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Abstract

With supervisory control theory it is possible to de-
scribe controllers which influence the behaviour of a
system by disabling controllable events. But some-
times it is desirable to have a controller which not
only disables controllable events but also chooses one
among the enabled ones. This event can be inter-
preted as a command given to the plant. This idea
is formalized in the concept of an implementation,
which is a special supervisor, enabling at most one
controllable event at a time. In this paper, some
useful properties are introduced, which ensure, when
met, that each implementation of a given DES is non-
blocking. The approach is applied to a simple batch
process example.

1 Introduction

Discrete-event system (DES) theory [RW89, Won99,
CL99] provides a framework for describing and ana-
lyzing the behaviour of asynchronous controllers and
their environment. The environment (also called
plant) is modeled as a generator of a formal language
over an alphabet of events. An event can either be
controllable or uncontrollable. The control feature is
represented by the fact that controllable events can
be disabled by a so-called supervisor. The general
problem of control theory is to find a supervisor such
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that the closed loop behaviour of environment and
supervisor meets some specifications.

When implementing these designs in practice it is
sometimes desirable to have a controller which not
only disables controllable events, but also chooses ex-
actly one among the set of enabled controllable events
which are also physically possible in the plant. This
is useful, for instance, in cases where the control-
lable events chosen by the controller are interpreted
as commands for the plant. This setting has been
investigated for optimization purposes in [MCK99].
There, an algorithm for synthesizing an optimal con-
troller, i.e. a controller with minimum cost for reach-
ing a marked state from any given state, is intro-
duced.

In our work, arbitrary controllers with unique con-
trol action selection are considered in order to get
an easily implementable model. Optimizitions of any
kind may or may not be used in order to select the
desired controller. The problem whith this approach
is that a special controller may be blocking even if
the given abstract system is nonblocking.

Consider a system with two machines which can be
started with controllable events start; and starty and
finish their work with uncontrollable events finish;
and finishy. Assume further that we want to ensure
that only one machine is working at a time. The
controlled system is shown in Figure 1.

In order to implement a controller which actually
starts the machines it is not sufficient to disable con-
trollable events. In the case that no machine is work-
ing (state al), a choice must be taken which machine
should be started next.

Formally, such a controller can be described as
a special supervisor, called an implementation, en-
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Figure 1: A simple implementation-dependent DES.

abling at most one controllable event at a time. Possi-
ble implementations for the DES given in Figure 1 are
the supervisor which always disables start; in state al
or the supervisor which disables start, at the begin-
ning and after the occurrence of finishy and disables
start; after the occurrence of finish;.

Assume that state a3 is the only marked state
of the system. Then, the given abstract system
is nonblocking. Now consider the implementation
which always disables start,. In this case the marked
state cannot be reached, and the implementation is
blocked. Beside this fact, running only one of the
two machines may not be the desired behaviour of
the implemented system. It is necessary to refine the
model in order to restrict the set of possible imple-
mentations.

In this paper, some properties are introduced,
which, when checked for the model, can help finding
parts of the design which should be refined further.
On the other hand, if the properties are met by a
DES, then every implementation of the DES is non-
blocking. Code for a nonblocking controller can then
be generated easily, choosing any implementation.

This paper is organized as follows. Section 2 gives a
short introduction to supervisory control theory. The
concept of implementation is introduced in Section 3.
In Section 4, properties are introduced which ensure
that every implementation is nonblocking. The ap-
proach is applied to a simple batch process example
in Section 5. Conclusions are formulated in Section 6.

2 Supervisory Control Theory

In this section we summarize basic notations of
the supervisory control theory introduced by Ra-
madge and Wonham. For more information see
[RW89, Won99, CL99].

2.1 Languages

An alphabet is a finite set of symbols. For an al-
phabet ¥, let ¥* denote the set of all finite strings
(or words) of the form o103 ...0k, where o; € T
for 1 < ¢ < k, including the empty string €. A lan-
guage over Y. is any subset £ C ¥*. For s € ¥*, we
say that ¢t € X* is a prefix of s, and write ¢t C s, if
s = tu for some u € X*. The prefiz-closure L of a
language £ C ¥* is the set of all prefixes of strings
in £,ie. L= {t € X*|tCsforsomese L} The
left quotient of a language £ C ¥* by a word s € X*
is defined by £ /s = {t € £* | st € L }. The left quo-
tient describes the possible continuations of a word
in a language.

