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We make explicit the intimate relationship between quasiexact solvability, as ex-
pounded, for example, by Ushveridze �Quasi-exactly Solvable Models in Quantum
Mechanics �IOP, Bristol, 1993��, and the technique of separation of variables as it
applies to specific superintegrable quantum Hamiltonians. It is the multiseparability
of superintegrable systems that forces the existence of interesting families of poly-
nomial solutions characteristic of quasiexact solvability that enables us to solve
these systems in distinct ways and that gives us the basis of a classification theory.
This connection is generalized in terms of the understanding of the role of finite
solutions of quantum Hamiltonians. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2436733�

I. INTRODUCTION

This paper is an extension of our study of the intimate connections between second order
superintegrable quantum systems and quasiexact solvability.1 It also relies on the structure and
classification theory for these systems, as presented in many articles.2–11

Here we understand a quasiexactly solvable �QES� problem, in the sense of Turbiner and
Ushveridze �in the previous article1 we introduced another definition of quasiexact solvability�,12

as a one dimensional Schrödinger many parameter eigenvalue problem, where for certain values of
the parameters, a finite subset of the energy eigenvalues and corresponding eigenfunctions may be
found as solutions of algebraic equations. This means in practice that for these fixed parameters,
it is possible to write the solution as a special factor times a polynomial and to solve algebraic
equations to find the energy one dimensional oscillator with the same anharmonicity. Magyari13

stated the theorem that the one dimensional Schrödinger equation

d2��x�
dx2 + �E − V�N��x����x� = 0, �1�

with anharmonic potential
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V�N��x� = �
n=1

2N−1

bnx2n, b2N−1 � 0, N = 1,2,3 . . . , �2�

admits square integrable even �s=0� and odd �s=1� parity eigenfunctions of the form

��s��x� = exp�−
1

2�
n=1

N

anx2n�xsPM
�s��x�, aN � 0, �3�

where

PM
�s��x� = �

m=0

M

cm
�s�x2m �4�

is a polynomial of degree M, M =0,1 ,2. . ., if the first parameters �b1 ,b2 , . . . ,bN−1� satisfy a set of
N−1 constraints. The last constrained parameter bN−1 is given by the following formula:

bN−1 = − N�2N + 4M + 2s − 1�aN + �
i,j

i+j=N

ijaiaj , �5�

which ensures the existence of a polynomial solution of degree 2M, Eq. �4�.
The numbers ai �i=1,2 , . . . ,N� formed from the N arbitrary constants �bN ,bN+1 , . . . ,b2N−1�;

the energy E, the coefficients cm
�s�, and constrained coupling constants �b1 ,b2 , . . . ,bN−1� are deter-

mined from the systems of algebraic equations �see for details Ref. 13�.
The change of variable �y�=x2 or x=sgn y	�y� �R→R� together with a wave function trans-

formation ��y�= �y�−1/4��y� reduces Eq. �1� to

d2��y�
dy2 + 
� +

�

�y�
−

��� − 1�
y2 − Ṽ�N��y����y� = 0, �6�

where �=−b1 /4, �=E /4, � takes two values �=1/4, �=3/4, and

Ṽ�N��y� =
1

4
�b2y + b3y2 + ¯ + b2N−1y2N−2� =

1

4 �
n=1

2N−2

bn+1yn, N = 2,3, . . . �7�

and gives us a new class of QES systems which are dual to the first one. Indeed, in Eq. �6� the
energy E is fixed and plays the role of a coupling constant, the coupling constant b1 is quantized,
and the quantity �=−b1 /4 has the meaning of energy. Note also that after the substitution y=x2

�0�R→R+� and with ��y�=y−1/4��y�, Eq. �1� transforms to an equation having the same form as
Eq. �6� but where y has the meaning of a radial variable for the three dimensional Schrödinger
equation.

Recently, an interesting extension of the QES family has been obtained in the article of
Bender and Boettchter.14 They introduced a new class of QES PT symmetric Hamiltonians �see
also Ref. 15 for PT symmetric quantum mechanics� with a quartic polynomial potential, which
formally can be considered as a particular case of Eq. �6� for N=2, �=0, �=0, and imaginary
coupling coefficients b2 and b4. The further generalization of QES systems in the complex plane
is presented in articles of Znojil.16–18

The main problem in subsequent investigations of QES systems is to understand just which
potentials and just which specializations of the parameters in these potentials allow explicit alge-
braic solutions.

It has long been understood12,19 that one way of approaching such problems is to obtain the
eigenfunction equation as one of the separation equations for a higher dimensional �partial differ-
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ential equation �PDE�� Schrödinger equation that is separable in some set of coordinates. The
parameters are the separation constants, and the permissible values of these parameters and energy
eigenvalues are obtained by solving the PDE eigenvalue problem.

In our work we make clear that QES equations are better treated as arising from higher
dimensional superintegrable systems, in particular, those that are multiseparable.1 This enables us
to solve these systems in distinct ways, thus better understanding the solutions, and gives us the
basis of a classification theory.10,20 Our approach leads us to many new examples of QES systems.

To motivate our approach we start by reviewing some simple exactly solvable �ES� and QES
systems. The solution of many of the PDEs of mathematical physics can be achieved via the
method of separation of variables. Among the solutions found in this way are classical polynomi-
als such as those of Legendre, Laguerre, Hermite, and Jacobi.21 As an example, Legendre poly-
nomials P��x� satisfy the differential equation

�1 − x2�
d2

dx2 P��x� − 2x
d

dx
P��x� + ��� + 1�P��x� = 0, − 1 � x � 1.

If we look for polynomial solutions �i=1
� �x−	i� of this equation we find as necessary and sufficient

conditions that the zeros 	i must satisfy the relation

�2� + 1�	i + 2�
j�i

1

	 j − 	i
= 0.

These are just the relations satisfied by the zeros of the Legendre polynomials P��x�. Now con-
sider the Laplace equation

� �2

�x2 +
�2

�y2 +
�2

�z2� f = 0 �8�

expressed in conical coordinates u ,v ,r �r�0,e1
u
e2
v
e3�,

x2 = r2 �u − e1��v − e1�
�e1 − e2��e1 − e3�

, y2 = r2 �u − e2��v − e2�
�e2 − e1��e2 − e3�

, z2 = r2 �u − e3��v − e3�
�e3 − e1��e3 − e2�

.

If we look for separated solutions of the form f =r�U�u�V�v�, we see that the separation equations
for the functions U�u� and V�v� are of Lamé type, viz.,

	P���
d

d�
	P���

d

d�
���� + �− ��� + 1�� + ����� = 0,

where P�x�=−4�x−e1��x−e2��x−e3�, �=U ,V, and �=u ,v. Requiring polynomial solution

���� = �� − e1�p�� − e2�q�� − e3�r�i=1
n �� − 	i� ,

where p ,q ,r are 0 or 1
2 , we see that this is possible if and only if

p + 1

	i − e1
+

q + 1

	i − e2
+

r + 1

	i − e3
+ �

j�i

2

	i − 	 j
= 0,

where �=2�n+ p+q+r� and

 = e1�− 4�r + q + n�2 + 2p�2p − 1�� + e2�− 4�r + p + s�2 + 2q�2q − 1��

+ e3�− 4�p + q + n�2 + 2r�2r − 1�� + �8�p + q + r + n� − 2��
i=1

n

	i.

