peninsula, MSc Thesis, University of Waikato.
- King, P. R. 2000, 'Tectonic reconstructions of New Zealand: 40 Ma to the Present', New Zealand Journal of Geology and Geophysics, vol. 43, no. 4, pp. 611-638.
- Kohn, B. P. 1973, Some studies of New Zealand Quaternary pyroclastic rocks, PhD Thesis, Victoria University of Wellington.
- Košler, J. & Sylvester, P. J. 2003, 'Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS', *Reviews in Mineralogy & Geochemistry*, vol. 53, no. pp. 243-275.
- Krippner, S. J. P. 2000, Volcanic geology, geochemistry and geochronology of the Kapowai Caldera Complex, Coromandel Volcanic Zone, New Zealand, PhD Thesis, University of Waikato.
- Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sørensen, H. & Woolley, A. R. 2002, *Igneous rocks: a*

classification and glossary of terms (2nd ed.), Cambridge University Press, West Nyack, NY.

- Ludwig, K., R. 1998, 'On the treatment of concordant uranium-lead ages', *Geochimica et Cosmochimica Acta*, vol. 62, no. 4, pp. 665-676.
- Ludwig, K., R. 2003, *User's Manual for Isoplot 3.00: A Geochronological Toolkit* for Microsoft Excel, Special Publication No. 4, Special Publication No. 4, Berkeley Geochronology Center, Berkeley.
- Marshall, P. 1912a, Geology of New Zealand, Government Printer, Wellington.
- Marshall, P. 1912b, New Zealand and adjacent islands, Winter, Heidelberg.
- McGunnigle, N. K. 1995, Volcanic Geology of the Hikuai Region, Eastern Coromandel Peninsula, MSc Thesis, University of Waikato.
- Moore, C. R. 1976, Gold-silver mineralisation of the Broken Hills area, Hikuai, MSc Thesis, University of Auckland.
- Moore, C. R. 1979, 'Geology and mineralisation of the former Broken Hills gold mine, Hikuai, Coromandel, New Zealand', *New Zealand Journal of Geology and Geophysics*, vol. 22, no. 3, pp. 339-351.
- Morgan, P. G. 1924, *The geology and mines of the Waihi district, Hauraki Goldfield, New Zealand*, New Zealand Geological Survey Bulletin no. 26, Wellington.
- Park, J. 1910, *The Geology of New Zealand*, Whitcombe and Tombs, Christchurch.
- Parsons, S. L. 1993, The Volcanic Geology of Great Mercury Island, MSc Thesis, University of Waikato.
- Perkins, D. 2011, *Mineralogy (3rd ed.)*, Prentice Hall, Upper Saddle River, NJ.
- Pupin, J. P. 1980, 'Zircon and Granite Petrology', *Contributions to Mineralogy* and Petrology, vol. 73, no. 3, pp. 207-220.
- Rabone, S. D. C. 1975, 'Petrography and hydrothermal alteration of Tertiary andesite-rhyolite volcanics in the Waitekauri Valley, Ohinemuri, New Zealand', *New Zealand Journal of Geology and Geophysics*, vol. 18, no. 2, pp. 239-258.
- Rabone, S. D. C. 2006a, 'Broken Hills Rhyolite-Hosted High Level Epithermal Vein System, Hauraki Goldfield — 100 Years On', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 117-122.
- Rabone, S. D. C. 2006b, 'Exploration at Te Puke, Hauraki Goldfield The last 30 years', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 191-194.

- Richards, R. E. 2009, U-Pb geochronology of detrital zircon from Eocene -Oligocene sediments in the Te Anau Basin (New Zealand) and inferred provenance, MSc Thesis, University of Waikato.
- Roddick, J. C. & Bevier, M. L. 1995, 'U-Pb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons, Canadian Appalachians', *Chemical Geology*, vol. 119, no. 1-4, pp. 307-329.
- Rogers, J. 1994, Rhyolitic volcanics of the Cooks Beach/Hahei Region, Eastern Coromandel Peninsula, MSc Thesis, University of Waikato.
- Rollinson, H. R. 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman Scientific & Technical, Harlow, Essex.
- Rutherford, N. F. 1978, 'Fission-track age and trace element geochemistry of some Minden Rhyolite obsidians', New Zealand Journal of Geology and Geophysics, vol. 21, no. 4, pp. 443-448.
- Saunders, K. E., Morgan, D. J., Baker, J. A. & Wysoczanski, R. J. 2010, 'The Magmatic Evolution of the Whakamaru Supereruption, New Zealand, Constrained by a Microanalytical Study of Plagioclase and Quartz', *Journal of Petrology*, vol. 51, no. 12, pp. 2465-2488.
- Seward, D. & Moore, P. R. 1987, New fission track ages for some Minden Rhyolites (Whitianga Group), eastern Coromandel Peninsula, New Zealand Geological Survey, Record 20, New Zealand Geological Survey, Wellington.
- Simmons, S. F., Brown, K. L. & Browne, P. R. L. 2006, 'Precious Metals in Hydrothermal Systems of the Taupo Volcanic Zone', in A. B. Christie & R. L. Brathwaite (ed.), *Geology and Exploration of New Zealand Mineral Deposits*, Australasian Institute of Mining and Metallurgy, Carlton, pp. 203-210.
- Siyanbola, W. O., Fasasi, A. Y., Funtua, I. I., Fasasi, M. K., Tubosun, I. A., Pelemo, D. A. & Adesiyan, T. A. 2005, 'Energy dispersive Z-ray fluorescence analysis of samples of the Nigerian Zircons', *Nuclear Instruments and Methods in Physics Research B*, vol. 239, no. pp. 426-432.
- Skinner, D. N. B. 1986, 'Neogene Volcanism of the Hauraki Volcanic Region', in I. E. M. Smith (ed.), *Late Cenozoic Volcanism in New Zealand*, The Royal Society of New Zealand, Wellington, pp. 21-47.
- Skinner, D. N. B. 1993, Geology of the Coromandel Harbour Area, scale 1:50 000. Institute of Geological & Nuclear Sciences geological map 4. 1 sheet + 44 p, Institute of Geological & Nuclear Sciences Limited, Lower Hutt.
- Skinner, D. N. B. 1995, Geology of the Mercury Bay Area, scale 1:50 000. Institute of Geological & Nuclear Sciences geological map 17. 1 sheet + 56 p, Institute of Geological & Nuclear Sciences Limited, Lower Hutt.

- Sollas, W. J. & McKay, A. 1905, *Rocks of Cape Colville Peninsula, Auckland, New Zealand*, Government Printer, Wellington.
- Sollas, W. J. & McKay, A. 1906, *Rocks of Cape Colville Peninsula, Auckland, New Zealand*, Government Printer, Wellington.
- Spörli, K. B., Begbie, M. J., Irwin, M. R. & Rowland, J. V. 2006, 'Structural processes and tectonic controls on the epithermal Au-Ag deposits of the Hauraki Goldfield', in A. B. Christie & R. L. Brathwaite (ed.), *Geology* and Exploration of New Zealand Mineral Deposits, Australasian Institute of Mining and Metallurgy, Carlton, pp. 85-94.
- Stevenson, R. J. 1986, The Geotechnical Properties of Minden Rhyolite at Pauanui and Onemana, Eastern Coromandel, MSc Thesis, University of Waikato.
- Takagi, M. 1995, Miocene-Pliocene arc volcanism of the Hauraki region in North Island, New Zealand, MSc Thesis, Okayama University of Science.
- Trotter, W. M. 1995, The Volcanic Geology of the Pauanui-Opoutere Beach Region, Eastern Coromandel Volcanic Zone, MSc Thesis, University of Waikato.
- von Hochstetter, F. 1864, *Geology of New Zealand*, translated from German by C.A. Fleming 1959, Government Printer, Wellington.
- Wagner, G. & van den Haute, P. 1992, *Fission-Track Dating*, Kluwer Academic Publishers, Dordrecht.
- Ward, G. K. & Wilson, S. R. 1978, 'Procedures for comparing and combining radiocarbon age determinations: a critique', *Archaeometry*, vol. 20, no. 1, pp. 19-31.
- Ward, K. T., Mauk, J. L. & Hall, C. 2005, 'New ⁴⁰Ar/³⁹Ar dates of adularia from epithermal deposits in the Hauraki Goldfield, New Zealand', *New Zealand Minerals Conference*, Crown Minerals and Australasian Institute of Mining and Metallurgy, Auckland, pp. 426-433.
- Westgate, J. A. 1989, 'Isothermal plateau fission-track ages of hydrated glass shards from silicic tephra beds', *Earth and Planetary Science Letters*, vol. 95, no. 3-4, pp. 226-234.
- Wilson, C. J. N., Charlier, B. L. A., Fagan, C. J., Spinks, K. D., Gravley, D. M., Simmons, S. F. & Browne, P. R. L. 2008, 'U–Pb dating of zircon in hydrothermally altered rocks as a correlation tool: Application to the Mangakino geothermal field, New Zealand', *Journal of Volcanology and Geothermal Research*, vol. 176, no. 2, pp. 191-198.
- Wilson, C. J. N., Charlier, B. L. A., Rowland, J. V. & Browne, P. R. L. 2010, 'U– Pb dating of zircon in subsurface, hydrothermally altered pyroclastic deposits and implications for subsidence in a magmatically active rift: Taupo Volcanic Zone, New Zealand', *Journal of Volcanology and Geothermal Research*, vol. 191, no. 1-2, pp. 69-78.

Wright, I. 2008, 'Rumbles from the Deep', in I. J. Graham (ed.), A Continent on the Move: New Zealand Geoscience into the 21st Century, Geological Society of New Zealand in association with GNS Science, Wellington, pp. 174-175.

Sample no.		Grid reference	
T T * * 4		(error and	
of Waikato		elevation) (New Zooland Transverse	
no.	Rock name	Mercator Projection)	Location
01	Paku Rhyolite	1854982 5901277	Paku Island, Tairua, outcrops
W110850		(± 7 m, 10 m)	on the coast of flow banded rhyolite, boulders of spherulitic rhyolite.
01 B	Paku Rhyolite -	1854982 5901277	Paku Island, Tairua, outcrops
W110851	spherulites	(± 7 m, 10 m)	on the coast of flow banded rhyolite, boulders of spherulitic rhyolite.
02	Timata Dome	1850618 5895060	Outcrop on the northern side of
W110852		(± 6 m, 16 m)	State Highway 25 in a corner beside the Tairua River, south of Timata Road.
03	Pauanui Dome	1856115 5897832	Flat Rock, Pauanui. From a
W110853	Complex	(± 6 m, 5 m)	rock fall on the coast. Abundant cobbles: white- cream-grey-pink-red, autobreccia, some flow banded.
04	Pohakahaka	1855987 5884002	Whitipirorua Point, southern
W110854	Dome Complex	(± 9 m, 6 m)	headland of Onemana Beach, outcrop on coast.
05	Pokohino Dome	1855733 5884890	Northern headland of Onemana
W110855	Complex	(± 6 m, 10 m)	Beach, from a boulder of a rock fall.
06	Broken Hills	1843457 5889883	From inside Broken Hills
W110856	Mine sample 1	(± 66 m)	Mine, in "the chamber".
07	Broken Hills	1843457 5889883	From inside Broken Hills
W110857	Mine sample 2	(± 66 m)	Mine. Known as "bubbly rhyolite".
08	Broken Hills	1843457 5889883	From inside Broken Hills
W110858	Mine sample 3	(± 66 m)	Mine.
09	Broken Hills	1843683 5890681	Outcrop on eastern side of
W110859	Flow Banded Rhyolite	(± 11 m, 24 m)	Puketui Valley Rd (off Morrisons Rd) beside swimming hole in Tairua River. Outcrop c. 15 m high.

Table I.1: Sample catalogue listing samples collected, field and University of Waikato rock store numbers, and sample locations.

10 W110860	Hikuai Ignimbrite	1845442 5886990 (± 6 m, 77 m)	From a boulder off the bluffs, on the northern side of Kitahi Road, Yule's Farm.
11 W110861	Wharekirauponga Dome	1850018 5868269 (± 25 m, 48 m)	Outcrop by waterfall under swing bridge at southern end of walking track.
12 W110862	Owharoa Ignimbrite	1844618 5854813 (± 10 m, 70 m)	Outcrop on eastern side of road to Owharoa Falls, close to intersection with State Highway 2.
13 W110863	Ferry Landing Ignimbrite	1842074 5920879	From a cove at Whakapenui Point, northern end of Front Beach (Maramaratotara Bay). Section c. 20 m thick.
14 W110864	Shakespeare Ignimbrite	1842976 5920281	Base of cliffs at eastern end of Maramaratotara Bay. Section > 70 m thick.
15 W110865	Papakura Bay Dome	1856873 5871562 (± 9 m, 7 m)	From a cave at the northern end of Papakura Bay (Whiritoa).
16 W110866	Whale Bone Bay Dome	1860278 5861103 (± 8 m)	Outcrop at northern headland of Homunga Bay, c. 5 m back from water. Bay consists of dm size boulders: andesite to rhyolite, south to north.
17 W110867	Shark Bay Dome	1860216 5857130 (± 30 m)	South side of northern headland at Waihi Beach.
18 W110868	The Knob	1853816 5884163 (± 5 m, 106 m)	Outcrop on western side of The Knob, off Pokohino Road in forestry on the way to Onemana.
19 W110869	Te Karaka Rhyolite	1855671 5879125 (± 20 m)	Outcrop to the west of Te Karaka Point, Whangamata Harbour.
20 W110870	Staircase Dome	1854184 5891525 (± 7 m, 56 m)	Outcrop at the intersection of two tracks in forestry near Ohui.
21 W110871	Wharepapa Ignimbrite	1844005 5906778	Outcrop at a waterhole in Kapowai River 100 m upstream of ford at beginning of Parakau Rd (off McGoram Rd-Kapowai Rd).

Sample no.			
University of Waikato no.	Rock name	Analysis performed	Stored sample
01	Paku Rhyolite	HS TS XRD XRF	RTPV
W110850			
01 B	Paku Rhyolite -	HS TS	R T
W110851	spherulites		
02	Timata Dome	HS TS M XRD XRF U-Pb	R T pT P V Z
W110852			
03	Pauanui Dome	HS TS M XRD XRF	R T pT P V
W110853	Complex		
04	Pohakahaka	HS TS M XRF U-Pb	R T pT P V Z
W110854	Dome Complex		
05	Pokohino Dome	HS TS XRF U-Pb	RTPVZ
W110855	Complex		
06	Broken Hills	HS TS XRD XRF U-Pb	RTPVZ
W110856	Mine sample 1		
07	Broken Hills	HS TS XRD XRF U-Pb	RTPVZ
W110857	Mine sample 2		
08	Broken Hills	HS TS XRD XRF U-Pb	RTPVZ
W110858	Mine sample 3		
09	Broken Hills	HS TS XRD XRF U-Pb	R T P V Z
W110859	Flow Banded Rhyolite		
10	Hikuai Ignimbrite	HS TS M XRF U-Pb	R T pT P V Z
W110860			
11	Wharekirauponga	HS TS XRD XRF U-Pb	RTPVZ
W110861	Dome		
12	Owharoa	HS TS M XRF U-Pb	R T pT P V Z
W110862	Ignimbrite		
13	Ferry Landing	HS TS M XRF U-Pb	R T pT P V Z
W110863	Ignimbrite		
14	Shakespeare	HS TS M XRF U-Pb	R T pT P V Z
W110864	Ignimorite		

Table I.2: Sample catalogue listing analytical procedures performed on each sample and the nature of remaining samples held in the University of Waikato rock store.

15	Papakura Bay	HS TS M XRF U-Pb	R T pT P V Z
W110865	Dome		
16	Whale Bone Bay	HS TS M XRF U-Pb	R T pT P V Z
W110866	Dome		
17	Shark Bay Dome	HS TS XRD XRF U-Pb	RTPVZ
W110867			
18	The Knob	HS TS XRD XRF U-Pb	R T P V Z
W110868			
19	Te Karaka	HS TS XRF U-Pb	RTPVZ
W110869	Rhyolite		
20	Staircase Dome	HS TS XRD XRF U-Pb	R T P V Z
W110870			
21	Wharepapa	HS TS M XRF	R T pT P V
W110871	Ignimbrite		

HS, TS	Hand specimen and thin section characteristics have been
	documented (Appendix II)
Μ	Phenocrysts have been analysed by electron probe micro-analyser
	(Appendix III)
XRD	Whole rock has been analysed by X-ray diffraction (Appendix IV)
XRF	Whole rock has been analysed by X-ray fluorescence (Chapter 3)
U-Pb	Sample has been dated by U-Pb dating of zircons

Stored sample Stored sample in the University of Waikato rock store as rock (R), unpolished thin section (T), polished thin section (pT), powder (P), zircon separates in vial (V) and mounted zircon on glass slide (Z)

Appendix II: Hand specimen and thin section descriptions

Sample			
no.	Rock name	Hand specimen	Thin section
01	Paku Rhyolite	White-grey-pink-red laminar flow banded (< 2 mm) devitrified rhyolite. Very hard and splintery.	Highly devitrified, flow banded (< 2 mm) fine-grained quartz/tridymite/cristobalite rhyolite. Some spherulites, < 0.3 mm. Biotite: subhedral flakes, < 0.2 mm. Rare pyrite: cubic crystals << 0.05 mm.
01B	Paku Rhyolite - spherulites	White-grey-pink spherulites, < 15 mm diameter. Very hard.	Devitrified spherulites. Quartz, tridymite(?): subhedral, < 0.2 mm. Some spherulites < 0.3 mm. Veins of the macro-spherulites are devitrified glass. Rare biotite: flakes, < 0.1 mm.
02	Timata Dome	Pink rhyolite, c. 30 % spherulites, modal size 6-8 mm. Quite unaltered, hard.	Devitrified, spherulitic rhyolite. Quartz: irregular, ~0.2 mm. Rare plagioclase: tabular, < 3 mm, sometimes in clusters with quartz. Rare altered mafics – cannot determine what they were: golden- dark brown, no pleochroism, yellow-brown interference colours, < 1 mm. Chlorite/illite alteration: occurs as small flecks < 0.04 mm and thin veins. Groundmass is devitrified glass. Fe-Ti oxides: illmenite, titanomagnetite.
03	Pauanui Dome Complex	Light grey rhyolite with quartz and plagioclase crystals, fresh (but looks weathered with orange patches/veins). Columnar jointed, c. 5 % phenocrysts.	Grey, porphyritic rhyolite. Plagioclase: tabular, subhedral, easily pluck out, < 2 mm. Altered mafics – now chlorite-smectite: rounded to anhedral, 0.25 - > 1.25 mm. Groundmass: fine-grained quartz. Quartz veins: < 0.15 mm wide, often lined with illite. Also orange-brown veins that can be seen in hand specimen: appear to be a result of weathering. Cubic Fe-Ti oxides: titanomagnetite, < 0.25 mm.

Table II.1: Hand specimen and thin section descriptions of samples collected.
04	Pohakahaka Dome Complex	Dark grey-red, very vesicular, flow banded, crystal poor rhyolite. Some lithophysae (some > 20 mm diameter) have abundant pale secondary minerals infilling them.	Vesicular, flow banded, devitrified rhyolite. Plagioclase: multiple twinning, tabular to irregular, cumulophyric, < 3 mm. Quartz: irregular, some embayed, < 2 mm. Altered mafics – now chlorite- smectite: rounded to anhedral. Unidentified mineral lining some vesicles: orangey-brown outline, colourless non-pleochroic interior, fractured, high relief, interference colours are quartz-like, but entire crystal does not go into extinction at once, anhedral, rounded to hexagonal and elongated, < 0.1 mm. Groundmass: glassy, flow banded, vesicles (some > 2.5 mm) irregular and rounded. Spherulites max ~0.5 mm. Microlites: aligned within bands. Fe-Ti oxides: titanomagnetite and ilmenite, < 0.3 mm.
05	Pokohino Dome Complex	Pale cream, soft, crystal rich, hydrothermally altered rhyolite. Some lithophysae (< few mm diameter), but others in local rocks are > 15 mm. Weathered to light yellow-brown.	Porphyritic, devitrified quartz rhyolite. Quartz: irregular, anhedral, prismatic, some have an altered rim, < 1 mm. Biotite: rare, highly altered. Groundmass: devitrified (now quartz, < 0.05 mm), microlites, rare spherulites < 0.5 mm. Almost veiny texture.
06	Broken Hills Mine sample 1	White and orange, banded (> 3 mm) hydrothermally altered rhyolite. Some lithophysae, < 6 mm diameter, some are infilled or lined with crystals. Orange staining might be from weathering?	Broadly flow banded, fine-grained rhyolite. Only phenocrysts are those lining cavities: unidentified crystal with orange coating/replacement (similar to unidentified mineral in 04). Groundmass: Quartz + tridymite(?), some lithophysae, some spherulites < 1 mm, ghosts of spherulites crystallised to SiO ₂ .
07	Broken Hills Mine sample 2	White and orange "bubbly" banded hydrothermally altered rhyolite. Many lithophysae, < 10 mm diameter, some are infilled or lined with crystals. Some spherulites. Orange staining might be from weathering? Crumbly.	Similar to 06. Vesicular, spherulitic rhyolite. Altered plagioclase: now sericite/adularia/quartz, sub- tabular. Quartz: veins (which contain the largest crystals < 0.15 mm), and groundmass. Some crystals around vesicles are coated with orange mineral as in 06. Rare Fe-Ti oxides < 0.2 mm. Ghosts of spherulites (< 2.5 mm) crystallised to quartz, glass absent.

08	Broken Hills Mine sample 3	White-pink-grey broadly banded hydrothermally altered rhyolite. Some spherulites. Few open lithophysae, most are infilled. A little crumbly.	Banded, devitrified, spherulitic, hydrothermally altered rhyolite. Altered plagioclase: now sericite + adularia, tabular, 2 mm. Quartz: very fine grained (< 0.1 mm), mostly forms bands and veins, devitrified glass in some places, crystals in veins can be bigger (> 0.1 mm). Thickest vein ~ 0.5 mm wide. Illite: thin veiny wisps. Spherulites, some ~ 5 mm, veins cut through them. Many Fe-Ti oxides: mostly pyrite, few elongated hexagonal.
09	Broken Hills Flow Banded Rhyolite	Pink-grey-white laminar flow banded (< 2 mm) rhyolite. Some lenses of grey crystals. Very hard and splintery. (Overall, slightly less laminar and paler than Paku Rhyolite.)	Flow banded (< 2 mm) slightly devitrified rhyolite. Quartz: mostly very fine grained (< 0.1 mm), some in thickest bands ~0.25 mm, rarely ~1 mm, anhedral, and irregular. Biotite: altered/oxidised, flaky, < 0.5 mm, many tiny flakes < 0.1 mm relatively unaltered. Many Fe- Ti oxides: pyrite?
10	Hikuai Ignimbrite	Pale cream, crystal- rich partially welded, jointed ignimbrite. Pale grey/white and altered yellow pumices (modal size c. 10 mm). Variety of lithics < 1 mm to > 60 mm diameter. Very light weight.	See section 2.4.4
11	Wharekirauponga Dome	Cream-orange flow banded, silicified, hydrothermally altered rhyolite with quartz veins. Some vugs with crystals growing on their edges. Some brecciated bits. Still evidence of porphyritic texture - can see crystals.	Porphyritic flow banded rhyolite. Quartz: subhedral to anhedral and irregular, some are embayed or slightly prismatic, 2 mm. Altered plagioclase: now sericite \pm adularia, subhedral, tabular, < 2.5 mm. Groundmass: fine-grained quartz, devitrified glass. Quartz veins (<0.5 mm wide). Illite/sericite veins (<0.01 mm wide). Some Fe-Ti oxides: pyrite?
12	Owharoa Ignimbrite	Creamy-grey densely welded and jointed lenticulite, flattened dense pumice (< 20 mm) some are still whitish, some almost like obsidian. Some lithics.	See section 2.4.5

13	Ferry Landing Ignimbrite	Greyish-brown, densely welded, jointed pumice-rich, lithic-poor lenticulite. Yellow-peachy pumice (wide range of sizes, > 50 mm). Some crystals. Some pumices have clusters of crystals in them.	See section 2.4.1
14	Shakespeare Ignimbrite	Light grey, pumice- rich, crystal-rich, lithic-poor, un- to partially welded, widely jointed ignimbrite. Pale creamy-white pumices (modal size 12 mm, max $>$ 30 mm). Variety of lithics.	See section 2.4.2
15	Papakura Bay Dome	Black to greeny-black glassy broadly flow banded (mm to cm) rhyolite. Many small vesicles (< 4 mm, most c. 1-2 mm), most are infilled (at least partially) with secondary minerals (grey-green). Small clusters of quartz and plagioclase crystals and solitary biotite flakes.	Vitrophyric, spherulitic rhyolite. Quartz: irregular, anhedral, some embayed, < 2 mm, sometimes in clusters with plagioclase. Plagioclase: multiple twinning, anhedral, irregular, some tabular, most are fractured, < 2.5 mm. Biotite: flaky, rare plagioclase inclusions, < 1.5 mm. Rare relict mafics. Groundmass: non- devitrified glass, perlitic cracks, edges of vesicles are devitrified. Rare Fe-Ti oxides: titanomagnetite. Microlites.
16	Whale Bone Bay Dome	Dark reddish grey devitrified, slightly vesicular, broadly banded, hydrothermally altered, jointed rhyolite. Phenocrysts of quartz and plagioclase. Few lithophysae, some are > 20 mm and infilled or lined with secondary minerals. Rare spherulites. Very hard.	Porphyritic banded rhyolite. Quartz: embayed, anhedral, some are almost hexagonal, mostly irregular, < 4 mm, occurs in clusters ± plagioclase. Plagioclase: sieve-texture (resorbed), multiple twinning, anhedral, irregular – tabular, < 2 mm. Groundmass: devitrified glass, few spherulites: < 0.8 mm, fan-shaped, a few smaller ones (0.15 mm) are whole and not devitrified. Fe-Ti oxides: titanomagnetite, ilmenite, pyrite.

17	Shark Bay Dome	Light creamy-grey hydrothermally altered, silicified, weathered (probably from sea water) rhyolite. Quartz phenocrysts.	Porphyritic altered rhyolite. Quartz: anhedral, rounded, embayed, < 1.5 mm. Rare altered plagioclase. Tridymite(?) lining cavities. Groundmass: fine-grained (< 0.05 mm) quartz. Clusters of pyrite.
18	The Knob	Grey-cream-pink highly silicified and hydrothermally altered broadly flow banded rhyolite. Very hard. Almost a sinter in places. Some cracks that have rusty- looking coating. Patches of quartz infilling vugs.	Porphyritic silicified rhyolite. Quartz: subhedral to anhedral, irregular, embayed, prismatic, < 2 mm. Altered plagioclase: now fine- grained SiO ₂ , subhedral and tabular. Groundmass: fine-grained quartz, noticeable absence of veins, quartz structures that are crystallised remains of spherulites. Rare Fe-Ti oxides: pyrite?
19	Te Karaka Rhyolite	Creamy pinkish grey vesicular spherulitic (< 2 mm diameter) rhyolite with abundant lithophysae, most of which are infilled. The spherulites are > 15 % of the rock.	Devitrified, spherulitic, crystal- poor rhyolite. Quartz: rare phenocrysts, subhedral, 1 mm. Altered glass and spherulites – look like they have been altered, rough outlines. No opaques.
20	Staircase Dome	Pinkish light grey crystal-rich (c. 25 %) broadly flow banded quartz-biotite rhyolite.	Medium-grained, porphyritic, flow banded rhyolite. Quartz: subhedral and irregular, some are embayed or display sub-conchoidal fractures, < 1.25 mm, also tridymite(?). Biotite: subhedral flakes, some are hexagonal and almost opaque, oxidised, < 1.25 mm. Rare plagioclase: subhedral and tabular to irregular, multiple twinning, often resorbed textures, < 2 mm. Groundmass: fine-grained quartz, variably devitrified glass. Rare spherulites < 0.7 mm. No opaques.
21	Wharepapa Ignimbrite	Light grey soft ignimbrite. White pumices (modal size < 15 mm, some are > 40 mm), a couple of yellowish pumices (which are very soft). Abundant dark lithics (< 4 mm).	See section 2.4.3

	Ferry l	Landing 1	lgnimbri	te W1108	863															
analysis number	2 c	2 r	3 r	3 c	3b r	3b c	4 r	4 c	5 r	5 c	6 r	6 c	7 r	7 c	8 r	8 c	9 r	9 c	10 r	10 c
Major oxide			lithic	lithic	lithic	lithic	pumice	pumice	pumice	pumice			pumice	pumice	pumice	pumice				
SiO ₂	57.97	60.10	60.48	59.35	60.97	58.98	60.26	58.92	59.80	59.42	60.95	59.08	59.60	58.29	60.83	59.87	60.25	59.23	61.48	59.91
TiO ₂	-0.02	0.05	-0.04	0.07	-0.02	-0.01	-0.06	0.13	-0.03	0.03	0.08	0.04	-0.03	0.01	0.07	-0.09	-0.03	0.10	0.12	0.04
Al ₂ O ₃	25.70	24.65	24.36	25.07	24.09	25.64	24.28	25.24	24.44	25.16	24.46	25.46	25.16	26.14	24.35	24.81	24.59	25.29	23.76	24.84
FeO*	0.18	0.16	0.22	0.31	0.22	0.20	0.15	0.05	0.33	0.23	0.36	0.25	0.28	0.28	0.14	0.25	0.31	0.17	0.23	0.24
MnO	0.04	0.02	0.02	-0.03	0.03	-0.05	0.04	0.10	0.13	0.06	-0.07	0.12	0.04	0.02	0.07	-0.11	-0.05	0.03	-0.02	0.00
MgO	-0.06	-0.13	-0.07	-0.04	-0.05	-0.11	-0.04	-0.08	-0.10	-0.07	-0.04	-0.09	-0.08	-0.07	-0.01	-0.12	-0.10	-0.05	-0.10	-0.08
CaO	7.75	6.55	6.48	7.18	5.94	7.66	6.23	7.35	6.30	7.14	6.26	7.14	6.92	7.93	6.08	6.38	6.32	7.13	5.60	6.77
Na ₂ O	6.84	7.50	7.30	7.15	7.37	6.97	7.60	6.96	7.81	6.96	7.93	6.94	7.29	6.74	7.68	7.70	7.71	7.29	8.02	7.44
K_2O	0.34	0.45	0.70	0.65	0.86	0.56	0.47	0.34	0.39	0.37	0.50	0.41	0.39	0.37	0.44	0.42	0.35	0.36	0.49	0.37
Total	98.74	99.35	99.45	99.71	99.41	99.84	98.93	99.01	99.07	99.30	100.43	99.35	99.57	99.71	99.65	99.11	99.35	99.55	99.58	99.53
Normalised va	alues																			
Ca	37.74	31.71	31.57	34.37	29.26	36.58	30.33	36.12	30.15	35.39	29.52	35.37	33.63	38.56	29.66	30.65	30.55	34.36	27.06	32.75
Na	60.28	65.70	64.37	61.93	65.70	60.23	66.95	61.89	67.63	62.43	67.67	62.21	64.11	59.30	67.79	66.95	67.44	63.57	70.12	65.12
K	1.97	2.59	4.06	3.70	5.04	3.18	2.72	1.99	2.22	2.18	2.81	2.42	2.26	2.14	2.56	2.40	2.01	2.07	2.82	2.13

Table III.1: Plagioclase phenocrysts. Plagioclase in ignimbrites are free crystals in the matrix unless otherwise stated (r = rim, c = core, m = mid-way). Total iron is expressed as FeO*.

																	1			
						Shakes	peare Ig	nimbrite	W110864	1							Whare	oapa Igni	mbrite W	110871
analysis																				
number	11 r	11 m	11 c	12 r	12 c	2 r	2 m	2 c	3 r	3 m	3 c	4 r	4 c	5 r	5 c	5 m	1 r	1 c	2 c	2 r
Major oxide	pumice	pumice	pumice									pumice	pumice							
SiO ₂	59.98	61.04	58.52	60.22	59.49	59.82	56.62	56.67	60.35	59.22	61.10	60.99	61.39	61.08	57.94	57.49	58.83	57.37	57.73	56.79
TiO ₂	-0.05	0.05	0.06	0.01	0.10	0.12	0.00	-0.03	0.02	0.16	0.02	0.06	0.00	0.07	0.12	0.05	0.13	0.08	-0.04	-0.01
Al ₂ O ₃	24.79	23.89	25.84	24.69	25.33	25.03	26.85	26.89	24.47	25.55	24.18	24.15	24.46	24.46	26.54	26.79	25.09	26.19	25.62	24.59
FeO*	0.30	0.18	0.31	0.36	0.38	0.25	0.36	0.43	0.34	0.35	0.17	0.25	0.17	0.31	0.25	0.35	0.10	0.37	0.18	0.29
MnO	-0.04	0.06	0.08	-0.09	0.10	-0.07	0.07	-0.03	-0.07	-0.04	-0.02	0.07	0.05	-0.08	0.01	0.08	0.01	-0.07	0.03	0.13
MgO	-0.07	-0.11	-0.07	-0.04	-0.04	-0.04	0.00	-0.01	0.00	0.03	0.07	0.09	0.16	-0.03	-0.08	0.04	-0.11	-0.16	-0.06	-0.18
CaO	6.60	5.54	7.65	6.44	7.18	7.05	9.22	9.31	6.40	7.36	6.00	6.09	6.13	6.32	8.66	8.39	7.24	8.30	8.00	7.53
Na ₂ O	7.35	7.87	7.08	7.49	7.25	7.25	6.27	5.98	7.78	7.04	7.80	8.00	7.93	7.90	6.36	6.49	7.13	6.51	6.71	6.70
K_2O	0.44	0.51	0.34	0.45	0.34	0.41	0.38	0.30	0.55	0.35	0.49	0.44	0.50	0.50	0.31	0.30	0.39	0.32	0.36	0.32
Total	99.30	99.03	99.81	99.53	100.13	99.82	99.77	99.51	99.84	100.02	99.81	100.14	100.79	100.53	100.11	99.98	98.81	98.91	98.53	96.16
Normalised va	alues																			
Ca	32.31	27.17	36.66	31.37	34.68	34.13	43.87	45.44	30.28	35.87	28.99	28.88	29.09	29.80	42.17	40.94	35.13	40.56	38.89	37.58
Na	65.12	69.85	61.40	66.02	63.37	63.51	53.98	52.82	66.62	62.10	68.19	68.64	68.09	67.40	56.04	57.31	62.61	57.57	59.03	60.51
K	2.56	2.98	1.94	2.61	1.96	2.36	2.15	1.74	3.10	2.03	2.82	2.48	2.82	2.81	1.80	1.74	2.25	1.86	2.08	1.90

						Pauan	ui Dome	Complex	W11085	3										
analysis number	5 r	5 c	6 c	7 r	7 c	1 r	1 m	1 m	1 c	2 r	2 c	3 r	3 c	4 r	4 c	4 m	5 r	5 c	6 r	6 m
Major oxide	pumice	pumice																		
SiO ₂	58.90	57.44	59.73	61.93	59.71	56.81	57.85	57.10	56.78	57.30	55.78	58.49	58.67	56.37	57.55	57.66	56.88	55.61	57.62	57.12
TiO ₂	0.01	-0.06	0.01	0.05	0.11	0.13	0.08	0.09	0.18	0.03	0.00	0.01	-0.02	0.05	-0.06	-0.03	0.05	0.12	0.01	0.05
Al_2O_3	25.25	26.02	24.34	24.04	24.70	26.37	26.27	26.41	26.90	26.98	27.42	26.09	25.76	26.72	26.20	26.14	26.09	27.13	26.27	26.80
FeO*	0.17	0.22	0.25	0.48	0.29	0.59	0.29	0.13	0.22	0.48	0.26	0.44	0.12	0.48	0.48	0.30	0.36	0.35	0.50	0.32
MnO	-0.02	0.09	0.04	0.04	0.05	-0.04	-0.07	-0.03	-0.01	0.03	0.12	-0.09	0.00	-0.09	-0.03	0.04	-0.05	-0.08	-0.16	0.00
MgO	-0.07	-0.09	-0.04	-0.01	-0.09	0.01	0.00	-0.04	-0.07	-0.02	0.05	-0.02	0.01	0.05	-0.05	-0.04	0.01	0.09	0.06	0.08
CaO	7.39	8.10	6.66	6.19	6.94	9.01	8.20	8.67	9.17	9.40	9.91	8.01	7.98	8.86	8.62	8.39	8.79	9.61	8.56	9.14
Na ₂ O	6.92	6.64	7.36	7.38	7.41	6.12	6.35	6.24	5.91	6.05	5.64	6.33	6.85	5.96	6.35	6.37	6.05	5.96	6.36	5.89
K ₂ O	0.37	0.35	0.37	0.56	0.45	0.56	0.48	0.44	0.42	0.52	0.34	0.65	0.36	0.54	0.55	0.47	0.60	0.34	0.57	0.48
Total	98.92	98.71	98.72	100.66	99.57	99.56	99.45	99.01	99.50	100.77	99.52	99.91	99.73	98.94	99.61	99.30	98.78	99.13	99.79	99.88
Normalised va	alues																			
Ca	36.31	39.45	32.62	30.63	33.23	43.42	40.47	42.32	45.03	44.83	48.29	39.58	38.36	43.67	41.51	40.97	42.98	46.20	41.26	44.87
Na	61.53	58.52	65.23	66.08	64.21	53.37	56.71	55.12	52.52	52.22	49.74	56.60	59.58	53.16	55.34	56.29	53.53	51.85	55.47	52.32
K	2.16	2.03	2.16	3.30	2.57	3.21	2.82	2.56	2.46	2.95	1.97	3.82	2.06	3.17	3.15	2.73	3.49	1.95	3.27	2.81

		T: 4	. D	V110053							TT21		- 11/1100	(0						
analysia		Timata	a Dome v	v110652							nikuai i	gmmbrit	e w1100	00						
number	6.0	3 r	3 m	3.0	4 r	4 c	5 r	5 c	6 r	6.0	11 r	11 c	10 r	10 m	10 c	7 r	7.0	8 r	8.0	Q r
	00	51	5 111	50	71	40	51	50	01	00			101	10 111	10 0	/ 1	10			1
Major oxide											pumice	pumice						pumice	pumice	
SiO ₂	55.85	57.77	57.30	58.01	57.80	58.44	58.42	58.41	57.40	57.11	62.07	61.92	62.04	62.04	61.23	57.92	55.90	56.20	56.55	61.70
TiO ₂	-0.03	0.08	0.03	-0.04	0.23	0.09	-0.03	-0.04	0.16	0.00	0.07	0.19	0.00	0.11	0.08	0.06	0.18	0.06	0.08	0.07
Al ₂ O ₃	27.78	25.92	26.06	26.14	25.94	25.68	25.87	25.59	26.00	26.27	23.77	23.74	23.63	23.70	23.95	26.09	27.64	27.66	26.69	23.69
FeO*	0.37	0.31	0.34	0.25	0.34	0.15	0.28	0.22	0.41	0.24	0.32	0.15	0.25	0.29	0.12	0.22	0.25	0.18	0.27	0.21
MnO	0.08	-0.05	0.09	-0.02	-0.10	-0.03	0.23	0.05	-0.06	-0.05	-0.08	-0.06	0.08	-0.14	0.04	0.09	0.00	-0.01	0.02	0.11
MgO	0.07	0.06	0.10	0.07	0.05	-0.05	-0.04	0.06	-0.01	-0.03	-0.06	-0.08	-0.10	-0.08	-0.06	-0.08	-0.07	0.00	-0.08	-0.11
CaO	9.87	8.27	8.29	8.27	8.41	7.97	8.02	7.97	8.53	8.62	5.11	5.25	5.05	5.16	5.59	8.05	9.76	9.46	9.01	5.37
Na ₂ O	5.50	6.41	6.46	6.21	6.40	6.66	6.44	6.52	6.24	6.30	7.91	8.35	8.23	8.54	7.86	6.83	5.75	6.16	6.33	8.22
K ₂ O	0.37	0.50	0.44	0.43	0.60	0.46	0.61	0.46	0.49	0.38	0.53	0.40	0.49	0.50	0.45	0.31	0.21	0.26	0.31	0.55
Total	99.86	99.27	99.11	99.32	99.67	99.37	99.80	99.24	99.16	98.84	99.64	99.86	99.67	100.12	99.26	99.49	99.62	99.97	99.18	99.81
Normalised v	alues																			
Ca	48.71	40.41	40.43	41.31	40.62	38.75	39.31	39.23	41.80	42.10	25.48	25.20	24.60	24.33	27.47	38.74	47.81	45.23	43.25	25.69
Na	49.12	56.68	57.01	56.13	55.93	58.59	57.13	58.07	55.34	55.69	71.37	72.52	72.56	72.86	69.90	59.48	50.97	53.29	54.98	71.17
K	2.17	2.91	2.56	2.56	3.45	2.66	3.56	2.70	2.86	2.21	3.15	2.29	2.84	2.81	2.63	1.78	1.22	1.48	1.77	3.13

