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The dynamics and dissipation of axial shear waves, superposed on a planar magnetic X-point in a
resistive viscous incompressible plasma, are analyzed numerically and analytically. The interplay of
viscous and resistive effects is demonstrated by deriving solutions for various values of the scalar
coefficients of viscosity and resistivity. These solutions show that viscous-resistive coupling can
dramatically affect the global energy dissipation. When either viscosity or resistivity vanishes, the
solutions are characterized by oscillatory decaying eigenmodes that maintain equipartition between
the magnetic and kinetic energies. This behavior persists when resistivity is the dominant dissipation
mechanism. When viscosity is the dominant dissipation mechanism, initial oscillations are followed
by exponential decay at sufficiently long times. The applicability of the results to flares in solar
active regions, where the viscous Reynolds number can be much smaller than the resistive one, is
discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2132249�
I. INTRODUCTION

Theoretical studies of magnetic merging and reconnec-
tion typically ignore plasma viscosity. This is usually justi-
fied by the fact that “topological” magnetic energy associated
with nonpotential magnetic fields, say, in the solar corona,
can only be released by resistive effects.1 Thus electric cur-
rent singularities, formed in an ideal plasma, cannot be re-
solved by viscosity alone, or indeed by any mechanism that
neglects resistive dissipation.

Viscous effects, however, can strongly influence the
magnetic field dynamics and dissipation in several important
ways. Viscosity is known to limit reconnection exhaust
speeds2 and to significantly modify the geometry of flux
pile-up reconnection.3 Viscous heating can be comparable to
or even greater than Ohmic heating at sites of magnetic
merging, where the plasma speed has large gradients.4 More
generally, the viscous Reynolds number can be many orders
of magnitude smaller than the magnetic Reynolds number
for plasmas of solar active regions. Therefore viscosity
should play an important role in a wide range of active phe-
nomena in the solar corona.5

Previous studies of viscoresistive dynamics focussed on
magnetic reconnection in the plane of a two-dimensional
magnetic X-point.2,6–9 It has been established that a dissipa-
tion length scale emerges when viscosity and resistivity act
together, which determines the rate of energy dissipation.
The goal of this paper is to complement the previous studies
by investigating the roles of viscosity and resistivity in the
dynamics of finite-amplitude axial field disturbances in a po-
tential magnetic X-point geometry. This problem allows a
simple description of viscous and resistive damping and
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should provide a useful guide for wave dissipation in more
general magnetic topologies. The resistively damped solution
has been given earlier.10 Now we explore the viscoresistive
coupling by studying numerical and analytical solutions that
describe steady and transient shear wave disturbances. Al-
though the bulk of the paper deals with time-dependent
damping based on an isotropic viscosity, applicable for rela-
tively weak magnetic fields, we also use steady-state solu-
tions to investigate the likely impact of anisotropic viscosity.

The paper is organized as follows. In Sec. II we intro-
duce the magnetohydrodynamic �MHD� equations that gov-
ern the evolution of the planar and axial components of the
velocity and magnetic field near a two-dimensional magnetic
X-point. Numerical solutions are presented, which show the
viscoresistive decay of finite-amplitude axial field distur-
bances. A detailed theoretical interpretation of the numerical
results is presented in Sec. III, where exact analytical solu-
tions are derived in several cases. Steady-state solutions are
presented in Sec. IV, which are used to discuss the relevance
of models based on isotropic viscous stress tensor to the
active phenomena in the solar corona. We summarize our
findings in Sec. V.

II. TRANSIENT SHEAR WAVES AT MAGNETIC
X-POINTS

We consider the magnetic X-point geometry shown in
Fig. 1. The background potential field is perturbed by shear
wave disturbances, polarized perpendicular to the plane of
the X-point, which vanish at x= ±1. Our purpose is to exam-
ine the dynamics of such disturbances for arbitrary levels of

viscous and resistive dissipation.
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A. Governing MHD equations

The incompressible MHD equations in “two and a half
dimensions” provide the basis for our analysis. We adopt a
dimensionless formulation in which lengths, magnetic field
intensities, and plasma density are normalized by reference
values. Velocities and times are then measured in units of the
Alfvén speed and time. As far as the dissipation coefficients
are concerned, the dimensionless resistivity � is the inverse
Lundquist number, and the dimensionless viscosity � is the
inverse Reynolds number, based on the Alfvén speed. Both
coefficients are much less than one in many astrophysical
problems.

