
The Astrophysical Journal, 741:75 (5pp), 2011 November 10 doi:10.1088/0004-637X/741/2/75
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DIRECTIONAL ALIGNMENT AND NON-GAUSSIAN STATISTICS IN SOLAR WIND TURBULENCE

K. T. Osman1, M. Wan1, W. H. Matthaeus1, B. Breech2, and S. Oughton3
1 Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA; kto@udel.edu

2 U.S. Army Research Laboratory, Adelphi, MD, USA
3 Department of Mathematics, University of Waikato, Hamilton, New Zealand
Received 2011 July 19; accepted 2011 August 3; published 2011 October 19

ABSTRACT

The magnetic and velocity field fluctuations in magnetohydrodynamic turbulence can be characterized by their
directional alignment and induced electric field. These manifest as coherent spatial correlations which are measures
of Alfvénicity and turbulence cascade strength, respectively. Solar wind observations and direct numerical
simulations find that these distinctive correlations, caused by rapid relaxation processes that act to suppress
nonlinearity, occur in localized spatial patches. This cellularization of magnetofluid turbulence is inconsistent with
a superposition of Gaussian fields and could be related to spatial intermittency or other non-Gaussian statistics.
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1. INTRODUCTION

A distinctive feature of fluid-scale plasma fluctuations as
observed by spacecraft in the solar wind is the presence of
so-called Alfvénic correlation (Belcher & Davis 1971; Bruno
et al. 1985; Roberts et al. 1987). This is the familiar correlation
of magnetic and velocity field fluctuations that is reminiscent
of propagating small amplitude waves (Barnes 1979). It is
also a property of large-amplitude propagating solutions to the
incompressible magnetohydrodynamic (MHD) equations when
superposed on a uniform background magnetic field (Parker
1979). The Alfvénic correlation observed in the solar wind
inside of 1 AU usually has the same orientation associated
with outward traveling waves. Hence, these correlations have
been interpreted as waves that originated near the Sun and
are convected outward in the supersonic solar wind (Belcher
& Davis 1971; Velli & Grappin 1991). These “Alfvén waves”
are fundamental in linear theory. However, it has been known
for some time that the same correlation appears as a preferred
global state in nonlinearly evolving MHD plasma (Dobrowolny
et al. 1980; Matthaeus & Montgomery 1980; Pouquet et al.
1986). This dynamic alignment of magnetic and velocity field
fluctuations leads to a type of global turbulence relaxation that is
often encountered but not universal (Ting et al. 1986; Stribling &
Matthaeus 1991). Such global dynamic alignment is not found in
solar wind observations, which instead show that interplanetary
plasma evolves with increasing distance from the Sun toward a
less Alfvénic state on average. This is possibly due to driving
by large-scale shear flows (Roberts et al. 1991).

Numerical simulations have shown (Matthaeus et al. 2008;
Servidio et al. 2008) that Alfvénic correlations can occur
in random patches and with random sense of alignment. If
the appearance of such patches is a fundamental property of
magnetofluid turbulence, then evidence for them might be found
in the solar wind. This present study examines the appearance of
random localized Alfvénic patches in both simulations and solar
wind data obtained near Earth orbit at 1 AU. We find that MHD
simulations, sampled along a linear trajectory to mimic single
spacecraft measurements, and solar wind observations show
patches that exhibit highly variable characteristics. Therefore,
the presence of these localized spatial patches means that the
local magnetic and velocity field correlation need not coincide

with the global estimate, neither in magnitude nor degree
of alignment. In particular, a global alignment with a large
averaged cross helicity does not necessarily mean that simple
interpretations in terms of Alfvén waves are valid.

The rest of the paper is structured as follows. Section 2
describes the solar wind data selection criteria and details of
the MHD simulation. It also presents the analysis techniques
used to obtain the results in Section 3. We will focus primarily
on probability distributions showing the alignment and anti-
alignment of magnetic and velocity field fluctuations, which
derive from entire data sets and from selected subsamples. Direct
comparisons will be made between the solar wind and numerical
simulation results. A summary and discussion of these results
is presented in Section 4.