																Pohaka	ahaka Do	ome Com	plex W11	0854
analysis number	9 c	6 r	6 c	5 r	5 m	4 c	3 r	3 c	3b c	3b r	4 c	4 r	2 r	2 c	1 r	1 c	1 r	2 r	2 m	2 c
Major oxide							lithic	lithic	lithic	lithic			lithic	lithic	lithic					
SiO ₂	55.82	62.08	62.80	62.19	61.09	61.33	59.66	59.04	58.21	58.17	62.27	62.72	58.80	58.39	59.80	61.92	60.64	60.68	58.58	61.51
TiO ₂	0.00	0.00	-0.01	0.13	0.02	0.14	0.06	0.01	0.03	0.08	0.07	0.01	0.13	0.01	0.05	-0.01	0.03	0.00	0.12	-0.04
Al ₂ O ₃	27.86	23.66	23.33	23.75	24.23	24.37	25.13	26.21	25.60	25.71	23.92	23.52	26.07	25.86	25.34	22.75	24.55	23.89	25.68	23.44
FeO*	0.46	0.40	0.26	0.17	0.17	0.16	0.35	0.25	0.52	0.34	0.27	0.27	0.22	0.47	0.36	0.20	0.21	0.35	0.16	0.16
MnO	-0.06	-0.08	-0.12	-0.03	0.03	0.02	0.06	0.09	-0.08	0.06	0.15	0.07	-0.07	0.00	-0.10	-0.05	-0.04	-0.03	0.10	0.01
MgO	-0.09	0.15	-0.13	0.00	-0.06	-0.10	-0.10	-0.01	-0.03	0.01	0.01	-0.06	-0.10	-0.04	-0.03	-0.04	-0.07	-0.09	-0.03	-0.07
CaO	10.22	5.05	4.67	5.27	5.91	6.03	7.43	7.94	7.72	7.86	5.32	5.02	8.11	8.24	7.25	4.75	6.47	5.85	7.58	5.48
Na ₂ O	5.48	8.34	8.38	8.39	7.90	8.17	7.31	6.53	6.85	6.75	8.34	8.34	6.52	6.59	6.90	8.35	7.65	7.61	6.98	7.93
K ₂ O	0.25	0.43	0.55	0.44	0.43	0.49	0.39	0.38	0.40	0.33	0.47	0.44	0.34	0.36	0.42	0.66	0.55	0.58	0.40	0.56
Total	99.94	100.03	99.73	100.31	99.72	100.61	100.29	100.44	99.22	99.31	100.82	100.33	100.02	99.88	99.99	98.53	99.99	98.84	99.57	98.98
Normalised v	alues																			
Ca	50.01	24.45	22.79	25.12	28.53	28.18	35.18	39.29	37.49	38.40	25.37	24.33	39.92	40.01	35.83	23.01	30.86	28.80	36.64	26.74
Na	48.53	73.07	74.01	72.38	69.00	69.09	62.63	58.47	60.20	59.68	71.96	73.13	58.08	57.91	61.70	73.19	66.02	67.80	61.06	70.01
K	1.46	2.48	3.20	2.50	2.47	2.73	2.20	2.24	2.31	1.92	2.67	2.54	1.99	2.08	2.47	3.81	3.12	3.40	2.30	3.25

											Papak	ura Bay I	Dome W1	10865						
analysis																				
number	3 r	3 c	3b r	3b m	3b c	4 r	4 m	4 c	6 r	6 c	2 r	2 c	2b r	2b c	3 c	3 m	3 r	4 r	4 c	5 r
Major oxide																				
SiO ₂	60.00	61.05	59.94	57.77	56.56	60.88	62.24	58.96	61.01	59.95	60.27	59.53	61.60	60.05	60.22	55.87	58.48	61.26	60.05	63.93
TiO ₂	0.14	0.13	-0.04	0.05	-0.08	0.09	0.14	0.11	0.16	0.12	0.15	0.00	0.04	0.07	-0.02	0.00	0.07	0.07	0.07	-0.03
Al ₂ O ₃	24.37	23.54	24.69	26.23	25.21	23.71	23.34	25.54	24.07	25.20	24.19	24.61	23.55	24.68	24.37	27.28	25.42	24.23	24.26	21.28
FeO*	0.20	0.34	0.24	0.20	0.15	0.30	0.26	0.16	0.18	0.17	0.12	0.17	0.08	0.29	0.16	0.25	0.14	0.13	0.23	0.17
MnO	0.04	0.00	0.07	0.01	0.10	0.10	0.14	-0.07	0.00	-0.04	-0.16	-0.01	0.11	-0.03	0.10	-0.14	0.03	-0.04	-0.01	-0.01
MgO	0.06	-0.01	-0.08	-0.06	-0.11	-0.09	-0.04	-0.06	0.05	-0.07	0.00	0.00	-0.10	-0.01	0.03	0.06	-0.08	-0.05	-0.06	-0.03
CaO	6.31	5.38	6.53	8.18	7.36	5.61	5.04	7.51	5.93	6.80	6.06	6.61	5.33	6.35	6.29	9.56	7.65	5.79	6.39	4.92
Na ₂ O	7.23	8.16	7.63	6.74	6.67	7.65	8.31	7.04	7.68	7.40	7.44	7.48	7.92	7.47	7.47	5.90	6.85	8.03	7.69	6.63
K ₂ O	0.49	0.67	0.52	0.35	0.35	0.57	0.66	0.37	0.45	0.47	0.62	0.62	0.92	0.63	0.60	0.32	0.60	0.60	0.71	1.00
Total	98.84	99.26	99.50	99.47	96.21	98.82	100.09	99.56	99.53	100.00	98.69	99.01	99.45	99.50	99.22	99.10	99.16	100.02	99.33	97.86
Normalised v	alues																			
Ca	31.59	25.69	31.16	39.34	37.08	27.87	24.16	36.30	29.12	32.77	29.91	31.65	25.68	30.80	30.65	46.37	36.85	27.52	30.21	27.17
Na	65.49	70.50	65.89	58.66	60.82	68.76	72.08	61.57	68.25	64.53	66.45	64.81	69.05	65.56	65.87	51.78	59.71	69.08	65.79	66.26
K	2.92	3.81	2.95	2.00	2.10	3.37	3.77	2.13	2.63	2.70	3.64	3.53	5.28	3.64	3.48	1.85	3.44	3.40	4.00	6.58

			Whale	Bone Ba	y Dome V	W110866											Owhar	oa Ignim	brite W11	10862
analysis number Major oxide	5 m	5 c	1 r	1 c	2 r	2 c	3 r	4 r	4 c	3 c	5 r	5 c	6 r	6 c	8 r	8 c	2 r	2 c	3 r	3 m
SiO ₂	60.90	58.17	62.52	60.15	62.26	61.11	62.04	61.84	63.14	60.81	63.11	61.87	61.87	63.17	61.99	61.73	59.38	59.91	60.54	60.22
TiO ₂	0.07	-0.09	0.18	0.10	0.05	0.06	0.06	0.08	0.00	0.15	-0.02	-0.02	0.21	0.07	0.09	0.05	0.07	-0.01	0.03	-0.02
Al ₂ O ₃	24.70	26.14	22.85	24.85	23.29	23.75	23.96	23.77	23.10	23.87	22.72	23.88	23.10	22.70	23.28	23.33	25.23	24.78	24.82	25.31
FeO*	0.19	0.17	0.37	0.17	0.22	0.13	0.19	0.03	0.16	0.13	0.11	0.13	0.15	0.25	0.27	0.16	0.12	0.03	0.26	0.14
MnO	0.16	-0.03	-0.09	-0.03	0.07	-0.04	-0.02	-0.01	0.09	0.15	-0.10	-0.02	-0.03	0.03	0.18	-0.01	0.02	-0.05	-0.07	-0.02
MgO	-0.12	0.09	-0.16	-0.05	-0.04	-0.04	-0.03	-0.17	-0.02	0.00	-0.04	-0.12	-0.09	0.01	-0.06	-0.07	-0.06	-0.10	-0.05	-0.06
CaO	6.21	8.08	4.45	6.54	4.76	5.60	5.35	5.14	4.47	5.35	4.35	5.22	4.80	4.24	4.99	5.16	7.29	6.52	6.44	7.09
Na ₂ O	7.77	6.65	8.22	7.43	8.21	7.79	8.09	8.11	8.57	7.82	8.26	7.82	7.91	8.83	8.05	8.13	7.21	7.48	7.71	7.43
K ₂ O	0.58	0.51	1.04	0.69	1.02	0.79	0.83	0.80	0.92	0.87	0.99	0.80	0.87	1.02	0.94	0.82	0.59	0.51	0.50	0.53
Total	100.46	99.69	99.38	99.85	99.84	99.15	100.47	99.59	100.43	99.15	99.38	99.56	98.79	100.32	99.73	99.30	99.85	99.07	100.18	100.62
Normalised v	alues																			
Ca	29.63	38.99	21.64	31.43	22.85	27.14	25.50	24.75	21.21	26.05	21.24	25.68	23.82	19.78	24.13	24.75	34.65	31.55	30.68	33.50
Na	67.08	58.08	72.34	64.62	71.32	68.31	69.79	70.66	73.59	68.91	73.00	69.63	71.04	74.55	70.45	70.57	62.01	65.51	66.48	63.52
K	3.29	2.93	6.02	3.95	5.83	4.56	4.71	4.59	5.20	5.04	5.76	4.69	5.14	5.67	5.41	4.68	3.34	2.94	2.84	2.98

analysis number Major oxide	3 c	4 r	4 c	5 c	5 r	6 r	6 c
SiO ₂	59.82	61.49	59.06	61.81	61.28	59.89	59.66
TiO ₂	0.06	0.10	0.11	0.06	0.02	0.08	0.16
Al_2O_3	24.97	23.86	25.85	23.78	23.95	24.87	25.61
FeO*	0.23	0.20	0.06	0.21	0.22	0.16	0.32
MnO	0.07	-0.06	0.06	0.07	0.07	0.00	-0.02
MgO	-0.15	-0.07	-0.05	-0.08	-0.04	-0.07	-0.04
CaO	6.81	5.30	7.67	5.65	5.48	6.61	7.28
Na ₂ O	7.25	8.08	6.86	8.09	7.85	7.31	7.19
K_2O	0.53	0.71	0.47	0.63	0.64	0.51	0.47
Total	99.59	99.61	100.09	100.22	99.47	99.36	100.63
Normalised v	alues						
Ca	33.12	25.52	37.15	26.85	26.80	32.33	34.91
Na	63.81	70.41	60.13	69.58	69.47	64.70	62.40
К	3.07	4 07	2 71	3 57	3 73	2 97	2.68

Pyroxenes				В	iotite												
	Wharepapa Ignimbrite W110871					Papakura Bay Dome W110865								Owharoa Ignimbrite W110862			
analysis	2 -	2 .	4.0		analysis	1	1.0	6	6.0	7 -	7 .	Q	8 .	1	1.0	7	
number Maian anida	51	5 C	4 C		number	1	10	01	00	/ 1	70	81	80	11	10	/ 1	
Major oxide	ormopyroxene	ormopyroxene	augne		Major oxide												
SiO ₂	51.85	52.41	52.38		SiO ₂	35.01	35.41	35.43	35.53	35.42	35.23	35.09	35.23	35.13	35.91	38.24	
TiO ₂	0.11	0.34	0.32		TiO ₂	4.88	4.54	5.02	5.37	5.04	5.20	5.06	5.04	4.94	4.92	3.79	
Al ₂ O ₃	0.45	0.74	1.31		Al ₂ O ₃	13.69	13.68	13.79	13.81	13.82	13.80	13.54	13.56	14.19	14.31	16.45	
FeO*	25.91	26.12	9.42		FeO*	25.31	25.85	25.82	25.78	26.20	26.00	25.33	25.72	23.57	24.42	19.34	
MnO	1.53	1.08	0.30		MnO	0.09	0.12	0.09	0.45	0.00	0.00	0.17	0.09	0.13	0.05	0.03	
MgO	18.20	19.02	14.60		MgO	7.10	7.45	7.26	7.37	7.19	6.93	7.28	7.42	7.99	8.05	6.51	
CaO	1.21	1.37	20.27		CaO	-0.01	0.02	0.02	0.07	0.05	0.02	0.05	0.10	0.11	0.04	0.13	
Na ₂ O	-0.05	-0.11	0.19		Na ₂ O	0.53	0.39	0.36	0.58	0.48	0.57	0.38	0.31	0.60	0.42	0.47	
K ₂ O	0.08	0.09	0.05		K ₂ O	8.36	8.64	8.61	8.50	8.48	8.27	8.27	8.52	8.25	8.45	6.86	
Total	99.29	101.06	98.84		Total	94.96	96.10	96.40	97.46	96.68	96.02	95.17	95.99	94.91	96.57	91.82	
Normalised valu	ies				Normalised va	alues											
Ca	2.59	2.84	42.29		Al	34.52	34.19	42.81	33.64	32.94	33.35	33.08	33.30	33.65	33.15	32.87	
Fe	43.26	42.29	15.34		Mg	24.57	24.32	21.42	22.06	22.68	22.20	22.32	21.91	21.37	22.54	22.74	
Mg	54.15	54.87	42.37		Fe+Mn	40.91	41.49	35.77	44.29	44.37	44.46	44.59	44.79	44.98	44.31	44.39	

Table III.2: Mafic minerals. Minerals in ignimbrites are free crystals in the matrix (r = rim, c = core, m = mid-way). Total iron is expressed as FeO*.

Appendix IV: XRD traces

Selected Pattern: Silicon, syn 00-027-1402		
Residue + Peak List	Amana	<u> </u>

Selected Pattern: alumina 00-010-0173			
Residue + Peak List			
Accepted Patterns			

Broken Hills Mine sample 2 W110857

Accepted Patterns

Broken Hills Flow Banded Rhyolite W110859

Accepted Patterns

Selected Pattern: alumina 00-010-0173		
Residue + Peak List		
Accepted Patterns		

Staircase Dome W110870

Accepted Patterns

116

Gemini table									
Sample tray	55 Hz								
Table	19.9 Hz								
Vertical magnetic separator									
Current	1.0 Am								
Horizontal mag	gnetic separator								
Tilt	front to back	15 °							
	side to side	10 °							
Current	0.5 Am								
Chute	2								

Appendix VI: LA-ICP-MS specifications

ICD MS							
Model		Elan 6100 DRCII ICP MS (Perkin Elmer Sciev)					
Gas flows	Plasma (Ar)	15 L min					
Gas nows	$\Delta u xi liar y (\Delta r)$	1.2 L min					
	Carrier (He)	1.2 Linnin					
	Nabulisar	0.63 L min					
Shield torch	rebuilser	Used for most analyses					
Vacuum pre	coure	$1 \ge 10^{-5}$ Torr					
Software	55010	Flan 3.4					
Soltware							
LA							
Model		New Wave UP-213 Deep Nd YAG – Tempest 20 Hz					
Wavelength		5 th Harmonic @ 213 nm					
Repetition ra	ate	20 Hz					
Pre-ablation	laser warm-up	Laser fired continuously					
Pulse duration	on (FWHM)	< 4 ns (stability 3 %)					
Beam – expa	ander setting	0					
Focussing of	bjective	5X, f.l. = 40 mm					
Degree of de	efocusing	Not known					
Spot size		30-60 µm					
Incident puls	se energy	c. > 1 mJ per pulse					
Energy dens	ity on sample	c. > 3 mJ					
Software		New Wave Research (Merchantek) Laser Ablation					
		System 1.8.13.1					
Data Acquis	sition Parameters						
Data acquisi	tion protocol	Time resolved analyses					
Scanning mo	ode	Peak hopping, 1 point per peak					
Detector mo	de	Pulse counting, dead time correction applied					
Isotopes dete	ermined	²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U, ²⁹ Si, ⁸⁷ Sr, ⁸⁹ Y, ⁹¹ Zr, ¹⁷⁷ Hf					
Dwell time p	per isotope	15, 30, 10, 10, 15, 5, 5, 5, 5, 5 ms respectively					
Quadrapole	settling time	c. 2 ms					
Time/scan	-	c. 89 ms					
Data acquisi	tion	180 s (60 s gas blank, up to 120 s ablation)					
Software		GLITTER (version 4.4.1). Gemoc Laser ICP-MS.					

Table VI.1: Operating conditions and data acquisition parameters used for U-Pb dating using LA-ICP-MS.

Table VI.2: Specific information regarding standards used during LA-ICP-MS sessions.

Standards	
Concentration	NIST610 – doped glass standard
Isotope ratio	Gem zircon "GJ1", 608.5 My
Known/Unknown	Gem zircon "Temora2", 416.78 My

Table VI.3: Laser parameters as used per standard and unknown sample.

Laser parameters				
	NIST610	GJ1	Temora2	Unknown
Power output (%)	60	60	60	60
Repetition rate (Hz)	20	20	20	20
Spot size (µm)	60	30	30	30
Dwell time per spot (s)	60	60	45	45
Warm up time (s)	60	60	80	80

Appendix VII: Certificates of authenticity

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Materials

610, Trace Elements in a Glass Matrix (3 mm Wafer) 611, Trace Elements in a Glass Matrix (1 mm Wafer)

(Nominal Trace Element Concentration 500 mg/kg (ppm))

These Standard Reference Materials (SRMs) were produced and certified to facilitate the development of chemical methods of analysis for trace elements and are one of a series of four pairs of SRMs. For both SRMs, 610 and 611, the nominal trace element concentration is 500 mg/kg for each of the sixty-one elements that have been added to the glass support matrix. The two SRMs differ only in the thickness of the glass wafer. Units of SRMs 610 and 611 are issued as sets of six wafers.

(Certified Values are Listed on Page 2)

These materials were prepared in rod form and have been sliced into wafers. The rods were hand-pulled, and therefore are not uniform over their length. Each wafer is oval to circular in cross-section, with a nominal diameter of 12-14 mm. The certified values are for an entire wafer (no fragment thereof). The debris from wafering has been only partially removed and each wafer should be surface cleaned before use. The first step in preparing the wafer for analysis is to wipe it clean with alcohol, and then to give it a mild surface cleaning (not etch) in dilute (1:10) nitric acid. The wafers were cut with a copper-bonded diamond wheel and the nitric acid step is included to remove any possible copper contamination.

Considerable care and effort have gone into the manufacturing of these SRMs to ensure homogeneity. The target level of precision and accuracy for certification of these materials was 2 percent or better. To date no element has been proven to be heterogeneous outside this limit for the SRM wafer used in its entirety. However, spatial inhomogeneity does exist within each wafer. For certification, two or more methods or laboratories must agree to at least the target level.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of W.R. Shields.

The technical and support aspects involved in the original preparation, certification, and issuance of these Standard Reference Materials were coordinated through the Standard Reference Materials Program by J.L. Hague. Revision of this certificate was coordinated through the Standard Reference Materials Program by J.S. Kane.

This Certificate of Analysis has undergone editorial revision to reflect program and organizational changes at NIST and at the Department of Commerce. No attempt was made to reevaluate the certificate values or any technical data presented in this certificate.

Gaithersburg, MD 20899 January 27, 1992 (Revision of certificate dated 1-4-82) William P. Reed, Chief Standard Reference Materials Program

(over)

Fig. VII.1: Certificate of authenticity, NIST610 glass standard reference material.

A listing of the 61 elements added and the present status of the analytical certification are given in the following table. An asterisk before the element indicates a certified concentration for that element. The indicated limits on the concentration are equal to the entire range of observed results among sample points and/or the 95 percent confidence interval, whichever is larger. Values in parentheses are information values and are not certified, for the reasons given in the footnotes. Nominal composition of the support matrix is 72% SiO₂, 12% CaO, 14% Na₂O, and 2% Al₂O₃.

Element	Value	Notes	Element	Value	Notes
Antimony			Boron	(351)	1,a
Arsenic			Cadmium		
Barium			Cerium		
Beryllium			Cesium		
Bismuth			Chlorine		
Chromium			Europium		
Cobalt	(390)	2,b,c	Fluorine		
Copper	(444±4)	3,a	Gadolinium		
Dysprosium			Gallium		
Erbium	-		Germanium		
Gold	(25)	4,b,d	Lanthanum		
Hafnium			*Lead	426±1	6,a,f
Holmium			Lithium		
Indium			Lutetium		
*Iron	458±9	5,d,e	Magnesium		
*Manganese	485±10	7,d,g	Phosphorus		
Molybdenum			Potassium	(461)	1,a
Neodymium			Praseodymium		
*Nickel	458.7±4	8,a,d,e	Rhenium		
Niobium			*Rubidium	425.7±0.8	9,a,h,j
Samarium			Sulfur		
Scandium			Tantalum		
Selenium			Tellurium		
Silver	(254±10)	10.a,b	Terbium		
*Strontium	515.5±0.5	11,a,h,j	Thallium	(61.8±2.5)	12,a
•Thorium	457.2±1.2	13,a,f	•Uranium	461.5±1.1	15,a,f
Thullum			Vanadium		
Tin			Ytterbium		
Titanium	(437)	14,e	Yttrium		
Tungsten			Zinc	(433)	16,k
			Zirconium		

(All values given in table are in mg/kg (ppm) by weight.)

Fig. VII.1 cont.: Certificate of authenticity, NIST610 glass standard reference material.

DEPT. OF EARTH & PLANETARY SCIENCES, MACQUARIE UNIVERSITY SYDNEY, NSW, AUSTRALIA 2109 Telephone: (02) 9850 6126 (ISD): 61 2 9850 6904 (ISD): 61 2 9850 6904 Email: ebclouso@els.mq.edu.au

Australian Research Council G E M O C NATIONAL KEY CENTRE GEOCHEMICAL EVOLUTION AND METALLOGENY OF CONTINENTS

5 November, 2007

Amber Whittaker Dept Earth and Ocean Sciences University of Waikato Hamilton New Zealand

Re: GJ1 zircon standard

Dear Amber,

Please find enclosed a piece of the GEMOC GJ1 zircon standard. Please notice that this pieces number is GJ1/50. The table with TIMS data for the GJ1 standard is attached. We suggest that you obtain a TIMS age on the individual fragment to see that it does not deviate from what we already know, and we ask that you send us these data.

Please e-mail me when you receive the standard and I will organize an invoice for it.

Best wishes,

Elena Belousova

Fig. VII.1: Certificate of authenticity, gem zircon GJ1.

Fig. VII.3: Relative element concentrations of the key U-Pb isotopes and the known TIMS age of the GJ1 crystal.

Page 1 of 1 WITH COMPLIMENTS AGSO 02/08/2006 (@ga.gov.au> Temora 2 Zircon Standard 0.01g minor impurilies present BRidgway For Lance Black L_NAME Telephone: (02) 6249 9111 Facsimile: (02) 6249 9999 website: www.agso.gon.au Cor Jerrabomberra Avenue & Hindmarsh Drive, Symonstan ACT 2609 GPO Box 378, Canberra, ACT, 2601, Australia App. 10:011 711:029 Dear Peter, Following a request from Keith Sircombe after he visited you, our Minsep team sent 0.01 grams of the TEMORA standard to you last week. The supply you receive will be about 95% pure, and there will also be some inferior grains of zircon present, some of which will contain inclusions of iron oxide. It will be up to you to handplick the grains to the calibre you need. Unfortunately, we do not have the resources to do this, particularly as the standard is now being used in more than 70 different laboratories. What you will be receiving, in common with those other laboratories, is the TEMORA 2 standard. I presume you are fully aware that the latest reference to the standard is in Black et al (Chemical Geology 205, 115-140), which which be received as the result of the resource of the standard is in Black et al (Chemical Geology 205, 115-140), which also lists the earlier references. Please advise me when the standard arrives, or let me know if it has not arrived by this time next week. We have been finding that it is commonly delayed in the mail for "security reasons". I guess it might be confused with anthrax or cocaine, or something similar. Best wishes, Lance Middledale Gebbroic Diorite Paleozoic Lachlan Orogen Eastern Australia 200 ph /2 50 U are 416.5 ± 0.22 Ma . 46,78 ± 0.33 MG best estimate 11/08/2006

Fig. VII.4: Certificate of authenticity, Temora2.

The following tables summarise the colour, ${}^{206}\text{Pb}/{}^{238}\text{U}$ and ${}^{207}\text{Pb}/{}^{235}\text{U}$ isotope ratio, age estimate data and associated 1 σ age errors for the 18 samples that were dated in this study. Zircon crystals that are discordant, have low probability of concordance (< 5 %), have large errors (> 50 %), or display negative values are displayed with a strike through the data. These crystals have not been included in any subsequent age data analysis.

Spot	Measured isotope ratios and 1σ (%) internal errors								Estimated ages and 1σ absolute internal errors (My)			²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	Spot	Selected	l age and		
No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MSWD	external e	error (My)
K02-1	pink	0.07767	0.03357	0.00142	0.00014	0.01716	0.00728	0.0003	0.00013	9.2	0.87	17.3	7.27	21	1.6	8.16	0.44
K02-2	light pink	0.20423	0.05208	0.00121	0.00013	0.03641	0.00854	0.00055	0.00015	7.8	0.86	36.3	8.37	DISCORDANT			
K02-3	light pink	0.10164	0.06408	0.0015	0.00023	0.02106	0.01295	0.00148	0.00032	9.7	1.47	21.2	12.88	32	32 0.98		0.72
K02-4	light pink	0.065	0.04701	0.00136	0.00017	0.01268	0.00905	0.00127	0.00022	8.7	1.1	12.8	9.08	62	0.25	8.3	0.53
K02-5	light pink	0.12619	0.03151	0.00144	0.00012	0.0235	0.0056	0.00056	0.0001	9.3	0.8	23.6	5.55	0.4	8.5	7.32	-14
K02-6	light pink	0.20715	0.02706	0.0013	0.00009	0.03838	0.00454	0.00063	0.00008	8.4	0.55	38.2	4.44	DISCORDANT			
K02-7	light pink	0.05295	0.02444	0.00129	0.00011	0.00944	0.0043	0.0004	0.00009	8.3	0.73	9.5	4.32	74	0.11	8.11	0.36
K02-8	light pink	0.04839	0.01055	0.00123	0.00006	0.00837	0.0018	0.00049	0.00006	7.9	0.39	8.5	1.81	71	0.13	7.8	0.21
K02-9	light pink	0.20783	0.07518	0.00122	0.0002	0.03709	0.01224	0.0003	0.00022	7.8	1.26	37	11.99	0.8	7	4.9	21
K02-11	light pink	0.15626	0.06055	0.00165	0.00023	0.03744	0.01372	0.00002	0.00028	10.6	1.51	37.3	13.42	3	4.7	7.8	20
K02-12	light pink	0.06982	0.01279	0.00119	0.00006	0.01183	0.00211	0.00042	0.00004	7.7	0.4	11.9	2.12	1.7	5.7	6.87	6.1
K02-13	light pink	0.06455	0.03426	0.00195	0.0002	0.01715	0.00898	0.00068	0.00019	12.5	1.26	17.3	8.97	55	0.36	11.9	0.64
K02-15	light pink	0.51664	0.11399	0.00115	0.00018	0.08795	0.0149	0.00096	0.00023	7.4	1.14	85.6	13.91	DISCORDANT			
K02-16	light pink	0.05097	0.01693	0.00138	0.00009	0.01	0.00328	0.00067	0.00011	8.9	0.58	10.1	3.29	66	0.19	8.67	0.3
K02-17	light pink	0.05039	0.03498	0.0013	0.00014	0.00866	0.00596	0.00112	0.00024	8.4	0.88	8.8	6	94	0.0053	8.32	0.45
K02-18	light pink	0.08864	0.02085	0.00122	0.00009	0.0152	0.00345	0.0003	0.00006	7.8	0.57	15.3	3.45	1.2	6.4	6.6	9.5
K02-19	light pink	0.11069	0.05443	0.00116	0.00016	0.01785	0.00849	0.00059	0.00017	7.5	1.02	18	8.47	17	1.9	6.2	0.5
K02-20	light pink	0.36064	0.05805	0.00158	0.00016	0.07599	0.01035	0.00218	0.00038	10.2	1.01	74.4	9.76	DISCORDANT			
K02-21	light pink	0.14765	0.0462	0.00128	0.00015	0.02754	0.00814	0.00064	0.00014	8.3	0.96	27.6	8.04	0.8	7.1	6	16
K02-22	light pink	0.09283	0.01479	0.00134	0.00007	0.01751	0.00269	0.0004	0.00006	8.7	0.48	17.6	2.68	DISCORDANT			
K02-23	light pink	0.23868	0.05243	0.00173	0.00018	0.05602	0.01124	0.00141	0.00025	11.1	1.18	55.3	10.81	DISCORDANT			
K02-24	light pink	0.14654	0.02867	0.00163	0.00012	0.03652	0.0068	0.00075	0.00011	10.5	0.8	36.4	6.66	DISCORDANT			
K02-25	light pink	0.116	0.03196	0.00144	0.00013	0.0237	0.00628	0.00056	0.00017	9.3	0.83	23.8	6.23	0.9	6.9	7.37	-14
K02-26	light pink	0.13443	0.04619	0.00168	0.0002	0.03112	0.01022	0.00062	0.00018	10.8	1.27	31.1	10.06	2.5	5	8.3	18
K02-27	light pink	0.09844	0.03331	0.00123	0.00012	0.01654	0.00542	0.00059	0.00012	7.9	0.77	16.7	5.41	6.6	3.4	6.69	0.39
K02-28	light pink	0.10934	0.01947	0.00736	0.00048	0.10525	0.0189	0.00173	0.0004	4 7.3	3.05	101.6	17.37	DISCORDANT			
K02-29	light pink	0.30146	0.06303	0.00138	0.00016	0.05896	0.01075	0.00094	0.00018	8.9	1.03	58.2	10.31	DISCORDANT			
K02-30	light pink	0.06329	0.00966	0.00121	0.00005	0.01051	0.00158	0.00051	0.00006	7.8	0.34	10.6	1.59	3.1	4.6	7.21	4.7
K02-31	light pink	0.0884	0.00948	0.00127	0.00005	0.01545	0.00163	0.00061	0.00008	8.2	0.32	15.6	1.63	DISCORDANT			
K02-32	light pink	0.15849	0.03915	0.00104	0.00011	0.02339	0.00538	0.00046	0.00008	6.7	0.69	23.5	5.34	DISCORDANT	ORDANT		
K02-33	light pink	0.08867	0.04176	0.00166	0.00019	0.02218	0.01023	0.00066	0.00019	10.7	1.21	22.3	10.16	21	1.6	9.3	0.6
K02-34	light pink	0.36136	0.06268	0.00215	0.00022	0.10653	0.01618	0.00144	0.00034	13.8	1.44	102.8	14.84	DISCORDANT			
K02-35	light pink	0.51666	0.05495	0.00526	0.00038	0.36111	0.03704	0.01439	0.00182	33.8	2.46	313	27.63	DISCORDANT			
K02-36	light pink	0.16729	0.05914	0.00147	0.0002	0.03708	0.01237	0.00084	0.00026	9.4	1.29	37	12.11	1.4	6.1	6.7	19
K02-37	light pink	0.17532	0.03476	0.00132	0.00012	0.03109	0.00569	0.00064	0.00013	8.5	0.77	31.1	5.6	DISCORDANT			
K02-38	light pink	0.54273	0.23013	0.0012	0.00036	0.09871	0.03118	0.0011	0.00057	7.7	2.31	95.6	28.81	0.2	9.8	1.3	43

Table VIII.1: Timata Dome W110852
K02-39	light pink	0.17915	0.03108	0.00137	0.00011	0.03444	0.00557	0.00044	0.00008	8.8	0.7	34.4	5.47	DISCORDANT			
K02-40	light pink	0.28837	0.0695	0.00172	0.00022	0.06751	0.01445	0.00237	0.00049	11.1	1.43	66.3	13.74	DISCORDANT			
K02-42	light pink	0.2666	0.09366	0.00101	0.00018	0.03504	0.01085	0.00096	0.00026	6.5	1.16	35	10.65	0.4	8.5	3.5	21
K02-43	light pink	0.12449	0.0554	0.00118	0.00016	0.02364	0.01015	0.00071	0.0002	7.6	1.02	23.7	10.07	8.1	3	6.02	0.49
K02-44	light pink	0.04755	0.03132	0.00155	0.00016	0.01009	0.00659	0.00048	0.00013	10	1.03	10.2	6.63	97	0.0013	10	0.52
K02-45	light pink	0.09246	0.04381	0.00144	0.00017	0.01836	0.00851	0.00085	0.00018	9.3	1.07	18.5	8.49	22	1.5	8.1	0.54
K02-46	light pink	0.16876	0.06085	0.00154	0.00021	0.03779	0.01285	0.00083	0.00024	9.9	1.37	37.7	12.57	1.6	5.8	7.1	20
K02-47	light pink	0.06205	0.05283	0.00096	0.00014	0.00847	0.00713	0.00042	0.00013	6.2	0.88	8.6	7.18	71	0.14	5.89	0.44
K02-48	light pink	0.19701	0.06828	0.00134	0.00021	0.03774	0.01203	0.00066	0.00022	8.6	1.33	37.6	11.77	0.7	7.3	5.4	22
K02-49	light pink	0.2008	0.07573	0.00105	0.00017	0.02932	0.01019	0.00061	0.00018	6.8	1.09	29.3	10.05	1.4	6	4.4	-16
K02-50	light pink	0.05175	0.00927	0.00115	0.00005	0.0081	0.00145	0.00037	0.00006	7.4	0.34	8.2	1.46	51	0.44	7.23	0.17
K02-51	light pink	0.06127	0.0579	0.00098	0.00015	0.00837	0.00782	0.00038	0.00014	6.3	0.96	8.5	7.88	76	0.094	6.06	0.47
K02-52	light pink	0.07261	0.04274	0.00126	0.00015	0.01181	0.00685	0.00068	0.00018	8.1	0.96	11.9	6.88	53	0.4	7.59	0.48
K02-53	light pink	0.07067	0.03642	0.0012	0.00013	0.01214	0.00615	0.00053	0.00012	7.7	0.86	12.3	6.17	41	0.69	7.13	0.41
K02-54	light pink	0.12403	0.05228	0.00109	0.00015	0.01739	0.00703	0.00028	0.00018	7	0.95	17.5	7.02	9.1	2.9	5.6	0.48

Table VIII.2: Pohakahaka Dome Complex W110854

1 4010		I onunun			Pron .	11000											
				Measured iso	otope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selected	age and
Spot No	Colour	²⁰⁷ Ph/ ²⁰⁶ Ph	+	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Ph/ ²³⁵ U	+	²⁰⁸ Pb/ ²³² Th	+	²⁰⁶ Ph/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	Concordance	Spot MSWD	lσ abs external er	solute
K04-1	light pink	0.19096	0.04098	0.00079	0.00008	0.02004	0.00391	0.00054	0.00008	5.1	0.5	20.1	3.89	DISCORDANT			(
K04-2	light pink	0.20966	0.0707	0.00124	0.00018	0.03622	0.01123	0.00215	0.00045	8	1.17	36.1	11.01	0.6	7.7	5.2	20
K04-3	pink	0.31759	0.15791	0.00082	0.00019	0.03611	0.01623	0.00101	0.00046	5.3	1.19	36	15.9	4.1	4.2	3.1	15
K04-4	light pink	0.27782	0.09359	0.00099	0.00016	0.03787	0.01145	0.00113	0.00032	6. 4	1.03	37.7	11.2	0.3	9	3.66	19
K04-6	light pink	0.21341	0.25292	0.00035	0.00016	0.0113	0.01242	0.00045	0.00032	2.3	1.02	11.4	12.47	43	0.62	1.54	0.48
K04-7	pink	0.13098	0.03395	0.00113	0.0001	0.02061	0.00507	0.00074	0.00021	7.3	0.68	20.7	5.04	0.3	8.9	5.61	12
K04-8	pink	0.33878	0.0644	0.00129	0.00014	0.06714	0.01103	0.0019	0.00029	8.3	0.91	66	10.49	DISCORDANT			
K04-9	pink	0.05023	0.08336	0.00099	0.00022	0.00708	0.01166	0.00046	0.00029	6.4	1.43	7.2	11.76	9 4	0.0056	6.3	0.69
K04-10	light pink	0.11086	0.03509	0.00082	0.00008	0.01299	0.00393	0.00044	0.0001	5.3	0.54	13.1	3.94	2.5	5	4.28	7.2
K04-11	light pink	0.07597	0.04011	0.00431	0.00052	0.04926	0.02581	0.00263	0.00081	27.7	3.36	48.8	24.97	34	0.89	25	1.6
K04-12	light pink	0.40816	0.08863	0.00132	0.00018	0.078	0.01404	0.00273	0.00047	8.5	$\frac{1.18}{1.18}$	76.3	13.23	DISCORDANT			
K04-13	light pink	0.05593	0.03888	0.0007	0.00009	0.0052	0.00356	0.00047	0.00011	4.5	0.57	5.3	3.6	81	0.06	4.39	0.29
K04-14	light pink	0.07528	0.0486	0.00089	0.00012	0.00974	0.00618	0.00026	0.00014	5.8	0.76	9.8	6.21	46	0.55	5.24	0.38
K04-15	light pink	0.13929	0.04414	0.00086	0.0001	0.01564	0.00468	0.00046	0.00015	5.5	0.64	15.8	4.68	1.3	6.1	4.16	10
K04-17	light pink	0.05072	0.00559	0.02099	0.00068	0.14585	0.01779	0.0056	0.0008	133.9	4.31	138.2	15.76	72	0.13	132.6	2.4
K04-18	light pink	0.09615	0.04919	0.00091	0.00012	0.01227	0.0061	0.00074	0.00018	5.8	0.78	12.4	6.12	23	1.4	5.06	0.38
K04-19	light pink	0.16447	0.07891	0.00166	0.0003	0.03483	0.01571	0.00046	0.00057	10.7	1.95	34.8	15.42	8.3	3	7.8	0.94
K04-20	light pink	0.27296	0.11808	0.00067	0.00014	0.02661	0.01018	0.00078	0.00023	4 .3	0.91	26.7	10.07	1.7	5.7	2.42	13

