

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Integrating Interactive Digital Maps

into a Digital Library

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

at the

University of Waikato

by

Samuel J. McIntosh

University of Waikato

2010

Abstract

Digital libraries and digital maps are two fast-growing technologies in the world

of computing. In this thesis we have explored using digital maps to enhance

the functionality of digital libraries. The Greenstone 3 digital library system

was augmented though the use of the digital mapping system, Google Maps.

An automatic place name recognition and disambiguation system was created

to obtain geographical information from documents as they were viewed. This

extracted information was presented as a map with markers showing the loca-

tion of the places within the text of the document.

We evaluated the system by performing a user study and an analysis of the

speed, efficiency and accuracy of the place name recognition and disambigua-

tion system. Participants in the user study completed most of the tasks easily

and made comments expressing their satisfaction with the system. Analysis

of the place recognition and disambiguation system was also positive, as the

system was fast, relatively efficient and was highly accurate.

Acknowledgements

I would like to thank my parents and family for their love and ongoing support

throughout this process, my wife Katrina for her patience, love and encour-

agement and my cat for providing comic relief.

I would also like to thank my two supervisors: David Bainbridge for his

advice and assistance, and Dave Nichols for his guidance and for painstakingly

checking through section after section of my thesis.

Funding for my Masters scholarship came from the FRST project “Inter-

national multimedia management and delivery”.

Contents

1 Introduction 1

1.1 Walkthrough . 1

1.2 Thesis structure . 7

2 Background 10

2.1 Similar systems . 10

2.1.1 GIPSY . 11

2.1.2 Pre-NewsExplorer . 12

2.1.3 NewsExplorer . 13

2.1.4 Informedia Digital Video Library 14

2.1.5 Perseus Project . 17

2.1.6 Web-a-Where . 19

2.1.7 G-Portal Digital Library Project 20

2.1.8 Summary . 21

2.2 Interactive visualisation . 26

2.2.1 Fisheye view . 28

2.2.2 Column view . 34

3 Design and implementation 36

3.1 Requirements and technology overview 36

3.1.1 Digital library . 38

3.1.2 Digital mapping system 39

3.1.3 Gazetteer . 42

3.1.4 Place recognition and disambiguation system 44

3.1.5 Place information storage system 44

3.2 System structure . 45

3.3 Implementation details . 52

3.3.1 Contributing technologies 53

3.3.2 Pseudo AJAX Loading 55

3.3.3 Google Maps . 59

3.3.4 Place name recognition 63

3.3.5 Place name disambiguation 66

v

3.3.6 Place information retrieval 69

3.3.7 Spatial searching . 72

3.4 Interface design . 76

3.4.1 Page layout . 76

3.4.2 Status Area . 80

3.4.3 Text presentation . 83

3.4.4 System interactions . 90

4 Evaluation 98

4.1 User study . 98

4.1.1 Pilot tests results . 98

4.1.2 Full user test results 100

4.2 Place name disambiguation accuracy 107

4.3 Gazetteer trie efficiency . 113

5 Conclusion 118

5.1 Contributions . 118

5.2 Future work . 122

References 124

Appendix 128

A User study material 129

List of Figures

1.1 The start page of Greenstone. 2

1.2 The “about” page of the MGPP demo collection. 3

1.3 A standard text query form. 3

1.4 The text query results page demonstrating the additional AT-

LAS functionality. 4

1.5 A standard Greenstone document view enhanced with ATLAS. 5

1.6 A menu displaying interaction options for the currently selected

place name. 6

1.7 The ATLAS spatial searching interface. 7

1.8 Creating a spatial query for the area around Hamilton. 8

2.1 An example of the visualisation system used in GIPSY (from

[WP94]). 11

2.2 An example of the WorldKit visualisation system used by the

NewsExplorer system (from [PKS+06]). 14

2.3 An example of a map (bottom half) being shown in sync with

a video (from [COH99]). 16

2.4 The fisheye view in the FishNet browser (from [BLH04]). . . . 29

2.5 The fisheye source code editor designed by Jakobsen and Horn-

bæk (from [JH06]). 31

2.6 The Document Lens system (image taken from [RM93]). . . . 34

3.1 The structure of ATLAS. 37

vii

3.2 A comparison between the (a) standard Greenstone skin and

the (b) development skin used by ATLAS. 40

3.3 The original structure of the system. 47

3.4 The second structure of the system. 50

3.5 The final structure of the system. 51

3.6 The page loading cycle. 56

3.7 Two examples of the syntax used to refer to GWT-compiled

methods in JNSI. 58

3.8 The localhost Google Maps key being inserted into ATLAS. . . 59

3.9 Two different types of map marker: (a) A standard Google

Maps marker and (b) customised polygon markers. 61

3.10 A basic trie where “ab” is match and all other nodes are not

matches. 64

3.11 The per-place scoring procedure. 68

3.12 The final scoring adjustments. 70

3.13 The table layout of the PostgreSQL/PostGIS database. 72

3.14 The first spatial search method. 75

3.15 The second spatial search method. 75

3.16 Two variations of the horizontal split layout. 77

3.17 The original full vertical split layout of the system. 78

3.18 The full split layout with the Greenstone header and footer

sections extending the full width of the page. 79

3.19 The final layout of the system. 80

3.20 Two of the status area position concepts. 82

3.21 The status area showing two updates. 82

3.22 The animated GIF used on the status area. 83

3.23 The document text in fisheye view. 84

3.24 The line finding algorithm used to set up the fisheye view. . . 85

3.25 The compaction view design. 86

3.26 The document text in column view. 88

viii

3.27 The heuristic algorithm used to arrange document text into

columns. 89

3.28 The document specific menu used in ATLAS. 92

3.29 Switzerland with its neighbouring countries. 95

3.30 Single box and multi-box spatial query examples. 95

3.31 Multi-shape and polygon query examples. 96

4.1 The browsing method selection page. 104

4.2 Data structure memory usage in bytes. 114

4.3 The speed of each of the structures in milliseconds. 115

4.4 The time taken for each structure to parse the Unicode-oriented

data set (in milliseconds). 116

List of Tables

2.1 System comparisons. 27

2.2 Jakobsen and Hornbæk’s [JH06] user test average satisfaction

scores (and standard error of the mean). Significantly better

scores are shown in bold. 32

3.1 Several example Gazetteer entries. 43

3.2 Character counts in the gazetteer. 65

4.1 The 56 top scoring combinations of the disambiguation system

scoring parameters (with 98.62% precision). 110

4.2 The three lowest scoring combinations of the disambiguation

system scoring parameters (with 73.37% precision). 111

4.3 Summary statistics of the PB, PCS and PBL parameters. . . . 111

4.4 The statistics for the PB parameter when grouped by the PCS

parameter. 112

4.5 The statistics for the PBL parameter when grouped by the PCS

parameter. 112

4.6 Memory usage of the various trie structures. 114

4.7 Task completion time for each of the data structures. 115

4.8 Time taken for each of the data structures to parse the Unicode-

oriented data set. 116

Chapter 1

Introduction

In this thesis we will present ATLAS, the mAp-inTegrated digitaL librAry Sys-

tem. The system is designed to enrich digital library content with additional

geographic information. This is achieved by augmenting an existing digital

library with features such as: maps displaying the location and information

about the places mentioned in a document, locating documents that mention

places within a specified geographical area (spatial searching) and by extend-

ing the current text searching facilities with an additional map-view displaying

the places mentioned in each of the documents that are found. We will now

show several examples of the system in use.

1.1 Walkthrough

The system starts by loading in the home page of Greenstone — the digital

library used for development. As this first page is loading the system also

begins loading the data structure necessary for quickly locating the places in

the documents we encounter shortly. Figure 1.1 shows the Greenstone start

up page with a message from ATLAS letting the user know that this data

structure is being loaded and that they will have to wait before the system is

fully operational. For the purposes of this walkthrough we will be using the

MGPP Demo collection which is a small subset of the Humanity Development

2

Figure 1.1: The start page of Greenstone.

Library collection1.

Once the Greenstone home page is loaded the user selects the collection

they want to open and are taken to the “about” page of that collection (shown

in Figure 1.2), the “about” page is effectively the home page of the collection.

On this page the user is given several choices about how they want to locate

the document(s) they are searching for. These options include: browsing doc-

uments by classifiers such as title and subject, performing a full document

text search or even searching an area of the world for documents that men-

tion places within that area. As the first step in the walkthrough we will

demonstrate the text searching functionality and how it has been enhanced by

ATLAS.

When the user clicks “Text Search” they are taken to a page with a stan-

dard text query HTML form like the one shown in Figure 1.3. The user

submits their query as usual and they are taken to a page showing the results

of the search (Figure 1.4). Here we see ATLAS in action, once the results

page is loaded ATLAS begins loading each document in the background and

scans their content, looking for places that are mentioned within them. Each

document in the results set is given a colour, places located in that document

are marked on the map in the same colour to make it clearer to the user which

1Located at http://www.nzdl.org/cgi-bin/library.cgi?a=p&p=about&c=hdl

3

Figure 1.2: The “about” page of the MGPP demo collection.

Figure 1.3: A standard text query form.

places belong to each document. The places belonging to each document can

be toggled on and off by using the check boxes located on the left of each

document title. From this view the user may select a document to read from

the list of results. Next in the walkthrough we describe how the standard

document view has been enhanced with ATLAS.

ATLAS enhances the standard document view of Greenstone by adding a

map to the right-hand side of the screen like on the text results page. This

map contains markers showing the locations of the place names that have been

found in the document text. These place names are matched to their most

likely candidates based on the contents of the rest of the document. These

4

F
ig

u
re

1.
4:

T
h
e

te
x
t

q
u
er

y
re

su
lt

s
p
ag

e
d
em

on
st

ra
ti

n
g

th
e

ad
d
it

io
n
al

A
T

L
A

S
fu

n
ct

io
n
al

it
y.

5

Figure 1.5: A standard Greenstone document view enhanced with ATLAS.

places in the text are also highlighted to allow the user to see where they

occur in the document. Figure 1.5 shows this enhanced document view.

The user is also able to interact with the system to find out more infor-

mation. For example, each highlighted place name can be moused over to

produce a menu that gives several options specific to that place name. This

allows the user to perform tasks such as: centering the map on this specific

place, highlighting the place on the map, highlighting the place in the text

or correcting the disambiguation done by the system (such as “Cambridge”

being incorrectly classified as Cambridge in England when the text refers to

Cambridge in New Zealand). An example of this menu functionality is shown

in Figure 1.6. Here the user has moused over “London” and have chosen to

change which London the place name refers to.

Because of the decreased space now available for the document text — due

to the map filling half of the screen — two alternative text views have been

implemented that are designed to make better use of the limited available

space. These are the fisheye and column views which are designed to allow the

user to see more of the document than would normally be possible with the

standard text view. These are demonstrated and discussed in more detail in

Section 3.4.3.

Finally, in addition to augmenting the text searching functionality of Green-

6

F
ig

u
re

1.
6:

A
m

en
u

d
is

p
la

y
in

g
in

te
ra

ct
io

n
op

ti
on

s
fo

r
th

e
cu

rr
en

tl
y

se
le

ct
ed

p
la

ce
n
am

e.

7

Figure 1.7: The ATLAS spatial searching interface.

stone, ATLAS provides searching functionality of its own in the form of spatial

searching. The user selects an area that they wish to locate documents related

to and clicks the ”Search Area” button to perform the search. The documents

that are found are then displayed in order of relevance on the opposite side of

the web page.

Selection is performed by clicking on the map, which creates a point at

that location. Successive points are joined together to create a polygon which

is then used in the spatial query. If the user makes a mistake they can either

drag the points to a new location or clear all of the points if they wish to

start again. Figure 1.7 shows the spatial search interface with an area around

Hamilton, New Zealand selected. Figure 1.8 shows step by step how a spatial

query is created, the final step (shown in Figure 1.8(e) is not actually necessary

as ATLAS will automatically close off the polygon before it performs the query.

1.2 Thesis structure

In Section 2 we discuss work related to the development of ATLAS in the form

of similar systems and work done in the area of visual text manipulation. In

Section 3 we discuss the design and implementation of the ATLAS system.

This covers the technologies used, the structure of the system, specific imple-

mentation details and the design of the user interface. Section 4 evaluates

three key aspects of the system: the user interface, in the form of a user study;

8

(a
)

(b
)

(c
)

(d
)

(e
)

F
ig

u
re

1.
8:

C
re

at
in

g
a

sp
at

ia
l

q
u
er

y
fo

r
th

e
ar

ea
ar

ou
n
d

H
am

il
to

n
.

9

the efficiency of the data structure used for place recognition, discussed in Sec-

tion 3.3.4 and finally the accuracy of the place name disambiguation system.

In Section 5 we present our conclusions and discuss possible future work.

Chapter 2

Background

In this chapter we review systems related to ATLAS in the areas of digital

libraries combined with digital maps and automatic place name recognition

and disambiguation. We then present research done in the field of information

visualisation, specifically focusing on the two visualisation methods that have

been implemented in ATLAS: the fisheye view and the column view.

2.1 Similar systems

In this section we discuss several systems related to various aspects of ATLAS.

Four of these systems — specifically the GIPSY, Perseus, Informedia and G-

Portal systems — used a digital library combined with automatic place name

recognition and disambiguation for the purposes of geographic indexing. Four

of the systems — specifically the GIPSY, NewsExplorer, Perseus and Informe-

dia systems — used automatic place name recognition and disambiguation to

produce a digital map of the content they analysed. The Web-a-Where system

uses automatic place name recognition and disambiguation to assign a locality

to arbitrary documents.

11

Figure 2.1: An example of the visualisation system used in GIPSY (from

[WP94]).

2.1.1 GIPSY

In 1994 Woodruff and Plaunt created the Georeferenced Information Process-

ing SYstem (GIPSY) [WP94]. The focus of the system was automatic geo-

graphical indexing of text documents that could then be searched with a spatial

interface. The system was also capable of some basic visualisation that created

a 3-dimensional polygon mesh where the x and y axes represented the latitude

and longitude of the place being visualised and the z axis represented the fre-

quency that each place within the area was mentioned (Figure 2.1 shows an

example). This created a skyline where it was clear which geographical areas

the document(s) focused upon by the height the mesh rose out of the surface

at different points on the mesh. For example, if a document about the state

of Nevada in the United States of America makes frequent references to Las

Vegas, then in a map of the document the area of interest would be Nevada so

the shape of Nevada would be raised out of the mesh. Also because Las Vegas

is frequently mentioned the shape of Las Vegas would be raised out of the map

as well (higher than the level of Nevada as the z height is cumulative).

To disambiguate between words that are places and words that are not

places GIPSY used a gazetteer combined with set of stop-words (words that

are never to be considered place names). All places that matched in the

12

gazetteer and were not in the list of stop-words were treated as place names.

Disambiguation was not discussed in the article, it is possible that it was not

necessary due to the area of focus being small enough to not contain place

names that mapped to more than on place.

The gazetteer used by the GIPSY system was created by combining infor-

mation from multiple sources. One of the place name data sets used by GIPSY

is the US Geological Survey’s Geographic Names Information System1 (GNIS)

which contained over 60,000 geographic place names in California — their area

of interest. They also used another set of data, also from the US Geological

Survey, the Geographic Information Retrieval and Analysis System (GIRAS)

[AHRW76]. This data contains over 60,000 entries, each with many points de-

scribing features of interest such as parks, harbours and bridges. These points

were converted to polygons to use in their visualisation system.

2.1.2 Pre-NewsExplorer

In 2004 Pouliquen et al. created a system designed to recognise place names

in multilingual texts [PSIDG04]. To achieve this they used a combination

of Gazetteers containing place names in 8 different languages for place name

recognition. For place name disambiguation they used a series of heuristics.

They used the Global Discovery gazetteer2 and used some of the resources cre-

ated by the KNAB project3. The Global Discovery gazetteer is a commercial

gazetteer with over 850,000 places. The researchers were mostly interested in

European places names however and therefore reduced the gazetteer down to

less than 100,000 entries. The KNAB database contained less than 100,000 en-

tries, however this would still have been useful for their purposes as it contains

many alternative names for places.

Because the aim of the program was to create a system capable of geocoding

texts of many different languages, they decided against the use of per-language

1http://geonames.usgs.gov/pls/gnispublic/
2Available at http://europa-tech.com
3http://www.eki.ee/knab/knab.htm

13

linguistic rules. They believed that these would have improved the accuracy

of the system but they claimed that developing these rules for the multiple

languages their system used was out of their reach.

Their system used a combination of two techniques to decide which of the

possible places matches the place name in question. The first technique used

the concept of the “importance” of a place. Each place in their database is

given a value from 1 to 6 that denotes how “important” that particular place

is. For example, 1 means that this place is the capital city of a country and 6

means that the place is a small town or village. These classifications are found

in the Global Discovery gazetteer and have not been created by the researchers

themselves.

The second technique is to use places that have been located nearby in

the text to help decide on the correct disambiguation. For example they use

“Victoria is the business and cultural centre of the Seychelles” to decide that

“Victoria” refers to Victoria in the Seychelles rather than Victoria in Hong

Kong. How precisely these two techniques interact is unclear (e.g., in what

situations does each have priority over the other?) but they report good results

in their evaluation of the system.

2.1.3 NewsExplorer

In 2006 Pouliquen et al. presented an extended version of this system which

had been integrated in to a system called NewsExplorer4 [PKS+06]. This ver-

sion of the system had improved the amount of languages it could process from

8 up to 15. The new version of the system also improved upon the disambigua-

tion method used in the first system. A minimum distance heuristic was added

to find the minimum distance from an ambiguous place to an unambiguous

place. In the extended system Pouliquen et al. used a scoring method to com-

bine the outputs of their various heuristics, with each heuristic contributing

part of the score.

4http://press.jrc.it/NewsExplorer

14

Figure 2.2: An example of the WorldKit visualisation system used by the

NewsExplorer system (from [PKS+06]).

Another area where this system was improved was in the area of visual-

isation. At the time of writing they were using three different methods of

visualisation. Along with the SVG (Support Vector Graphics) visualisations

they had used in the previous system two new technologies were adopted into

the system. The first, WorldKit,5 is a freely available tool that takes a RSS

(Really Simple Syndication) file as input with article text and a latitude and

longitude. It can then display these articles on the map at the given coordi-

nates (Figure 2.2 shows an example of the WorldKit visualisation system).

The second new visualisation technology used was Google Earth,6 which

is an alternative way of viewing this information. The KML 2.07 (Keyhole

Markup Language) specification is used to define the information to place on

the virtual globe.

2.1.4 Informedia Digital Video Library

The Informedia Digital Video Library project8 is an ongoing research project

that began in 1994 at the Carnegie Mellon University. This project focuses

5http://worldkit.org
6http://earth.google.com
7http://code.google.com/apis/kml/documentation/
8http://www.informedia.cs.cmu.edu/

15

on allowing video retrieval to have all of the same capabilities as text retrieval

while at the same time making use of the visual properties of video to provide

rich delivery of information.

In 2000 Christel et al. reported on using interactive maps in this digital

video library [COH99]. At the time of writing this paper they had accumu-

lated over 2000 hours of video — growing at a rate of more than 10 hours a

day — from sources such as the British Open University, the Discovery Chan-

nel and NASA. They claim that when the video library was much smaller

(hundreds of hours of video rather than thousands), simple text queries were

enough to provide a small set of satisfactory search results. As the repository

grew however it became clear that using text queries was no longer providing

an adequate subset of results as each query could return hundreds of video

segments, potentially overwhelming the user.

As a solution they developed an information-visualisation system that al-

lowed users to browse and search for video segments based on key words and

date. They also realised that there was a rich set of information that was

yet to be utilised in the form of geographic information. To utilise this in-

formation they began the development of a system that could automatically

extract this information from the narrative of the video (obtained through

the use of the Carnegie Mellon University Sphinx speech-recognition engine

[HAHR93]). The system also extracted any words that had been shown on

the screen through the use of OCR and checked these for place names. This

information could then be used to provide spatial video searching and display

map footage relative to a video in sync with the content as shown in Figure

2.3.

As a gazetteer they have used a subset of the Environmental Systems Re-

search Institute’s (ESRI) world gazetteer which contains over three million

entries. The subset they used consisted of about 300 countries, states and

administrative entities, and about 17,000 major cities. This small subset was

likely to still be sufficient for their needs however as the majority of the video

16

Figure 2.3: An example of a map (bottom half) being shown in sync with a

video (from [COH99]).

17

segments are news and documentary footage, which do not often mention

places other than countries and major cities.

The place name recognition and disambiguation methods developed by the

researchers were relatively simple. To prevent common words from matching

as place names (e.g., Of in Turkey, Data in India or Many in France) they were

simply removed from the list of possible place names. The precise method they

used to disambiguate between places with the same name was unclear, but they

did mention that within in this process they made use of the local context in

which the place name had been found. The use of a smaller gazetteer also

would have simplified this disambiguation process as there would be far fewer

places with duplicate place names to attempt to disambiguate between.

A total of nearly 20,000 geographic references were found within the roughly

40,000 video segments. To help query video segments that had been geograph-

ically indexed they provided a spatial searching system. The user was able to

draw a rectangle around an area on a map and the system returns video seg-

ments related to that area. They also discussed another spatial searching

method that allowed the user to click on a country for example and have the

system find all of the video segments relating to that country. This method of

spatial querying is intuitive, fast and powerful, however it is not clear whether

or not this had actually been implemented into their system at the time they

wrote the article.