2. DATA SELECTION AND ANALYSIS

We are concerned here with the properties of the magnetic
and velocity field fluctuations, v = V − 〈V〉 and b = B − 〈B〉,
where V and B are the total velocity and magnetic field vectors,
respectively, and the angle brackets 〈. . .〉 designate an ensemble
averaging operator that is typically substituted by a suitable time
average. The main diagnostics used in this study of directional
alignment are probability density functions (PDFs) of the local
sine and cosine of the angle θ between v and b, that is,

cos θ = v · b
|v| |b| , sin θ = v × b

|v| |b| · r̂. (1)

Note that cos θ is a measure of Alfvénic correlations (Belcher
& Davis 1971) and sin θ can be interpreted as a measure of the
induced electric field which drives the MHD turbulence cascade
associated with the induction equation (Marsch & Tu 1992).
We choose an arbitrary reference direction associated with unit
vector r̂, conveniently taken in the solar wind case to be in
the radial direction. It is assumed that a right-handed Cartesian
system is employed in evaluating εlij vibj r̂l , sum implied over
indices i, j, and l.

While the PDFs of cos θ and sin θ usefully highlight different
characteristics of solar wind turbulence, they are not indepen-
dent. Indeed, these distributions are related analytically such
that if one is known, the other can be determined. Therefore,
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since the sin θ PDFs do not contain any new information, it is
instructive to also compute the induced electric field directly:

e = −v × b. (2)

This arises from the fluctuating magnetic and velocity fields,
and is important when considering the structure and dynamics
of MHD turbulence.

2.1. Solar Wind

We analyze the entire 64 s resolution magnetic and ve-
locity field data sets from the Magnetic Field Experiment
(MAG; Smith et al. 1998) and Solar Wind Electron, Proton, and
Alpha Monitor (SWEPAM) (McComas et al. 1998) instruments
on board the Advanced Composition Explorer (ACE) space-
craft. A natural ensemble is obtained by dividing the data into
10 hr intervals. This duration is long enough to contain several
correlation times, but short enough to avoid large-scale inhomo-
geneities. In order to maintain statistical stationarity, intervals
are removed from the ensemble if they contain heliospheric cur-
rent sheet crossings or transient events such as shocks. Intervals
are also discarded if the amount of missing or bad data exceeds
5%, since this would reduce the statistical robustness of any
computed quantities. The remaining intervals number 156 and
contain around 85,000 data points and constitute our solar wind
data set for the present study. Each of the data intervals is sector
rectified such that positive values of normalized cross helicity
and cos θ correspond to outward (anti-sunward) “propagating”
Alfvénic fluctuations. This convention is also extended to the
sign associated with values of sin θ .

2.2. MHD Simulation

We also carried out numerical simulation of incompressible
three-dimensional (3D) MHD turbulence for which the follow-
ing equations were solved:

∂v
∂t

+ v · ∇v = −∇p∗ + b · ∇b + B0 · ∇b + ν∇2v (3)

∂b
∂t

= ∇ × (v × b) + B0 · ∇v + η∇2b (4)

∇ · v = 0 = ∇ · b, (5)

where v is the velocity field, b is the fluctuating magnetic field,
and p∗ is the total (fluid + magnetic) pressure determined by
the incompressibility condition. The kinematic viscosity and
magnetic diffusivity are ν and η, respectively. The simulation
has unit magnetic Prandtl number (i.e., ν = η).

The fluctuations evolve in the presence of a uniform and static
external magnetic field that is taken to be in the z-direction, i.e.,
B0 = B0ẑ. The non-dimensionality is such that, for the chosen
initial conditions, B2

0 is the ratio of the energy density associated
with B0 to that associated with the initial magnetic fluctuations
(b at t = 0).

The magnetic helicity, Hm = 〈a · b〉/2, where b = ∇ × a, in
the simulation run is approximately zero at all times. However,
the run is initially set up with some finite cross helicity,
Hc = 〈v · b〉/2. A convenient dimensionless measure is the
normalized cross helicity, σc ≡ 2Hc/E, where the energy
E = Ev +Eb = 〈|v|2 + |b|2〉/2. Here, the angle brackets indicate
spatial averaging.

Figure 1. PDFs of cos θ from the entire solar wind data set (solid line) and
MHD simulation spatial domain (dashed line). The associated normalized
cross helicities are σc = 0.29 and σc = 0.30, respectively, indicating a
preponderance of outwardly “propagating” Alfvénic fluctuations in the solar
wind case. The general form of both PDFs is similar, showing significant
probability enhancements associated with alignment of magnetic and velocity
field fluctuations. Note that the PDF of cos θ is flat when θ is the angle between
two vectors with random orientations.

(A color version of this figure is available in the online journal.)

