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Abstract. When building classification models, it is common practice to prune them to counter
spurious effects of the training data: this often improves performance and reduces model size.
“Reduced-error pruning” is a fast pruning procedure for decision trees that is known to produce
small and accurate trees. Apart from the data from which the tree is grown, it uses an independent
“pruning” set, and pruning decisions are based on the model’s error rate on this fresh data.
Recently it has been observed that reduced-error pruning overfits the pruning data, producing
unnecessarily large decision trees. This paper investigates whether standard statistical significance
tests can be used to counter this phenomenon.

The problem of overfitting to the pruning set highlights the need for significance testing. We
investigate two classes of test, “parametric” and “non-parametric.” The standard chi-squared
statistic can be used both in a parametric test and as the basis for a non-parametric permutation
test. In both cases it is necessary to select the significance level at which pruning is applied. We
show empirically that both versions of the chi-squared test perform equally well if their significance
levels are adjusted appropriately. Using a collection of standard datasets, we show that significance
testing improves on standard reduced error pruning if the significance level is tailored to the
particular dataset at hand using cross-validation, yielding consistently smaller trees that perform
at least as well and sometimes better.

1. Introduction

When building classification models, it is common practice to discard parts of the
model that describe spurious effects in the training sample rather than true features
of the underlying domain. This process is called “pruning.” Not only does it often
improve performance, it also produces simpler models that are easier for users to
understand. For pruning, an effective mechanism is needed to distinguish parts of a
classifier that are due to chance effects from parts that describe relevant structure.

Statistical significance tests are theoretically well-founded methods for determin-
ing whether an observed effect is a genuine feature of a domain or just due to
random fluctuations in the sampling process. Thus they can be used to make prun-
ing decisions in classification models. Reduced-error pruning (Quinlan, 1987), a
standard algorithm for post-pruning decision trees, does not take statistical signif-
icance into account, but it is known to be one of the fastest pruning algorithms,
producing trees that are both accurate and small (Esposito, Malerba & Semeraro,
1997). This paper investigates whether significance tests can be used to improve
on this well-known pruning procedure.

The primary hypothesis is the following:

Hypothesis 1 Statistical significance tests can be used to improve the reduced-
error pruning algorithm to make decision trees smaller and more accurate.
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Significance tests can be divided into those called “parametric tests” that make
some mathematical assumptions about the underlying distribution function and
those called “non-parametric tests” (Good, 1994) that are essentially assumption-
free. Tests based on the chi-squared distribution, for example, belong to the former
group: they assume that the test statistic is distributed according to the chi-squared
distribution. Their use is questionable for small sample sizes because then the
assumptions required for applying the chi-squared distribution cease to be valid.
Permutation tests, on the other hand, make no assumptions about the functional
form of the underlying distribution, and belong to the second group of tests. Con-
sequently, they can be applied with any sample size.

Graceful behaviour for small samples is particularly important in learning al-
gorithms like decision tree inducers, where pruning decisions have to be made for
smaller and smaller subsets of data. Given these considerations, it is plausible that,
for a given amount of pruning—which can be controlled by the test’s significance
level—decision trees pruned using a permutation test will be more accurate than
those pruned using a parametric test. This leads to our secondary hypothesis:

Hypothesis 2 If decision tree A is the result of pruning using a permutation test,
and decision tree B is the result of pruning using o parametric test, and both trees
have the same size, then A will be more accurate than B on average.

The structure of this paper is as follows. Section 2 explains why it is important
to consider statistical significance when pruning decisions are made. Section 3
details standard statistical tests that can be employed. These tests are compared on
artificial and practical datasets in Section 4 and 5 respectively. Section 6 shows how
the significance level can be chosen to minimize tree size without loss in accuracy,
and Section 7 discusses related work. Section 8 summarizes the findings of this

paper.
2. Decision tree pruning and statistical significance

Figure 1 depicts an unpruned decision tree. We assume that a class label has been
attached to each node of the tree—for example, by taking the majority class of the
training instances reaching that particular node. In Figure 1 there are two classes:
A and B.

The decision tree depicted in Figure 1 is a complete classifier and can be used to
predict the class of a test instance by filtering it to the leaf node corresponding to
the instance’s attribute values and assigning the class label attached to that leaf.
However, using an unpruned decision tree for classification potentially “overfits” the
training data: some of its structure, namely that due to random variation in the
particular data sample used for training, might not be warranted. Consequently, it
is advisable before the tree is put to use, to ascertain which parts of the tree truly
reflect effects present in the domain—and discard those that do not—before the
tree is put to use. This process is called “pruning.”