Such polynomial solutions can also be obtained for the Schrödinger equation H�=E� in the
presence of a potential. An example of this in three dimensions22 is
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H = − � �2

�x2 +
�2

�y2 +
�2

�z2� + 
�2�x2 + y2 + z2� +
p2 − 1/4

x2 +
q2 − 1/4

y2 +
r2 − 1/4

z2 � . �9�

If we again choose conical coordinates and look for solutions of the form �=R�r�U�u�V�v�, we
see that the functions U�u� and V�v� must satisfy the differential equation

	P���
d

d�
�	P���

d

d�
����� + 
− ��� + 1�� +  + �e1 − e2��e1 − e3�

�p2 − 1/4�
� − e1

+ �e2 − e1��e2 − e3�
�q2 − 1/4�

� − e2
+ �e3 − e2��e3 − e1�

�r2 − 1/4�
� − e3

����� = 0,

where �=U ,V and �=u ,v. Looking for solutions in exactly the same manner as we have done for
solutions of Laplace’s equation in these coordinates, we uncover the same relations obeyed by the
zeros 	i and the same expressions for � and . The only difference is that p ,q, and r can now be
arbitrary. The radial equation satisfied by R�r� is

d2R

dr2 +
2

r

dR

dr
+ 
E − �2r2 −

��� + 1�
r2 �R = 0.

This equation admits polynomial solutions of the form

R�r� = r� exp�−
�

2
r2�Ln

�+1/2��r2� ,

where the energy eigenvalues are En=��2n+ p+q+r+3� for n=0,1 , . . . and the zeros of the
associated Laguerre polynomials Ln

��z���i=1
s �z−	i� satisfy the relations

− � − 1 + 	i + 2�
j�i

	i

	 j − 	i
= 0.

The above examples are all ES systems because the solutions can be given explicitly in terms of
hypergeometric functions �for instance, in spherical or Cartesian coordinates�.

To motivate our more complicated results to follow, we give one more example, a true QES
system. This example is closely related to one treated in our paper1 but its ingredients are relevant
to the present work. Consider the differential equation

d2F

d�2 + − 144k1
2�4 − 96k1k2�3 + 16�2k2

2 + 3k1k3��2 + E� + �F = 0, �10�

a form of the triconfluent Heun equation that completely coincides, for �= ix, k1=1/12, 4k2=a,
4k3=2b−3a2, =−E, and J=N+1, with the PT symmetric QES example presented in Ref. 14. It
is known14,23 that in the case of

E = 8
2k2k3 + 2
k2

3

k1
− 3k1�n + 1��, n = 0,1,2 . . . , �11�

Eq. �10� has finite solution

F = exp�4k1�3 + 2k2�2 − 2� k2
2

k1
+ k3����

i=0

n

�� − 	i� ,

where the 	i satisfy the relation
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− 2k1k3 − 2k2
2 + 4k1k2�

i=1

n

	i + 12k1
2�

i=1

n

	i
2 + �

j�i

k1

	i − 	 j
= 0,

and the parameter  is determined by the formula

 = − 4
k2

4

k1
2 − 8

k2
2k3

k1
− 4k3

2 − 4�1 + 2n�k2 − 24�
i=1

n

	i.

Thus we have a true QES solution for a potential that is a polynomial of order 4. It is also possible
to obtain such solutions by factoring out the expression f =exp�4k1�3+2k2�2−2�k2

2 /k1+k3��� and
then looking directly for strictly polynomial solutions �see, for instance, Ref. 14�.

A natural question is as follows: How is this particular set of solutions related to superinte-
grability? To answer this consider the quantum Hamiltonian

H =
�2

�x2 +
�2

�y2 + 36k1
2�2�x − iy�3 − 4�x2 + y2�� + 24k1k2�3�x − iy�2 − 2�x + iy��

− 16�2k2
2 + 3k1k3��x − iy� .

The corresponding Schrödinger equation is superintegrable and multiseparable.6 If the coordinates
x and y are related to semihyperbolic coordinates u ,v via

x + iy = −
1

2
�u − v�2, x − iy = u + v , �12�

then the Schrödinger equation can be written as

H� = � 1

u − v

� �2

�u2 − 144k1
2u4 − 96k1k2u3 + 16�2k2

2 + 3k1k3�u2�
− � �2

�v2 − 144k1
2v4 − 96k1k2v

3 + 16�2k2
2 + 3k1k3�v2���� = E� .

This can be solved for � via the usual separation of variables ansatz �=U�u�V�v�. In particular,
we can look for finite solutions of the form

� = exp
4k1�u3 + v3� + 2k2�u2 + v2� − 2� k2
2

k1
+ k3��u + v���

i=1

n

�u − 	i��v − 	i� ,

where the functions U�u� and V�v� satisfy the same separated differential equation as F above and
the energy spectrum given the formula �11�.

Another important question is as follows: How can we determine the values of  for poly-
nomial solutions of this type? This is done by noting that  is the eigenvalue of the symmetry
operator

M =
1

u − v

v� �2

�u2 − 144k1
2u4 − 96k1k2u3 + 16�2k2

2 + 3k1k3�u2�
− u� �2

�v2 − 144k1
2v4 − 96k1k2v

3 + 16�2k2
2 + 3k1k3�v2�� .

The eigenvalues can be determined by solving the eigenvalue equation M�=� in the form

023503-5 QES and superintegrable systems II J. Math. Phys. 48, 023503 �2007�

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



� = exp�4k1�u3 + v3� + 2k2�u2 + v2� − 2� k2
2

k1
+ k3��u + v��S�u,v� ,

where S�u ,v� is a sum of symmetric polynomials

Sij = Sji = uiv j + ujvi, 0 � i + j � 2n ,

i.e., S�u ,v�=�i�jaijSij, subject to the restriction 0� i+ j�2n. There are 1
2 �n+1��n+2� such func-

tions. If we require that M�=� then we must solve a set of linear equations of the form

�
k��

�Cij
k� − �ak� = 0,

where

M̂Sij = �
k��

Cij
k�Sk�,

and M̂ is the induced action of M on S�u ,v�. There is a determinantal condition to be satisfied in
order that these equations have nontrivial solutions. This condition must include the possibility of
solutions of the form