We use the stream function representation for the plasma
velocity,

v�x,y,t� = �� � ẑ + Wẑ , �1�

and the flux function representation for the magnetic field,

B�x,y,t� = �� � ẑ + Zẑ , �2�

which identically satisfy the divergence-free conditions for v
and B. Using the Poisson bracket �� ,��=�x�y −�y�x, where
�x denotes �� /�x, etc., the nondimensionalized momentum
and induction equations can be written as follows:

��2��t + ��2�,�� = ��2�,�� + ��4� , �3�

�t + ��,�� = ��2� , �4�

Wt + �W,�� = �Z,�� + ��2W , �5�

Zt + �Z,�� = �W,�� + ��2Z . �6�

For collisional coronal plasmas involving weak magnetic
fields, we have the typical magnitudes ��10−4.5 and �
�10−14.5 �see Sec. IV�. Below we explore the evolution of
the axial fields Z and W in the presence of small but arbitrary
� and �. Note that we have adopted simple Laplacian forms
for the viscous and resistive dissipation terms. In the pres-
ence of a sufficiently strong magnetic field, however, the
plasma viscosity becomes highly anisotropic and requires a
tensor description, as discussed in Sec. IV.

B. Shear-wave axial modes

It is well known that models with the potential back-
ground field, �=xy, permit a wide class of exact analytical

11–13
solutions, both time-dependent and steady-state. If we
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restrict attention to disturbances polarized perpendicular to
the plane of the X-point, the simplest solutions are based on
the one-dimensional forms W=W�x , t� and Z=Z�x , t�. Planar
equations are satisfied by taking �=xy and �=0, in which
case Eqs. �5� and �6� reduce to

Wt = xZx + �Wxx, �7�

Zt = xWx + �Zxx. �8�

Despite the simplicity of this system, it does not seem
possible to obtain global analytical solutions, valid for arbi-
trary � and �. Our strategy is therefore to perform numerical
simulations in the bounded region �x��1 and to augment the
simulations with exact solutions in certain special cases. For
numerical purposes we adopt boundary conditions appropri-
ate to the slab geometry illustrated in Fig. 1, namely

W�0� = W�±1� = 0, Z�0� = Zx�±1� = 0. �9�

These conditions, based on the idealization of line-tying on
the upper and lower boundaries, effectively break the sym-
metry between the magnetic and velocity fields, a point to
which we return below.

We emphasize from the outset that the behavior of the
system can change significantly when both � and � are non-
vanishing. When viscosity and resistivity act together to dis-
sipate the magnetic and kinetic energies, the solution can
possess a viscoresistive length scale,

xs = ����1/4. �10�

This scale can be deduced dimensionally, by balancing the
terms on the right-hand sides of Eqs. �7� and �8�. The emer-
gence of this length scale in viscous merging problems in
other geometries has been noted in the past,2,7–9 but its role
in controlling shear wave dissipation has not been explored.

C. Viscous and resistive losses

Consider first the wave properties of the ideal system,

FIG. 1. Geometry of shear wave disturbances about an
equilibrium X-point. The shearing is perpendicular to
the plane of the X-point.
described by Eqs. �7� and �8� in the limit �=�=0. This sys-
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tem is simplified by working with the Elsasser variables
Z±W, which are governed by the characteristics �±= t±ln x.
Ideal modes take the form

Z = g�t + ln x� ± h�t − ln x� ,

�11�
W = g�t + ln x� � h�t − ln x� ,

and conservation of wave energy is reflected by the invari-
ance of the wave envelopes g��+� and h��−�.

Of particular interest is the continual steepening of the
inward propagating wave g��+� as it approaches x=0. If h
vanishes initially, the system will maintain equipartition with
Z=W=g and h=0 as the wave travels inward. The buildup of
steep gradients, Zx=Wx=g���+� /x, can be arrested only by
resistive and viscous effects. As shown in the Appendix, in
the case of a freely propagating shear wave �11�, viscosity
�resistivity� has the effect of preferentially damping the ki-
netic �magnetic� energy of the disturbance.

In general, the energy loss rate due to viscous and resis-
tive dissipation is given by

Et = −� ���Wx�2 + ��Zx�2�dV . �12�

Such losses, however, cannot be identified with the decay of
the spatially integrated energy density 1

2 �W2+Z2�.10 This is
because there can be a Poynting flux through the channel,
which leaks energy from any fixed volume. Energy transfer
by Poynting flux will occur at an Alfvénic rate, which may
be unrelated to the volumetric heating rate. This point is
crucial to the interpretation of the global wave energy loss in

the system.
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D. Numerical examples of shear wave decay

Figures 2–4 show typical computed solutions of Eqs. �7�
and �8�, based on the initial conditions W�x ,0�=sin�	x�,
Z�x ,0�=0. Wave energy dissipation is represented by time
plots of the global magnetic and kinetic energies. Note that
our choice of initial conditions guarantees odd solutions for
both W and Z, so it is sufficient to consider the solutions in
the region 0�x�1.