K04-22 light pink 0.08341 0.06666 0.00014 0.01023 0.0002 0.00024 0.00022 5.4 0.9 1.03 8.06 49 0.47 4.81 0.44 K04-23 light pink 0.48436 0.46215 0.00025 0.00015 0.0012 0.0014 0.00024 0.00024 8 4.24 30.4 40.84 2.3 5.4 5.6 47 K04-25 colourless 0.07946 0.00125 0.00013 0.0114 0.00622 0 0.00017 6.1 0.82 16.3 6.21 6.6 3.4 4.78 0.41 K04-2s colourless 0.07954 0.00055 0.00013 0.00614 0.00022 0.00117 1.41 7.41 1.63.5 3.14 4.44 0.59 1.92 4.11 K04-32 colourless 0.0352 0.0025 0.0014 0.00133 0.00171 1.41 7.41 1.63.5 3.14 4.44 0.59 1.92 4.71 2.92 0.24 K04-33 pink 0.40554 0.00054 0.00051
K04-23 light pink 0.48216 0.44215 0.00025 0.00015 0.00014 0.00014 0.40014 4.7 4 20.2 14.95 19 1.7 0.56 0.454 K04-24 light pink 0.18515 0.07162 0.00015 0.00019 0.00014 0.00024 8 1.24 30.4 40.84 2.2.3 5.1 5.6 7.7 K04-25 colourless 0.07746 0.03245 0.00052 0.00051 0.01014 0.00024 0.00017 1.44 7.41 16.3 6.21 6.6 3.4 4.78 0.223 K04-29 colourless 0.05125 0.00952 0.0013 0.01717 1.44 7.41 16.3 5.1 8.44 0.59 1.3.2 1.1 K04-30 colourless 0.01675 0.0016 0.0128 0.0013 0.0171 1.44 7.41 16.3 5.3 1.99 1.7 2.0.2 4.14 3.54 0.223 1.01 1.7 K04.33 1.003 2.11 1.01 0.3 1.01 0.15 1.16 0.0001<
K64-24 light pink 0.41845 0.00014 0.0014 0.0004 0.00024 8 1.24 30.4 10.84 2.3 5.4 5.6 17 K04-25 colourless 0.1298 0.05245 0.00095 0.00013 0.01614 0.00c22 0 0.00017 6.1 0.82 16.3 6.21 6.6 3.4 4.78 0.41 K04-28 colourless 0.05125 0.00952 0.00027 0.00643 0.00289 0.00139 0.00171 144 7.41 163.5 31.48 444 0.59 139.2 4.1 K04-30 colourless 0.05125 0.00952 0.00054 0.00289 0.00173 30 3.47 49.6 22.14 31 1.03 27 1.7 K04-33 pink 0.1259 0.00461 0.00014 0.00139 0.00173 30 3.47 49.6 22.14 31 1.03 27 1.7 K04-33 pink 0.1252 0.0014 0.00012 0.552 0.0014 0.00012 5.5 0.55 2.6
K04-25 colourless 0.1298 0.0295 0.00005 0.0014 0.00022 0 0.00017 6.1 0.82 16.3 6.21 6.6 3.4 4.78 0.41 K04-28 colourless 0.07946 0.00215 0.00062 0.00017 0.0014 0.00017 14 7.41 163.5 2.42 1.4 3.54 0.23 K04-30 colourless 0.08457 0.03897 0.00054 0.00014 0.00242 0.0013 0.0017 1.44 7.41 163.5 3.48 44 0.59 1.3 27 1.7 K04-30 colourless 0.08457 0.03897 0.00054 0.00014 0.00249 0.00073 3.0 3.47 49.6 22.14 31 1.0.3 27 1.7 K04-33 pink 0.02548 0.00014 0.00013 0.0073 3.5 0.49 7.5 3.53 49 4.7 2.9 0.265 K04-33 pink 0.02548 0.00017 0.01012 0.00588 0.00026 0.00014 0.00014 0.0014 0.0
K04-28 colourless 0.07946 0.03215 0.00062 0.00017 0.00015 4 0.47 6.5 2.53 2.4 1.4 3.54 0.032 K04-29 colourless 0.05125 0.00952 0.02259 0.00118 0.17472 0.0303 0.00171 144 7.41 16.3.5 3.1.8 4.4 0.39 1.7 K04-30 colourless 0.10258 0.05048 0.00044 0.0023 3.03 3.47 49.6 2.2.14 3.1 1.03 2.7 1.7 K04-32 pink 0.1257 0.40576 0.00041 0.00252 0.00047 0.00012 5.2 0.56 2.2.6 4.31 DISCORDANT K04-34 pink 0.14570 0.05729 0.0007 0.0012 0.00058 0.00022 0.9 1.02 1.4 4.34 4.28 0.22 2.8 5.4 0.34 K04-35 pink 0.1459 0.05634 0.0017 0.00081 0.00022 6.9
K04-29 colourless 0.05125 0.00952 0.00118 0.17472 0.03642 0.01043 0.00171 144 7.41 163.5 31.48 44 0.59 139.2 4.1 K04-30 colourless 0.00457 0.03897 0.00054 0.00054 0.00238 0.00073 30 3.47 49.6 2.14 31 1.03 27 1.7 K04-31 eolourless 0.04576 0.00054 0.00074 0.00054 0.00013 3.5 0.49 7.5 3.53 19 1.7 2.9 0.26 K04-33 pink 0.09546 0.05729 0.00076 0.0011 0.0121 0.00588 0.00026 0.0014 4.9 0.7 10.3 6.01 32 1.01 4.28 0.34 K04-34 pink 0.48623 0.06214 0.00027 0.0931 0.00064 0.0022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-35 pink 0.1459 0.00584 0.0017 0.0016 0.00245 0.00027 0.00434
K04-30 colourless 0.08457 0.03897 0.00467 0.00054 0.0011 0.02289 0.00139 0.00073 30 3.47 49.6 22.14 31 1.03 27 1.7 K04-31 colourless 0.10258 0.09054 0.00064 0.00064 0.00013 3.5 0.49 7.5 3.53 49 4.7 2.9 0.26 K04-32 pink 0.21297 0.04576 0.00081 0.00090 0.002252 0.00471 0.00012 5.2 0.56 22.6 4.31 DISCORDANT K04-33 pink 0.18623 0.06211 0.00170 0.0016 0.0127 0.00586 0.00022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-35 pink 0.1459 0.00584 0.0017 0.0016 0.01927 0.0031 0.00022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-37 pink 0.6414 0.03971 0.0016 0.0192 0.0033 <th0.00015< th=""> 6.07 7.9<</th0.00015<>
K04-31 eolourless 0.10258 0.05018 0.00054 0.00074 0.00051 0.00061 0.00013 3.5 0.49 7.5 3.53 19 1.7 2.9 0.26 K04-32 pink 0.21297 0.04576 0.00094 0.00022 0.00012 0.00014 4.9 0.7 10.3 6.01 32 1.01 4.28 0.34 K04-33 pink 0.09546 0.05729 0.00016 0.00121 0.00058 0.00024 0.000041 4.9 0.7 10.3 6.01 32 1.01 4.28 0.34 K04-35 pink 0.1459 0.06584 0.0017 0.0016 0.01927 0.0831 0.00068 0.0022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-37 pink 0.53187 0.11233 0.00012 0.0072 0.0024 0.00033 0.0011 5.4 0.67 7.9 4.78 5.5 0.35 5.08 0.32
K04-32 pink 0.21297 0.04576 0.00081 0.00099 0.02252 0.00047 0.00012 5.2 0.56 22.6 4.31 DISCORDANT K04-33 pink 0.09546 0.05729 0.00076 0.0011 0.01021 0.00598 0.00026 0.0014 4.9 0.7 10.3 6.01 32 1.01 4.28 0.34 K04-33 pink 0.1459 0.060214 0.00027 0.05365 0.01682 0.00022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-36 pink 0.1459 0.0017 0.0018 0.0012 0.0033 0.00011 5.4 6.67 7.9 4.78 5.5 0.35 5.08 0.32 K04-33 pink 0.0524 0.0033 0.00072 0.0033 0.0011 5.4 6.67 7.9 4.78 5.5 0.35 5.08 0.32 K04-33 pink 0.05252 0.0033 0.00072
K04-33 pink 0.09546 0.05729 0.00076 0.00011 0.01021 0.00598 0.00026 0.0014 4.9 0.7 10.3 6.01 32 1.01 4.28 0.34 K04-34 pink 0.18623 0.06241 0.00192 0.003565 0.01682 0.00244 0.00061 12.4 1.74 53.1 16.21 0.7 7.3 8.2 29 K04-35 pink 0.1459 0.06584 0.00107 0.0016 0.01927 0.00831 0.00068 0.00022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-36 pink 0.53187 0.11233 0.00198 0.00029 0.14529 0.02527 0.00434 0.00089 12.7 1.85 137.7 22.41 DISCORDANT K04-38 pink 0.05252 0.0033 0.00072 0.0263 0.00546 0.00105 96.2 4.56 105.3 18.8 54 0.37 93.8 2.5 K04-43 pink 0.47225 0.13764 0.0014 0.20134 <
K04-34 pink 0.18623 0.00211 0.00017 0.00027 0.005365 0.01682 0.00024 0.00061 12.4 1.74 53.1 16.21 0.7 7.3 8.2 29 K04-35 pink 0.1459 0.06584 0.00107 0.00016 0.01927 0.00831 0.00068 0.0022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-36 pink 0.53187 0.11233 0.00198 0.00029 0.14529 0.00247 0.00033 0.00011 5.4 0.67 7.9 4.78 55 0.35 5.08 0.32 K04-38 pink 0.05252 0.0093 0.0107 0.00249 0.0245 0.00053 7.5 1.78 73.5 20 DISCORDANT K04-40 pink 0.47225 0.1682 0.0007 0.0245 0.00059 9 1.57 128.3 22.66 DISCORDANT K04-41 light pink 0.4774 0.4004
K04-35 pink 0.1459 0.06584 0.00107 0.0016 0.01927 0.00831 0.00068 0.00022 6.9 1.02 19.4 8.28 9.2 2.8 5.4 0.5 K04-36 pink 0.53187 0.11233 0.00198 0.00029 0.14529 0.002527 0.00434 0.00089 12.7 1.85 137.7 22.41 DISCORDANT K04-37 pink 0.06441 0.03971 0.00084 0.0011 0.00782 0.00474 0.00033 0.0011 5.4 0.67 7.9 4.78 55 0.35 5.08 0.32 K04-38 pink 0.05252 0.0033 0.0072 0.00263 0.0015 96.2 4.56 105.3 18.88 54 0.37 93.8 2.5 K04-39 pink 0.47225 0.1682 0.0014 0.00252 0.00063 7.5 1.78 73.5 29 DISCORDANT K04-41 light pink 0.09139 0.00064 0.002
K04-36 pink 0.53187 0.11233 0.00198 0.00029 0.14529 0.002527 0.00043 0.00089 12.7 1.85 137.7 22.41 DISCORDANT K04-37 pink 0.06441 0.03971 0.00084 0.0001 0.00782 0.00474 0.00033 0.0011 5.4 0.67 7.9 4.78 5.5 0.35 5.08 0.32 K04-38 pink 0.05252 0.0033 0.00072 0.10929 0.2063 0.0056 0.0105 9.62 4.56 105.3 18.88 54 0.37 93.8 2.5 K04-39 pink 0.47225 0.1682 0.07507 0.0214 0.00024 0.00053 7.5 1.78 73.5 29 DISCORDANT K04-40 pink 0.57721 0.13764 0.00024 0.13473 0.02252 0.00044 0.40014 4.3 0.52 8.1 3.37 19 1.7 3.74 0.26 K04-43 light pink 0.0
K04-37 pink 0.06441 0.03971 0.00084 0.0001 0.00782 0.0074 0.00033 0.00011 5.4 0.67 7.9 4.78 55 0.35 5.08 0.32 K04-38 pink 0.05252 0.0093 0.01503 0.00072 0.10929 0.02063 0.00546 0.00105 96.2 4.56 105.3 18.88 54 0.37 93.8 2.5 K04-39 pink 0.47225 0.1682 0.0014 0.00224 0.01252 0.00063 7.5 1.78 73.5 20 DISCORDANT K04-40 pink 0.57721 0.13764 0.00024 0.13473 0.02532 0.00042 0.00059 9 1.57 128.3 22.66 DISCORDANT K04-41 light pink 0.09139 0.00076 0.00080 0.00243 0.00044 0.00014 4.3 0.52 8.1 3.37 19 1.7 3.74 0.26 K04-42 light pink 0.2338 0.00772 0.0007 0.0053 0.00273 0.00014 5 0.84 24.2 </td
K04-38 pink 0.05252 0.0093 0.01503 0.0072 0.10929 0.02063 0.00105 96.2 4.56 105.3 18.88 54 0.37 93.8 2.5 K04-39 pink 0.47225 0.1682 0.00116 0.00024 0.01148 0.00220 0.00063 7.5 1.78 73.5 20 DISCORDANT K04-40 pink 0.57721 0.13764 0.0014 0.00024 0.13473 0.02532 0.00059 9 1.57 128.3 22.66 DISCORDANT K04-41 light pink 0.09139 0.03941 0.00067 0.00084 0.00031 0.00044 0.00014 4.3 0.52 8.1 3.37 19 1.7 3.74 0.26 K04-42 light pink 0.0337 0.0076 0.0007 0.0053 0.0071 0.00042 0.00014 5 6.84 24.2 7.04 0.3 9 2.83 16 K04-43 light pink 0.17674 0.02954 0.0007 0.00503 0.00273 0.00013 0.00008 4.6 0.
K04-39 pink 0.47225 0.1682 0.00116 0.00028 0.07507 0.02118 0.00202 0.00063 7.5 1.78 73.5 20 DISCORDANT K04-40 pink 0.57721 0.13764 0.00044 0.00024 0.00059 9 1.57 128.3 22.66 DISCORDANT K04-41 light pink 0.09139 0.03941 0.00008 0.00081 0.000334 0.00014 4.3 0.52 8.1 3.37 19 1.7 3.74 0.266 K04-42 light pink 0.23389 0.07763 0.00078 0.00071 0.00042 0.00014 5 0.84 24.2 7.04 0.3 9 2.83 16 K04-43 light pink 0.0537 0.0254 0.0007 0.0053 0.00273 0.00031 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pink 0.17674 0.12479 0.00128 0.00139
K04-40 pink 0.57721 0.13764 0.0014 0.00024 0.13473 0.02532 0.00059 9 1.57 128.3 22.66 DISCORDANT K04-41 light pink 0.09139 0.03941 0.00067 0.00080 0.00334 0.00044 0.00014 4.3 0.52 8.1 3.37 19 1.7 3.74 0.26 K04-42 light pink 0.23389 0.07763 0.00078 0.00013 0.00044 0.00014 5 0.84 24.2 7.04 0.3 9 2.83 16 K04-43 light pink 0.0537 0.0254 0.0007 0.00503 0.00273 0.00031 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pink 0.1764 0.12479 0.0012 0.0013 0.0023 0.00031 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pin
K04-41 light pink 0.09139 0.03941 0.00067 0.00080 0.00801 0.00334 0.00014 0.0014 0.52 8.1 3.37 19 1.7 3.74 0.26 K04-42 light pink 0.23389 0.07763 0.00078 0.00013 0.002408 0.0071 0.00014 5 0.84 24.2 7.04 0.3 9 2.83 16 K04-43 light pink 0.0537 0.0254 0.0007 0.00503 0.00273 0.00014 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pink 0.17674 0.12479 0.00128 0.00128 0.0019 0.00066 8.3 1.83 31.4 20.95 24 1.4 6.4 0.85 K04-45 light pink 0.08943 0.07634 0.0014 0.00639 0.0003 0.0019 4.7 0.91 7.7 6.43 5.8 0.3 4.21 0.45
K04-42 light pink 0.23389 0.07763 0.00013 0.02408 0.0071 0.00042 0.00014 5 0.84 24.2 7.04 0.3 9 2.83 16 K04-43 light pink 0.0537 0.02954 0.0007 0.000503 0.00273 0.00031 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pink 0.17674 0.12479 0.00128 0.0014 0.00066 8.3 1.83 31.4 20.95 24 1.4 6.4 0.85 K04-45 light pink 0.08943 0.07634 0.0012 0.0016 0.00639 0.0019 4.7 0.91 7.7 6.43 58 0.3 4.21 0.45
K04-43 light pink 0.0537 0.02954 0.0007 0.00050 0.00273 0.00031 0.00008 4.6 0.46 5.1 2.76 85 0.037 4.56 0.23 K04-44 light pink 0.17674 0.12479 0.00128 0.00128 0.00119 0.00066 8.3 1.83 31.4 20.95 24 1.4 6.4 0.85 K04-45 light pink 0.08943 0.07634 0.0014 0.00766 0.0039 0.0003 0.0019 4.7 0.91 7.7 6.43 58 0.3 4.21 0.45
K04-44 light pink 0.17674 0.12479 0.00128 0.00218 0.00119 0.00066 8.3 1.83 31.4 20.95 24 1.4 6.4 0.85 K04-45 light pink 0.08943 0.07634 0.00072 0.0014 0.00766 0.00639 0.00019 4.7 0.91 7.7 6.43 58 0.3 4.21 0.45
K04-45 light pink 0.08943 0.07634 0.00072 0.00014 0.00766 0.00639 0.0003 0.00019 4.7 0.91 7.7 6.43 58 0.3 4.21 0.45
K04-46 l ight-pink 0.3659 0.05683 0.00139 0.00013 0.07004 0.0095 0.00174 0.00032 8.9 0.87 68.7 9.01 DISCORDANT
K04-47 light-pink 0.38949 0.16639 0.00102 0.00026 0.05801 0.02078 0.00607 0.00128 6.6 1.65 57.3 19.95 0.8 7.1 2.6 27
K04-48 light pink 0.07672 0.18612 0.00029 0.01139 0.02742 0.00224 0.00088 5.7 1.86 11.5 27.53 82 0.049 5.4 0.87
K04-50 light-pink 0.15311 0.06863 0.00224 0.00038 0.04401 0.01878 0.00054 0.0005 14.4 2.46 43.7 18.27 7.4 3.2 10.6 1.2
K04-51 light pink 0.06526 0.12693 0.00019 0.00628 0.01211 0.00045 0.00034 4.6 1.23 6.4 12.22 87 0.026 4.4 0.59
K04-52 light pink 0.80512 0.04489 0.01731 0.00062 1.8959 0.15623 0.12233 0.02024 110.7 3.95 1079.7 54.78 DISCORDANT
K04-53 light-pink 0.73904 0.26498 0.00157 0.00042 0.16154 0.04371 0.01603 0.00328 10.1 2.7 152 38.21 DISCORDANT
K04-54 light pink 0.77032 0.38982 0.00055 0.00021 0.05919 0.02089 0.00075 0.00041 3.6 1.34 58.4 20.02 0.5 8 0.2 22
K04-56 light-pink 0.66953 0.15899 0.00229 0.00041 0.17633 0.03281 0.00519 0.00125 14.7 2.61 164.9 28.32 DISCORDANT
K04-58 light pink 0.08836 0.17537 0.00098 0.00155 0.02061 0.00099 0.00072 6.3 2.32 10.7 20.71 82 0.54 5.8 1.1
K04-59 light pink 0.1155 0.07576 0.0010 0.00018 0.0166 0.01058 0.0008 0.00028 6.5 1.14 16.7 10.56 29 1.13 5.4 0.56

										Estimated	ages and	1σ absolute in	nternal	²⁰⁶ Pb/ ²³⁸ U &			
~				Measured iso	otope ratios a	and 1σ (%) int	ernal errors				errors	(My)		²⁰⁷ Pb/ ²⁵⁵ U	~	Selected	age and
Spot	C 1	207 01 /206 01		206101 /23811		207 0 (235 1		208 01 /232 001		20600 /2380 1		207		Concordance	Spot	lσ ab	solute
NO.	Colour	Pb/Pb	±	Pb/U	±	Pb/U	±	Pb/Th	±	Pb/U	±	Pb/U	±	(%)	MSWD	external e	rror (My)
K05-1	pink	0.78456	0.0406	0.01864	0.00068	1.8556	0.13834	0.04912	0.00901	119	4.31	1065.4	49.19	DISCORDANT	,	2 00	12
K05-2	pink	0.1761	0.06374	0.00088	0.00013	0.02099	0.00/04	0.00038	0.00022	5.7	0.83	21.1	7	+	6	3.88	13
K05-3	pink	0.56335	0.13214	0.00117	0.00023	0.0881	0.01307	0.0013	0.00059	7.5	1.46	85.7	$\frac{12.2}{12.2}$	DISCORDANT			
K05-5	pink	0.12132	0.05677	0.0009	0.0001	0.01554	0.00712	0.00075	0.00019	5.8	0.62	15.7	7.12	13	2.2	4.95	0.31
K05-6	pink	0.27171	0.0701	0.00134	0.00014	0.04899	0.01184	0.00132	0.0004	8.6	0.92	4 8.6	$\frac{11.46}{11.46}$	DISCORDANT			
K05-7	pink	0.0636	0.02383	0.00104	0.00007	0.00873	0.00324	0.0003	0.00013	6.7	0.47	8.8	3.26	46	0.55	6.41	0.22
K05-9	light pink	0.48577	0.03555	0.0016	0.00008	0.10678	0.00735	0.00165	0.00033	10.3	0.49	103	6.74	DISCORDANT			
K05-10	light pink	0.62459	0.03896	0.00607	0.00026	0.55919	0.03916	0.0141	0.00281	39	1.67	451	25.5	DISCORDANT			
K05-11	light pink	0.1846	0.20268	0.00131	0.00036	0.03512	0.03748	0.00187	0.00056	8.4	2.33	35	36.77	45	0.57	6.9	1.1
K05-12	light pink	0.12175	0.05085	0.00072	0.00009	0.01145	0.00459	0.00034	0.00009	4.7	0.59	11.6	4.61	9.2	2.8	3.79	0.28
K05-13	pink	0.13527	0.0318	0.02172	0.00164	0.40711	0.10649	0.03565	0.00778	138.5	10.34	346.8	76.8 4	0.7	7.4	414	170
K05-14	light pink	0.21796	0.05202	0.00117	0.0001	0.03647	0.00838	0.00138	0.00033	7.5	0.62	36. 4	8.21	DISCORDANT			
K05-15	light pink	0.5629	0.07798	0.00209	0.0002	0.15517	0.0182	0.0025	0.00067	13.5	$\frac{1.28}{1.28}$	146.5	16	DISCORDANT			
K05-16	light pink	0.18928	0.04128	0.00099	0.00008	0.0263	0.00551	0.00065	0.00018	6.4	0.49	26. 4	5.45	DISCORDANT			
K05-17	light pink	0.12649	0.07629	0.00121	0.00013	0.02363	0.0141	0.0031	0.00076	7.8	0.85	23.7	13.99	23	1.4	6.91	0.39
K05-18	light pink	0.17872	0.10595	0.00096	0.00013	0.02353	0.01365	0.00104	0.00038	6.2	0.85	23.6	13.54	18	1.8	5.18	0.39
K05-19	light pink	0.26741	0.03775	0.00149	0.00012	0.05297	0.00678	0.00123	0.00031	9.6	0.76	52.4	6.53	DISCORDANT			
K05-20	light pink	0.12094	0.04979	0.00098	0.00009	0.01687	0.00682	0.00055	0.00021	6.3	0.6	17	6.81	9.2	2.8	5.45	0.27
K05-21	light pink	0.2184	0.05605	0.00101	0.00013	0.02856	0.00663	0.00068	0.00022	6.5	0.81	28.6	6.54	DISCORDANT			
K05-22	light pink	0.16775	0.06385	0.00103	0.00013	0.0231	0.00841	0.00074	0.00023	6.6	0.84	23.2	8.35	3.1	4.6	5.05	44
K05-23	light pink	0.07072	0.09413	0.00118	0.00024	0.0107	0.01409	0.00048	0.00036	7.6	1.52	10.8	14.16	80	0.063	7.3	0.75
K05-24	pink	0.11342	0.07388	0.0012	0.00014	0.01839	0.01183	0.00135	0.00039	7.8	0.93	18.5	11.79	33	0.95	6.95	0.42
K05-25	pink	0.25636	0.26189	0.00072	0.00023	0.0248	0.0242	0.00102	0.00044	4.6	1.45	24.9	23.97	38	0.78	3.5	0.68
K05-26	pink	0.23194	0.12523	0.00128	0.0002	0.04487	0.02348	0.0008	0.0003	8.3	1.29	44.6	22.82	10	2.7	6.4	0.59
K05-27	pink	0.0871	0.12272	0.00096	0.00019	0.01042	0.01455	0.00052	0.00034	6.2	1.22	10.5	14.63	75	0.102	5.8	0.58
K05-28	light pink	0.53111	0.10935	0.00069	0.0001	0.0469	0.00714	0.00113	0.00033	4.4	0.67	4 6.5	6.93	DISCORDANT			
K05-29	pink	0.28689	0.05373	0.0016	0.00014	0.06223	0.01098	0.00157	0.00045	10.3	0.93	61.3	10.49	DISCORDANT			
K05-30	light pink	0.67137	0.11938	0.00237	0.0003	0.22142	0.03309	0.00371	0.0011	15.3	1.93	203.1	27.51	DISCORDANT			
K05-31	light pink	0.65048	0.08949	0.00171	0.00017	0.13451	0.01563	0.00387	0.0011	11	1.07	128.1	13.99	DISCORDANT			
K05-32	light pink	0.25372	0.11098	0.0009	0.00019	0.02877	0.01126	0.00046	0.00018	5.8	1.21	28.8	11.11	2.4	5.1	3.4	17
K05-33	light pink	0.31206	0.10891	0.00122	0.00022	0.05203	0.01617	0.00138	0.00064	7.8	1.39	51.5	15.61	0.3	8.8	4.2	25
K05-34	light pink	0.05107	0.07406	0.00092	0.00013	0.00591	0.00854	0.00046	0.00016	6	0.86	6	8.62	99.4	0	5.92	0.4
K05-35	pink	0.67853	0.101	0.00234	0.00024	0.22854	0.03094	0.00604	0.00192	15.1	1.53	209	25.57	DISCORDANT			
K05-36	light pink	0.53684	0.06127	0.00383	0.00027	0.2568	0.02994	0.00582	0.00177	24.7	1.7	232.1	24.19	DISCORDANT			
K05-37	light pink	0.11772	0.07146	0.00094	0.00012	0.0156	0.00933	0.00011	0.00012	6	0.75	15.7	9.33	27	1.2	5.3	0.36
K05-38	pink	0.41184	0.07119	0.00212	0.00021	0.11401	0.01846	0.00268	0.00086	13.7	1.32	109.6	16.82	DISCORDANT			

Table VIII.3: Pokohino Dome Complex W110855

132

K05-39	light pink	0.1164	0.07086	0.00091	0.00011	0.01403	0.00843	0.00056	0.00026	5.9	0.7	14.1	8.44	29	1.11	5.2	0.33
K05-40	pink	0.52794	0.12333	0.00094	0.00017	0.0715	0.01171	0.00105	0.00042	6	1.1	70.1	11.09	DISCORDANT			
K05-41	light pink	0.32536	0.07036	0.00119	0.00011	0.04731	0.00987	0.00092	0.00034	7.7	0.69	46.9	9.57	DISCORDANT			
K05-42	light pink	0.07508	0.04437	0.0008	0.00008	0.00847	0.00496	0.00025	0.00012	5.2	0.55	8.6	4.99	45	0.56	4.82	0.25
K05-43	light pink	0.17639	0.07786	0.00085	0.00011	0.02052	0.0088	0.00024	0.00015	5.5	0.69	20.6	8.76	6.5	3.4	4.32	0.33
K05-44	pink	0.94097	0.12767	0.00265	0.00028	0.33983	0.04068	0.00867	0.00288	17.1	1.78	297	30.83	DISCORDANT			

Table VIII.4: Broken Hills Mine sample 1 W110856

				Measured iso	tope ratios a	nd 1σ (%) inte	ernal errors			Estimated as	ges and 1σ (M	absolute intern ly)	al errors	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	Spot	Selected absolut	age and 1σ e external
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	207Pb/235U	±	Concordance (%)	MSWD	erro	r (My)
K06-1.1	colourless	0.06889	0.25586	0.00083	0.00041	0.00843	0.03106	-0.00008	0.00043	5.4	2.66	8.5	31.28	91	0.012	5.1	1.2
K06-3	colourless	0.41562	0.4571	0.00132	0.00085	0.07416	0.06794	0.00232	0.00177	8.5	5.45	72.6	64.23	30	1.09	3.5	2.6
K06-8	colourless	2.15648	1.39471	0.00161	0.00094	0.41607	0.15313	0.00706	0.00294	10.3	6.05	353.2	109.8	0.6	7.5	-4.5	96
K06-9	colourless	4.00431	11.50541	0.48182	$\frac{1.58045}{1.58045}$	1.19808	1.33657	0.3079	0.37864	2535.2	6875.5	799.7	617.41	DISCORDANT			
K06-10	colourless	0.15925	0.20153	0.00582	0.00243	0.13882	0.17702	0.03961	0.01359	37.4	15.56	132	157.83	53	0.39	29	7.4
K06-16	pink	0.16033	0.13275	0.00168	0.00048	0.04083	0.03233	0.00044	0.00035	10.8	3.12	40.6	31.54	31	1.04	8.1	1.5
K06-17	pink	0.06129	0.19872	0.00081	0.00031	0.00688	0.02217	0.00097	0.00047	5.2	2.01	7	22.35	93	0.0072	5.1	0.95
K06-18	light pink	0.19416	0.16219	0.00187	0.00056	0.04294	0.03403	0.00198	0.00115	12	3.57	42.7	33.14	31	1.01	8.9	1.7
K06-19	light pink	0.05108	0.32302	0.00087	0.0005	0.00673	0.04241	0.00148	0.00099	5.6	3.2	6.8	42.77	98	0.00091	5.5	1.5
K06-23	light pink	0.35958	0.2009	0.00118	0.00035	0.05811	0.02867	0.00186	0.00074	7.6	2.22	57.3	27.51	5.8	3.6	3.8	1.1
K06-25	light pink	0.31639	0.24413	0.0011	0.00044	0.05059	0.03445	0.00024	0.00031	7.1	2.85	50.1	33.29	17	1.9	3.7	1.3
K06-26	pink	0.23466	0.08363	0.00113	0.0002	0.04531	0.0149	0.00084	0.00029	7.3	1.26	4 5	14.48	0.6	7.7	4.1	21
K06-27	pink	0.72837	0.1964	0.0062	0.00125	0.57711	0.16044	0.00944	0.00338	39.8	7.98	4 62.6	103.29	DISCORDANT			
K06-28	pink	0.11153	0.07987	0.00116	0.00022	0.01872	0.01308	0.00097	0.00038	7.5	1.42	18.8	13.04	34	0.92	6.3	0.68
K06-29	pink	0.25995	0.17615	0.00085	0.00025	0.02953	0.0183	0.00018	0.00021	5.5	1.64	29.6	18.05	15	2	3.7	0.76
K06-33	pink	0.43747	0.18941	0.00191	0.00053	0.10019	0.03697	0.00336	0.00133	12.3	3.42	97	34.12	+	6.7	4.5	53
K06-34	pink	0.05304	0.15778	0.00099	0.00038	0.00791	0.02337	0.00049	0.00037	6.4	2.44	8	23.55	94	0.0057	6.2	1.2
K06-37	light pink	0.2012	0.29538	0.0005	0.00024	0.01322	0.01839	0.00123	0.00056	3.2	1.57	13.3	18.43	56	0.35	2.4	0.73
K06-38	light pink	0.06432	0.17907	0.0014	0.00047	0.0123	0.03407	0.00074	0.00067	9	3.03	12.4	34.17	91	0.0116	8.7	1.4

Table	VIII.5:	Broken	Hills	Mine	sample 2	W110857

Table	v III.5:	broken r	THIS IVI	me samp	pie z w	110837											
				M		J 1 (0/) :4				Estimated	ages and	1σ absolute i	nternal	²⁰⁶ Pb/ ²³⁸ U &			
Cart				Measured 1sc	tope ratios a	and 16 (%) int	ernal errors				error	s (My)		Pb/200	C t	Selected	age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	²⁰⁷ Pb/ ²³⁵ U	±	(%)	MSWD	external (error (Mv)
K07-1	light pink	0.08726	0.02438	0.0011	0.00009	0.01286	0.00349	0.00043	0.00007	7.1	0.58	13	3.5	5	3.9	6.11	7.4
K07-2	light pink	0.10383	0.05504	0.00119	0.00019	0.01671	0.00854	0.00031	0.00013	7.7	1.22	16.8	8.53	22	1.5	6.4	0.61
K07-3	light pink	0.05164	0.04186	0.00102	0.00015	0.00667	0.00534	0.00052	0.00012	6.6	0.96	6.8	5.38	97	0.0015	6.5	0.5
K07-4	light pink	0.0956	0.04294	0.00177	0.00021	0.02318	0.01015	0.00076	0.00018	11.4	1.37	23.3	10.07	18	1.8	9.8	0.67
K07-8	light pink	0.35955	0.09739	0.0017	0.00027	0.08342	0.01953	0.00093	0.00028	++	1.73	81.4	18.3	DISCORDANT			
K07-9	light pink	0.05562	0.06095	0.00087	0.00014	0.00723	0.00786	0.00037	0.00011	5.6	0.87	7.3	7.92	81	0.057	5.42	0.44
K07-10	light pink	0.07567	0.01372	0.00129	0.00007	0.01375	0.00244	0.00044	0.00006	8.3	0.46	13.9	2.45	0.7	7.3	7.27	8
K07-11	light pink	0.13955	0.09737	0.00099	0.00022	0.02079	0.01386	0.00117	0.00038	6.4	1.44	20.9	13.79	25	1.3	4.9	0.68
K07-13	light pink	0.3302	0.08945	0.00244	0.00037	0.10515	0.02559	0.00282	0.00064	15.7	2.37	101.5	23.51	DISCORDANT			
K07-14	light pink	0.28931	0.07033	0.00166	0.00022	0.07972	0.01745	0.00108	0.00024	10.7	1.42	77.9	16.41	DISCORDANT			
K07-16	light pink	0.06222	0.05617	0.00139	0.00022	0.01181	0.01054	0.00064	0.00022	9	1.44	11.9	10.57	75	0.101	8.6	0.7
K07-17	pink	0.08824	0.03833	0.00145	0.00016	0.01841	0.00781	0.00058	0.00014	9.3	1.06	18.5	7.79	18	1.8	8.2	0.51
K07-18	pink	0.91834	0.23778	0.00168	0.00036	0.25274	0.04677	0.00303	0.0007	10.8	2.3	228.8	37.91	DISCORDANT			
K07-19	pink	0.19078	0.06661	0.00132	0.00018	0.04035	0.01326	0.00045	0.00016	8.5	1.18	4 0.2	12.94	0.9	6.8	5.8	18
K07-20	pink	0.04991	0.02208	0.00128	0.00011	0.00876	0.00383	0.00027	0.00008	8.2	0.69	8.9	3.86	85	0.036	8.13	0.37
K07-22	pink	0.22174	0.07034	0.00104	0.00015	0.03196	0.00933	0.00081	0.0002	6.7	0.9 4	31.9	9.18	0.3	<u>8.9</u>	4.17	18
K07-23	pink	0.19442	0.07185	0.00137	0.00021	0.03572	0.01233	0.00046	0.00018	8.8	1.35	35.6	12.09	1.5	5.9	6	20
K07-24	pink	0.25894	0.0828	0.00128	0.0002	0.04337	0.01247	0.00081	0.00022	8.3	1.31	43.1	12.13	0.2	9.7	4.7	24
K07-25	pink	0.14709	0.0415	0.00114	0.00014	0.02327	0.00614	0.0005	0.00012	7.4	0.87	23.4	6.09	0.3	9	5.01	17
K07-26	pink	0.15306	0.0712	0.00126	0.00019	0.02527	0.01125	0.00044	0.00018	8.1	1.24	25.3	11.15	9	2.9	6.3	0.59
K07-27	pink	0.12495	0.04128	0.00138	0.00016	0.02534	0.00804	0.00097	0.00023	8.9	1.02	25.4	7.96	2	5.4	6.8	15
K07-28	pink	0.11988	0.11858	0.00147	0.0005	0.02278	0.02145	0.00007	0.00041	9.4	3.2	22.9	21.3	47	0.52	7.5	1.6
K07-29	pink	0.37052	0.086	0.00173	0.00024	0.09183	0.01867	0.00205	0.00046	11.1	1.56	89.2	17.36	DISCORDANT			
K07-30	pink	0.10852	0.04252	0.00161	0.00019	0.02359	0.00899	0.00094	0.00022	10.4	1.2	23.7	8.92	9.2	2.8	8.6	0.61
K07-31	pink	0.08614	0.05165	0.00109	0.00016	0.01363	0.00799	0.00041	0.00014	7	1.02	13.7	8	35	0.89	6.2	0.51
K07-32	colourless	0.07467	0.02362	0.00102	0.00009	0.01113	0.00345	0.0004	0.00008	6.6	0.55	11.2	3.47	12	2.5	5.79	0.3
K07-33	colourless	0.29571	0.03014	0.00171	0.0001	0.0672	0.00676	0.00129	0.00022	++	0.63	66	6.43	DISCORDANT			
K07-36	colourless	0.32522	0.07846	0.0014	0.00018	0.06523	0.01412	0.00163	0.00036	9	1.19	64.2	13.46	DISCORDANT			
K07-37	colourless	0.29685	0.13778	0.00152	0.00039	0.05704	0.02322	0.00111	0.00048	9.8	2.5	56.3	22.31	2.4	5.1	4.8	35
K07-39	colourless	0.38782	0.34232	0.00097	0.00048	0.05504	0.04118	0.00137	0.00107	6.2	3.1	54.4	39.64	20	1.6	2.8	1.4
K07-40	colourless	0.06951	0.03332	0.00116	0.00016	0.01204	0.00562	0.00075	0.00037	7.5	1.01	12.2	5.64	32	0.97	6.6	0.53
K07-41	colourless	0.06952	0.02435	0.00101	0.0001	0.00913	0.00313	0.00035	0.00009	6.5	0.63	9.2	3.15	29	1.1	5.93	0.34
K07-42	colourless	0.04893	0.00922	0.00106	0.00005	0.00694	0.00132	0.00034	0.00007	6.8	0.34	7	1.33	85	0.034	6.78	0.18
K07-43	colourless	0.06433	0.04707	0.0014	0.0002	0.01196	0.00863	0.00083	0.00031	9	1.31	12.1	8.66	69	0.16	8.6	0.65
K07-45	pink	0.1097	0.06473	0.00128	0.00022	0.02116	0.01211	0.0002	0.00015	8.2	1.41	21.3	12.05	23	1.4	6.8	0.69
K07-47	light pink	0.24846	0.09776	0.00118	0.00023	0.03588	0.01273	0.00111	0.00039	7.6	1.46	35.8	12.47	1.3	6.2	4.4	23
K07-48	light pink	0.11812	0.04827	0.00187	0.00024	0.03311	0.0132	0.0008	0.0003	12.1	1.52	33.1	12.98	7.4	3.2	9.6	0.75

Spot				Measured iso	tope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U Concordance	Spot	Selected	l age and
No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MSWD	external e	error (My)
K08-1	colourless	0.17107	0.18444	0.00091	0.00029	0.02651	0.02747	0.00055	0.00036	5.9	1.84	26.6	27.17	42	0.64	4.5	0.87
K08-2	pink	0.37671	0.08298	0.00173	0.00022	0.08693	0.01664	0.00242	0.00049	11.2	1.4	84.6	15.55	DISCORDANT			
K08-3	pink	0.13404	0.06173	0.00124	0.00019	0.02181	0.0096	0.00052	0.00018	8	1.2	21.9	9.54	10	2.7	6.2	0.6
K08-4	pink	0.16707	0.07258	0.00136	0.00021	0.03594	0.01482	0.00072	0.00024	8.8	1.36	35.8	14.53	4.5	4	6.4	16
K08-5	pink	0.21524	0.0884	0.00121	0.0002	0.03469	0.0133	0.00089	0.00026	7.8	1.26	34.6	13.05	2.7	4.9	5.3	17
K08-6	pink	0.40441	0.10231	0.00224	0.00033	0.12209	0.02693	0.0023	0.00064	14.4	2.14	117	24.37	DISCORDANT			
K08-7	light pink	0.20504	0.15753	0.00097	0.00026	0.02831	0.02052	0.00049	0.00028	6.3	1.68	28.4	20.27	25	1.4	4.5	0.79
K08-8	light pink	0.09539	0.08734	0.00137	0.00022	0.0184	0.01663	0.0006	0.00027	8.8	1.44	18.5	16.58	53	0.4	8	0.67
K08-9	light pink	0.08456	0.0369	0.0017	0.00015	0.02046	0.00881	0.00125	0.00046	11	0.99	20.6	8.77	23	1.5	9.93	0.47
K08-10	light pink	0.35671	0.22733	0.00082	0.00026	0.04336	0.02431	0.00004	0.00037	5.3	1.65	43.1	23.66	9.5	2.8	2.8	0.78
K08-11	light pink	0.07459	0.05053	0.0012	0.00017	0.01083	0.00721	0.00063	0.00016	7.7	1.1	10.9	7.24	61	0.26	7.2	0.55
K08-12	light pink	0.08971	0.10516	0.00114	0.00024	0.01423	0.01644	0.00096	0.00032	7.4	1.57	14.3	16.46	64	0.21	6.7	0.73
K08-13	light pink	0.19131	0.06975	0.00179	0.00023	0.04748	0.01654	0.00129	0.00038	11.6	1.48	47.1	16.03	1.8	5.6	8.4	21
K08-14	light pink	0.12839	0.06693	0.00106	0.00015	0.01907	0.00964	0.00038	0.00014	6.8	0.98	19.2	9.6	16	2	5.64	0.46
K08-15	light pink	0.23549	0.1061	0.00121	0.00023	0.03952	0.01645	0.00065	0.00031	7.8	1.47	39.4	16.06	3.6	4.4	5.1	19
K08-16	light pink	0.23877	0.09667	0.00272	0.00046	0.09537	0.03646	0.0014	0.00065	17.5	2.98	92.5	33.8	2.1	5.3	11.5	41
K08-17	light pink	0.05583	0.08766	0.00122	0.00024	0.01029	0.01605	0.0004	0.00023	7.8	1.53	10.4	16.13	86	0.029	7.6	0.74
K08-18	light pink	0.05931	0.10272	0.00137	0.00028	0.01069	0.0184	0.00086	0.00041	8.8	1.83	10.8	18.48	91	0.014	8.6	0.86
K08-19	light pink	0.06425	0.06158	0.00136	0.00018	0.01137	0.01081	0.00047	0.0002	8.8	1.19	11.5	10.86	78	0.076	8.5	0.56
K08-20	light pink	0.24511	0.09058	0.00096	0.00016	0.03009	0.01012	0.00055	0.00019	6.2	1.04	30.1	9.98	0.9	6.8	3.83	16
K08-21	light pink	0.15056	0.11253	0.00082	0.00021	0.01519	0.01074	0.00051	0.00019	5.3	1.38	15.3	10.74	30	1.09	4.1	0.66
K08-22	light pink	0.17345	0.1102	0.00236	0.00054	0.05042	0.03048	0.00112	0.00057	15.2	3.48	50	29.46	20	1.7	11.3	1.7
K08-23	light pink	0.53032	0.16614	0.00155	0.00032	0.11317	0.0288	0.00245	0.00074	10	2.07	108.9	26.27	DISCORDANT			
K08-26	light pink	0.08912	0.0808	0.00102	0.00017	0.01228	0.01099	0.00022	0.00014	6.5	1.08	12.4	11.02	56	0.33	6	0.52
K08-27	light pink	0.15206	0.12925	0.00113	0.00027	0.02237	0.01833	0.00054	0.00035	7.3	1.77	22.5	18.21	37	0.82	5.9	0.83
K08-28	light pink	0.35467	0.1364	0.00148	0.00031	0.06694	0.02257	0.00123	0.0005	9.5	1.98	65.8	21.48	0.6	7.6	4.7	33
K08-30	light pink	0.1182	0.042	0.00114	0.00011	0.01772	0.00618	0.0004	0.00011	7.3	0.72	17.8	6.16	6	3.5	6.18	0.34
K08-31	light pink	0.2923	0.14509	0.00115	0.00027	0.04687	0.02111	0.00054	0.00033	7.4	1.71	46.5	20.48	4.3	4.1	4.3	21
K08-32	light pink	0.32729	0.14441	0.00133	0.00029	0.07168	0.02862	0.00072	0.00045	8.6	1.85	70.3	27.12	1.9	5.5	4.7	26
K08-33	light pink	0.18991	0.08086	0.00092	0.00015	0.02342	0.00939	0.00055	0.00018	5.9	0.96	23.5	9.32	4	4.2	4.18	12