� = exp
4k1�u3 + v3� + 2k2�u2 + v2� − 2� k2
2

k1
+ k3��u + v���i=1

s �u − 	i��v − 	i� ,

where 0�s�n. This is clear from the observation that we have a linear system of dimension
1
2 �n+1��n+2�. If we wish to determine the eigenvalues associated with solutions corresponding to
s=n only then we could take Snn=1. The rank of the system then becomes n+1, but the price we
pay for this is that the determinantal condition is more awkward to implement. As an illustration
of this process, if we look for solutions of the form

S�u,v� = c1uv + c2�u + v� + c3,

then  satisfies the factorizable cubic equation

�k1
2 + 4k1

2k3
2 + 4k2k1

2 + 4k2
4 + 8k1k3k2

2��k1
42 + 8k1

2�2k2k1
2 + k3

2k1
2 + 2k1k3k1

2 + k2
4� − 96k3k1

5 − 48k2
2k1

2

+ 64k3
2k1

2k2 + 16k3
4k1

4 + 128k2
3k3k1

3 + 64k3
3k1

3k2
2 + 64k2

5k1
2 + 96k1

2k2
4k3

2 + 64k2
6k1k3 + 16k2

8� = 0.

Thus we have used the superintegrable system to determine the values , E for which the sepa-
rated equation is QES, and we have obtained the results in an alternate from that for the separated
equations treated alone. Note further that if we perform a special ansatz in the nonseparable
Cartesian coordinates to try to find polynomial solutions in x, y, we will obtain exactly the same
exponential phase factor as the product of the phase factors in u and in v. This means that the
possible polynomial solutions in x, y for a fixed energy eigenspace �Eq. �11�� correspond exactly
with the polynomial solutions symmetric in u and v. The polynomial energy eigenspace is degen-
erate but the diagonalization of M breaks the degeneracy.

We can exploit the fact that our superintegrable system is multiseparable. It also separates in
shifted semihyperbolic coordinates obtained formally from the standard semihyperbolic coordi-
nates �Eq. �12�� through the transformation

x → x + a, y → y − ia .

Then

V�x,y� − E → V�x,y� − 96ak1�3k1�x − iy� − k2� − E = V̄�x,y� − Ē ,

which is again of the same form if we make the transformations
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k1 → k1, k2 → k2, k3 → 6ak1 + k3, E → E + 96k1k2a

of the parameters. From this observation we deduce that separation of variables can also be
achieved in displaced coordinates for arbitrary a. Also the polynomial solutions in the u, v
coordinates can be written as linear combinations of the polynomials in the shifted separable
coordinates.

In addition to the possibility of solving Schrödinger’s equation via separation of variables,
there is the possibility of obtaining an explicit solution that corresponds to the Lie form in the
corresponding classical mechanical problem. This form can be calculated by writing the
Schrödinger equation in complex conjugate coordinates, in which it becomes

�2�

�z�z̄
+ �A�z̄�z + B�z̄��� = 0,

not separable but solvable. We set �=ezC�z̄�+D�z̄�. This will be a solution provided that

C�z̄�2 = 2� A�z̄�dz̄, D�z̄� =� B�z̄�
C�z̄�

dz̄ − ln C�z̄� .

In our case we obtain the solution

C�z̄� = 2	3k1�3k1z̄2 + 2k2z̄ + ��1/2,

D�z̄� = −
1

8	3k1

1

3
�− 16k1

3� + 52k1
2k2z̄ − 84k1

2k2
2 − 48k1

2k3 + 24k1
4z̄2��3k1z̄2 + 2k2z̄ + ��1/2

+
1

k1
2	3k1

�28k2
3 − 12k1k2� − Ek1 + 16k1k2k3�ln�2	3k1�3k1z̄ + k2�

+ 6k1�3k1z̄2 + 2k2z̄ + ��1/2�� −
1

2
ln�3k1z̄2 + 2k2z̄ + ��

to within a constant. Can � and E be chosen in such a way that there are “polynomial” solutions
to within a factor of this type? We note here that the constant � has a definite meaning in terms
of symmetries of H. One could in principle expand a given set of such solutions in terms of a
separable set of solutions, but it is our intention to study this elsewhere.

Based on these examples, a natural question to ask is as follows: What is the most general way
that we can obtain one dimensional �1D� QES eigenvalue problems and their solutions, related to
separation of variables of a nondegenerate superintegrable system?

II. POLYNOMIAL SOLUTIONS FROM EUCLIDEAN SPACE SUPERINTEGRABLE
SYSTEMS

A crucial observation to answer the preceding question is that the Hamiltonian H in our
example is superintegrable and admits three second order symmetry operators: a quantum super-
integrable system. To answer the question fully we need to recall some facts about generic ellip-
tical coordinates in complex Euclidean n space and on the complex n sphere, and their relationship
to superintegrable systems with nondegenerate potentials.

A quantum system of the form H�=E�, where H=�n+V�x� �and �n is the Laplace-Beltrami
operator� on an n dimensional real or complex pseudo-Riemannian manifold is second order
superintegrable if there are 2n−1 second order differential operators �expressed in local coordi-
nates xs�, Lj =�k,�a�j�

k��k�
2 + lower order terms, j=1, . . . ,2n−1, that commute with H=L1 and such

that the corresponding quadratic forms L j =�k,�a�j�
k�pkp� are functionally independent on an open

set in the classical 2n dimensional phase space. In general, the potential V and the corresponding
potential terms in the symmetry operators Lj need not be fixed but can range over a vector space
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of potentials. Suppose that the pseudo-Riemannian space is conformally flat and the xs are
Cartesian-like coordinates with respect to which the metric tensor takes the diagonal form gk�

=�k� /��x�. The potential is nondegenerate if it is the general solution of a system of the form

Vjj − V11 = �
�=1

n

Ajj,��x�V�, j = 2, . . . ,n ,

�13�

Vkj = �
�=1

n

Akj,��x�V�, 1 � k 
 j � n ,

where all of the integrability conditions for this system of PDEs are identically satisfied.8,9 �Here
Vj =� jV, etc., and the Akj,� are analytic in an open set of the n dimensional space with coordinates
x.� In this case there is an n+2 dimensional solution space of nondegenerate potentials V that can
be parametrized by choosing the values V�x0� ,V11�x0� ,V��x0�, �=1, . . . ,n at some fixed point x0.
One ordinarily refers to these nondegenerate potentials as n+1 parameter, neglecting the trivial
constant that can be added to any potential. Equations �13� always arise from the Bertrand-
Darboux equations for the potential of a superintegrable systems such that the 2n−1 symmetries
are linearly independent at a point,9 but in general the integrabilty conditions are not satisfied
identically so that the space of solutions V has dimension 
n+2. Thus the nondegenerate poten-
tials are those with the maximum number of parameters possible.