2.1.5 Perseus Project

The Perseus project was founded in 1987 at the Tufts University in Mas-

sachusetts, USA. The initial goals of the project were the collection and pre-

sentation of materials relating to ancient Greece. The Perseus Digital Library

was created in 1995 as the project was moved to the Internet. Since then,

the project has grown and now includes material from both Greek and Roman

origins, material from the 19th century United States and more.

In 2001 Smith and Crane from the Perseus project reported on disam-

18

biguating geographic names in their historical digital library [SC01]. At the

time of writing they had over 70 million English words in their digital library

with over one million of those words being place names. In a collection of this

nature and magnitude the benefits of maximising the geographic connectivity

of its resources are enormous. It was clear to the researchers however that

manually tagging this amount of data was impractical and that some form of

automatic tagging system — or at least machine assisted tagging system —

was needed to fully unlock the full potential of this resource.

Developing a system to perform this automatic tagging in a historical con-

text provided some interesting challenges for the researchers. They estimated

that 92% of place names within the collection could refer to more than one

place. This was due to two main factors, the first being places that have been

settled for a long time (such as those in Asia, Africa and Europe). Over time,

places within these areas are likely to have been known by more than one

name. The second factor contributing to the complexity of this problem was

that, in countries such as the United States of America, places are often named

after people. This decreased the likelihood of the name of a place having a

unique name and as a result, place names in these areas often could refer to

more than one place.

As a gazetteer they used a combination of several different sources such

as the Getty Thesaurus of Geographic Names9 and Crunchley’s gazetteer of

London. In total the gazetteer that they used contained over one million place

names.

As part of their place name recognition procedure they first attempted to

locate all proper names and split them into one of three categories; person

names, places or dates. References to places or words where the classifier was

uncertain were searched for in the gazetteer. Once a reference was located

it then usually required disambiguation (assuming it was one of the 92% of

places where the place name is ambiguous).

9http://www.getty.edu/research/conducting research/vocabularies/tgn/

19

In the simplest of cases the local context would provide the necessary infor-

mation for disambiguation such as “Cambridge, New Zealand” or “Newcastle,

Australia”. They also use local context in instances where multiple places are

mentioned in the same paragraph. They assume in such cases that the places

mentioned are likely to be close to each other and used a distance algorithm

to work out the appropriate match. In some cases, such as news articles from

a newspaper, places can be mentioned without any local contextual hints. In

this situation the context of the document can be used. For example, if the

article is known to be from an Australian newspaper then this can be used to

assume that mentions of Newcastle will be Newcastle in Australia. In all other

situations places were scored on the following factors: their distances to the

places around them in the text, the proximity to all of the places in the text

and its relative importance (i.e., countries are more important that cities).

2.1.6 Web-a-Where

In 2004 Amitay et al. developed a system, called Web-a-Where, for tagging

the places mentioned in arbitrary web pages. The system also has a secondary

focus on assigning a locality to each web page as a whole [AHSS04].

Their first step in tagging a web page was to identify words that are poten-

tial place names. This requires disambiguating between words that are place

names and words that match in the gazetteer but are not place names (e.g.,

“Of” in Turkey and “Humble” in Texas, USA). For this procedure they com-

piled a list of words that were more likely to be common words and would be

discarded if they were matched during the place name recognition phase. The

only exception to this is if the word is followed by another place name indicat-

ing that the text actually refers to this unlikely place (e.g., “Of, Turkey” or

“Many, France”). It is not explicitly clear how they disambiguated between

words that were the names of people but matched in the gazetteer (such as

“Anna” in Ohio, USA and “Stephen” in Minnesota, USA) though it is possible

that these were included in their list of common words.

20

For a gazetteer they used the World Gazetteer as well as information

from GNIS10 (Geographic Names Information System) for US names, UNSD11

(United Nations Statistics Division) for countries and continents and the ISO

3166-1 code lists12 for country abbreviations. Despite the World Gazetteer

containing over 300,000 places they reduced it down to 40,000 places. Most

of this reduction would have been from their decision to remove the entries

of places that had a population of less than 5000. This was likely done as an

attempt to improve the disambiguation accuracy of the system.

Once the places in a web page were found, any that were ambiguous were

taken through another series of steps. These steps use a small set of heuristics

that assigned each potential place a confidence value based on factors such as

its surrounding context in the document and its population compared to other

places of the same name. Once the places were disambiguated the system

would then calculate the locality for the document as a whole. Each disam-

biguated place was given a score (e.g., Hamilton, Waikato, New Zealand is

given the score X2) and each of its parents were also given part of that score

(Waikato, New Zealand is given X2Y score and New Zealand is given X2Y2

where 0 < Y < 1 in both cases). The resulting scores are then used to calculate

the locality of the article.

2.1.7 G-Portal Digital Library Project

In 2005 Zong et al. created a system for assigning place names to web pages

containing geographic material for their digital library system called G-Portal

[ZWS+05]. For place name recognition GATE13 is used (or more specifically

the ANNIE module). They extended the standard GATE gazetteer (which

contains over 6,000 major place names) with the US Census 2000 gazetteer14

information which contains 52 states, 25,375 cities, 3,219 counties and 36,351

10http://geonames.usgs.gov
11http://unstats.un.org/unsd
12http://www.iso.org/iso/country codes/iso 3166 code lists.htm
13http://gate.ac.uk/
14http://www.census.gov

21

county subdivisions. This data was sufficient for them as the web pages used

for their research were mostly about the United States.

Their disambiguation process consists of four main steps. In the first step,

the local context of the place name is checked for place name senses such as

“state” or “city”. If a place name sense is found then all potential places for

that place name that do not match that sense are discarded. In the second

step, place names that have only one potential candidate are added to the

list of disambiguated place names. In the third step, places that have already

been disambiguated are used to help disambiguate other place names that

are still ambiguous, for example, if an instance of “Colorado” has been found

to be referring to the state of Colorado then we can assume that “Denver,

Colorado” refers to Denver city in Colorado state. The fourth and final step

is to compute the distance between each ambiguous place to find its nearest

disambiguated place. The ambiguous place with the shortest distance between

it and a unambiguous place is added to the list of disambiguated places.

Like the Web-a-Where system discussed earlier, the goal of this system was

to assign each page a geographical locality. The algorithm used to calculate

this locality splits the document into sections and creates a subtree of the

gazetteer for each section. Factors such as place name frequency and the

distribution of a place’s children (a place is considered a child of another place

if the child resides within the parent place) are used to decide on the specific

place name labels to assign to this specific section, resulting in a web page

potentially being defined by multiple place name labels.

2.1.8 Summary

Here we will compare and contrast these systems in several areas including:

display methods, gazetteer size and methods of recognising and disambiguating

place names. Table 2.1 at the end of this section summarises these compar-

isons.

22

Visualisation method

Five of the seven systems discussed were capable of displaying a map to vi-

sualise geographic information. These methods varied from system to system

based on factors such as resource constraints or the technology available at the

time of writing.

The earliest system, GIPSY, took several sets of shapes and coordinates to

create a 3D mesh. Each shape defined in the mesh area increased the height of

the mesh at that point. Intersecting shapes increased the height of the mesh

additively at the points of intersection, resulting in frequently mentioned areas

being raised higher out of the mesh.

The 2004 version of the NewsExplorer system was capable of using three

different methods to display maps [PSIDG04]. The first method was by using

“shape files”15 which could be used to create GIF, PNG or JPG files using

the GD Perl module.16 The researchers claimed that this method was compu-

tationally heavy and slow but had the advantage that it was independent of

commercial software.

The second display method provided by the system produced maps using

the DMA17 (Digital Map Archive) tool from the JRC’s ISFEREA project.

This program is a commercial tool capable of rendering maps quickly and is

also capable of overlaying different layers of information over the map such as

roads and population density.

The final method used for displaying maps is by using the SVG18 (Scalable

Vector Graphics) format defined by the W3C (World Wide Web Consortium).

This method provides a relatively simple looking map but has the advantage

that it renders quickly. The article does not mention how the SVG files for

countries were obtained.

The 2006 version of the NewsExplorer system was capable of displaying

15The ArcGIS Explorer tool from http://www.esri.com/ allows downloading the shape
files for countries

16http://search.cpan.org/dist/GD/
17http://dma.jrc.it/
18http://www.w3.org/Graphics/SVG/

23

maps using two new display technologies. The first new technology was a web

mapping system called WorldKit, which is a free, open source system that

uses flash to display the contents of specially formatted RSS files. The second

new display technology was Google Earth19. Google Earth is run as separate

program that can import a KML file from the NewsExplorer system. This

KML file contains the position to put a marker on the globe and the article

content.

The Informedia digital library system used the commercial ESRI MapOb-

jects20 library to visualise its geographical content. As MapObjects was a

library, it meant that they were able to program their own interfaces and

functionality to fully utilise its capabilities.

It is assumed that the Perseus project used Google Maps21 as their visuali-

sation tool but this is not specifically mentioned in the article. This assumption

was made because the Perseus system as it exists in 2010 uses Google Maps.

The decision of what visualisation technology to use for ATLAS is discussed

in Section 3.1.2.

Place name recognition methods

Before place name disambiguation is performed, place names must first be

located in the document. This requires the system to scan the document and

identify place names, while at the same time identifying words that appear to

be place names (i.e., a match is found in the gazetteer) but are actually other

entities such as person names or regular words.

All of the systems discussed in this chapter compare words against a

gazetteer to identify whether or not a word is potentially a place name. The

way in which each system tests whether or not a potential place name is ac-

tually a place name differs for each system.

Both the GIPSY and Informedia systems simply used a gazetteer that had

19http://earth.google.com/
20http://www.esri.com/software/mapobjects/index.html
21http://maps.google.com/

24

been altered to remove place names that were likely to be incorrectly identified.

These systems were then able to assume that every word that matched in the

gazetteer was a place name.

Both the earlier and later versions of the NewsExplorer system and the

Web-a-Where system used a list of stop-words to prevent the system from

recognising words that were unlikely to be place names. If a located place

name was also found in the stop-word list then it was discarded.

The system used to recognise places in the historical digital library at the

Perseus project first attempts to recognise all proper names, it then classifies

those names into categories (i.e., person names, organisation names, locations

etc.). The words that are found to be locations and words that the parser is

uncertain about are then moved on to the next step in the disambiguation.

The G-Portal system used the GATE ANNIE module to locate words that

were to be considered place names. This was achieved by extending the stan-

dard ANNIE gazetteer — which contains around 6,000 place names — with

over 60,000 new entries.

The place name recognition system used by ATLAS is discussed in Section

3.3.4.

Place name disambiguation methods

There were several methods of disambiguation used by the different systems,

these included: methods based on linguistic rules (e.g., understanding “Cam-

bridge, England” to mean Cambridge in England); methods based on other

heuristics such as minimum geographic distance, population comparison, the

importance of a place (i.e., a capital city is more important than other cities),

examining the local context (i.e., other surrounding place names) and score-

based methods.

The article written on the GIPSY system does not discuss a disambiguation

method. As their geographical focus is small it is likely that disambiguation

between places of the same name is not necessary.

25

Both the earlier and later versions of the NewsExplorer system use the

idea of importance to help decide which place is the best candidate for each

place name. This is also combined with an analysis of the local context of the

place name. The later version of the system also adds a geographical distance

calculation and combines the output of these various heuristics into a score

for each place. In a similar manner, both the Perseus project and G-Portal

use both local context and geographical distance calculation to disambiguate

between places.

The place name disambiguation method used by the Informedia digital

video library is made clear in the article. The article does mention of the use

of local context but does not mention any specific details of the implementation

used.

The disambiguation procedure used by the Web-a-Where relies on the use of

confidence values. The ambiguous places located by the system are processed

by a series of heuristics (including examining the local context of the place

name and using population comparisons) that calculate their confidence values.

The place name disambiguation system used by ATLAS is discussed in

Section 3.3.5

Gazetteer size

The size of the gazetteers used by each of the systems varied significantly. Sev-

eral of the systems focused on higher level disambiguation (i.e., countries and

major cities) or specific areas of interest (e.g., Europe) and therefore required

smaller gazetteers in order to achieve their goals. The GIPSY, Web-a-Where,

G-Portal and the Informedia systems all use small and focused gazetteers de-

signed for their specific purpose using gazetteers with around 60,000, 40,000,

60,000 and 17,000 entries respectively. The NewsExplorer and Perseus sys-

tems however chose to use wider gazetteers for lower level disambiguation,

using gazetteers with 100,000 and 1,000,000 entries respectively. Lower level

disambiguation is a more risky approach due to there being many place names

26

in the world that either map to people names or to more than one place. By

using a smaller gazetteer this risk is significantly reduced as many of these

ambiguous places are removed due to them not being major cities. For AT-

LAS we have chosen to design the system to use a low level of place name

recognition with a gazetteer with over 300,000 entries.

Despite using such a large gazetteer, the disambiguation problem faced by

the ATLAS system is still significantly smaller than the disambiguation prob-

lem that was faced by the developers at the Perseus project. The size of their

gazetteer (1,000,000+ entries) combined with the large amount of ambiguity of

the place names in the collection meant that this disambiguation problem was

significantly more complex than the disambiguation problem faced by ATLAS.

This because the ATLAS gazetteer is smaller in comparison and as system is

likely to deal mostly with modern texts it will not often have to handle cases

where places were known by a different name in different point in history —

which is the case in the historical digital library at the Perseus project.

Some gazetteers — such as the one used by the GIPSY system — provide

extra information such as the shape of the each place (defined as points in

latitude and longitude coordinates). This extra information was useful to them

as it helped to add the places to the 3D visualisation but it would have not

been a helpful resource to consider using in ATLAS. Latitude and longitude

coordinates are sufficient to place markers on a map and therefore this extra

information would be wasted.

2.2 Interactive visualisation

One of the experimental features of ATLAS was the use of alternative ways

to view document text. In the standard document view, ATLAS divides the

web page in half, with document text on one half and a map displayed in the

other half. Alternative text views were explored as a way to maximise the use

of such a confined space. Two alternative views have been implemented into

27

S
y
st

e
m

n
a
m

e
D

is
p

la
y

m
e
th

o
d

G
a
ze

tt
e
e
r

D
is

a
m

b
ig

u
a
ti

o
n

m
e
th

o
d

si
ze

G
Y

P
S
Y

3D
p

ol
y
go

n
m

es
h

60
,0

00
+

N
on

e
P

re
-N

ew
sE

x
p
lo

re
r

S
V

G
/S

h
ap

e
fi
le

s/
D

M
A

10
0,

00
0+

Im
p

or
ta

n
ce

+
lo

ca
l

co
n
te

x
t

N
ew

sE
x
p
lo

re
r

S
V

G
/W

or
ld

K
it

/G
o
og

le
E

ar
th

10
0,

00
0-

50
0,

00
0

S
co

ri
n
g

(w
it

h
im

p
or

ta
n
ce

+
lo

ca
l

co
n
te

x
t

+
ge

og
ra

p
h
ic

al
d
is

ta
n
ce

as
in

p
u
ts

)
In

fo
rm

ed
ia

E
S
R

I
M

ap
O

b
je

ct
s

17
,0

00
-1

8,
00

0
L

o
ca

l
co

n
te

x
t

P
er

se
u
s

G
o
og

le
M

ap
s

1,
00

0,
00

0+
L

o
ca

l
co

n
te

x
t

+
ge

og
ra

p
h
ic

al
d
is

ta
n
ce

W
eb

-a
-W

h
er

e
N

/A
40

,0
00

+
S
co

ri
n
g

(w
it

h
lo

ca
l

co
n
te

x
t

+
p

op
u
la

ti
on

as
in

p
u
ts

)
G

-P
or

ta
l

N
/A

60
,0

00
+

L
o
ca

l
co

n
te

x
t

+
ge

og
ra

p
h
ic

al
d
is

ta
n
ce

T
ab

le
2.

1:
S
y
st

em
co

m
p
ar

is
on

s.

28

the ATLAS system, specifically the fisheye view and the column view.

2.2.1 Fisheye view

Research on the fisheye concept dates back to 1986 with Furnas’ article on

generalised fisheye views [Fur86]. Furnas discusses the fisheye concept in detail

and demonstrates several areas where it is useful. One of the reasons for

the fisheye research at the time of writing the article was the low resolution

of computer monitors. Due to the limited amount that could be shown on

a screen at one time it was useful to be able to maximise the use of that

space. This was done with the intention of giving the user as much useful

information as possible about their surrounding context while still allowing

them to focus on an area of interest. Despite being originally designed for

low resolution computer monitors, this research is still relevant today and has

been experimented with as a useful tool to help present information in many

different situations, for example: [SB92], [Fur99] and [Bed00].

As mentioned above, ATLAS uses fisheye to make the viewing of text more

manageable within the confined space provided for them. For this reason

our primary focus in this discussion will be on the use of fisheye for viewing

text rather than using fisheye for other purposes. For details on the ATLAS

implementation of fisheye see the fisheye Section in 3.4.3

FishNet

In 2004 Baudisch et al. presented FishNet, a fisheye web browser [BLH04].

The system was capable of displaying web pages using one of three different

methods. The first display method was the standard web browser view that

cuts off the bottom of pages that are too long. The second display method

was proposed by Suh et al. in 2002 [SWRG02]. This method shows a “Popout

Prism” that displays a miniature version of the entire web page on the left of

the screen, with a square showing the area that the user is currently viewing.

The third method, designed by the researchers, always shows web pages in

29

Figure 2.4: The fisheye view in the FishNet browser (from [BLH04]).

their entirety despite their size. Both the second and third methods use what

they call “popouts” — not to be mistaken with the “Prism Popout” mentioned

earlier — to show search terms that have been located in the context area of the

page (the context area is either window on the left of the screen for the second

method or the area at the top and bottom of the page where the fisheye effect

is being applied for the third method). Figure 2.4 shows the fisheye display

method of the FishNet system with examples of the “popouts”.

FishNet treats the web page as if every part of it is of equal importance,

meaning that when parts of the document are scrolled into the context area

they are resized equally. A contrasting example is that of fisheye source code

editor mentioned below. Code that is deemed more important than other parts

of the code remains visible in the context view while other parts of the code

are removed from visibility.

The researchers also performed a user test on the FishNet system with a

goal of finding out how well each of the three different views perform in different

scenarios. The performance of each of the display methods was measured in

completion time and error rate.

Each participant in the user test was to complete several tasks on each of

30

the three interfaces. After completing the tasks on each interface the partici-

pants were asked to answer a series of questions about their satisfaction with

the interface. After all of the tasks were complete they were given another set

of questions.

In terms of task completion times, each of the different interfaces performed

differently — relative to each other — in each of the four tasks. The fisheye

view and the overview views performed better in tasks that required fast,

full page searches for the existence of several highlighted terms. For tasks

that required more complex analysis of terms, the fisheye and column views

performed as well as or slightly worse than the standard view.

The results found that, overall, the fisheye view had the fastest average

task completion time of all of the interfaces. But as is shown above, task

completion time is task dependent. Also, satisfaction results did not match up

to the performance results.

In terms of preferred interface, 10 of the 13 participants preferred the

overview interface over both of the other interfaces, the remaining three partic-

ipants preferred the fisheye interface. Six of the participants rated the fisheye

view last out of the three choices. The researchers proposed doing a long term

study to find out whether or not the users would feel differently about the

fisheye interface if they were to use it more regularly.

Fisheye for source code - lab experiment

In 2006 Jakobsen and Hornbæk evaluated a fisheye source code editor they

created [JH06]. In their design of the fisheye effect they needed to consider

carefully what parts of the source code were important enough to be kept

visible at the top and bottom of the screen (i.e., the area where the fisheye

effect was being applied). Examples of code that was deemed important were:

context defining code (e.g., loops and conditional statements), method decla-

rations and class declarations (Figure 2.5 shows an example of code with the

fisheye effect applied).

31

Figure 2.5: The fisheye source code editor designed by Jakobsen and Hornbæk

(from [JH06]).

One of their main goals was to test the usability of their fisheye system

as, to their knowledge, there had been no empirical user studies done at the

level of interaction that their system was based. The user study was designed

so that the researchers could assess the participant’s task completion times,

accuracy, interface preference and their satisfaction with the interfaces.

A total of 18 small tasks were performed by each participant, nine on a

standard linear interface and nine on the researcher’s fisheye interface. After

each set of nine tasks were completed they were given a questionnaire with 14

questions to answer, each expecting a rating from one to seven.

Although results were mixed, overall the researchers discovered that users

completed tasks significantly faster using the fisheye interface. No significant

differences were found in the ability of participants to perform tasks correctly

on either interface. In terms of satisfaction and preference, it was found that

users liked the fisheye interface better than they liked the linear interface. The

specific results are shown in Table 2.2.

32

Satisfaction question Linear Fisheye
How did you find the interface in general?
Very poor - Very good 4.13(0.34) 5.44(0.20)

How was the interface to use?
Terrible - Wonderful 4.00(0.29) 5.13(0.15)
Hard - Easy 5.19(0.37) 5.13(0.31)
Frustrating - Pleasant 3.81(0.41) 5.00(0.29)
Boring - Fun 3.56(0.29) 5.25(0.35)
Confusing - Clear 5.81(0.31) 4.50(0.37)

It was clear where I was in the source code.
I disagree - I agree 5.88(0.31) 5.25(0.36)

I often lost my orientation in the source code.
I disagree - I agree 2.88(0.43) 2.56(0.26)

How do you perceive these tasks?
Very challenging - Very easy 5.31(0.27) 5.56(0.24)

How were your answers to the tasks?
Very poor - Very good 5.56(0.26) 5.75(0.27)

Was the source code...
Hard to understand - Easy to understand 4.81(0.31) 5.19(0.23)
Hard to overview - Easy to overview 4.44(0.38) 4.94(0.28)

Were methods you were trying to locate...
Hard to locate - Easy to locate 3.50(0.39) 5.31(0.35)

Were other information...
Hard to locate - Easy to locate 3.50(0.35) 5.60(0.22)

Table 2.2: Jakobsen and Hornbæk’s [JH06] user test average satisfaction scores

(and standard error of the mean). Significantly better scores are shown in bold.