Figure 2 shows the case where resistivity dominates, �

�. We observe that there is a continual oscillatory inter-
change of magnetic and kinetic energies as the global energy
declines exponentially. By contrast, Fig. 3 shows the case
where viscosity dominates, ���. Now the initial oscillatory
phase eventually gives way to a monotonic exponential de-
cay in which the kinetic and magnetic energies are well sepa-
rated. The dominance of viscosity is reflected in the stronger
dissipation of the kinetic energy component of the fluid.

Finally, Fig. 4 shows the ratio of the kinetic to magnetic
energies in the limiting case ���. Oscillatory eigenmodes
are still present but there is a clear separation in the global
energies, consistent with the t−2 power law. We argue below
that a self-similar mode emerges, which gives rise to the
power-law separation of the energies.

III. ANALYSIS OF VISCOUS AND RESISTIVE
DAMPING

To interpret the numerical results of Sec. II, we need to
investigate how shear waves evolve in the presence of both
resistivity and viscosity. We first discuss the case of a single
dissipation mechanism and then proceed to analyze the gen-

FIG. 2. Oscillatory decay of magnetic
�dashed� and kinetic �solid� energies
for �=10−2.5, �=10−3.5.
eral case of nonvanishing � and �.
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A. Viscously or resistively damped eigenmodes

Motivated by the oscillatory character of Figs. 2 and 3,
we begin by seeking eigenfunction solutions to Eqs. �7� and
�8�, subject to boundary conditions �9�. Consider first the
case of vanishing resistivity.

When �=0 we can eliminate Z�x , t� and obtain a wave
equation for W�x , t�, namely

Wtt = x�xWx�x + �Wxxt. �13�

This equation can be solved by assuming that W�x , t�
=e
tW�x�, where W�x� is a complex eigenfunction associated
with an eigenvalue 
=�+ i�. It follows that


2W = x�xW��� + �
W�, �14�

and a solution of the form

W�s� = sinh�
s�, s = ln� x
	�


+	1 +
x2

�


 �15�

satisfies the inner boundary condition W�0�=0. The require-
ment that W vanishes on the outer boundary s��ln�2/	�
��
yields the dispersion relation


 ln
2

	�

= �n + 1�i	 . �16�

This equation defines a sequence of discrete eigenvalues 
n,
and n=0 determines the fundamental mode.

If the viscous coefficient � is small enough, we expect
oscillatory standing-wave solutions that decay relatively
weakly. In this case �� /���1, and it is a simple matter to
deduce the oscillation frequency and damping rate of the

mode. We find that
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�n �
2	

ln�4/��
�n + 1�, �n = −

�n
2

2�n + 1�
. �17�

These rates are fast in the sense that they depend only on
ln �, so the waves decay rapidly even when viscosity is
small. As anticipated in Sec. II C, however, we can attribute
the decay to the Poynting flux along the channel rather than
to the local energy dissipation. In fact our analysis shows
that the fundamental n=0 eigenmode is associated with the
diffusion length scale of order �1/2. Hence the rate of viscous
energy dissipation is of order

Et � W0
2�1/2, �18�

where W0 is the velocity amplitude. Clearly the rate of wave
decay and the actual rate of energy dissipation can differ
dramatically because of the loss of energy from the system.

An analogous result, leading to the dissipation rate that
scales as �1/2, is obtained when �=0 but the electric resistiv-
ity ��0. In this case Z�x� is the primary dependent variable
and the outer boundary condition is met by taking Zx�1�=0.10

We conclude that when either viscosity or resistivity acts
alone, there is a well-defined oscillatory decay in which the
magnetic and velocity fields are tied together by the con-
straint of energy equipartition.

These results suggest that the breakdown of energy eq-
uipartition requires the combined influence of viscosity and
resistivity. Although this interpretation is substantially cor-
rect, we should bear in mind that we are dealing with a
complex, non-self-adjoint system in which the completeness
of the eigenmodes cannot be guaranteed. For example, as
Fig. 4 indicates, self-similar modes can develop at large

FIG. 3. Magnetic �dashed� and kinetic
�solid� energy decay for �=10−3.5, �
=10−2.5. In contrast to the oscillatory
profile of Fig. 2, the decay is mono-
tonic for sufficiently long times.
times, which preferentially damp the global kinetic energy in
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the case 1����
0. Such modes, while playing only a
minor role in the overall energetics, appear to be a recurrent
feature of the late decay for ���.