A general, fast, and easily applicable pruning method is “reduced-error prun-
ing” (Quinlan, 1987). The idea is to hold out some of the available instances—the
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Figure 1. A decision tree with two classes A and B
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Figure 2. An example pruning set

“pruning set”—when the decision tree is built, and prune the tree until the classifi-
cation error on these independent instances starts to increase. Because the instances
in the pruning set are not used for building the decision tree, they provide a less
biased estimate of its classification error on future instances than the training data.
Reduced-error pruning uses this estimate as a guideline for its operation.

Figure 2 shows an example pruning set for the decision tree from Figure 1. Fig-
ure 3 displays how reduced-error pruning proceeds for this example. In each tree,
the classification errors committed by the individual nodes are given in brackets.
A pruning operation involves replacing a subtree by a leaf. Reduced-error pruning
will perform this operation if it does not increase the total number of classifica-
tion errors. Traversing the tree in a bottom-up fashion ensures that the result is
the smallest pruned tree that has minimum error on the pruning data (Esposito,
Malerba & Semeraro, 1995). This traversal strategy is a direct result of the condi-
tion that a node can only be converted to a leaf if all subtrees attached to it have
already been considered for pruning.

Assuming that the tree is traversed left-to-right, the pruning procedure will first
consider for removal the subtree attached to node 3 (Figure 3a). Because the
subtree’s error on the pruning data (1 error) exceeds the error of node 3 itself (0
errors), node 3 will be converted to a leaf (Figure 3b). Subsequently, node 6 will
be replaced by a leaf for the same reason (Figure 3c). Having processed both of its
successors, the pruning procedure will then consider node 2 for deletion. However,
because the subtree attached to node 2 makes fewer mistakes (0 errors) than node
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Frigure 3. Reduced-error pruning example

2 itself (1 error), the tree will remain in place. Next, the subtree extending from
node 9 will be considered for pruning, resulting in a leal (Figure 3d). In the last
step, node 1 will be considered for pruning, leaving the tree unchanged.

Unfortunately, there is a problem with this simple and elegant pruning procedure:
it overfits the pruning data (Qates & Jensen, 1998). The consequence is the same as
for overfitting the training data, namely an overly complex decision tree. A simple
example shows why this happens.

Consider a dataset with 10 random binary attributes with uniformly distributed
values “0” and “1.” Let the class also be binary with an equal number of instances
of each class, and class labels “A” and “B.” Of course, the expected classification
error for this domain is the same for every possible classifier, namely 50%, and
the simplest conceivable decision tree for this problem—predicting the majority
class from the training data—consists of a single leaf node. We would like to find
this trivial tree because then we could correctly deduce that none of the attributes
in this dataset provides any information about the class label associated with a
particular instance.
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Figure 4. Tree for no-information
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Figure 5. Tree for no-information dataset after pruning

Figure 4 shows a decision tree, before pruning, for a randomly generated sample
of 100 instances. Figure 5 shows the same tree after pruning has taken place.
Reduced-error pruning was employed, using one third of the instances as the pruning
set, (Oates & Jensen, 1999), and the standard information gain criterion (Quinlan,
1986) for selecting the tests at each node.

Figure 5 suggests that, although reduced-error pruning successfully reduces the
size of the unpruned tree, it certainly does not generate the correct decision tree.
This hypothesis can easily be confirmed by repeating the experiment with different
randomly generated datasets (Jensen & Schmill, 1997). Figure 6 summarizes the
results obtained by repeating it 100 times for each of 10 different training set sizes.
The error bars are 95% confidence intervals for the mean of the decision trees’ size;
they show that reduced-error pruning indeed generates overly complex decision
trees for this problem—independent of the particular training set.

A closer look at Figure 4 reveals the reason for this pathology. Because of the large
number of subtrees that have to be considered for pruning, there are always some
that fit the pruning data well just by chance. The pruning procedure incorrectly
retains those trees. This also explains why the size of the pruned tree increases
with the number of training instances: the larger the unpruned tree, the more
subtrees are likely to fit the pruning data well by chance. In other words, this
problem arises because reduced-error pruning does not take into account the fact
that the pruning data results from a stochastic sampling process. The distribution
of class values at the nodes of a decision tree does not necessarily reflect the true
distribution, and this effect is particularly pronounced if the data samples at the
nodes are small. Stated differently, the pruning procedure does not test whether



REDUCED-ERROR PRUNING WITH SIGNIFICANCE TESTS 7

100 T T T T T T T T

90 - E

80 - /
e

70 b

60 |- :

40 |- i

Number of nodes
(52
<
T
i

30 -

O ] 1 ! I | 1 L i
50 100 150 200 250 300 350 400 450 500
Number of instances

Figure 6. Size of pruned tree relative to training set size, using reduced-error pruning

the association between the predictions and the observed class values in the pruning
data is statistically significant.

Statistical significance tests—more specifically, significance tests on contingency
tables—suggest themselves as an obvious remedy: a subtree is only retained if
there is a significant association between its predictions and the class labels in the
pruning data. The following sections discuss these tests in detail, and compare their
performance in pruning decision trees derived from artificial and practical datasets.