Table VIII.6: Broken Hills Mine sample 3 W110858

										Estimated	ages and	1σ absolute in	nternal	206Pb/238U &			
				Measured iso	otope ratios a	and 1σ (%) int	ernal errors				error	s (My)		²⁰⁷ Pb/ ²³⁵ U		Selected	l age and
Spot	~ .	207-206-206-206-206-206-206-206-206-206-206		206-238-2		207		208-4 232-		206-238-2		207-235-2		Concordance	Spot	lσ ab	solute
No.	Colour	207Pb/200Pb	±	200Pb/250U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁰ Pb/252Th	±	200Pb/200U	±	207Pb/235U	±	(%)	MSWD	external e	error (My)
K09-1	colourless	0.3494	0.1036	0.00148	0.00026	0.07377	0.01869	0.00171	0.00046	9.6	1.64	72.3	17.67	DISCORDANT			
K09-2	colourless	0.06955	0.0762	0.00197	0.00031	0.01962	0.02133	0.0018	0.00051	12.7	2	19.7	21.24	72	0.13	12.1	0.95
K09-3	colourless	0.31609	0.12492	0.00178	0.00037	0.06472	0.02252	0.00143	0.00108	11.4	2.35	63.7	$\frac{21.48}{21.48}$	0.9	6.8	6	38
K09-4	colourless	0.23312	0.10189	0.00161	0.0003	0.05423	0.02189	0.00106	0.0004	10.4	1.94	53.6	21.09	2.9	4.7	6.7	25
K09-5	colourless	0.49725	0.11878	0.00201	0.00032	0.13361	0.02627	0.00477	0.0009	13	$\frac{2.03}{2.03}$	127.3	23.53	DISCORDANT			
K09-6	colourless	0.1659	0.09707	0.00135	0.00025	0.02919	0.01631	0.001	0.00036	8.7	1.63	29.2	16.09	17	1.9	6.7	0.77
K09-7	colourless	0.14493	0.07777	0.00113	0.00017	0.02581	0.01339	0.00092	0.00024	7.3	1.12	25.9	13.25	13	2.2	5.8	0.51
K09-8	light pink	0.36045	0.1033	0.00182	0.0003	0.08132	0.02	0.00193	0.00049	11.7	1.95	79. 4	$\frac{18.78}{18.78}$	DISCORDANT			
K09-9	light pink	0.24429	0.04598	0.00116	0.00011	0.03959	0.00672	0.00132	0.00023	7.5	0.7	39.4	6.56	DISCORDANT			
K09-10	light pink	0.30844	0.15224	0.00134	0.00032	0.05557	0.02451	0.00138	0.00049	8.6	2.07	54.9	23.58	3.8	4.3	4 .9	26
K09-11	light pink	0.18291	0.05538	0.00115	0.00014	0.03168	0.00899	0.00078	0.0002	7.4	0.89	31.7	8.85	0.3	8.8	5.06	16
K09-12	light pink	0.72717	0.13791	0.0032	0.00046	0.32125	0.04972	0.00845	0.00141	20.6	2.98	282.9	38.21	DISCORDANT			
K09-13	light pink	0.48484	0.10206	0.00547	0.00077	0.37958	0.07639	0.01403	0.00243	35.1	4.93	326.7	56.23	DISCORDANT			
K09-14	light pink	0.27082	0.08422	0.00217	0.00034	0.0803	0.02266	0.00223	0.00071	-14	2.16	78.4	21.3	0.1	10.3	7.8	43
K09-15	light pink	0.10955	0.01589	0.00112	0.00006	0.0169	0.00238	0.00041	0.00006	7.2	0.38	17	2.38	DISCORDANT			
K09-16	light pink	0.4473	0.13498	0.00249	0.00046	0.14984	0.03882	0.00345	0.00095	-16	<u>2.99</u>	141.8	34.28	DISCORDANT			
K09-17	light pink	0.06265	0.03185	0.00106	0.0001	0.00961	0.00482	0.00032	0.00011	6.9	0.66	9.7	4.85	50	0.45	6.45	0.32
K09-18	light pink	0.1023	0.02293	0.00126	0.00009	0.01776	0.00386	0.00044	0.00008	8.1	0.58	17.9	3.85	0.4	8.4	6.66	44
K09-19	light pink	0.50823	0.10056	0.0021	0.00027	0.15481	0.0261	0.0025	0.00056	13.6	1.75	146.1	22.95	DISCORDANT			
K09-20	light pink	0.09856	0.06182	0.00133	0.00021	0.01733	0.0106	0.00058	0.00024	8.5	1.32	17.4	10.58	35	0.89	7.5	0.66
K09-21	light pink	0.20475	0.12662	0.00116	0.00027	0.03599	0.02085	0.00169	0.00058	7.5	1.75	35.9	20.43	14	2.2	5.2	0.82
K09-22	light pink	1.01754	0.37164	0.00094	0.00029	0.14265	0.03123	0.00203	0.00052	6.1	1.87	135.4	27.76	DISCORDANT			
K09-23	light pink	0.51883	0.14312	0.00221	0.0004	0.18335	0.04269	0.00221	0.00061	14.2	2.57	170.9	36.63	DISCORDANT			
K09-24	pink	0.05658	0.14759	0.00151	0.0004	0.01101	0.0286	0.00049	0.0006	9.7	2.58	11.1	28.73	96	0.0028	9.6	1.2
K09-25	pink	0.38294	0.12533	0.00115	0.00022	0.06471	0.01783	0.00085	0.00031	7.4	1.43	63.7	17.01	DISCORDANT			
K09-26	pink	0.24477	0.05862	0.00106	0.00012	0.03754	0.00818	0.00048	0.00011	6.8	0.79	37.4	8.01	DISCORDANT			
K09-27	pink	0.09858	0.07122	0.00191	0.00028	0.02564	0.01826	0.00098	0.00031	12.3	1.8	25.7	18.08	42	0.65	11	0.86
K09-28	pink	0.37451	0.11803	0.00297	0.0005	0.14443	0.04147	0.00536	0.00139	19.1	3.21	137	36.8	0.1	10.6	9.9	62
K09-29	pink	0.19319	0.10421	0.00112	0.00022	0.03173	0.01612	0.00051	0.00028	7.2	1.42	31.7	15.86	9.8	2.7	5.2	0.67
K09-30	pink	0.42442	0.10387	0.00154	0.00024	0.09867	0.02017	0.00194	0.00045	9.9	1.55	95.5	18.64	DISCORDANT			
K09-31	pink	0.27794	0.09571	0.00149	0.00026	0.05698	0.0175	0.00068	0.00032	9.6	1.69	56.3	16.81	0.3	8.8	5.2	30
K09-32	pink	0.50146	0.08311	0.00151	0.00017	0.10289	0.01442	0.00231	0.00044	9.7	1.06	99.4	13.28	DISCORDANT			
K09-33	pink	0.44209	0.12411	0.00199	0.00034	0.13799	0.03413	0.0023	0.00065	12.8	2.16	131.3	30.45	DISCORDANT			
K09-34	.	0.26659	0.09955	0.00178	0.00029	0.06576	0.02281	0.00137	0.00045	11.5	1.88	64.7	21.73	4	6.6	7.2	29
K09-35	pink	0.11456	0.06923	0.00096	0.00015	0.01445	0.00849	0.00071	0.00018	6.2	0.97	14.6	8.5	28	1.19	5.26	0.47
K09-36	pink	0.27184	0.1064	0.0018	0.00035	0.06974	0.02461	0.0011	0.00044	11.6	2.27	68.5	23.36		6.6	6.5	35
K09-37	pink	0.59855	0.08559	0.00217	0.00022	0.19999	0.02534	0.00366	0.00073	14	1.39	185.1	21.44	DISCORDANT	~~~		

Table VIII.7: Broken Hills Flow Banded Rhyolite W110859

K09-38 pink	+ 0.501+	4 0.08272	0.00239	0.00027	0.16405	0.02372	0.00264	0.00057	15.4	1.71	154.2	20.69	DISCORDANT			
K09-40 pink	0.1823	9 0.07664	0.00127	0.00019	0.03145	0.01256	0.00045	0.0002	8.2	1.24	31.4	12.36	4.2	4.1	6	15
K09-41 pink	. 0.244	7 0.06937	0.00212	0.00027	0.06753	0.0179	0.00221	0.00056	13.6	1.77	66.4	17.03	DISCORDANT			
K09-42 pink	. 0.7912	1 0.04785	0.06537	0.00252	7.52441	1.10467	0.36531	0.06596	4 08.2	15.26	2175.9	131.58	DISCORDANT			
K09-43 pink	. 0.4986	7 0.15299	0.00204	0.0004	0.16284	0.04277	0.00757	0.00161	13.1	2.56	153.2	37.35	DISCORDANT			
K09-44 pink	. 0.3692	5 0.11772	0.00184	0.00034	0.08112	0.02236	0.00161	0.00057	11.9	2.19	79.2	21.01	DISCORDANT			
K09-45 pink	0.2699	8 0.04986	0.0017	0.00016	0.06827	0.01188	0.00124	0.00027	10.9	1.03	67.1	11.29	DISCORDANT			
K09-46 light	t pink 0.5886	7 0.22546	0.00082	0.00022	0.0643	0.01854	0.00087	0.0003	5.3	1.41	63.3	17.69	DISCORDANT			
K09-47 light	t pink 0.45904	4 0.08659	0.00199	0.00024	0.12631	0.02098	0.00167	0.00042	12.8	1.57	120.8	18.91	DISCORDANT			
K09-48 light	t pink 0.7812	9 0.16304	0.00408	0.00064	0.39585	0.07191	0.01099	0.00246	26.3	4.14	338.6	52.31	DISCORDANT			
K09-49 light	t pink 0.4163	1 0.13483	0.00129	0.00024	0.07643	0.02157	0.00138	0.00046	8.3	1.52	74.8	20.35	DISCORDANT			
K09-50 light	t pink 0.1871	9 0.07181	0.00146	0.00022	0.03708	0.0134	0.00086	0.0003	9.4	1.44	37	13.12	2.2	5.2	6.6	20

Table VIII.8: Hikuai Ignimbrite W110860

111.00	i initiatai i g			5000													
			Measured iso	tope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and errors	1σ absolute in s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selected	age and	
													Concordance	Spot	1σ abs	solute	
Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁸ Pb/ ²³² Th	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	(%)	MSWD	external e	rror (My)	
light pink	0.23575	0.23228	0.00136	0.00051	0.04259	0.03912	0.00184	0.0016	8.8	3.3	42.3	38.1	35	0.88	6	1.5	
colourless	0.07853	0.12107	0.00182	0.00046	0.01914	0.02919	0.00168	0.00107	11.7	2.95	19.2	29.08	78	0.08	11	1.4	
colourless	0.04713	0.05595	0.00128	0.00021	0.00956	0.01127	0.00061	0.00019	8.2	1.33	9.7	11.33	89	0.019	8.16	0.66	
colourless	0.05992	0.11023	0.00367	0.00088	0.02273	0.04159	0.00094	0.00107	23.6	5.64	22.8	41.29	98	0.00048	23.7	2.8	
light pink	0.19582	0.0789	0.00124	0.00021	0.03818	0.01428	0.00043	0.0003	8	1.36	38	13.96	2.1	5.4	5.2	19	
colourless	0.43711	0.48303	0.00053	0.00036	0.03153	0.02782	-0.00007	0.00097	3.4	2.32	31.5	27.39	27	1.19	1.2	1.1	
colourless	0.05124	0.17364	0.00143	0.00045	0.00993	0.03354	0.00196	0.00093	9.2	2.89	10	33.72	98	0.00069	9.1	1.4	
colourless	0.17124	0.10228	0.00169	0.00036	0.03863	0.02184	0.00101	0.00045	10.9	2.35	38.5	21.35	16	2	8	1.1	
colourless	0.43908	0.46411	0.00059	0.00035	0.03266	0.02872	0.00144	0.00082	3.8	2.27	32.6	28.24	28	1.17	1.6	1.1	
colourless	0.10055	0.08531	0.00118	0.00026	0.01612	0.0133	0.00062	0.00028	7.6	1.66	16.2	13.29	47	0.53	6.5	0.82	
light pink	0.35895	0.14543	0.00169	0.00041	0.06499	0.02214	0.00215	0.00076	10.9	2.63	63.9	21.1	0.6	7.5	4.6	45	
colourless	0.51857	0.28829	0.00079	0.00028	0.06412	0.02867	0.00093	0.00055	5.1	1.78	63.1	27.36	2.9	4.8	1.6	23	
colourless	0.22098	0.12638	0.00192	0.00048	0.06417	0.03402	0.00104	0.00091	12.4	3.11	63.1	32.46	9.7	2.8	7.9	1.5	
colourless	0.06665	0.04207	0.00119	0.00016	0.01133	0.00703	0.00033	0.00011	7.7	1.01	11.4	7.06	54	0.37	7.1	0.52	
colourless	0.22606	0.24288	0.00106	0.00039	0.03222	0.03273	0.0023	0.00097	6.8	2.52	32.2	32.2	40	0.7	5	1.2	
light pink	0.64448	0.08177	0.0035	0.00032	0.32931	0.03931	0.01694	0.00333	22.5	2.07	289	30.03	DISCORDANT				
colourless	0.05515	0.00799	0.02528	0.00107	0.19744	0.03246	0.0129	0.00269	161	6.74	183	27.52	32	1	155.3	3.7	
light pink	0.85349	0.16882	0.00158	0.00024	0.19072	0.02915	0.00351	0.00082	10.2	1.58	177.2	24.86	DISCORDANT				
colourless	0.30097	0.06136	0.0009	0.0001	0.03853	0.00693	0.00053	0.00012	5.8	0.65	38.4	6.78	DISCORDANT				
pink	0.23549	0.10298	0.00308	0.0006	0.09394	0.03868	0.00772	0.0021	19.8	3.83	91.2	35.91	3.5	4.4	12.7	49	
colourless	0.39801	0.15087	0.00214	0.00049	0.13859	0.04608	0.00337	0.00123	13.8	3.13	131.8	41.09	0.4	8.3	5.7	54	
light pink	0.04996	0.02822	0.00116	0.00011	0.00802	0.00449	0.00053	0.00017	7.5	0.74	8.1	4.52	87	0.027	7.37	0.36	
	Colour light pink colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless colourless light pink colourless light pink colourless light pink	Colour207Pb/206Pblight pink0.23575colourless0.07853colourless0.04713colourless0.05992light pink0.19582colourless0.43711colourless0.05124colourless0.17124colourless0.43711colourless0.17124colourless0.43908colourless0.43908colourless0.51857colourless0.22098colourless0.22098colourless0.06665colourless0.05515light pink0.85349colourless0.30097pink0.23549colourless0.30097pink0.23549colourless0.33801light pink0.439801light pink0.439801light pink0.439801light pink0.439801light pink0.439801light pink0.439801	Colour 207Pb/206Pb ± light pink 0.23575 0.23228 colourless 0.07853 0.12107 colourless 0.04713 0.05595 colourless 0.04713 0.05595 colourless 0.04713 0.05595 colourless 0.05992 0.11023 light pink 0.19882 0.07893 colourless 0.43711 0.48303 colourless 0.5124 0.17364 colourless 0.17124 0.10228 eolourless 0.43908 0.46411 colourless 0.10055 0.08531 light pink 0.35895 0.14543 eolourless 0.2098 0.12638 colourless 0.22098 0.12638 colourless 0.22606 0.24288 light pink 0.635349 0.16882 eolourless 0.30097 0.06136 pink 0.23549 0.14682 eolourless 0.39801 0.15087 <td< td=""><td>Colour $^{207}Pb/^{206}Pb$ \pm $^{206}Pb/^{238}U$ light pink 0.23575 0.23228 0.00136 colourless 0.07853 0.12107 0.00182 colourless 0.04713 0.05595 0.00136 colourless 0.04713 0.05595 0.00128 colourless 0.05992 0.11023 0.00367 light pink 0.19582 0.0789 0.00124 eolourless 0.43711 0.48303 0.00053 colourless 0.5124 0.17364 0.00143 colourless 0.17124 0.10228 0.00169 eolourless 0.43908 0.46411 0.00059 colourless 0.10055 0.08531 0.00118 light pink 0.35895 0.14543 0.00169 eolourless 0.2098 0.12638 0.00192 colourless 0.22098 0.12638 0.00192 colourless 0.22066 0.24288 0.00106 light pink 0.64448 0.081</td><td>Colour $^{207}Pb/^{206}Pb$ \pm $^{206}Pb/^{238}U$ \pm light pink 0.23575 0.23228 0.00136 0.00051 colourless 0.07853 0.12107 0.00182 0.00046 colourless 0.04713 0.05595 0.00128 0.00021 colourless 0.04713 0.05595 0.00021 0.00088 light pink 0.19822 0.07899 0.01128 0.00021 colourless 0.43711 0.48303 0.00053 0.000367 colourless 0.5124 0.17364 0.00143 0.00045 colourless 0.17124 0.10228 0.00169 0.00036 colourless 0.17124 0.10228 0.00169 0.00026 light pink 0.35895 0.14543 0.00118 0.00026 light pink 0.35895 0.14543 0.00192 0.00048 colourless 0.22098 0.12638 0.00192 0.00048 colourless 0.22066 0.24288 0.00106 <</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Measured isotope ratios and 1σ (%) internal errors Measured isotope ratios and 1σ (%) internal errors Colour $20^{0}Pb/^{206}Pb$ \pm $20^{6}Pb/^{238}U$ \pm $20^{7}Pb/^{235}U$ \pm $20^{8}Pb/^{232}Th$ light pink 0.23575 0.23228 0.00136 0.00051 0.04259 0.03912 0.00184 colourless 0.07853 0.12107 0.00182 0.00046 0.01914 0.02919 0.00061 colourless 0.04713 0.05595 0.00128 0.00021 0.00256 0.01127 0.00094 colourless 0.05992 0.11023 0.000367 0.00088 0.02273 0.04159 0.00094 elight pink 0.19522 0.07893 0.00024 0.00036 0.03353 0.00078 colourless 0.05124 0.17364 0.00143 0.00045 0.00993 0.03354 0.00196 colourless 0.17124 0.10228 0.00169 0.00036 0.03863 0.02184 0.00101 eolourless 0.10055 0.08531 0.00118 0.00026 0.01612 0.0133</td><td>Measured isotope ratios and 1σ (%) internal errors Measured isotope ratios and 1σ (%) internal errors Colour $20^{7}Pb/^{206}Pb$ \pm $20^{6}Pb/^{238}U$ \pm $20^{7}Pb/^{235}U$ \pm $20^{8}Pb/^{232}Th$ \pm light pink 0.23575 0.23228 0.00136 0.00051 0.04259 0.03912 0.00168 0.00167 colourless 0.07853 0.12107 0.00182 0.00046 0.01914 0.02919 0.00061 0.00017 colourless 0.04713 0.05595 0.00128 0.00021 0.03818 0.01428 0.00094 0.00107 colourless 0.05992 0.11023 0.00367 0.00088 0.02273 0.04159 0.00094 0.00107 light pink 0.19582 0.0789 0.00124 0.0021 0.03818 0.0128 0.00093 0.03354 0.00196 0.00093 colourless 0.05124 0.17364 0.00169 0.00036 0.03863 0.02184 0.00110 0.00045 colourless 0.17124 0.10228 0.00169 0.00026 0.01612 0.0</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Estimated ages and log (%) internal errors Estimated ages and log absolute in errors (My) Colour 207Pb/28Pp ± 20Pb/28U ± 20Pb/28U<td>Estimated ages and 1 or (%) internal errors Estimated ages and 1 or absolute internal errors Estimated ages and 1 or (%) internal errors Colour (%) 0.07853 0.12107 0.00184 0.00117 1.00016 8.8 3.3 42.3 38.1 13.3 9.7 1.4 20.90 20.90124 0.00024 0.00124 0.00124 0.00024 0.00124 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.00124 0.000026 <th col<="" td=""><td>Colour 207Ph/280 ± 207Ph/280 133 97 11.33 89 201017 0.00061 0.00017 23.6 5.64 22.8 41.29 98 41.49 98 41.49 98 41.49 98 21.4 22.4 28.2 23.3 37.2</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Likes Finited Finite Gramma Fightment of TT 10000 Measured isotope ratios and 10 (%) internal errors Estimated ages and 10 absolute internal errors (My) Supplicity 207pb/25U Selected Econordance (%) Solution (%) <th< td=""></th<></td></th></td></td></td<>	Colour $^{207}Pb/^{206}Pb$ \pm $^{206}Pb/^{238}U$ light pink 0.23575 0.23228 0.00136 colourless 0.07853 0.12107 0.00182 colourless 0.04713 0.05595 0.00136 colourless 0.04713 0.05595 0.00128 colourless 0.05992 0.11023 0.00367 light pink 0.19582 0.0789 0.00124 eolourless 0.43711 0.48303 0.00053 colourless 0.5124 0.17364 0.00143 colourless 0.17124 0.10228 0.00169 eolourless 0.43908 0.46411 0.00059 colourless 0.10055 0.08531 0.00118 light pink 0.35895 0.14543 0.00169 eolourless 0.2098 0.12638 0.00192 colourless 0.22098 0.12638 0.00192 colourless 0.22066 0.24288 0.00106 light pink 0.64448 0.081	Colour $^{207}Pb/^{206}Pb$ \pm $^{206}Pb/^{238}U$ \pm light pink 0.23575 0.23228 0.00136 0.00051 colourless 0.07853 0.12107 0.00182 0.00046 colourless 0.04713 0.05595 0.00128 0.00021 colourless 0.04713 0.05595 0.00021 0.00088 light pink 0.19822 0.07899 0.01128 0.00021 colourless 0.43711 0.48303 0.00053 0.000367 colourless 0.5124 0.17364 0.00143 0.00045 colourless 0.17124 0.10228 0.00169 0.00036 colourless 0.17124 0.10228 0.00169 0.00026 light pink 0.35895 0.14543 0.00118 0.00026 light pink 0.35895 0.14543 0.00192 0.00048 colourless 0.22098 0.12638 0.00192 0.00048 colourless 0.22066 0.24288 0.00106 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Measured isotope ratios and 1 σ (%) internal errors Measured isotope ratios and 1 σ (%) internal errors Colour $20^{0}Pb/^{206}Pb$ \pm $20^{6}Pb/^{238}U$ \pm $20^{7}Pb/^{235}U$ \pm $20^{8}Pb/^{232}Th$ light pink 0.23575 0.23228 0.00136 0.00051 0.04259 0.03912 0.00184 colourless 0.07853 0.12107 0.00182 0.00046 0.01914 0.02919 0.00061 colourless 0.04713 0.05595 0.00128 0.00021 0.00256 0.01127 0.00094 colourless 0.05992 0.11023 0.000367 0.00088 0.02273 0.04159 0.00094 elight pink 0.19522 0.07893 0.00024 0.00036 0.03353 0.00078 colourless 0.05124 0.17364 0.00143 0.00045 0.00993 0.03354 0.00196 colourless 0.17124 0.10228 0.00169 0.00036 0.03863 0.02184 0.00101 eolourless 0.10055 0.08531 0.00118 0.00026 0.01612 0.0133	Measured isotope ratios and 1σ (%) internal errors Measured isotope ratios and 1σ (%) internal errors Colour $20^{7}Pb/^{206}Pb$ \pm $20^{6}Pb/^{238}U$ \pm $20^{7}Pb/^{235}U$ \pm $20^{8}Pb/^{232}Th$ \pm light pink 0.23575 0.23228 0.00136 0.00051 0.04259 0.03912 0.00168 0.00167 colourless 0.07853 0.12107 0.00182 0.00046 0.01914 0.02919 0.00061 0.00017 colourless 0.04713 0.05595 0.00128 0.00021 0.03818 0.01428 0.00094 0.00107 colourless 0.05992 0.11023 0.00367 0.00088 0.02273 0.04159 0.00094 0.00107 light pink 0.19582 0.0789 0.00124 0.0021 0.03818 0.0128 0.00093 0.03354 0.00196 0.00093 colourless 0.05124 0.17364 0.00169 0.00036 0.03863 0.02184 0.00110 0.00045 colourless 0.17124 0.10228 0.00169 0.00026 0.01612 0.0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Estimated ages and log (%) internal errors Estimated ages and log absolute in errors (My) Colour 207Pb/28Pp ± 20Pb/28U ± 20Pb/28U <td>Estimated ages and 1 or (%) internal errors Estimated ages and 1 or absolute internal errors Estimated ages and 1 or (%) internal errors Colour (%) 0.07853 0.12107 0.00184 0.00117 1.00016 8.8 3.3 42.3 38.1 13.3 9.7 1.4 20.90 20.90124 0.00024 0.00124 0.00124 0.00024 0.00124 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.00124 0.000026 <th col<="" td=""><td>Colour 207Ph/280 ± 207Ph/280 133 97 11.33 89 201017 0.00061 0.00017 23.6 5.64 22.8 41.29 98 41.49 98 41.49 98 41.49 98 21.4 22.4 28.2 23.3 37.2</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Likes Finited Finite Gramma Fightment of TT 10000 Measured isotope ratios and 10 (%) internal errors Estimated ages and 10 absolute internal errors (My) Supplicity 207pb/25U Selected Econordance (%) Solution (%) <th< td=""></th<></td></th></td>	Estimated ages and 1 or (%) internal errors Estimated ages and 1 or absolute internal errors Estimated ages and 1 or (%) internal errors Colour (%) 0.07853 0.12107 0.00184 0.00117 1.00016 8.8 3.3 42.3 38.1 13.3 9.7 1.4 20.90 20.90124 0.00024 0.00124 0.00124 0.00024 0.00124 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.00124 0.000026 <th col<="" td=""><td>Colour 207Ph/280 ± 207Ph/280 133 97 11.33 89 201017 0.00061 0.00017 23.6 5.64 22.8 41.29 98 41.49 98 41.49 98 41.49 98 21.4 22.4 28.2 23.3 37.2</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Likes Finited Finite Gramma Fightment of TT 10000 Measured isotope ratios and 10 (%) internal errors Estimated ages and 10 absolute internal errors (My) Supplicity 207pb/25U Selected Econordance (%) Solution (%) <th< td=""></th<></td></th>	<td>Colour 207Ph/280 ± 207Ph/280 133 97 11.33 89 201017 0.00061 0.00017 23.6 5.64 22.8 41.29 98 41.49 98 41.49 98 41.49 98 21.4 22.4 28.2 23.3 37.2</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Likes Finited Finite Gramma Fightment of TT 10000 Measured isotope ratios and 10 (%) internal errors Estimated ages and 10 absolute internal errors (My) Supplicity 207pb/25U Selected Econordance (%) Solution (%) <th< td=""></th<></td>	Colour 207Ph/280 ± 207Ph/280 133 97 11.33 89 201017 0.00061 0.00017 23.6 5.64 22.8 41.29 98 41.49 98 41.49 98 41.49 98 21.4 22.4 28.2 23.3 37.2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Likes Finited Finite Gramma Fightment of TT 10000 Measured isotope ratios and 10 (%) internal errors Estimated ages and 10 absolute internal errors (My) Supplicity 207pb/25U Selected Econordance (%) Solution (%) Solution (%) <th< td=""></th<>

K10-25	colourless	0.29306	0.16728	0.00128	0.00036	0.04585	0.02333	0.00062	0.00047	8.2	2.32	45.5	22.65	7.7	3.1	4.6	1.1
K10-27	colourless-	0.11261	0.01337	0.00149	0.00007	0.02292	0.00274	0.00071	0.00013	9.6	0.46	23	2.72	DISCORDANT			
K10-28	light pink	0.40832	0.16795	0.00113	0.00026	0.06019	0.02123	0.00118	0.0005	7.3	1.7	59.3	20.34	0.7	7.2	3.3	27
K10-29	colourless-	0.2503	0.11643	0.00251	0.00058	0.08898	0.0381	0.00722	0.00228	16.1	3.71	86.6	35.52	3.6	4.4	9.3	47
K10-30	light pink	0.06991	0.00911	0.02088	0.0009	0.20958	0.03186	0.00852	0.00194	133.2	5.71	193.2	26.74	0.8	7	120.5	$\frac{100}{100}$
K10-31	light pink	0.28265	0.25184	0.001	0.0004	0.03633	0.02925	0.0051	0.00171	6.4	2.6	36.2	28.66	27	1.2	3.9	1.2
K10-32	colourless-	0.5081	0.14953	0.00197	0.00039	0.15912	0.03916	0.00348	0.00102	12.7	2.52	149.9	34.3	DISCORDANT			
K10-34	light pink	1.12764	0.45467	0.00166	0.00056	0.21705	0.05541	0.00673	0.00222	10.7	3.63	199.5	4 6.23	DISCORDANT			
K10-35	light pink	0.2936	0.19521	0.00115	0.00038	0.04586	0.02707	0.00067	0.00067	7.4	2.45	45.5	26.28	12	2.4	4.1	1.2
K10-36	light pink	0.16073	0.05979	0.00119	0.00018	0.02821	0.00986	0.00049	0.00017	7.7	1.14	28.2	9.74	2	5.4	5.3	17
K10-37	pink	0.70597	0.14577	0.00316	0.00049	0.31778	0.05747	0.00935	0.00253	20.3	3.16	280.2	44 .28	DISCORDANT			
K10-38	colourless	0.11721	0.12288	0.00113	0.00029	0.01728	0.01766	0.00057	0.0004	7.3	1.86	17.4	17.63	53	0.4	6.2	0.9
K10-39	light pink	0.24906	0.1999	0.00099	0.00031	0.04025	0.03021	0.00113	0.00061	6.4	1.98	40.1	29.49	23	1.4	4.3	0.92
K10-40	light pink	0.07789	0.13517	0.00166	0.00049	0.01609	0.02759	0.0008	0.00082	10.7	3.14	16.2	27.58	82	0.049	10.1	1.5
K10-41	light pink	0.09042	0.09388	0.00106	0.00027	0.01511	0.01531	0.00076	0.00039	6.8	1.75	15.2	15.31	54	0.37	5.9	0.84
K10-42	light pink	0.36023	0.57373	0.00043	0.00037	0.01742	0.02338	-0.00111	0.00066	2.7	2.38	17.5	23.33	49	0.48	1.3	1.1
K10-43	light pink	0.1937	0.19042	0.00097	0.0003	0.02532	0.02382	0.00028	0.00043	6.3	1.93	25.4	23.59	39	0.75	4.8	0.91
K10-44	light pink	0.06984	0.15116	0.00088	0.0003	0.01003	0.02148	0.00048	0.00043	5.7	1.91	10.1	21.6	82	0.05	5.3	0.91
K10-45	light pink	0.84325	0.47376	0.00073	0.00032	0.06913	0.02616	0.00168	0.00081	4.7	2.04	67.9	24.84	0.8	7	-0.1	33
K10-47	light pink	0.26905	0.09293	0.00055	0.0001	0.01911	0.00584	0.00033	0.00013	3.6	0.64	19.2	5.82	0.3	8.8	1.87	12
K10-48	light pink	0.10032	0.02379	0.00124	0.0001	0.01736	0.00407	0.0004	0.00012	8	0.63	17.5	4.06	0.7	7.3	6.49	44
K10-49	pink	0.24623	0.12642	0.00201	0.00047	0.08147	0.03888	0.00222	0.00105	12.9	3.05	79.5	36.5	5.8	3.6	7.9	1.4
K10-50	pink	0.10284	0.04988	0.01285	0.00176	0.21968	0.11449	0.00435	0.00273	82.3	11.18	201.6	95.32	19	1.7	70	5.4
K10-51	pink	0.57831	0.23352	0.0043	0.00122	0.27948	0.10399	0.01865	0.01821	27.7	7.83	250.2	82.53	0.9	6.7	9.7	120
K10-52	colourless	0.22775	0.17794	0.00148	0.00048	0.04753	0.03453	0.00274	0.00128	9.6	3.07	47.1	33.47	23	1.4	6.3	1.5
K10-53	colourless	0.34825	0.14757	0.00085	0.00021	0.04458	0.01601	0.00113	0.00041	5.5	1.34	44.3	15.56	0.8	7	2.3	21
K10-54	colourless	0.39405	0.19517	0.00136	0.00038	0.07089	0.03039	0.0017	0.00085	8.8	2.42	69.5	28.81	2.7	4.9	4	32

Table VIII.9: Whatekirauponga Dome W110861

Table	·	marcking	upong		** 1100	01								2011 220			
				Measured iso	otope ratios a	and 1σ (%) into	ernal errors			Estimated	ages and error	1σ absolute in s (My)	ternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	Spot	Selected	l age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	208Pb/232Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MSWD	external e	error (My)
K11-1	colourless	0.07095	0.00977	0.00103	0.00004	0.00961	0.00132	0.00028	0.00004	6.7	0.27	9.7	1.33	0.5	7.8	6.03	4.8
K11-3	colourless	0.08317	0.04022	0.00095	0.0001	0.01093	0.0052	0.00021	0.00007	6.1	0.62	11	5.22	29	1.11	5.53	0.32
K11-4	colourless	0.07866	0.03173	0.00123	0.0001	0.01269	0.00505	0.00009	0.00007	8	0.66	12.8	5.06	28	1.17	7.32	0.32
K11-6	colourless	0.04914	0.01801	0.00102	0.00006	0.00709	0.00258	0.00018	0.00006	6.6	0.4	7.2	2.6	79	0.071	6.48	0.19
K11-7	colourless	0.11423	0.05227	0.00136	0.00016	0.02083	0.0093	0.0004	0.00015	8.8	1.01	20.9	9.25	15	2.1	7.5	0.5
K11-8	light pink	0.19811	0.22719	0.00072	0.00026	0.02042	0.02229	0.00049	0.00024	4.7	1.68	20.5	22.18	45	0.58	3.5	0.78
K11-9	light pink	0.52941	0.24105	0.00163	0.00049	0.11832	0.04223	0.00165	0.00055	10.5	3.17	113.6	38.34	0.6	7.5	2.9	51