The Myhill-Nerode equivalence of the language £ C
¥* is an equivalence relation Nerode(£) C ¥* x X©*
defined as s = t mod Nerode(£) if and only if £ /s =
L /t. The Myhill-Nerode equivalence is known to be
a right congruence on X*, i.e. for all s,¢,u € ¥* such
that s =t mod Nerode(L) we have that su = tu mod
Nerode(L).

2.2 Discrete-Event Systems

Discrete-event systems are dynamic systems that
evolve in accordance with the abrupt occurrence of
physical events. Such systems generally are discrete
in time and state space, often asynchronous, and typ-
ically nondeterministic.

A discrete-event system (DES) is modeled as a gen-
erator of two formal languages over the same alpha-
bet. Formally, it is a tuple D = (%, £, £,,) where ¥
is an alphabet of events, £ is a prefix-closed language
over ¥, and £, C L is another language over X,
called the marked language. The language £ de-
scribes all possible behaviours of D, while the marked
language of a DES is used to describe completed
tasks; it represents a set of words which we always
want to be reachable by any behaviour. If the sys-
tem executes a word in the behaviour which cannot
be completed to a string of the marked behaviour, it
is considered to be blocked. More formally, a DES
D= (%,L,L,,) is said to be nonblocking if L., = L,
otherwise D is said to be blocking. In other words, we
can say D is nonblocking if for all s € £ there exists



t € ¥* such that st € L,,.

A DES can also be expressed as a generator, for-
mally a tuple G = (Q, %, 0, go, @), where X is a fi-
nite alphabet of events as above, () is the state set (at
most countable), §: Q x ¥ — @ is the (partial) tran-
sition function, qo is the initial state, and @,, C @ is
the subset of marker states. The languages associated
with G are £ (G) and L, (G). The language £ (G) is
defined as the set of all strings of events correspond-
ing to sequences of state transitions leading from the
initial state to any state of G. The marked language
Ly, (G) is the set of all strings of events corresponding
to sequences of state transitions leading from the ini-
tial state to a marked state. Here, G is another repre-
sentation for the DES D = (X, L (G), L, (G)). Tran-
sition graphs are graphical representations of these
generators for describing examples used in this pa-
per.

Later we need the concept of the Myhill-Nerode
equivalence relation Nerode(D) over a DES D =
(%, L, L,,) which is formally defined as Nerode(D) =
Nerode(£) N Nerode(L,,,)-

2.3 Supervisors

The general problem of control theory consists of
finding a supervisor influencing the behaviour of a
given system in such a way that it meets the con-
trol objectives. A supervisor can only enable or
disable controllable events. Uncontrollable events
cannot be disabled by a supervisor. Formally, let
D= (X%,L,L,) be a DES, and let X, C X be the al-
phabet of all controllable events of D. A supervisor S
for D is a function S: £ — 2% from the language
of D to the power set of ¥.. The supervisor maps
each word of the language to the set of controllable
events which are enabled after the occurrence of that
word.

The controlled system is denoted by S/D (S con-
trolling D) and its closed loop behaviour is defined as
(2,8/L,8/ Ly,) where S/ L is the smallest language
such that

e c€S/L,and

e so € S/Lif and only if s € S/ L, so € L, and
o €X,US(s).

The marked language is defined as S/ L, = (S/ L) N
L. A supervisor restricts the behaviour of the given
DES. Therefore, the language of the controlled sys-
tem is contained in the language of the uncontrolled
system.

Furthermore, we want the controlled system to be
nonblocking. A supervisor S (for D) is said to be
nonblocking, if S/ Ly, = S/ L, i.e. if the closed loop
system S/D is nonblocking.

Ramadge and Wonham show that, if there exists
a nonblocking supervisor satisfying a given specifica-
tion, then there exists a least restrictive supervisor
with these properties. This least restrictive supervi-
sor S disables as little as possible, i.e. if there is a
supervisor S’ which meets the requirements and en-
ables the set S'(s) after the occurrence of the word
s € L, then S'(s) C S(s). Ramadge and Wonham
also show that this least restrictive supervisor is com-
putable in the case of regular languages by using a
fix-point iteration.