B. The self-similar mode

To understand how self-similar behavior might arise, we
note that, in the limiting case �→0, Eqs. �7� and �8� admit
an approximate solution based on the variable �=x2t /�. The
scale ��1 determines a viscous boundary layer for the so-
lution. Specifically, if W varies slowly enough with time,
Eqs. �7� and �8� lead to

�
�

�x
�Zt

x

 + xZx = 0. �19�

A self-similar solution is as follows:

Z = A erf�	��, W =
A

2t
erf�	�� . �20�

The resulting gradual separation of energies according to
�W /Z�2� t−2 is consistent with the numerical result given by
Fig. 4. A more detailed analysis would demonstrate that so-
lution �20� could be matched to outer approximations that
satisfy the boundary conditions on �x�=1. Already the inner
development suggests, however, that the self-similar mode
weakens the tie between the magnetic and velocity fields and
allows the energy separation.

In general, we expect the self-similar mode to emerge
only after the large scale oscillatory modes have been vis-
cously dissipated. The emergence of self-similar behavior for
resistively dominated plasmas is precluded by the presence
of oscillatory decaying eigenmodes for �
� �see Sec.

III D�.
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C. Monotonically decaying solutions

We now consider the case ��� when viscous and resis-
tive effects act in unison. We use the auxillary functions of
Sec. II C, namely

g�x,t� = 1
2 �Z + W�, h�x,t� = 1

2 �Z − W� , �21�

and rewrite Eqs. �7� and �8� in the form

gt − xgx − �+gxx = �−hxx, �22�

ht + xhx − �+hxx = �−gxx, �23�

where

�+ =
� + �

2
, �− =

� − �

2
. �24�

Eigenfunction solutions �exp�
t� can be constructed, which
decay monotonically for t→�.

In the special case �=� we have


g = xg� + �+g�, �25�


h = − xh� + �+h�. �26�

Because �+ is a small parameter, a boundary layer is present
in the region x→0. The ideal “outer” solution, given by g
=x+
 and h=x−
, identically satisfies the boundary conditions
�9� at x=1. To determine 
, we use the full solution ex-
pressed in terms of the confluent hypergeometric �Kummer�
functions,

g�x� = g0
x

+ 1/2 M�1
−



,
3

,−
x2

+
 , �27�

FIG. 4. Ratio of kinetic to magnetic
energies for the case �=10−8, �
=10−2.5. The oscillatory eigenmode be-
havior is still evident but there is now
a separation of energies with time,
consistent with the power law �t−2 of
the monotonic self-similar mode.
�� � 2 2 2 2�
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h�x� = h0
x

��+�1/2 M�1

2
+




2
,
3

2
,

x2

2�+
 . �28�

We are interested in solutions localized around the boundary
layer x=0. To avoid a blow-up of h�x� as x / ��+�1/2→�, we
must choose 
k=−1−2k, k=0, 1, 2, …, so that the solution is
represented as a series in k. Clearly the first term in the series
is of primary interest, because it describes the asymptotic
behavior for t
1.

In the case 
=−1, the general solution simplifies consid-
erably. The function g�x� is expressed in terms of the Daw-
son integral,

g�x� = g0 exp�−
x2

2�+
�
0

x

exp� s2

2�+
ds

= 21/2g0 daw� x

�2�+�1/2
 , �29�

which immediately identifies the scale of the boundary layer
�x�� ��+�1/2. The function h is now linear, and by setting h0

=�+g0 we obtain

h�x� = g0��+�1/2x . �30�

The fundamental solution is easily extrapolated into the outer
field. Specifically, from the asymptotic expansion of the
Dawson integral for x� ��+�1/2, we have that g�g0��+�1/2 /x,
hence g�x��h�x� and g��x��−h��x� at the outer boundary
x=1. It follows that

+ 1/2
W�x,t� = �g�x� − g0�� � x�exp�− t� , �31�
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Z�x,t� = �g�x� + g0��+�1/2x�exp�− t� , �32�

with g�x� given by Eq. �29�, represent the sought-after eigen-
function approximations. These functions, displayed in Fig.
5, satisfy Eq. �9� to an accuracy of order �+ and are numeri-
cally indistinguishable from eigenmodes computed in the
case �=�. Differentiation of the differential equations for
g�x� and h�x� shows that higher eigenmodes gk�x��k
0� are
obtained by differentiating g�x�, whereas hk�x� are polynomi-
als of order 1+2k.

The scaling for the global energy dissipation rate can be
deduced by noting that viscous, resistive, and viscoresistive
dissipation length scales are comparable when ���, as are
the magnetic and velocity field amplitudes Z0�W0. Hence
we have

Et � Z0
2��+�1/2, �33�

where the field amplitude Z0�t��Z0�0�exp�−t� in the present
case.