ki+1-4 light pink 0-3092 0-17404 0-00209 0-01290 0-00290 0-1 0-00209 0-74 Ki+1-3 light pink 0.0857 0.00144 0.00017 0.00021 0.00017 0.00017 0.00021 0.0001 7.6 0.55 1.39 7.68 3.61 0.84 6.71 0.16 K11-15 light pink 0.01560 0.00121 0.00021 0.00021 0.00013 6.8 1.71 9.63 6.39 6.0 0.28 5.29 0.41 K11-19 light pink 0.0667 0.00105 0.00013 0.00021 0.00013 6.8 1.71 3.8 6.4 0.28 6.32 0.43 6.43 0.43 0.43 0.44 0.0013 0.0017 0.0013 0.0017 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0	K11-10	light pink	0.07049	0.02511	0.00117	0.00008	0.01146	0.00404	0.0003	0.00006	7.6	0.53	11.6	4.05	26	1.2	7.04	0.25
Ki+1-9 Ight-prink 0.04071 0.00072 0.00010 0.00173 0.00070 0.00021 0.00001 7.68 3.6 9.4 6.49 7.42 0.16 K11-14 Ight prink 0.0055 0.0114 0.00001 0.00021 0.00001 6.0001 7.68 3.6 9.4 6.8 7.4 0.34 9.6 3.49 0.00 0.33 0.33 K11-15 Ight prink 0.0153 0.0001 0.00033 0.00001 6.30 6.3 1.45 1.54 5.4 0.40 0.33 K11-19 Ight prink 0.0175 0.0001 0.00033 0.00001 7.6 0.5 17.2 2.88 0.65 0.63 0.0002 7.8 1.44 1.615 1.1 2.6 5.4 7.2 7.8 1.45 1.1 2.6 5.4 7.2 2.88 0.45 0.33 K11-2 Ight prink 0.0149 0.00024 0.0003 0.00002 0.00017 7.5 1.25	K11-11	light pink	0.30292	0.17494	0.00098	0.00025	0.04209	0.02195	0.00054	0.00039	6.3	1.63	41.9	21.39	8.1	3.1	3.8	0.75
K11-14 light pink 0.08579 0.048440 0.00117 0.00077 0.00012 0.00017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0010 7.6 0.85 1.39 7.68 3.6 0.44 6.77 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.12 0.16 7.1 9.3 6.39 6.19 0.028 0.03 0.00012 0.00012 0.00012 0.00011 0.0002 0.79 0.003 0.00002 7.9 0.44 6.8 0.14 1.54 1	K11-12	light pink	0.10071	0.02673	0.00117	0.00008	0.01624	0.00423	0.00042	0.00011	7.5	0.54	16.4	4.22	2	5.4	6.49	7.4
K11-15 light pink 0.05995 0.01215 0.00116 0.00094 0.00192 0.00003 6.7.4 0.34 9.6 1.94 2.0 1.6 7.12 0.16 K11-17 light pink 0.01532 0.01015 0.00021 0.00021 0.68 1.45 15.4 15.4 15.4 0.28 5.2 0.34 K11-29 light pink 0.01475 0.00018 0.00033 0.00038 6.8 0.71 2.9 6.83 6.1 0.26 6.5 0.26 0.34 0.35 0.3003 0.00033 0.00037 7.6 0.5 1.72 3.88 0.65 7.8 6.35 1.42 1.84 1.16 0.16 0.26 6.43 4.21 1.94 2.06 1.12 1.12 1.14 0.16 0.12 0.014 0.00017 7.5 1.54 3.21 1.64 0.11 0.6 5.4 0.73 K1+24 light pink 0.4643 0.0013 0.00036 0.0014 0.0024 0.46 0.4044 0.42 0.68 0.7 7.2 5.4	K11-14	light pink	0.08579	0.04846	0.00117	0.00013	0.01379	0.00767	0.00021	0.0001	7.6	0.85	13.9	7.68	36	0.84	6.87	0.4
K11-17 Fight pink 0.06562 0.00497 0.00011 0.0021 0.0013 6.3 0.71 9.3 6.39 6.0 0.28 5.92 0.34 K11-18 fight pink 0.06475 0.00105 0.00121 0.00121 0.0013 0.00121 6.03 0.100021 6.8 1.45 1.54 15.54 5.4 0.0026 6.35 0.31 K11-19 fight pink 0.00441 0.0013 0.0013 0.00013 0.00013 7.6 6.5 1.13 2.6 5.4 0.34 K11-23 fight pink 0.00441 0.00141 0.00141 7.5 1.54 3.21 1.645 1.1 2.6 5.79 3.8 3.4 K11-24 fight pink 0.0328 0.00024 0.00234 0.00041 4.72 2.06 7.53 1.54 3.1 0.58 7.7 3.56 9.1 3.158 0.107 7.33 3.6 3.1 1.5 1.2 1.54 1.2 1.54 1.2 1.54 1.2 1.54 1.2 1.54 1.2 1.55	K11-15	light pink	0.05995	0.01215	0.00116	0.00005	0.00948	0.00192	0.00024	0.00005	7.4	0.34	9.6	1.94	20	1.6	7.12	0.16
K11-18 light pink 0.01453 0.01005 0.00023 0.01520 0.00021 0.00021 0.00021 6.8 1.54 15.4 15.4 15.4 0.54 0.37 6 0.73 K11-19 light pink 0.00475 0.004570 0.00140 0.00083 0.00079 0.00013 0.00071 0.00033 0.00070 6.8 0.71 9.6 6.45 1.12 1.12 1.11 0.0014 0.00014 0.00017 0.0014 0.00017 0.0014 0.00017 0.0014 0.0	K11-17	light pink	0.06562	0.04566	0.00097	0.00011	0.00921	0.00635	0.00049	0.00013	6.3	0.71	9.3	6.39	60	0.28	5.92	0.34
KI1-19 Jight pink 0.06475 0.0013 0.0003 0.0003 6.8 0.71 9.9 6.83 61 0.26 64.5 0.34 KH-120 Jight pink 0.00494 0.00144 0.00133 0.00013 0.00013 0.00013 0.00013 7.6 65 7.8 6.35 7.8 6.35 9 KH-124 Jight pink 0.00722 0.0163 0.00017 0.0014 0.0014 7.5 1.54 3.2.1 1.64 DISCORDANT V	K11-18	light pink	0.11533	0.11925	0.00105	0.00023	0.01532	0.01554	0.00021	0.00021	6.8	1.45	15.4	15.54	54	0.37	6	0.7
KH-12 Hight pink 0.14044 0.00118 0.00018 0.00013 7.6 0.5 17.2 3.88 0.5 7.8 6.35 9 KH-12.1 Hight pink 0.20942 0.1108 0.00117 0.00024 0.03645 0.00149 0.00047 7.5 1.54 32.1 16.45 11 2.6 5.4 0.73 KH-124 Hight pink 0.68739 0.00732 0.00132 0.00167 0.00044 4.70 2.66 5.42 35.08 DISCORDANT	K11-19	light pink	0.06475	0.04509	0.00105	0.00011	0.00983	0.00679	0.0003	0.00008	6.8	0.71	9.9	6.83	61	0.26	6.45	0.34
Ki1-3 ight-pink 0.30794 0.07326 0.00014 0.00044 0.0003 0.0002 7.9 1.04 55.8 1.13 DISCORDANT Ki1-24 light-pink 0.68729 0.0468 0.0017 0.00024 0.01672 0.00041 0.42 1.04 55.8 1.13 DISCORDANT Ki1-26 light-pink 0.4838 0.41688 0.00032 0.00034 0.00041 8.2 1.49 7.16 2.50 1 2.6 7.2 5.7 1.3 Ki1-28 light-pink 0.05141 0.0414 0.00013 0.00066 0.00064 0.00014 7.3 0.85 9.1 8.23 8.1 0.058 7.17 0.4 Ki1-30 light-pink 0.0542 0.0013 0.00014 0.00026 0.00014 7.3 0.85 9.1 8.23 8.1 0.058 7.17 0.4 Ki1-30 light-pink 0.0541 0.0013 0.00013 0.0026 0.00014 0.73 0.85 1.4 3.8 1.4 9.1 4.3 1.4 9.1 4.3 <	K11-20	light pink	0.10494	0.02418	0.00118	0.00008	0.01709	0.00388	0.00044	0.00013	7.6	0.5	17.2	3.88	0.5	7.8	6.35	9
K11-23 light pink 0.20942 0.11608 0.00017 0.00024 0.00049 0.00047 7.5 1.54 32.1 16.45 11 2.6 54.9 0.73 K11-24 light pink 0.68729 0.04082 0.00072 0.00033 0.00737 0.02571 0.00041 82.9 4.9 7.46 24.32 0.7 7.3 3.6 31 K11-28 light pink 0.05414 0.00142 0.00114 0.00026 0.00014 0.00041 7.6 0.76 24.22 6.8 0.7 7.3 3.6 31 K11-30 light pink 0.05414 0.00142 0.0014 0.00026 0.00073 7.7 1.56 47.9 1.9 3.3 4.5 4.8 2.9 K11-31 light pink 0.44469 0.29214 0.00013 0.00017 0.00022 8.9 3.14 7.73 8.56 47.9 41.75 8.7 2.9 3.8 4.5 K11-33 pink 0.29555 0.12443 0.00013 0.01035 <th0.0003< th=""> <th0.0003< th=""> <th0.0003< th=""> 8</th0.0003<></th0.0003<></th0.0003<>	K11-21	light pink	0.30791	0.07326	0.00123	0.00016	0.05645	0.01184	0.00033	0.0002	7.9	1.04	55.8	11.38	DISCORDANT			
Kil-24 Highe-pink 0.66729 0.04628 0.00032 0.070649 0.08054 0.00041 47 2.06 542.7 35.08 DISCORDANT Kil-26 Highe-pink 0.63835 0.64433 0.00418 0.00012 0.00064 0.00064 0.00014 8.2 1.4 2.4.6 8.4.7 7.2 5.7.9 1.3 Kil-28 Highe-pink 0.05414 0.0414 0.00013 0.00016 0.00016 0.00014 7.3 0.35 9.1 8.23 8.1 0.058 7.7 0.4 Kil-30 Highe-pink 0.04625 0.012241 0.00013 0.00049 0.0026 0.00026 0.00013 7.3 0.56 9.1 8.23 8.7 2.9 3.8 4.5 Kil-33 Highe-pink 0.04643 0.0379 0.0013 0.0014 0.0026 0.00027 0.0103 8.3 1.4 7.9 1.4 4.6 8.8 5.1 2.5 Kil-33 Ipink 0.0677 0.0379 0.0013 0.01017 0.0125 0.00025 <th0.0003< th=""> 0.013 <th1< td=""><td>K11-23</td><td>light pink</td><td>0.20942</td><td>0.11608</td><td>0.00117</td><td>0.00024</td><td>0.03208</td><td>0.01672</td><td>0.00149</td><td>0.00047</td><td>7.5</td><td>1.54</td><td>32.1</td><td>16.45</td><td>11</td><td>2.6</td><td>5.4</td><td>0.73</td></th1<></th0.0003<>	K11-23	light pink	0.20942	0.11608	0.00117	0.00024	0.03208	0.01672	0.00149	0.00047	7.5	1.54	32.1	16.45	11	2.6	5.4	0.73
Ki1-26 light pink 0.3838 0.45808 0.00127 0.0003 0.007307 0.00231 0.00064 0.00014 8.2 1.9 7.6 24.2 6.8 0.77 7.3 3.6 3.1 K11-29 light pink 0.05414 0.0014 0.00013 0.00015 0.00018 0.00016 0.00014 7.3 0.88 9.1 8.23 811 0.005 7.7 0.4 K11-30 light pink 0.2425 0.42241 0.0013 0.00024 0.0026 0.00073 7.7 1.56 47.9 9.9 3.3 4.5 4.8 20 K11-33 light pink 0.29535 0.12443 0.0017 0.00125 0.00026 0.0003 8.9 1.76 64.5 2.28 1.66 5.8 5.1 2.5 K11-35 pink 0.05956 0.12843 0.0014 0.01015 0.0017 0.0103 0.0013 2.027 0.018 8.2 2.93 1.63 3.12 7.8 0.7 5.5 1.4 K11-35 pink 0.02936 0.15838	K11-24	light pink	0.68729	0.04628	0.00732	0.00032	0.70649	0.05895	0.01607	0.00341	47	2.06	542.7	35.08	DISCORDANT			
KH-28 light-pink 0.05414 0.00413 0.00114 0.00013 0.00086 0.00067 0.00014 7.3 0.85 9.1 8.23 81 0.058 7.17 0.4 K11-29 light-pink 0.26425 0.12241 0.00119 0.00024 0.00835 0.00266 0.00073 7.7 1.56 47.9 41.75 8.7 2.9 3.8 1.5 K11-31 light-pink 0.4449 0.22211 0.00137 0.0024 0.00238 0.00036 0.00073 7.7 4.56 47.9 41.75 8.7 2.9 3.8 4.5 K11-33 pink 0.06173 0.07379 0.0013 0.00031 0.0013 7.3 0.86 10.6 6.09 5.4 0.37 6.8 6.44 0.42 K11-33 pink 0.0673 0.18828 0.0013 0.0114 0.00079 0.0013 7.3 0.86 10.6 0.9 54 0.37 6.8 6.44 0.42 1.3 0.12 1.4 0.12 1.4 0.12 0.033 1.2 6.3 <td>K11-26</td> <td>light pink</td> <td>0.3835</td> <td>0.15808</td> <td>0.00127</td> <td>0.0003</td> <td>0.07307</td> <td>0.02571</td> <td>0.00054</td> <td>0.00041</td> <td>8.2</td> <td>1.9</td> <td>71.6</td> <td>24.32</td> <td>0.7</td> <td>7.3</td> <td>3.6</td> <td>31</td>	K11-26	light pink	0.3835	0.15808	0.00127	0.0003	0.07307	0.02571	0.00054	0.00041	8.2	1.9	71.6	24.32	0.7	7.3	3.6	31
K11-29 light pink 0.05414 0.00132 0.0013 0.00035 0.0014 7.3 0.85 9.1 8.23 81 0.058 7.17 0.4 K11-30 light pink 0.26425 0.12241 0.00133 0.00049 0.007971 0.04144 0.00026 0.00093 7.77 1.56 47.9 41.75 8.7 2.9 3.8 4.5 4.8 20 K11-32 light pink 0.24235 0.12443 0.00013 0.00027 0.06242 0.002385 0.000303 0.00013 7.3 0.85 3.14 7.79 41.75 8.7 2.9 3.8 4.5 K11-33 pink 0.05956 0.18828 0.0013 0.00145 0.00057 0.00108 8.2 2.93 16.3 31.22 7.8 0.07 7.5 1.4 K11-35 pink 0.07593 0.1584 0.00974 0.00164 0.00038 0.00013 8.2 2.93 16.3 31.22 7.8 0.07 7.5 1.4 K11-35 pink 0.12391 0.0014 0.0014<	K11-28	light pink	0.15043	0.0443	0.00118	0.00012	0.0241	0.00686	0.00067	0.00018	7.6	0.76	24.2	6.8	0.7	7.2	5.79	13
K11-30 light-pink 0.24245 0.12241 0.00019 0.00242 0.00254 0.00027 0.00037 7.7 1.56 47.9 19.9 3.3 4.5 4.8 20 K11-31 light-pink 0.44469 0.29211 0.00133 0.00049 0.007971 0.0444 0.0022 0.0022 8.9 1.76 61.5 52.8 1.6 5.8 5.1 2.5 K11-33 pink 0.0473 0.03799 0.0013 0.01046 0.00027 0.00013 7.3 0.86 1.6.6 6.09 54 0.37 6.84 0.42 K11-34 pink 0.05956 0.18282 0.00046 0.01617 0.03125 0.0013 7.3 0.86 1.6.3 31.22 7.8 0.078 7.5 1.4 K11-35 pink 0.1231 0.05359 0.0014 0.00174 0.00271 0.0018 0.0013 0.5 1.21 4.05 2.8 1.16 7.75 1.5 2.1 5.56 0.43 K11-37 pink 0.16004 0.0217 0.0014	K11-29	light pink	0.05414	0.0492	0.00114	0.00013	0.00905	0.00818	0.00036	0.00014	7.3	0.85	9.1	8.23	81	0.058	7.17	0.4
K11-31 light pink 0.44449 0.22211 0.00133 0.00029 0.0026 0.00099 8.5 3.14 77.9 41.75 8.7 2.9 3.8 1.5 K11-32 light pink 0.92353 0.12443 0.00137 0.0027 0.00242 0.00235 0.00033 0.0003 8.9 1.76 61.5 52.8 1.6 5.8 5.1 25 K11-33 pink 0.0596 0.18828 0.00128 0.00145 0.00060 0.00013 7.3 0.86 10.6 50 54 0.37 6.48 0.42 K11-35 pink 0.07953 0.15828 0.00014 0.01617 0.03125 0.00176 0.0018 8.2 2.93 1.63 31.22 7.8 0.07 5.6 0.43 K11-35 pink 0.12951 0.0014 0.00184 0.00013 0.30 8.2 0.54 12.1 4.05 28 1.16 7.5 0.43 K11-39 pink 0.10604 0.02217 0.0014 0.00038 0.00013 8.2 0.54 <	K11-30	light pink	0.26425	0.12241	0.00119	0.00024	0.04835	0.02054	0.00226	0.00073	7.7	1.56	47.9	19.9	3.3	4.5	4.8	20
Ki1-32 light pink 0.29535 0.4143 0.00137 0.00027 0.00232 0.00033 0.176 61.5 22.8 1.6 5.8 5.4 25 K11-33 pink 0.06473 0.03799 0.00113 0.00013 0.01045 0.00030 0.00013 7.3 0.86 10.6 6.09 54 0.37 6.84 0.42 K11-34 pink 0.37053 0.15282 0.00048 0.00161 0.00125 0.0016 0.00038 0.70 0.8 2.2 2.3 16.3 31.22 7.8 0.078 7.5 1.4 K11-35 pink 0.1231 0.0539 0.0014 0.0014 0.0197 0.0018 0.00038 6.7 0.9 19.6 9.75 15 2.1 5.5 0.43 K11-35 pink 0.1906 0.20633 0.00034 0.0171 0.0221 0.0014 0.00098 0.00038 2.14 1.4 4.2 1.16 7.75 0.25 K11-40 pink 0.1196 0.20693 0.00049 0.0058 0.00013	K11-31	light pink	0.44469	0.29211	0.00133	0.00049	0.07971	0.0444	0.0026	0.00099	8.5	3.14	77.9	41.75	8.7	2.9	3.8	1.5
K11-33 pink 0.06473 0.03799 0.00113 0.00013 0.0013 0.0013 7.3 0.86 10.6 6.09 54 0.37 6.84 0.42 K11-34 pink 0.09596 0.18828 0.00128 0.00046 0.0117 0.03125 0.00275 0.00108 8.2 2.93 16.3 31.22 78 0.078 7.5 1.4 K11-35 pink 0.12391 0.6359 0.0104 0.0014 0.01954 0.00979 0.0016 0.00038 6.7 0.9 19.6 9.75 15 2.1 5.56 0.43 K11-37 pink 0.06604 0.02217 0.00128 0.00094 0.00214 0.00099 8.2 2.19 17.3 2.16 69 0.16 5.4 1.4 K11-40 pink 0.49649 0.00241 0.00099 0.00242 0.00013 8.2 2.19 17.3 2.16 69 0.16 5.4 1.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	K11-32	light pink	0.29535	0.12443	0.00137	0.00027	0.06242	0.02385	0.00053	0.00032	8.9	1.76	61.5	22.8	1.6	5.8	5.1	25
K11-34 pink 0.09596 0.18828 0.00128 0.00046 0.01617 0.03125 0.00018 8.2 2.93 16.3 31.22 78 0.078 7.5 1.4 K11-35 pink 0.37053 0.15282 0.00388 0.00091 0.01617 0.03125 0.00014 0.000244 24.9 5.84 174.3 59.82 1.2 6.3 1.2 88 K11-36 pink 0.06604 0.0217 0.00128 0.00098 0.01014 0.00038 0.00013 8.2 0.54 12.1 4.05 28 1.16 7.75 0.25 K11-39 pink 0.11906 0.20693 0.00096 0.0034 0.01714 0.0221 0.0014 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-40 pink 0.49137 0.55119 0.00094 0.00586 0.00223 0.00094 0.00088 6.4 4.45 55.2 47.76 2.8 1.4 2.1 2.1 K11-42 pink 0.4526 0.00127	K11-33	pink	0.06473	0.03799	0.00113	0.00013	0.01045	0.00606	0.0003	0.00013	7.3	0.86	10.6	6.09	54	0.37	6.84	0.42
K11-35 pink 0.37053 0.15282 0.00388 0.00091 0.18723 0.00619 0.00244 24.9 5.84 174.3 59.82 1.2 6.3 12 88 K11-36 pink 0.12391 0.06359 0.00104 0.00134 0.00979 0.00106 0.00038 6.7 0.9 19.6 9.75 15 2.1 5.56 0.43 K11-37 pink 0.16064 0.02217 0.00128 0.00008 0.01214 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-40 pink 0.49137 0.55119 0.00099 0.00528 0.00023 0.00099 11.1 1.55 83.4 18.92 DISCORDANT 2.1 2.1 1.4 4.4 4.2 1 4.7 K11-41 pink 0.46688 0.4452 0.00123 0.00024 0.00086 0.00128 0.0018 8.2 3.9 118.7 54.1 4 4.2 1 4.7 K11-44 pink 0.466888 0.4452 0.00123 <td>K11-34</td> <td>pink</td> <td>0.09596</td> <td>0.18828</td> <td>0.00128</td> <td>0.00046</td> <td>0.01617</td> <td>0.03125</td> <td>0.00275</td> <td>0.00108</td> <td>8.2</td> <td>2.93</td> <td>16.3</td> <td>31.22</td> <td>78</td> <td>0.078</td> <td>7.5</td> <td>1.4</td>	K11-34	pink	0.09596	0.18828	0.00128	0.00046	0.01617	0.03125	0.00275	0.00108	8.2	2.93	16.3	31.22	78	0.078	7.5	1.4
K11-36 pink 0.12391 0.06359 0.00104 0.00014 0.00979 0.00106 0.00038 6.7 0.9 19.6 9.75 15 2.1 5.56 0.43 K11-37 pink 0.06604 0.02217 0.00128 0.00044 0.00038 0.00013 8.2 0.54 12.1 4.05 28 1.16 7.75 0.25 K11-39 pink 0.11906 0.20693 0.00096 0.00034 0.01714 0.00214 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-40 pink 0.4137 0.55119 0.00096 0.05889 0.40466 0.00233 0.0009 11.11 1.55 83.4 18.92 DISCORDANT K11-42 pink 0.66858 0.4452 0.00123 0.0012 0.00249 0.00044 0.00029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-44 pink 0.160602 0.03242 0.00138 0.00061 0.00085 0.00041 7.9 0.95<	K11-35	pink	0.37053	0.15282	0.00388	0.00091	0.18723	0.06994	0.00619	0.00244	24.9	5.84	174.3	59.82	1.2	6.3	12	88
K11-37 pink 0.06604 0.02217 0.00128 0.00008 0.01201 0.00004 0.00038 0.00013 8.2 0.54 12.1 4.05 28 1.16 7.75 0.25 K11-39 pink 0.11906 0.20693 0.00096 0.0034 0.01714 0.02921 0.00214 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-40 pink 0.49137 0.55119 0.00099 0.00589 0.04966 0.00023 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-41 pink 0.35269 0.00173 0.00024 0.08556 0.02023 0.00023 0.0009 11.1 1.55 83.4 18.92 DISCORDANT K11-42 pink 0.16602 0.03242 0.00123 0.00012 0.0219 0.00669 0.00044 0.00029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-44 pink 0.10602 0.03242 0.00017 0.0	K11-36	pink	0.12391	0.06359	0.00104	0.00014	0.01954	0.00979	0.00106	0.00038	6.7	0.9	19.6	9.75	15	2.1	5.56	0.43
K11-39 pink 0.11906 0.20693 0.00096 0.00034 0.01714 0.00291 0.00014 0.00099 6.2 2.19 17.3 29.16 69 0.16 5.4 1 K11-40 pink 0.49137 0.55119 0.00099 0.00069 0.005889 0.04966 0.00023 0.00098 6.4 4.45 55.2 47.76 28 1.18 2.1 2.1 K11-41 pink 0.35269 0.09173 0.00024 0.08556 0.02023 0.00033 0.00099 11.1 1.55 83.4 18.92 DISCORDANT K11-42 pink 0.66858 0.4452 0.00127 0.00064 0.0029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-44 pink 0.04698 0.05064 0.00123 0.0015 0.00850 0.00041 7.9 0.95 9 9.68 90 0.016 7.82 0.46 K11-47 pink 0.03235 0.07982 0.00017 0.01353 0.01141 0.00154 0.0007 6.3	K11-37	pink	0.06604	0.02217	0.00128	0.00008	0.01201	0.00404	0.00038	0.00013	8.2	0.54	12.1	4.05	28	1.16	7.75	0.25
K11-40 pink 0.49137 0.55119 0.00069 0.00589 0.04966 0.00042 0.00088 6.4 4.45 55.2 47.76 28 1.18 2.1 2.1 K11-41 pink 0.35269 0.09159 0.00173 0.00024 0.08556 0.02023 0.00233 0.0009 11.1 1.55 83.4 18.92 DISCORDANT K11-42 pink 0.66858 0.4452 0.00177 0.00061 0.12401 0.05988 0.0032 0.00186 8.2 3.9 118.7 54.1 4 4.2 1 47 K11-44 pink 0.10602 0.03242 0.0013 0.0012 0.0029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-46 pink 0.04698 0.05064 0.0012 0.0015 0.00894 0.00015 0.00087 0.00017 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-47 pink 0.0325 0.0017 0.01353 0.01141 0.00154 0.0007	K11-39	pink	0.11906	0.20693	0.00096	0.00034	0.01714	0.02921	0.00214	0.00099	6.2	2.19	17.3	29.16	69	0.16	5.4	1
K11-41 pink 0.35269 0.09159 0.00173 0.00024 0.008556 0.02023 0.000233 0.0009 11.1 1.55 83.4 18.92 DISCORDANT K11-42 pink 0.66858 0.4452 0.00127 0.00061 0.12401 0.05988 0.0032 0.00129 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-46 pink 0.04698 0.05064 0.00123 0.0015 0.00894 0.00961 0.00085 0.00011 7.9 0.95 9 9.68 90 0.016 7.82 0.46 K11-47 pink 0.0935 0.07982 0.0017 0.01353 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-48 pink 0.32704 0.0916 0.0017 0.01353 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-49 pink 0.32704 0.09146 0.00179 0.00	K11-40	pink	0.49137	0.55119	0.00099	0.00069	0.05589	0.04966	0.00042	0.00088	6.4	4.45	55.2	4 7.76	28	1.18	2.1	2.1
K11-42 pink 0.66858 0.4452 0.00127 0.00061 0.12401 0.05988 0.0032 0.00186 8.2 3.9 118.7 54.1 4 4.2 1 47 K11-44 pink 0.10602 0.03242 0.00138 0.00012 0.0219 0.00669 0.00064 0.00029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-46 pink 0.04698 0.05064 0.00123 0.0015 0.0084 0.00051 0.00085 0.00011 7.9 0.95 9 9.68 90 0.016 7.82 0.46 K11-47 pink 0.09335 0.07982 0.00019 0.0017 0.01353 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-48 pink 0.32704 0.09146 0.0017 0.00179 0.08795 0.00987 0.00043 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.0017	K11-41	pink.	0.35269	0.09159	0.00173	0.00024	0.08556	0.02023	0.00233	0.0009	41.1	1.55	83.4	18.92	DISCORDANT			
K11-44 pink 0.10602 0.03242 0.00138 0.00012 0.0219 0.00669 0.00029 8.9 0.74 22 6.65 2.9 4.8 7.42 10 K11-46 pink 0.04698 0.05064 0.00123 0.0015 0.0084 0.00961 0.00085 0.00041 7.9 0.95 9 9.68 90 0.016 7.82 0.46 K11-47 pink 0.09335 0.07982 0.00019 0.0017 0.01353 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-48 pink 0.32704 0.09146 0.0012 0.0019 0.0012 0.00195 0.00087 0.00013 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.00105 0.00079 0.08795 0.05916 0.00068 0.00191 6.8 5.07 85.6 55.21 14 2.2 0.1 2.4 K11-50 pink 0.1119 0.06248 0.0017 </td <td>K11-42</td> <td>pink</td> <td>0.66858</td> <td>0.4452</td> <td>0.00127</td> <td>0.00061</td> <td>0.12401</td> <td>0.05988</td> <td>0.0032</td> <td>0.00186</td> <td><u>8.2</u></td> <td>3.9</td> <td>118.7</td> <td>54.1</td> <td>4</td> <td>4.2</td> <td>1</td> <td>47</td>	K11-42	pink	0.66858	0.4452	0.00127	0.00061	0.12401	0.05988	0.0032	0.00186	<u>8.2</u>	3.9	118.7	54.1	4	4.2	1	47
K11-46 pink 0.04698 0.05064 0.00123 0.00015 0.00894 0.00961 0.00085 0.00041 7.9 0.95 9 9.68 90 0.016 7.82 0.46 K11-47 pink 0.09335 0.07982 0.00099 0.0017 0.01333 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-48 pink 0.32704 0.09416 0.00122 0.00019 0.06102 0.0155 0.00087 0.00043 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.0017 0.0023 0.03026 0.0168 0.00068 0.00191 6.8 5.07 85.6 55.21 14 2.2 0.1 2.4 K11-50 pink 0.1119 0.06248 0.0017 0.00023 0.03026 0.0168 0.00053 0.00025 7.2 0.33 16.44 21 1.6 9.3 0.7 K11-51 pink 0.08016 0.01678 0.0	K11-44	pink	0.10602	0.03242	0.00138	0.00012	0.0219	0.00669	0.00064	0.00029	8.9	0.74	22	6.65	2.9	4.8	7.42	10
K11-47 pink 0.09335 0.07982 0.0009 0.0017 0.01353 0.01141 0.00154 0.0007 6.3 1.06 13.6 11.43 49 0.48 5.7 0.52 K11-48 pink 0.32704 0.09416 0.00122 0.00019 0.06102 0.0155 0.00087 0.00043 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.0017 0.00326 0.0595 0.00068 0.00043 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.0017 0.0023 0.03026 0.01668 0.00068 0.00045 10.9 1.48 30.3 16.44 21 1.6 9.3 0.7 K11-51 pink 0.08016 0.01678 0.00112 0.00026 0.01368 0.00053 0.00025 7.2 0.39 13.8 3.01 1.44 6 6.39 5.9 K11-52 pink 0.43259 0.18528 0.00133 0.00033 0.003204 0.0018	K11-46	pink	0.04698	0.05064	0.00123	0.00015	0.00894	0.00961	0.00085	0.00041	7.9	0.95	9	9.68	90	0.016	7.82	0.46
K11-48 pink 0.32704 0.09416 0.00122 0.00019 0.06102 0.01595 0.00087 0.00043 7.8 1.21 60.1 15.26 DISCORDANT K11-49 pink 0.72004 0.71489 0.00105 0.00079 0.08795 0.05916 0.00068 0.00191 6.8 5.07 85.6 55.21 14 2.2 0.1 2.4 K11-50 pink 0.119 0.06248 0.0017 0.00023 0.03026 0.0168 0.00059 0.00055 10.9 1.48 30.3 16.4 2.1 1.6 9.3 0.7 K11-51 pink 0.08016 0.01678 0.00112 0.00023 0.03026 0.00053 0.00025 7.2 0.33 1.44 2.1 6.6 6.39 5.9 K11-52 pink 0.43259 0.18528 0.00133 0.00633 0.00187 0.0011 8.5 2.12 84.7 29.93 0.9 6.8 3.7 33 K11-52 pink 0.1474 0.03382 0.00033 0.002614 <th0.00149< th=""> <th0< td=""><td>K11-47</td><td>pink</td><td>0.09335</td><td>0.07982</td><td>0.00099</td><td>0.00017</td><td>0.01353</td><td>0.01141</td><td>0.00154</td><td>0.0007</td><td>6.3</td><td>1.06</td><td>13.6</td><td>11.43</td><td>49</td><td>0.48</td><td>5.7</td><td>0.52</td></th0<></th0.00149<>	K11-47	pink	0.09335	0.07982	0.00099	0.00017	0.01353	0.01141	0.00154	0.0007	6.3	1.06	13.6	11.43	49	0.48	5.7	0.52
K11-49 pink 0.72004 0.71489 0.00105 0.00079 0.08795 0.05916 0.00068 0.00191 6.8 5.07 85.6 55.21 14 2.2 0.1 2.4 K11-50 pink 0.1119 0.06248 0.0017 0.00023 0.03026 0.01668 0.00069 0.00045 10.9 1.48 30.3 16.44 21 1.6 9.3 0.7 K11-51 pink 0.08016 0.01678 0.00112 0.00006 0.01368 0.00053 0.00025 7.2 0.39 13.8 3.01 1.4 6 6.39 5.9 K11-52 pink 0.43259 0.18528 0.00133 0.00837 0.03204 0.00187 0.0011 8.5 2.12 84.7 29.93 0.9 6.8 3.7 33 K11-53 pink 0.1474 0.03382 0.00039 0.10905 0.02614 0.00149 0.0009 31.4 2.51 105.1 23.93 0.1 10.6 24.2 49	K11-48	pink	0.32704	0.09416	0.00122	0.00019	0.06102	0.01595	0.00087	0.00043	7.8	1.21	60.1	15.26	DISCORDANT			
K11-50 pink 0.1119 0.06248 0.0017 0.00023 0.03026 0.01668 0.00069 0.0045 10.9 1.48 30.3 16.44 21 1.6 9.3 0.7 K11-51 pink 0.08016 0.01678 0.00112 0.00006 0.01368 0.00053 0.00025 7.2 0.39 13.8 3.01 1.4 6 6.39 5.9 K11-52 pink 0.43259 0.18528 0.00133 0.00033 0.03204 0.00187 0.0011 8.5 2.12 84.7 29.93 0.9 6.8 3.7 33 K11-53 pink 0.1474 0.03382 0.00039 0.10905 0.02614 0.00149 0.0009 31.4 2.51 105.1 23.93 0.1 10.6 24.2 49	K11-49	pink	0.72004	0.71489	0.00105	0.00079	0.08795	0.05916	0.00068	0.00191	6.8	5.07	85.6	55.21	-14	2.2	0.1	2.4
K11-51 pink 0.08016 0.01678 0.00012 0.00006 0.01368 0.000301 0.00025 7.2 0.39 13.8 3.01 1.4 6 6.39 5.9 K11-52 pink 0.43259 0.18528 0.00133 0.00897 0.03204 0.00187 0.0011 8.5 2.12 84.7 29.93 0.9 6.8 3.7 33 K11-53 pink 0.1474 0.03382 0.00039 0.10905 0.02614 0.00149 0.0009 31.4 2.51 105.1 23.93 0.1 10.6 24.2 49	K11-50	pink	0.1119	0.06248	0.0017	0.00023	0.03026	0.01668	0.00069	0.00045	10.9	1.48	30.3	16.44	21	1.6	9.3	0.7
K11-52 pink 0.43259 0.18528 0.00133 0.08697 0.03204 0.001187 0.0011 8.5 2.12 84.7 29.93 0.9 6.8 3.7 33 K11-53 pink 0.1474 0.03382 0.00039 0.10905 0.02614 0.00149 0.0009 31.4 2.51 105.1 23.93 0.1 10.6 24.2 49	K11-51	pink	0.08016	0.01678	0.00112	0.00006	0.01368	0.00301	0.00053	0.00025	7.2	0.39	13.8	3.01	1.4	6	6.39	5.9
K11-53 pink 0.1474 0.03382 0.00488 0.00039 0.10905 0.02614 0.00149 0.0009 31.4 2.51 105.1 23.93 0.1 10.6 24.2 49	K11-52	pink	0.43259	0.18528	0.00133	0.00033	0.08697	0.03204	0.00187	0.0011	8.5	2.12	84.7	29.93	0.9	6.8	3.7	33
	K11-53	pink	0.1474	0.03382	0.00488	0.00039	0.10905	0.02614	0.00149	0.0009	31.4	2.51	405.1	23.93	0.1	10.6	24.2	49

Table VIII.10: Ownaroa Igniniorite w 110802

~			0	Measured isc	otope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	~	Selected	l age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	207Pb/235U	±	Concordance (%)	Spot MSWD	lσ ab external e	solute error (My)
K12-1	rusty	0.13816	0.07684	0.00057	0.00008	0.01134	0.00613	0.00032	0.00019	3.7	0.51	11.4	6.15	17	1.8	3.06	0.24
K12-2	rusty	0.52087	0.10546	0.00101	0.00013	0.07147	0.01151	0.00116	0.00029	6.5	0.85	70.1	10.91	DISCORDANT			
K12-3	rusty	0.38569	0.08063	0.00123	0.00015	0.06874	0.01219	0.00158	0.0003	7.9	0.95	67.5	11.58	DISCORDANT			
K12-4	pink	0.11676	0.03795	0.00195	0.00017	0.03445	0.0109	0.00179	0.00045	12.6	1.12	34.4	10.7	2.7	4 .9	10.4	15
K12-5	pink	0.06806	0.11657	0.00083	0.00017	0.00754	0.01282	0.00072	0.0003	5.4	1.11	7.6	12.92	85	0.036	5.2	0.52
K12-6	pink	0.72271	0.15323	0.00154	0.00024	0.15761	0.02469	0.00466	0.00074	9.9	1.54	148.6	21.65	DISCORDANT			
K12-7	pink	0.23235	0.14875	0.00068	0.00016	0.02241	0.01341	0.00138	0.0005	4.4	1.03	22.5	13.32	15	2.1	3.06	0.48
K12-9	colourless	0.18845	0.07455	0.00107	0.00014	0.02894	0.01089	0.00095	0.00028	6.9	0.91	29	10.75	2.8	4.8	5.15	12
K12-11	colourless	0.28393	0.19172	0.00132	0.00034	0.05782	0.03638	0.00006	0.0006	8.5	2.21	57.1	34.92	45	2.1	5.7	1
K12-12	colourless	0.0507	0.01502	0.00059	0.00003	0.00404	0.00119	0.00021	0.00003	3.8	0.19	4.1	1.2	78	0.08	3.76	0.098
K12-13	colourless	0.1491	0.08336	0.00069	0.0001	0.01448	0.00785	0.0005	0.00017	4.4	0.64	14.6	7.86	17	1.9	3.66	0.3
K12-14	colourless	0.27148	0.13042	0.0015	0.0003	0.05438	0.02413	0.00218	0.00051	9.7	1.9	53.8	23.24	4 .6	4	6.3	23
K12-15	colourless	0.19423	0.05495	0.00089	0.00009	0.02387	0.00635	0.00115	0.00022	5.7	0.6	24	6.3	0.2	9.7	4.14	11
K12-16	pink	0.22384	0.10494	0.00126	0.00022	0.04047	0.01784	0.00201	0.00067	8.1	1.39	40.3	17.41	5	3.8	5.7	0.66
K12-17	pink	0.24905	0.1705	0.00095	0.00023	0.03068	0.01971	0.00366	0.00098	6.1	1.5	30.7	19.41	18	1.8	4.4	0.69
K12-18	pink	0.45967	0.13492	0.00082	0.00015	0.05313	0.01271	0.00066	0.00036	5.3	0.94	52.6	12.25	DISCORDANT			
K12-19	pink	0.39555	0.15271	0.00082	0.00017	0.04428	0.01462	0.00132	0.00055	5.3	1.1	44	14.22	0.4	8.2	2.5	19
K12-20	pink	0.19726	0.03752	0.00068	0.00005	0.01897	0.00337	0.00027	0.00004	4.4	0.34	19.1	3.35	DISCORDANT			
K12-21	pink	0.72427	0.1747	0.0014	0.00025	0.14594	0.02522	0.00289	0.00053	9	1.63	138.3	22.35	DISCORDANT			
K12-22	pink	0.19092	0.10045	0.00103	0.00018	0.02693	0.01343	0.00184	0.00051	6.6	1.17	27	13.27	10	2.7	5	0.55
K12-23	pink	0.09488	0.09723	0.00084	0.00014	0.01074	0.01087	0.0006	0.00025	5.4	0.93	10.8	10.92	59	0.29	4.99	0.42
K12-24	light pink	0.12536	0.1045	0.00066	0.00012	0.01129	0.00919	0.00013	0.00022	4.2	0.79	11.4	9.23	40	0.69	3.68	0.36
K12-25	light pink	0.43591	0.14748	0.00092	0.00018	0.05422	0.01521	0.00073	0.00038	5.9	1.18	53.6	14.65	DISCORDANT			
K12-26	light pink	0.38906	0.13696	0.00097	0.00018	0.05221	0.01591	0.00245	0.00053	6.3	1.16	51.7	15.36	0.2	9.6	3.1	21
K12-27	light pink	0.31495	0.15839	0.00082	0.0002	0.03569	0.01595	0.00111	0.0004	5.3	1.27	35.6	15.63	4	4.2	2.9	16
K12-28	light pink	0.48014	0.15859	0.00063	0.00013	0.03954	0.01049	0.00083	0.00027	4 .1	0.83	39.4	10.25	DISCORDANT			
K12-29	light pink	0.99757	0.31515	0.00085	0.00022	0.12041	0.02308	0.00185	0.00056	5.5	1.42	115.4	20.92	DISCORDANT			
K12-30	light pink	0.4683	0.107	0.0015	0.00021	0.09279	0.01765	0.00256	0.00048	9.6	1.34	90.1	16.4	DISCORDANT			
K12-31	light pink	0.17294	0.06612	0.00081	0.00011	0.01908	0.00693	0.00085	0.00018	5.2	0.68	19.2	6.9	2.7	4 .9	3.85	9.5
K12-32	light pink	0.54292	0.12939	0.0009	0.00015	0.07193	0.01321	0.00094	0.00028	5.8	0.94	70.5	12.51	DISCORDANT			
K12-33	light pink	0.64132	0.13589	0.00092	0.00014	0.08062	0.01279	0.00152	0.00034	6	0.9	78.7	12.02	DISCORDANT			
K12-34	light pink	0.10061	0.0249	0.00064	0.00004	0.00911	0.00221	0.00022	0.00004	4.1	0.27	9.2	2.22	1.1	6.5	3.55	4
K12-35	light pink	0.59733	0.09412	0.00155	0.00017	0.12242	0.01539	0.00176	0.00039	10	1.1	117.3	13.92	DISCORDANT			
K12-36	light pink	0.21278	0.10926	0.0008	0.00015	0.02482	0.01194	0.00083	0.00028	5.2	0.98	24.9	11.83	7.5	3.2	3.64	0.45
K12-37	light pink	0.05023	0.00782	0.0006	0.00002	0.00406	0.00064	0.00021	0.00003	3.9	0.14	4.1	0.64	64	0.21	3.82	0.068
K12-38	light pink	0.22374	0.07372	0.0007	0.00009	0.02193	0.0067	0.00047	0.00016	4.5	0.61	22	6.65	0.5	8	3.07	9.8
K12-39	light pink	0.12439	0.06747	0.00074	0.0001	0.01335	0.00705	0.00089	0.0002	4.8	0.64	13.5	7.06	18	1.8	4.01	0.31

K12-40	light pink	0.55113	0.07555	0.00219	0.0002	0.15234	0.01783	0.00336	0.00057	14.1	1.29	144	15.71	DISCORDANT			
K12-41	light pink	0.66122	0.23796	0.00066	0.00016	0.06254	0.01666	0.00018	0.00036	4.2	1.06	61.6	15.92	DISCORDANT			
K12-42	light pink	0.3533	0.06367	0.00091	0.00009	0.04512	0.00718	0.00066	0.00013	5.8	0.57	44 .8	6.98	DISCORDANT			
K12-43	light pink	0.40819	0.17131	0.00052	0.00013	0.02827	0.00977	0.00041	0.00021	3.3	0.82	28.3	9.65	0.6	7.6	1.31	14
K12-44	light pink	0.09629	0.02611	0.00057	0.00004	0.00726	0.00193	0.00015	0.00003	3.7	0.26	7.3	1.94	3.3	4.6	3.2	3.4
K12-45	light pink	0.31789	0.16956	0.0005	0.00012	0.02241	0.01072	0.0003	0.00021	3.2	0.78	22.5	10.64	5.5	3.7	1.91	0.36
K12-46	pink	0.5819	0.24892	0.0017	0.00051	0.14615	0.04693	0.00282	0.00119	10.9	3.25	138.5	41.58	0.2	9.4	2	60
K12-47	pink	0.84597	0.41922	0.00106	0.0004	0.12143	0.04122	0.00213	0.00093	6.9	2.56	116.4	37.33	0.3	8.7	0.1	45
K12-48	pink	0.14777	0.07024	0.00092	0.00012	0.01982	0.00912	0.00032	0.00011	5.9	0.78	19.9	9.09	9.8	2.7	4.8	0.36
K12-49	pink	0.14486	0.05978	0.00092	0.00011	0.01847	0.00737	0.00031	0.00016	6	0.71	18.6	7.35	6.1	3.5	4.76	0.34
K12-50	pink	0.46429	0.20562	0.00048	0.00013	0.02936	0.01024	0.00031	0.00023	3.1	0.86	29.4	+10.1	0.6	7.7	1.05	14
K12-51	pink	0.24329	0.21058	0.00043	0.00014	0.01425	0.0114	0.00148	0.0004	2.8	0.93	14.4	11.41	28	1.18	1.91	0.42
K12-52	pink	0.21511	0.1191	0.00081	0.00016	0.02422	0.01266	0.00078	0.00031	5.2	1.01	24.3	12.55	10	2.6	3.74	0.48
K12-53	pink	0.05598	0.00525	0.01777	0.00049	0.13037	0.01387	0.00496	0.00087	113.5	3.12	124.4	12.46	27	1.2	110.7	1.7

Table VIII.11: Ferry Landing Ignimbrite W110863

Table	V 111.11.	• FULLY L	anung	igiiiiii011		10005											
				Measured isot	tope ratios a	nd 1σ (%) inte	ernal errors			Estimated	ages and error	1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selected	age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁸ Pb/ ²³² Th	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Concordance (%)	Spot MSWD	lσ ab external e	solute error (My)
K13-2	colourless	0.27832	0.15014	0.00131	0.00029	0.0547	0.02731	0.00069	0.00026	8.4	1.84	54.1	26.3	7.1	3.3	5.5	0.87
K13-3	colourless	0.17703	0.1782	0.002	0.00053	0.05014	0.04902	0.00085	0.00058	12.9	3.4	49.7	47.4	42	0.66	10.4	1.6
K13-4	colourless	0.19912	0.14085	0.00149	0.00031	0.04633	0.03155	0.00089	0.00034	9.6	2.02	46	30.61	22	1.5	7.4	0.92
K13-5	colourless	0.42042	0.25918	0.0018	0.00061	0.10969	0.05818	0.00248	0.00085	11.6	3.92	105.7	53.24	7.3	3.2	5.3	1.8
K13-6	light pink	0.36354	0.2491	0.00117	0.0004	0.05122	0.03064	0.00035	0.00046	7.5	2.59	50.7	29.59	12	2.4	4	1.2
K13-7	light pink	0.30495	0.34182	0.00246	0.0011	0.12824	0.1352	0.00094	0.00146	15.9	7.1	122.5	121.68	38	0.76	10.3	3.2
K13-8	light pink	0.20961	2.14933	0.00054	0.00163	0.01208	0.11842	0.00142	0.00169	3.5	10.5	12.2	118.8	94	0.0063	2.7	5
K13-9	light pink	0.05528	0.28473	0.00125	0.00056	0.0107	0.0549	0.0016	0.00079	8.1	3.6	10.8	55.15	96	0.0028	7.9	1.7
K13-10	light pink	$\frac{1.60712}{1.60712}$	5.60288	0.00042	0.00133	0.07558	0.10717	0.0009	0.00145	2.7	8.57	74	$\frac{101.17}{101.17}$	46	0.54	-2.8	4
K13-11	light pink	0.08209	0.23184	0.00132	0.00045	0.01719	0.04823	0.00053	0.00065	8.5	2.93	17.3	48.15	85	0.037	8	1.3
K13-13	light pink	0.30909	0.17348	0.00196	0.00046	0.10565	0.05536	0.00042	0.00066	12.6	2.96	102	50.84	7.7	3.1	8	1.4
K13-15	light pink	0.40779	0.2085	0.00171	0.00048	0.08413	0.03682	0.00072	0.00066	-11	3.08	82	34.49	3.2	4.6	5.2	40
K13-19	light pink	0.17666	0.07557	0.00165	0.00023	0.04132	0.01696	0.00033	0.00021	10.6	1.46	41.1	16.53	4.9	3.9	8.1	17
K13-20	light pink	0.09066	0.14849	0.0016	0.00041	0.0198	0.03208	-0.00008	0.00065	10.3	2.67	19.9	31.95	75	0.104	9.6	1.2
K13-21	light pink	0.13652	0.08669	0.00163	0.00026	0.0341	0.02111	0.00066	0.00026	10.5	1.68	34.1	20.73	23	1.5	8.7	0.78
K13-22	light pink	0.23135	0.2122	0.00084	0.00029	0.02698	0.02302	0.00065	0.00026	5.4	1.88	27	22.76	31	1.02	3.7	0.88
K13-23	light pink	0.05842	0.04004	0.00133	0.00012	0.01073	0.00731	0.0004	0.00011	8.6	0.8	10.8	7.34	73	0.116	8.34	0.37
K13-24 light pink 0.12656 0.10494 0.00149 0.00027 0.0253 0.02054 0.00053										9.6	1.77	25.4	20.34	41	0.69	8.3	0.82
K13-26	light pink	0.14383	0.12591	0.00139	0.00029	0.02817	0.00037	9	1.88	28.2	23.75	39	0.74	7.5	0.87		
K13-27	light pink	0.05278	0.10337	0.00224	0.0004	0.01447	0.0004	14.4	2.6	14.6	28.27	99.5	0	14.4	1.2		

K13-28	light pink	0.17664	0.20661	0.00131	0.00043	0.03512	0.03961	0.00101	0.00042	8.4	2.75	35	38.86	47	0.52	6.7	1.3
K13-29	light pink	5.57674	4 5.19504	0.00009	0.00075	0.07737	0.07549	0.00098	0.00096	0.6	4 .86	75.7	71.15	28	1.16	-4	2.2
K13-30	light pink	0.22153	0.14783	0.00118	0.00028	0.03621	0.02271	0.00077	0.00033	7.6	1.83	36.1	22.25	17	1.8	5.4	0.85
K13-32	light pink	1.78432	$\frac{1.60685}{1.60685}$	0.00105	0.00088	0.23021	0.08466	0.00228	0.00146	6.8	5.66	210.4	69.88	0.5	7.9	-7.3	94
K13-33	light pink	0.22963	0.28961	0.00231	0.00101	0.08915	0.1071	0.00139	0.00128	14.9	6.52	86.7	99.84	46	0.54	10.6	3
K13-35	light pink	0.0728	0.16567	0.002	0.00056	0.01848	0.04179	0.00087	0.00061	12.9	3.61	18.6	41.66	88	0.022	12.4	1.7
K13-36	light pink	0.31157	0.25304	0.00172	0.00064	0.06447	0.04717	-0.0014	0.00097	11.1	4.11	63.4	44.99	22	1.5	6.6	1.9
K13-37	light pink	0.26961	0.19839	0.00679	0.0019	0.20944	0.15197	0.00927	0.00304	43.7	12.18	193.1	127.58	24	1.4	31	5.7
K13-38	light pink	0.34366	0.16977	0.00247	0.0006	0.10247	0.04561	0.00091	0.00078	15.9	3.86	99.1	42.01	4	4.2	8.9	48
K13-39	light pink	0.24782	0.1746	0.0016	0.00043	0.04891	0.03222	0.00062	0.00044	10.3	2.76	48.5	31.19	19	1.7	7.1	1.3
K13-40	light pink	0.31382	0.74041	0.0007	0.00071	0.02938	0.06269	-0.00101	0.00093	4.5	4.57	29.4	61.84	67	0.18	2.8	2.1
K13-41	light pink	0.31288	0.11607	0.00199	0.00036	0.0941	0.03186	0.00089	0.00029	12.8	2.3	91.3	29.57	0.6	7.5	7.2	37
K13-42	light pink	0.40539	0.1253	0.00233	0.00042	0.13209	0.03554	0.00123	0.0004	15	2.72	126	31.88	DISCORDANT			
K13-43	light pink	0.15071	0.17204	0.00372	0.0011	0.09492	0.10638	0.00112	0.00111	23.9	7.09	92.1	98.66	48	0.5	19.5	3.3
K13-44	light pink	0.19549	0.18555	0.00274	0.00081	0.06713	0.0613	0.00119	0.00104	17.7	5.19	66	58.33	38	0.77	13.6	2.5
K13-45	light pink	0.61163	0.13105	0.00437	0.00066	0.39843	0.07953	0.00544	0.00164	28.1	4.23	340.5	57.75	DISCORDANT			
K13-46	light pink	0.1716	0.15428	0.00161	0.00042	0.03432	0.02973	0.00115	0.00043	10.3	2.69	34.3	29.18	38	0.77	8.3	1.3
K13-47	light pink	0.14487	0.0583	0.00124	0.00015	0.02663	0.01043	0.0004	0.00015	8	0.94	26.7	10.32	5	3.8	6.33	0.46
K13-48	light pink	0.64281	0.18669	0.00253	0.00053	0.23929	0.05599	0.00299	0.0009	16.3	3.39	217.8	45.88	DISCORDANT			
K13-49	colourless	0.50568	0.48201	0.00182	0.00104	0.09474	0.07394	0.00011	0.00186	11.7	6.67	91.9	68.58	22	1.5	4.5	3.2
K13-51	colourless	0.20542	0.16766	0.00241	0.00067	0.07325	0.05714	0.00122	0.00092	15.5	4.34	71.8	54.06	28	1.18	11.4	2