Classification of the possible superintegrable systems with nondegenerate potentials in com-
plex Euclidean n-space is a very difficult task that has been carried out only for n=2, with
significant results for n=3.8,10 However, there is an important subclass of such systems that can be
constructed for all n�2, based on their relationship to variable separation in generic Jacobi elliptic
coordinates. The prototype superintegrable system which is nondegenerate in n dimensional flat
space has the Hamiltonian22

H = �
i=1

n ��i
2 + �xi

2 +
�i

xi
2� + �, �i = �xi

. �14�

The system H�=E� is superintegrable with nondegenerate potential and a basis of n�n+1� /2
second order symmetry operators given by

Pi = �i
2 + �xi

2 +
�i

xi
2 , Jij = �xi� j − xj�i�2 + �i

xj
2

xi
2 + � j

xi
2

xj
2 , i � j .

Although there appear to be “too many” symmetry operators, all are functionally dependent on a
subset of 2n−1 functionally independent symmetries. A crucial observation is that the correspond-
ing equation H�=E� admits multiplicative separation in n generic elliptical coordinates xi

2

=c2� j=1
n �uj −ei� /�k�i�ek−ei�, simultaneously for all values of the parameters with ei�ej if i� j

and i , j=1, . . . ,n. If we were dealing with real Euclidean space then we could assume that the
inequalities e1
e2
 ¯ 
en and e1
u1
e2
 ¯ 
en
un hold. Thus the equation is multisepa-
rable and separates in a continuum of elliptic coordinate systems �and in many others besides�.
The n commuting symmetries characterizing a fixed elliptic separable system are polynomial
functions of the ei, and requiring separation for all ei simultaneously sweeps out the full n�n
+1� /2 space of symmetries and uniquely determines the nondegenerate potential. The infinitesi-
mal distance in Jacobi elliptical coordinates uj has the form

ds2 = −
c2

4 �
i=1

n
� j�i�ui − uj�

P�ui�
dui

2, �15�

where P���=�k=1
n ��−ek�. However, it is well known that Eq. �15� is a flat space metric for any

polynomial P��� of order �n and that each choice of such a P��� defines an elliptic-type multi-
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plicative separable solution of the Laplace-Beltrami eigenvalue problem �with constant potential�
in complex Euclidean n-space.24 The distinct cases are labeled by the degree of the polynomial
and the multiplicities of its distinct roots. If for each distinct case we determine the most general
potential that admits separation for all ei compatible with the multiplicity structure of the roots, we
obtain a unique superintegrable system with nondegenerate potential and n�n+1� /2 second order
symmetries.10,20 These are the generic complex superintegrable systems. �Thus, for n=3 there are
seven distinct cases for − 1

4 P���:

�� − e1��� − e2��� − e3�, �� − e1��� − e2�2, �� − e1�3,

�� − e1��� − e2�, �� − e1�2, �� − e1�, 1,

where ei�ej for i� j. The first case corresponds to Jacobi elliptic coordinates.� The number of
distinct generic superintegrable systems for each integer n�2 is

�
j=0

n

p�j� ,

where p�j� is the number of integer partitions of j, given by the Euler generating function

1

�k=1
� �1 − tk�

= �
j=0

�

p�j�tj .

All of the generic separable systems, their potentials, and their defining symmetries can be
obtained from the basic Jacobi elliptic system in n dimensions by a complicated but well defined
set of limit processes.10,20 Although we cannot write down master canonical expressions for all
such generic systems in Cartesian coordinates, it is easy to take these limits and write down a
master equation for the separated ordinary differential equations in the elliptic coordinates, ui. The
separation equation for each of the coordinates x=ui is essentially the same,

	P�x�
d

dx
�	P�x�

dF

dx
� + �an+p0

xn+p0 + ¯ + anxn + ân−1xn−1 + ¯ + â0 +
b1

�1�

�x − e1�
+

b2
�1�

�x − e1�2

+ ¯ +
bp1

�1�

�x − e1�p1
+ ¯ +

b1
�r�

�x − er�
+

b2
�r�

�x − er�2 + ¯ +
bpr

�r�

�x − er�pr
�F = 0, �16�

P�x� = − 4�x − e1�p1
¯ �x − er�pr, �17�

and p0+ p1+ ¯ + pr=n. Here the n constants âs, s=0, . . . ,n−1, are the separation constants for the
superintegrable system in these elliptic coordinates. In particular, E= ân−1. The other n+1 con-
stants depend on the n+1 parameters in the potential and can be assigned arbitrarily by specifying
the appropriate potential.

First we look for explicit solutions of the single equation �Eq. �16��, ignoring the fact that it is
a separation equation for a superintegrable system. To obtain polynomials, we perform a gauge
transformation and look for solutions of the form
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� = exp��1x + �2x2 + ¯ + �p0+1xp0+1 +
c1

�1�

�x − e1�
+

c2
�1�

�x − e1�2 + ¯ +
cp1−1

�1�

�x − ep1
�p1−1 + ¯ +

c1
�r�

�x − er�

+
c2

�r�

�x − er�2 + ¯ +
cpr−1

�r�

�x − er�pr−1� � �t=1
r �x − et�qt�i=1

s �x − 	i� = f�x��i=1
s �x − 	i� = f�x���x� .

�18�

We require that the differential equation satisfied by ��x� is of the form

�rn−p0
xn−p0 + ¯ + r0�

d2�

dx2 + �snxn + ¯ + s0�
d�

dx
+ �tn−1xn−1 + t0�� = 0. �19�

This can be achieved by choosing values for an+p0
, . . . ,an to make the coefficients of powers

of x �xi , i=n+ p0 , . . . ,n� zero in the expression for the polynomial multiplying � in Eq. �19�.
Similarly by choosing the coefficients bj

�J�j=1, . . . , pJ, all singular terms in this equation can be
removed. Now, polynomial solutions of Eq. �19� can be sought and there are just enough condi-
tions to determine ân−1 , . . . , â0 and 	i, i=1, . . . ,s, in terms of a solution �=�i=1

s �x−	i�. We will
not write down these equations for the separation constants in the general case, but note that they
exist. The zeros 	i of these polynomials satisfy relations of the form

�
j�i

1

	i − 	 j
+ �1	i + 2�2	i

2 + ¯ + �p0 + 1��p0+1	i
p0 +

1/4p1 + q1

�	i − e1�
−

c1
�1�

�	i − e1�2

+
�p1 − 1�cp1−1

�1�

�	i − e1�p1
¯ +

1/4pr + qr

�	i − er�
−

cr
�1�

�	i − er�2 + ¯ +
�pr − 1�cpr−1

�r�

�	i − er�pr
= 0.

This is easy to see from the ansatz �Eq. �18��. Indeed if we evaluate the differential equation using
Eq. �18� at x=	i, these equations are readily obtained.

Next we relate these finite solutions to the superintegrable system in n dimensional Euclidean
space from which they are obtained by separation of variables. To begin this process we first label
Cartesian-type coordinates by yj

J, j=1, . . . , pJ, J=0, . . . ,r. In terms of the separable coordinates
x=u1 , . . . ,un the Cartesian-type coordinates are specified by the relations20,25

yj
0 =

1

j!
� �

��
� j�
 ��u1 − 1� ¯ ��un − 1�

�1 − �e1�p1
¯ �1 − �er�pr

�1/2�
�=0

.