We conclude that the most prominent manifestation of
the viscoresistive coupling occurs when � and � have com-
parable magnitudes. In this case the dissipation length scale
xs=�1/2=�1/2 and monotonic decay rapidly sets in with ei-
genvalue 
�−1. More generally, monotonic behavior even-
tually emerges for �
�
0 �Fig. 3� but only oscillatory
modes are present when resistivity is dominant, �
��0
�Fig. 2�. To understand why such transition occurs at ���,
we now derive an exact criterion for monotonic decay, as
well as an explicit expression for the energy dissipation rate

FIG. 5. Fundamental eigenmode for
�=10−3, �=10−3. The solid line is
W�x�, the dashed line is Z�x� and the
dotted-dashed line is Z−W.
in the case �
�.
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D. Monotonic decay and energy loss rate

The previous example indicates that viscosity and resis-
tivity, acting in unison, can lead to exponentially decaying
modes in some circumstances. A quantitative condition for
the appearance of such modes can be derived by seeking
solutions Z�x , t�=e
tZ�x� and W�x , t�=e
tW�x� with a real ei-
genvalue 
. If we multiply Eq. �7� by W��x� and Eq. �8� by
Z��x�, integrate over �0, 1�, and subtract one equation from
the other, we obtain


Z�1�2 = − �Z��0�2 + ��W��0�2 − W��1�2� . �34�

This equation precisely describes the monotonic decay in the
late phase of Fig. 3. The fact that the magnetic and velocity
fields do not appear symmetrically in this condition is a re-
flection of the boundary conditions imposed in Eq. �9�.

If we assume that 
�0 and �W��1��� �W��0��, as re-
quired for consistency with the numerical solutions, we ob-
tain a simple necessary condition for monotonic decay,

Z��0� 
 � �

�

1/2

W��0� . �35�

For ���, the magnetic field gradient at the origin must ex-
ceed the velocity gradient, and this is indeed the case for the
particular solution derived for �=�.

Suppose now that �
�. Equation �35� shows that
monotonicity requires a strong separation between the mag-
netic and velocity field amplitudes. Indeed, the scalings W
�W��0�xs and Z�Z��0�xs suggest that monotonic decay can
set in when the magnetic energy is larger than the kinetic
energy by a factor of order � /�, which is consistent with the
preferential dissipation of kinetic energy by viscosity �see
also the Appendix�. On the other hand, in the case �
�,
magnetic energy is dissipated more efficiently, and Eq. �35�
is impossible to satisfy. In this case oscillatory decay should
result, in agreement with the numerical solution. Figure 2
shows an example of oscillatory eigenfunctions, associated
with energy equipartition.

We can also employ Eq. �34� to estimate the rate of
decay 
. A simple upper limit can be obtained by neglecting
the weak velocity contribution and assuming that the vis-
coresistive scale determines the field gradient. Assuming
Z�1��1 and Z��0��xs

−1, we obtain


 � − 	�/� . �36�

A key point is that, for fixed ���, the decay rate diminishes
with increasing �. A related result is that the kinetic energy is
a small fraction of order 
2 of the magnetic energy. Similar
considerations for the global resistive energy loss rate lead to

Et � ��
0

1

�Zx�2 dx � Z0
2�1/2��

�

1/4

, �37�

which generalizes the result of Sec. III C.

E. Summary

We have considered the viscous and resistive damping of
perpendicularly polarized shear waves near a planar mag-

netic X-point. A surprising result is the sensitivity of the de-
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cay profile and the global energy loss rate to the relative
magnitudes of the viscous and resistive dissipation coeffi-
cients.

When either viscosity or resistivity vanishes, the solution
is characterized by oscillatory decaying eigenmodes that
maintain equipartition between the magnetic and kinetic en-
ergies �see Sec. III A�. This behavior persists in plasmas
dominated by resistivity, �
�
0. The situation changes
markedly when viscosity is the dominant dissipation mecha-
nism, �
�
0. In the transitional case ��� the energy de-
cays exponentially, with the fundamental eigenvalue 
=−1.
More generally, the damping is characterized by initial oscil-
lations that gradually give way to exponential decay at suf-
ficiently long times. The bulk of the wave energy is rapidly
removed during the oscillatory stages on the viscous time
scale �−1/2 �assuming ����, but the later monotonic decay is
associated with a marked separation in the global magnetic
and kinetic energies. This stage corresponds to the emer-
gence of a viscoresistive scale xs= ����1/4 that provides
asymptotic exponential decay in which the magnetic energy
is dominant. Preferential damping of the kinetic energy com-
ponent can also occur due to the emergence of a self-similar
mode for large times in the limit �→0. This mode, however,
is energetically insignificant.

IV. STEADY SOLUTIONS AND ANISOTROPIC
VISCOSITY

So far we used the MHD equations in order to describe
the dynamics of transient shear waves near a planar magnetic
X-point. It is also possible to obtain exact steady solutions
describing the axial magnetic field and velocity disturbances.
The relative simplicity of the steady-state analysis makes it
possible to discuss the effects of anisotropic viscous trans-
port in magnetized plasmas.