3 Implementations

Assume that a plant model and a (least restrictive)
supervisor, which ensures that the specifications are
satisfied, are given. In the following, we refer to the
given controlled system simply as a DES, also called
abstract model, and do not distinguish between plant
and supervisor model.

If the real system generates uncontrollable and con-
trollable events on its own or is driven by an agent, for
instance manually by a human, then the supervisor
is easily implementable. The only task of the imple-
mented supervisor, also called controller, is to dis-
able controllable events. But it is often the case that
the plant does not generate all controllable events
on its own without being initiated. Normally, sim-
ple machines do not start their work unless the start
command (for instance by pushing the start button)
is given. In this case it is desirable to have a con-
troller which not only disables controllable events but
also initiates the occurrence of particular controllable
events. Let = be the set of events which should be
initiated by the controller. It makes sense to assume
that = is a subset of controllable events.



This does not mean that the event contained in =
and chosen by the controller is forced to occur next.
It can also happen that an uncontrollable event or a
controllable event not contained in = occurs instead.
Restrictions on the behaviour of the model are only
made with respect to events in =, i.e. those control-
lable events which are not generated by the plant
itself unless being caused by the controller.

We enforce such restrictions on a DES by introduc-
ing an implementation of the DES. Given a DES D
and the subset = of controllable events which should
be initiated by the controller. A E-implementation
of D can be described as a special supervisor for D
which does not restrict the occurrence of events not
contained in =, and enables at most one event of =
which is also possible in D. Furthermore, it must not
disable every event contained in = and possible in D,
if there exists one.

Definition 3.1. Let D = (X,£,L,,) be a DES, let
3. be the set of all controllable events of D, and let
E C .. A supervisor I: L — 2% is said to be a
Z-implementation of D if we have for all s € L:

(I11) I(s)\E C ELIG.(s) and
(I2) ELIG£(s)NE #0 = |I(s) NENELIG(s)| = 1,

where ELIG.(s) := {0 € ¥ | so € L} is the set of
eligible events after the occurrence of s in L.

Consider another example with two machines
which can be started with controllable events start;
and starty; and finish their work with uncontrollable
events finish; and finishy. Assume further that the
machines can be sent to a self-test with controllable
event test and finish the self-test with uncontrollable
event done. We want to ensure that the self-test can
be performed only if no machine is working and, fur-
thermore, during the self-test no machine should be
started. The controlled system is given in Figure 2.

Now we want to implement a controller, which not
only disables controllable events but actually starts
the machines, i.e. & = {starty,startz}. The control-
lable event test is disabled if necessary but will not be
chosen by the controller as a suggestion to occur next,
instead it can be generated for instance by human

finishy
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finishy
SN
@ start; @

Figure 2: A simple implementation-dependent DES.

intervention. A possible Z-implementation is the su-
pervisor which enables test and start; in state al, no
controllable event in state a2, starts in state a3, starty
in state a4, and no controllable event in state ab.
A supervisor which disables test in state al is not
a Z-implementation for the DES since test is not
contained in = and must not be restricted by a =-
implementation. Nor is a supervisor which disables
start; and start; in state al a Z-implementation since
the abstract model allows an event from = to occur,
but the considered supervisor does not.

In general, the implemented behaviour is a subset
of the behaviour of the DES, i.e. the abstract model
accepts a larger behaviour than an implementation
will do.

4 Ensuring Implementation In-
dependence

In order to implement a given abstract model, we
need to refine it, eliminating ambiguity by disabling
controllable events. Consider again the introductory
example given in Figure 1. In the case that no ma-
chine is running we have to specify which machine
should be started next. But not all ambiguity has
to be eliminated. For instance in the example of Fig-
ure 2, we want to start the two machines in any order,
but we do not care which one is started first.

The properties discussed in this section help to find



possibly critical ambiguity contained in the abstract
model. If one of them is violated, a counterexample
can be generated, pointing exactly to the problem.
Using the counterexample, the model can be refined,
and the properties can be checked again. Further-
more, if all properties are met, all possible imple-
mentations of this model are nonblocking. Code can
be generated easily, choosing any implementation.