For coordinates corresponding to yk
K, k=1, . . . , pK, and K�0, we choose

yk
K =

1

�k − 1�!
� �

�eK
�k−1
 �u1 − eK� ¯ �un − eK�

�J�K�eK − eJ�pJ
�1/2

.

These coordinates can be identified with the standard Cartesian coordinates via the quadratic form

�
s+t=p0+1

ys
0yt

0 + �
J=1

r

�
s+t=pJ

ys
Jyt

J = x1
2 + ¯ + xn

2.

Indeed if we label the Cartesian coordinates by xj
J, j=1, . . . , pJ, J=0, . . . ,r, then we can make the

choices

yj
J =

1
	2

�xj
J + ix2m+1−j

J �, yj+m
J =

1
	2

�xj
J − ix2m+1−j

J � ,

where J=2m, j=1, . . . ,m, and
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yj
J =

1
	2

�xj
J + ix2m+2−j

J �, yj+m+1
J =

1
	2

�xj
J − ix2m+2−j

J �, ym
J = xm+1

J ,

where J=2m+1, j=1, . . .m. The infinitesimal distance is given by

ds2 = �
I=0

r

�
i=1

pI

�dxi
I�2 = �

i=1

n
� j�i�ui − uj�

P�ui�
dui

2.

If we take Eq. �17� and allow x to have the values u1 , . . . ,un and F= f�u1 , . . . ,un�, then we can
calculate each of the expressions âj, j=n−1, . . . ,0, in terms of the general coordinates yi

I. In
permitting x to take on these values we are identifying the resulting ordinary differential equations
as the separation equations of a separable Schrödinger equation with potential in n dimensions. To
do this calculation we need to make use of the symmetric functions Sj, j=1, . . . ,n, defined by the
expressions

S0
i = 1, S1

i = S1
i �u1, . . . ,ui−1,ui+1, . . . ,un� = �

j=1

n

uj, j � i ,

S2
i = S2

i �u1, . . . ,ui−1,ui+1, . . . ,un� = �
j�k

n

ukuj + ¯ , k, j � i, . . . ,

Sn−1
i = Sn−1

i �u1, . . . ,ui−1,ui+1, . . . ,un� = � j=1
n uj, j � i .

Previously we considered âj, j=0, . . . ,n−1, as an eigenvalue. Now we consider it as the
symmetry operator with this eigenvalue. Solving the n equations of type �17�, we find

âj = �
i=1

n
1

�k�i�ui − uk�
Sn−1−j

i Pi,

where

Pi = 	P�ui�
d

dui
�	P�ui�

d

dui
� + an+p0

ui
n+p0 + ¯ + anui

n +
b1

�1�

�ui − e1�
+

b2
�1�

�ui − e1�2 + ¯ +
bp

�1�

�ui − e1�p1

+ ¯ +
b1

�r�

�ui − er�
+

b2
�r�

�ui − er�2 + ¯ +
bp

�r�

�ui − er�pr
.

If we look for an eigenfunction F of the form

F = � j=1
n f�uj��r=1

s �uj − 	r� ,

then the expression for the second part of this, viz., � j=1
n �r=1

s �uj −	r�, can be written in terms of
the yi

I via the identity

S0
0�p0−1 + S1

0�p0−2 + ¯ + Sp0−1
0 + �

J=1

r

�
j=1

pJ SpJ+2−j
J

�� − eJ� j =
� j=1

n �uj − ��
P���

,

where Sj
J=��+k=sy�

Jyk
J.

The product function � j=1
n f�uj� can be written in terms of the yi

I variables via our implicit
evaluation of symmetric functions Sj�u1 , . . . ,un� in terms of the yi

I. We can determine that ân−1 has
the form of an n dimensional Laplacian plus a potential which is rational in the coordinates yi

I.
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We now take a closer look at H= ân−1. The differential operator part of this term can be
identified with the Laplacian of the operator associated with the metric ds2. The various parts of
the potential can be associated with the calculation of Stäckel multiplier terms of the form

�
i=1

n
1

�k�i�ui − uk�
Qi,

where Qi=ui
s or Qi�ui−eJ�−t, corresponding to the coefficients as or bt

�J� of Eq. �17�. We can
calculate a basis for these Stäckel multipliers in the yi

I coordinates. For Stäckel multipliers with
terms of the form Qi=ui

s, we observe the identity

�I=1
r �1 − �eI�

�i=1
n ��ui − 1�

= �
i=1

n
ui

p0−1�J=1
r �ui − eJ�pJ

� j�i�uj − ui���ui − 1�
.

From this identity we can calculate combinations of Stäckel multipliers of the form with Q=ui
s and

s�n−1. Indeed we differentiate according to

� �

��
�t�
�I=1

r �1 − �eI�
�i=1

n ��ui − 1����=0

= �
i=1

n

�− 1�tt!� ui
p0+t−1�J=1

r �ui − eJ�pJ

� j�i�uj − ui���ui − 1�
�

�=0
,

where 1� t� p0+1.
From this formula we see that we can we can construct Stäckel multipliers in which the Qi are

polynomials in ui, where the maximal order is n+ t−1. Further, we can explicitly calculate these in
terms of the coordinates yi

0. This can be seen from the formulas for Ss
0. If we define

1

�ỹ0
0�2 =

�I=1
r �1 − �eI�

�i=1
n ��ui − 1�

= �
i=1

n
ui

p0−1�J=1
r �ui − eJ�pJ

� j�i�uj − ui���ui − 1�
,

then the terms that we need for our Stäckel multipliers are

Ỹt
0 = � �

��
�t�
 1

�ỹ0
0�2��

�=0

, t = 1, . . . ,p0 + 1,

where we can use the recurrence formula � /���ỹ j
0�= �j+1�ỹ j+1

0 and, once all the calculations are
done, we put �→0 and then ỹ j

0→yj
0.

In this way we can construct basis elements for those parts of our potential which are entirely
polynomial in the ui variables. For the parts that are singular in these variables we use the identity

�J�K�eK − eJ�pJ

�i=1
n �ui − eK�

= �
i=1

n
�J�K�ui − eJ�pJ

�ui − eK�� j�i�ui − uj�
.

The right hand side of this expression is in the form of a Stäckel multiplier with Qi=�J�K�ui

−eJ�p / �ui−eK�, which can be written as a polynomial in ui plus a term 1/ �ui−eK�. We see imme-
diately that Stäckel multipliers containing terms of the form 1/ �ui−ek�t, where t�2, can be
generated by differentiating this identity t−1 times with respect to eK. Indeed we recognize that

�J�K�eK − eJ�pJ

�i=1
n �ui − eK�

=
1

�y1
K�2 .