Table 1
Parameters Representing the MHD Simulation

Grid ν, η B0
kmax
kdiss

σc(t = 0) σc(t = 2)

5123 0.001 1.0 1.6 0.23 0.30

Notes. The initially excited Fourier modes have wavenumbers k ∈ [1, 5] and
use k0 = 3 in the spectral shape function. kmax is the maximum retained
dynamical wavenumber and kdiss is the dissipation wavenumber (reciprocal of
the Kolmogorov scale).

Initial conditions for the simulation run are generated in
Fourier space. The amplitudes of v(k) are chosen so that the
modal kinetic energy is described by

Ev(k) ≡
∑

{k;|k|=k}

1

2
|v(k)|2 = C

1 + (k/k0)q
, (6)

where C is a normalization constant. In order to determine the
phase of each v(k), the real and imaginary parts are assigned
using independent Gaussian random variables. Usually only a
subset of the retained Fourier modes is populated initially, that
is, only those lying between limiting values, e.g., kL � k � kH .
Initial conditions for b(k) are chosen in a similar way. However,
controlling the degree of correlation between v and b allows the
cross helicity to be specified. The total energy E in the simulation
is initially unity and is equipartitioned between Ev and Eb at all
scales.

In Table 1 the parameters for the simulation run are summa-
rized.

3. RESULTS

3.1. Global Statistics

The 156 intervals that compose our entire solar wind data set
are combined in order to analyze their global ensemble charac-
teristics. A normalized cross helicity of 0.29 is obtained, which
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Figure 2. PDFs of sin θ from the entire solar wind data set (solid line) and MHD
simulation spatial domain (dashed line). The probability enhancements shown
are indicative of a strong induced electric field, and the behavior of both PDFs
is nearly identical. Note that pdf(sin θ ) = pdf(cos θ ) · | tan θ |.
(A color version of this figure is available in the online journal.)

suggests a dominance of outward propagating fluctuations. This
is consistent with expectations and suggests that our data set
contains a representative sample of the ecliptic solar wind at
1 AU. Figure 1 shows (solid line) the PDF of cos θ which cor-
responds to the global behavior of solar wind turbulence. It
shows probability enhancements associated with the alignment
and anti-alignment of magnetic and velocity field fluctuations.
While there is a preference for outward propagating Alfvénic
fluctuations, there is a weak minority component of inward
propagating fluctuations. This asymmetry is a consequence of
the non-zero net cross helicity of solar wind turbulence at 1 AU.
For comparison, Figure 1 also shows the PDF (dashed line) of
cos θ from the entire spatial domain of the 3D MHD simula-
tion. The normalized cross helicity associated with the simula-
tion is around 0.3, which is comparable to the solar wind case.
Indeed, both PDFs behave in a similar manner and are charac-
terized by strong enhancements associated with the alignment
of magnetic and velocity field fluctuations. Hence, the PDFs in
Figure 1 are consistent with local dynamic alignment and MHD
turbulence relaxation toward global evolution of Alfvénic states
(Dobrowolny et al. 1980; Pouquet et al. 1986; Ting et al. 1986;
Stribling & Matthaeus 1991; Matthaeus et al. 2008; Servidio
et al. 2008).

Figure 2 shows PDFs of sin θ from the solar wind data set
(solid line) and MHD simulation (dashed line), further charac-

terizing the global behavior of magnetofluid turbulence. In both
cases, the PDFs show significant probability increases linked to
induced electric field fluctuations, which are perpendicular to
both the magnetic and velocity field fluctuations.

The global properties of the induced electric field are also ex-
amined directly. For the solar wind data set, the induced electric
field vector is determined in Radial Tangential Normal (RTN)
coordinates. Figure 3(a) shows the PDF of the radial component.
The exponential character of the electric field distribution is con-
sistent with previous studies (Breech et al. 2003; Sorriso-Valvo
et al. 2004). The induced electric field vector is also computed
from the MHD simulation, and Figure 3(b) shows the PDF of the
z component ez. Since the Reynolds number in the solar wind is
orders of magnitude greater than that achieved in the MHD sim-
ulation, events with large induced electric field values are more
likely. Induced electric field strength can be used as a measure
of the strength of turbulent couplings in a magnetofluid such as
the solar wind. A simple estimate is its standard deviation, equal
to the root-mean-square (rms) fluctuation:

δe = 〈(v × b − 〈v × b〉)2〉1/2. (7)

A heuristic measure of the fluctuating electric field strength can
be made by normalizing δe by the rms magnetic and velocity
field fluctuations, respectively, δb and δv. Using the entire solar
wind data set, δe is about 95% of the product δvδb. This implies
a strong induced electric field. Since the electric field helps drive
the MHD turbulence cascade, our results indicate the presence
of active turbulence dynamics in the solar wind despite the
appearance of Alfvénic correlations. Note that the presence of
an active cascade in the solar wind has been confirmed by
computation of third-order statistics (see Smith et al. 2009;
Marino et al. 2011, and references therein), employing the
extension of the Kolmogorov–Yaglom law to MHD (Politano &
Pouquet 1998).