4.1 Termination

Most controllers react to an input by only sending
a finite sequence of commands. If no input is given
for a sufficiently long time, then the system stabi-
lizes: nothing happens until new input is given. This
property is formalized in the following definition.

Definition 4.1. Let £ be a prefiz-closed language
over the alphabet X, and let = C X. L is said to be =-
terminating, if for all s € L there exists an integer n
such that we have for each t € ¥* such that |t| > n

stelL = t¢g=".

We think of = as the subset of controllable events
for which the choice of the next event has to be taken
by the controller. The reason why nonterminating
languages (with respect to Z) can be a problem when
implementing these systems is that an implementa-
tion may stay forever in such a loop preventing any
progress.

In a =-terminating DES there cannot be an infi-
nite sequence consisting only of events of =. Then,
assuming that only events contained in = occur, the
system will eventually stabilize, i.e. it will reach a
state in which only events not contained in = are pos-
sible. The history of a stabilized system is a complete
string of events, defined below.

Definition 4.2. Let £ be a prefiz-closed language
over the alphabet X, and let = C . A string s € L
is said to be E-complete in L, if for all 0 € ¥ it is
the case that

scelL = o¢=.

A E-complete string in £ is a string which cannot
be continued with an event contained in Z, i.e. only

continuations starting with an event not contained
in E are possible in L.

The following result shows that, for a =-termi-
nating language, every possible sequence of events
continued with events only contained in = will finally
result in a Z-complete string.

Lemma 4.1. Let L be a prefiz-closed language over
the alphabet X, and let = C X. If L is E-terminating
and s € L then the set C=(s) = {c € B* | sc € L}
satisfies the following properties:

e C=(s) is finite and

e for each ¢ € Cz(s) which is mazimal in Cz(s)
(i.e. for all ¢' € C=(s) we have cC ' = c=¢')
it is the case that sc is Z-complete in L.

4.2 Confluence

Assume again, that = is the subset of controllable
events for which a choice should be taken by the con-
troller. With the property of confluence we want to
ensure that independently of the choices taken, all
implementations will reach states, by means of events
contained in = only, with the same future. In accor-
dance with the theory of term rewriting [DJ90], we
define confluence for a DES as follows:

Definition 4.3. Let D = (X, £, L) be a DES, and
let = C ¥. D is said to be Z-confluent, if for all
s € L, 81,82 € Z* such that ss1,ss2 € L there exist
t1,to =* such that ssit1, 882ty € L and ssit; =

$sata mod Nerode(D).

In the introductory example given in Figure 1,
assuming E = {starty,starty}, the DES is not =-
confluent since there exist sequences start; and starts
which, starting from state sl, cannot be continued
to states with the same future using sequences con-
tained in Z* only. The DES given in Figure 2 is
{starty, start, }-confluent, but not {start;, starto, test}-
confluent.

If a DES is not only Z-confluent but also =-
terminating, then, starting at any reachable state of
the DES, all Z-implementations will reach states with
the same future, unless events not contained in = oc-
cur. This is formalized in the following lemma.



Lemma 4.2. Let D = (X,£,L,,) be a DES, let
= C X be a set of controllable events, let I be a
E-implementation for D, and let s € I/ L. Further-
more, let D be Z-terminating and Z-confluent. Then,
for each t € Z* such that st € L is E-complete in L,
there exists a string t' € =* such that st' € I/ L is

E-complete in L, and st = st' mod Nerode(D).

Proof. Let D = (X,£,L,,) be aDES, let = C ¥ be a
set, of controllable events, let I be a Z-implementation
for D, and let s € I/ L. Furthermore, let D be =-
terminating and Z-confluent. Let t € =Z* such that
st € L is E-complete in L. Let C = {c € E* | sc €
I/L}. Since I/ L C L we know that C C {c € Z* |
sc € L}. Furthermore, C is nonempty, since € € C,
and C is finite by Lemma 4.1. Thus, there exists a
string t' € C which is maximal, i.e. for all w € C such
that ¢ C w we have that t' = w. Then st' € I/ L
is E-complete in I/ £, and by (I2) of Definition 3.1
also Z-complete in L. Since D is Z-confluent, there
exist u,u’ € Z* such that stu,st'n’ € £ and stu =
st'u' mod Nerode(D). We know that st and st' are
E-complete in £ and therefore u = u' = €. But this
means that st = st’ mod Nerode(D). O