Table VIII.12: Shakespeare Cliff Ignimbrite W110864

				Measured isc	otope ratios a	and 1σ (%) inte	ernal errors			Estimated	ages and error	lσ absolute in s (My)	ternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U Concordance	Spot	Selected 1σ abs	age and olute
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	²⁰⁸ Pb/ ²³² Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MŚWD	external er	ror (My)
K14-1	colourless	0.54117	0.30209	0.00301	0.00107	0.23785	0.1097	0.00403	0.00184	19.4	6.88	216.7	89.98	3.5	4.5	6.5	85
K14-2	colourless	0.38491	0.28769	0.00343	0.00129	0.20502	0.14001	0.00307	0.00281	22.1	8.29	189.4	117.98	17	1.9	11.9	3.8
K14-3	colourless	0.4789	0.13811	0.00153	0.00028	0.1016	0.02382	0.00131	0.00034	9.8	$\frac{1.78}{1.78}$	98.3	21.95	DISCORDANT			
K14-4	colourless	0.29869	0.24248	0.00225	0.00084	0.0937	0.06881	0.00071	0.00135	14.5	5.39	90.9	63.88	22	1.5	8.6	2.5
K14-5	colourless	0.38137	0.16759	0.00239	0.00055	0.12567	0.04875	0.00275	0.00079	15.4	3.54	120.2	4 3.98	1.5	5.9	7.8	51
K14-6	colourless	0.35457	0.26231	0.00159	0.00057	0.06997	0.04591	0.0022	0.0008	10.2	3.64	68.7	43.57	16	2	5.7	1.7
K14-7	colourless	0.53998	0.31966	0.00165	0.0006	0.12261	0.05881	0.00362	0.00109	10.6	3.87	117.4	53.19	4.3	4.1	3.7	46
K14-8	colourless	0.32132	0.22443	0.00194	0.00061	0.0876	0.05553	0.00346	0.00111	12.5	3.91	85.3	51.84	15	2.1	7.5	1.8
K14-9	colourless	0.65636	0.40722	0.00162	0.00073	0.14431	0.06461	0.00234	0.00129	10.4	4.67	136.9	57.33	2.7	4.9	1.2	62
K14-10	colourless	0.43344	0.11336	0.00178	0.00027	0.11228	0.0251	0.0013	0.0003	11.5	1.75	108	22.92	DISCORDANT			
K14-11	colourless	0.36927	0.12724	0.00169	0.00031	0.0927	0.02796	0.00214	0.00045	10.9	1.99	90	25.98	0.2	9.8	5.4	37
K14-12	colourless	$\frac{1.50892}{1.50892}$	2.49276	0.00051	0.00078	0.12589	0.08575	0.00161	0.00091	3.3	5	120.4	77.34	13	2.3	-3.4	2.3
K14-13	colourless	0.40792	0.15672	0.007	0.00144	0.42705	0.16777	0.01088	0.00352	44.9	9.23	361.1	119.37	1.7	5.7	25.3	130

K14-14	light pink	0.44006	0.37194	0.0024	0.00103	0.14798	0.11089	0.00115	0.00261	15.5	6.64	140.1	98.08	21	1.6	8	3.1
K14-15	light pink	0.19667	0.06837	0.00136	0.00016	0.03855	0.01275	0.00102	0.00025	8.8	1.05	38.4	12.47	1.2	6.4	6.46	16
K14-16	light pink	0.73072	0.41309	0.00227	0.00096	0.29882	0.12603	0.00188	0.00181	14.6	6.16	265.5	98.52	1.8	5.6	1.6	84
K14-17	light pink	0.10753	0.14198	0.00346	0.00086	0.04394	0.05722	0.00586	0.00208	22.3	5.53	43.7	55.66	68	0.17	20.2	2.6
K14-18	light pink	0.5795	0.25242	0.00258	0.00072	0.18656	0.06596	0.00181	0.00109	16.6	4.66	173.7	56.44	0.6	7.6	5.3	75
K14-19	light pink	0.08972	0.03019	0.01345	0.00097	0.162	0.05586	0.00616	0.0013	86.1	6.18	152.5	48.81	14	2.2	78.2	3
K14-20	light pink	0.10133	0.34954	0.00145	0.00075	0.01852	0.06321	0.00164	0.00107	9.3	4.82	18.6	63.01	87	0.025	8.7	2.3
K14-21	light pink	0.24996	0.25896	0.00125	0.00048	0.04294	0.04153	0.00084	0.00059	8	3.08	42.7	40.44	37	0.81	5.6	1.4
K14-22	light pink	0.4009	0.16873	0.00546	0.00123	0.33218	0.13201	0.00585	0.00216	35.1	7.91	291.2	100.62	1.7	5.7	18.4	110
K14-23	light pink	0.67412	0.40418	0.00486	0.00206	0.46201	0.23822	0.01584	0.00487	31.3	13.24	385.7	165.45	5.7	3.6	9	6.1
K14-24	light pink	0.28026	0.11017	0.00182	0.00031	0.06679	0.02415	0.00186	0.00059	11.7	2	65.6	22.98	1.4	6.1	7.4	29
K14-25	light pink	0.28543	0.19419	0.00221	0.00061	0.09477	0.06	0.00085	0.00097	14.2	3.9	91.9	55.65	15	2	9.3	1.8
K14-27	light pink	0.24497	0.1758	0.0014	0.0004	0.05978	0.03983	0.0005	0.0005	9	2.56	59	38.17	18	1.8	5.9	1.2
K14-28	light pink	2.56718	0.83481	0.00245	0.00075	0.82478	0.13254	0.00717	0.00206	15.8	4.85	610.7	73.75	DISCORDANT			
K14-29	light pink	0.61687	0.13748	0.0025	0.0004	0.22264	0.03935	0.00378	0.00096	16.1	2.56	204.1	32.68	DISCORDANT			
K14-30	light pink	0.17043	0.15948	0.0024	0.00061	0.06471	0.05876	0.00273	0.00116	15.5	3.91	63.7	56.04	37	0.8	12.3	1.8
K14-32	light pink	0.24798	0.12276	0.00296	0.00055	0.11283	0.05328	0.00313	0.00098	19	3.54	108.6	48.61	6.1	3.5	13.2	1.6
K14-33	light pink	0.3614	0.10119	0.00233	0.00034	0.12307	0.03106	0.00099	0.00038	15	2.19	117.9	28.08	DISCORDANT			
K14-34	light pink	0.88537	0.1697	0.00522	0.00079	0.60317	0.09827	0.00701	0.00172	33.6	5.05	4 79.2	62.24	DISCORDANT			
K14-35	light pink	0.23277	0.14388	0.00255	0.00055	0.09722	0.05751	0.00192	0.00084	16.4	3.53	94.2	53.22	14	2.2	11.7	1.6
K14-36	light pink	0.23224	0.09492	0.00279	0.00044	0.09373	0.03633	0.003	0.00089	-18	2.85	91	33.73	2.5	5	12.3	38
K14-37	light pink	0.45559	0.2038	0.0028	0.00071	0.18704	0.07299	0.00296	0.00116	18.1	4.57	174.1	62.44	1.4	6	8.1	66
K14-38	light pink	0.59992	0.34125	0.0014	0.00053	0.14396	0.06363	0.00064	0.00069	9	3.42	136.6	56.48	2.6	5	2.3	44
K14-39	light pink	0.44394	0.10129	0.00181	0.00024	0.12423	0.02487	0.00126	0.0004	11.6	1.56	118.9	22.46	DISCORDANT			
K14-40	light pink	3.10823	7.91913	0.00019	0.00047	0.09104	0.05401	0.00161	0.00093	1.2	3.04	88.5	50.27	8	3.1	-3.5	1.4
K14-41	light pink	0.48246	0.20243	0.00318	0.0008	0.27513	0.10213	0.0043	0.00148	20.5	5.12	246.8	81.33	0.9	6.8	8.5	78
K14-42	light pink	0.37254	0.16174	0.00213	0.00044	0.11324	0.04462	0.00138	0.00075	13.7	2.84	108.9	40.7	1.8	5.6	7.8	39
K14-43	light pink	0.70149	0.31832	0.00262	0.00085	0.24148	0.08283	0.00593	0.00239	16.9	5.47	219.6	67.74	0.4	8.3	<u>2.9</u>	93
K14-44	light pink	0.31513	0.20879	0.00286	0.00082	0.12162	0.07453	0.00388	0.00171	18.4	5.27	116.5	67.47	14	2.2	11.5	2.5
K14-45	light pink	0.223	0.14756	0.00172	0.00039	0.05649	0.03549	0.00005	0.0005	11.1	2.54	55.8	34.11	17	1.9	8	1.2
K14-46	light pink	0.33779	0.07892	0.00179	0.00022	0.09629	0.02065	0.00187	0.00055	11.5	1.41	93.3	19.13	DISCORDANT			
K14-48	light pink	0.79024	0.12755	0.00523	0.00062	0.57284	0.08737	0.0073	0.00212	33.6	3.98	4 59.9	56.4	DISCORDANT			
K14-49	light pink	0.78394	0.06367	0.02272	0.00117	2.71788	0.35323	0.04324	0.01186	144.8	7.38	1333.4	96.47	DISCORDANT			
K14-50	light pink	0.0935	0.08411	0.00247	0.00037	0.03486	0.03108	0.00181	0.00064	15.9	2.41	34.8	30.5	51	0.43	14.5	1.1
K14-51	light pink	0.26136	0.13262	0.00374	0.00071	0.16439	0.08083	0.00251	0.00113	24.1	4.57	154.5	70.48	6.7	3.3	16.6	2.1
K14-52	light pink	0.30004	0.19092	0.00309	0.00085	0.14865	0.08832	0.00337	0.00169	19.9	5.47	140.7	78.08	12	2.4	12.4	2.5
K14-53	light pink	0.11157	0.19403	0.00197	0.00062	0.03302	0.05661	0.0005	0.00096	12.7	4.01	33	55.64	70	0.15	11.3	1.9

Table	VIII.1	13:	Papa	kura	Bay	D	ome	W	11()86	55
-------	--------	-----	------	------	-----	---	-----	---	-----	-----	----

Table	able VIII.13: Papakura Bay Dome W110865 Measured isotope ratios and Lo (%) interval errors Estimated ages and Lo absolute internal errors 200 Pb/238 U & 200 Pb/238 U & 200 Pb/238 U &																
		1	5	Measured iso	otope ratios	and 1σ (%) int	ternal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selected	d age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	+	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁸ Pb/ ²³² Th	+	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	Concordance (%)	Spot MSWD	lσ at external	osolute error (My)
K15-1	pink	0.14872	0.0854	0.00202	0.00042	0.0498	0.02724	0.00335	0.00155	13	2.71	49.3	26.34	14	2.2	9.5	13
K15-2	nink	0.369	0.1376	0.00092	0.0002	0.04333	0.01353	0.0041	0.00100	5.9	1-29	43.1	13.16	03	9.1	2.5	24
K15-3	nink	0.09681	0.10173	0.00077	0.0002	0.01072	0.01097	0.00022	0.00025	5.5	1.27	10.8	11.02	55	0.35	43	0.63
K15-4	nink	0.42323	0.15976	0.001	0.00024	0.06479	0.01956	0.00265	0.00068	64	1.56	63.7	18.66	0-1	10.3	2.1	30
K15-5	nink	0.36435	0.11462	0.0012	0.00023	0.05774	0.01499	0.00028	0.00029	7.8	1.50	57	14 39	DISCORDANT	10.0	2.1	50
K15-6	nink	0.15725	0.12781	0.00091	0.00026	0.01813	0.01392	0.00088	0.00061	5 9	1.66	18-2	13.88	32	0.98	4-4	0.82
K15-7	pink	0 17889	0.09389	0.00132	0.00028	0.03284	0.016	0.00121	0.00081	8.5	1.83	32.8	15 73	9	2.9	5.8	0.87
K15-8	pink	0 16343	0 10109	0.00107	0.00025	0.02431	0.01411	0.00015	0.00037	6.9	1.59	24.4	13.99	17	19	5	0.78
K15-9	pink	0.11035	0.08847	0.0009	0.00022	0.0132	0.01015	0.0005	0.00035	5.8	1.39	13.3	10.17	40	0.7	4.8	0.7
K15-10	pink	0.22142	0.09935	0.0009	0.00019	0.02625	0.01062	0.00045	0.00029	<u>5.8</u>	1.21	26.3	10.5	3.2	4.6	3.5	16
K15-11	pink	0.11262	0.11195	0.00085	0.00022	0.01373	0.01324	0.00003	0.00027	5.4	1.4	13.8	13.26	49	0.48	4.6	0.68
K15-12	nink	0.43126	0.15578	0.00134	0.00031	0.08528	0.02496	0.0003	0.00049	8.6	2.01	83.1	23 35	DISCORDANT	0110		0.00
K15-13	pink	0.10813	0.09348	0.00092	0.00022	0.01507	0.01259	0.00075	0.00046	5.9	1.42	15.2	12.59	42	0.66	4.9	0.69
K15-14	pink	0.05253	0.01614	0.0083	0.00066	0.06147	0.01908	0.00428	0.00109	53.3	4.24	60.6	18.25	62	0.25	51.5	2.3
K15-15	pink	0.1035	0.05859	0.00143	0.00024	0.02077	0.01135	0.00102	0.00041	9.2	1.54	20.9	11.29	24	1.4	7.6	0.77
K15-16	pink	0.58055	0.1066	0.00265	0.00034	0.22078	0.03446	0.00388	0.00082	17	2.22	202.6	28.66	DISCORDANT			
K15-17	pink	0.73256	0.14641	0.00464	0.00071	0.47657	0.08407	0.01346	0.00282	29.8	4.56	395.7	57.81	DISCORDANT			
K15-18	pink	0.44328	0.10073	0.00329	0.00049	0.19889	0.04	0.01377	0.00307	21.2	3.12	184.2	33.87	DISCORDANT			
K15-19	pink	0.23413	0.13543	0.00111	0.0003	0.03416	0.01771	0.00095	0.00051	7.1	1.96	34.1	17.39	9.1	2.9	4.3	0.93
K15-20	pink	0.36238	0.14827	0.00108	0.00026	0.05056	0.0174	0.00078	0.0005	7	1.67	50.1	16.81	0.6	7.5	2.9	28
K15-21	pink	0.10621	0.07106	0.00172	0.00034	0.02812	0.01822	0.00287	0.001	11.1	2.17	28.2	18	29	1.11	9.1	1.1
K15-22	pink	0.40887	0.14989	0.00123	0.00029	0.07578	0.02284	0.003	0.00107	7.9	1.84	74.2	21.56	0.1	10.3	2.6	36
K15-23	pink	0.4084	0.23672	0.0006	0.00021	0.03486	0.01651	0.00331	0.00088	3.9	1.34	34.8	16.2	4.3	4.1	1.4	16
K15-24	pink	0.80029	0.156	0.00625	0.00094	0.58323	0.10436	0.03924	0.00854	40.2	6	466.5	66.93	DISCORDANT			
K15-25	light pink	0.45521	0.13387	0.00145	0.00028	0.09368	0.02243	0.00205	0.00073	9.4	1.83	90.9	20.83	DISCORDANT			
K15-26	light pink	0.76133	0.15737	0.00323	0.0005	0.33508	0.05854	0.01056	0.00243	20.8	3.22	293.4	44. <u>52</u>	DISCORDANT			
K15-27	light pink	0.11809	0.10743	0.00121	0.00032	0.01965	0.01726	0.00011	0.00031	7.8	2.03	19.8	17.18	44	0.6	6.4	1
K15-28	light pink	0.57079	0.11531	0.00334	0.00048	0.28177	0.05056	0.01011	0.00236	21.5	3.05	252.1	40.05	DISCORDANT			
K15-29	light pink	0.143	0.11625	0.00072	0.0002	0.01302	0.01004	0.00046	0.00031	4.6	1.26	13.1	10.06	34	0.9	3.6	0.63
K15-30	light pink	0.16647	0.04683	0.00103	0.00013	0.02479	0.00652	0.00068	0.00024	6.6	0.83	24.9	6.47	0.2	9.9	4.34	16
K15-31	light pink	0.17712	0.08769	0.00092	0.00019	0.02296	0.01052	0.00082	0.00036	5.9	1.23	23.1	10.44	7	3.3	4	0.59
K15-32	light pink	0.46981	0.13815	0.00226	0.00043	0.14821	0.03716	0.00556	0.00173	14.5	2.79	140.3	32.86	DISCORDANT			
K15-33	light pink	0.11197	0.08295	0.00109	0.00023	0.01664	0.01192	0.00072	0.00042	7	1.49	16.8	11.91	36	0.83	5.8	0.72
K15-34	light pink	0.91917	0.31604	0.00147	0.0004	0.21943	0.05417	0.00587	0.00172	9.5	2.59	201.4	4 5.1	DISCORDANT			
K15-35	light pink	0.50292	0.17821	0.001	0.00023	0.06419	0.01865	0.00113	0.00052	6.4	1.45	63.2	17.79	DISCORDANT			
K15-36	light pink	0.1415	0.07016	0.00112	0.0002	0.02209	0.01045	0.00105	0.00037	7.2	1.27	22.2	10.38	11	2.6	5.4	0.63
K15-37	light pink	0.30443	0.19719	0.00084	0.00028	0.03662	0.02077	0.0021	0.00099	5.4	1.8	36.5	20.35	-10	2.7	2.8	0.85

		0101110	0.000+7	0.00019	0.03803	0.01686	0.0004	0.00038	3.2	1.22	38.5	16.49	2.4	5.1	0.7	16
K15-39 light	pink 0.12655	0.11581	0.00078	0.00022	0.01421	0.01249	0.00045	0.00032	5	1.39	14.3	12.5	41	0.68	4	0.69
K15-40 pink	0.95362	0.26592	0.00101	0.00022	0.13968	0.02783	0.00603	0.00162	6.5	1.45	132.8	24.8	DISCORDANT			
K15-41 pink	0.08311	0.02538	0.00586	0.00057	0.07433	0.02308	0.00404	0.0011	37.7	3.64	72.8	21.81	6.5	3.4	31.9	1.9
K15-42 pink	0.25722	0.1238	0.00134	0.00031	0.05462	0.0239	0.00093	0.00066	8.6	2.02	54	23.01	3.7	4.3	5	25
K15-43 pink	0.20478	0.11529	0.00091	0.00023	0.02992	0.01548	0.00024	0.00028	5.9	1.46	29.9	15.26	8.9	2.9	3.6	0.71
K15-44 pink	0.65068	0.16026	0.00208	0.00037	0.20126	0.04154	0.005	0.0015	13.4	2.39	186.2	35.11	DISCORDANT			
K15-45 pink	0.31805	0.10245	0.00146	0.00026	0.07031	0.02037	0.00201	0.00071	9.4	1.69	69	19.33	0.1	10.4	4.6	32
K15-46 pink	0.14975	0.12679	0.00087	0.00025	0.01774	0.0143	0.00051	0.00037	5.6	1.6	17.9	14.26	34	0.9	4.3	0.78
K15-48 pink	0.44908	0.19048	0.0008	0.00022	0.05097	0.01745	0.00088	0.00044	5.1	1.41	50.5	16.86	0.5	8	1.6	24
K15-49 pink	0.27986	0.10173	0.00087	0.00017	0.03577	0.01158	0.0006	0.0003	5.6	1.1	35.7	11.35	0.4	8.1	2.9	19
K15-50 pink	0.27374	0.19429	0.00056	0.0002	0.02199	0.0138	0.00076	0.00046	3.6	1.27	22.1	13.71	15	2.1	2	0.61
K15-51 pink	0.07336	0.06275	0.00116	0.00023	0.01273	0.0107	0.0009	0.00038	7.5	1.45	12.8	10.73	57	0.32	6.7	0.73
K15-52 pink	0.1598	0.07368	0.00134	0.00025	0.03066	0.01341	0.00037	0.00028	8.6	1.61	30.7	13.21	6.5	3.4	6	0.78
K15-53 pink	0.13025	0.06867	0.00126	0.00025	0.0235	0.01179	0.00067	0.00035	8.1	1.62	23.6	11.7	14	2.2	6	0.8

Table VIII. 14: Whale Bone Bay Dome W110866

Spot				Measured iso	tope ratios a	nd 1σ (%) inte	ernal errors			Estimated	ages and error	1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U Concordance	Spot	Selected 1 s al	l age and solute
No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	208Pb/232Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MSWD	external	error (My)
K16-1	light pink	0.46623	0.32552	0.0006	0.00025	0.03772	0.02134	0.00081	0.00039	3.9	1.61	37.6	20.88	8.9	2.9	1.4	0.75
K16-2	light pink	0.23805	0.24675	0.00052	0.00021	0.01849	0.01762	0.00056	0.00032	3.3	1.38	18.6	17.57	36	0.85	2.2	0.63
K16-3	light pink	0.69586	0.11544	0.00589	0.00074	0.51704	0.0769	0.0187	0.00357	37.9	4.75	4 23.2	51.47	DISCORDANT			
K16-4	light pink	0.11213	0.22108	0.0005	0.00019	0.007	0.01356	0.00005	0.00031	3.2	1.2	7.1	13.67	76	0.094	2.9	0.58
K16-5	light pink	0.29357	0.15904	0.00073	0.00018	0.03066	0.01488	0.00044	0.00027	4.7	$\frac{1.17}{1.17}$	30.7	14.65	6	3.5	2.8	0.54
K16-6	light pink	0.07291	0.06524	0.00144	0.00019	0.01496	0.01327	0.00009	0.00023	9.3	1.24	15.1	13.27	64	0.23	8.8	58
K16-7	light pink	0.12487	0.127	0.00134	0.00031	0.02565	0.0255	0.00071	0.00039	8.6	1.98	25.7	25.25	47	0.52	7.4	0.93
K16-8	light pink	0.26025	0.28421	0.00079	0.00032	0.02781	0.02833	0.00072	0.00062	5.1	2.04	27.9	27.99	39	0.74	3.5	0.96
K16-9	light pink	0.40995	0.12312	0.0016	0.00029	0.09286	0.02339	0.00166	0.00045	10.3	1.85	90.2	21.73	DISCORDANT			
K16-10	light pink	0.06091	0.06232	0.00091	0.00013	0.0075	0.00761	0.001	0.00035	5.9	0.82	7.6	7.67	80	0.062	5.68	0.4
K16-12	light pink	0.36721	0.14516	0.0008	0.00016	0.04058	0.01394	0.00061	0.00019	5.2	$\frac{1.06}{1.06}$	40.4	13.6	0.6	7.4	2.67	17
K16-13	light pink	0.12935	0.16819	0.00114	0.00031	0.02085	0.02656	0.00137	0.00057	7.3	2.02	21	26.41	58	0.3	6.4	0.93
K16-15	light pink	0.2841	0.10754	0.00172	0.00031	0.06985	0.02401	0.00165	0.00051	11.1	1.97	68.6	22.78	0.8	7	6.4	32
K16-18	pink	0.12726	0.11648	0.00089	0.00019	0.01639	0.01463	0.00014	0.00025	5.8	1.23	16.5	14.62	43	0.63	4.9	0.58
K16-19	pink	0.2596	0.1836	0.00095	0.00027	0.03058	0.01993	0.00057	0.00043	6.1	1.74	30.6	19.64	18	1.8	4.1	0.82
K16-20	pink	0.40914	0.07943	0.00167	0.00019	0.09878	0.01673	0.00161	0.0004	10.7	1.24	95.6	15.46	DISCORDANT			
K16-21	pink	0.21969	0.28078	0.00064	0.00028	0.01697	0.02044	0	0.00053	4.1	1.78	17.1	20.41	49	0.47	3	0.85
K16-22	pink	0.16764	0.17344	0.00111	0.00032	0.02837	0.02832	0.00011	0.00047	7.2	2.04	28.4	27.97	42	0.65	5.7	0.96
K16-23	pink	0.43654	0.22175	0.00085	0.00024	0.04865	0.02091	0.00142	0.0006	5.5	1.55	48.2	20.24	2.7	4.9	2.5	20

K16-24	pink	0.47538	0.25398	0.00076	0.00025	0.04818	0.02088	0.00096	0.00041	4.9	1.59	47.8	20.23	2.6	5	1.7	21
K16-25	pink	0.32112	0.17518	0.00078	0.00021	0.03434	0.01654	0.00023	0.00015	5	1.33	34.3	16.24	5.6	3.7	2.7	0.64
K16-26	pink	0.2513	0.11232	0.00109	0.00021	0.03985	0.01633	0.00186	0.00058	7	1.36	39.7	15.95	3	4.7	4.4	18
K16-27	pink	0.32911	0.17682	0.00098	0.00026	0.04612	0.02188	0.00023	0.00035	6.3	1.67	45.8	21.23	5.1	3.8	3.4	0.78
K16-28	pink	0.63422	0.24392	0.00124	0.00034	0.10924	0.03086	0.00102	0.00059	8	2.2	105.3	28.25	DISCORDANT			
K16-29	pink	0.05941	0.2017	0.00119	0.00037	0.0089	0.03011	0.00125	0.00069	7.6	2.39	9	30.3	96	0.0022	7.6	1.1
K16-30	pink	1.51317	1.26538	0.00029	0.00023	0.05804	0.01975	0.0003	0.00021	1.9	1.45	57.3	18.95	0.2	9.3	-2.1	27
K16-31	pink	0.12415	0.12128	0.00183	0.00037	0.03208	0.03082	0.00016	0.00053	11.8	2.39	32.1	30.32	48	0.51	10.3	1.1
K16-32	pink	8.63846	46.67915	0.00014	0.00077	0.15538	0.06947	0.00216	0.00141	0.9	4 .9 4	146.7	61.05	1.8	5.6	-9.5	70
K16-33	pink	0.36141	0.21275	0.00079	0.00024	0.04092	0.02094	0.00026	0.00028	5.1	1.54	40.7	20.43	6.7	3.4	2.6	0.72
K16-34	pink	0.76874	0.38886	0.00068	0.00025	0.06413	0.02264	0.00146	0.00054	4.4	1.63	63.1	21.6	0.5	7.9	0.4	27
K16-35	pink	0.4146	0.14592	0.00092	0.00019	0.05357	0.01592	0.00071	0.00035	5.9	1.21	53	15.34	0.1	10.3	2.4	23
K16-36	pink	0.20476	0.10403	0.00176	0.00032	0.05077	0.02449	0.00031	0.00033	11.3	2.07	50.3	23.66	8.1	3	8.2	0.97
K16-38	pink	0.21349	0.11515	0.00102	0.0002	0.03205	0.01631	0.00076	0.00037	6.6	1.29	32	16.04	9.2	2.8	4.7	0.6
K16-39	pink	0.6928	0.24599	0.00079	0.00021	0.0809	0.02076	0.00044	0.00031	5.1	1.32	79	19.5	DISCORDANT			
K16-40	pink	0.39308	0.1446	0.00072	0.00015	0.03776	0.01185	0.00014	0.00014	4.6	0.95	37.6	11.6	0.3	9.1	2.07	17
K16-41	pink	0.36283	0.11951	0.00111	0.00018	0.05122	0.01509	0.00048	0.00027	7.1	1.19	50.7	14.57	0.2	9.9	3.9	22
K16-42	pink	0.19702	0.14892	0.00082	0.00021	0.02066	0.01476	0.00044	0.00028	5.3	1.37	20.8	14.68	26	1.3	3.9	0.64
K16-43	pink	0.06157	0.10737	0.00093	0.00018	0.00791	0.01371	0.00044	0.00029	6	1.18	8	13.81	88	0.025	5.8	0.55
K16-44	pink	0.24619	0.1427	0.00123	0.00027	0.04217	0.02293	0.00006	0.00034	7.9	1.75	41.9	22.34	11	2.6	5.5	0.81
K16-45	pink	0.25494	0.13883	0.00112	0.00023	0.03947	0.02016	0.00052	0.00034	7.2	1.51	39.3	19.69	8.6	2.9	5	0.69
K16-46	pink	0.80744	0.18263	0.00403	0.00069	0.52002	0.10423	0.01143	0.00348	26	4.4	4 25.2	69.63	DISCORDANT			
K16-47	pink	0.34854	0.17159	0.00087	0.00022	0.04492	0.01942	0.00121	0.00046	5.6	1.42	44.6	18.87	3	4.7	2.9	18
K16-48	pink	0.35575	0.31116	0.00064	0.00026	0.02716	0.02123	0.00172	0.00071	4.1	1.67	27.2	20.99	24	1.4	2.4	0.78
K16-49	pink	0.41995	0.30732	0.00232	0.00083	0.16835	0.11232	0.00415	0.00268	14.9	5.33	158	97.61	15	2	8.1	2.4
K16-50	pink	0.40141	0.25208	0.00079	0.00025	0.04545	0.025	0.00098	0.00054	5.1	1.62	4 5.1	24.28	8.6	2.9	2.6	0.74

Table VIII.15: Shark Bay Dome W110867

				Measured iso	otope ratios	and 1σ (%) int	ternal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selecter	l age and
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁸ Pb/ ²³² Th	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Concordance (%)	Spot MSWD	lσ ab external e	osolute error (My)
K17-1	pink	0.07494	0.14842	0.00113	0.00027	0.01213	0.02387	0.00024	0.0004	7.3	1.71	12.2	23.95	83	0.049	6.9	0.81
K17-3	pink	0.07664	0.11712	0.00089	0.00019	0.01082	0.01638	0.00104	0.00034	5.8	1.24	10.9	16.45	74	0.114	5.4	0.57
K17-4	pink	0.10723	0.07404	0.00091	0.00013	0.01268	0.0086	0.00011	0.00013	5.9	0.81	12.8	8.63	38	0.77	5.22	0.4
K17-5	pink	0.10799	0.0586	0.00093	0.00011	0.01427	0.00759	0.00018	0.00009	6	0.71	14.4	7.6	23	1.4	5.24	0.34
K17-6	pink	0.16545	0.2594	0.00077	0.00029	0.02017	0.03073	-0.00016	0.00037	5	1.88	20.3	30.59	60	0.28	4.1	0.86
K17-7	pink	0.26897	0.16376	0.0006	0.00015	0.02642	0.01479	0.00078	0.00024	3.9	0.97	26.5	14.63	10	2.6	2.48	0.45
K17-8	pink	0.4713	0.11055	0.00195	0.00027	0.134	0.02698	0.00317	0.00071	12.5	1.76	127.7	24.16	DISCORDANT			
K17-10	light pink	0.15733	0.13885	0.00129	0.00029	0.02368	0.02026	-0.00025	0.00039	8.3	1.89	23.8	20.1	41	0.69	6.9	0.89

K17-11	light pink	0.2469	0.10066	0.0007	0.00011	0.02494	0.00943	0.00029	0.00014	4.5	0.74	25	9.34	2	5.4	3.05	9.8
K17-12	light pink	0.27301	0.20016	0.00118	0.00033	0.04867	0.03325	0.00056	0.00057	7.6	2.14	48.2	32.2	19	1.7	5.1	0.98
K17-13	pink	0.09256	0.11875	0.00179	0.00037	0.02362	0.02999	0.00096	0.00049	11.5	2.35	23.7	29.75	66	0.19	10.6	1.1
K17-14	pink	0.59865	0.32132	0.00067	0.00024	0.05639	0.02261	0.00029	0.00037	4.3	1.57	55.7	21.73	1.4	6	1	22
K17-15	light pink	0.14838	0.25833	0.00087	0.00035	0.0178	0.03021	0.00061	0.00058	5.6	2.24	17.9	30.14	66	0.19	4.7	1.1
K17-16	light pink	0.31698	0.13639	0.00088	0.00019	0.03639	0.01384	0.00056	0.00024	5.7	1.2	36.3	13.56	1.6	5.8	3.1	18
K17-18	light pink	0.46334	0.3715	0.00067	0.00031	0.04199	0.02758	0.00064	0.00049	4.3	2.01	4 1.8	26.88	14	2.1	1.7	0.93
K17-19	light pink	0.44652	0.20433	0.00183	0.00048	0.10631	0.04118	- 0.00022	0.00052	11.8	3.11	102.6	37.79	1.4	6.1	5.1	4 5
K17-22	light pink	0.13433	0.12422	0.00084	0.00018	0.01555	0.01404	0.00063	0.00022	5.4	1.14	15.7	14.04	43	0.61	4.6	0.55
K17-23	light pink	0.28751	0.14443	0.00099	0.00022	0.0424	0.01938	0.00007	0.00029	6.4	1.41	4 2.2	18.88	4.6	4	3.9	17
K17-24	light pink	0.20752	0.05383	0.00074	0.00008	0.0222	0.00544	0.00037	0.00012	4.7	0.49	22.3	5.4	DISCORDANT			
K17-26	light pink	0.33199	0.13224	0.00065	0.00013	0.03099	0.01101	0.00012	0.00018	4.2	0.81	31	10.84	0.9	6.8	2.25	13
K17-28	colourless	0.08817	0.02155	0.00081	0.00005	0.0101	0.00246	0.00019	0.00006	5.2	0.33	10.2	2.47	2.3	5.2	4.58	4.6
K17-29	colourless	0.05236	0.02093	0.00079	0.00005	0.00539	0.00215	0.00022	0.00007	5.1	0.32	5.5	2.17	85	0.038	5.04	0.16
K17-30	light pink	0.05778	0.06053	0.00101	0.00014	0.00809	0.00843	0.00037	0.00015	6.5	0.87	8.2	8.49	83	0.047	6.34	0.43
K17-31	light pink	0.13137	0.29701	0.00089	0.00038	0.01697	0.03772	-0.00019	0.00052	5.7	2.44	17.1	37.66	75	0.101	5	1.1
K17-32	pink	0.32167	0.41347	0.00075	0.00043	0.03526	0.04067	0.00064	0.00065	4.8	2.8	35.2	39.89	43	0.64	2.9	1.3
K17-33	pink	0.3092	0.14336	0.00075	0.00015	0.03367	0.01427	0.0004	0.00023	4.8	0.98	33.6	14.02	3.1	4 .6	2.99	12

Table VIII.16: The Knob W110868

				Measured iso	otope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U		Selected a	ige and 1σ
Spot No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁸ Pb/ ²³² Th	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	Concordance (%)	Spot MSWD	absolute error	external (My)
K18-1	light pink	0.30633	0.15643	0.00079	0.00019	0.03243	0.01469	0.00102	0.00038	5.1	1.23	32.4	14.45	4.4	4.1	2.9	15
K18-3	light pink	0.14653	0.05162	0.00078	0.00009	0.01611	0.00545	0.00041	0.00013	5.1	0.55	16.2	5.45	2.4	5.1	3.88	8
K18-4	light pink	0.14767	0.07528	0.00083	0.00012	0.01787	0.00877	0.00022	0.00016	5.4	0.8	18	8.75	12	2.4	4.29	0.37
K18-5	light pink	0.20128	0.07959	0.00083	0.00011	0.0233	0.00872	0.01031	0.00212	5.3	0.73	23.4	8.66	2.6	5	3.96	9.4
K18-6	pink	0.18473	0.05139	0.00094	0.0001	0.02443	0.00642	0.00048	0.00016	6	0.63	24.5	6.36	0.2	9.9	4.27	12
K18-7	pink	0.75055	0.0359	0.03091	0.0009	3.49448	0.27325	0.10177	0.02091	196.2	5.65	1526	61.73	DISCORDANT			
K18-8	pink	0.81591	0.0366	0.03977	0.00104	5.17997	0.40549	0.07134	0.01474	251.4	6.46	1849.3	66.62	DISCORDANT			
K18-9	pink	0.06182	0.08309	0.00161	0.00024	0.01469	0.01966	0.00142	0.00046	10.4	1.52	14.8	19.67	81	0.059	10	0.72
K18-10	pink	0.30042	0.20647	0.00112	0.00035	0.05048	0.03115	0.00262	0.00086	7.2	2.27	50	30.11	14	2.2	4.3	1
K18-11	pink	0.22371	0.06264	0.00119	0.00013	0.03658	0.00962	0.00031	0.00014	7.7	0.85	36.5	9.43	0.1	10.7	5.26	16
K18-12	pink	0.41695	0.16929	0.00104	0.00023	0.06422	0.02234	0.00011	0.00035	6.7	1.48	63.2	21.31	0.6	7.5	3.1	24
K18-13	pink	0.37962	0.14092	0.00141	0.00029	0.0748	0.02362	0.0013	0.0005	9.1	1.9	73.2	22.31	0.3	9	4.1	33
K18-14	pink	0.28631	0.21042	0.00076	0.00025	0.0323	0.02134	0.00035	0.00031	4 .9	1.61	32.3	20.99	17	1.9	2.9	0.75
K18-15	pink	0.38009	0.03087	0.00115	0.00005	0.06203	0.00509	0.00126	0.00029	7.4	0.35	61.1	4.87	DISCORDANT			
K18-17	pink	0.18637	0.07719	0.00084	0.00012	0.02285	0.00894	0.00066	0.00021	5.4	0.8	22.9	8.88	3.4	4.5	3.97	9.8
K18-18	pink	0.44789	0.07591	0.00163	0.00017	0.10896	0.01621	0.00212	0.00057	10.5	1.08	105	14.84	DISCORDANT			

	<u>K18-19</u>	nink	0.30737	0.0742	0.00087	0.00011	0.03883	0.00834	0.0003	0.00017	5.6	0.7	38.7	8 1 5	DISCORDANT			
	K18-20	pink	0.08994	0.07882	0.00118	0.00017	0.01508	0.01307	0.00056	0.00035	7.6	1 11	15.2	13.07	53	0 39	7	0.52
	K18-21	nink	1.01549	0.07194	0.00987	0.00048	1 49553	0.13407	0.01571	0.00392	63-3	3.08	928.6	54 55	DISCORDANT	0.07		0102
	K18-22	nink	0.21246	0.06521	0.00105	0.00012	0.03332	0.00968	0.00043	0.00021	6-8	0.79	33.3	9.51	03	88	4 74	14
	K18-23	nink	0.33999	0.07927	0.00133	0.00012	0.06482	0.01364	0.00055	0.00029	8-5	1.04	63.8	13.01	DISCORDANT	0.0		
	K18-24	pink	0.56636	0.51874	0.00052	0.00032	0.04174	0.0287	0.00076	0.00045	3.3	2.04	41.5	27.97	15	2	0.7	0.96
	K18-25	pink	0.14926	0.04844	0.00081	0.00008	0.01722	0.0054	0.00028	0.00011	5.2	0.54	17.3	5.39	1.5	6	4.11	7.6
	K18-26	pink	0.24752	0.14252	0.00179	0.0004	0.06207	0.0335	0.00123	0.00062	11.5	2.55	61.1	32.02	10	2.6	7.8	1.2
	K18-27	pink	0.51934	0.11729	0.00266	0.00039	0.2125	0.04184	0.00356	0.00112	17.1	2.49	195.6	35.04	DISCORDANT			
	K18-28	pink	0.12226	0.06095	0.00084	0.0001	0.01469	0.00717	0.00032	0.00015	5.4	0.66	14.8	7.17	16	2	4.61	0.3
	K18-30	pink	0.61522	0.28201	0.00091	0.00029	0.0775	0.02674	0.0016	0.00059	5.8	1.84	75.8	25.2	0.4	8.2	1.1	32
	K18-31	light pink	0.61848	0.20097	0.00144	0.00033	0.11193	0.02751	0.00281	0.00091	9.3	2.13	107.7	25.12	DISCORDANT			
	K18-32	light pink	0.05701	0.04782	0.00336	0.00037	0.02571	0.02148	0.00032	0.00033	21.6	2.4	25.8	21.27	83	0.047	21.2	1.2
	K18-33	light pink	0.36236	0.11303	0.00119	0.0002	0.06145	0.0168	0.00134	0.00045	7.7	1.3	60.6	16.07	DISCORDANT			
	K18-34	light pink	0.15168	0.04501	0.00087	0.00008	0.01893	0.00548	0.00049	0.00017	5.6	0.53	19	5.46	0.8	7.1	4.4	8.3
	K18-35	light pink	0.24139	0.12314	0.00134	0.00026	0.04998	0.02405	0.00167	0.00063	8.6	1.67	49.5	23.26	6.6	3.4	5.9	0.78
	K18-36	light pink	0.52057	0.23083	0.00113	0.00032	0.08011	0.02821	0.00197	0.00086	7.3	2.08	78.2	26.52	0.6	7.6	2.2	34
	K18-37	light pink	0.60243	0.30081	0.00066	0.00023	0.06016	0.02177	0.00014	0.00028	4.2	1.5	59.3	20.85	0.6	7.5	0.7	24
	K18-38	pink	0.34885	0.10951	0.00099	0.00016	0.05342	0.01485	0.00035	0.00025	6.4	1.06	52.8	14.32	DISCORDANT			
	K18-39	pink	0.48577	0.18141	0.00093	0.00022	0.05961	0.01781	0.00236	0.00084	6	1.44	58.8	17.07	0.1	10.5	1.9	27
	K18-40	pink	0.23089	0.11627	0.00145	0.00027	0.0507	0.02415	0.00043	0.00035	9.3	1.75	50.2	23.33	6.7	3.4	6.5	0.81
	K18-41	pink	0.10041	0.10529	0.00099	0.00019	0.01542	0.01597	0.00077	0.00036	6.4	1.2	15.5	15.97	54	0.38	5.7	0.57
	K18-42	pink	0.22653	0.09718	0.00085	0.00015	0.02863	0.01143	-0.00003	0.00019	5.5	0.98	28.7	11.28	2.8	4.8	3.61	13
	K18-43	pink-	0.6171	0.06375	0.00302	0.00019	0.27413	0.03188	0.00561	0.0019	19.4	1.25	246	25.41	DISCORDANT			
<u> </u>	K18-44	pink	0.5277	0.08802	0.00265	0.00029	0.20765	0.03276	0.00179	0.00063	17.1	1.87	191.6	27.54	DISCORDANT			
$\hat{\mathbf{x}}$	K18-45	pink	1.43147	0.65677	0.00094	0.0004	0.19646	0.04073	0.00494	0.00181	6	2.55	182.1	34.57	DISCORDANT			
	K18-46	pink	0.34255	0.11933	0.00196	0.00036	0.09656	0.03019	0.00095	0.00052	12.6	2.33	93.6	27.96	0.3	8.9	6.5	41
	K18-47	pink	0.73782	0.20261	0.00128	0.00026	0.15837	0.03334	0.00087	0.00054	8.2	1.67	149.3	29.23	DISCORDANT			
	K18-48	pink	0.30076	0.1431	0.00129	0.00028	0.06386	0.02781	0.00038	0.00033	8.3	1.81	62.9	26.55	3.4	4 .5	4.9	22
	K18-49	pink	0.25436	0.19121	0.00094	0.00027	0.04177	0.02936	0.0017	0.00071	6	1.74	41.5	28.62	20	1.7	4.1	0.8
	K18-50	pink	0.43057	0.10625	0.00153	0.00023	0.09438	0.02066	0.00135	0.00054	9.8	1.47	91.6	19.17	DISCORDANT			