33

Fisheye for source code - field experiment

In 2009 the same researchers, Jakobsen and Hornbæk, conducted research on

their fisheye source code visualisation system in the field [JH09]. In the arti-

cle they expressed their concerns about traditional lab testing of information

visualisation systems. Three important points were raise: firstly, tasks in a

lab tend to be easier than those faced in the real world. Secondly, one aspect

of programs that is rarely tested in usability experiments is how well they in-

tegrate into a user’s already existing set of tools. Finally, lab studies do not

often extend past initial use of the of the program (as is discussed above in the

FishNet section). Taking all of these factors into consideration, the researchers

devised a long term field study.

They deployed the system to 10 professional programmers for them to use

as part of their usual development tools for several weeks. Each program-

mer had between one and 20 years of programming experience, and of the 10

programmers eight had an IT background and two had a business-oriented

background. The researchers originally aimed to study each participant for at

least 10 working days. The actual period of study varied from two weeks to

five weeks. Multiple methods of data collection were used including interviews,

activity logging and probes.

The researchers discovered that participants used the fisheye view as often

as they used any other core tools provided by the programming interface. Most

of the programmers said that they would continue to use the fisheye interface

even after the study had finished. One finding that the researchers found

interesting was that the context view was most often used to locate occurrences

of a method or variable and the information the researchers expected users to

want to see proved to be less useful than expected. Overall however, the results

of the experiment were promising for fisheye technology.

34

Figure 2.6: The Document Lens system (image taken from [RM93]).

2.2.2 Column view

In ATLAS the second alternative text view that is provided is the column view.

The column view essentially allows the user to see the whole document at once

by shrinking the text size and arranging it into several columns. The user can

then magnify areas of interest by moving their mouse over the document. The

magnification box follows the movement of the cursor so that it is easy for the

user to quickly read the magnified area as they move the mouse.

The Document Lens

In 1993 Robertson and Mackinlay presented a document visualisation method

they called the Document Lens [RM93]. Although not implemented in the

same way as the system in ATLAS it is essentially similar. The goal of their

system is to help users understand multi-page documents whose structure is

unknown. This is done by arranging all of the pages into a grid and allowing

the user to position a “lens” over them to focus on a particular point. As well

as magnifying the area that the user is focused on, the system uses 3D graphics

to distort the pages on the grid that are outside of the lens so that the user

can see the context of the page (Figure 2.6 shows the system in action).

35

Comparisons between this system and the ATLAS column view system can

be found in Section 3.4.3.

Text display research

A separate area of research, strongly related to the interactive visualisation of

text, is how the layout of text on the screen affects a user’s ability to read the

text. In 2004 Dyson presented a paper discussing 20 years of empirical research

in the field of text presentation [Dys04]. The research included discussion on

variables such as line length, window size and line spacing and how these

affect a user’s ability to read the text effectively on a computer screen. The

effectiveness of each layout was quantified by measures such as reading speed

and reading comprehension.

One important area that was discussed in the paper was the use of multiple

columns to display text. Research conducted in the area suggests that reading

text from a document split into multiple columns is slower than reading text

from a document that is displayed in a single column. Interestingly however,

in two studies ([DK97] and [Gra93]) researchers found that participants felt

that text was more organised and visually interesting when arranged into two

or three columns.

Chapter 3

Design and implementation

In this chapter we discuss the design decisions and implementation details of

ATLAS. Firstly we look at what a system like ATLAS requires in order to offer

its functionality to users. Secondly we discuss the structure of the system and

the decisions that were made during the earlier stages of development, espe-

cially decisions regarding what system layout to choose given the restrictions

and benefits offered by each possibility. Thirdly we discuss the implementation

of the system in detail, and lastly we discuss the design of the user interface.

3.1 Requirements and technology overview

In this section we outline the various technologies that make up ATLAS. Figure

3.1 shows a diagram of how the ATLAS system is structured. Most of the

technologies shown are generalised as the specific implementations of these is

not important; they can be interchanged and still provide a similar system.

We will now briefly describe the purpose of each of these technologies.

• Digital library: The digital library provides the content that is to be

enriched by ATLAS. The digital library also provides the majority of

the user interface as ATLAS is designed to provide extra functionality

to users of the digital library rather than be a complete system in itself.

• Digital map: The digital map is used to aid the enrichment of the

37

ATLAS

Digital Library

Place Information
Retrieval System

Gazetteer

Place Recognition and
Disambiguation System

Digital
Map

ATLAS makes use
of the digital library's
user interface, content
and functionality

ATLAS uses the
digital map to provide a
geographic interface

The place recognition
and disambiguation
system is used to
find the places
mentioned in the
document text

Both of these systems
use the gazetteer as
the source of their
geographic information

The place information
retrieval system is used
to obtain information
about each place such
as its population or its
latitude and longitude

Figure 3.1: The structure of ATLAS.

38

digital library content by allowing the users to view the places located

in the text on the map. The map also provides other functionality such

as clickable markers that provide additional information about the given

place.

• Gazetteer: A gazetteer is used to provide the information about the

places of the world, such as their location and population.

• Place recognition and disambiguation system: This system is used

for locating potential places names in the document text. It then dis-

ambiguates between place names that are ambiguous. It is built from

the place names contained in the gazetteer and does not contain any ad-

ditional information about each place. The place information retrieval

system is used for this purpose instead.

• Place information retrieval system: This system is used to store the

large amount of information present in the gazetteer in a way that can

be easily and efficiently accessed.

In the following sections we discuss all of these technologies in further

detail.

3.1.1 Digital library

The digital library that was chosen to be used for development was the Green-

stone Digital Library. In particular the third (and latest) major version of the

software, Greenstone 3, was used. Greenstone 3 was chosen because, unlike

previous versions, it has been purposely designed to be an open and extensible

digital library framework that makes use of modern web technologies.

The Greenstone Digital Library project can be traced back to the Uni-

versity of Waikato in New Zealand. The original system was written in Perl

and used a CGI (Common Gateway Interface) web interface to allow the user

to search and browse Greenstone collections. The MG (Managing Gigabytes)

39

text compression and indexing system is used as a back-end to the system,

it allows very fast searching and document retrieval while still maintaining a

good compression ratio.

The second version of the Greenstone software was written in C++ and

upgraded several features of the system to help meet the expectations of UN-

ESCO (the United Nations Educational, Scientific and Cultural Organization)

— whom the developers were in cooperation with at the time. The C++ ver-

sion of the back-end of the system, called MGPP, allowed for more complex

searches. The most recent version at the time of writing is Greenstone 3 which

is programmed in Java and uses a combination of Java Servlet technology,

XML (eXtensible Markup Language) and XSLT (eXtensible Stylesheet Lan-

guage Transformations) to deliver the Greenstone interface to the end users.

This most recent version is what ATLAS is built upon as it is a good match

with GWT (Google Web Toolkit) development because GWT also makes use

of Java Servlet technology. See Section 3.3.1 for more details about GWT

development.

One of the features of Greenstone is the ability to change the interface’s

look and feel by changing the “skin” used by the system. For the development

of the ATLAS system we chose to use the “dev” skin which is still in its early

stages. The “dev” skin (shown in Figure 3.2(b)) was chosen over the standard

Greenstone skin (shown in Figure 3.2(a)) due to it having several visual and

functional improvements. As well being more aesthetically pleasing the skin

has features such as better table of contents placement and better document

hierarchy position indication.

3.1.2 Digital mapping system

As the digital mapping software Google Maps1 was chosen to be used for de-

velopment. There were several reasons why this mapping software was chosen

over other alternatives, these include:

1http://maps.google.com

40

(a
)

(b
)

F
ig

u
re

3.
2:

A
co

m
p
ar

is
on

b
et

w
ee

n
th

e
(a

)
st

an
d
ar

d
G

re
en

st
on

e
sk

in
an

d
th

e
(b

)
d
ev

el
op

m
en

t
sk

in
u
se

d
b
y

A
T

L
A

S
.

41

• GWT has a Java API for Google Maps which allows for easy integration

with the rest of the web application.

• Included in the Google Maps API is the functionality to call Google’s

geocoder2. The geocoder is a powerful tool that takes an address (e.g.

“Hamilton, Waikato, New Zealand”) and attempts to return the latitude

and longitude of that place.

• It has a well designed user interface with a large number of useful fea-

tures.

• Google Maps is free to use for non-commercial purposes.

• Google Maps is an interface that many users will already be familiar with

due to its wide spread use around the world.

It was decided that a mapping system like that presented in the GIPSY

system would not be sufficient for the visualisation required in ATLAS. One of

the main reasons is that there are certain situations where the information the

3D mesh view portrays becomes unclear. For example, if places around the

outer edge of the mesh are mentioned frequently and places near the middle

are mentioned comparably less, it would be difficult to rotate the view so that

the height of the centre regions could be easily seen, due to the height of the

surrounding areas. Also, because this view has only been designed to show

the frequency of places mentioned within a small area it is unlikely that the

visualisation method would be able to scale to the global size required by

ATLAS.

The commercial mapping systems discussed in Chapter 2 were not consid-

ered for this role due to resource constraints. The rest of the non-commercial

systems we considered inadequate for the purposes of ATLAS. The WorldKit

system, for example, does not display geographic detail down to a low enough

level. Although Google Earth provides many useful and powerful features for

free it has the disadvantage that it must be run as a separate program.

2http://code.google.com/apis/maps/documentation/services.html#Geocoding

42

Map Server3 was also considered as a potential candidate for this position

as it is an open source project and would therefore allow full control over its

features. It was decided however that Google Maps would be the best option

due to its familiar and well designed interface and its large collection of pre-

existing, powerful features. The fact that it is not open source was not an

issue as the features provided in the Google Maps API are extensive enough

for our needs.

3.1.3 Gazetteer

In ATLAS a gazetteer is used to help identify place names present in any given

text as place names do not provide enough contextual clues to be recognised

adequately without the use of a gazetteer [MMG99]. Also, simply being able

to recognise place names in text is not enough; each place name also needs

to be mapped to its real world coordinates so that it can be displayed on the

map at the correct location.

The gazetteer being used for this purpose is the World Gazetteer,4 which

is the gazetteer used by the Web-a-Where system. Commercial gazetteers

could not be considered due to resource constraints. The World Gazetteer

is a gazetteer containing upwards of 300,000 entries and is available for free

download from their website. Most entries contains an id number, the main

place name for the place, a list of alternate names, a list of names written in

the native language, the type of place it is (e.g., region, locality or country), a

population estimate, latitude and longitude coordinates, the country it is part

of, the region or state it is part of and the lower-level region it is part of. Table

3.1 shows some examples of gazetteer entries in this format.

3http://mapserver.org/
4http://www.world-gazetteer.com

43

ID
Pl

ac
e

na
m

e
Al

te
rn

at
iv

e
na

m
es

N
at

iv
e

sp
el

lin
g

Pl
ac

e
ty

pe
Su

b-
re

gi
on

R
eg

io
n

C
ou

nt
ry

Po
pu

la
tio

n
La

tit
ud

e
Lo

ng
itu

de

18
80

27
52

8
H

am
ilt

on
Ki

rik
iri

ro
a

N
/A

lo
ca

lit
y

N
/A

W
ai

ka
to

N
ew

 Z
ea

la
nd

16
08

62
-3

77
8

17
52

8
20

21
01

12
1

S
yd

ne
y

N
/A

N
/A

lo
ca

lit
y

N
/A

N
ew

 S
ou

th
 W

al
es

A
us

tra
lia

36
54

45
9

-3
38

7
15

12
1

-2
65

A
bu

 D
ha

bi
Ab

u
Za

bi
,

Ab
u

Za
by

,
Ab

ū
Z. a

bī

ى
ظب

و
أب

em
ira

te
N

/A
N

/A
U

ni
te

d
A

ra
b

E
m

ira
te

s
19

75
86

3
N

/A
N

/A

45
43

62
47

8
La

s
Ve

ga
s

N
/A

N
/A

lo
ca

lit
y

C
la

rk
N

ev
ad

a
U

ni
te

d
S

ta
te

s
of

 A
m

er
ic

a
57

30
14

36
21

-1
15

22

T
ab

le
3.

1:
S
ev

er
al

ex
am

p
le

G
az

et
te

er
en

tr
ie

s.

44

3.1.4 Place recognition and disambiguation system

To provide fast place name recognition a customised trie structure was used.

More näıve approaches were also experimented with, but as the goal of ATLAS

is to provide this additional geographic information in real-time, the speed of

the structure is the most important factor to consider. For more details about

these design decisions and the implementation details of this trie structure see

Section 3.3.4.

3.1.5 Place information storage system

The system chosen to be used to store the place information was the Post-

greSQL5 database system. Earlier in development of the system a custom

made tree-like structure was used for this purpose, but after some deliberation

it was decided that there were several advantages to using a database that

could not be ignored. These included: queries capabilities of greater complex-

ity, less memory usage and the ability to easily modify or extend the dataset

in the future as development continues.

The database system PostgreSQL was chosen primarily because PostGIS6

was available as an plugin. PostGIS enables the database to perform spa-

tial queries such as finding the distance between two points (e.g., How many

kilometres separate New York city and California?) or finding the area of in-

tersection between two shapes (e.g., What area of Africa was once part of the

Roman Empire?). The feature of PostGIS that ATLAS makes extensive use

of is its ability to find all of the points within a given area. This is also used

to provide spatial document searching (finding documents mentioning places

within a defined area) which is described further in Section 3.3.7.

PostgreSQL itself behaves much like other SQL databases and — if not for

PostGIS — could easily be changed to another database system like MySQL7.

5http://www.postgresql.org/
6http://postgis.refractions.net/
7http://www.mysql.com/

45

3.2 System structure

One of the most important decisions in the design of ATLAS was deciding

how to best connect the various contributing technologies together. The first

implementation of ATLAS was designed as a module for Greenstone8, as con-

ceptually ATLAS was to be an add-on to Greenstone’s functionality rather

than something that completely modified how the current system worked. To

achieve this a new Greenstone service was created that would take the text

of a Greenstone document, locate the place names in the text and return the

text with the places names highlighted and tagged.

Greenstone 3 has six different types of services:

• Query services: These services take a query and a list of other param-

eters (such as the maximum amount of documents to return) and return

a list of documents.

• Browse services: These services are used to provide classifier browsing.

They take a classifier identifier with some structure parameter specifying

what to retrieve and return the requested part of the classifier hierarchy.

• Retrieve services: These services take a document node identifier and

can return the document’s content, structure or some/all of its metadata.

• Process services: These services can perform tasks such as creating

a new collection or importing a collection. They return either an error

message or a status message.

• Applet services: These services process data needed for an applet.

There is no set format for this type of request.

• Enrich services: These services take the text of documents, process

them in some way (such as adding mark-up) and then return them.

As the program was designed to enrich the current content of the page

it was programmed as an enrich service. To create this service a class was

8Details in http://www.greenstone.org/docs/greenstone3/manual.pdf pages 45–51

46

created that extended the Greenstone ServiceRack class in the Greenstone 3

service package. The ServiceRack class contains a process method which is

given all of the documents that are to be processed by that particular service.

A Java library containing the code for the both the place name recognition

and the place name retrieval structures was created so that the service could

have access to these data structures to allow it to find the place names in the

text it was given.

This initial design worked by only adding the parts of ATLAS into Green-

stone when they were needed (for example, when a document was viewed this

triggered a map to add to the page with markers displaying the locations of

any places found in the text). All other parts of the digital library functioned

the same as they did before.

Each page of Greenstone is initially produced in XML and uses different

XSLT files — based on what sort of page needs to be produced — to transform

the XML into HTML. The document view XSLT file was specially modified

so that, when a document was viewed, an HTML table was set up on the page

with two columns. The regular Greenstone HTML was moved into the left

hand column of the table and the ATLAS map and other features were placed

in the right hand column. ATLAS acquired the text from the left hand column

by locating the DOM (Document Object Model) node that corresponded to

the document text. This text was then passed through the ATLAS place name

recognition structure to acquire the place names from the text and to mark

them on the map. At this early stage of development the place information

was stored in a large tree-like structure and was loaded at the same time and

from the same file as the place name recognition system. Figure 3.3 shows a

diagram of this structure.

Overall this design proved to be ineffective as the two large data structures

(the place name recognition system and the place information retrieval system)

were being loaded from the same file using two separate processes, causing the

whole 22MB file to be read in twice (which, on slower computers, could take

47

Greenstone
Servlet

ATLAS
Servlet

Greenstone
Enrich
Service

Place
Information
Retrieval
System

Gazetteer File

Place
Recognition

System

Tomcat Servlet
Container

The place information
retrieval system is created
from the gazetteer file

The place recognition
system is created
from the gazetteer file

The enrich service
uses the place
recognition system
to locate potential
place names in the
document text

Once a document is
displayed, Greenstone
passes it to the enrich
service so that place
names can be found

ATLAS uses the
place information
retrieval system to find
the coordinates for
places that have been
found so they can be
placed on the map

Tomcat is the
servlet container
for both servlets

Figure 3.3: The original structure of the system.

48

several minutes to complete). Ideally both structures would have been loaded

simultaneously on the same servlet and process but this proved to be difficult

to achieve.

Due to a complication with GWT the two servlets could not communicate

with each other via standard methods to share use of these data structures.

When creating a servlet in Java, two of the methods that require implemen-

tation are the doGet() and doPost() methods. Whenever there is a GET or

POST request made to the servlet, these requests are parsed by the corre-

sponding method and a response is sent back. Standard servlets can normally

communicate by sending XML messages to each other via the servlet container,

the receiving servlet takes the XML request, parses it (in either the doGet()

or doPost() methods) and then sends back a response. This standard com-

munication is not easily possible in GWT as the easiest option of client-server

communication uses what it calls GWT-RPC. GWT-RPC uses a RemoteSer-

viceServlet class which extends the regular servlet class. Unfortunately the

developers of the RemoteServiceServlet class have chosen to finalise the do-

Get() method of the servlet. This means that the doGet() method cannot be

easily modified, which would be required for the Greenstone servlet and the

ATLAS servlet to communicate. Other avenues of communication were exper-

imented with such as using Java Sockets, but it was decided that a complete

design change would be the best way of solving the problem.

Rather than having Greenstone effectively as the parent program, it was

hypothesised that the opposite approach would provide better control over the

system (Figure 3.4 shows this hypothesised structure). Instead of the system

being mostly based on the existing Greenstone system and having parts of

ATLAS only integrated into sections of it, a new system was created. This

new system was in control of Greenstone and could load Greenstone pages into

it. The system was then started by pointing the system to the ATLAS URL

rather than Greenstone URL. This then loaded the start page of Greenstone,

but did so in a way that allowed ATLAS to maintain control of the system.

49

It did this by changing all links and forms so that whenever they were clicked

on they were first processed by the ATLAS system before the next page was

loaded (discussed further in Section 3.3.2).

Having ATLAS in control allowed the system to know when the various

relevant pages were displayed in the web browser. For example, when the

home page of a document was loaded, the system knew to add a spatial search

link to the links that were already present on the page. This was done so

that spatial searching could be provided for that collection in a manner that

was consistent with the other default Greenstone methods of searching. It

also meant that functionality like the current text searching system could be

augmented without much difficulty. One advantage of this design decision was

that the large gazetteer file only needed to be read once instead of twice (as

was the case in the first system design), which in turn greatly decreased the

loading time for the data structures.

During later stages of development the place information tree structure

was exchanged for a database that contained the place information (shown in

Figure 3.5). This was done for several reasons which will we will now discuss.

The first reason was that using a database requires far less primary memory

than the large tree structure (the tree structure used over 100MB of primary

memory, whereas the database connection uses about 26KB). This is due to the

fact that databases are stored in secondary storage and only require programs

to store a database handle to access their information. Although using a

database is fractionally slower than using the tree structure, it is worthwhile

for the decrease in memory as the speed difference is not significantly noticeable

given that the amount of work required to be done by the structure is relatively

low (far out of proportion to the amount of memory it consumed).

The second reason to use a database was that, because the database is static

in secondary storage (i.e., does not require to be constructed each time it is

used), all of the information was already available once ATLAS was started and

a connection was made. This effectively halved the time the system required

50

Greenstone
Servlet

ATLAS
Servlet

Place
Information
Retrieval
System

Gazetteer File

Place
Recognition

System

Tomcat Servlet
Container

Tomcat is the
servlet container
for both servlets

ATLAS loads in pages
from the Greenstone servlet

ATLAS uses the place
recognition system to
locate potential places
in the document text

ATLAS uses the
place information
retrieval system
to find the
coordinates of
places that are
found so that they
can be marked on
the map

Both data structures are
loaded from the gazetteer
file simultaneously, requiring
the file to only be read in once

Figure 3.4: The second structure of the system.

51

Greenstone
Servlet

ATLAS
Servlet

Place
Recognition

Structure

Gazetteer File

Place
Information
Database

Tomcat Servlet
Container

Tomcat is used as
the servlet container
for both servlets

ATLAS loads in pages from
the Greenstone servlet

ATLAS uses the
place recognition
system to locate
potential places
in the document
text

ATLAS uses the place
Information database to
find the coordinates of
places that are found so
that they can be marked
on the map

The place recognition
system is created
from the gazetteer file

Figure 3.5: The final structure of the system.