3. Significance tests on contingency tables

Tests for independence in a contingency table determine whether if there is a sta-
tistically significant dependence between the values of two nominal variables. In
the pruning problem above, the two variables are (a) the actual class values in the
pruning data, and (b) the class values predicted by the subtree. We want to know
whether there really is a significant dependence between the true class values and
the predicted ones, or whether it is likely that the observed correlation is just due to
chance—that is, caused by random fluctuations in the particular sample of pruning
data being employed.

Figure 7 shows the structure of a contingency table. The I columns and J rows
correspond to the values of the two nominal variables being considered. Each cell of
the table contains the number n,; of times the corresponding combination of values
has been observed in N instances. The column and row totals N;y and Ny; are
the sums of the entries in each row and column respectively.
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Figure 7. Structure of a contingency table
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Figure 8. Example confusion matrix

In the evaluation of classification algorithms, a contingency table comparing the
algorithm’s predictions to the actual class values is known as a “confusion matrix.”
Figure 8 shows the confusion matrix for the final pruned tree from Figure 3. The
column totals represent the number of pruning instances of each class that reach
the corresponding node—in this case, node 1. The row totals, also in boldface,
correspond to the number of pruning instances that would be assigned to each class
if the corresponding subtree—in this case, the full tree—were used for classification.
A confusion matrix makes it easy to see how many pruning instances would be
correctly classified by a subtree: the number of correctly classified instances is the
sum of the diagonal elements in the matrix. Confusion matrices, as a particular
type of contingency table, are the basis for the significance tests considered in this

paper.

3.1.  Testing significance

The hypothesis that two variables, such as the actual and predicted class values,
are independent is called the “null hypothesis,” and a significance test determines
whether there is enough evidence to reject this hypothesis. When pruning decision
trees, rejecting the null hypothesis corresponds to retaining a subtree instead of
pruning it. The degree of association between the two variables is measured by the
“test statistic.” This can, for example, be the classification error. The significance
test computes the probability that the same or a more extreme degree of association
will occur by chance if the null hypothesis is correct. This quantity is called the
“p-value” of the test. If the p-value is low, the null hypothesis can be rejected, that
is, the observed degree of association is unlikely to be due to chance. Usually, this
is done by comparing the p-value to a fixed significance level «, rejecting the null
hypothesis if o is greater or equal to the p-value. A significance test can be applied
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to the pruning problem by computing the p-value for the observed association and
comparing it to «, retaining or discarding the subtree accordingly.

Two quantities are important when evaluating a significance test: the probabil-
ities of committing a “Type I error” and “Type II error.” A Type I error occurs
when the null hypothesis is incorrectly rejected, in other words, when a significant
association is found although a real association does not exist. The probability of
committing a Type I error is the significance level «, and usually fixed o priori.
In the context of pruning, committing a Type I error corresponds to incorrectly
deciding not to prune—also called “underpruning.” A Type II error, on the other
hand, occurs when the null hypothesis is incorrectly accepted, in other words, when
a significant association is overlooked. Committing a Type II error corresponds to
“overpruning” —deciding to discard a subtree although it would be better if it were
kept.

The complement of the probability of committing a Type II error is called the
“power” of the significance test. Ideally, neither type of error would occur. In
that case, the significance level o would be zero, and the power would be one.
Unfortunately, this is not feasible in practice, and there is a trade-off between the
two flavors of error: the less likely a Type I error becomes, the more likely is a
Type II one, and vice versa. Consequently one type of error can not be considered
in isolation when comparing statistical tests, and one can only seek a test that
maximizes the power for a given significance level .

Statistical tests are based on the distribution of the test statistic under the null
hypothesis. As mentioned above, they can be divided into two groups: parametric
tests, which rely on the assumption that the distribution belongs to a particular
class of parametric functions, and non-parametric tests, which do not require the
distribution function to be of any particular form. The remainder of this section
first discusses parametric tests based on the chi-squared distribution, and then a
group of non-parametric tests known as “permutation tests.”

5.2.  Parametric tests

The most popular tests for independence in contingency tables are based on the
fact that some test statistics have approximately a chi-squared distribution with
(r — 1){e¢ — 1) degrees of freedom if the null hypothesis is correct. The classic test
statistic with this property is the chi-squared statistic (Agresti, 1990)

=33 —"”e; = (1)
i

where e;; are the expected cell counts under the null hypothesis, calculated accord-
ing to
L Nip Nyj _ Nip Ny
eij:Npipj:N N T:*—N“j; (2)
where p; is the estimated probability that a particular observation will fall into
column 4, and p; is the corresponding probability for row j. Because these two
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probabilities are independent under the null hypothesis, their product constitutes
the probability that an observation will fall into cell (4, 7).