Spot			J	Measured isc	otope ratios a	und 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	Spot	Selecter	l age and
No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	208Pb/232Th	±	206Pb/238U	±	207Pb/235U	±	(%)	MSWD	external	error (My)
K19-1	pink	0.10526	0.04959	0.00093	0.0001	0.01482	0.00686	0.00025	0.00009	6	0.63	14.9	6.86	16	2	5.19	0.31
K19-2	pink	0.07741	0.13483	0.00069	0.00017	0.00855	0.01476	0.00037	0.00026	4.4	1.06	8.6	14.86	76	0.091	4.2	0.51
K19-3	pink	0.13865	0.10343	0.00098	0.00018	0.01971	0.0143	0.00058	0.00025	6.3	1.18	19.8	14.23	31	1.03	5.3	0.54
K19-4	pink	0.1054	0.04812	0.00068	0.00007	0.01006	0.00451	0.00019	0.00007	4.4	0.45	10.2	4.53	16	1.9	3.83	0.22
K19-5	pink	0.63903	0.27798	0.00078	0.00024	0.07663	0.02446	0.00006	0.00032	5	1.55	75	23.07	0.2	9.6	0.8	28
K19-6	colourless	0.12796	0.1357	0.00099	0.00025	0.01828	0.01889	0.00022	0.00017	6.4	1.6	18.4	18.84	49	0.47	5.4	0.76
K19-7	colourless	0.08424	0.05993	0.00063	0.00008	0.00784	0.00551	0.00015	0.00009	4.1	0.51	7.9	5.55	45	0.57	3.72	0.24
K19-9	colourless	0.07609	0.06	0.00083	0.0001	0.0094	0.00735	0.00039	0.00013	5.3	0.64	9.5	7.39	54	0.37	5	0.3
K19-10	colourless	0.42667	0.21912	0.0015	0.00041	0.08896	0.03958	0.0002	0.0004	9.6	2.67	86.5	36.91	3.3	4.5	4.7	33
K19-12	colourless	0.07155	0.11144	0.00062	0.00012	0.00593	0.00918	0.00028	0.00011	4	0.75	6	9.27	82	0.055	3.84	0.36
K19-13	colourless	0.12909	0.06505	0.00079	0.0001	0.01337	0.00655	0.00031	0.00012	5.1	0.67	13.5	6.56	16	1.9	4.3	0.31
K19-14	colourless	0.05039	0.02395	0.00062	0.00004	0.0046	0.00218	0.00017	0.00004	4	0.27	4.7	2.2	74	0.113	3.92	0.13
K19-15	colourless	0.08647	0.02041	0.00065	0.00004	0.00801	0.00187	0.00019	0.00004	4 .2	0.25	8.1	1.89	1.8	5.6	3.66	3.8
K19-17	light pink	0.18673	0.0725	0.00078	0.0001	0.02019	0.00745	0.0002	0.00011	5	0.67	20.3	7.42	2.7	4.9	3.77	8.5
K19-19	light pink	0.04717	0.01558	0.00068	0.00004	0.00459	0.00151	0.00018	0.00004	4.4	0.23	4.6	1.53	84	0.042	4.34	0.13
K19-20	light pink	0.08365	0.05679	0.00075	0.00009	0.00849	0.0057	0.00019	0.00007	4.8	0.57	8.6	5.74	47	0.51	4.47	0.28
K19-21	light pink	0.29403	0.14269	0.00069	0.00015	0.0277	0.01214	0.0005	0.00019	4.4	0.98	27.7	12	3.9	4.3	2.68	12
K19-22	light pink	0.11078	0.05173	0.00076	0.00009	0.01139	0.0052	0.00026	0.00009	4.9	0.55	11.5	5.22	16	2	4.19	0.28
K19-23	light pink	0.04608	0.07929	0.00072	0.00011	0.00494	0.00847	0.0002	0.00009	4.7	0.73	5	8.56	96	0.0021	4.61	0.33
K19-24	light pink	0.2547	0.22671	0.00096	0.00032	0.03307	0.02748	0.00073	0.00041	6.2	2.06	33	27.01	29	1.1	4.3	0.96
K19-25	light pink	0.07585	0.0223	0.0007	0.00004	0.00735	0.00215	0.00015	0.00004	4.5	0.29	7.4	2.17	13	2.3	4.17	0.13
K19-26	light pink	0.18577	0.09654	0.0012	0.0002	0.03461	0.01724	0.00056	0.00023	7.7	1.3	34.5	16.92	9.4	2.8	5.8	0.6
K19-28	light pink	0.12843	0.04286	0.00065	0.00006	0.01171	0.0038	0.00024	0.00007	4.2	0.41	11.8	3.82	2.9	4.8	3.45	5.1
K19-29	light pink	0.07691	0.07568	0.00089	0.00014	0.00974	0.00949	0.0003	0.00012	5.8	0.9	9.8	9.54	64	0.22	5.36	0.43
K19-30	light pink	0.05569	0.12945	0.00105	0.00025	0.00854	0.01976	0.00069	0.00034	6.8	1.62	8.6	19.9	92	0.0102	6.6	0.76
K19-31	light pink	0.08934	0.16955	0.00057	0.00017	0.00714	0.01339	0.00027	0.00015	3.7	1.08	7.2	13.5	78	0.08	3.4	0.51
K19-32	light pink	0.09311	0.0831	0.00081	0.00013	0.00973	0.00856	0.00042	0.00014	5.2	0.85	9.8	8.61	56	0.34	4.79	0.4
K19-33	light pink	0.1648	0.10963	0.00082	0.00014	0.01824	0.01179	0.00012	0.00015	5.3	0.93	18.4	11.75	24	1.4	4.34	0.42
K19-34	light pink	0.11085	0.03109	0.0006	0.00005	0.00871	0.00242	0.00017	0.00005	3.9	0.29	8.8	2.43	2.2	5.2	3.23	4 .6
K19-35	light pink	0.05791	0.02571	0.00075	0.00006	0.0058	0.00257	0.0002	0.00006	4.8	0.36	5.9	2.59	64	0.21	4.68	0.19
K19-36	light pink	0.25528	0.18001	0.00105	0.00028	0.03447	0.02268	0.00054	0.00033	6.8	1.83	34.4	22.26	19	1.7	4.7	0.85
K19-37	light pink	0.13697	0.07922	0.00069	0.00011	0.01305	0.00734	0.00001	0.00006	4.4	0.68	13.2	7.36	20	1.7	3.64	0.34
K19-38	light pink	0.46466	0.26168	0.00046	0.00016	0.02822	0.01281	0.00045	0.00019	3	1.02	28.3	12.65	3.4	4.5	1.03	13
K19-39	light pink	0.29908	0.09568	0.00082	0.00012	0.03323	0.00971	0.00042	0.00016	5.3	0.79	33.2	9.54	0.2	9.6	3.17	14
K19-40	light pink	0.12555	0.03682	0.00061	0.00005	0.01031	0.00296	0.00018	0.00005	3.9	0.35	10.4	2.98	1.6	5.8	3.25	4.7
K19-41	light pink	0.09664	0.03683	0.00083	0.00007	0.00925	0.00349	0.00017	0.00005	5.4	0.46	9.3	3.51	20	1.6	4.84	0.22
K19-42	light pink	0.13884	0.12632	0.00085	0.0002	0.01561	0.01379	0.00023	0.00023	5.5	1.27	15.7	13.79	42	0.65	4.6	0.61

Table VIII.17: Te Karaka Rhyolite W110869

K19-45	light pink	0.2643	0.08858	0.00074	0.00011	0.02544	0.00779	0.00018	0.00008	4.7	0.74	25.5	7.71	0.4	8.4	2.96	12
K19-46	light pink	0.08703	0.04416	0.00067	0.00007	0.00802	0.00403	0.00019	0.00007	4.3	0.43	8.1	4.06	30	1.07	3.91	0.22
K19-47	light pink	0.51656	0.18002	0.00123	0.00027	0.07886	0.02253	0.00074	0.00034	7.9	1.75	77.1	21.2	DISCORDANT			
K19-48	light pink	0.07731	0.02122	0.00073	0.00005	0.0073	0.00202	0.00016	0.00005	4.7	0.29	7.4	2.03	13	2.3	4.28	0.16
K19-49	light pink	0.19982	0.2088	0.00045	0.00016	0.01302	0.01285	0.00039	0.00017	2.9	1.03	13.1	12.88	39	0.72	2.13	0.48
K19-50	light pink	0.10235	0.04959	0.00069	0.00008	0.00849	0.00406	0.00013	0.00005	4.5	0.49	8.6	4.09	26	1.3	3.94	0.25
K19-51	light pink	0.06082	0.03932	0.00062	0.00006	0.00483	0.00311	0.00011	0.00004	4	0.38	4.9	3.14	75	0.103	3.89	0.19
K19-52	light pink	3.8185	6.4961	0.00019	0.00032	0.0838	0.02721	0.00008	0.00033	1.2	2.04	81.7	25.5	DISCORDANT			
K19-53	light pink	0.13465	0.05914	0.00071	0.00008	0.01281	0.00552	0.00028	0.0001	4.6	0.53	12.9	5.54	10	2.7	3.83	0.24
K19-54	light pink	0.38869	0.25163	0.00089	0.00028	0.04256	0.02438	0.0001	0.00028	5.7	1.82	42.3	23.75	11	2.6	3.2	0.84
K19-55	light pink	0.12795	0.06636	0.00088	0.00011	0.01426	0.00726	0.00018	0.00007	5.6	0.73	14.4	7.27	19	1.7	4.86	0.34

Table VIII.18: Staircase Dome W110870

Spot				Measured isc	tope ratios a	and 1σ (%) int	ernal errors			Estimated	ages and error	l 1σ absolute i s (My)	nternal	²⁰⁶ Pb/ ²³⁸ U & ²⁰⁷ Pb/ ²³⁵ U	Smot	Selected	age and
No.	Colour	²⁰⁷ Pb/ ²⁰⁶ Pb	±	206Pb/238U	±	207Pb/235U	±	208Pb/232Th	±	206Pb/238U	±	207Pb/235U	±	(%)	Spot MSWD	external e	rror (My)
K20-1	pink	0.12151	0.26727	0.00099	0.0004	0.01941	0.042	0.00002	0.0004	6.4	2.58	19.5	41.84	74	0.109	5.6	1.2
K20-2	pink	0.06007	0.25932	0.00153	0.00063	0.01238	0.05321	0.00054	0.00097	9.9	4.05	12.5	53.37	96	0.0028	9.7	1.9
K20-3	pink	0.50436	0.03168	0.00194	0.00008	0.12386	0.00726	0.00113	0.00014	12.5	0.51	118.6	6.56	DISCORDANT			
K20-4	pink	0.18014	0.10853	0.00116	0.00024	0.02894	0.0165	0.00054	0.00027	7.5	1.53	<u>29</u>	16.28	15	2	5.5	0.73
K20-5	pink	0.08645	0.02646	0.00113	0.00008	0.01379	0.00414	0.00039	0.00008	7.3	0.52	13.9	4.15	7.4	3.2	6.48	0.25
K20-7	pink	0.2541	0.12602	0.00129	0.00026	0.04712	0.02155	0.00051	0.00029	8.3	1.69	46.7	20.9	5.3	3.8	5.7	0.78
K20-9	light pink	0.07515	0.02671	0.00111	0.00008	0.01159	0.00406	0.00039	0.00008	7.2	0.5	11.7	4.08	21	1.6	6.59	0.25
K20-10	light pink	2.53904	0.18308	0.0012	0.00008	0.423	0.02166	0.00038	0.00008	7.7	0.49	358.2	15.45	DISCORDANT			
K20-11	light pink	0.35604	0.17791	0.00141	0.00035	0.06999	0.03083	0.00105	0.00042	9.1	2.27	68.7	29.25	3.4	4.5	4 .9	28
K20-12	light pink	0.08098	0.01744	0.00113	0.00006	0.01288	0.00273	0.00041	0.00006	7.3	0.39	13	2.74	1.7	5.7	6.48	5.8
K20-13	light pink	0.06094	0.02221	0.00101	0.00007	0.00901	0.00325	0.00029	0.00006	6.5	0.42	9.1	3.27	37	0.82	6.15	0.22
K20-16	light pink	0.06679	0.0277	0.00128	0.0001	0.01224	0.00502	0.00051	0.00011	8.2	0.62	12.3	5.03	36	0.84	7.73	0.32
K20-17	light pink	0.40147	0.52082	0.00122	0.00084	0.07319	0.08132	0.00007	0.0011	7.9	5.44	71.7	76.9 4	39	0.73	3.8	2.5
K20-19	light pink	0.45142	0.19893	0.00145	0.00038	0.10103	0.03715	0.00113	0.00044	9.4	2.43	97.7	34.26	0.9	6.9	3.6	38
K20-20	light pink	0.07798	0.03273	0.00127	0.0001	0.01422	0.0059	0.00062	0.00014	8.2	0.66	14.3	5.9	25	1.3	7.53	0.31
K20-21	light pink	0.06799	0.01966	0.00122	0.00007	0.01162	0.00332	0.00034	0.00007	7.8	0.47	11.7	3.33	19	1.7	7.34	0.22
K20-22	light pink	0.43555	0.02492	0.0022	0.00008	0.14427	0.00869	0.00203	0.00027	14.2	0.5	136.8	7.71	DISCORDANT			
K20-23	pink	0.06823	0.03405	0.00127	0.00011	0.01291	0.00638	0.00038	0.00012	8.2	0.69	13	6.39	40	0.7	7.66	0.34
K20-25	colourless	0.06156	0.03581	0.001	0.00009	0.00895	0.00516	0.00044	0.00011	6.4	0.56	9	5.2	58	0.31	6.16	0.28
K20-26	colourless	0.10692	0.02442	0.00103	0.00007	0.01621	0.00362	0.00034	0.00007	6.7	0.44	16.3	3.61	0.3	9	5.46	8.4
K20-27	colourless	0.08039	0.02413	0.00117	0.00008	0.01341	0.00397	0.00037	0.00009	7.5	0.52	13.5	3.97	9	2.9	6.78	0.25
K20-29	colourless	0.33116	0.26934	0.00213	0.00084	0.11123	0.08084	0.00184	0.001	13.7	5.41	107.1	73.87	20	1.6	7.6	2.5
K20-30	colourless	0.56007	1.04569	0.0004	0.00051	0.02681	0.03681	0.00079	0.00073	2.6	3.29	26.9	36.4	47	0.51	0.5	1.6

K20-31	colourless	0.06697	0.01727	0.00109	0.00006	0.01084	0.00277	0.00025	0.00005	7	0.4	10.9	2.79	11	2.6	6.48	0.19
K20-32	colourless	0.08408	0.0193	0.00441	0.00026	0.05375	0.01236	0.00151	0.00032	28.3	1.65	53.2	11.91	DISCORDANT			
K20-33	colourless	0.05747	0.00672	0.0011	0.00003	0.00903	0.00109	0.00028	0.00004	7.1	0.22	9.1	$\frac{1.1}{1.1}$	2.8	4.8	6.72	2.8
K20-36	colourless	0.06399	0.01888	0.00121	0.00007	0.01117	0.00328	0.00027	0.00006	7.8	0.44	11.3	3.3	23	1.4	7.33	0.22
K20-38	colourless	0.06533	0.0146	0.00106	0.00005	0.00971	0.00217	0.00023	0.00005	6.8	0.35	9.8	2.18	12	2.5	6.39	0.16
K20-39	colourless	0.07191	0.02534	0.00123	0.00008	0.01285	0.0045	0.00035	0.00009	7.9	0.55	13	4.51	22	1.5	7.37	0.25
K20-40	colourless	0.08371	0.02222	0.00124	0.00008	0.0156	0.0041	0.00026	0.00007	8	0.52	15.7	4.1	3.5	4.5	7.04	6.8
K20-41	colourless	0.05574	0.02718	0.00119	0.00009	0.0096	0.00466	0.00027	0.00008	7.6	0.56	9.7	4.68	63	0.24	7.42	0.28
K20-43	colourless	0.08048	0.01956	0.00127	0.00008	0.01539	0.00372	0.00029	0.00006	8.2	0.49	15.5	3.72	2.5	5	7.18	7.3
K20-44	colourless	0.07449	0.01976	0.00111	0.00007	0.01207	0.00319	0.00025	0.00006	7.2	0.44	12.2	3.2	7.3	3.2	6.45	0.22
K20-45	colourless	0.05924	0.01769	0.00119	0.00007	0.01033	0.00308	0.00031	0.00007	7.7	0.45	10.4	3.1	31	1.05	7.27	0.23
K20-46	colourless	0.17834	0.07096	0.00094	0.00013	0.02476	0.00936	0.0002	0.00013	6	0.85	24.8	9.27	2.9	4.7	4.45	11
K20-47	colourless	0.05498	0.01142	0.00121	0.00005	0.00982	0.00207	0.0003	0.00006	7.8	0.35	9.9	2.08	24	1.4	7.47	0.16
K20-48	colourless	0.05506	0.0151	0.00118	0.00006	0.00925	0.00255	0.00028	0.00006	7.6	0.4	9.4	2.56	43	0.62	7.34	0.19
K20-49	colourless	0.0476	0.02191	0.00118	0.00008	0.00829	0.00381	0.00015	0.00007	7.6	0.51	8.4	3.84	82	0.053	7.5	0.25
K20-50	colourless	0.09977	0.02304	0.00107	0.00007	0.01506	0.00346	0.00037	0.00009	6.9	0.44	15.2	3.46	0.7	7.2	5.84	7.6
K20-51	colourless	0.12841	0.18684	0.00203	0.00065	0.03398	0.0484	-0.00038	0.00061	13.1	4.19	33.9	47.53	64	0.22	11.3	2

The following figures contain output from Isoplot:

- Concordia plots of all GJ1 analyses from each session;
- Concordia plots of the GJ1 age determined from each session;
- Concordia plots of all Temora2 analyses from each session;
- Concordia plots of the Temora2 age determined from each session;
- Concordia plots of the concordant unknowns from each session (i.e. one sample);
- Concordia plots of the determined eruption age for each sample;
- Concordia plots of older age peaks from each sample if present and if based on more than 1 zircon;
- Probability density plots of all concordant unknowns from each session; and
- Concordia plot of all concordant analyses from the four individual samples of Broken Hills Rhyolite.

Pohakahaka Dome Complex

157

Broken Hills Mine sample 2

Broken Hills Flow Banded Rhyolite

Broken Hills Rhyolite (concordia age using all concordant analyses that were used to determine the age of the four individual samples of Broken Hills Rhyolite)

Table	X.1:	Compilation	of	age	data	from	previous	geochronological	studies	of
CVZ volcanics, as used in Fig. 5.4 and 5.5.										

					Method		
	Sample no. (from respective	respective		ordinates	(FI = fission	Age	
	studies)	Rock type	Easting	Northing	track)	(My)	±
1	Table 2, p. 108, Sewa TA-6	ard & Moore (1987) obsidian	1848323	5898584	FT	7 28	0.95
_		Woody Hill					
2	TA-2	obsidian Woody Hill	1849024	5898285	FT	7.36	0.90
3	HA-3	obsidian	1848278	5920092	FT	7.65	0.85
4	HA-5	~2 km W of Gemstone Bay, Bluff Centre obsidian	1848377	5920693	FT	7.77	0.91
-	CD 4	<1 km W of Cathedral Cove, Bluff Centre	1044001	5017084	ET	7.20	0.00
5	CB-4	Motutapere Dome	1844881	591/984	FI	7.38	0.90
6	CB-8	obsidian Motutapere Dome	1843580	5918381	FT	7.37	0.82
7	ON-1	obsidian	1855856	5884093	FT	7.21	0.84
		Onemana					
	Table 1, p. 364-367,	Adams et al. (1994)					
8	12394TR PC4	basalt cobble in volc mudflow, slightly altered	1814979	5960728	K-Ar	17.6	0.6
9	12395TR PF1	pale grey basaltic andesite flow	1821291	5955841	K-Ar	18.0	0.4
10	12391TR PC1	grey andesite flow (upper part)	1816178	5961130	K-Ar	17.5	0.9
11	12392TR PC2	grey basaltic andesite flow (lower part)	1815979	5961030	K-Ar	17.4	0.9
12	12393TR PC3	Sugarloaf grey andesite dike	1815378	5961129	K-Ar	16.0	0.3
13	7182Bi PP1	Sugarloaf biotite diorite intrusive	1812798	5952422	K-Ar	16.9	0.4
14	12206TP TU1	Ongohi Stream	1820025	50/1559	V Ar	14.5	0.3
14	123901K 101	Tuateawa Stream	1850025	3941338	K-AI	14.5	0.5
15	12397TR BE1	grey andesite breccia Colville Bay	1819218	5943635	K-Ar	14.3	1.0
16	12398TR BE2	dark grey andesite flow Papaaroha Beach	1817035	5935929	K-Ar	14.2	0.8
17	12403TR BE4	pale grey andesite flow	1818962	5923530	K-Ar	13.9	1.2
18	12404TR BE5	dark grey andesite flow	1818962	5923530	K-Ar	14.9	1.0
19	12405TR BE6	Te Kouma Peninsula dark grey dacite flow	1821062	5923935	K-Ar	14.9	0.6
• •		Kouri-Te Kouma Rd junction					
20	12406TR BE7	dark grey andesite plug Kirita Hill	1818678	5916128	K-Ar	15.5	0.7
21	12399TR WO1	black basaltic andesite flow Wajau River Valley	1825569	5920844	K-Ar	13.6	0.6
22	12400TR BE3	grey basaltic andesite flow	1827170	5920647	K-Ar	12.9	0.6
23	10432TR H31	pale grey andesite flow	1833141	5934764	K-Ar	13.4	0.4
24	10433TR H32	grey andesite flow	1831243	5933759	K-Ar	13.1	0.1
25	12389TR MA1	whangapoua; Punga Punga quarry dark grey andesite flow	1839749	5931978	K-Ar	13.1	0.5
26	12401TR MA2	Matatrangi Bluff pale grey dacite plug	1827868	5921949	K-Ar	13.2	0.2
27	10403TR H2	Motutere grey andesite plug	1833505	5904956	K-Ar	10.9	0.2
28	12388TR MM1	Five Mile Stream pale grey andesite flow	1836680	5917266	K-Ar	12.3	0.7
29	12415TR MPK1	Kaimarama silicic andesite flow	1829199	5906948	K-Ar	12.2	0.5
20	1041CTD MDE2	Te Mata Valley	1020/00	500/040	K A.	11.0	0.4
30	124101R MPK2	grey andesite plug Te Mata Valley	1829600	5906948	K-Ar	11.0	0.4

To Max Valley To Max Valley Stratt	31	12417TR MPK3	grey andesite clast-breccia	1827699	5907145	K-Ar	12.1	0.5
12 178.21TR N4.1/49 and gaps protecter from the protect stream of the proth			Te Mata Valley	1020170	5000051	.	12.0	
33 17821TR N4/718 proy and/site flow 1826964 5924769 K.Az 13.4 0.2 34 1230TR TT1 dark gey and/site flow 1816016 593407 K.Az 11.5 0.5 35 IDJETR H27 pak gay and/site flow 1814043 592613 K.Az 11.4 0.2 36 7173TR 122 pry and/site flow 1834903 5906139 K.Az 9.8 0.6 37 1040TR H3 pry and/site makine flow 183799 5908366 K.Az 9.4 0.7 39 1270TR 871.1 path balax to makine flow 183709 5901308 K.Az 8.2 0.5 40 123ETR TA1 pary and/site flow 183804 590189 K.Az 8.5 0.5 41 123ETR TA1 pary and/site flow 183804 590308 K.Az 8.0 0.4 42 124ETR K1 pry and/site flow 183804 590308 K.Az 7.6 0.4 41 123ETR K1 pry and/site flow 183804 590308 K.Az 7.6 0.4	32	17820TR N44/749	dark grey andesite flow Buffalo Beach Stream	1838170	5922371	K-Ar	13.8	0.2
34 1290TR TTI Infragor paradistic class in Triging 1360732 930779 K.Az 13.7 0.2 15 1042TR 1127 pale gray andexite (plug) 1348046 5934007 K.Az 11.5 0.5 16 7173TR 12C gray andexite (plug) 1348013 5906159 K.Az 11.4 0.2 17 10404TR 113 gray andexite (now 1337799 5908366 K.Az 9.8 0.6 18 1270TR 871.2 paley bashite andexine flow 1337199 5908366 K.Az 9.8 0.6 12 1232TR TA1 gray andexine flow 1351993 591369 K.Az 8.2 0.5 13 1232TR TA1 gray andexine flow 1381901 590169 K.Az 7.6 0.4 13 123STR TA2 fart gray andexine flow 1381921 5897863 K.Az 8.1 0.2 13 123STR TA2 fart gray andexine flow 1381812 5897863 K.Az 8.1 0.1 14	33	17821TR N44/718	grey andesite flow Owera Stream	1836964	5924769	K-Ar	13.4	0.2
35 10428TR H27 pic gray and/site plug 184046 5934697 K-Ar 11.5 0.5 36 7173TR 12C Whateri Bay 184459 5928391 K-Ar 11.4 0.2 37 10404TR H3 gray and/site flow 1834903 5900159 K-Ar 9.8 0.6 38 12767TR 871/2 pluty baafic and/site flow 183799 5908366 K-Ar 9.2 0.9 30 1239TR TA1 gray and/site flow 1848904 5908189 K-Ar 8.2 0.5 41 1238TR TA2 dark grey and/site flow 1848904 5908189 K-Ar 8.9 0.40 42 1241TR K1 grey and/site flow 183706 5004964 K-Ar 7.6 0.4 41 1241TR K1 grey and/site flow 183706 5004964 K-Ar 7.6 0.4 42 1238TR TA1 dark grey and/site flow 1837066 5004964 K-Ar 7.7 0.1 43 1238TR R181 plolkg	34	12390TR TT1	dark grey andesite clast	1840752	5930779	K-Ar	13.7	0.2
Materie Bay Bit Add Stress Bit Add Stress Lange Stress 12 12	35	10428TR H27	pale grey andesite plug	1848046	5934697	K-Ar	11.5	0.5
Watabilit Bay Status Park	36	7173TR 12C	Whaorei Bay grey andesite	1846459	5928391	K-Ar	11.4	0.2
Five Mike Stream 183779 5908366 K-Ar 9.4 0.7 38 12767TR 871/1 play bashic andesite flow 183709 5908366 K-Ar 9.2 0.9 40 12382TR TA1 gey andesite flow 1841091 5008180 K-Ar 8.2 0.5 41 12383TR TA2 dirk gey andesite flow 1848094 5008180 K-Ar 8.9 0.4 42 1244TTR K1 gey andesite flow 183702 5907863 K-Ar 9.0 0.40 43 1238TTR T1 dark gey andesite flow 1837106 5004964 K-Ar 7.6 0.4 44 1241STR T2 gey andesite flow 1837106 5907863 K-Ar 8.1 0.2 45 10577Hb 586 floag per secant alightly banket rhyolite flow 1847183 5917400 K-Ar 7.7 0.2 47 12380TR HB1 ceraan-gry, flow-banked flow 1847183 5917898 K-Ar 8.0 0.4 591238TR RH2 pale, devitrified ripolite flow <td>37</td> <td>10404TR H3</td> <td>Wataia Bay grey andesite flow</td> <td>1834903</td> <td>5906159</td> <td>K-Ar</td> <td>9.8</td> <td>0.6</td>	37	10404TR H3	Wataia Bay grey andesite flow	1834903	5906159	K-Ar	9.8	0.6
Jurnalisable Steam Turnalisable Steam 183802 S907267 KAr 9.2 0.9 40 1232TR TA1 grey andesite flow 1851993 5913698 KAr 8.2 0.5 41 1233TR TA2 dark grey andesite flow 18418001 5908189 KAr 8.0 0.40 42 1241TR K1 grey andesite flow 1833523 590863 KAr 7.6 0.4 43 1233TR T1 dark grey andesite flow 1833706 5904964 KAr 7.6 0.4 44 1241TR T2 grey andesite flow 183121 5807863 KAr 7.6 0.4 45 105771b 586 ignithy banded rhyolite 183122 591898 KAr 7.7 0.2 44 1243TR TP B81 pale grey-cream slighty banded rhyolite 1851812 591898 KAr 7.9 0.1 47 12380TR H12 grey-cream slighty banded rhyolite 1851181 591893 KAr 8.0 0.4 50 1235	38	12767TR 871/2	Five Mile Stream platy basaltic andesite flow	1837799	5908366	K-Ar	9.4	0.7
Rangibau Rd Rangibau Rd 40 1232TR TA1 grey andesite flow 1851993 SP13098 KAr 8.2 0.5 41 1233TR TA2 durk grey andesite flow 1848044 5908189 KAr 8.9 0.5 42 12414TR K1 grey andesite flow 1838233 580863 KAr 9.0 0.40 43 1233TR T1 durk grey andesite flow 1837406 5904964 KAr 7.6 0.4 44 1241TR T2 grey andesite flow 1838121 5807863 KAr 7.6 0.2 45 105771b 586 ignithy banded rhyolite flow 1847783 5917490 KAr 7.7 0.2 46 1238TR H18 pale, grey, rlow-banded rhyolite 1851181 591898 KAr 7.9 0.1 47 1238GTR H12 pale, grey, rlow-banded rhyolite flow 1844080 591853 KAr 7.0 0.1 48 123STR R11 pale, grey, rlow-banded rhyolite flow 1844980 5918593 <t< td=""><td>39</td><td>12769TR 871/1</td><td>Taurahuehue Stream platy basaltic andesite flow</td><td>1838602</td><td>5907267</td><td>K-Ar</td><td>9.2</td><td>0.9</td></t<>	39	12769TR 871/1	Taurahuehue Stream platy basaltic andesite flow	1838602	5907267	K-Ar	9.2	0.9
Hof Water Beach 41 1238TR TA dark grey andexis flow 184804 5908189 K.Ar 8.9 0.5 42 1241TR K1 grey andexis flow 183823 5896863 K.Ar 9.0 0.40 43 1238TR T1 dark grey andexis flow 1837406 5904964 K.Ar 7.6 0.4 44 12413TR T2 grey andexis flow 1838121 5997863 K.Ar 8.1 0.2 45 105771b 586 igmubrite 1838824 5910969 K.Ar 10.0 0.4 46 1238TR PBR1 pale grey vaream slightly banded rhyolite flow 1847783 5917490 K.Ar 7.7 0.2 47 12380TR HB1 cream-grey, flow-banded rhyolite 1851181 5918998 K.Ar 8.0 0.4 50 12380TR RH2 pale, devirified hyolite flow 1844000 5918383 K.Ar 8.0 0.1 51 1271TR/B84705 pale, devirified hyolite flow 1841880 5917978 K.Ar 8.0	40	12382TR TA1	Rangihau Rd grey andesite flow	1851993	5913698	K-Ar	8.2	0.5
41 12837R TA2 dark grey andesite flow 1848904 5908189 K-Ar 8.9 0.5 42 1214TR K1 grey andesite flow 1838523 5896863 K-Ar 9.0 0.40 43 12387TR T1 dark grey andesite flow 1837406 5904964 K-Ar 7.6 0.4 44 12437TR T2 grey andesite flow 1837406 5904964 K-Ar 8.1 0.2 45 10577Hb 586 ignimbrite 183181 5910969 K-Ar 8.1 0.1 46 12384TR PBR1 pale grey-cream slightly banded rhyolite 1851282 5918898 K-Ar 8.1 0.1 47 12380TR HB1 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 8.0 0.4 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918983 K-Ar 8.0 0.1 412381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 7.0 0.1 12385TR RH1			Hot Water Beach					
42 12414TR K1 grey madesite flow 183523 5896863 K-Ar 9.0 0.40 43 12387TR T1 dark grey andesite flow 1837406 5904964 K-Ar 7.6 0.4 44 12413TR T2 grey andesite flow 183121 5897863 K-Ar 8.1 0.2 45 10577Hb 586 ignitibrite 183894 5910969 K-Ar 0.0 0.4 46 12381TR PBR page grey-crean slightly banded rhyolite flow 1847783 5917490 K-Ar 7.7 0.2 47 12380TR HB1 crean-grey, flow-banded rhyolite 1851181 5918998 K-Ar 7.9 0.1 48 12381TR HB2 crean-grey, flow-banded rhyolite 184180 5917978 K-Ar 8.0 0.4 41 11478143 pathesize flow 1844080 5918983 K-Ar 8.0 0.4 41 12480TR RH1 page-devinified rhyolite flow 1844080 5918983 K-Ar 7.0 0.1 412717TR Bi4/105 perile-glasy rhyolite flow 1851352 5932203 K-Ar 7.2 <td>41</td> <td>12383TR TA2</td> <td>dark grey andesite flow Whennakite Quarry</td> <td>1848904</td> <td>5908189</td> <td>K-Ar</td> <td>8.9</td> <td>0.5</td>	41	12383TR TA2	dark grey andesite flow Whennakite Quarry	1848904	5908189	K-Ar	8.9	0.5
Upper Kaueranga Valley 137406 5904964 K.Ar 7.6 0.4 43 12387TR T1 dark gery andesite flow 1838121 5897863 K.Ar 8.1 0.2 44 12413TR T2 grey andesite flow 1838121 5897863 K.Ar 8.1 0.0 45 105771H 586 igninibrite 183894 5910069 K.Ar 7.7 0.2 46 12384TR PBR1 pale grey-cream slightly banded rhyolite 1847783 5917490 K.Ar 7.7 0.2 47 12380TR HB1 cream-grey, flow-banded rhyolite 184180 5918998 K.Ar 7.9 0.1 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918998 K.Ar 7.0 0.1 49 12380TR RH2 pale, glassy rhyolite flow 1844080 5918995 K.Ar 7.7 0.1 41 Pale, glassy rhyolite flow 1849581 5918995 K.Ar 7.7 0.1 51 1021271R H34 pale, glassy rhyolite flo	42	12414TR K1	grey andesite flow	1838523	5896863	K-Ar	9.0	0.40
Haukawakawa track Haukawakawakawa track Haukawakawakawa track Haukawakawa track Haukawakawa track Haukawakawa track Haukawakawa track Haukawakawakawa track Haukawakawakawa track Haukawakawakawa track Haukawakawakawa Haukawakawakawakawa Haukawakawakawakawakawakawakawakawakawaka	43	12387TR T1	Upper Kaueranga Valley dark grey andesite flow	1837406	5904964	K-Ar	7.6	0.4
Moss Creck Track 1838894 5910969 K-Ar 10.0 0.4 45 10377Hb 586 ignimbric 1838894 5910969 K-Ar 10.0 0.4 46 12384TR PBR1 pale grey-crean slightly banded rhyolite 1851282 5918898 K-Ar 8.1 0.1 47 12380TR HB1 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 8.1 0.1 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 8.0 0.4 49 12385TR RH1 pale, devirified rhyolite flow 1844080 5918995 K-Ar 8.0 0.1 40 12385TR RH2 pale, glassy rhyolite flow 1849581 5918995 K-Ar 7.7 0.1 41 Hatei grey basilit candesite flow 185152 5932503 K-Ar 9.0 0.4 51 10420TR H2 grey basilit candesite flow 185152 5932505 K-Ar 8.8 0.3 51 10421TR H20	44	12413TR T2	Haukawakawa track grey andesite flow	1838121	5897863	K-Ar	8.1	0.2
Coroglen Coroglen 46 12384TR PBR1 plag grey-cream slightly banded rhyolite flow 1847783 5917490 K-Ar 7.7 0.2 47 12380TR HB1 cream-grey, flow-banded rhyolite 1851282 5918898 K-Ar 8.1 0.1 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 8.0 0.4 49 12385TR RH1 pale, devirified rhyolite flow 1844080 5918593 K-Ar 8.0 0.1 50 12385TR RH2 pale, glassy rhyolite flow 1841880 5917978 K-Ar 5.3 0.2 51 12771TR/Bi 84/105 perlite-glassy rhyolite flow 1849581 5918995 K-Ar 5.3 0.2 51 10414TR H13 pumiceous, well-bedded, lithic-rich rhyolite ash 185152 5932705 K-Ar 5.4 0.4 61 10420TR H2 pale grey basalitic andesite flow 185152 5932705 K-Ar 8.4 0.4 70 10423TR H22 grey basaliti andesite fl	45	10577Hb 586	Moss Creek Track ignimbrite	1838894	5910969	K-Ar	10.0	0.4
10 Habei Beach Rd Rame Provide Marker Point Rame Provide Point Rame Provide Point 47 12380TR HB1 cream-grey, flow-banded rhyolite 1851282 5918898 K-Ar 8.1 0.1 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918995 K-Ar 7.9 0.1 49 12385TR RH1 pale, devirified rhyolite flow 1844080 5918583 K-Ar 8.0 0.4 50 12386TR RH2 pale, glassy rhyolite flow 1849581 5918995 K-Ar 7.7 0.1 51 12771TR/B184/105 perfile-glassy rhyolite flow 1849581 5918995 K-Ar 5.3 0.2 51 10414TR H13 puniceous, well-bedded, lithic-rich rhyolite ash 1857433 5941820 K-Ar 5.3 0.2 53 7169TR 4C dark grey basalit andesite flow 185152 5932705 K-Ar 8.4 0.4 54 10420TR H19 pale grey basalit andesite flow 1851152 5932303 K-Ar 8.8 0.3 <td>46</td> <td>12384TR PBR1</td> <td>Coroglen</td> <td>1847783</td> <td>5917490</td> <td>K-Ar</td> <td>77</td> <td>0.2</td>	46	12384TR PBR1	Coroglen	1847783	5917490	K-Ar	77	0.2
47 12301R Hb1 Cleaning Ley, 1000-baladed infynine 18312.8.2 5918999 K-AI 6.1 48 12381TR HB2 cream-grey, flow-banded rhyolite 1851181 5918998 K-Ar 7.9 0.1 49 12385TR RH1 pale, devirified rhyolite flow 1844080 5918583 K-Ar 8.0 0.4 50 12386TR RH2 pale, glassy rhyolite flow 1844080 5918583 K-Ar 8.0 0.1 51 12771TR-B1840105 perfilte-glassy rhyolite flow 1849581 5918995 K-Ar 7.7 0.1 52 10414TR H13 puniccous, well-bedded, lithic-rich rhyolite ash 1857433 5941820 K-Ar 5.3 0.2 53 7169TR 4C dark grey basalit andesite flow 1851352 5932503 K-Ar 8.4 0.4 Opito Day pale grey basalit andesite flow 1851152 5932705 K-Ar 8.4 0.4 55 1042TR H2 grey basalit flow 1851152 5932303 K-Ar 8.8 0.3 56 1042STR H24 dark grey basalit flow 1848445 5935600 <td>47</td> <td>12200TD UD1</td> <td>Hahei Beach Rd</td> <td>1951292</td> <td>5019909</td> <td>V A.</td> <td>0.1</td> <td>0.1</td>	47	12200TD UD1	Hahei Beach Rd	1951292	5019909	V A.	0.1	0.1
48 12381TR HB2 cream-grey, How-banded thyolite 1851181 5918998 K-Ar 7.9 0.1 49 12385TR RH1 pale, devirified rhyolite flow 1844080 5918583 K-Ar 8.0 0.4 50 12385TR RH2 pale, glassy rhyolite flow 1841880 5917978 K-Ar 8.0 0.1 51 12771TR/B18/4/05 perlite-glassy rhyolite flow 1845581 5918995 K-Ar 7.0 0.1 52 10414TR H13 pumiceous, well-bedded, lithic-rich rhyolite ash 1857433 5941820 K-Ar 5.3 0.2 53 7169TR 4C dark grey basalt 0.4 Opito Bay 1851352 5932503 K-Ar 9.0 0.4 54 10420TR H19 pale grey basaltic andesite flow 1851152 5932504 K-Ar 9.2 1.1 56 10423TR H22 grey basalt flow 1851152 5932500 K-Ar 7.8 0.4 58 10425TR H24 dark grey basalt flow 1849544 5935298 K-Ar 8.5 0.2 59 10423TR H29 grey dolerite plug<	47	123801K HB1	Hereheretaura Point	1851282	5918898	K-Ar	8.1	0.1
49 12385TR RH1 pale, devinified rhyolite flow Red Hill trig 1844080 5918583 K-Ar 8.0 0.4 50 12386TR RH2 pale, glassy rhyolite flow Red Hill trig 1841880 5917978 K-Ar 8.0 0.1 51 12771TR/B184/105 perfile-glassy rhyolite flow Hahei 1841880 5918995 K-Ar 7.7 0.1 52 10414TR H13 puniceous, well-bedded, lithic-rich rhyolite ash Stanley Island 185152 5932703 K-Ar 9.0 0.4 53 7169TR 4C dark grey basalit andesite flow Opito Point 1851952 5932705 K-Ar 8.4 0.4 54 10420TR H19 pale grey basalit andesite flow Opito Point 1851152 5932303 K-Ar 8.8 0.3 56 10423TR H22 grey basalit candesite flow Opito Point 18414445 5935298 K-Ar 8.6 0.3 57 10425TR H24 dark grey basalit flow 18495445 5935298 K-Ar 8.6 0.3 58 10426TR H25 dark grey basalit flow overlying rhyolite	48	12381TR HB2	cream-grey, flow-banded rhyolite Hereheretaura Point	1851181	5918998	K-Ar	7.9	0.1
50 12386TR RH2 pale, glasy rhyolite flow Red Hill trig 1841880 5917978 K-Ar 8.0 0.1 51 12771TR/B184/105 perlie-glassy rhyolite flow Hahei 1849581 5918995 K-Ar 7.7 0.1 52 10414TR H13 pumiceous, well-bedded, lithic-rich rhyolite ash Stanley Island 1857433 5941820 K-Ar 5.3 0.2 54 10420TR H2 dark grey basalit andesite flow Optio Point 1851152 5932503 K-Ar 9.0 0.4 55 10421TR H20 grey basalitic andesite flow Optio Point 1851152 5932504 K-Ar 9.2 1.1 56 10423TR H22 grey basalitic andesite flow Optio Point 1851152 5932503 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalit flow Tamaihu 1849544 5935600 K-Ar 7.8 0.4 58 10420TR H25 dark grey basalit flow 1843640 5935165 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug 1833640 <td< td=""><td>49</td><td>12385TR RH1</td><td>pale, devitrified rhyolite flow Knight's farm</td><td>1844080</td><td>5918583</td><td>K-Ar</td><td>8.0</td><td>0.4</td></td<>	49	12385TR RH1	pale, devitrified rhyolite flow Knight's farm	1844080	5918583	K-Ar	8.0	0.4
51 12771TR/B184/105 perfile-glassy rhyolite flow Hahei 1849581 5918995 K-Ar 7.7 0.1 52 10414TR H13 pumiceous, well-bedded, lithic-rich rhyolite ash Stanley Island 1857433 5941820 K-Ar 5.3 0.2 53 7169TR 4C dark grey basalt flow Opito Point 1851352 5932503 K-Ar 8.4 0.4 54 10420TR H19 pale grey basaltic andesite flow Opito Point 1851852 5932504 K-Ar 8.4 0.4 55 10421TR H20 grey basaltic andesite flow Opito Point 1851152 5932303 K-Ar 8.8 0.3 56 10425TR H22 grey basalt flow Tamaihu 1849544 5935600 K-Ar 7.8 0.4 57 10425TR H24 dark grey basalt flow Tamaihu 1849544 5935298 K-Ar 8.6 0.3 58 10420TR H29 grey dolerite plug 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug 1833640 5935265 K-Ar 9.1 0.2 61 10400TR H4 dark grey	50	12386TR RH2	pale, glassy rhyolite flow Red Hill trig	1841880	5917978	K-Ar	8.0	0.1
52 10414TR H13 pumiceous, well-bedded, lithic-rich rhyolite ash 1857433 5941820 K-Ar 5.3 0.2 53 7169TR 4C dark grey basalt flow 1851352 5932503 K-Ar 9.0 0.4 54 10420TR H19 pale grey basalt flow 1851952 5932705 K-Ar 8.4 0.4 55 10421TR H20 grey basaltic andesite flow 1851952 5932303 K-Ar 8.8 0.3 56 10425TR H22 grey basalt flow 1851152 593200 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalt flow 1849544 5935600 K-Ar 7.8 0.4 58 10426TR H25 dark grey basalt flow 1849544 5935298 K-Ar 8.6 0.3 59 10429TR H28 grey dolarite plug 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash 1862832 594	51	12771TR/Bi 84/105	perlite-glassy rhyolite flow Hahei	1849581	5918995	K-Ar	7.7	0.1
53 7169TR 4C dark grey basalt flow 1851352 5932503 K-Ar 9.0 0.4 54 10420TR H19 pale grey basaltic andesite flow 1851952 5932705 K-Ar 8.4 0.4 55 10421TR H20 grey basaltic andesite plug 1851852 5932705 K-Ar 8.4 0.4 56 10423TR H22 grey basaltic andesite flow 1851152 5932303 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalt combenies flow 1849544 5935600 K-Ar 7.8 0.4 58 10425TR H25 dark grey basalt flow 1848445 5935165 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug 1833640 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 5.2 0.6 61 10405TR H4 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.2 62 10406TR H5 dark grey basalt flow overlying rhyolite ash <t< td=""><td>52</td><td>10414TR H13</td><td>pumiceous, well-bedded, lithic-rich rhyolite ash Stanley Island</td><td>1857433</td><td>5941820</td><td>K-Ar</td><td>5.3</td><td>0.2</td></t<>	52	10414TR H13	pumiceous, well-bedded, lithic-rich rhyolite ash Stanley Island	1857433	5941820	K-Ar	5.3	0.2
54 10420TR H19 pale grey basaltic andesite flow Opito Point 1851952 5932705 K-Ar 8.4 0.4 55 10421TR H20 grey basaltic andesite plug Opito Point 1851852 5932504 K-Ar 9.2 1.1 56 10423TR H22 grey basaltic andesite plug Opito Bay 1851152 5932303 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalt flow Tamaihu 1849544 5935208 K-Ar 8.6 0.3 58 10426TR H25 dark grey basalt flow Tamaihu 1843840 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug Prey dolerite plug 1833640 5935265 K-Ar 9.1 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 62 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.6 0.3 63 10407TR H6 grey dolerite intrusive into basalt 1862832 5943033 K-Ar 4.8 0.3 <	53	7169TR 4C	dark grey basalt flow Opito Bay	1851352	5932503	K-Ar	9.0	0.4
55 10421TR H20 grey basaltic andesite plug Opito Point Opito Bay 1851852 5932504 K-Ar 9.2 1.1 56 10423TR H22 grey basaltic andesite flow Opito Bay 1851152 5932303 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalt flow Tamaihu 1849544 5935600 K-Ar 7.8 0.4 58 10426TR H25 dark grey basalt flow Tamaihu 1848445 5935298 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug Prey dolerite plug 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 5.2 0.6 61 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 62 10406TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.6 0.3 64 10409TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1865433 5942826 K-Ar	54	10420TR H19	pale grey basaltic andesite flow Onito Point	1851952	5932705	K-Ar	8.4	0.4
56 10423TR H22 grey basaltic andesite flow Opito Bay 1851152 5932303 K-Ar 8.8 0.3 57 10425TR H24 dark grey basalt flow Tamaihu 1849544 5935600 K-Ar 7.8 0.4 58 10426TR H25 dark grey basalt flow Tamaihu 1849544 5935298 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug grey dolerite plug 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug grey dolerite plug 1833640 5935265 K-Ar 9.1 0.2 New Chums Beach 10405TR H4 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.2 61 10406TR H5 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.3 62 10406TR H5 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 <td>55</td> <td>10421TR H20</td> <td>grey basaltic andesite plug Opito Point</td> <td>1851852</td> <td>5932504</td> <td>K-Ar</td> <td>9.2</td> <td>1.1</td>	55	10421TR H20	grey basaltic andesite plug Opito Point	1851852	5932504	K-Ar	9.2	1.1
57 10425TR H24 dark grey basalt flow Tamaihu 1849544 5935600 K-Ar 7.8 0.4 58 10426TR H25 dark grey basalt flow Tamaihu 1848445 5935298 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug New Chums Beach 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug Prey dolerite plug 1833640 5935265 K-Ar 9.1 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 62 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 63 10407TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1857633 5941821 K-Ar 5.8 0.3	56	10423TR H22	grey basaltic andesite flow	1851152	5932303	K-Ar	8.8	0.3
58 10426TR H25 dark grey basalt flow Tamaihu 1848445 5935298 K-Ar 8.6 0.3 59 10429TR H28 grey dolerite plug New Chums Beach 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug New Chums Beach 1833640 5935265 K-Ar 9.1 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 5.2 0.6 62 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 63 10407TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.6 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1857833 5941821 K-Ar 5.8 0.3 66 10412TR H11 grey dolerite intrusive into rhyolite ash Stanley Island 1857833 5941820 K-Ar 4.9	57	10425TR H24	dark grey basalt flow	1849544	5935600	K-Ar	7.8	0.4
Tamaihu Tamaihu 59 10429TR H28 grey dolerite plug 1833440 5935165 K-Ar 8.5 0.2 60 10430TR H29 grey dolerite plug 1833640 5935265 K-Ar 9.1 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 5.2 0.6 62 10406TR H5 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.8 0.2 63 10407TR H6 dark grey basalt flow overlying rhyolite ash 1862832 5943033 K-Ar 4.6 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1859632 5941821 K-Ar 5.8 0.3 66 10412TR H11 grey dolerite unconformably under rhyolite ash 1857633 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash 1857635 5941021 K-Ar 4.9 0.3 <td>58</td> <td>10426TR H25</td> <td>Tamaihu dark grey basalt flow</td> <td>1848445</td> <td>5935298</td> <td>K-Ar</td> <td>8.6</td> <td>0.3</td>	58	10426TR H25	Tamaihu dark grey basalt flow	1848445	5935298	K-Ar	8.6	0.3
New Chums Beach New Chums Beach 60 10430TR H29 grey dolerite plug New Chums Beach 1833640 5935265 K-Ar 9.1 0.2 61 10405TR H4 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 5.2 0.6 62 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 63 10407TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.6 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1859632 5942826 K-Ar 4.2 0.4 66 10412TR H11 grey dolerite intrusive into rhyolite ash Stanley Island 1857635 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash Stanley Island 1857635 5941820 K-Ar	59	10429TR H28	Tamaihu grey dolerite plug	1833440	5935165	K-Ar	8.5	0.2
New Chums Beach New Chums Beach 61 10405TR H4 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 5.2 0.6 62 10406TR H5 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.8 0.2 63 10407TR H6 dark grey basalt flow overlying rhyolite ash Red Mercury Island 1862832 5943033 K-Ar 4.6 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1859632 5942826 K-Ar 4.2 0.4 66 10412TR H11 grey dolerite intrusive into rhyolite ash Stanley Island 1857833 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash Stanley Island 1857635 5941820 K-Ar 4.9 0.3 68 10415TR H14 basalt flow beneath ash Stanley Island 1857635 5941021 K-Ar	60	10430TR H29	New Chums Beach grey dolerite plug	1833640	5935265	K-Ar	9.1	0.2
Red Mercury IslandRed Mercury Island6210406TR H5dark grey basalt flow overlying rhyolite ash Red Mercury Island18628325943033K-Ar4.80.26310407TR H6dark grey basalt flow overlying rhyolite ash Red Mercury Island18628325943033K-Ar4.60.36410409TR H8grey dolerite intrusive into basalt Red Mercury Island18634335942734K-Ar4.80.36510411TR H10grey dolerite intrusive into basalt Double Island18596325942826K-Ar4.20.46610412TR H11 Stanley Islandgrey dolerite intrusive into rhyolite ash Stanley Island18578335941821K-Ar5.80.36710413TR H12 Stanley Islandgrey dolerite unconformably under rhyolite ash Stanley Island18576355941021K-Ar4.90.36810415TR H14 Stanley Islandbasalt flow beneath ash Stanley Island18577335941616K-Ar5.60.26910416TR H15 Brey, platy andesite flow Middle Island18577335941616K-Ar5.60.27010417TR H16pale grey basaltic andesite flow Comer Island18546375939513K-Ar5.60.4	61	10405TR H4	New Chums Beach dark grey basalt flow overlying rhyolite ash	1862832	5943033	K-Ar	5.2	0.6
Red Mercury IslandRed Mercury IslandRed Mercury IslandRed Mercury Island6310407TR H6dark grey basalt flow overlying rhyolite ash Red Mercury Island18628325943033K-Ar4.60.36410409TR H8grey dolerite intrusive into basalt Double Island18634335942734K-Ar4.80.36510411TR H10grey dolerite intrusive into basalt Double Island18596325942826K-Ar4.20.46610412TR H11grey dolerite intrusive into rhyolite ash Stanley Island18578335941821K-Ar5.80.36710413TR H12grey dolerite unconformably under rhyolite ash Stanley Island18576355941820K-Ar4.90.36810415TR H14basalt flow beneath ash Stanley Island18576355941021K-Ar6.00.46910416TR H15grey, platy andesite flow Middle Island18577335941616K-Ar5.60.27010417TR H16pale grey basaltic andesite flow Comer Island18546375939513K-Ar5.60.4	62	10406TR H5	Red Mercury Island dark grey basalt flow overlying rhyolite ash	1862832	5943033	K-Ar	4.8	0.2
64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 64 10409TR H8 grey dolerite intrusive into basalt 1863433 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1859632 5942826 K-Ar 4.2 0.4 66 10412TR H11 grey dolerite intrusive into rhyolite ash 1857833 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash 1857433 5941820 K-Ar 4.9 0.3 68 10415TR H12 grey dolerite unconformably under rhyolite ash 1857635 5941021 K-Ar 6.0 0.4 58 10415TR H14 basalt flow beneath ash 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow 1855733 5941616 K-Ar 5.6 0.2 70 10417TR H16 pale grey basaltic andesite flow 1854637 5939513 K-Ar 5.6 0.4	63	10407TR H6	Red Mercury Island dark grey basalt flow overlying rhyolite ash	1862832	5943033	K-Ar	4.6	0.3
64 1005435 5942734 K-Ar 4.8 0.3 65 10411TR H10 grey dolerite intrusive into basalt 1859632 5942826 K-Ar 4.2 0.4 66 10412TR H11 grey dolerite intrusive into rhyolite ash 1857833 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite intrusive into rhyolite ash 1857433 5941820 K-Ar 4.9 0.3 68 10415TR H12 grey dolerite unconformably under rhyolite ash 1857635 5941021 K-Ar 4.9 0.3 68 10415TR H14 basalt flow beneath ash 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow 1855733 5941616 K-Ar 5.6 0.2 Middle Island 70 10417TR H16 pale grey basaltic andesite flow 1854637 5939513 K-Ar 5.6 0.4	64	10400TD H9	Red Mercury Island	1863/22	5940724	К Л	1.0	0.2
05 104111R H10 grey dolerite intrusive into basalt 1859632 5942826 K-Ar 4.2 0.4 06 10412TR H11 grey dolerite intrusive into rhyolite ash 1857833 5941821 K-Ar 5.8 0.3 66 10412TR H11 grey dolerite intrusive into rhyolite ash 1857833 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash 1857433 5941820 K-Ar 4.9 0.3 68 10415TR H14 basalt flow beneath ash 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow 1855733 5941616 K-Ar 5.6 0.2 Middle Island 1854637 5939513 K-Ar 5.6 0.4	04	104091K Hð	Red Mercury Island	1003433	5942734	к-АГ	4.8	0.5
66 10412TR H11 grey dolerite intrusive into rhyolite ash Stanley Island 1857833 5941821 K-Ar 5.8 0.3 67 10413TR H12 grey dolerite unconformably under rhyolite ash Stanley Island 1857433 5941820 K-Ar 4.9 0.3 68 10415TR H14 basalt flow beneath ash Stanley Island 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow Middle Island 1855733 5941616 K-Ar 5.6 0.2 70 10417TR H16 pale grey basaltic andesite flow Corrected and 1854637 5939513 K-Ar 5.6 0.4	65	10411TR H10	grey dolerite intrusive into basalt Double Island	1859632	5942826	K-Ar	4.2	0.4
67 10413TR H12 grey dolerite unconformably under rhyolite ash Stanley Island 1857433 5941820 K-Ar 4.9 0.3 68 10415TR H14 basalt flow beneath ash Stanley Island 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow Middle Island 1855733 5941616 K-Ar 5.6 0.2 70 10417TR H16 pale grey basaltic andesite flow 1854637 5939513 K-Ar 5.6 0.4	66	10412TR H11	grey dolerite intrusive into rhyolite ash Stanley Island	1857833	5941821	K-Ar	5.8	0.3
68 10415TR H14 basalt flow beneath ash Stanley Island 1857635 5941021 K-Ar 6.0 0.4 69 10416TR H15 grey, platy andesite flow Middle Island 1855733 5941616 K-Ar 5.6 0.2 70 10417TR H16 pale grey basaltic andesite flow Correct block 1854637 5939513 K-Ar 5.6 0.4	67	10413TR H12	grey dolerite unconformably under rhyolite ash Stanley Island	1857433	5941820	K-Ar	4.9	0.3
69 10416TR H15 grey, plata 1855733 5941616 K-Ar 5.6 0.2 70 10417TR H16 pale grey basaltic andesite flow 1854637 5939513 K-Ar 5.6 0.4	68	10415TR H14	basalt flow beneath ash Stanley Island	1857635	5941021	K-Ar	6.0	0.4
Middle Island 70 10417TR H16 pale grey basaltic andesite flow 1854637 5939513 K-Ar 5.6 0.4	69	10416TR H15	grey, platy andesite flow	1855733	5941616	K-Ar	5.6	0.2
LATER LEISTIC	70	10417TR H16	Middle Island pale grey basaltic andesite flow Green Island	1854637	5939513	K-Ar	5.6	0.4