52

to load.

Using a database also had the advantage that it allowed more complex

queries to be performed such as finding out all the places above/below a given

population or all places with their place type listed as “country” for example.

The original tree structure could only find places given a place name and

therefore was much more limited and would have been far less efficient in

performing queries like this.

The final major advantage to using a database over the tree structure was

that it allowed spatial queries to be performed using the latitude and longitude

of the each place. This would have been difficult to implement efficiently in

the previous structure. Being able to perform spatial queries opened up the

ability to search for documents related to a given area of the world. This

functionality is discussed in detail in Section 3.3.7.

Although using a database to store the place information meant that it

was now possible to revert the system back to the original design of using

a Greenstone enrich service, it was decided that it was better to keep the

current design. Although conceptually it seemed like programming the system

with Greenstone as the effective parent of ATLAS was the best choice, having

ATLAS as the effective parent actually had more benefits that outweighed this

argument. Having ATLAS as the parent of Greenstone allowed a finer degree

of control that would not have been possible by only using the enrich service

and XSLT modifications.

3.3 Implementation details

In this section we begin by discussing two technologies that contributed to

the ATLAS system. This is followed by details of the page-loading system we

implemented so that ATLAS could maintain control of the system at all times.

We then discuss how we use the Google Maps API to provide the system’s map

functionality. This is followed by three sections discussing the implementation

53

of the place name recognition, place name disambiguation and place name re-

trieval systems respectively. Lastly we discuss our implementation of spatially

searching for documents.

3.3.1 Contributing technologies

Here we discuss two technologies that are not requirements for the system

to work but assisted in its implementation. GWT effectively provided the

programming language that ATLAS was implemented in and GATE provided

useful functionality for the place name recognition process.

Google Web Toolkit (GWT)

ATLAS is a client-server system programmed in Java for server-side coding

and uses Javascript on the client side. However, the Javascript is not pro-

grammed in the traditional manner, it has instead been created with the aid

of Google’s Web Toolkit (GWT).9 GWT is a system which essentially allows

the developer to write a full web application in Java (both the client-side and

the server-side) and then have GWT compile the client-side code into efficient,

browser independent Javascript. With the numerous quirks of different in-

ternet browsers, being able to let GWT create code that works around these

quirks is an attractive feature. Traditionally developers have had to try and

work around these themselves which of course reduces productivity due to

having to write more code and often having to do more debugging. GWT is

also especially helpful when there are complex interactions between the client

and the server, as it has its own RPC system that allows for simplified object

transferal. ATLAS uses a large amount of client-server communication and

therefore this feature is used extensively.

GWT simplifies client-side interface design by using “widgets” such as

frames, panels, labels and text boxes in a way that is similar to Java’s own

GUI (Graphical User Interface) system: Swing. This allows an easy transition

9http://code.google.com/webtoolkit/

54

for Java programmers that have had some experience programming user in-

terfaces in Java. These widgets are actually built from HTML elements such

as iframes, tables, divs and spans but, for the most part, this is hidden from

the developer. For this project however there were several situations where

a lower level of interaction was required than what is provided by simply us-

ing the standard widget methods. For this low level of access each widget

provided a getElement() method that returns the underlying DOM Element

object. This allowed access to standard Javascript DOM element methods

such as getAttribute(), setInnerHTML() and appendChild(). Why these meth-

ods were necessary is discussed in Section 3.3.2.

GATE and ANNIE

Unlike most of the systems discussed in Chapter 2 an additional step in the

place name recognition phase that is taken by the ATLAS system is the use of

GATE10 (General Architecture for Text Engineering) to categorise words into

their parts of speech (e.g., noun, verb, adjective etc.).

GATE is a collection of tools designed to perform various operations on text

documents. One such tool is ANNIE (A Nearly New Information Extraction

system) which is a powerful information extraction tool with modules capable

of tasks such as tokenisation, sentence splitting and POS (part of speech)

tagging.

ATLAS makes use of ANNIE’s POS tagger when attempting to disam-

biguate between words that are places and words that are not places. The

POS tagger gives each word a classification such as proper noun, adjective or

ad-verb. With this information ATLAS is able to rule out any words that are

not proper nouns for consideration as place names (such as “Many” or “Of”).

Section 3.3.4 has more details about this process.

GATE uses a pipeline metaphor for structuring how documents are tagged

and modified. Documents and corpora (collection of documents) are fed into

10http://gate.ac.uk

55

the pipeline and through each module attached to it in sequence. ANNIE

comes with a default pipeline setting and this is used in ATLAS.

GATE is most commonly used via the GUI but, as the system is open

source, there is also a Java API available to use. This gives the developer

full access to all of the available features including ANNIE. To implement the

pipeline in Java requires first informing GATE as to what its home directory

is and where its plugins and are kept. Once this is done GATE can then

initialise itself. An object is created to control the system, it is then given the

ANNIE plug-in to load and the document to parse. After execution a series of

annotations (some of which being the classifications of each of the words) are

returned and can then be analysed by ATLAS.

3.3.2 Pseudo AJAX Loading

One of the major decisions in the design of ATLAS was to use a Web 2.0 style

of interaction. This was necessary so that ATLAS could maintain control of

the system, rather than giving control back to Greenstone (this is discussed

further in Section 3.2). To achieve this it meant that the page required many

dynamic DOM manipulations in order to transform the Greenstone Digital

Library system — which is a CGI based system — into a system that updates

pages using AJAX (Asynchronous Javascript and XML) rather than full page

reloads.

The traditional web development model requires each request that is made

to the server to be returned with new web page as a response. AJAX on the

other hand allows web developers to make requests to the server without the

need for a full page reload. This is done by making an asynchronous call to

the server which then responds with the requested information in XML form.

This information can then be used to modify the current web page rather than

requiring a new page to be created.

Figure 3.6 shows the basic cycle that takes place when a new page is loaded.

To achieve this dynamic loading, ATLAS modifies each page so that when

56

User clicks a link

New page is loaded
in invisible iframe

New page is
modified

Old page is replaced
with the new page

Figure 3.6: The page loading cycle.

a link is clicked the new page is loaded into an invisible iframe (simply a

regular iframe with it’s height, width and border width set to zero). The

page is loaded into this iframe rather than the browser through the use of a

Javascript function attached to the onClick handler of each link on the page.

This Javascript function sets the src attribute of the iframe to be the URL

of the new page, causing the browser to load the new page in this frame in

the background. The click handler function attached to the link returns the

boolean value false which the browser understands to mean that it should not

treat this link as it normally would and does not load the new page into the

main window.

In order to preserve this AJAX behaviour throughout the application it is

necessary to modify every internally linking hyperlink (i.e., pages that link to

other Greenstone pages) in each page before it is displayed. This is because

clicking on an unmodified link will take the user out of ATLAS and into a

regular Greenstone environment as the link will be treated as a regular link.

Anchor tags are modified by adding an onClick attribute to the tag that calls

the ATLAS loadPageFromUrlJS() method, taking the new page URL as a

parameter. Forms are modified in a similar way, the action attribute of the

form is changed to call the loadPageFromForm() method, taking the form’s

DOM element as a parameter.

To set up these Javascript methods it requires GWT’s Javascript Native

57

Interface (JSNI) which is the lowest level of interaction that GWT provides. It

allows the developer to write actual Javascript code — rather than Java code

— that will remain unchanged when the code is compiled. For the Javascript

methods called to create the AJAX-like behaviour in ATLAS there are added

complications. These Javascript methods are required to call Java methods

that have been compiled by GWT in Javascript. For instance loadPageFro-

mUrlJS() calls the GWT-compiled method loadPageFromUrl() which contains

the code that actually does the page modifying and loading.

Normally GWT-compiled methods cannot be accessed from outside the

GWT code (for example, you cannot call a method compiled by GWT from a

separate Javascript file by calling function names directly, which is normally

possible with Javascript). To get around this, a special syntax (shown on lines

5 and 13 of Figure 3.7) is used in JSNI to refer to methods compiled in GWT.

GWT Java method names compile to different Javascript names depending

on what level of obfuscation is being used, so a uniform way of calling these

methods is important.

Finally, in order to make functions callable from Javascript the JNSI meth-

ods that call the GWT-compiled methods need to be attached to the global

Window object. This is achieved by simply calling $wnd.[FUNCTION NAME]

= [FUNCTION TO ATTACH]. $wnd is the object through which the Javascript

Window object can be accessed in JNSI (similarly $doc refers to the global

Javascript Document object).

Once the page is finished being modified, parts of it are moved from the

invisible frame onto the actual page. There are three main divs in a Green-

stone document: the header, content and footer divs. These divs are located

in the newly loaded page in the invisible frame and used to replace the corre-

sponding section in the main frame (using several replaceChild() DOM method

calls). Header tags such as stylesheet and Javascript references also need to

be updated for each page to make sure they are displayed correctly. This in-

volves removing stylesheet and Javascript references that are only relevant to

58

1 public static native void setUpPageFromUrl(GS3MapLibarary ml)

2 /*-{

3 $wnd.loadPageFromUrlJS = function(url)

4 {

5 m1.@org.greenstone.client.GS3MapLibrary::loadPageFromUrl(Ljava/lang/String;) (url);

6 };

7 }-*/;

8

9 public static native void setUpSpatialSearchPage(GS3MapLibarary ml)

10 /*-{

11 $wnd.loadSpatialSearchPageJS = function()

12 {

13 m1.@org.greenstone.client.GS3MapLibrary::loadSpatialSearchPage() ();

14 };

15 }-*/;

Figure 3.7: Two examples of the syntax used to refer to GWT-compiled meth-

ods in JNSI.

the previous page and adding the references from the new page. The actual

URL in the new header tags need to be modified as well. This is because most

of the references are relative links and ATLAS uses a different servlet than

the Greenstone servlet. This means a URL like dev needs to modified to be

something like http://localhost:8080/greenstone3/dev. This is also necessary

for images as most of these also link relatively rather than absolutely. Any

externally linking references are left unchanged however.

One of the most commonly used features of Greenstone is its full-text

search, due to both it’s speed and accuracy. Using this fact it was decided

that it would be useful to be able to extend this functionality with ATLAS.

Each of the returned documents were opened in a temporary invisible iframe

— in much the same manner as links are loaded. The text in each document

was then searched for place names, and the places found were then marked on

the map in a different colour for each document (as shown in Figure 1.4). The

invisible frames were then deleted from the page.

As a side point, it is important to note that while waiting for an operation

to complete — such as waiting for the server to load the place name recognition

structure in this case — timers should be used to check whether the operation

is complete at regular intervals rather than using a loop. This is because a

warning is likely to be displayed telling the user that the Javascript on the

59

1 <head>

2 <meta http-equiv="content-type" content="text/html;

3 charset=UTF-8">

4 <script src="http://maps.google.com/maps?file=api&

5 v=2&sensor=false&key=ABQIAAAAtgBCR-EMOIo..."

6 type="text/javascript"></script>

7

8 ...

9

10 </head>

Figure 3.8: The localhost Google Maps key being inserted into ATLAS.

page has become unresponsive if control is not returned to the browser within

a certain time period. Timers avoid this problem and minimise CPU usage

with the only drawback being a small delay once the task is complete for the

waiting tasks to continue.

3.3.3 Google Maps

Google Maps was chosen to provide the map interface for ATLAS. Because

Google Maps has a GWT Java API it made it much simpler to incorporate

into ATLAS which was already using GWT. In order to use the API a key

must be acquired from Google that gives access to its services. To get the key

Google must be informed of the host name of the website using the map. For

development purposes localhost is a good choice as most developers will want

to be testing their programs on their own machines before they are deployed

to the web. Once development is complete however a new key will need to be

acquired. Once a key is acquired it is then inserted into a script tag in the

main HTML page of the system as can be seen in lines 4, 5 and 6 of Figure

3.8.

The API provided by Google allows a considerable amount of control over

the map that is shown to the users. Standard features are available such as

adding movement and zoom controls and allowing the user to choose between

60

different map types such as satellite view and street map view. More advanced

features are also available such as adding markers or other shapes to the map

and using the Google Geocoder to locate a place given an address.

Adding controls such as the movement and zoom controls or the control to

choose different map types is a simple task in the Java API, as these are all

inherited from the Control class which is the abstract base class of all of the

map controls. The map class has an addControl() method that takes a Control

object and adds it to the map interface in the given position. Defining custom

controls is also possible and this is used within ATLAS to provide controls for

the spatial searching which is discussed further in Section 3.3.7.

One of the other features that is also used extensively in ATLAS is the use

of markers. Standard Google markers (like the one shown in Figure 3.9(a))

were originally used to mark the places that were found in the text. It was later

discovered however that these markers were not sufficient for our requirements

as the default marker does not allow much customisation. For example, in the

earlier stages of development we desired to be able to change the colour of the

markers to represent how well places scored. Although it is possible to change

the image that is used for the marker, it is not possible to change the colour

of an existing marker.

The lack of customisation meant an alternative had to be considered. It was

decided that polygons — which are another type of map overlay — would be

the best replacement because they allowed much greater control over aspects

such as size, colour and transparency.

A polygon is created in the Java API by defining three or more points

(ATLAS uses a rectangle made from four points) on the map in LatLng format,

which is the map API’s way of storing latitude and longitude information

together. The polygon is also given a fill colour and a border colour as well as

a floating point number which defines its level of transparency. Changing the

size of the polygon was important because the polygon needed to be visible at

different levels of zoom. To achieve this the polygon had to be bigger in relation

61

(a) (b)

Figure 3.9: Two different types of map marker: (a) A standard Google Maps

marker and (b) customised polygon markers.

to the map when zoomed out so that it was still easily visible, and smaller in

relation to the map when zoomed in so that it did not cover the entire view,

which would make it unclear where the polygon was actually centred. Figure

3.9(b) shows an example of the polygons used in ATLAS.

Being able to change the colour was also important for several reasons. In

the earlier stages of development colour was used to distinguish between places

that were given a high score and places that were given a low score (higher

scores meaning that a marker was more likely to be the actual place discussed

in the text). The colour of the polygon marker was interpolated between the

two extremes — in this case red and green — based on where its score fell on

the scale. As the design of the system was further refined, however, there was

no longer a need to distinguish between places with high scores and low scores.

In the initial design of ATLAS, places with the same name were all marked

on the map at the same time (i.e., if “Hamilton” was mentioned in the text

then all of the Hamiltons contained in the gazetteer were marked on the map at

the same time), hence needing colour coding to help the user see which places

scored better out of all the possibilities. Gale et al. [GCY92] found that

there is a high probability (98%) that a polysemous word in a well-written

discourse is likely to have the same sense thoughout the discourse. With this

assumption it was decided that only the highest scoring places of each name

should be marked on the map (i.e., only the highest scoring Hamilton would

62

be marked on the map). This is why, in the standard map view of the current

version of ATLAS, the rectangle markers are all one colour unless they have

been highlighted.

The other area where changing colour is important is when showing places

from multiple documents. Colour coding places to match their documents

allows the user to easily see which places belong to which documents. This

is used in ATLAS-enhanced version of the text search feature of Greenstone.

Once the results from the search are retrieved, ATLAS searches for places in

each of the documents that are returned. The places found in each document

are then marked on the map, an algorithm is used to make sure that each

document’s places have a colour that is distinct from each of the other colours.

User interface objects like polygons, lines and markers can also be given

mouse events such as mouse click events or mouse over events. A mouse click

event is used in ATLAS to bring up extra information when the user clicks

on one of the place-marking rectangles. A mouse click handler is created in

the Java API in a similar manner as most Java user interface systems. User

interface objects have an addClickHandler() method that takes a user-defined

click handler as an argument and this is called whenever the object is clicked

on. It is important to note that these user interface objects are clickable by

default, which can cause problems if they have no click handler assigned to

them. To make them unclickable, a corresponding options object (for exam-

ple markers have a MarkerOptions object) must be created and passed to

the constructor when the corresponding user interface object is created. The

setClickable(false) method should be called on the options objects before they

are given to the constructor to disable their ability to be clicked on.

As ATLAS is designed for heavy duty use (large documents with many

places) it takes a different approaches to the most of the systems discussed

in Chapter 2. The main difference is that ATLAS does not place any place

names next to markers — unlike several of the systems designed to show fewer

places at once — as in many cases where there are several markers crowded

63

in one area it would be more detrimental than helpful. Places are not difficult

to find however due to features allowing the user to centre the map on a place

or highlight it.

As mentioned previously, the Google Maps API allows access to the Google

Geocoder which ATLAS makes moderate use of in certain situations. Coun-

tries and regions do not contain latitude and longitude coordinates in the

gazetteer, so the Google Geocoder is used to attempt to locate these places

when these pieces of data are missing. An asynchronous call is made to the

Google Geocoder system with the place in a format like “Hamilton, Waikato,

New Zealand”, this which will either return successfully with a LatLng point

defining where the place is or it will return unsuccessfully if the place cannot

be found.

3.3.4 Place name recognition

The first experimental approach to locating place names was to create a place

data structure to store all of the information about each entry together in an

organised manner. Each of the entries in the gazetteer file were then read into

the program and all of the entries were stored in a Java HashMap structure.

The text to search was then divided into separate tokens based on whitespace.

The hash table was then searched to see what tokens matched gazetteer entries.

It became clear very quickly that this approach was too slow to find places in

large amounts of texts in real-time as it sometimes took minutes to complete.

The second experimental approach was to use a trie structure. A typical

trie structure for English text contains 26 children at each node, one child

node for each letter of the English alphabet (Figure 3.10 shows an example

of this basic trie). This allows most standard English words to be checked

in linear time relative to how many characters are in the word. This basic

trie does not allow for upper case letters, punctuation characters, numbers

or other miscellaneous characters however, so one of several methods can be

employed to allow for these. The näıve method is to simply have as many

64

Root

a zb ...c

a b c z...

Figure 3.10: A basic trie where “ab” is match and all other nodes are not

matches.

children at each node as there is possible characters, so for example if the

words use only ASCII characters each node would have around 128 child nodes.

In typical English there are many more lower case letters than there is other

types of characters, so this means that the majority of the 128 possible ASCII

characters (i.e. the non-lower case letters) at each node are likely to be empty.

For small trie structures that require frequent access this method is the best

option. This is because, even though the structure is sparse and uses a large

amount of memory to store a small amount of data, it uses a minimal amount

of comparisons to test strings.

Using an extra child node for each of the possible different characters is very

inefficient in the gazetteer used in ATLAS. The difficulty lies in the Gazetteer

being in Unicode, which has a little over 100,000 characters to allow for com-

pared to ASCII’s 128 characters. An alternative to using a large amount of

child nodes is to group child nodes into smaller sets and use a different data

structure to manage the sets. In ASCII for example, 26 nodes could be used

for letters (disregarding case), one node for numbers and one node for other

characters. This greatly reduces the sparseness of the trie — which also greatly

reduces the memory needed — while still maintaining a search time that is

linear in most cases and only a little more than linear in worst case scenarios.

Table 3.2 shows a overview of the different characters in the Gazetteer.

The original trie node layout experimented with using 26 nodes for En-

glish letters, and one node for all other characters. This experiment produced

65

Uppercase English Letters 473,342
Lowercase English Letters 2,453,918
Total English Letters 2,927,260
Numbers 10,693
Arabic Letters 66,289
Asian Characters 3,182

Table 3.2: Character counts in the gazetteer.

excellent results despite its simplicity, it did however highlight one area that

could be improved. Upon analysis of this trie structure it was discovered that

even with this compaction of the child nodes there was not a significant loss

of efficiency that was originally hypothesised. The node with the most non-

English letter characters was the root node with 858 child nodes compacted

into one node, the next largest node was significantly less with 42 child nodes

compacted into one node. This led to redesigning the top level node to be

a full sized node with no compaction and leaving the rest of the nodes un-

changed. This produced a small increase in performance with a comparatively

small amount of extra memory usage. For more details see Section 4.3.

When a word is matched in the gazetteer trie structure it is not automat-

ically considered to be a place. ATLAS uses a variety of methods to disam-

biguate between words that are places and words that are not places. These

include using the ANNIE system within GATE to separate each word into its

appropriate classification such as verb or noun, using a list of common nouns

and using a list of common names of people (these are similar to the stop-word

lists used by several systems discussed in Chapter 2. At this stage in develop-

ment ATLAS is primarily focused on place name recognition in English and

therefore can afford to use linguistic rules to help disambiguate between words

that are places and words that are not places.

The first and most obvious requirement for a word to be considered as a

place name (at least in English and other similar languages) is the capitalisa-

tion of its first letter. This is achieved easily by simply discarding words that

do not meet this requirement. The second requirement of a place name to be

66

considered is that is must be a noun. The ANNIE system within GATE has

a built in part-of-speech tagger that can be used to classify each word in a

document into its appropriate category. Doing this is necessary because there

are place names, such as Many in France and Data in India, that simply using

the gazetteer will find but are discarded when categorised. However if Many is

marked as a noun by the ANNIE system it will be considered as a place name.

The third difficulty is there are many place names that are also common words

within the English language or names of people. Examples of common words

that match in the gazetteer are “Bank” and “Data” which are located in India

or “Of” which is located in Turkey. Examples of person names that match in

the gazetteer are “Victoria” and “Washington” which both match many places

in the world.

3.3.5 Place name disambiguation

With the extensive gazetteer used by ATLAS, place name disambiguation is

an important task. Some place names map to many different places in the

gazetteer such as San Antonio (49), San Francisco (30) and Washington (25).