4.3 Nonblocking under Control

If a DES is nonblocking then, for all reachable states,
there exists a continuation to a marked state. There
are no restrictions to this continuation; it can be any
string of events. Figure 3 shows a DES which is non-
blocking, Z-confluent, and Z-terminating, where = =
{c,c'}, but still blocking for the Z-implementation
disabling ¢ at state s1. In order to capture such sit-
uations, we now introduce a stronger definition of
nonblocking, restricting the continuations to be con-
trolled. A Z-controlled continuation is one in which
events not contained in = occur only if no events of =
are enabled. This does not restrict the behaviour
of the system, but only strengthens the property of
nonblocking. This is formalized in the following def-
initions.

Definition 4.4. Let L be a language over the alpha-
bet 3, let = C X, and let s € L. The stringt € ¥* is
called a E-controlled continuation of s in L, if

Figure 3: A DES which is not nonblocking under
control.

(P1) st € L is E-complete in L, and

(P2) for all ac C t such that o ¢ E, it is the case that
sa is Z-complete in L.

This definition can be used to define a strengthened
version of nonblocking.

Definition 4.5. Let D = (X,£,L,,) be a DES, and
let E C ¥ be an alphabet. D is said to be nonblocking
under =-control if for all s € L there ezists a =-
controlled continuation t of s in L such that st € L,
otherwise D 1is said to be blocking under Z-control.

Because nonblocking under =-control is a special-
ized kind of nonblocking, the following result is easy
to see.

Proposition 4.3. If a DES is nonblocking under =-
control then it is nonblocking.

Nonblocking under Z-control seems to be a rather
restrictive property, but the authors think it is a use-
ful property in practice. The reason for this is the
following: In the normal definition of nonblocking
each continuation leading to a marked state is con-
sidered. For instance, starting at the initial state al
(in Figure 3), the string cu will lead to the marked
state a4. But, when interpreting the enablement of
events in = as commands given to the plant, events
contained in Z will occur relatively fast one after the
other when enabled. In the given example, and as-
suming E = {¢,c'}, in order to make the word cu



occur, the uncontrollable event uw has to occur just
before the controller chooses the output ¢ enabled
at state a2; the time interval for this uncontrollable
event to occur is very short and depends on the re-
action time of the controller. The aim of the above
property is to ensure that reaching a marked state
must not depend on such time-critical behaviour, but
it must always be possible to reach a marked state
using continuations, where the controller is not in-
terrupted by the plant (which is normally the more
likely behaviour).

Consider the example given in Figure 2 again. As-
sume the initial state al is the only marked state
of the system. It is easy to see that this DES is
nonblocking. But it is blocking under Z=-control,
where Z = {start,starty}, since from state a5 the
only =-controlled continuations are finishystart; and
finishostarts and concatenations of these strings, but
all leading to state ab which is not marked. Such be-
haviour is problematic because in most execution se-
quences in practice the controller will restart the ma-
chine which has just finished and it is rather unlikely
that both machines are ready to restart at nearly the
same time (which is the only possibility to reach the
marked state). It is not that such sequences cannot
happen; probably they can, and we cannot and do
not want to prevent them from occurring. But we
want to ensure that reaching a marked state is pos-
sible without using these sequences.

4.4 Main result

Now we can show that, if a DES is E-terminating, =-
confluent, and nonblocking under =-control, then it
is nonblocking for every Z-implementation. In order
to do this we first prove the following lemma.

Lemma 4.4. Let D = (X,£,L,,) be a DES, and let
= C X be a set of controllable events. Furthermore,
let D be =-terminating and Z-confluent, let I be an
implementation of D, and let s € I/ L. Then, for ev-
ery E-controlled continuation t of s in L there ezists
a E-controlled continuation t' of s in I/ L such that
st = st' mod Nerode(D).