The additional terms that arise in the potential and complete our basis have the form

Yt
K = � �

�ek
�t
 1

�y1
K�2�, t = 0, . . . ,pK − 1.

These expressions can be determined in terms of the ys
K via the recursion relation
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�

�eK
�yk

K� = �k + 1�yk+1
K .

Indeed we could establish the eigenvalues of the operators âj by acting on the functions
��u1 , . . . ,un� when expressed in terms of a basis of symmetric polynomials in the variables ui. In
general these expressions are of a different form than those obtained from the single separated
equation and are easier to calculate.

This procedure is best illustrated by a specific example. If we choose P�x�= �x−1�2x and n
=4, then the corresponding separated equation is

�	P���
d

d�
�	P���

d

d�
+ �a5�5 + a4�4 + â3�3 + â2�2 + â1� + â0 + �

b1

� − 1
+

b2

�� − 1�2 +
c1

�
�� f��� = 0.

�20�

If we consider this equation in isolation then we can find polynomial solutions as follows. Making
the assignments

a5 = − 4�4
2, a4 = 4�4�2�4 − �5�, b1 = �6�− �6 + 2p − 1�, b2 = − �6

2, c1 = −
1

2
q�2q − 1� ,

we can look for solutions of the form

f��� = exp��4�2 + �5� +
�6

� − 1
��� − 1�p�q�r=1

s �� − 	r� ,

where the 	 j satisfy the relation

4�5 + 8�4	i +
2�2p + 1�

	i − 1
−

6�6

�	i − 1�2 +
4q + 1

	i
− �

j�i

4

	i − 	 j
= 0.

The values of the constants âj, j=0, . . . ,3, can be represented in terms of the 	i via the formulas

â3 = − �5
2 − 4�4

2 + 8�4�5 − �4�p + q + s� + 5��4,

â2 = − 2�5
2 − 4�4�5 + 4�4�6 − 
2�p + q + s� +

3

2
��5 + 4�p + 2q + 2s + 2��4 − 4�4�

i=1

s

	i,

â1 = − �5
2 + 2�5�6 + 2�p + 1 + 2q + 2s��5 − �4s + 4q + 3��4 − �p + q��p + q +

1

2
� − s�s +

1

2
�

− 2�p + q�s + �− 2�5 + 8�4��
i=1

s

	i − 4�4�
i=1

s

	i
2,

â0 = − �2q + 2s +
1

2
��5 + �2p + 2q + 2s −

1

2
��6 + 
4�5 − 4�4 − 2p − 2q −

1

2
�4s − 1��

��
i=1

s

	i + �− 2�5 + 8�4��
i=1

s

	i
2 − 4�4�

i=1

s

	i
3.

We now show the superintegrable context of these observations. Consider the coordinates in
four dimensions given by the formulas

y1
2 = − 4�s − 1��t − 1��u − 1��v − 1�, y4 = − 2�s + t + u + v − 2� ,
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2y1y2 = 4�3 − 2�s + t + u + v� + �st + su + sv + tu + tv + uv� − stuv�, y3
2 = − 4stuv ,

where we identify four dimensional Cartesian coordinates as

y1 =
1
	2

�x + iy�, y2 =
1
	2

�x − iy�, y3 = z, y4 = t .

The appropriate superintegrable system in four dimensions is

H = � +
�

y1
2 +

�y2

y1
3 +

�

y3
2 + ��4y4

2 + 2y1y2 + y3
2� + y4,

where �=�x
2+�y

2+�z
2+�t

2. In these coordinates the separation equations for H�=E� have exactly
the form �20� with the identifications

� = i4�1 − 2p�, � = − 8�6
2, � = − 2q�2q − 1�, � = − �4

2,  = 4�4�5,

and identification of â3 with E. Indeed, if we use coordinates y1, y2, y3, and y4 in the Schrödinger
equation ��=E� and employ the relationship

2y1y2

L − 1
+

y1
2

�L − 1�2 +
y3

2

L
− 2y4 − L = −

�u − L��v − L��s − L��t − L�
L�L − 1�2 ,

we can find finite solutions of the form

� = exp�1

2
�4�2y1y2 + y3

2 + 2y4
2� − �5y4 + 2i�6

y2

y1
�y1

p/2y3
q/2

��r=1
s � 2y1y2

	r − 1
+

y1
2

�	r − 1�2 +
y3

2

	r
− 2y4 − 	r� ,

where the same equations for the zeros are satisfied. This method of derivation is in complete
analogy with that used by Whittaker and Watson.21 The â2 , â1 , â0 are then separation constants. A
useful feature of this observation is the availability of direct algebraic methods to determine the
eigenvalues of these parameters. Indeed in this case if we write �in operator form�

âi =
1

�s − t��s − u��s − v�
Ps

i +
1

�t − u��t − s��t − v�
Pt

i +
1

�u − t��u − s��u − v�
Pu

i

+
1

�v − t��v − u��v − s�
Pv

i ,

then typically

Ps
3 = 	P�s�

�

�s
�	P�s�

�

�s
� + �a1s5 + a2s4 +

b1

s − 1
+

b2

�s − 1�2 +
c1

s
� ,

Ps
4 = �t + u + v�Ps

3, Ps
5 = �tu + tv + uv�Ps

3, Ps
6 = tuvPs

3.

Since the products of separated eigenfunctions are symmetric in s , t ,u ,v, we see that eigen-
values of âi can be obtained by acting on a basis of symmetric functions. We consider the
symmetric functions

S0 = 1, S1 = s + t + u + v, S2 = st + su + sv + tu + tv + uv ,
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S3 = stu + tuv + suv + stv, S4 = stuv .

We can, as a particular example, look for solutions of the form

� = exp��4�s2 + t2 + u2 + v2� + �5�s + t + u + v�� + �6� 1

s − 1
+

1

t − 1
+

1

u − 1
+

1

v − 1
���s − 1��t − 1�

��u − 1��v − 1��p�stuv�q�B0S0 + B1S1 + B2S2 + B3S3� .

If we look for eigenvalues of âi, i=0, . . . ,3, we obtain the determinantal equations for the corre-
sponding eigenvalues ai. In the simplified case for which �4=�5=�6= p=q=1, we find

�a3 − 18��a3 − 14�4 = 0, �2a2 − 33��4a2
4 − 1344a2

3 + 42 472a2
2 − 596 992a2 + 314 180 5� = 0,

�a1 − 3��4a1
4 − 92a1

3 + 1005a1
2 − 6318a1 + 15 641� = �2a0 − 11��4a0

4 − 120a0
3 + 1309a0

2 − 6321a0

+ 11 723� = 0.