When places like this are found in the text it is necessary to work out which

of the many possible options that the place name actually refers to.

Place name disambiguation uses the contents of the rest of the document

(and sometimes outside data, such as what city or country the document

is from) to decide what places best fit the place names that are mentioned

in the text. The method that was chosen to be implemented for place name

disambiguation is designed to make the most of the knowledge gained by using

such an extensive gazetteer.

The disambiguation system designed for ATLAS is similar to that of the

Web-a-Where system’s document locality finding procedure. It is score-based

and uses the frequency of place names combined with their relationships to

calculate the most likely matching place for a given place name.

Each time a place name is located in the text a certain amount is added

67

to its “score” — although 256 is the amount a score is increased in the imple-

mentation, in practice varying this number does not make a difference. The

potential parent places (i.e., regions or countries that the place resides in) of

each place that is found in the text are also given a percentage of that score

(Figure 3.11 outlines the exact scoring procedure).

Once all the place names in the document have been found and scored

several more steps are performed (These are shown in Figure 3.12). Firstly,

as found in Section 4.2 it is important to reduce the scores of all of the places

that are not explicitly mentioned in the document. This is done so that their

influence on the final scores is minimised. As an example, if “Cambridge” is

mentioned in the text then in the initial scoring stage both New Zealand and

England will get some of the score that is given to Cambridge each time it is

mentioned — as at this stage both New Zealand and England are potential

parents of Cambridge. If “New Zealand” is mentioned somewhere else and

England is not, then it is more likely that the text is actually referring to

Cambridge, New Zealand. If Cambridge is mentioned several times in the text

then England’s score has the potential to get relatively large. At the next

stage of scoring (discussed below), if England has a high score then it has the

potential to skew the disambiguation of other places that could possibly be in

England. This is why a place that is not directly referenced like this has its

score reduced in this first stage of scoring.

The next stage of score manipulation is to add part of the highest scoring

place’s scores to their children. The definition of how close a place has to be to

the top scoring place before being considered high scoring can be varied with a

parameter. Having this parameter too small (which causes there to be less high

scoring places) is bad if a document is focused on more than one place, such as

a news article discussing Afghanistan which could mention places from both

Afghanistan and the United States. Having this parameter too small in this

case could cause places from the Afghanistan having their scores increased but

places from the United States having their scores remain the same. This could

68

P
la

ce
 is

 m
en

tio
ne

d
th

e
te

xt

Is
 th

is

pl
ac

e
w

ith
in

 a
su

b-
re

gi
on

?

A
dd

 x
 to

 th
is

pl

ac
e'

s
sc

or
e

Is
 th

is

pl
ac

e
w

ith
in

 a
re

gi
on

?

Is
 th

is

pl
ac

e
w

ith
in

 a
co

un
try

?

N
o

N
o

A
dd

 x
y

to
 th

e
su

b-
re

gi
on

's
 s

co
re

0
<

y
<

1

Ye
s

A
dd

 x
y²

 to
 th

e
re

gi
on

's
 s

co
re

0
<

y
<

1

A
dd

 x
y³

 to
 th

e
co

un
try

's
 s

co
re

0
<

y
<

1

Ye
s

Ye
s

F
ig

u
re

3.
11

:
T

h
e

p
er

-p
la

ce
sc

or
in

g
p
ro

ce
d
u
re

.

69

possibly cause these places to be scored lower than other places with the same

name in a different country. Having this parameter too high (which causes

there to be more high scoring places) can also potentially cause inaccurate

disambiguations. An example of this is when disambiguating articles from a

source like Wikipedia.11 Although the article may be focused on a particular

place it is likely that it makes mention of several other countries at some point

in the article. Allowing these other countries to also add part of their score

to their child places could skew the disambiguation towards these countries

which is likely to be undesirable.

Several of the systems discussed in Chapter 2 used a geographical distance

calculation to help the disambiguation process. Adding a geographical distance

heuristic to ATLAS was considered as an additional step in the disambiguation

scoring system, but it was decided that it was not a high enough priority at this

current stage in development. Although place name disambiguation accuracy

is important it has not been the primary focus of the project. It is likely

however that in future development a distance heuristic will be implemented

into the system as geographical distance between places is likely to be an

important resource for place name disambiguation.

All of the parameters mentioned above (e.g., how much of a places score is

removed when it is not directly mentioned or how much of a parent’s score is

added to its children) are modifiable. How specific values of these parameters

effect the system is discussed and evaluated later in Section 4.2.

3.3.6 Place information retrieval

Once the places in the text were located it was then necessary to be able to find

out information about places by that name and to find about places related

to those places (such as the country a place resides in). As the information

was effectively organised as a tree (city → region → country) it was initially

decided that this would be the best way for it to be structured. So in the initial

11http://www.wikipedia.org

70

Interate through the
list of scored places

Is there
another place to

adjust?

Is this place
directly mentioned

In the text?

Remove x% of this
place's score

Yes

No

Interate through the
list of scored places

Sort scores

No

Is there
another place to

adjust?

Is one of the
parents of this place

within y% of the
top scoring place?

Yes Add z% of the top
scoring parent's

score to this place

Yes

No

Figure 3.12: The final scoring adjustments.

stages of development a large tree-like structure was used to store the place

information. Child places were children of their respective parent places in the

tree (e.g., the state of New York is a child of the United States of America

and New York City is a child of New York state). The rest of the information

about the places (e.g., population, latitude and longitude) was stored in the

nodes of the tree.

This tree structure was additionally accessible through a Java HashMap

structure to allow efficient access to individual nodes themselves by using the

place names as the keys. Although this structure was efficient for the oper-

ations it was needed for at the time, it used a large amount of memory and

required a long time to be created upon initialisation of the program. Another

disadvantage of this structure was that it was not efficient when handling a

71

place that was referred to by an alternative name (e.g., Myanmar being re-

ferred to as Burma). A separate HashMap was used to map alternative place

names to their more commonly known names. This could then be used to lo-

cate the actual place in the original structure. Although this was adequate for

locating most places, there was one situation where it was inadequate. This

was if an alternative place name mapped to a place name that also mapped

to more than one place. For example, “Kirikiriroa” is an alternative name for

Hamilton in New Zealand, if “Kirikiriroa” was found in the text then the hash

table would say that “Hamilton” is the more common name of the place, but

because there are many Hamiltons in the world it would not be clear which

Hamilton “Kirikiriroa” referred to.

Although ATLAS does store the alternative place name spellings and will

find place names with these spellings, at this point in development the focus

for ATLAS is not on multilingual place name recognition. Further research

into multilingual capabilities is likely to be done as part of future developments

to the system.

Later in development it was decided that a database would be a better

alternative to this tree structure as it required less physical memory and there

was not a significant difference in performance in most situations. The main

place information was stored in one table with the alternative name informa-

tion stored in a separate table, but connected to the original table through

the use of foreign keys. Alternative place names were mapped to the identi-

fication numbers of the place they referred to rather than to the actual name

itself. This solved the problem that was present in the tree structure because

there was a one-to-one (rather than one-to-many) mapping between alterna-

tive place names and the actual place information. The full database table

layout is shown in Figure 3.13.

Using a database significantly decreased the startup time of the program

as it is only required required to connect to the database rather than having

to create a large structure from scratch. It also allowed more complex queries

72

Main place information table

Primary place name

Place ID

Place type

Sub-region

Region

Country

Population

Alternative names table

Primary place ID

Alternative place name

Place locations table

Primary place ID

Place point
(PostGIS geometry object)

Figure 3.13: The table layout of the PostgreSQL/PostGIS database.

such as finding places above a certain population or finding all the places

within a certain country.

The database was also PostGIS-enabled which allowed spatial queries to be

performed to locate places within a given area. The data used by PostGIS was

stored in another table and again mapped back to the main place information

via foreign keys. To fill this table it was required that the latitudes and lon-

gitudes in the main place information be converted from their original format

into a format that could be understood by PostGIS. PostGIS uses a standard

floating point number format to store its coordinates whereas the gazetteer

format does not use a decimal point and therefore the decimal point’s location

must be inferred from the number of characters in the number (for example

12345 actually means 123.45 ◦ and 6789 actually means 67.89 ◦).

This combination of trie structure and database gives ATLAS the ability

to both find places in long texts quickly, and find information about those

places — even when the place is referred to by an alternative place name —

efficiently, while still maintaining an acceptable level of memory usage.

3.3.7 Spatial searching

In addition to the standard searching methods of Greenstone, ATLAS allows

users to find documents by places mentioned in their content — otherwise

known as spatial searching. To allow access to spatial searching ATLAS places

73

an additional link on the “about” page (home page) of each collection that links

to the spatial searching page (as shown in Figure 1.2). This is done so that

the link is then located amongst other related links such as the browse and

text search links.

A map is used as the majority of the user interface for defining a spatial

search. A visual map was used rather than some form of coordinate input

system as it has been suggested by Furnas that such interfaces limit the user’s

ability to cognitively construct spatial queries [Fur91].

In 1996 Larson presented and article on geographic information retrieval

and spatial browsing [Lar96]. The most interesting part of this paper for

ATLAS development is the discussion of different types of spatial queries. Five

different spatial query methods are discussed, specifically: point, region, buffer

zone, path and multimedia queries. Of these 5 query types we will discuss 3

of them. Path queries and multimedia queries are irrelevant to the type of

spatial searching proposed for ATLAS.

Point queries are the most basic form of spatial query. Point queries allow

a user to click on a single point on a map to find information about that point,

places surrounding that point or places containing that point. This type of

query is not implemented in ATLAS. It is probable however that a variation

of this sort of query will be implemented in future development. As discussed

in 2.1.4, allowing the user to construct a spatial query by clicking on countries

to select them is both intuitive and efficient.

Region queries are the type of spatial query that ATLAS allows users to

construct. Users can select a region of a map to search for information about

places — or in this case, documents relating to places — within that area.

This method is both simple and intuitive for users.

Buffer zone queries are essentially region queries that are constructed in a

different manner. They effectively allow a user to ask “What places are within

X distance of Y?”, for example a user might want to know “What places are

within 200km of Paris, France?” which would create a region query 200km

74

around Paris. Again, this form of spatial searching is not implemented in

ATLAS as situations where it would be useful are limited.

When the page is loaded a blank map is shown. Each time the user clicks

a point on the map a marker is placed at that point, if there is more than one

point then it is joined to the point preceding it (Figure 1.8 shows and example

of this). Using this method the user can create a polygon to define the area

they wish to search for related documents. When the search is executed the

final point will be connected to the original point, creating a closed polygon

that is used in the database query.

PostGIS is used to provide the spatial searching capabilities of ATLAS.

It allows the creation of tables containing geometric objects (points in this

case) which can then be queried in a variety of ways. Functions are available

that can perform tasks such as measuring the distance between two points,

measuring the area of a polygon and finding all of the points within a given

area.

To actually match documents to the area given by the user two different

methods were considered. The first method involved knowing in advance what

places are mentioned in every document in the Greenstone collection. These

could then easily be matched with the places found within the given area,

resulting in very quick and efficient spatial searching (Figure 3.14 outlines

this procedure). The difficulty with this approach however was the amount

of preparation necessary to provide this efficient searching. It was considered

whether this information could be retrieved and stored when a Greenstone

collection is built. Although this would increase the build time of the collection

it has the benefit of only needing to be done once. If a user knows in advance

that they would want a collection to be spatially searchable it would be worth

the extra build time for fast spatial searching. Obviously this preparation

could also be done after the collection is built but it is more intuitive to do it

while the collection is being built.

Although this preparation method would work well in situations where the

75

User defines search
area on map interface

Search area is queried
in PostGIS database

A pre-compiled list is
checked to see which
documents contain

those places

Result documents are
ordered by number of

place matches

Figure 3.14: The first spatial search method.

User defines search
area on map interface

Search area is queried
in PostGIS database

A text query is formed
containing places in

 the area

Greenstone text search
locates documents

mentioning those places

Figure 3.15: The second spatial search method.

user knows they will be wanting to make use of spatial searching extensively,

it would be an unnecessary amount of work to have to spend hours preparing

large, pre-existing collections if the user will rarely need the spatial searching

functionality. For this reason we considered another method to link documents

to locations.

The second method of matching documents and locations involved making

use of the powerful text searching capabilities provided by digital libraries.

Instead of having prior knowledge as to which places map to which documents,

we instead treated every place within the user’s query area as equally likely to

map to a document. We created a large query string made up of all the place

names of the places within the given area to find the places within the user’s

query area and used this query string to search the collection of documents.

The results were then returned as with any other text query. This method

worked on the assumption that documents containing more of these words in

greater frequencies would be higher ranked — and therefore more likely to be

relevant to what the user is searching for — than documents where only a

few places were mentioned and in smaller frequency. This process is shown in

Figure 3.15.

There are some obvious flaws with this method, such as when “Victoria” is

a place within the given area it is likely that documents about Queen Victoria

will be returned if the collection has any. However, cases like this are likely

76

to be rare and are will most weeded out by the fact that almost no other

relevant places will be mentioned within those documents. Further research

into the accuracy of this method is needed and, if after future developments it

is decided that this spatial searching method is a worthwhile addition to the

system then it is highly probable that this will be explored further.

At the time of writing only this second spatial searching method has been

implemented into ATLAS. It is likely that the first method will also be included

in the system at a later point in time and it is possible that the two methods

could work together. The second method could be used for collections that

have not been specially prepared and the first method could be used for those

collections that have had spatial indexes already prepared.

3.4 Interface design

Here we discuss the design of the ATLAS user interface. We begin with a

detailed discussion about the page layout used in the standard document view,

including the designs that were considered and the decisions that were made.

We then discuss the design of the status area that is used to inform users of

what the system is currently doing. This is followed by discussion of the three

alternative text viewing methods and details about the two that were actually

implemented for the system. In the final section we discuss the interactions

that the system provides in standard document pages, the text search results

page and the spatial searching page.

3.4.1 Page layout

The basic building blocks for the layout of Greenstone are HTML divs, which

effectively allow the user to divide the web page up into different sections. The

standard Greenstone layout is made up of three main divs : the header div,

which contains the title of the current page and possibly other information

such as the user’s current position in the Greenstone hierarchy (e.g., “My

77

ATLAS

Greenstone Header

Greenstone Footer

Greenstone Content

(a)

ATLAS

Greenstone Header

Greenstone Footer

Greenstone Content

(b)

Figure 3.16: Two variations of the horizontal split layout.

Greenstone Library → HDL Collection → Browse”); the content div, which

is the main display area of the system; and the footer div, which displays the

message “Powered by Greenstone3” or, in some Greenstone skins, is not shown

at all.

For the ATLAS system several major page layouts were considered. Two of

these were dividing the page in half vertically or horizontally, with Greenstone

being displayed in one half, and ATLAS being displayed in the other. A

horizontal split (shown in two variations in Figure 3.16) was quickly ruled out

as a possible design choice, because having an area that is wider than it is

high is generally accepted as a poor choice of layout for reading long blocks

of text like those present in Greenstone collections. The original design of the

system had a full vertical split with Greenstone on the left side and ATLAS on

the right hand side (shown in Figure 3.17. The advantages of this were that

the two separate applications were clearly divided and that the text was laid

out vertically, making it visually more intuitive. To further integrate ATLAS

into Greenstone the full vertical split was later relaxed to allow the header and

footer divs of the Greenstone section to extend the full width of the page as

shown in Figure 3.18.

Having the map on the left hand side of the page rather than the right was

considered, as vertical scroll bars on web browsers are generally on the right

hand side. This then meant the scroll bar would be on the same side as the text.

78

Greenstone Content ATLAS

Greenstone Header

Greenstone Footer

Figure 3.17: The original full vertical split layout of the system.

It was considered that maybe the user would be more comfortable with this

layout as the scroll bar would feel more connected to the text than it would if

it were on the left hand side. There was a disadvantage to this layout however.

Users from languages that read from left to right place natural emphasis on

the left side of the page, which in this case would be on the map. This may

create confusion for new users as they may expect the map to be the primary

source of information which is not the case.

It was clear that using a vertical split had several advantages over other

layouts, so this basic concept was chosen to be developed further. Originally,

the system used a full page vertical split, with all sections of Greenstone on

the left hand side. It was decided that to further integrate ATLAS with the

Greenstone page, only the content section of the Greenstone page should be

split vertically. This meant that the header and footer sections covered the full

width of the page. One option that was considered was having the map follow

the page so that when the page was scrolled downwards, the map would also

move downwards within its half of the page, meaning it was always in view.

This method of keeping the map within the user’s view was experimented

79

Greenstone Content ATLAS

Greenstone Header

Greenstone Footer

Figure 3.18: The full split layout with the Greenstone header and footer sec-

tions extending the full width of the page.

with by implementing it into the system. It had the potential to become visu-

ally quite distracting, as the page was scrolled the map would jump abruptly

to its new position. This was due to their not being an onScroll event in

Javascript to capture when the user scrolled the page up and down, the only

alternative is to use a timer to check at regular intervals whether the page has

been scrolled. Although this method works, using an onScroll event would al-

low this movement to be as smooth as scrolling itself. One way to work around

the problem would be smoothly move the map to its new position rather than

simply setting its position to its new value.

Rather than experiment with this motion smoothing idea, a different layout

was conceived that would eventually become the final layout of the system.

This layout was designed to fit all of the content on to the screen at once

rather than having to use the main scroll bar (Figure 3.19 shows this design).

This was achieved by using Javascript to manually adjust the height of the

Greenstone content div and the ATLAS div so that they were the correct

height in relation to the user’s web browser. The ATLAS map was then scaled

to fit its entire div. The Greenstone div had its CSS overflow property set to

80

ATLAS

Greenstone Header

Greenstone Footer

Greenstone Content

Figure 3.19: The final layout of the system.

auto, meaning that if there was more content than could be shown in the div

at its current size then a scroll bar would be added (rather than making the

div larger). This solved both the problems of the distracting map movement

(due to the map being stationary) and the document not having an obvious

scroll bar as now the scroll bar would be alongside the text, rather than at the

side of the web page.

3.4.2 Status Area

One of the most important aspects of usability is letting users know what’s

happening in the program as they’re using it [Nie94]. With a large amount of

the work of ATLAS being done on the server side of the system it is important

to let users know when, for example, the server is busy loading the place

recognition data structure or that the system is busy scanning pages for places,

requiring the user to wait before they can continue using the system. Without

letting the users know that this is happening they may think that the system

has stopped working and may become frustrated. Also, because ATLAS loads

pages differently than what users are accustomed to in a standard web site,

81

this becomes even more important as several aspects of the system are likely to

behave differently than what the users expects. For example, normally when

the user clicks on a standard link they expect the browser to change to the

new page almost instantly and for the new page to then begin being built

as the data arrives. In ATLAS however, there is a noticeable delay between

when the user clicks on a link to when the new page is actually shown (due to

the system waiting for the page to be loaded in the background). This could

confuse users into thinking that either they did not click the link properly or

that there is something wrong with the system. To help compensate for this

change in standard behaviour ATLAS uses a status area that displays messages

that let the user know what is happening. To continue the previous example,

when a link is clicked on a message instantly appears in the status area saying

“Loading new page” to let users know that everything is behaving normally.

Once the page has finished loading the message and the status area disappear

again (assuming that there is not more than one message being shown).

There were several aspects of the design of the status area that were im-

portant to consider. It is important that the status area is not distracting to

users, but at the same time it is important that it is easily visible and that

the user knows when it is displaying a new message. The placement of the

status area has a strong influence on these two aspects; placing the status area

at the top of the page (Figure 3.20(a)) would satisfy the need for it to not be

distracting but has the disadvantage that the user may not notice it, or if they

do they may not notice when a new notification is there to be read. If we take

the opposite approach and the status area is placed at the bottom of the page

(Figure 3.20(b)), it has the advantage that status bars are usually located at

the bottom of interfaces and therefore would meet the user’s expectations to

an extent. Although this would näıvely seem like the best position to place

the status area, it is more necessary in this case — more so than a standard

status bar — that the status updates are easily noticeable due to the potential

of user frustration being high if the status updates are missed. We instead

82

ATLAS

Greenstone Header

Greenstone Footer

Greenstone Content

Status Area

(a)

ATLAS

Greenstone Header

Greenstone Footer

Greenstone Content

Status Area

(b)

Figure 3.20: Two of the status area position concepts.

Figure 3.21: The status area showing two updates.

chose to place the status area between the header and content areas of the

page (shown in Figure 3.21) so that it was easily visible at all times.

During the pilot tests of user study detailed in Section 4.1 it was discovered

that, even with the status updates located in an easily visible place, people still

tended to not notice them when they appeared. It was decided that something

that was both eye-catching but not distracting needed to be added to the status

area when there was a message so that it caught the user’s attention but did

not hold it unnecessarily. For this purpose we chose to add a small animated

GIF file (shown in Figure 3.22) to the bottom of the status area when it was

an update to be viewed. This animation also gives the user a feeling that the

83

Figure 3.22: The animated GIF used on the status area.

system is doing something and has not crashed, which is important if the user

is forced to wait a long time. Importantly, this animation was not distracting

due to its plain colours and simple movement but was still enough to catch

the user’s attention when it appeared. An animation like this is a common

technique in AJAX applications to inform the user that the system is loading

something.

3.4.3 Text presentation

With the layout of the page having been finalised to restrict the content area of

Greenstone documents to half of the page, it meant that documents required

more scrolling to read than what they had previously. To counteract this it was

considered whether alternative ways to view documents — that would require

less scrolling — would be beneficial to users. Three methods were tested, two

of which have been implemented in the final system.