An alternative to the chi-squared statistic, which also has a chi-squared distribu-
tion, is the “log likelihood ratio” (Agresti, 1990)

G? =2 Z Z ni;log (ng;/ei;). (3)

A disadvantage of tests based on the chi-squared distribution is that they are sta-
tistically invalid when the sample size is small (Agresti, 1990). The chi-squared
distribution is an approximation to the test statistics’ true sampling distribution
under the null hypothesis, and this approximation is only accurate when the sample
is large. Unfortunately, there is no single rule that can be used to determine when
the approximation is valid (Agresti, 1990, page 247). Cochran (1954), for example,
suggests that a test based on the x? statistic can be employed if none of the expected
cell counts is smaller than 1, and at most 20% of them have expected values below
20. Agresti (1990, page 247) writes that “...the chi-squared approximation tends
to be poor for sparse tables containing both small and moderately large expected
frequencies.” However, it has also been shown that x? works well with smaller
sample sizes and more sparse tables than G? (Agresti, 1990, page 246). Depending
on the expected cell counts, using the chi-squared distribution in conjunction with
G? can result in a test that is either too conservative or too liberal (Agresti, 1990,
page 247). A test that is too conservative produces p-values that are too large,
while one that is too liberal produces p-values that are too small.

3.3.  Non-parametric tests

Non-parametric tests have the advantage that they do not make assumptions about
the specific functional form of the test statistic’s distribution. Permutation tests
are a class of non-parametric tests that compute the test statistic’s distribution
under the null hypothesis explicitly, by enumerating all possible permutations of
the given data. In contrast to parametric tests using the chi-squared distribution,
permutation tests are statistically valid in small-sample situations (Good, 1994).
They are based on the fact that, under the null hypothesis, all possible permutations
of a dataset are equally likely to occur. The p-value of a permutation test is the
fraction of these permutations for which the test statistic has an equally or more
extreme value than for the original data (Good, 1994).

In the case of classification problems, permutations of a dataset correspond to
permutations of the class labels associated with its instances. Figure 9 shows all
possible permutations for a small dataset with four instances, along with the clas-
sification error that they incur when classified as indicated. Note that there are
permutations that produce identical columns in Figure 9. Consider, for example,
the permutation that just swaps the class labels of the two instances belonging to
class A: it produces the same column as the original data. Like the original data,
four of the 24 permutations result in zero error. If a permutation test were per-
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Predicted — Data | Permutations
A A AAAAAABBBBBBBBBBBBAAAAAA
B B BBBBAAAABBAAAABBAAAABBIBRB
B B BABABBBAAAABBAAAABBDBABARB
A A ABABBBABAABAABAABABDBDBABA
Errors O[020222242242242242222020
Figure 9. Permutations of a datasets
actual actual actual
A B A B A B
pre- Al 2 012 pre- All 172 pre- ALl D 212
dicted | B | 0 212 dicted | B 1 1] 2 dicted | B 2 0|2
2 2 4 2 2 4 2 2 4

Figure 10. Example contingency tables

formed on this dataset using the classification error as the test statistic, the p-value
would be 4/24, or 1/6.

Fach permutation of class labels can also be written in form of a contingency table,
with some of the permutations mapping to the same table. The 24 permutations
from Figure 9 result in only three tables, depicted in Figure 10. The first table
corresponds to all permutations with 0 errors, the second one to all permutations
with 2 errors, and the third one to all permutations with 4 errors. These three tables
have one thing in common: they all share the same marginal totals. Permuting the
class labels does not alter the number of instances that belong to each class. Tt
also does not alter the number of instances assigned to each class by the classifier.
In statistical terms, permutation tests on contingency tables derive a p-value by
conditioning on the given marginal totals.

Identical contingency tables result in the same value for the test statistic. Thus
the p-value of a permutation test can also be computed by summing up the proba-
bilities of all contingency tables with an equally or more extreme value for the test
statistic. The probability of a contingency table py—equivalent to the fraction of
random permutations resulting in the table—can be written in closed form

p Hini+!Hj nyj
f = ——— .
n! T I !

This function is known as multiple hypergeometric distribution (Agresti, 1990). If
sy is the test statistic’s value for the contingency table f, and s, its value for the
original data, then the p-value can be written as

p=> I(s; < s0)py, (5)

where [() is the indicator function, and the sum is over all contingency tables with
the same marginal totals.

(4)
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Unfortunately, both methods of computing the exact p-value of a permutation
test—enumerating all possible permutations directly, or just enumerating all possi-
ble contingency tables-——are computationally infeasible for all but very small sample
sizes. For some test statistics sophisticated “network algorithms” have been devel-
oped that only evaluate a small subset of all possible contingency tables in order to
compute the exact p-value (Good, 1994). They make use of mathematical proper-
ties of the test statistic in order to cut down the search space. However, even these
sophisticated algorithms are only applicable if the sample size is small because they
are still computationally very expensive.