III. POLYNOMIAL SOLUTIONS FROM SUPERINTEGRABLE SYSTEMS ON THE
COMPLEX n SPHERE

Applications of superintegrable systems on the complex n-sphere proceed in analogy with the
approach in complex Euclidean n-space. There is an important subclass of such systems with
nondegenerate potentials that can be constructed for all n�2, based on their relationship to
variable separation in generic Jacobi elliptic coordinates. The prototype superintegrable system
which is nondegenerate on the n dimensional sphere has the Hamiltonian

H = �
i=0

n ��i
2 +

�i

si
2� + �, �i = �si

, �21�

where �i=0
n si

2=1. The system H�=E� has a basis of n�n+1� /2 second order symmetry operators
given by

Mij = Mji = �si� j − sj�i�2 + �i

sj
2

si
2 + � j

si
2

sj
2 , i � j .

Again, all are dependent on a subset of 2n−1 functionally independent symmetries. The corre-
sponding equation H�=E� admits multiplicative separation in the generic n dimensional ellip-
tical coordinates.

si
2 = � j=1

n �uj − ei�/�k�i�ek − ei�

simultaneously for all values of the parameters with ei�ek if i�k and i ,k=0, . . . ,n. If we were
dealing with the real sphere then we could assume that the inequalities e1
e2
 ¯ 
en and e0


u1
e1
 . . . 
en−1
un
en hold. Thus the equation is multiseparable and separates in a con-
tinuum of elliptic coordinate systems �and in others besides�.

The infinitesimal distance in Jacobi elliptical coordinates uj has the form

ds2 = �
i=1

n
� j�i�ui − uj�

P�ui�
dui

2, �22�

where P���=−4�k=0
n ��−ek�. Here ej�ek for j�k. However, it is well known that Eq. �22� is a

metric on the sphere for any polynomial P��� of order n+1 and that each choice of such a P���
defines an elliptic-type multiplicative separable solution of the Laplace-Beltrami eigenvalue prob-
lem �with constant potential� on the complex n-sphere. The distinct cases are labeled by the
multiplicities of the n+1 roots. If for each distinct case we determine the most general potential
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that admits separation for all ej compatible with the multiplicity structure of the roots, we deter-
mine a unique superintegrable system with nondegenerate potential and n�n+1� /2 second order
symmetries.10,25 These are the generic superintegrable systems on the sphere. �Thus, for n=3 there
are five distinct cases for − 1

4 P���:

�� − e0��� − e1��� − e2��� − e3�, �� − e0��� − e1��� − e2�2, �� − e0�2�� − e1�2,

�� − e0��� − e1�3, �� − e0�4,

where ej�ek for j�k. The first case corresponds to Jacobi elliptic coordinates.� The number of
distinct generic superintegrable systems for each integer n�2 is p�n+1�, where p�j� is the number
of integer partitions of j.

As in the Euclidean case, all of the generic separable systems, their potentials, and their
defining symmetries can be obtained from the basic Jacobi elliptic system in n dimensions by a
complicated but well defined set of limit processes.25 Although we cannot write down master
canonical expressions for all such generic systems in Cartesian-like coordinates sk, it is easy to
take these limits and write down a master equation for the separated ordinary differential equations
in the elliptic coordinates, ui. The separation equation for each of the coordinates x=ui is essen-
tially of the same form,

	P�x�
d

dx
�	P�x�

dF

dx
� + �an−1xn−1 + ¯ + â0

b1
�1�

�x − e1�
+

b2
�1�

�x − e1�2 + ¯ +
bp1

�1�

�x − e1�p1

+ ¯ +
b1

�r�

�x − er�
+

b2
�r�

�x − er�2 + ¯ +
bpr

�r�

�x − er�pr
�F = 0, �23�

where P�x�=−4�x−e1�p1
¯ �x−er�pr and p1+ ¯ + pr=n+1, given that there are now n variables

u1 , . . . ,un. Much of what has already been done for Euclidean space coordinates carries over, with
the essential difference that there is no singularity at infinity. If we look for finite solutions we can
proceed as before. We seek solutions of the form

� = exp� c1
�1�

�x − e1�
+

c2
�1�

�x − e1�2 + ¯ +
cp1−1

�1�

�x − ep1
�p1−1 + ¯ +

c1
�r�

�x − er�
+

c2
�r�

�x − er�2 + ¯ +
cpr−1

�r�

�x − er�pr−1�
��t=1

r �x − et�qt�i=1
s �x − 	i� = g�x��i=1

s �x − 	i� ,

for which the zeros of the polynomials satisfy

0 = �
j�i

1

	i − 	 j
+ ¯ +

1/4p1 + q1

�	i − e1�
−

c1
�1�

�	i − e1�2 + ¯ +
�p1 − 1�cp1−1

�	i − e1�p1
¯ +

1/4pr + qr

�	i − er�
−

cr
�1�

�	i − er�2

+ ¯ +
�pr − 1�cpr−1

�	i − er�pr
.

To relate these finite solutions to superintegrable systems on the sphere, we introduce a set of
coordinates that we again call yk

K, k=1, . . . , pk, K=1, . . . ,r, and which are given by the formula

yk
K =

1

�k − 1�!
� �

�eK
�k−1
 �u1 − eK� ¯ �un − eK�

�J�K�eK − eJ�pJ
�1/2

.

These coordinates can be identified with the usual coordinates on a sphere via the relation
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�
K=1

r

�
s+t=pK

ys
Kyt

K = 1.

This is done via the assignment

yj
J =

1
	2

�sj
J + is2m+1−j

J �, yj+m
J =

1
	2

�sj
J − is2m+1−j

J �, J = 2m, j = 1, . . . ,m ,

yj
J =

1
	2

�sj
J + is2m+2−j

J �, yj+m+1
J =

1
	2

�sj
J − is2m+2−j

J �, ym
J = sm+1

J ,

where

�
K=1

r

�
k=1

pk

�sk
K�2 = 1.

The infinitesimal distance is given by

ds2 = �
K=1

r

�
k=1

pK

�dsk
K�2 = �

i=1

n
� j�i�ui − uj�

P�ui�
dui

2.

Solving the n equations of type �23�, we find the operator expressions

âj = �
i=1

n
1

�k�i�ui − uk�
Sn−1−j

i Pi,

where

Pi = 	P�ui�
d

dui
�	P�ui�

d

dui
� + � b1

�1�

�ui − e1�
+

b2
�1�

�ui − e1�2 + ¯ +
bp

�1�

�ui − e1�p1
+ ¯ +

b1
�r�

�ui − er�

+
b2

�r�

�ui − er�2 + ¯ +
bp

�r�

�ui − er�pr
� .

We look for an eigenfunction of the form

F = � j=1
n g�uj��r=1

s �uj − 	r� .

Then the second part of this expression, viz., � j=1
n �r=1

s �uj −	r�, can be written in terms of the yi
I via

the identity

�
J=1

r

�
j=1

pJ SpJ+2−j
J

�� − eJ� j =
� j=1

n �uj − ��
P���

.