Proof. Let D = (X,£,L,,) be a DES and let = C X
be a set of controllable events. Furthermore, let D be

Z-terminating and Z-confluent, let I be an implemen-
tation of D, and let s € I/ L. Now let t € £* be a =-
controlled continuation of s in £. We show by induc-
tion on the number n of events in ¢, which are not con-
tained in =, that there exists a Z-controlled continua-
tion ¢’ of s in I/ £ such that st = st' mod Nerode(D).

Base case: n = 0 and therefore ¢ € Z*. Since ¢
is a Z-controlled continuation we also know that st
is E-complete in £. Using Lemma 4.2, we obtain a
string t' € E* such that st' € I'/ L is E-complete in £
and st = st’ mod Nerode(D). Since st' is E-complete
in £, t' € E*, and st' € I/ L we have that ¢’ is a
E-controlled continuation of s in I/ L.

Inductive step: n — n + 1. Let ¢t contain n + 1
events of X\Z, i.e. t = aob for some a € X*
o € X\E, and b € E*. Then a contains n events
of ¥\Z, and using the inductive assumption we get
a Z-controlled continuation a’ of s in I/ £ such that
sa = sa’ mod Nerode(D). Therefore, sa'ab € £ and
by definition of I we have that sa'c € I/ L. Further-
more, sa'cb is E-complete in L. Using Lemma 4.2,
we obtain a string b’ € E* such that sa’ob’ € I/ L is
=Z-complete in £ and sa'ob = sa’ob’ mod Nerode(D).
Now, since Nerode equivalence is a right congruence,
sach = sa'ob = sa'ab’ mod Nerode(D). This equa-
tion also implies that sa'cb’ is E-complete in L since
saob is, and that a'cb’ satisfies property (P2) from
Definition 4.4, since a' is a Z-controlled continuation
of sin I/ L and b € E*. Since sa'ob' € I/ L we
have that t' = a'ob’ is a E-controlled continuation
of s in I/ £ with the desired property. O

Now, the desired theorem follows easily from the
previous lemma.

Theorem 4.5. Let D = (X,£,L,) be a DES,
and let = C X be a set of controllable events.
Furthermore, let D be Z-terminating, =-confluent,
and nonblocking under =-control. Then, each =-
implementation I for D is nonblocking.

Proof. Let D =(X,L,Ly,) beaDES and let EC X
be a set of controllable events. Furthermore, let
D be Z-terminating, Z-confluent, and nonblocking
under Z-control, let I be an implementation of D,
and let s € I/L. Since D is nonblocking under
Z-control there exists a Z-controlled continuation ¢



of s in £,, C L. Using Lemma 4.4 we obtain a
E-controlled continuation ¢ of s in I/ L such that
st = st' mod Nerode(D). Therefore, since st € L,,,
we also have st' € L,,. Thus, we obtain st' €
LaoNI/L=1I]L,. O

This result shows that, in order to obtain nonblock-
ing implementations, it is sufficient to design a model
which is terminating, confluent, and nonblocking un-
der control. If these three properties are met, every
possible implementation will be nonblocking and can
be used to control the system.

So far, it is left to the designer to fix his model
if it does not satisfy all three properties. He will
be guided by counterexamples, which are automati-
cally computed if one of the properties is not satisfied.
These counterexamples point to problems in the de-
sign, and usually give hints on how they can be fixed.

Here, it may be desirable to have more support for
the designer, by synthesizing a fixed model automat-
ically. Unfortunately, not every system has a most
general subsystem which is terminating, confluent,
and nonblocking under control. For example, there
usually are multiple independent ways of making a
non-terminating DES terminating, by deleting differ-
ent transitions. Therefore, approaches of automatic
synthesis will have to deal with multiple optimal so-
lutions which are not comparable to each other.

5 A Small Example

We now discuss a small example taken from [HK94].
We model a dosing unit as it is used in chemical batch
plants to supply a defined amount of liquid material
to subsequent process units. A dosing unit consists
of a tank, an inlet valve A, an outlet valve B, and two
sensors, indicating whether the dosing tank is full or
empty. In the following, a modular plant model is
described.