Fisheye view

The first method that was explored was a fisheye text visualisation method.

This was implemented so that the text near the user’s mouse cursor would be

larger than the text of the rest of the document. This allowed the user to get

an overview of the document whilst still being able to read and navigate it.

This was especially useful when places in the text had been highlighted, as it

was easy to see where they were even when the text was out of the focus of

the fisheye. Figure 3.23 shows a screenshot of the fisheye view in action.

The disadvantage of the fisheye view however is that there is much wasted

whitespace in the context area (i.e., above and below the focused area). In

Section 5.2 we discuss a possible way of utilising this whitespace to help users

84

Figure 3.23: The document text in fisheye view.

quickly locate matching place names.

Several parameters were adjustable to modify different aspects of the fish-

eye system such as the maximum and minimum font sizes, the sharpness of

the font size fall off, the width of the area around the cursor that remained

at the maximum text size. A major factor that was considered in the process

of choosing parameters was the size of the focus area. Having a focus area

that is too small would mean that the text would be difficult to read. Hav-

ing the focus area too large however would make the fisheye effect redundant.

Finding a balance between these two ends of the spectrum is not a simple

task. For instance, 12 of the 16 participants in the fisheye for source code user

test performed by Jakobsen and Hornbæk felt that the context area was too

small, yet if the context area had been made larger it is likely that their task

completion performance would have been negatively effected due to the lack

of extra context information.

Another major consideration was whether or not to attempt to fit all of the

document text into the content area so that a scroll bar was not needed. It

was decided that this would not be a good decision as, with long documents,

the font size would need to be at a size where it was impossible to read or see

any highlighted place names in the document, which would obviously make

the content area useless. Unfortunately several users that participated in the

user study discussed in Section 4.1 clearly expected the whole document to be

85

Russia is big.
So is China.

 New spans added to every word

Russia is big.
So is China.

 Span y positions found
 Lines created

 New spans removed
<div id=“l1”>Russia is big.</div>
<div id= “l2”>So is China.</div>

Figure 3.24: The line finding algorithm used to set up the fisheye view.

shown at once and did not realise that they needed to use the scroll bar to

view the rest of the document.

Several novel techniques were used in the implementation of the fisheye

view. Each line in the unmodified text needed to be located, as text re-

sizing was done on a line by line basis. To do this the program initially

places HTML span tags around each word in the text. Care is taken to ex-

clude any other tags that may be already be present in the text. This is

because treating tags as words will produce undesirable results. For exam-

ple, a tag such as will become <span

class=“Word”>

 which is invalid HTML and

will be displayed incorrectly in a web browser. Placing spans around each word

can be used to locate the vertical height of each word in the text (through the

use of the getOffsetTop() DOM method provided by the span tag) and in turn

can be used to locate the lines in the text. Each line is then wrapped in a div

tag and stored in an array, in order of their vertical location on the page. All

the span tags used for line finding are then removed to increase performance

as they are no longer needed. This process is demonstrated in Figure 3.24

Compaction view

The second text display method that was designed attempted to maximise the

space in the content div by slowly decreasing the size of parts of the document

86

ATLAS

Greenstone Header

Greenstone Footer

Document Content

ATLAS

Greenstone Header

Greenstone Footer

Document Table
of Contents

Document Content

Document Table
of Contents

Figure 3.25: The compaction view design.

when they were no longer needed. This method was originally designed when

the Greenstone skin that was being used was the default skin, rather than the

development skin which is currently being used. In the default Greenstone

skin, when a document is viewed it shows the table of contents at the top of

the page. The idea of the compaction view was to slowly decrease the size of

the table of contents as the user scrolled down the page until it was almost

invisible at which stage it would turn into a button that would allow the user

to display it again if they chose. This design is shown in Figure 3.25.

Several parameters were also adjustable with this method such as the speed

at which the size of the non-important objects decreased relative to how far

the page is scrolled. In the current version of ATLAS though this method was

relatively ineffective as the table of contents of a document in the Greenstone

development skin is already quite small and located on the side of the content

area rather than at the top.

Column view

The third method used a similar concept as the fisheye method but was de-

signed to better maximise the use of whitespace. It does this by decreasing the

font size of the text and arranging it into several columns so that the whole

of the document is displayed at once without the need for scroll bars. As

the user moves their cursor over the text in the columns, a larger version of

the text is displayed in a box centred above the position of the mouse cursor.

87

The advantage of this method is that it makes far better usage of whitespace

than the fisheye method as almost none of it is wasted. In the example shown

in Figure 3.26 the effective use of whitespace can easily be seen. A simple

heuristic algorithm was used to quickly arrange the text into the appropriate

number of columns necessary for the given amount of text. The full algorithm

is shown in Figure 3.27.

The column view in ATLAS is implemented in a similar way to the Docu-

ment Lens system [RM93] discussed in Chapter 2, however there are few key

differences. Firstly, the ATLAS column view does not distort the parts of the

document the lie outside of the “lens”. The most obvious reason for this is

that it is impossible to create this effect in a web browser without the use of

Adobe Flash or other similar technology, so as the column view is coded in

Javascript this functionality is currently out of reach. If this were not the case

however, it would still be unlikely for this sort of effect to be implemented as

the user may get lost in large documents. The benefit of not resizing content

outside of the magnified area is that the user always knows where they are in

the document regardless of its size.

The second — although minor — difference is that, being 3D based, the

Document Lens system allows the user to move the lens in the Z direction

(towards or away from the screen), effectively allowing the user to zoom out to

a wider view or zoom in to a closer view. This is deemed unnecessary for the

column view in ATLAS as there appears to be little benefit from implementing

such functionality.

Several aspects of this text view required special consideration in order

to provide good usability. One such consideration is where the box with the

enlarged text should be in relation to the position of the cursor. ATLAS places

the box 25 pixels above the cursor, unless the box’s y position becomes less

(higher up the page) than the top of the text frame, in which case the box

is placed 25 pixels below the cursor. Having the box placed below the cursor

by default was also considered but was quickly ruled out due to the fact that

88

F
ig

u
re

3.
26

:
T

h
e

d
o
cu

m
en

t
te

x
t

in
co

lu
m

n
v
ie

w
.

89

1 Let DY be the height of document <div> in pixels

2 Let TY be the height of the document text in pixels

3 Let FY be the font size of the document text

4 Let C be the number of columns

5 Begin loop

6 If TY > DY then

7 FY = FY * 0.85

8 C = C + 1

9 Else

10 Stop looping

11 End loop

Figure 3.27: The heuristic algorithm used to arrange document text into

columns.

the most common languages used in Greenstone collections read from top to

bottom and having the box below the cursor would obscure the upcoming text.

Another design that was considered was having the box be centred on the

cursor, the advantage of this method is that it is the most intuitive for the

users, as it would act (to an extent) like the cursor was a magnifying glass. This

method also has the disadvantage that it obscures upcoming text to a small

extent due to magnification box being larger than the area it magnifies. The

other disadvantage with this method is that it would be difficult to implement

it the way that the user would probably expect it to work. The current system

does not register movement in the x axis, it simply adjusts what is shown in

the box based on the y position of the cursor on the current column. To create

the full magnifying glass effect the user might expect, the box would have to

take into account motion in the x axis which complicates the implementation

to the point that it is out of the scope of this project.

Although research by Dyson and Kipping [DK97]found that users felt text

laid out in columns appeared more organised and interesting, it is unlikely that

these findings for layouts of two or three columns will extend to the greater

column densities often present in the ATLAS column view. This prior research

assumes that the text is readable in its multicolumn form. As the ATLAS

90

column view is designed to give a document overview, the text is usually too

small to read for long documents as the text size is reduced to fit the whole

document content on the page at one time. Although our research does not

extend to measuring the reading performance of our text display method it

is safe to assume that it will perform worse than the column views discussed

in Dyson’s research in both reading speed and in a preferred reading layout

experiment. This is due mostly to the fact that the user must frequently move

the mouse so that a new area of text is magnified, making it arduous to read

a lengthy amount of text.

3.4.4 System interactions

The interactions between ATLAS and the Greenstone were an important as-

pect of the interface design. There are three places within the system where

the interaction design needed particular consideration. These areas are the

standard document view, the text search page and the spatial search page.

Document view interactions

Rather than just simply being able to see the locations of places mentioned in

the text, we decided that it would be useful to be able to interact further with

the system. With each document containing a previously unknown number of

place names of an unknown concentration, interacting at an individual place

name level requires special consideration. An interaction method needed to be

chosen that was both intuitive for the user to use and could also provide easy

access to several different features. It was decided that a menu system would

be the best way for this to be achieved seeing as it is both intuitive — it is safe

to assume most users will have used menus at some point in their computing

experience — and can contain as many menu items as necessary. The next

decision was how to best attach these menus to the places in the text.

Several methods were considered such as, having a permanent menu on

the screen. The user could then click on a place names to select it and would

91

then be able to choose an option from the menu. We decided against this idea

however due to the fact that this menu would take up space that could not be

spared due to the current page layout already attempting to give the two page

halves as much space as possible. It was decided that rollover menus would be

the best option as the did not use up unnecessary space and were still intuitive

to use.

When the mouse cursor is held over a highlighted place name, a menu is

displayed showing options relevant to that place name (Figure 1.6 shows an

example). Choosing the specific parameters of the rollover was also important

to consider. It was decided that having the menu instantly appear when a

place was moused over would have the potential to be frustrating for the user,

as it may accidentally hide areas of the text they are trying to view. At the

same time however, an interval that was too long could also be frustrating as

the user would have to wait each time for the menu to appear. After some

testing we decided that a one second interval was the best choice as it was

long enough that the user would have to deliberately leave the mouse cursor

in place but short enough to not be frustrating.

The menu items chosen to be available were: “Centre the map on this

place”, “Highlight this place on the map”, “Highlight this place in the text”,

“Remove all highlights” and “Choose correct place” as can be seen in Figure

3.28 (Figure 1.6 shows an example of a menu in use). Being able to centre the

map on a particular place is useful as it makes the specific place that is being

searched for much easier to find, especially when there are many markers on

the map. Another reason why this functionality is useful is because it takes

care of moving the map for the user, so that when they zoom in a long way they

will still be centred on that specific place rather than having to find it again

in the zoomed-in view. In earlier stages of development, mousing over a place

resulted in the place automatically being centred on the map. It was decided

that this could become frustrating for users when they accidentally moused

over a place name as they could lose the place they were currently examining

92

Centre this place on the map

Highlight this place in the text

Remove all highlights

Highlight this place on the map

Choose correct place >

Figure 3.28: The document specific menu used in ATLAS.

for example. For this reason this functionality was moved to the menu so that

the user could make a conscious decision about whether to centre this place

on the map or not. Section 5.2 discusses possible future modifications to this

functionality.

It was also decided that being able to highlight places in both the text and

on the map would be useful functionality. Highlighting places in the text allows

the user to quickly scroll through the document and see any more references

to this particular place. Highlighting places on the map is potentially useful

if the user is trying to locate a particular place marker amongst several other

nearby place markers, or the user could highlight two places to easily see the

distance between them for example.

Finally we chose to add the ability to change the place that a place name

refers to. The place name disambiguation system performs adequately in most

cases but there are certain situations where the system will make a mistake

— such as when two places by the same name are referred to in the same

document, the system will mark both of them as the same place. As it is rare

for this to occur, a way to compensate for this has not been implemented in

the system. It was decided that, rather than let the users become frustrated

by an incorrect disambiguation, we would allow them the ability to change the

93

reference if they believed that it was incorrect. Changing the reference will

also move the position of the marker on the map to the location of the new

place the user has chosen.

Text search view interactions

To augment the standard Greenstone text search view we added a map to one

half of the screen displaying the places located in each of the returned docu-

ments. Each document is given a colour and all of the places corresponding to

that document are shown in that colour on the map (an example of this can be

seen in Figure 1.4). To make sure colours are distinguishable from one another

an algorithm is used to make sure that colours are distinct from each of the

other colours. Colours were chosen to distinguish places of different documents

— rather than another system such as adding numbers to the markers — be-

cause colours are an intuitive and natural method of visually mapping one set

of information to another. Using numbers or another alternative method has

the potential to confuse users, as they may question what the numbers mean.

Colours are also much easier to locate amongst other colours than numbers

are amongst other numbers.

The text search view has a high potential for clutter, especially if the

content of the collection being searched is geographically oriented. When this

occurs it can become difficult to clearly see the area (if any) that a document

is centred around. To help in situations like this we decided that the ability to

remove document place sets from the map would be helpful as it would allow

the user to much more easily focus on the places contained within one or a few

documents. For this functionality we considered using pop-up menus like those

that were used in the document view as they would then provide a consistent

method of interaction for users. We decided against this idea however due

to the fact that each menu would have only contained two or three items in

it (“Show/hide this document’s markers” and “Show markers only from this

document”). It was decided that using check boxes would provide a much more

94

intuitive method of turning on and off place markers relating to each document

(the checkboxes can be seen to the left of the document links in Figure 1.4).

This is because most users will have at least some experience with check boxes

in the past — either on web pages or in other graphical user interfaces — and

will therefore easily be able to understand what they do when they see them.

If in future development this view is ever extended then using menus may

still be considered as they may help to group all of the functionality into one

place. At this stage in development however this is not necessary or helpful.

Spatial search view interactions

As described in Section 3.3.7, ATLAS provides its own document search method

in the form of spatial document searching (searching for documents by the lo-

cations of the places within them). The interaction design for this spatial

search view provided an interesting challenge due to there being many dif-

ferent ways that each aspect of it could be designed. The first — and most

important — aspect of the interaction was the designing how the users could

select areas of the map to be searched. There were many possible ways for this

to be implemented but a method was needed that was both simple and yet

allowed the user to make complex area selections. Throughout this section we

will use Switzerland as an example of a complex query to attempt to create.

Switzerland’s shape and neighbouring countries make it difficult to construct

a query without including some of Italy, Austria, France, Liechtenstein and

Germany. This can be seen in Figure 3.29.

One of the first designs was to simply allow the user to click and drag

a box over the area they wished to use. In terms of simplicity this method

is effective, as it is easy to use, fast and for many users would possibly be

sufficient for specifying areas they wanted to query. The disadvantage of this

method however is obviously its limited ability to construct complex queries.

Figure 3.30(a) shows an attempt at creating a query for Switzerland; it can

be seen that clearly this method is inadequate for a query of this complexity.

95

Italy

Switzerland

Germany

France
Austria

Liechtenstein

Figure 3.29: Switzerland with its neighbouring countries.

(a) (b)

Figure 3.30: Single box and multi-box spatial query examples.

A possible solution to this would be to allow the user to create multiple boxes

to define a query. This would be adequate for low- to mid-level complexity

queries but for advanced queries it becomes almost impossible. Figure 3.30(b)

shows an attempt at creating the complex Switzerland query. Although this

method is a significant improvement over the previous method it is still difficult

to create such an intricate query.

Another similar method that was considered was allowing users to choose

between several pre-defined shapes such as triangles, rectangles and circles

and allowing them to click and drag the shape into place like in the previous

96

(a) (b)

Figure 3.31: Multi-shape and polygon query examples.

method. To fully meet the user’s expectations of this area defining method it

is likely that additional functionality, such as allowing the user to move, rotate

and resize shapes once they are placed, would likely be needed. Although this

method would make advanced queries significantly easier it would still be time

consuming to construct them. This also has the potential to be too complicated

for computer users with only a small amount of computing experience. Figure

3.31(a) shows that this method is much better for handling more intricate

queries but is still overly complicated.

The method that we chose to implement was to allow users to construct

queries by using points to create arbitrary polygons. This method is simple

enough for all users to understand and is also capable of creating advanced

queries with relative ease. Although this method is slightly slower than the

three previous methods for simple queries it is faster and more accurate for

queries that are more advanced. This is due to being able to simply click

on the place where you want the polygon to extend to rather than having to

find the correct shape to fill an area as well as possible. As can be seen in

Figure 3.31(b) this method is both accurate and fast for an advanced query

like Switzerland.

In future development of ATLAS it is possible that user could be given a

choice as to which method they would prefer to use based on the complexity

of their desired query. At this stage in development however we feel that the

97

method we have chosen provides a good combination of both simplicity and

power. Section 5.2 discusses another possible spatial query defining method

that will be considered for future development. The idea is to let users simply

click on countries to select them as part of their query.

Chapter 4

Evaluation

In this chapter we will evaluate several specific areas of the ATLAS system

including: its usability, its place name disambiguation accuracy and the ef-

ficiency of the trie structure used for place name recognition that has been

specially designed for ATLAS.

4.1 User study

To evaluate the usability of the system a user study was designed. In the

study we aimed to gather information about the experimental aspects of the

program. With that information we hope to be able to make informed decisions

about the effectiveness of the different aspects of the program.

In this section we first discuss the pilot tests that were run to test for any

obvious problems that could effect the success of the full user test. We then

present the results of the full user test.

4.1.1 Pilot tests results

The pilot tests were designed as short, informal tests of aspects of the system

that were to be tested during the user study. Several minor problems were

found during this process. Firstly, as mentioned in Section 3.4.2 we discovered

that, despite the status area being clearly visible on the page, it did not draw

99

the attention of users as it had been designed to do and was often overlooked.

It was suggested that an animation be added to the status area to both attract

the user’s attention when it was needed and also let the user know that the

system was still working even if there was no other visual feedback that made

this clear.

Another potential usability problem that was discovered was that it is some-

times difficult to differentiate between the rectangle place markers of similar

colours in the text search view. It was discovered that one contributing factor

was the transparency used to make it easier to see the place that had been

marked through the marker. If the marker is too transparent it made the

colour much harder to distinguish due to it being partially combined with the

colour of the map beneath it. To compensate for this the transparency was

changed so that it increased when the map was zoomed closer and decreased

when the map was zoomed out, as both the opaqueness and transparency are

important depending on how close the map has been zoomed.

This transparency modification function partially solved the problem of

markers being difficult to distinguish from each other, but even with the colours

being more easily distinguishable there is a limited amount of times that the

colour spectrum can be divided before the colours are no longer easy to tell

apart. Although cases where the spectrum will need to be divided to this

point are likely to be rare, it was still important that some functionality be

added to help handle such cases. It was decided that a good solution to this

problem would be to add extra information to the marker pop-up information

that is displayed when the marker is clicked. This extra information states

what documents this specific place was referenced in so that if the user was

having trouble differentiating the colours of the markers they could make sure

by clicking on the marker to see this extra information.

100

4.1.2 Full user test results

The full user test was designed so that participants were to make full use of all

of the features of ATLAS (the user study material is shown in Appendix A).

Ten participants (four females) took part in the user test with their ages rang-

ing from 20 to 52. Levels of computing experience also varied from frequent

computer users with computer related educations to infrequent users with lim-

ited computing experience. Such a wide variety of participants were used to

test the system because ATLAS is aimed at the same audience as digital li-

braries — many of which are founded on the principle that the information

contained with them should be easily accessible to all who wish to view it.

The Greenstone collection used for the user study was the MGPP Demo

collection which is a small subset of the Humanity Development Library. The

documents in this library contain useful information for developing countries,

such as how to farm butterflies or snails. This collection was adequate for the

user study as most documents contained several place names.

Participants were first given a brief introduction to the system, explaining

about digital libraries and what ATLAS does to enhance them. They were

also given an example of how to browse for a document, how to perform

a text search and how to perform a spatial search. After this introduction

participants were asked to complete a series of tasks, each with one or two

questions to answer. Tasks were deliberately designed to encourage users to use

each of the features that are provided by ATLAS. For example, one question

asked the participants to use the features available to find Costa Rica on the

map (which is likely to be a difficult task for people with limited geographical

knowledge) to encourage participants to explore the menu features. Once

the tasks were completed the participants were then asked to complete a brief

questionnaire about how they felt about the system and what they felt could be

improved. The copy of the task sheet and questionnaire is shown in Appendix

A.

The user test was designed to help answer the following questions:

101

• Is the functionality provided by ATLAS useful?

• How easy/intuitive is it to use the features provided by ATLAS?

• How useful were the fisheye and column views?

• What changes could be made to improve the system?

Did participants find ATLAS useful?

Almost all participants stated that they believed having a map that shows the

places mentioned in the documents they read was something that they would

find helpful. The first question on the survey given to each participant was “Do

you think that having a map to show where places are located is helpful when

reading documents? Why?”. Some examples of answers given by participants

include: “Yes, because I like to know where in the world places are in what I

am reading. It gives more background”, “Yes, often you’ve heard of the place

but don’t know where it is” and “Yes, many people, including myself, don’t

have a good idea of world geography and therefore the context of information”.

Clearly the main reason that participants approve of the idea of marking

places in documents on a map is that it gives more background context by

allowing users to actually visualise the locations that are mentioned. This in

turn gives the user further information such as the distance between places

and how they are arranged. Some users are likely to find these simple pieces of

information interesting and useful, depending on the specific type of document

being read.

Did participants find the system intuitive and easy to use?

There were three main aspects of the program that need to be considered to

answer this question as, from the user’s point of view, the system is made up

of three components: ATLAS, Greenstone and Google Maps. The way these

components are combined means that having a weakness in one of these three

components affects the usability of the system as a whole. For example, two

102

users had not used Google Maps before and therefore struggled to complete

several of the tasks despite being able to adequately use the rest of the system.

Overall however, from both the comments of the participants and the fact that

most participants completed the tasks without difficulty, the usability of the

system has shown to be good.

To test the standard document view participants were given several tasks

that used each of the features available in the place-specific menu. Most users

had no trouble using these features and were able to complete these tasks

quickly. These participants also made positive comments about the system.