3.2. Local Statistics

Here we examine the cross helicity content derived from
smaller samples of solar wind and simulation data. In order
to facilitate ease of comparison across these data sets, it is
desirable that the 3D simulation emulate the one-dimensional
(1D) spacecraft data. Therefore, the magnetic and velocity
fields are sampled along a linear trajectory through the MHD
simulation domain (Greco et al. 2008). The computation is
simplified by aligning the trajectories along a Cartesian axis.
Each 1D path through the simulation extends to about 12
correlation lengths (integral scales). This is chosen to match the
10 hr intervals of solar wind data which, assuming an average
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Figure 3. Normalized PDF of the induced electric field (a) radial component from the entire solar wind data set, where σR is the standard deviation of eR, and (b)
z-component from the 3D MHD simulation, where σz is the standard deviation of ez.

(A color version of this figure is available in the online journal.)
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Figure 4. PDFs of cos θ from (left column) 10 hr intervals of solar wind data,
and (right column) linear trajectory samples of 3D MHD simulation data. These
PDFs correspond to localized spatial patches where the Alfvénic correlations
have a dominant anti-sunward alignment (top), mixture of sunward–anti-
sunward alignments (middle), and dominant sunward alignment (bottom).

(A color version of this figure is available in the online journal.)

speed of 400 km s−1 and a correlation length of 1.2 × 106,
correspond to around the same spatial scale.

Each 10 hr interval within our solar wind data set is analyzed
for evidence of local directional alignment. The left-hand
column of Figure 4 shows PDFs of cos θ for three intervals
which correspond to localized spatial patches of solar wind
turbulence. These particular intervals were selected to illustrate
the breadth of σc variability within our data set. The solar wind
interval associated with the top panel has a normalized cross
helicity of 0.75, and consists almost solely of outward-directed
Alfvénic alignments and partial alignments. This is reflected
in the PDF which has a substantial probability increase linked
to alignment of the magnetic and velocity field fluctuations,
but has no population of anti-aligned fluctuations. Despite the
presence of these strong Alfvénic correlations, the induced
electric field associated with this data interval represents about
54% of δvδb, indicating a significant and active turbulence
cascade. The middle panel represents a solar wind interval
with a normalized cross helicity of 0.17, which contains a
mixture of both inward and outward fluctuations. Consequently,
the PDF shows probability enhancements associated with both
alignment and anti-alignment of magnetic and velocity field
fluctuations. An induced electric field is also present and
constitutes about 65% of the product δvδb, which suggests
the turbulence dynamics are strong. In contrast to the top
panel, the bottom panel is linked to a solar wind interval with

a normalized cross helicity of −0.73, which consists almost
entirely of inward-directed Alfvénic correlations. The PDF has a
significant probability increase connected to the anti-alignment
of the magnetic and velocity fluctuations, but has no population
of aligned fluctuations. However, the presence of an induced
electric field within this data interval, which constitutes 49% of
the product δvδb, implies a strongly driven turbulence cascade.

The right-hand column of Figure 4 shows PDFs of cos θ for
a selection of linear trajectory samples through the 3D MHD
simulation. In order to compare with the results in the left-hand
column, the simulation data that best matched the corresponding
solar wind σc values were chosen. Figure 4 illustrates the good
agreement between the simulation data PDFs and their solar
wind counterparts. These cos θ distributions are consistent with
directional alignment, the emergence of local Alfvénic states as
a consequence of rapid turbulence relaxation.