3.4.  Approzimation

The solution to this dilemma is to realize that the “exact” p-value is not required
when performing the test. It is sufficient to approximate it to a degree that makes
it clear beyond reasonable doubt whether it is greater than the significance level
a or not. This can be done by randomly sampling permutations from the space
of all possible permutations, and computing the proportion p of these for which
the test statistic has an equal or smaller value than for the original data (Good,
1994). The proportion p constitutes an approximation to the exact p-value, and
the precision of this approximation increases with the number of random samples
that are generated. Alternatively, one could sample from the space of all possible
contingency tables and use Equation 5 to approximate the exact p-value. This is
advantageous if extra speed is important, because there are efficient algorithms for
generating random contingency tables with a given set of marginal totals (Patefield,
1981).

It remains to determine how many random samples are needed to give an approx-
imation that is accurate enough. Statisticians have designed a procedure for this
purpose, called the “sequential probability ratio test” (Lock, 1991). Figure 11 sum-
marizes the decision rules for this test, where n is the number of random samples.
It employs three constants that determine how closely the approximation emulates
the exact test: pg, po, and A, where 0 < p, < @ < p, < 1, and 0 < A < 1.
Recommended values are p, = 0.8 x o, pp = 1.2 % o, and A = 0.1 (Lock, 1991).

In principle, any test statistic can be employed in conjunction with a permutation
test, and this is one of its major advantages. When testing for independence in
a contingency table, the test statistic should measure the degree of association
between two nominal variables. Depending on the particular type of association
being investigated, different test statistics sometimes lead to different results.

3.5.  Test statistics

Two possible statistics have already been discussed in the context of parametric
tests: x? and G2. Both can also be used to form permutation tests (Good, 1994).
The significance level is simply the fraction of random permutations for which the
statistic’s value is at least the same as for the original data—because both statis-
tics increase monotonically with the degree of association that is present. The



REDUCED-ERROR PRUNING WITH SIGNIFICANCE TESTS 13

log A

Ifpxn>cxn+ LR — accept null hypothesis
- log K
log A

Ifpxn<ckxn-— o8 — reject null hypothesis
- log K

Otherwise — continue sampling

_ pa(l “po)
Po(l — pa)

17
c:iog(“g”)/logﬁ K
[£3

Figure 11. Sequential probability ratio test

actual actual actual

A B A B A B
pre- I Al 2 0|2 pre- Al 112 pre- Al O 212
dicted | B | 0 | 2|2 dicted | B | 1 112 dicted | B | 2 0| 2
2 2 4 2 2 4 2 2 4

p — value = 2/6 p—value =1 p —value = 2/6

Figure 12. Three tables and their p-values

chi-squared distribution, which is the basis for the parametric tests discussed ear-
lier, is in fact only an approximation to the permutation distribution of the two
statistics, and, as mentioned above, this approximation is unreliable for small sam-
ple sizes (Agresti, 1990). Note that, although the sequential probability ratio test
is only an approximation to the exact test, it is guaranteed to closely approximate
the true p-value, whereas this is not the case for tests based on the chi-squared
distribution.

Another potential test statistic has also already featured above, although it did
not play the role of a test statistic. The probability p; of a contingency table un-
der the null hypothesis—given by the multiple hypergeometric distribution—is an
alternative to x? or G? (Good, 1994). The idea is that a rare contingency table,
having a low value for pg, indicates a strong association between the two variables
involved. The test’s significance level is the fraction of random permutations for
which py is no greater than for the original data—because the greater the associa-
tion, the smaller the probability. When both variables in the contingency table are
binary, this permutation test is known as the two-sided version of Fisher’s exact
test (Agresti, 1990). In the general case it is sometimes called the Freeman and
Halton test (Good, 1994).

All permutation tests share the disadvantage that the distribution of p-values is
very sparse’ when the sample size is extremely small (Agresti, 1990). This is due
to the small number of contingency tables that are possible when there are very
few instances.
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8.6, Sparseness

The problem of sparseness is illustrated in Figure 12. It shows the three possible
contingency tables with two instances in each row and column, and the p-values of
Fisher’s exact test for each one: 2/6, 1, and 2/6 respectively. It can be shown that
the large gaps between the individual p-values have the consequence that the actual
probability of committing a Type I error can be much lower than the significance
level a (Agresti, 1990). This causes the test to become overly conservative.