71	10/18TP H	17	silicic andesite flow	1854734	5940814	K Ar	4.5	0.2
/1	1041011 11	17	Kana malai Jaland	1854754	5940814	K-AI	4.5	0.2
			Koropuki Island					
72	12770TR 8	71/6	grey basaltic andesite flow	1848624	5898184	K-Ar	5.1	0.3
			Woody Hill					
73	12768TR 87	71/7	grey basaltic andesite flow	1848524	5898284	K-Ar	5.5	0.2
			Woody Hill					
	Table 2 m	260 1.40	ma at al. (1004)					
	Table 2, p. 3	508, Ada		1020004	50100.00		10.4	
74	10576(584)		Carina Rock Ignimbrite	1838894	5910969	FT	10.4	1.5
75	10577(586)		Carina Rock Ignimbrite	1839093	5911570	FT	11.0	1.2
76	10566(573)		Wharepapa Ignimbrite	1849986	5916595	FT	8.2	0.7
77	10567(574)		Wharepapa Ignimbrite	1849589	5915093	FT	9.2	1.9
78	10578(587)		Pumpkin Rock Ignimbrite	1841776	5920178	FT	7.0	12
79	10580(591)		Pumpkin Rock Ignimbrite	1843285	5916180	FT	5.6	17
80	10582(502)		Dumplyin Dooly Jonimhuito	1042205	5016180	ET	5.0	0.6
80	10582(593)		Pumpkin Rock Ignimorite	1843285	5916180	FI	6.0	0.6
81	10584(589)		Pumpkin Rock Ignimbrite	1845186	5915684	FT	5.6	0.5
82	10572(579)		Whenuakite Rhyolite dome	1847601	5908987	FT	6.8	1.8
	Appendix I,	Adams a	et al. (1994)					
83	10596TR G	B24B	andesite dike	1816872	6005536	K-Ar	17.1	0.3
			Paradise Bay					
0.4	10507770 0	D 20		1010072	6005401	17 4	167	0.4
84	1059/1R G	B38	quartz-porphyry dike	18108/2	6005421	K-Ar	16.7	0.4
			Rangiwhakaea Bay					
85	6987TR MI	H7	quartz-porphyry dike	1810872	6005421	K-Ar	16.3	0.3
			Miners Head mine shaft					
86	6314Bi Pb1	9	quartz-porphyry dike	1811073	6005222	K-Ar	18.5	04
00	0514101	/	Minors Hood	1011075	0005222		10.5	0.1
07			Millers Head	1015516	5005 (05		10.0	
87	69801R OR	R2	basaltic andesite	1817/16	598/63/	K-Ar	12.3	0.4
			Oreville Battery					
88	6994TR OR	R3	basaltic andesite	1817216	5987636	K-Ar	13.8	0.4
			Whangaparapara Rd					
	Table 1 and	3 n 55	58 and 60 72 Takagi (1005)					
80		3, p. 55-	beestie enderite	18(2022	5040722	IZ A.	2.90	0.22
89	520-45	44373	basaltic andesite	1803033	5942755	K-Ar	5.89	0.23
			Red Mercury Island					
90	S25-326	45375	basaltic andesite	1862933	5942733	K-Ar	4.15	0.26
			Red Mercury Island					
91	S25-327	44378	basaltic andesite	1862832	5942933	K-Ar	4.40	0.21
			Red Mercury Island					
02	825 224	11280	hospitia andosita	1962922	50/2122	K Ar	2.02	0.26
92	323-324	44360		1802832	3943133	K-AI	3.95	0.20
			Red Mercury Island					
93	S25-325	44382	basaltic andesite	1860232	5942827	K-Ar	3.82	0.22
			Double Island					
94	S25-282	44389	basaltic andesite	1858235	5941022	K-Ar	4.85	0.29
			Stanley (Kawitihu) Island					
95	\$26-46	44390	basaltic andesite	1858335	5940922	K-Ar	4 93	0.30
15	520 40	11570	Stanlay (Kamitihu) Jaland	1050555	5540522		1.75	0.50
06	625 200	44201		1050426	5040000	17 4	5.20	0.16
96	825-290	44391	basaltic andesite	1858436	5940822	K-Ar	5.38	0.16
			Stanley (Kawitihu) Island					
97	S25-291	44393	basaltic andesite	1858135	5941122	K-Ar	5.55	0.17
			Stanley (Kawitihu) Island					
98	S25-286	44394	basaltic andesite	1858135	5941222	K-Ar	5.61	0.28
			Stanley (Kawitibu) Island					0.20
00	825 285	44205	Stancy (Rawithu) Island	1959422	5042622	IZ A.	5 40	0.25
99	323-283	44393		1838432	3942023	K-AI	3.46	0.55
			Stanley (Kawitihu) Island					o -
100	S25-284	44398	basaltic andesite	1857935	5941121	K-Ar	4.60	0.28
			Stanley (Kawitihu) Island					
101	S25-288	44399	basaltic andesite	1858039	5939221	K-Ar	5.43	0.16
			Korapuke Island					
102	\$25 287	44400	hasaltic andesite	185/1838	5030113	K Ar	5.26	0.40
102	323-287	44400	Kananala, Jaland	1654656	5959115	K-AI	5.20	0.40
	~~~ ~~~		Korapuke Island					
103	\$25-289	44402	basaltic andesite	1854838	5939113	K-Ar	5.44	0.14
			Korapuke Island					
104	S26-48	14594	rhyolite	1857256	5931616	K-Ar	5.79	0.13
			Ohena Island					
105	S26-47	14593	basaltic andesite	1860950	5934826	K-Ar	5 30	0.61
100	520 17	1.070	Obena Island	1000/20	0701020		0100	0.01
100	825 221	14607	andasita	1050040	5024015	V A.	E 44	0.14
100	323-331	14007		1856048	3934815	<b>к</b> -Аľ	5.44	0.14
			Onena Island					
107	S25-329	14602	basaltic andesite	1856252	5933315	K-Ar	5.63	0.14
			Ohena Island					
108	S25-330	14604	basaltic andesite	1856252	5933315	K-Ar	5.67	0.35
			Ohena Island					
100	\$25-338	44405	rhyolite	1951121	59/1804	K-Ar	6 00	0.16
107	000-000	-++05	Groat Maraury Jaland	1031131	5741000	12-11	0.77	0.10
110	005 005	4440 -			F0 10005	17 /	<b>-</b> · ·	0.27
110	825-337	44406	dacite	1849426	5943803	K-Ar	7.44	0.22
			Great Mercury Island					
111	S25-335	44407	dacite	1848618	5947002	K-Ar	5.76	0.52
			Great Mercury Island					

112	\$25-334	44408	andesite	1848416	5947802	K-Ar	8 36	0.26
112	020 004	11100	Great Mercury Island	1010110	5747662	11.7.11	0.50	0.20
113	\$25-336	44409	dacite	1846619	5946497	K-Ar	9.08	0.22
115	625 550	11102	Great Mercury Island	1010017	5740477	11.711	2.00	0.22
114	\$25-328	44384	hasalt	1851652	5932704	K-Ar	8 39	0.23
	020 020	11501	Onito Bay	1051052	5752104	11.7.11	0.57	0.25
115	\$26-49	44387	basalt	1849145	5935099	K-Ar	7 92	0.43
115	520-47	44507	Onito Bay	1049145	5755077	<b>IX</b> -7 II	1.52	0.45
116	\$25-333	44410	basaltic andesite	1833342	5934364	K-Ar	8 39	0.21
110	020 000		Whangapoua	1055542	5754504	11.711	0.57	0.21
117	\$25-332	44411	hasaltic andesite	1833340	5935264	K-Ar	7 88	0.20
117	020 002		Whangapoua	1055540	5755204	11.7.11	7.00	0.20
118	\$31-150	45520	andesite	1815278	5961128	K-Ar	16 16	0.44
	551 150	10020	Colville	1010270	0001120		10.10	0
119	\$30-145	45355	andesite	1818318	5943833	K-Ar	14 78	0.43
			Te Whau Point					
120	\$30-341	45362	andesite	1814773	5918120	K-Ar	12.54	0.33
			Matariki Bay					
121	S30-376	45378	andesite	1824393	5955448	K-Ar	13.86	0.38
122	S31-152	45378	andesite	1824393	5955448	K-Ar	13.56	0.38
123	S31-149	45376	andesite	1826306	5949952	K-Ar	13.11	0.38
			Puriora Point					
124	S30-144	45359	dacite	1819952	5928434	K-Ar	14.25	0.77
			Ruffins Peninsula					
125	S31-151	45359	dacite	1819952	5928434	K-Ar	13.90	0.40
			Ruffins Peninsula					
126	S30-170	45361	andesite	1820163	5923233	K-Ar	13.92	0.40
127	S30-146	45360	andesite	1821261	5924135	K-Ar	14.15	0.34
			Te Kouma Rd					
128	\$30-354	45368	andesite	1838802	5907168	K-Ar	9.90	0.24
			Rangihau Rd					
129	\$30-362	45366	rhvolite	1839002	5907068	K-Ar	9.18	1.10
130	S30-142	45369	rhvolite	1841596	5910675	K-Ar	8.00	0.36
			Kaipowai Rd					
131	S30-165	45352	andesite	1843766	5924684	K-Ar	10.82	0.25
			Maungatawhiri					
132	\$30-336	45351	rhvolite	1847093	5913087	K-Ar	7.85	0.18
			Dalmeny					
133	\$30-347	45346	rhvolite	1848383	5917692	K-Ar	7.26	0.17
			Purangi Dome					
134	S31-144	45346	rhvolite	1848383	5917692	K-Ar	6.54	0.34
			Purangi Dome					
135	S31-145	45346	rhvolite	1848383	5917692	K-Ar	7.10	0.17
			Purangi Dome					
136	S30-143	45372	dacite	1849278	5920094	K-Ar	7.85	0.18
			Cathedral Cove					
137	S30-355	45372	dacite	1849278	5920094	K-Ar	7.67	0.17
			Cathedral Cove					
138	S30-335	45345	rhvolite	1848477	5920793	K-Ar	7.93	0.19
			Cathedral Cove					
139	S30-169	45371	andesite	1851993	5913798	K-Ar	8.75	0.20
			Hot Water Beach					
140	\$30-166	45349	andesite	1853211	5905697	K-Ar	8.62	0.22
			Te Karo Bay					
141	S30-375	45471	andesite	1833135	5889850	K-Ar	9 58	0.23
		/ -	Kauaerange Vallev					0
142	S31-147	45470	andesite	1834132	5891453	K-Ar	10 45	0.27
			Kauaerange Valley		20,1100		-0110	
143	S31-146	45469	andesite	1835330	5892656	K-Ar	13 39	0.31
110	551 140	10107	Kauaerange Valley	1000000	2072020	/ 11	10.07	0.01
144	\$30-167	45463	dacite	1851477	5872179	K-Ar	5 88	0 14
1	550 107	15105	Whiritoa (Parakiwai Quarry)	1051477	5072175	11.7.11	5.00	0.14
145	\$30-163	45464	rhvolite	1856364	5880192	K-Ar	4 88	0.11
175	550-105	-5-0-	Te Ananui Beach	102020-	5000172	12 / 11	+.00	0.11
146	\$30-164	45464	rhvolite	1856364	5880102	K-Ar	1 87	0.11
140	550-104	-0404	Te Ananui Beach	1050504	5000192	12-14	4.07	0.11
147	\$30-168	45461	rhyolite	1856880	5871090	K-Ar	5 / 5	0.15
17/	550-100	-5-01	Papakura Bay	1050000	5671707	12 / 11	5.45	0.15
149	\$31-142	45404	andesite	1840202	5855051	K-Ar	4.03	0 97
140	551-142	7,5404	Dohertys Creek (Paeroa)	1040202	5055751	12-14	4.05	0.77
140	\$31-139	45411	hasalt	1847014	5850860	K-Ar	3.06	0.16
147	551-130	-11+11	S of Waihi	104/014	5550600	12-14	5.70	0.10
150	\$31-142	45414	andesite	1849704	5857768	K-Ar	5 80	0.14
150	551-145	7,7414	Waitete Hill Waihi	1047/04	5057200	12-14	5.07	0.14
151	\$31-141	45406	rhyolite	1856301	5860682	K-Ar	5 34	0.13
1.51	551-141	-0400	Golden Valley	1050501	5500062	12-14	5.54	0.13
152	\$31-140	45406	rhvolite	1856301	5860682	K-Ar	5 51	0.31
152	551-140	+5400	Golden Vallav	1050501	5000082	K-Af	5.51	0.51
L			Gorden valley					

153	S31-139	45416	andesite	1857521	5849879	K-Ar	4.35	0.11
			2 Rd (Athenree)					
154	S31-133	45467	dacite	1853973	5818155	K-Ar	2.18	0.15
			Waiteariki Ig. (Matamata)					
155	S31-130	45467	dacite	1853973	5818155	K-Ar	2.13	0.17
			Waiteariki Ig. (Matamata)					
156	S31-134	45417	andesite	1852238	5838764	K-Ar	4.34	0.10
1.57	001 107	15202	Wharawhara Rd (Katikati)	10(150)	5940201	77 4	0.51	0.05
157	\$31-137	45392	rhyolite	1864526	5849391	K-Ar	2.51	0.25
159	\$21 125	45202	rbuolito	1964526	5940201	K Ar	2 77	0.21
158	551-155	45392	Rowantown Haada	1804520	5849591	K-Ar	2.11	0.51
150	\$31 120	45420	dagite	1868574	5877687	K Ar	1.52	0.23
159	331-129	43429	Te Puna	1808574	3622062	K-Ai	1.52	0.25
160	\$31-132	45421	dacite	1885985	5822710	K-Ar	2.36	0.08
100	001 102	10 121	Mangatawa Quarry	1000700	0022/10		2.00	0.00
161	S31-131	45421	dacite	1885985	5822710	K-Ar	2.28	0.15
			Mangatawa Quarry					
	Table A1, p	o. 57-59, I	Brathwaite & Christie (1996)					
162	17878TR		pyroxene andesite	1846684	5867067	K-Ar	6.67	0.14
			Whakamoehau Stream					
163	17868TR		pyroxene andesite	1849385	5867072	K-Ar	6.61	0.12
			Edmonds Stream					
164	17881TR		pyroxene andesite	1846590	5864166	K-Ar	6.70	0.14
165	1707770		Golden Cross	1050000	5965072	IZ A.	6.25	0.14
165	1/8//IR		pyroxene andesite, weak alteration	1850088	5865973	K-Ar	6.25	0.14
166	17856TD		wainarakeke Stream	1851200	5965275	V Ar	5 50	0.21
100	1/8501K		Picht Propoh Stroom	1651590	3803373	K-AI	5.59	0.21
167	17865R		nyrovene andesite	1859896	5864191	K-Ar	6.03	0.14
107	170051		Seaview Bay	1059090	5004191	K-Ai	0.05	0.14
168	17882TR		pyroxene-plagioclase inclusion	1859896	5864191	K-Ar	5.66	0.20
100	17002111		Seaview Bay	1007070	0001191		2100	0.20
169	17874TR		pyroxene andesite	1854396	5862880	K-Ar	6.16	0.28
			Bellamys Farm quarry					
170	17866TR		pyroxene andesite	1853696	5862378	K-Ar	6.68	0.13
			Willows Rd					
171	17855bi		hornblende-biotite dacite	1848793	5862669	K-Ar	7.25	0.20
			Cascade Stream					
172	17851hb		hornblende dacite weak alteration	1845200	5858161	K-Ar	6.90	0.50
			Mangakara Stream					
173	17873TR		pyroxene andesite	1836981	5866649	K-Ar	6.96	0.30
174	1707070		Kurere Quarry	1020006	5064252	77 4	7.50	0.00
1/4	1/8/21R		pyroxene andesite	1838886	5864352	K-Ar	7.50	0.28
175	17864TP		Diausilaw Ku	1840590	5862554	K Ar	7 78	0.17
175	1/0041K		Komata Reefs Rd	1840390	3802334	K-AI	1.70	0.17
176	17879TR		nyroxene andesite	1839792	5861452	K-Ar	7 20	0.14
170	1/0//10		Kapukapu Stream	1037772	5001452	IC / II	7.20	0.14
177	17869TR		pyroxene andesite	1840297	5858852	K-Ar	6.12	0.18
			Taraiki Stream					
178	17831TR		pyroxene andesite	1835406	5852240	K-Ar	7.06	0.20
			Tirohia					
179	17862TR		pyroxene andesite	1839313	5849646	K-Ar	7.62	0.16
			Waitoki Stream					
180	17858TR		pyroxene andesite, moderate alteration	1843983	5867062	K-Ar	6.68	0.14
101	170 (000)		McBrinn Stream	104-004	50/00/1	17 4	<b>a</b> 00	0.1.4
181	1/863TR		pyroxene andesite, weak alteration	1846091	5863264	к-Ar	7.89	0.14
100	17076TD		Waitekauri Rd	1945201	5962062	V A.	7.26	0.21
102	1/0/01K		pyroxene andesite, weak alteration Grace Darling Stream	1043391	2002002	к-АГ	1.30	0.51
183	17880TP		pyroyene andesite moderate alteration	1846794	5862065	K-Ar	7 94	0.15
105	1,00011		Barneys Quarry	10-079-	5502005	12-131	1.74	0.15
184	17867TR		pyroxene andesite	1844796	5860461	K-Ar	6.59	0.12
			Huanui Stream					
185	17837TR		pyroxene andesite, weak alteration	1840604	5854851	K-Ar	6.31	0.20
			Ohinemuri River, Karangahake					
186	17857TR		pyroxene andesite, moderate alteration	1850594	5862773	K-Ar	6.81	0.14
			Mataura Stream					
187	13564TR		pyroxene andesite, weak alteration	1853204	5857775	K-Ar	6.76	0.25
			Gladstone Hill, UW20/140.5					
188	13563TR		pyroxene andesite, weak alteration	1851799	5860174	K-Ar	6.54	0.18
100	1702		Bulltown Road Quarry	1051505	5050-55	17 .		0.15
189	17836TR		pyroxene andesite, weak alteration	1851702	5858673	K-Ar	7.36	0.12
100	7072-1		iviaitna milli ivine, lootwall	1051700	5050/70	V A	7 00	0.20
190	10/300		ancrea andesne with adularia Martha Hill Mine, WHD10/271.2	1851/02	20200/3	к-Аľ	1.25	0.38
101	7872ad		altered andesite with adularia	1851702	5858673	K-Ar	6 5 8	0.54
./1	, 0 / 2ud		Martha Hill Mine, WHD10/291.5	1001/02	2020013		0.50	5.54

102	7074 1	1. 1 1 1. 1. 1. 1. 1	1051702	5050672	17 A	6.00	0.20
192	/8/4ad	altered andesite with adularia	1851702	5858673	K-Ar	6.92	0.30
		Martha Hill Mine, WHD9/129					
193	17832TR	pyroxene andesite	1838909	5851546	K-Ar	7.72	0.13
		Romaru Stream					
194	17830TR	pyroxene andesite	1840814	5849449	K-Ar	7.28	
		Hotahaka Stream					
195	17861TR	pyroxene andesite, moderate alteration	1842028	5841748	K-Ar	6.65	0.12
		Haehaenga Stream					
	Table A2, p. 60-61, 1	Brathwaite & Christie (1996)					
196	17847TR	pyroxene andesite	1849622	5847263	K-Ar	4.51	0.11
		Waitawheta River					
197	17828TR	nyroxene andesite	1850524	5846164	K-Ar	4 4 3	0.10
177	17020110	Ananui Stream	1050524	5040104	it / ii	1.15	0.10
108	10706TP	purovana andesita	1852238	5838563	K Ar	4.01	0.00
190	197901K	Wherewhere Querry	1052250	5656505	K-AI	4.01	0.09
100	1070/TP	whatawhata Quarty	1850107	5957096	V Ar	5 47	0.12
199	19/941K	Woihi Stream	1659107	3637960	K-AI	5.47	0.15
200	17022770	wann Sueann	1057101	50/0704	IZ A.	5 10	0.12
200	1/6551K	Caller Valler	185/101	3600764	K-AI	5.10	0.12
201	170 (01)		1052205	5057075	77 4	4.02	0.50
201	1/849hb	hornblende dacite	1853305	5857275	K-Ar	4.92	0.50
		Black Hill					
202	17826TR	pyroxene andesite	1858119	5851280	K-Ar	4.70	0.11
		Trig 1406, Athenree					
203	17845TR	hornblende dacite	1858922	5849781	K-Ar	4.30	0.19
		Athenree					
204	17825TR	hornblende dacite	1847706	5855664	K-Ar	5.53	0.09
		4 km SW of Waihi					
205	17848hb	hornblende dacite	1843815	5849254	K-Ar	5.56	0.35
		Mangakino Stream					
206	17860TR	pyroxene andesite	1844326	5843052	K-Ar	5.43	0.12
		Waiorongomai Stream					
207	17853hb	hornblende dacite	1846926	5843857	K-Ar	5.05	0.25
207	1700010	Wainana Stream	10.0020	0010007		0.00	0.20
208	17853bi	hornblende dacite	1846926	5843857	K-Ar	4 96	0.22
200	1705501	Wainana Stream	1040720	5045057	<b>K</b> -7 <b>U</b>	4.90	0.22
200	17970TD	wapapa Sucan	1946620	59/1956	V Ar	4 72	0.20
209	1/8/01K	Weinene Steeren	1840050	3641630	K-AI	4.72	0.20
210	1707170	waipapa Stream	1046520	5041555	77 4	4.00	0.22
210	1/8/11R	pyroxene andesite	1846530	5841555	K-Ar	4.89	0.32
		Waipapa Stream					
211	17829TR	pyroxene andesite	1846731	5840755	K-Ar	4.87	0.11
		Pohomihi Stream					
212	17827TR	pyroxene andesite	1848133	5840257	K-Ar	4.75	0.16
		Waitawheta River					
213	17846hb	hornblende andesite	1855529	5844872	K-Ar	4.33	0.11
		Woodlands Rd					
	Table A3, p. 62, Bra	thwaite & Christie (1996)					
214	17850TR	glassy hypersthene rhyolite	1864226	5848990	K-Ar	2.89	0.07
		Bowentown Heads					
215	19795TR	felsitic hypersthene rhyolite	1851017	5849967	K-Ar	4.06	0.09
		Waimata Stream					
216	17834TR	spherulitic biotite rhyolite	1860301	5861390	K-Ar	5.16	0.20
		Homunga Bay					
217	17835TR	spherulitic biotite rhvolite	1860301	5861390	K-Ar	5.51	0.20
/		Homunga Bay		2.01070		2.21	
218	19686bi	spherulitic hiotite rhvolite	1858111	5855/182	K-Ar	5 30	0.12
210	1700001	Waihi Beach Rd	1020111	5055405	12-131	5.50	0.12
210	13652TP	spherulitic hiotite rhyolite	1854009	5856577	K-Ar	5 70	0.16
219	130321K	Spheruntic biotile myonile Dearter D.d. Weibi, DS4/141.6	1004908	11000011	r-Al	3.28	0.10
		Daniel Ru, Wallil, P34/141.0					
	Table 2.0 - 40 W						
	1 able 3.2, p 49, Krip	ppner (2000)	10 10515	5002550	<b>T</b> Z 4	F 00	0.00
220	W99614	ignimbrite	1840712	5902770	K-Ar	5.38	0.29
		Wharepapa Ignimbrite					
221	W99886	ignimbrite	1844706	5906380	K-Ar	6.18	0.34
		Wharepapa Ignimbrite					
222	W99612	ignimbrite	1843007	5905476	K-Ar	5.68	0.32
		Oteao Ignimbrite					
223	W99693	ignimbrite	1838225	5895662	K-Ar	5.39	0.32
		Webb Creek Ignimbrite					
224	W99600	rhyolite	1839509	5903868	K-Ar	6.89	0.37
		Rangihau Rhyolite					
225	W99912	rhyolite	1841809	5904473	K-Ar	5.12	0.28
		Precipice Rhyolite					
226	W99908	rhyolite	1841809	5904473	K-Ar	5.19	0.42
		Precipice Rhvolite					
227	W991002	rhvolite	1845211	5903880	K-Ar	6.51	0.36
1		Kokonga Rhvolite					
228	W991005	rhyolite	1846113	5903281	K-Ar	5 86	0.31
220		Rushine Rhyolite	1070113	5705401		5.00	0.51
1		readine renyone					

229	W99835	rhyolite	1840716	5900769	K-Ar	8.42	0.22
		Welcome Jack Rhyolite					
230	W99876	rhyolite	1838523	5896763	K-Ar	4.90	0.60
		Kauaeranga Rhyolite					
231	W99994	rhyolite	1840025	5896266	K-Ar	5.30	0.30
		Camp Rhyolite					
232	W99706	andesite	1838020	5898063	K-Ar	8.50	0.60
		Taurauikau Andesite					
233	W99816	andesite	1838010	5903165	K-Ar	7.60	0.50
		Taurauikau Andesite					
234	W99691	andesite	1837825	5895662	K-Ar	6.60	0.30
		Taurahuehue Andesite					
235	W99733	andesite	1838012	5902064	K-Ar	6.40	0.40
		Taurauikau Andesite					
	Table 1 = 462 D	and at al. (2005)					
226	1 able 1, p. 403, Brig	gs et al. (2005)	1000574	5922492	A A	2.16	0.02
230	411	myonte Mindan Baah	1808574	5822482	Ar-Ar	2.10	0.03
227	405	Minden Peak	10/2/07	5010560	A A	2 20	0.00
237	405	K ile ile se	180308/	3812308	Ar-Ar	2.39	0.06
220	400	Kaikaroro	1070070	5920406	A A	2.25	0.00
238	408	rhyonte	18/9908	5850406	Ar-Ar	2.35	0.06
220	407	Mount Maunganui	1005005	5922710	A A	2 20	0.12
239	407	Management	1885985	5822/10	Ar-Ar	2.39	0.15
240	410	Mangatawa	1007400	5021212		2 60	0.04
240	410	dacite	188/489	5821312	Ar-Ar	2.69	0.04
241	400	Upunue	1000004	5910014	A A	2.50	0.02
241	409	rhyolite	1889894	5819014	Ar-Ar	2.50	0.03
2.42	122	Papamoa Dome	1005001	5010006		2 20	
242	433	dacite Kanalasima	1885091	5819206	Ar-Ar	2.20	
242	41.6		1001510	5700406		1.05	0.02
243	416	rhyolite	1881519	5/99486	Ar-Ar	1.95	0.02
244	100	Otanewainuku	1074116	ca0aaa 4		0.14	0.04
244	420	rhyolite	18/4116	5/9///4	Ar-Ar	2.14	0.04
245	421	Puwnenua	1000-001	5010002		2 (0	0.02
245	431	rhyolite	1880601	5810893	Ar-Ar	2.69	0.03
246	120	Mount Misery	100 (001	5010500		2.40	0.02
246	439	dacite/rhyolite	1886891	5819509	Ar-Ar	2.40	0.02
247	422	Lower Papamoa Ignimbrite	1007507	5916509	A A	1.00	0.10
247	432	dacite/rhyolite	188/59/	5816508	Ar-Ar	1.90	0.10
240	125	Opper Papamoa Ignimorite	1057706	5004254	A A	2.96	0.00
248	435	River Dama	1857796	5804554	Ar-Ar	2.80	0.08
240	415	Kaimai Dome	1057(10	5702447	A A	2.07	0.02
249	415	K-la-ha	185/012	5/9544/	Ar-Ar	2.87	0.02
250	507	Kakallu dagita/shuglita	1868000	5011274	A.r. A	2.00	0.02
250	507	Waitaariki Janimbrita	1000092	3611374	AI-AI	2.09	0.05
251	421	wancarisi igninione	1955561	5826162	A.r. A.r.	2 55	0.05
231	421	Aongotata Ignimbrita	1633301	3620102	AI-AI	5.55	0.05
252	128	Aongaiete ignimbrite	1955561	5826162	A.r. A.r.	2.02	0.06
232	420	A opposite Lonimbrite	1000001	3620102	AI-AI	3.93	0.00
1		Augacie igninutrite					