The two sensors, L1 at the bottom, and L2 at the
top of the tank, can either be on or off (see Figure 4).
In state al, when both sensors are off, the tank is
empty. It is partially filled in state a2, when sensor
L1 is on and sensor L2 is off, and full in state a3,
when both sensors are on. The corresponding events

L1off

L2off

Figure 4: The level measuring sensors.

Llon, L1off, L2on, and L20off, indicating state changes,
are uncontrollable. Initially the tank is empty.

openA Llon
A L2on
(2)
jelly t<.
closeA
openB L1off
“ L2off
jelly t<.@
closeB

Figure 5: The valves A and B.

The valves A and B can either be open or closed
(see Figure 5). The tank can only change its state
from empty to partially filled, or from partially filled
to full when the inlet valve A is open, and the other
way round, it can only change its state from full to
partially filled or empty when the outlet valve B is
open. The events openA and openB for opening the
valves, and closeA and closeB for closing the valves
are controllable. Initially both valves are closed.

stirrerOn

stirrerOff
Figure 6: The stirrer.
The fluid must be stirred since it will gelatize, in-

dicated by the uncontrollable event jelly used in Fig-
ures 4, 5, and 6, if the substance is not in motion.



Figure 7: Specifications: a) No material passing through; never jelly. b) Empty-full-empty-cycle.

The stirrer is modeled in Figure 6. It can be switched
on, indicated by the controllable event stirrerOn, and
switched off, indicated by the controllable event stir-
rerOff. Initially the stirrer is switched off. The gela-
tizing process may take place when both valves are
closed, the tank is not empty, and the stirrer is not
running. Differently from the original example, the
gelatizing process can also take place when the tank
is full. What happens if the substance turns to jelly
is not modeled, since we want to avoid the gelatizing
process by the following specifications.

Now we impose certain restrictions to the plant be-
haviour given so far. The tank must be filled up to
the upper level (sensor L2 is on), and then must be
discharged until it is empty (sensor L1 is off). It is not
necessary to do the filling or discharging in one step,
but discharging the tank before the upper level is
reached or filling it again before it is emptied, as well
as opening both valves at the same time, would not
provide the right quantity of substance to the subse-
quent process and must be avoided. Furthermore, it
must never happen that the event jelly occurs. These
requirements are specified as automata in Figure 7.

In the original example, the valves are opened and
closed manually and are enabled or disabled by a su-
pervisor in order to ensure the specifications. Such a
supervisor can be computed, for instance, using the
fixpoint iteration given in [WR87]. However, in this
paper, we want to design a controller which opens
and closes the valves automatically. In order to do
this, we select an implementation from the abstract
model, which enables at most one controllable event
at a time. An enabled controllable event is then in-

terpreted by the plant as a command for the next
event. For instance, if openA is enabled by the con-
troller, the valve will be opened next.

But what happens when we compute the least re-
strictive supervisor and implement the controlled sys-
tem described above? At the initial state the con-
trollable events openA, openB, and stirrerOn are en-
abled. The implementation which chooses openB at
this state, gets stuck in a loop, for instance, opening
and closing valve B forever, preventing any progress.
But even if the implementation chooses openA to oc-
cur, closeA is enabled immediately after this, and the
plant will close valve A as soon as it has opened it.
Checking the system for termination will find one of
these loops and present it as a counterexample.

There are different ways of avoiding such loops. In
this case, some more specifications can be added in
order to specify what the controller is supposed to
do. We can, for instance, specify that valve A should
only be opened when the tank is empty and closed
when the tank is full, whereas valve B should only
be opened when the tank is full and closed when the
tank is empty.

In order to make the example more interesting, we
assume that there exist uncontrollable events, per-
haps provided from the subsequent process, for start-
ing (event start) and stopping (event stop) the process
of filling and emptying the tank. The new plant au-
tomaton is given in Figure 8.

The task of the controller is to continue with the
filling or emptying of the tank when start happens
and stop the process when stop happens. Therefore,
we enable the opening of valve A only when start has



openA

closeB

Figure 9: Specifications for the valves

start
stop

Figure 8: The trigger for starting and stopping the
process.

happened and the tank is not yet full. Closing valve A
should only occur when the tank is full or the process
should be stopped. Valve B should only be opened
when the tank is not empty and the process should be
continued; otherwise valve B should be closed. This
is specified by the automata given in Figure 9.