A. Viscosity in a magnetized plasma

Our work is partly motivated by the possibility that vis-
cosity can lead to significant observational effects in solar
active regions. Of particular interest are recent measurements
of relatively slow speeds of reconnection jets in solar
flares.14–16 The observations appear to be inconsistent with
standard nonviscous reconnection models that predict the re-
connection outflow speed to be determined by the Alfvén
speed. Because viscosity results in slower reconnection
outflows,2 it can reconcile theoretical models with solar ob-
servations. Although viscous effects are typically modeled by
an isotropic diffusion term with a single scalar viscosity co-
efficient �,7,9,17 one should remember that viscous stresses
are anisotropic in magnetized plasmas.18–20 Theoretical mod-
eling that incorporates the full anisotropic viscous stress ten-
sor for an arbitrary magnetic field strength is beyond the
scope of this paper. Below we illustrate the effects of aniso-
tropic viscous transport by presenting a comparison of steady
solutions valid for weak and strong magnetic fields.

In sharp contrast to the resistivity tensor, the viscous
stress tensor �ij is strongly modified in the presence of a
magnetic field B. The only component of �ij that remains

unaffected is the component corresponding to the momentum
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flux along B, which is driven by the velocity gradient along
B. The magnetic field alters the form of the viscosity when
the proton mean free path exceeds the gyroradius, �p�p�1,
where �p=eB / �mpc� is the proton cyclotron frequency and
�p�0.75T3/2 /n is the mean time �in seconds� between
momentum-changing collisions.18

As an illustrative example, assume the following refer-
ence values that may characterize an active region in the
solar corona: length scale L=109.5 cm, number density n
=109 cm−3, magnetic field B=102 G, proton temperature T
=106 K. The corresponding Alfvén speed is vA=109 cm s−1.
The dimensionless resistivity, based on the classical colli-
sional value ��T−3/2 is of order �=10−14.5, whereas the di-
mensionless viscosity ��T5/2 is of order �=10−4.5. It follows
that ��� so that viscosity can strongly influence the coronal
dynamics. At the same time, �p�p�106�1, and hence the
viscous transport is highly anisotropic in the solar corona.
This is why the quantitative expressions derived in this paper
can be applied only in weak field regions �around magnetic
nulls� of the solar plasma. We believe, however, that the
qualitative behavior of our solutions can guide more detailed
studies.

B. Steady-state solution with isotropic viscosity

Suppose the magnetic field is weak enough for the vis-
cous term to be described by the Laplacian form. Returning
to the MHD equations of Sec. II A, consider a steady merg-
ing solution for the axial components of velocity W�x� and
magnetic field Z�x�. Setting �t=0 in Eqs. �7� and �8� gives

Z� = ��
1

x
�1

x
Z�
�

. �38�

Advection and dissipation must be balanced in steady state.
Hence the viscoresistive scale xs= ����1/4 is the only spatial
scale of interest. Note for clarity that steady merging is
driven by forces at the external boundaries. Hence the
sought-after solution does not have to satisfy the boundary
conditions given by Eq. �9�.

The solution is selected by assuming that the field gra-
dient is localized around x=0. The odd profile of the axial
magnetic field takes the form of the error function with an
amplitude Z0,

Z�x� = Z0 erf� x
	2xs


 . �39�

The corresponding velocity is proportional to the axial mag-
netic field,

W�x� = ��

�

1/2

Z�x� . �40�

This result reflects a balance between the viscous and mag-
netic forces in steady solutions. The flow amplitude W0 must
scale as �� /��1/2Z0. Finally, arbitrary constant values Z�0�
and W�0� can be added to the steady solutions.

Evaluating the global dissipation rate using the length
1/4
scale xs= ���� gives

Downloaded 02 Nov 2008 to 130.217.76.77. Redistribution subject to A
��
0

1

�Wx�2 dx � ��
0

1

�Zx�2 dx � Z0
2�1/2��

�

1/4

. �41�

Both viscous and resistive dissipation rates decrease as vis-
cosity increases. We conclude that the emergence of the vis-
coresitive scale xs leads not only to the separation of the
magnetic field and velocity amplitudes for �
� but also to
the decline in the global energy dissipation rate. This is fully
consistent with the dissipation rate of Eq. �37�, obtained for
the transient solution.

C. Steady-state solution with anisotropic viscosity

Now consider the opposite limit of a strong magnetic
field that alters the viscous stress tensor significantly. When
�p�p�1, the dominant terms in the Braginskii viscous stress
tensor are given by

�ij = ��3
BiBj

B2 − �ij
�BkBl

B2 �lvk −
1

3
� · v
 , �42�

where all quantities are dimensionless.18,19 We assume in-
compressibility and consider steady solutions with a domi-
nant axial magnetic field, B�Z�x�, and W=W�x� as before.
Keeping only the leading-order terms with respect to B−1, we
obtain the following approximate expression for the viscous
force:

� j�ij = − � � �Bx

Z
W�
 + 3���x�Bx

2

Z2 W�
 + �y�BxBy

Z2 W�

ẑ .