There is a solution to this problem known as “randomization on the bound-
ary” (Agresti, 1990). Let p; be the p-value of the contingency table under investi-
gation, and ps be the next smaller p-value of a table with the same marginal totals
(or zero if py is the smallest p-value possible). Moreover, let o be equally large or
larger than p,. (Otherwise, the null hypothesis will be accepted.) Randomization
on the boundary means that the null hypothesis will be rejected with probability
(v — p2) / (p1 — p2) even if « is smaller than p;—which would normally mean that
it will be accepted. In the example from Figure 12, randomization on the bound-
ary will reject the null hypothesis for the leftmost table at a significance level of
« = 1/10 with probability 3/10; in other words, it will reject the null hypothesis in
30% of the cases that would normally cause it to be accepted. It can be shown that
Fisher’s exact test is uniformly most powerful among all unbiased tests for compar-
ing binomial populations, if randomization on the boundary is performed (Agresti,
1990).

An approximation to this randomization procedure is the “mid-p value” method (Lan-
caster, 1961). Here, the mid-point half-way between p; and ps, given by (p; +p2)/2
is used instead of p;. The mid-p values for the three tables from Figure 12 are
1/6, 2/3, and 1/6 respectively. The mid-p value has the advantage that it is more
uniformly distributed under the null hypothesis than the ordinary p-value, and its
expected value is 0.5—standard properties of significance tests with continuous p-
values. Statisticians recommend the mid-point procedure to avoid problems arising
from sparseness, and argue that it is a good compromise between a conservative
test and performing randomization on the boundary (Agresti, 1990).

4. Experiments on artificial data

The overall qualities of different pruning methods can best be judged by looking
at two extremes in the space of potential learning scenarios: on the one hand, a
situation where all pruning is beneficial, and on the other, a situation where any
kind of pruning is harmful. Focusing on these two cases, this section compares the
performance of the tests from the previous section using artificially generated data.

Section 2 has already introduced an artificial problem that requires a maximum
amount of pruning. In this problem, the class is completely independent of the pre-
dictor attributes, and a single root node is sufficient to achieve optimum predictive
performance. As discussed in Section 2, reduced-error pruning fails to identify the
null model as the correct model for this learning problem. How do the significance
tests from the previous section fare?



REDUCEDR-ERROR PRUNING WITH SIGNIFICANCE TESTS 19

%0 ! T T T T T 1
reduced-error pruning
parametric chi-squared ---~---
permutation chi-squared --------
mid-p chi-squared -
25 |
20 + |
@
@@
E=l
2
ey
B 45 L |
o
0
£
3
z
10 |
5 i -
0 : . L L L i L

i
50 100 150 200 250 300 350 400 450 500
Number of instances

Figure 13. Performance of tests for no-information dataset

Figure 13 shows how successful they are in identifying and eliminating subtrees
that are retained incorrectly by reduced-error pruning. Each time reduced-error
pruning decides to retain a subtree, this decision is verified using a significance test.
As in Figure 6, 100 different random datasets were generated to obtain one data
point in the graph, and the error bars are 95% confidence intervals on the mean.
The figure shows graphs for the ordinary parametric chi-squared test and the per-
mutation test based on the chi-squared statistic. For the chi-squared permutation
test, it also shows the results obtained using the mid-p adjustment. The graphs
for the Freeman and Halton test are almost identical to those for the chi-squared
permutation test, and therefore omitted. For all permutation tests involved, the
sequential probability ratio test was used to determine how many permutations had
to be investigated before the null hypothesis could be accepted or rejected. In all
tests—the parametric tests as well as the non-parametric ones—a significance level
o of 0.1 was used.

The results in Figure 13 show that significance testing successfully reduces the
number of subtrees that are incorrectly retained by the pruning procedure. Com-
pared to Figure 6 from Section 2, the average number of nodes in the pruned
decision trees is dramatically reduced. However, there is some variation in the
degree to which the different significance tests achieve this reduction. The most
liberal of the tests is the parametric chi-squared test: it consistently produces the
trees with the highest average number of nodes—that is, more often than the other
tests, it incorrectly rejects the null hypothesis. Considering the tests in order of
their performance, the next best is the mid-p test based on the chi-squared statis-
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Figure 14. Performance of tests for parity dataset

tic. As expected from the discussion in the previous section, using the mid-p value
results in a test that is more liberal than the ordinary permutation test—-the best-
performing test in this particular task. Considering the definition of the problem,
this finding comes as no surprise, because the dataset is devoid of any structure
whatsoever; hence no test can be too conservative, and the “best” test is one that
always accepts the null hypothesis. Clearly, this is not useful in practice: the
question is how sensitive is the test when structure is present.

In order to investigate this question, we move to the other end of the problem
space, and consider a dataset where the best way of pruning is not to prune at
all: a dataset with a binary class, whose value is 1 if and only if the number of
ones in the (binary) attributes is odd. This is known as the “parity problem,” and
the correct tree contains exactly one leaf for each possible attribute combination.
Again, instances are generated by randomly sampling attribute values from the
uniform distribution, followed by assigning the appropriate class value. The pruned
tree’s expected classification accuracy on fresh data is proportional to the number
of leaves in the tree. Since the total number of nodes in a (binary) tree, which
includes the leaves, is twice the number of leaves plus one, the expected accuracy
is also proportional to the number of nodes.