One of the questions asked in the survey section of the task sheet was “How

easy was it to use the features available to find the place you were looking for

on the map?”, two examples of answers written by participants are “Very easy

- great!” and “Easy, exactly as I’d expect”.

Although users found the features ATLAS provides in the standard docu-

ment view easy enough to use, there were several aspects of its functionality

that caused minor problems. Several users expected to be able to use the right

mouse button to bring up the menu as is usually possible in other programs.

Several other uses expected to be able to left click on the place name to be

able to bring up the menu. The current implementation requires the user

to hover the cursor over the place name for small amount of time before the

menu is shown, however this is likely to be modified after this information

provided by the user test. As it is common for menus to be attached to right

mouse button clicks and users expected it, it is likely the the menu implemen-

tation will be changed in future development so that either hovering over the

place name or right clicking the place name will bring up the menu. For the

left click functionality two participants suggested that left clicking on a place

name should centre the map on the corresponding place rather than needing

to choose “Centre this place on the map” from the menu. As this was the

most common menu item selected in the tests it makes sense for it to have a

shortcut and using left clicks provides an efficient way of doing this.

103

The ATLAS-enhanced text search view was evaluated by having the partic-

ipants search for the term “water” and then looking for places on the displayed

map that came from the document “35 Bees”. The goal was that users would

look at the colour that was given to the “35 Bees” document and then look for

markers of that colour on the map. Of all of the features provided by ATLAS,

the text search view takes the longest to load, taking several minutes to scan

all of the returned documents for place names. Several users proceeded to

click on the link to the “35 Bees” document rather than wait for this map to

load. One of the improvements planned for ATLAS in the future is the use of

spatial indexes. Spatial indexes will allow the system to know in advance the

places that are present in each document and therefore will not need to scan

each document that is retrieved and therefore there will no longer be such a

large delay for the map to be shown.

The spatial document search view was tested by having each participant

create a simple query of Tasmania, Australia by drawing a polygon around it.

They then clicked the “Search Area” button and were taken to a list of result

documents of which they were asked to write down the first 3. All participants

completed this task successfully, although those that had not used Google

Maps before required a small amount of assistance.

There was one minor aspect of the Greenstone system that proved to

have poor usability and confused several participants. After the user selects

“Browse” on the collection home page they are taken to a page that gives the

user options as to how they wish to browse the collection (shown in Figure

4.1). Several users were confused at the sight of this page, most of these con-

fused users did not realise the page was loaded and one user thought a table

was being loaded and so waited. There are two major contributing factors to

this problem, the first problem is that the page is mostly whitespace with only

a small strip of green along the top of the content area meant that several

users did not notice the options at the top of the page. The other contributing

factor is that the browsing options do not appear like links that can be clicked

104

Figure 4.1: The browsing method selection page.

on due to the fact the links are not underlined like regular links. As the rest of

the links in the system are underlined this could be considered to be violating

Web-Wide conventions which is listed as one of the top 8 usability problems

[NL06].

How helpful did participants find the fisheye and column views?

The fisheye view was tested by having the participants navigate to a long doc-

ument the activate the fisheye view. Users were then asked to give a rough

estimate of how many highlighted place names there were in the document.

Although the system had found 49 place names in the text, user’s answers var-

ied significantly. The lowest estimate was 12 — with the next lowest estimate

being 20 — and the highest estimate was 60, this large variation is a clear

indication that there were some usability problems with the fisheye view.

The most obvious reason that there was such a varied array of estimates was

that several participants did not realise that there was more to the document

than what was initially shown when the fisheye view was presented to them.

They counted the places they could currently see and assumed that it was the

105

whole document. This is a fair assumption for these participants to make as it

is common for user interfaces that make use of the fisheye concept to attempt

to display all of the content at once (such as the FishNet system discussed

in Section 2.2.1). Whether or not to attempt to fit all of the text into the

one area was something that was considered when the fisheye view was first

developed. It was decided against due to the size of the text needing to be so

small for long documents that it was almost invisible due to the smaller font

size causing smaller line lengths as the number of characters per line remained

the same.

Another reason contributing to the poor usability of the fisheye was that

users easily got lost when scrolling the document as the document and the

fisheye focus moved at the same time, making it difficult for them to remember

where they were up to so that they could continue counting place names. One

of the questions asked in the survey was “How easy did you find the fisheye view

to use compared to viewing the text normally? What did you like/dislike about

it?”, the responses to this question included remarks such as “Made scrolling

confusing and ineffective ...”, “I liked it because it was different but disliked it

because it confused me” and “Had trouble with the Fisheye, I couldn’t get it

to do what I wanted it to do”.

Participants getting lost in the text when scrolling the fisheye view was

also reported by both Jakobsen and Hornbæk in their evaluation of fisheye for

source code [JH06] and Baudisch et al. with their evaluation of their FishNet

system which is a fisheye internet browser [BLH04]. This finding is particularly

problematic for the ATLAS system as, because documents are designed for

reading sequentially, having users able to get easily lost in viewing method

that was designed to increase document readability is counterproductive.

The column view was tested by having the participants choose column view

in same long document that the users had used the fisheye view. Participants

were then asked to locate three different place names in the text and write them

down. All participants completed this task easily after a brief explanation of

106

how it works. This view also received more positive remarks such as “Easy, its

logical for me to use”, “... I like to be able to see all the text at the same size

so I can scan over it easier” and “Column view was good. You could see how

much there was to read, and I found it easy to scroll through ...”. The only

negative comments were that it was “a bit daunting” and “difficult to skim

read”.

Whether or not the two alternative text display methods will actually be

used in practice remains unknown. Although this could have been asked as a

question in the questionnaire its results would not have been helpful due to

the limited amount of time each participant spent using each view. Ideally

participants would have spent at least a few hours using each view so that

they have a chance to fully realise the benefits and/or problems of each text

display method.

What improvements were suggested by participants?

One of the questions asked in the survey given to participants was “What

improvements would you suggest could be made to the system?”. Several

basic improvements were suggested such as:

• Centering the map on a place when its name is clicked on in the text.

• As the user browses through the “Choose correct place” move the marker

and centre the map on each place as they mouse over it.

• Put a “Loading” box over top of the document text when either the

column view or fisheye view is being loaded.

• Darker highlighting in fisheye (highlights are hard to see).

• Different colours for cities and countries.

• Smaller map size in comparison to the text.

• A place-specific menu option that takes the user to a page about that

place (i.e., a Wikipedia page).

107

• In the “Choose correct place” submenu have the currently selected place

as a disabled option the top of the list.

One of the more advanced suggestions was extending the gazetteer to use

historical place names, such as those used by Smith and Crane in the Perseus

project’s historical digital library [SC01] or biblical place names so that places

can be found in documents relating to those eras. This would not be too

difficult to achieve in ATLAS, if the resources were available then they could

be easily added to both the place name recognition system and disambiguation

system and the place information retrieval system.

It was clear that some participants felt that dividing the screen in half for

the two sections was not the best way for the system to be arranged. Several

participants suggested either decreasing the size of the map (so that the text

area would be larger) or offering some way of resizing the map at will. Besides

the alternative text viewing methods — which are designed to make better use

of the small text area than the standard document view — another feature

that was considered during the development of the current ATLAS system was

the ability to turn either the map view or the text view on or off with buttons,

allowing either view to take up the full screen if necessary. This feature was not

implemented however as it was hypothesised that the alternative text viewing

methods would be adequate for resolving the problem of having a reduced area

for text. This research however suggests that this hypothesis may be false and

it is likely that either allowing users to hide one of the two main sections or

allowing the sections to be resized will be implemented into a future version

of ATLAS.

4.2 Place name disambiguation accuracy

As described in Section 3.3.5, ATLAS uses a scoring system to assist in the

disambiguation of places. As there are many place names in the world that

refer to more than one place it is necessary to calculate which of these places

108

is the best match for each ambiguous place name if it is to be marked on a

map.

Here we will experiment with the scoring procedure and evaluate its pre-

cision. We will not be evaluating the recall of the system as we have designed

the experiment so that the recall is 1.0 (meaning that the system will always

find all of the relevant place names). When the test data was prepared it was

set to only include places that were in the gazetteer, all places that were not

in the gazetteer were not included. This was done so that the results were not

negatively skewed due to gazetteer being insufficient. Also, all places that had

only one match in the gazetteer were also not included, this was so that the

results would not be positively skewed by these places that were impossible

for the system to define incorrectly. As test data we manually tagged five

Wikipedia pages, specifically the Australia (123 ambiguous places), Canada

(189 ambiguous places), Ireland (60 ambiguous places), South Africa (59 am-

biguous places) and the state of Washington (76 ambiguous places) pages.

There are four main parameters available to adjust in the scoring system,

each of which can be adjusted between 0 and 1. They are as follows:

• Partial child score percentage (PCS): Each time a place is located

in the text X is added to its score. This parameter adjusts how much of

X is also given to the parents of this place. For example, if “Hamilton” is

found in the text then all Hamiltons get X score added to their score, part

of X is then added to the parents of each Hamilton. If this parameter is

0 then none of X is added to the parent’s scores, if this parameter is 1

then all of X is added to the parent’s scores.

• Parent bonus limiting percentage (PBL): This parameter controls

what places are allowed to add part of their score to their children once

the initial scoring process has been completed. For a place to be allowed

to do this it must have a score close to that of the top scoring place.

If this parameter is 0 then only the top scoring place can add part of

its score to its children, if this parameter is 1 then places with a score

109

within 50% of the top scoring place are allowed to add part of their score

to their children.

• Parent bonus percentage (PB): This parameter determines how

much of a parent’s score is added to its children. If this parameter is

0 then none of its score is added, if this parameter is 1 then all of its

score is added.

• Indirect reference penalty percentage (IRP): This parameter con-

trols how much of a place’s score is removed if it is not directly referenced

in the text. For example, if “Hamilton” is mentioned in document text

but “Waikato” and “New Zealand” are not, then part of their scores are

removed. If this parameter is 0 then the place’s score is reduced to 0, if

the parameter is 1 then no score is removed.

The goal of this test was to ascertain what combination of parameters gave

the most accurate results. Each parameter was divided into six possible values

(0, 0.2, 0.4, 0.6, 0.8 and 1), each possible combination of these parameters was

tested for each document (1296 tests for each document) for a total of 6480

tests.

Of the 1296 possible combinations 56 produced the highest result of 98.62%,

meaning that it correctly disambiguated 500 of the 507 place names in the five

documents. The top scoring combinations are shown in Table 4.1. Three

combinations got the lowest score of 73.37% (meaning they correctly disam-

biguated 372 of the 507 place names), these are shown in Table 4.2.

The most obvious factor contributing to whether or not a combination is

successful is the value of the IRP parameter. As can be seen in Table 4.1, all

but one of the combinations has its IRP parameter set to 0, which means that

places that are not directly referenced in the text get their scores set to 0 in

the post-scoring adjustment procedure. On the other hand, the three lowest

scoring combinations had their IRP parameter set to 1.0, meaning that no score

was removed from places that were not directly mentioned in the adjustment

110

IRP PB PCS PBL # IRP PB PCS PBL
1 0.0 1.0 0.4 1.0 29 0.0 1.0 0.4 0.8
2 0.0 0.6 0.6 1.0 30 0.0 0.2 0.2 0.8
3 0.0 0.8 0.2 0.8 31 0.0 0.8 0.2 1.0
4 0.0 0.2 0.2 0.6 32 0.0 0.2 0.2 0.0
5 0.0 0.4 0.6 1.0 33 0.0 0.4 0.6 0.8
6 0.0 0.6 0.2 0.8 34 0.0 1.0 0.6 0.8
7 0.0 0.8 0.6 1.0 35 0.0 0.8 0.4 0.6
8 0.0 0.4 0.2 1.0 36 0.0 0.8 0.6 0.8
9 0.0 0.6 0.4 0.6 37 0.0 0.6 0.2 0.4

10 0.0 0.6 0.4 1.0 38 0.0 1.0 0.2 0.4
11 0.0 0.6 0.6 0.8 39 0.0 0.8 0.2 0.0
12 0.0 0.8 0.4 1.0 40 0.0 0.2 0.4 0.6
13 0.0 0.4 0.2 0.2 41 0.0 0.8 0.4 0.8
14 0.0 0.4 0.2 0.6 42 0.0 0.4 0.4 1.0
15 0.0 0.6 0.2 0.2 43 0.0 0.4 0.2 0.4
16 0.0 0.8 0.2 0.4 44 0.0 0.2 0.6 0.8
17 0.0 0.6 0.2 1.0 45 0.0 0.8 0.2 0.2
18 0.0 0.4 0.2 0.8 46 0.0 0.4 0.4 0.6
19 0.0 0.2 0.6 1.0 47 0.0 0.2 0.2 0.2
20 0.0 0.4 0.2 0.0 48 0.0 1.0 0.2 1.0
21 0.0 0.2 0.2 0.4 49 0.0 1.0 0.2 0.2
22 0.0 0.2 0.4 1.0 50 0.0 0.6 0.2 0.6
23 0.0 0.4 0.4 0.8 51 0.0 0.2 0.2 1.0
24 0.0 1.0 0.2 0.0 52 0.0 1.0 0.2 0.8
25 0.0 1.0 0.6 1.0 53 0.0 1.0 0.2 0.6
26 0.0 0.6 0.2 0.0 54 0.2 0.2 0.2 1.0
27 0.0 0.6 0.4 0.8 55 0.0 0.8 0.2 0.6
28 0.0 0.2 0.4 0.8 56 0.0 1.0 0.4 0.6

Table 4.1: The 56 top scoring combinations of the disambiguation system

scoring parameters (with 98.62% precision).

phase. This meant that the scores of these places could skew the results away

from the actual focus of the document, especially if the PBL parameter was

high (which it is in the three lowest scoring combinations).

The data suggests that the next most important parameter is the PCS

parameter. In the top scoring combinations it had an average value of 0.325

with a standard deviation of 0.155 and its values varied between 0.2 and 0.6.

With the lowest scoring combinations having an average PCS value of 1.0 it

is clear that having a low value for the PCS parameter that is above 20% is

important. A low PCS parameter means that only a small amount of the score

given to the places that match the located place name is given to its parents

111

IRP PB PCS PBL
1 1.0 0.4 1.0 1.0
2 1.0 0.2 1.0 0.8
3 1.0 0.2 1.0 1.0

Table 4.2: The three lowest scoring combinations of the disambiguation system

scoring parameters (with 73.37% precision).

PB PCS PBL
Average 0.593 0.325 0.661
Standard Deviation 0.288 0.155 0.323
Lowest value 0.2 0.2 0.0
Highest value 1.0 0.6 1.0

Table 4.3: Summary statistics of the PB, PCS and PBL parameters.

(a high value means that the same score is given to both the places and their

parents).

It is difficult to analyse the effect of the other two parameters due to there

being no clear pattern in their values. The average PB parameter value is 0.593

with a standard deviation of 0.288 and its values varied between 0.2 and 1.0.

The average PBL parameter value was 0.661 with standard deviation of 0.323

and its values varied between 0.0 and 1.0. With such central values combined

with high standard deviations it is difficult to infer anything from these values

on their own (these values are summarised in Table 4.3).

To see if some correlation could be found between the PB and PBL param-

eters and the PCS parameters we grouped the combinations into three groups

by their PCS values (0.2, 0.4 and 0.6). The PB parameter continued to vary

across the groupings with averages of 0.587, 0.600 and 0.600 and standard de-

viations of 0.292, 0.293 and 0.298 respectively (summarised in Table 4.4). The

PBL parameter however, showed a strong correlation between it and the PCS

parameter with averages of 0.516, 0.800 and 0.900 and standard deviations of

0.353, 0.169 and 0.105 respectively (summarised in Table 4.5). It clear that, as

the PCS parameter is increased, the PBL parameter should also be increased.

If however the value of the PCS parameter is lower then the specific value of

the PBL parameter is less important. This data implies that as the parents are

112

PCS value 0.2 0.4 0.6
Number of values 31 15 10
Average 0.587 0.600 0.600
Standard deviation 0.292 0.293 0.298
Lowest value 0.2 0.2 0.2
Highest value 1.0 1.0 1.0

Table 4.4: The statistics for the PB parameter when grouped by the PCS

parameter.

PCS value 0.2 0.4 0.6
Number of values 31 15 10
Average 0.516 0.800 0.900
Standard deviation 0.353 0.169 0.105
Lowest value 0.0 0.6 0.8
Highest value 1.0 1.0 1.0

Table 4.5: The statistics for the PBL parameter when grouped by the PCS

parameter.

given a larger portion of their children’s score that the effect that the parents

have on the overall results should be increased.

In summary, it has been found that the most important factor contributing

to the precision of the place name disambiguation system used in ATLAS is

the value of the IRP (Indirect Reference Penalty) parameter. If the parameter

was its lowest possible value of 0 then the system performed at its best. If, on

the other hand, the value was 1 then the system performed at its worst. The

IRP parameter controls how much of a places score is removed if it has not

been explicitly mentioned in the document. This finding suggests that places

that are not explicitly mentioned should have their score completely removed.

The next most important parameter is the PCS (Partial Child Score) pa-

rameter which — along with the IRP parameter being set to 0 — must be set

to a low value such as 30%. This means that, for example, if “Christchurch”

is mentioned in a document then Canterbury will recieve 30% of the score

given to Christchurch and New Zealand will recieve 30% of the score given to

Canterbury.

The other two parameters have no clear direct relation to the precision of

113

the system, however the PBL (Parent Bonus Limiting) parameter showed a

strong correlation between it and the PCS parameter, revealing that, if the

PCS parameter was high (i.e., around 60%) then PBL parameter should also

be high (i.e., around 90%, which results in places that are within 45% of the top

scoring place adding a percentage of their scores to their children) to maintain

high precision in the system.

4.3 Gazetteer trie efficiency

In this section we evaluate the efficiency of the gazetteer trie structure dis-

cussed in Section 3.3.4. The top priority of the gazetteer is achieving fast place

name recognition with a secondary goal of maintaining an acceptable level of

memory usage. Four methods of organising the trie structure are evaluated,

the are as follows:

• Full node trie: Every node in this structure has a full set of about

65,000 children nodes (one for each possible Unicode character). This

structure is designed to trade memory usage for speed.

• Hash table trie: Every node contains a hash table that maps the

input characters to their corresponding child nodes. This is effectively

the opposite of the full node trie as it trades speed for memory usage.

• Hybrid node trie: This trie uses a full set of nodes for English char-

acters and a hash table for other characters.

• Modified hybrid trie: This trie uses a full set of nodes for all characters

at the root node and uses hybrid nodes for all other nodes. This modifi-

cation was made upon analysing the distribution of Unicode characters

in the hybrid node trie. It was noticed that the root node had a signif-

icantly higher concentration of Unicode nodes that any other node(858

Unicode nodes, with the next most concentrated node having 42 Unicode

nodes).

114

Method Memory (bytes)
Full node N/A
Hash table 208,349,680
Hybrid node 247,465,472
Modified hybrid node 247,682,968

Table 4.6: Memory usage of the various trie structures.

Hash Table Hybrid Modif ied Hybrid
0

50

100

150

200

250
M

eg
ab

yt
es

Figure 4.2: Data structure memory usage in bytes.

The memory consumed by each of the structures is shown in Table 4.6

and is graphed in Figure 4.2. We were unable to get a memory reading for

the full node method as the Java Virtual Machine (JVM) threw an exception

indicating that it was out of memory — despite us increasing the maximum

heap size of the JVM from 64MB to 2048MB. The exception was thrown before

the structure had even loaded 10,000 entries (out of the required 300,000+

entries), confirming our earlier hypothesis that building a full trie structure

for Unicode was infeasible.

To test the speed of the different structures we created a test file from the

names of all of the places in the gazetteer. This file was then fed through each

115

Method Time (ms)
Full node N/A
Hash table 532
Hybrid node 493
Modified hybrid node 491

Table 4.7: Task completion time for each of the data structures.

Hash Table Hybrid Modif ied Hybrid
0

100

200

300

400

500

600
M

ill
is

ec
on

ds

Figure 4.3: The speed of each of the structures in milliseconds.

data structure as if it were a document, the time it took the structure to locate

all of the places was recorded. Places were not scored or disambiguated as this

is not the purpose of this data structure. The test was repeated 100 times

for each data structure and then averaged, the results of this experiment are

shown in Table 4.7 and illustrated in Figure 4.3. The experiment was run on

a Linux machine with a 3.0GHz Intel dual-core CPU and 2.0GB of RAM.

Again we were unable to measure the speed of the full trie structure due

to its inefficient use of resources causing an out of memory exception to be

thrown by the JVM. It is likely that it would have been the fastest of all of

these methods but far too inefficient in its usage of memory to make it worth

116

Method Time (ms)
Hash table 1297
Hybrid node 1346
Modified hybrid node 1267

Table 4.8: Time taken for each of the data structures to parse the Unicode-

oriented data set.

Hash Table Hybrid Modif ied Hybrid
0

200

400

600

800

1000

1200

1400

1600
M

ill
is

ec
on

ds

Figure 4.4: The time taken for each structure to parse the Unicode-oriented

data set (in milliseconds).

considering.

Interestingly the hybrid structure and the modified hybrid structure per-

formed equally well which was unexpected. We suspected that the data set

being used did not contain enough Unicode characters to truly highlight the

potential difference in the two structures. For this reason we created a second

data set but this time only the names that contained at least one Unicode

character were included. To get a more accurate result we also duplicated the

data set three times. The experiment was repeated and the new results are

shown in Table 4.8 and illustrated in Figure 4.4.