Checking the abstract system (i.e. the plant system
under control of the synthesized supervisor which en-
sures all the given specifications) for termination will
show a loop where the stirrer can be switched on and
off and so forth starting, for instance, from the initial
state. Assume that we decide to enable the starting
of the stirrer only when the system is stopped, and
the tank is not empty (since in this case the fluid is
not in motion) and only to enable the stopping of
the stirrer otherwise. This can be done by adding to
the automaton given in Figure 9 the event stirrerOn
to the selfloop of state b3, and the event stirrerOff to
the selfloops of states bl, b2, and b4.

Now, the controlled system, which we get when
synthesizing the least restrictive supervisor, is termi-
nating but not confluent. Whenever the system is
started, the tank is full, valve A is open, valve B
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closed, and the stirrer is started; the controllable
events closeA and stirrerOff are possible to occur next.
When the stirrer is switched off, valve A cannot be
closed any more (it is disabled by the supervisor since
otherwise jelly would be possible after closing valve A,
but this is prohibited by the specification given in
Figure 7). If we close valve A instead, the only con-
trollable events which are possible to occur next are
opening the valve B and then switching the stirrer
off. Therefore it is not possible to reach states with
the same future by means of controllable events only.

What is the problem? We forgot that the fluid
must also be stirred when the tank becomes full and
should be emptied next. In order to empty it, valve A
must be closed first, but then the fluid is not in mo-
tion for a short period of time and must be stirred.
But we disable the starting of the stirrer in our spec-
ifications when the system is not stopped. The coun-
terexample above points to the problem that, when
the stirrer is still running and the tank becomes full,
one implementation might switch off the stirrer. In
this case, the inlet valve A cannot be closed anymore,
although the tank is full. Another implementation
might close the inlet valve A first and behaves as de-
sired.

Now, we change our specification for the stirrer
to the one given in Figure 10. Here, for instance,
starting the stirrer is disabled when the tank is
empty. Furthermore, starting the stirrer must not oc-
cur when the system is switched on, and the tank is
not yet full. Now, synthesizing a supervisor for these
specifications, will give us a terminating and conflu-
ent system, which is also nonblocking under control,



stirrerOn

stirrerOff

Figure 10: Specifications for the stirrer

under the marking given.

For the sake of demonstration, assume that we have
marked states where the tank is empty, the stirrer is
switched on, and all valves are closed. The system
with these marked states is nonblocking, but not non-
blocking under control, since the controllable event
stirrerOff is enabled and physically possible at each
of these states. Why is this a problem? Actually, the
implementation which prefers the event stirrerOff to
the events closeA and closeB will never reach one of
these states and is therefore blocking.

This example demonstrates how the abstract
model can be refined in order to get an implementable
model. The introduced properties of termination,
confluence, and nonblocking under control are useful
checks in order to find ambiguity or nonterminating
command sequences in the model.

6 Conclusions

We have provided some properties of DES ensuring
that each implementation is nonblocking. They are
useful if particular controllable events enabled by the
controller are interpreted as commands given to the
plant. The implemented controller has to choose
among the enabled events in order to produce the
next output. The problem is that, even if the given
DES is nonblocking, an implementation might not
be.

The main theoretical result of this paper is the the-
orem that, if a DES meets the introduced properties

11

of being terminating, confluent, and nonblocking un-
der control, then all implementations of the DES are
nonblocking.

The properties are also useful on their own. If one
of them is violated, then there exist ambiguity, or
nonterminating command sequences, in the model.
Since a counterexample can be generated if such a
property is violated, checking these properties can
help to find errors in the design.

Further research challenges are the development of
efficient algorithms for the introduced properties, es-
pecially algorithms which exploit the logical structure
often existing in modular designs in order to avoid the
state explosion problem. Furthermore, it is conceiv-
able to provide computer guidance for refining the
given system when one of the properties is not sat-
isfied. Unfortunately, there does not exist a unique
solution for this problem. Further work has to be
done in order to find an apropriate subsystem which
satiesfies the desired properties.

Other problems which arise in practice when imple-
menting a supervisor, for instance time-delay prob-
lems and how to handle the communication between
plant and controller, will be discussed in future work.
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