Figure 14 shows the results for the different pruning strategies, derived in the
same way as for Figure 13. Again, the Freeman and Halton test is omitted because
its results are almost identical to those for the permutation test based on the chi-
squared statistic. The performance of the tests is as expected from the previous
scenario: again, the parametric chi-squared test is the most liberal, in this case
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Figure 15. Significance test A uniformly dominates test B

producing the best result, followed by the mid-p permutation test, which gives the
second-best result, and the ordinary permutation test based on the chi-squared
statistic, which performs worst.

The results for these two artificial scenarios show that, for a given significance
level, the different significance tests can be ordered according to the amount of
pruning that they incur. It remains the question whether this difference in be-
haviour can be eliminated by adjusting the significance level for each test according
to the properties of the domain. It is, for example, possible that the parametric
chi-squared test at a significance level s; results in the same amount of pruning
as the chi-squared permutation test at a significance level so—if s; is set to some
appropriate value smaller than s5.

This hypothesis can be tested by plotting the classification error and tree size for
each significance level as depicted in Figure 15. In this hypothetical situation, there
are two tests A and B, and four significance levels: 0.1, 0.2, 0.3, and 0.4. Assuming
that the tests are sufficiently well-behaved, performance at intermediate levels can
be interpolated by connecting the data points for these four significance levels with
straight lines.

In this contrived example, it is clear that test A really is fundamentally different
from test B: for all potential tree sizes, A produces more accurate results than B.
In other words, there is no reason to use test B because A always performs better
if the significance level is chosen appropriately. However, it is unlikely that the
situation is so clear-cut for practical datasets.
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Table 1. Datasets used for the experiments

Dataset Instances  Missing ~ Numeric Nominal Classes
values (%) attributes attributes

anneal 898 0.0 6 32 5
audiology 226 2.0 0 69 24
australian 690 0.6 6 9 2
autos 205 1.1 15 10 6
balance-scale 625 0.0 4 0 3
breast-cancer 286 0.3 0 9 2
breast-w 699 0.3 9 0 2
german 1000 0.0 7 13 2
glass (G2) 163 0.0 9 0 2
glass 214 0.0 9 0 6
heart-c 303 0.2 6 7 2
heart-h 294 20.4 6 7 2
heart-statlog 270 0.0 13 0 2
hepatitis 155 5.6 6 13 2
horse-colic 368 23.8 7 15 2
ionosphere 351 0.0 34 0 2
iris 150 0.0 4 0 3
labor 57 3.9 8 8 2
lymphography 148 0.0 3 15 4
pima-indians 768 0.0 8 0 2
primary-tumor 339 3.9 0 17 21
sonar 208 0.0 60 0 2
soybean 683 9.8 0 35 19
vehicle 846 0.0 18 0 4
vote 435 5.6 0 16 2
vowel 990 0.0 10 3 11
z00 101 0.0 1 15 7

5. Experiments on practical datasets

Experiments on datasets from the real world are the only way to evaluate whether
a particular method is likely to perform better than other methods in practice.
The UCT repository of machine learning datasets is a popular source of suitable
benchmark learning problems (Blake, Keogh & Merz, 1998). This section presents
experimental results for 27 of these datasets in order to compare the performance
of the statistical tests in a more realistic setting. The datasets are the 27 smallest
ones used by Frank and Witten (1998a). They are listed in Table 1.

For each dataset, a fully grown tree is post-pruned using reduced-error pruning
in conjunction with a significance test. Each time reduced-error pruning decides
to retain a subtree, this is verified using the significance test and the subtree is
retained or discarded accordingly. One third of the instances are used as the pruning
set (Oates & Jensen, 1999); and the standard information gain criterion (Quinlan,
1986) is employed for selecting the tests at each node. Missing attribute values
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Figure 16. Comparison of significance tests for australian dataset

are dealt with in the simplest possible way by assigning them to the most popular
branch.

As mentioned above, it is not enough to compare the performance of a set of
significance tests at a particular, fixed significance level «a, because it is possible
that any performance difference vanishes when « is adjusted appropriately for each
test. Diagrams like the one in Figure 15 are the only reliable way to detect whether
a particular test consistently makes “better” pruning decisions than other tests.