117

As expected, this new data set shows more clearly the benefits of the mod-

ified hybrid structure. The modified hybrid structure performs almost 6% bet-

ter than the unmodified hybrid structure. Surprisingly the hash table structure

performed better than the unmodified hybrid structure. This performance dif-

ference is likely due to the extra calculations required by the unmodified hybrid

structure to compensate for when a Unicode character is recieved. These cal-

culations are not necessary in the hash table structure as it effectively treats

all characters as Unicode characters and does not need to make a distinction.

Chapter 5

Conclusion

In this chapter we summarise the development of ATLAS and discuss the re-

sults of the evaluations that were performed. We then discuss several aspects

of the future development of the system including: the minor improvements

that will be made to the system after the user study evaluation, the improve-

ments that could be made to the system if the appropriate resources were

made available and finally, the areas of research that are still to be explored.

5.1 Contributions

The usefulness of both digital libraries and digital maps is unquestionable,

and in this thesis we have explored the combination of the two technologies

with a goal of using digital maps to enhance the content provided by digital

libraries. As part of this research we designed the mAp-inTegrated digitaL

librAry System or ATLAS. The contributions that are made by this research

include:

• A user friendly system to enhance the content provided by digital li-

braries by automatically providing a map for their content.

• A real-time place recognition and disambiguation system to mark places

in documents on digital maps.

• A fast and relatively accurate place name disambiguation method.

119

• Exploration into the usefulness and effectiveness of digital maps com-

bined with a digital library.

• Evaluating the efficiency of several data structures used to quickly locate

terms in text.

• An investigation into the effectiveness of two alternative methods for

displaying text in a limited space, as well as replicating the findings of

two separate research projects.

ATLAS was designed to provide additional functionality to digital libraries

through the use of an automatic place recognition and disambiguation system

combined with digital maps. With these two technologies ATLAS is able to

automatically and efficiently scan documents for references to cities, geograph-

ical regions and countries and then mark those places in the document and

also on a digital map.

ATLAS also provides functionality that allows users to interact with the

places marked on the map and the places marked in the text. This is achieved

through the use of place-specific menus that allow users to perform tasks such

as centering the digital map viewport over the selected place, highlighting

references to a place in the text or change the actual place that a place name

refers to (e.g., Changing “Cambridge” to refer to Cambridge, England rather

than Cambridge, New Zealand), which in turn changes the location of the

marker on the map.

As well as extending the functionality of the standard document view,

ATLAS is also capable of displaying the places from multiple documents at

once. Differentiating between places from different documents is achieved by

giving each document a colour and then displaying the places present in that

document in that colour on the map. Each document’s set of places can be

turned on and off at will to make it easier to see the results from a particular

document.

120

Finally, ATLAS also provides its own method for searching for documents

by allowing users to query an area on a map to find documents relating to that

area. This search method currently uses the text indexes already present in

the digital library to perform this search by creating a text query made of all

of the places in the area. Therefore it judges the relevance of documents based

on factors such as search term frequency and clustering which is not ideal for

spatial searching. Although we have not performed any formal research on

the accuracy of this spatial searching method it appears to provide reasonably

accurate results.

Integrated into ATLAS are several free and/or open source resources. The

digital library used for development was Greenstone 3, which is an open source

system developed at the University of Waikato in New Zealand. As ATLAS is

designed to be a digital library add-on — rather than a complete system —

most of the user interface is provided by Greenstone. Google Maps was used

to provide the digital mapping services for the system as it is both powerful

and familiar to many users. The World Gazetteer, which is a free gazetteer

containing over 300,000 entries, was used to provide the geographic information

for the system. The GATE ANNIE module was used to improve the accuracy

of the place name recognition system by tagging each word with its part-of-

speech classification. A PostGIS-enabled PostgreSQL database was used as

the place information retrieval system and the spatial searching capabilities of

ATLAS.

The place name recognition and disambiguation system used a customised

trie data structure for place name recognition and a scoring system was used

for place name disambiguation. These systems were designed to work fast

enough to parse documents in real-time.

Two alternative text displaying methods were explored as a way to max-

imise the small amount of space allowed for the document text. The fisheye

view allowed users to see more text at once by shrinking the font size in areas

that the user was not focusing on. The column view arranges the text into

121

multiple columns as well as reducing the font size to maintain a reasonable

number of characters per line.

Results from the usability testing were generally positive, however, several

participants found the fisheye view difficult to use due to issues with scrolling.

This finding is consistent with other research done on fisheye interfaces in

different contexts. The column view was received more positively than the

fisheye view with all participants able to complete the task in which it was

used in the user test. Participant’s comments indicated that the column view

was logical to use and was easy to scroll through.

To evaluate the accuracy of the system we manually tagged five pages from

Wikipedia. We then experimented with combinations of four parameters that

are adjustable in the disambiguation system of ATLAS to find what combi-

nation(s) gave the best results. Upon analysis of these results it was found

that the most important factor in correct place disambiguation with the AT-

LAS system is the removal of places that are not directly referenced in the

document. Another important factor is to give the parents of places that are

directly referenced in the document a small amount of the score given to their

children.

Although the system has produced a high precision value it is important to

realise that many documents are not as place-oriented as the Wikipedia articles

used in the experiment and that, as the disambiguation scoring system relies

on there being several place references in the text it will not perform as well

if these references are more limited. Further testing is needed to evaluate the

performance of the disambiguation system on smaller articles and to find out if

the ideal combination of parameters is different for documents of this nature.

The final area of the system that was evaluated was the efficiency of the trie

structure used as part of the place name recognition system. Three different

structures were evaluated in terms of their memory usage and speed. Although

differences between the structures was minor it was decided that the modified

hybrid trie structure was the best option for ATLAS 4.3.

122

5.2 Future work

Although the ATLAS system has proven itself to be a useful addition to the

Greenstone system there are still many aspects of it that are still under de-

velopment. Features such as the spatial document search, the extended text

searching functionality and the alternative text viewing methods are still in

their infancy and, although they accomplish what is required of them, there

are still many avenues of research yet to be explored. Other parts of the system

are further developed and as a result are likely to only receive minor adjust-

ments in future development. These include the place name recognition and

disambiguation system and the system’s page layout and user interface. These

aspects of the system were deemed more important and therefore have been

the main focus of the research.

Future research into the spatial document searching capabilities of ATLAS

is likely to focus on two main areas: making spatial searching easier and more

intuitive, and increasing the accuracy of the results that are returned. Re-

searching into either of these two areas will first require research into spatially

indexing documents. As described in Section 3.3.7 ATLAS makes use of the

text indexes in Greenstone to perform spatial document searching. Although

this method performs reasonably well, using spatial indexes rather than text

indexes would allow the returned results to be more accurate. For example, if

a user creates a spatial query that includes Cambridge, New Zealand then the

text indexes will find documents that frequently mention “Cambridge” which

is likely to be undesirable as most documents mentioning “Cambridge” will be

referring to Cambridge in England. Spatial indexes will resolve this problem

as it will be possible to only find documents that mention Cambridge in New

Zealand.

Creating spatial indexes will also allow improvements in the user interface

of the spatial document searching. For example, as discussed in Section 2 one

of the features that would likely improve how intuitive the spatial searching

interface is would be to allow users to actually click the countries, regions or

123

cities that they wish to find documents about. This is not efficiently possible

without using spatial indexes as, if the user chooses to make their query region

the United States for example, then the only way to search for related docu-

ments using text indexes is to create a text query that contains every place in

the USA (over 25,000 places) which is impractical.

The text search view will also benefit from creating spatial indexes. Cur-

rently the text search view extension is not very effective due to the time the

system requires to scan each of the documents that are returned from the text

search to find what places are mentioned within them (depending on the num-

ber of the returned documents it can take several minutes). Spatial indexes

will remove the need to scan these documents and therefore the map displaying

the places found in the search result documents will be able to be displayed

almost instantly.

One of the disadvantages of the fisheye text display method is that there is

a large amount of unused whitespace above and below the focus area. In the

fisheye source code editor discussed in Section 2.2.1 this whitespace was used

to display information relevant to the user’s current context. Using the context

view for locating terms related to the current term of interest was proven to be

a useful feature in the fisheye source code editor study. Taking this concept and

applying it to the ATLAS fisheye view could provide some useful functionality

for the users. For example, when a user selects a place name, all other lines

in the text that mention that place within the document could have their font

size increased (if they are in the context area), allowing the user to easily see

where else in the document this particular place is mentioned.

Another area that may be explored in future development is using the

disambiguation calculation performed by the ATLAS system to add metadata

to documents stating what geographic areas are prominent in the document.

This would be done in a similar manner to the Web-a-Where system [AHSS04].

The current disambiguation calculation effectively works out what are the

main regions that are being discussed in a document so that it can effectively

124

disambiguate the place names, but this information could also be used for

metadata.

References

[AHRW76] J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer. A

land use and land cover classification system for use with remote

sensor data. Government Printing Office, Washington, DC US

Geological Survey, 1976.

[AHSS04] Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer. Web-a-

where: geotagging web content. In SIGIR ’04: Proceedings of the

27th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 273–280, New York,

NY, USA, 2004. ACM.

[Bed00] Benjamin B. Bederson. Fisheye menus. In UIST ’00: Proceedings

of the 13th annual ACM symposium on User interface software

and technology, pages 217–225, New York, NY, USA, 2000. ACM.

[BLH04] Patrick Baudisch, Bongshin Lee, and Libby Hanna. Fishnet, a fish-

eye web browser with search term popouts: a comparative evalua-

tion with overview and linear view. In AVI ’04: Proceedings of the

working conference on Advanced visual interfaces, pages 133–140,

New York, NY, USA, 2004. ACM.

[COH99] Michael G. Christel, Andreas M. Olligschlaeger, and Chang

Huang. Interactive maps for a digital video library. Multime-

dia Computing and Systems, International Conference on, 1:9381,

1999.

[DK97] Mary C. Dyson and Gary J. Kipping. The legibility of screen for-

mats: Are three columns better than one? Computers & Graphics,

21(6):703–712, 1997. Graphics in Electronic Printing and Publish-

ing.

[Dys04] Mary Dyson. How physical text layout affects reading from screen.

Behaviour and Information Technology, 23:377–393(17), 2004.

[Fur86] G. W. Furnas. Generalized fisheye views. SIGCHI Bull., 17(4):16–

23, 1986.

126

[Fur91] George W. Furnas. New graphical reasoning models for under-

standing graphical interfaces. In CHI ’91: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages

71–78, New York, NY, USA, 1991. ACM.

[Fur99] G. W. Furnas. The fisheye view: a new look at structured files.

Readings in information visualization: using vision to think, pages

312–330, 1999.

[GCY92] William A. Gale, Kenneth W. Church, and David Yarowsky. One

sense per discourse. In HLT ’91: Proceedings of the workshop

on Speech and Natural Language, pages 233–237, Morristown, NJ,

USA, 1992. Association for Computational Linguistics.

[Gra93] R. Scott Grabinger. Computer screen designs: Viewer judgments.

Educational Technology Research and Development, 41(2):35–73,

1993.

[HAHR93] Xuedong Huang, Fileno Alleva, Mei-Yuh Hwang, and Ronald

Rosenfeld. An overview of the sphinx-ii speech recognition sys-

tem. In HLT ’93: Proceedings of the workshop on Human Language

Technology, pages 81–86, Morristown, NJ, USA, 1993. Association

for Computational Linguistics.

[JH06] Mikkel Rønne Jakobsen and Kasper Hornbæk. Evaluating a fisheye

view of source code. In CHI ’06: Proceedings of the SIGCHI con-

ference on Human Factors in computing systems, pages 377–386,

New York, NY, USA, 2006. ACM.

[JH09] Mikkel Rønne Jakobsen and Kasper Hornbæk. Fisheyes in the

field: using method triangulation to study the adoption and use

of a source code visualization. In CHI ’09: Proceedings of the 27th

international conference on Human factors in computing systems,

pages 1579–1588, New York, NY, USA, 2009. ACM.

[Lar96] Ray R. Larson. Geographic information retrieval and spatial

browsing. In Geographic information systems and libraries: pa-

trons, maps, and spatial information [papers presented at the 1995

Clinic on Library Applications of Data Processing, April 10-12,

1995], pages 81–124. Graduate School of Library and Information

Science, University of Illinois at Urbana-Champaign, 1996.

[MMG99] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity

recognition without gazetteers. In Proceedings of the ninth con-

ference on European chapter of the Association for Computational

127

Linguistics, pages 1–8, Morristown, NJ, USA, 1999. Association

for Computational Linguistics.

[Nie94] Jakob Nielsen. Enhancing the explanatory power of usability

heuristics. In CHI ’94: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 152–158, New York,

NY, USA, 1994. ACM.

[NL06] Jakob Nielsen and Hoa Loranger. Prioritizing Web Usability. New

Riders, Berkeley, California, 2006.

[PKS+06] Bruno Pouliquen, Marco Kimler, Ralf Steinberger, Camelia Ignat,

Tamara Oellinger, Ken Blackler, Flavio Fuart, Wajdi Zaghouani,

Anna Widiger, Ann-Charlotte Forslund, and Clive Best. Geocod-

ing multilingual texts: Recognition, disambiguation and visualisa-

tion. CoRR, abs/cs/0609065, 2006.

[PSIDG04] Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, and Tom

De Groeve. Geographical information recognition and visualiza-

tion in texts written in various languages. In SAC ’04: Proceedings

of the 2004 ACM symposium on Applied computing, pages 1051–

1058, New York, NY, USA, 2004. ACM.

[RM93] George G. Robertson and Jock D. Mackinlay. The document lens.

In UIST ’93: Proceedings of the 6th annual ACM symposium on

User interface software and technology, pages 101–108, New York,

NY, USA, 1993. ACM.

[SB92] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of

graphs. In CHI ’92: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 83–91, New York, NY,

USA, 1992. ACM.

[SC01] David A. Smith and Gregory Crane. Disambiguating geographic

names in a historical digital library. In ECDL ’01: Proceedings

of the 5th European Conference on Research and Advanced Tech-

nology for Digital Libraries, pages 127–136, London, UK, 2001.

Springer-Verlag.

[SWRG02] Bongwon Suh, Allison Woodruff, Ruth Rosenholtz, and Alyssa

Glass. Popout prism: adding perceptual principles to

overview+detail document interfaces. In CHI ’02: Proceedings of

the SIGCHI conference on Human factors in computing systems,

pages 251–258, New York, NY, USA, 2002. ACM.

128

[WP94] Allison Gyle Woodruff and Christian Plaunt. Gipsy: automated

geographic indexing of text documents. J. Am. Soc. Inf. Sci.,

45(9):645–655, 1994.

[ZWS+05] Wenbo Zong, Dan Wu, Aixin Sun, Ee-Peng Lim, and Dion Hoe-

Lian Goh. On assigning place names to geography related web

pages. In JCDL ’05: Proceedings of the 5th ACM/IEEE-CS joint

conference on Digital libraries, pages 354–362, New York, NY,

USA, 2005. ACM.

Appendix A

User study material

This Appendix contains material relating to the user study as described in 4.1,

including:

• The Task Sheet given to participants.

• The Participant Information Sheet.

• The Participant Research Consent Form.

• The letter from the School of Computing and Mathematical Sciences

Ethics Committee granting permission for the study.

Task Sheet
Task 1

In the MGPP demo collection use the browsing features to navigate
to the document called ““Farming snails 1: Learning about snails;
Building a pen; Food and shelter plants””.

a. What is the only highlighted place name in the text?

b. Put your mouse cursor over the place name and click “Choose correct place”, how
many other places have this place name?

c. In what country has the marker been placed on the map?

Task 2

Navigate back to the document selection page and choose the
document called ““Butterfly Farming in Papua New Guinea””. Go to
the section labelled ““5 Application to Other Nations””.

a. Costa Rica is highlighted near the top of the page, use the tools available to locate
Costa Rica. What two countries border Costa Rica?

b. Near the bottom of the document San Francisco is highlighted. The scoring system
has made a mistake and scored San Francisco in Costa Rica higher than San Francisco
in the United States of America. Use the “Choose correct place” menu option to
choose the correct San Francisco. What state is San Francisco in? Is San Francisco on
the east or west side of the USA?

c. Locate Australia on the map. Click on it's marker (located roughly at the centre).
What is the population shown in the bubble? What are the coordinates shown?

Task 3

Navigate back to the document selection page and choose the
document called ““Little Known Asian Animals With a Promising
Economic Future””. Go to the section labelled ““Introduction””.

a. Indonesia is highlighted several times near the top of the page. Bring up the menu
for one of them and choose “Highlight this place in text”. How many times does
“Indonesia” appear in the text?

Task 4

Navigate back to the home page of the MGPP Demo collection and
choose "Spatial Search".

a. Draw a box around Tasmania (below Australia) and then click "Perform Search".
What are the first three documents listed in the results?

Task 5

Navigate back to the home page of the MGPP Demo collection and
choose "Text Search".

a. Enter "Water" into the query area and click the search button. Name a country that
has a reference in the document "35 bees".

Task 6

Navigate back to the document selection page and choose the
document called ““The Courier - N°158 - July - August 1996 Dossier
Communication and the media - Country report Cape Verde””. Click
"Meeting Point" in the table of contents and then click ““Robert
Ménard, Director of 'Reporters sans frontières””.

a. Choose Fisheye from the text view selector at the top of the document. Move up
and down the document to understand how it works. Using the fisheye view give a
rough estimate of the number of highlighted place names in the text.

b. Choose Column View from the text view selector at the top of the document.
Browse for a while to understand how it works. What are the names of three of places
in the document?

Task 7

Please complete the following survey:

a. Do you think that having a map to show where places are located is helpful when
reading documents? Why?

b. How easy was it to use the features available to find the place you were looking for
on the map?

c. How easy did you find the fisheye view to use compared to viewing the text
normally? What did you like/dislike about it?

d. How easy did you find the column view to use compared to viewing the text
normally? What did you like/dislike about it?

e. What improvements would you suggest could be made to the system?

Participant Information Sheet

Ethics Committee, School of Computing and Mathematical Sciences

Project Title
Integrating Interactive Digital Maps into a Digital Library

Purpose
This research is designed to test the design and usefulness of the digital-map-integrated digital library
program created by the researcher. This research will be used to evaluate the software in the
Master's thesis of the researcher.

What is this research project about?
This research is about exploring the combination of digital library software and digital mapping
software. It aims to enhance digital library content by allowing users to better visualize the places
mentioned in the digital documents and to perform tasks such as:
• Using spatial searching to find documents relating to a particular area.
• Use digital-map-enhanced searching to see at a glance the places related to each
search result.

What will you have to do and how long will it take?
The researcher will require you to complete a series of tasks using the program that the
researcher has designed. These tasks are designed to test all aspects of it's functionality and
should take about 10 to 15 minutes to complete. You may be video recorded while you
complete the tasks. You will then be asked to complete a short survey questionnaire that will
ask your opinions on what you have tested, this is aimed at discovering how effective the
program is at doing what it is designed to do and how useful it is. The survey should take
about 5 to 10 minutes to complete.

What will happen to the information collected?
The information collected will be used by the researcher to evaluate the software as part of the
Master's in Science thesis being written by the researcher. It is possible that articles and
presentations may be the outcome of the research. Only the researcher and the supervisor of the
researcher will be privy to the notes, documents and recordings. Afterwards, notes, documents and
recordings will be transferred to the Waikato SCMS Data Archives to be destroyed on the 1st of March
2020. No participants will be named in the publications and every effort will be made to disguise their
identity.

Declaration to participants
If you take part in the study, you have the right to:
· Refuse to perform a task.
· Refuse to answer any questions in the questionnaire.
· Ask any further questions about the study that occurs to you during your participation.

· Be given access to a summary of findings from the study when it is concluded.

Who’s responsible?
If you have any questions or concerns about the project, either now or in the future, please feel free to
contact either:

Researcher:
Samuel John McIntosh
Address: 18 Morrinsville Road, Hillcrest, Hamilton
Mobile: (027) 343 3587
Email: sjm84@waikato.ac.nz

Supervisor:
David Bainbridge
Phone: (07) 838 4407
Email: davidb@cs.waikato.ac.nz
Address: Department of Computer Science

University of Waikato
Private Bag 3105, Hamilton

Research Consent Form

Ethics Committee, School of Computing and Mathematical Sciences

Integrating Interactive Maps into a Digital Library

Consent Form for Participants

I have read the Participant Information Sheet for this study and have had the details of the
study explained to me. My questions about the study have been answered to my satisfaction, and I
understand that I may ask further questions at any time.

I also understand that I am free to withdraw from the study at any time, or to decline to answer any
particular questions or complete any tasks in the study. I understand I can withdraw any information
I have provided up until the researcher has commenced analysis on my data. I agree to provide
information to the researchers under the conditions of confidentiality set out on the Participant
Information Sheet.

I agree to participate in this study under the conditions set out in the Participant Information Sheet.

Signed: ___

Name: ___

Date: ___

Additional Consent as Required

I agree / do not agree to being video recorded while completing the given tasks.

Signed: ___

Name: ___

Date: ___

Researcher’s Name and contact information:
Samuel John McIntosh
Address: 18 Morrinsville Road, Hillcrest, Hamilton
Mobile: (027) 343 3587
Email: sjm84@waikato.ac.nz

Supervisor's Name and contact information:
David Bainbridge
Phone: (07) 838 4407
Email: davidb@cs.waikato.ac.nz
Address: Department of Computer Science, University of Waikato, Private Bag 3105,

Hamilton