�43�

Replacing the Laplacian term by this form of the viscous
force in Eqs. �7� and �8�, we obtain

Z� + 3��Z−2xW��� = 0, �44�

xW� + �Z� = 0. �45�

The resulting equation for the axial magnetic field,

Z� = 3���Z−2Z���, �46�

should be contrasted with Eq. �38� that was based on the
isotropic viscosity.

Equation �46� can be integrated twice to yield

�Z��2 =
1

6��
Z4 + aZ3 + �Z��0��2, �47�

where a is an arbitrary constant. The solution for Z�x� can be
formally expressed in terms of Jacobi elliptic functions. For
comparison with the solution for isotropic viscosity, we ini-
tially assume Z�x� to be an analytic odd function, which im-
plies a=0. In addition if the magnitude of Z�1� is large
enough, we can ignore the term Z��0� far from x=0 and
obtain

Z�x → 1� �
�6���1/2Z�1�

�6���1/2 + �1 − x�Z�1�
, �48�

and the corresponding expression for x→−1. The character-
istic length scale in the strong-field limit is given by ����1/2

1/4
rather than ���� . Similarly the ratio Z0 /W0 of typical mag-
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nitudes of the magnetic field and velocity scales as � /�
rather than �� /��1/2 in the weak-field limit.

The most notable qualitative difference of the field pro-
file Z�x� in the strong-field limit, compared with the error-
function profile in the weak-field limit, is a localized gradient

of the magnetic field at the outer boundaries x= ±1. It should
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be remembered, of course, that Z�1� needs to be large
enough to justify the approximate form of the anisotropic
viscous stress tensor. Probably more critical is the break-
down of the approximation at x=0, where Z→0. This could
lead to another current layer at x=0, which would be analo-

FIG. 6. Time slices showing initial
wave decay for �=10−3, �=10−2.5. The
decline of g in �a� contrasts with the
growth of h in �b�. Both plots show
wave profiles at t=0.75, 1.35, 2.25
Alfvén times, with peaks moving sys-
tematically inwards.
gous to the weak-field case. A similar solution can be derived
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in the case of a large constant background field Z�0��0. The
field profile is then Z�x�−Z�0��sinh�x / �3���1/2Z�0��, which
is also localized at the outer boundary. By contrast, when
Z�0��0, the formal weak-field solution remains localized at
the origin, since its error-function profile is simply shifted by
Z�0�.

The steady solutions described above confirm the non-
trivial relationship between the magnetic field strength and
the viscous plasma dynamics. We should bear in mind, how-
ever, that by choosing a�0 in Eq. �47� we can construct
nonanalytic solutions for Z�x�. In particular, taking a
�sgn�x� results in an odd solution for Z�x� with Z�0�=0 and
with the electric current localized at x=0 on the scale
����1/2. This behavior is similar to that of the weak-field
solution, but the price paid for the current localization is a
weak discontinuity of Z�x� at the origin. Formally the dis-
continuity implies the presence of a delta-functional term in
Eq. �46�. A similar situation has already been described for
two-dimensional viscoresistive reconnection.8 The discon-
tinuous solution may have physical validity if the higher-
order terms, neglected in Eq. �46�, lead to a smooth solution
at the origin.

These arguments emphasize the importance of studying
the dynamical accessibility of the steady-state solutions,
which would allow us to pick out the correct steady solution
by following the temporal evolution of the system. The
analysis of the dynamical accessibility of steady-state models
will be pursued elsewhere, but it seems apt to mention that
our preliminary dynamic computations indicate the develop-
ment of odd solutions localized to the origin both for the
isotropic viscosity and for anisotropic viscosities that ap-
proximate the full viscous stress tensor. Notably, the steady
solutions, based on the isotropic viscosity, yield dissipation
scalings that are consistent with transient models of Sec. III.

V. DISCUSSION

We have discussed the viscoresistive damping of perpen-
dicularly polarized shear waves at a planar magnetic X-point.
By using a combination of numerical and analytical tech-
niques, we have shown that the form of the energy decay
depends strongly on the relative magnitudes of the viscous
and resistive dissipation coefficients. Three distinct length
scales are present in the problem, which can be ordered ac-
cording to �1/2� ����1/4��1/2 in the case of a viscously
dominated plasma. The relevant length scale defines the gra-
dients of the velocity and magnetic fields and hence the rate
of energy dissipation in the system.