The product function � j=1
n g�uj� can be written in terms of the yi

I variables via our implicit evalu-
ation of symmetric functions Sj�u1 , . . . ,un� in terms of the yi

I. We can determine that ân−1 has the
form of an n dimensional Laplacian plus a potential which is rational in the coordinates yi

I. If we
look at H= ân−1, we can identify the differential operator part with the Laplacian of the operator
associated with the metric ds2. The various parts associated with the potential require the calcu-
lation of the Stäckel multiplier terms of the form

023503-17 QES and superintegrable systems II J. Math. Phys. 48, 023503 �2007�

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



�
i=1

n
1

�k�i�ui − uk�
Qi,

where Qi= �ui−eJ�−t corresponding to the coefficients bt
�J� of Eq. �23�. We can readily calculate a

basis for these Stäckel multipliers in terms of the yi
I coordinates. For the parts that are singular in

these variables we proceed as previously. We first observe the identity

�J�K�eK − eJ�pJ

�i=1
n �ui − eK�

= �
i=1

n
�J�K�ui − eJ�pJ

�ui − eK�� j�i�ui − uj�
.

Note that the right hand side of this expression is in the form of a Stäckel multiplier with Qi

=�J�K�ui−eJ�p / �ui−eK�, which can be written as a polynomial in ui plus a term 1/ �ui−eK�. We
see immediately that Stäckel multipliers containing terms of the form 1/ �ui−ek�t, where t�2, can
be generated by differentiating this identity t−1 times with respect to eK. Indeed,

�J�K�eK − eJ�pJ

�i=1
n �ui − eK�

=
1

�y1
K�2 .

The additional terms that arise in the potential, and complete our basis, have the form

Yt
K = � �

�ek
�t
 1

�y1
K�2�, t = 0, . . . ,pK − 1.

These expressions can be determined in terms of the ys
K via the recursion relation

�

�eK
�yk

K� = �k + 1�yk+1
K .

We could now establish the eigenvalues of the operators âj by acting on the functions
��u1 , . . . ,un� expressed in terms of a basis of symmetric polynomials in the variables ui. The
observations we have made are best illustrated by a specific example. If we choose P�x�= �x
−1�2x and n=2, then the ordinary differential equation is

�	P���
d

d�
�	P���

d

d�
+ �â1� + â0 +

b1

� − 1
+

b2

�� − 1�2 +
c1

�
��� f��� = 0. �24�

If we consider this equation in isolation, then we can find polynomial solutions as follows. We
make the assignments

c1 = − p�p +
1

2
�, b1 = − ��� − 1� + 2�q, b2 = − �2,

and look for solutions of the form

f��� = exp� �

� − 1
��� − 1�q�p�r=1

s �� − 	r� ,

where the 	 j satisfy the relation

2�3 + 2q�
	i − 1

−
�2

�	i − 1�2 +
3 + 4q

	i
+ �

j�i

4

	i − 	 j
= 0.

The values of the constants âj, j=0,1, can be represented in terms of the 	i via the formulas

â1 = −
1

2
�p + q + s + 2��2p + 2q + 2s + 3� ,
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â0 = 2s�2p + q + s + 2� + ��2p + 2q + 2s +
5

2
� + 2p�p + q� + 4p +

3

2
q + 2

+ �− 2�p + q� −
1

2
�5 + 4s���

r=1

s

	r.

To display the superintegrable context of these observations we employ the coordinates on the
2-sphere given by the formulas

s1
2 + s2

2 = 1 − uv, �s1 + is2�2 = �u − 1��v − 1�, s3
2 = uv

and consider the superintegrable system10

H = ps1

2 + ps2

2 + ps3

2 + �
1

�s1 + is2�2 + �
s1 − is2

�s1 + is2�3 +
�

s3
2 .

In these coordinates the separation equations for H�=E� have exactly the form �24� with

� = ��2q − 1�, � = − 2�2, � = − p�p +
1

2
� ,

and the identification of â1 with E. Indeed, using coordinates y1, y2, and y3 in the Schrödinger
equation ��=E� and the relationship

2�s1
2 + s2

2�
L − 1

+
�s1 + is2�2

�L − 1�2 +
s3

2

L
=

�u − L��v − L�
L�L − 1�2 ,

we can find finite solutions of the form

� = exp
− 2�� s1 + is2

s1 − is2
��s3

p/2�s1 + is2�q/2�r=1
s �2�s1

2 + s2
2�

	r − 1
+

�s1 + is2�2

�	r − 1�2 +
s3

2

	r
� ,

where the same equations for the zeros are satisfied. This method of derivation is in complete
analogy with that used by Whittaker and Watson. The â1, â0 are separation constants. A useful
feature of this observation is the availability of direct algebraic methods to determine the eigen-
values of these parameters. We write

â1 =
1

�u − v�
�Pu − Pv�, â0 =

1

�u − v�
�vPu − uPv� ,

where

P� = 	P���
�

��
�	P���

�

��
� + �a1� + a0 +

b1

s − 1
+

b2

�s − 1�2 +
c1

s
� .

We can now demonstrate that eigenvalues of âi can be obtained by acting on a basis of symmetric
functions. As a particular example, if we look for solutions of the form

� = exp� �

u − 1
+

�

v − 1
���u − 1��v − 1��q�uv�p�k1uv + k2�u + v� + k3� ,

we find that the corresponding eigenvalues of a1 and a0 are determined by

�2a1 + 45�2�a1 + 14� = 0, �a0 − 18��4a0
2 − 200a0 + 2423� = 0,

where we have made the simplifying assumptions p=1, q=1, �=1.
Note further that if we perform a gauge transformation in the nonseparable Cartesian coordi-

nates to try to find polynomial solutions in s1
2 ,s2

2, we will obtain exactly the same exponential
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phase factor as the product of the phase factors in u and in v. This means that the possible
polynomial solutions in s1

2 ,s2
2 for a fixed energy eigenspace correspond exactly with the polyno-

mial solutions symmetric in u and v. The polynomial energy eigenspace is degenerate but the
diagonalization of a0 breaks the degeneracy. For a dramatic example of similar behavior on the
n-sphere see Ref. 26.

IV. CONCLUSION

We have demonstrated for a large class of superintegrable potentials that the method of
separation of variables can be used to solve the corresponding Schrödinger equation in a specific
form of elliptical coordinates. In these coordinates we have demonstrated that finite polynomial
solutions are possible up to multiplication by an explicit function. This provides a generalization
for the property of quasiexact solvability as given by Ushveridze.12 It also consolidates further the
close connection with classical separation of variable concepts of families of polynomial solutions.
In addition, the problem of finding all the algebraic equations determining the separation param-
eters has its natural place in the multivariable interpretation of these equations. The very fact that
these polynomial solutions arise from superintegrable systems and that these systems have poly-
nomial algebras associated with them implies that there are relations among the various solutions
of the Schrödinger equation. This is a matter that we will pursue.
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