While the PDFs shown in Figure 4 are computed from
particular data intervals, they are typical of the variability
in both the solar wind and MHD simulation data set. These
results are consistent with the idea that MHD turbulence in
general, and solar wind turbulence in particular, display a
strong tendency to form localized spatial patches of directionally
aligned Alfvénic fluctuations (Matthaeus et al. 2008). However,
it is interesting to note that a strong induced electric field
is maintained (as in Figure 3) despite the local evolution
toward Alfvénic correlations. The strength of this electric field
does weaken slightly with increasing cross helicity, although it
remains significant. Since the electric field contributes to driving
the MHD turbulence cascade, the appearance of partial Alfvénic
states does not indicate a lack of turbulence dynamics. This is
a feature that would not be expected when using a linear wave
theory description. Therefore, drawing conclusions regarding
the presence or importance of wave activity on the basis of v–b
correlation is problematic.

3.3. Phase Coherency

Phase randomization is a technique used in the study of tur-
bulence (Servidio et al. 2008). Here it is used in order to demon-
strate that the observed spatial patches of Alfvénic alignment
are associated with phase coherency. Fourier coefficients of the
dynamical variables v and b are used to form new functions
vrandom and brandom that have the same power spectrum as the
originals but with random phases. In addition, we require that
vrandom and brandom have the same total cross helicity as v and b.
The result is that the new fields vrandom and brandom lack co-
herency, a property that originates from the nonlinear nature of
MHD and is encoded in the phases of the expansion of Fourier
coefficients. Hence, this procedure is expected to destroy the
coherent spatial patches of locally large positive and negative
cross helicities, which correspond to significant alignment and
anti-alignment of magnetic and velocity field fluctuations.

Figure 5 shows PDFs of cos θ from the phase-randomized
fields (dashed line) and the original fields (solid line). The PDFs
of both have a bias toward alignment of magnetic and velocity
field fluctuations, which is consistent with their equal values of
positive cross helicity. However, the PDF corresponding to the
original fields has a greater probability associated with highly
aligned and anti-aligned fluctuations. Figure 5 illustrates the
non-Gaussian nature of the observed cellularization of MHD
turbulence since our results are inconsistent with a superposition
of Gaussian fields. Indeed, the requirement of phase coherency
implies that there could be a link between local relaxation
processes and turbulence intermittency.
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Figure 5. PDFs of cos θ from the 3D MHD simulation data (solid line) and
phase-randomized data (dashed line).

(A color version of this figure is available in the online journal.)

4. CONCLUSIONS AND DISCUSSIONS

We have examined the issue of directional alignment between
the magnetic and velocity field fluctuations in MHD turbulence
using solar wind observations and direct numerical simulations.
The solar wind data set used in this study was obtained at 1 AU
and selected to be free of transient events and significant data
gaps. The simulation initial data are such that they produce a
global cross helicity that is similar to that of the solar wind data
set. When the simulation reaches a strongly turbulent state, after
being advanced in time, the resulting probability distributions
of cos θ broadly match those obtained from the observational
data. Indeed, the similarity in Alfvénic alignment distributions
is among many features of the solar wind fluctuations that seem
congruent with a turbulence description (Tu & Marsch 1995;
Bruno & Carbone 2005; Matthaeus & Velli 2011).

When linear trajectory samples comprising a few correlation
scales are extracted from the MHD simulation, the resulting
distribution of cross helicity values is broad, extending almost
over the full range of allowed values. This cross helicity
content, along with the PDFs of cos θ for these simulation
samples, indicates substantial variability. It is interesting that
these properties of the MHD simulation are also reflected in the
cross helicity values and cos θ distributions of the individual
10 hr intervals of solar wind data.

A consistent interpretation of these results is that the emer-
gence of apparently Alfvénic local correlations are determined
by the turbulence cascade, for both the solar wind and MHD

simulation data, while the global correlation in both cases is
determined by initial or boundary data. This understanding is
based on recent studies (Matthaeus et al. 2008; Servidio et al.
2008) which found that rapid relaxation processes in MHD tur-
bulence act to suppress nonlinearity by producing distinctive
correlations that occur in localized spatial patches. We have
shown that this cellularization of MHD turbulence is inconsis-
tent with a superposition of jointly normal (Gaussian) fields.
Hence, it could be related to spatial intermittency or other
non-Gaussian statistics. This interpretation, which is supported
by our results and previous studies, suggests that rapid relax-
ation and the emergence of non-Gaussian statistics are likely a
dynamical property of solar wind fluctuations—a property
shared with strong MHD turbulence.

This research is supported in part by the NSF Solar Terres-
trial Program under grant AGS-1063439 and the NSF SHINE
Program ATM-0752135, and by NASA under the Heliophysics
Theory Program grant NNX08AI47G.
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