In general, the initial decay phase is dominated by oscil-
latory eigenmodes that maintain equipartition between the
magnetic and kinetic energies. Oscillatory modes, acting on
the scale �1/2, also control the asymptotic decay when resis-
tivity is dominant, �
�. Energy equipartition is found to
break down only for �
�. In this case the oscillatory modes
eventually give way to exponential decay, and dissipation
occurs on the viscoresistive scale xs= ����1/4. When �
�

0, the kinetic energy initially dissipates according to Et

��1/2 �see Eq. �18��. Later the decay is determined by the

slow dissipation of the magnetic energy, which scales as Et
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��1/2�� /��1/4 �see Eq. �37��. An identical dissipation scaling
holds for the steady solution, driven by a shear flow. We
emphasize that, although the asymptotic dissipation rate is
slow for ����1, the early oscillatory phases of viscous
damping are capable of releasing a large fraction of the wave
energy quite efficiently, on a scale of a few hundred Alfvén
times.9,21 This may have interesting implications for the pro-
cesses of energy release in magnetized plasmas.

The principal role of viscosity was noted some time ago
in the context of the damping of Alfvén waves in the solar
corona. When the waves propagate in a region with a large
gradient of the Alfvén speed, they experience phase mixing
that enhances the wave damping rate. For typical parameters
of the solar corona, the damping length has been found to be
determined by viscous rather than resistive dissipation, and
the damping rate has been found to scale as �1/3.17 This scal-
ing is different from the viscous dissipation rate Et��1/2

derived here because phase mixing in a quasi-one-
dimensional background magnetic field produces “corru-
gated” dissipation layers as opposed to a single dissipating
sheet. Aside from these differences, which can be traced to
variations in the field geometry, the decay phenemena wit-
nessed in the more recent phase mixing studies, as well as
the techniques used to model them,21 are well represented in
the present calculations.

We conclude by stressing that ��� is expected in many
astrophysical and laboratory applications. More work is
needed to understand viscous magnetic merging and recon-
nection under realistic astrophysical conditions. A prime ex-
ample is the solar corona, where a key observational clue to
the role of viscosity may be provided by the relatively slow
speed of reconnection outflow jets in solar flares.16 Interest-
ing effects are expected because the background magnetic
field should strongly modify the viscous transport. Then the
Braginskii viscous stress tensor must be used to obtain a
more accurate description of the plasma dynamics. Although
few analytical solutions of this sort have been derived so
far,4,19 our present study suggests that the global energy
losses should be strongly dependent on the geometry of the
magnetic field.
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APPENDIX: TRAVELING WAVE SOLUTIONS FOR
SMALL TIMES

To show the generality of the derived dissipation scal-
ings, we now use the formalism of Sec. III C to describe the
damping of propagating waves. The preferential damping of
the kinetic energy occurs in the case �
�. We assume that
h=0 initially and consider the mode

g�x,t� = G�t�eik�t�x. �A1�
Equation �22� shows that
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k̇ = k, Ġ = − �+k2G . �A2�

Obviously, the damping will be strongest when the wave
number k�t� has increased to the level where �gx�= �G�t�k�t��
is steepest. For a global initial disturbance with k�0��1 this
occurs at the time

t = tm �
1

2
ln� 1

�+
 , �A3�

and so k�tm�= ��+�−1/2. Since the damping layer now has the
thickness x�k−1= ��+�1/2, the maximum dissipation rate
scales as

Et�tm� � G0��+�1/2, �A4�

where G0=G�0� defines the initial wave amplitude.
These expressions, although exact only in the special

case �=�, should provide a reasonable approximation in the
early phases of the damping even for �−�0. This follows
from the observation that h�0 must hold before significant
dissipation sets in �t� tm� due to the ideal constraint of en-
ergy equipartition. Growth, however, will eventually be in-
duced according to Eq. �23�, ht��−g�. Taking h
�H�t�exp�ik�t�x� with H small implies that

H�t� =
�−

�+ �G�t� − G0� �A5�

for t� tm. The important point is that the growth in h drives
a weak asymmetry in the amplitudes of the W and Z fields.

Suppose �
� so that �−�0. Then H will have the same
sign as G �using �A5�� and the magnitude of Z=g+h will
Downloaded 02 Nov 2008 to 130.217.76.77. Redistribution subject to A
dominate W=g−h. Such behavior is confirmed in Fig. 6
which contrasts the decline of the g-field �Fig. 6�a�� with the
growth of the induced component h �Fig. 6�b�� for the initial
phase t� tm. The plots assume initial conditions of the form
g�x ,0�=sin�	x�, h�x ,0�=0. The solution quantifies the trav-
eling wave dissipation in the case �
� when the damping is
predominantly viscous. A similar argument shows that the
kinetic energy will be dominant when the damping is pre-
dominantly resistive.
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