Figures 16, 17 and 18 contain diagrams for three of the 27 datasets. The
remaining 24 diagrams can be found in Appendix A. These three examples have
been chosen because they represent typical cases. Fach diagram contains results for
three different significance tests: the parametric chi-squared test, the chi-squared
permutation test, and the mid-p version of the latter one. The data points for
each significance level represent estimates from ten-fold cross-validation repeated
ten times. As in Figure 15, they are connected by straight lines in increasing
order. The graphs also contain results for standard reduced error pruning, which
corresponds to applying the significance tests with a significance level of 1. This is
the rightmost data point in each of the diagrams, and it is shared by all three of
the curves representing the different significant tests. For each test, the data points
corresponding to the four significance levels are ordered left-to-right because they
lead to increasingly larger decision trees {as in Figure 15.)

The graphs present strong evidence that, in practice, the fundamental behaviour
of the three tests is almost identical. For every dataset, overlaying their curves
produces a very smooth result—despite the fact that the individual curves overlap
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Figure 17. Comparison of significance tests for balance-scale dataset

100 T T T T N N T
parametric chi-squared test ~——
permutation chi-squared test ---x-—
mid-p chi-squared test -~
80 B
x‘\\
£ 80} i
@
8
=
k]
G
& a0} _
o 2
20 4
O 1 i I 11 L
0 50 100 150 200 250 300

Number of nodes

Frgure 18. Comparison of significance tests for vowel dataset



REDUCED-ERROR PRUNING WITH SIGNIFICANCE TESTS 21

significantly. It is safe to conclude that, in the context of post-pruning decision
trees, the three tests closely approximate each other if the significance level is
chosen appropriately. The figures also show that, as in the artificial examples from
the previous section, the tests can be ordered according to how aggressively they
prune, given a particular fixed significance level. The permutation chi-squared test
is the most aggressive test, followed by its mid-p version, followed by the parametric
chi-squared test.

A second result is that when significance testing is performed, the trees are often
substantially smaller but no less accurate. The reduction in tree size is partic-
ularly dramatic for the australian, breast-cancer, heart-h, hepatitis, horse-colic,
pima-indians, and vote datasets. In each of these, the estimated number of nodes
is reduced by at least 50% if the most aggressive kind of significance testing is
performed. For the breast-cancer dataset, the maximum reduction is close to 94%
(3.1 instead of 48.6 nodes), indicating that this dataset contains very little infor-
mation. Even when the most liberal test is used for pruning—in other words, the
parametric chi-squared test at a significance level of 0.4—the resulting trees are
often significantly smaller.

Sometimes, for example in the australian dataset, significance testing increases
accuracy. However, the gain is small. In at least three cases, namely autos, vowel,
and zoo, pruning with significance tests decreases accuracy. However, mild pruning
often produces negligible loss of accuracy, and significant loss only occurs with
more aggressive pruning. Examples for when aggressive pruning is harmful are the
audiology, balance-scale, glass-2, primary-tumor, and soybean datasets.

6. Minimizing tree size

The size of the pruned decision tree can be determined by adjusting the significance
level of the statistical test. However, the experiments in the previous section show
that there is a trade-off: if the significance level is set too small, accuracy declines
significantly—and sometimes no additional pruning at all is warranted. Ideally,
we want to prune the tree to the point just before accuracy starts to deteriorate,
and no further. However, as the results from the previous section show, the “best”
significance level depends on the particular properties of the domain—for example,
the amount of noise that is present. Hence the appropriate value must be found
individually for each domain.

This is an optimization problem that occurs very frequently in machine learning:
a parameter setting is required which optimizes predictive performance on future
test data. The standard solution is to derive a ten-fold cross-validation estimate
of the accuracy for each parameter setting, and choose the setting that maximizes
this estimate. Once the optimum value of the parameter has been determined, the
learning algorithm is then applied to the full training dataset using this value.

When this method is used to choose a pruning parameter, there is one additional
complication. Often parameter setting s; produces a significantly smaller classifier
than parameter setting so, at the cost of a small but statistically insignificant drop
in accuracy (Breiman, Friedman, Olshen & Stone, 1984). Because of statistical
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fluctuations in the cross-validation estimate, this can happen even if the expected
accuracies for the two parameter settings are in fact the same. The experimen-
tal results from the previous section exhibit several datasets where this is likely
to occur—all those where the graph is parallel to the x-axis. A standard way of
circumventing this problem is to consider all parameter values for which the esti-
mated error is within one standard error of the smallest error estimate observed,
and choose the one that produces the smallest trees (Breiman, Friedman, Olshen &
Stone, 1984). When pruning with significance tests, the size of the tree decreases
with the significance level. Thus optimization chooses the smallest significance
level that produces a tree whose error is within one standard deviation of the most
accurate tree.

The remainder of this section discusses results obtained by applying this procedure—
both with and without the one-standard-error rule—in conjunction with the para-
metric chi-squared test. As before, the significance test is applied whenever reduced-
error pruning decides to retain a subtree. During optimization, seven significance
levels are considered: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 1. Using the last value in
this list, all subtrees are considered significant, and the resulting tree is the same as
for standard reduced-error pruning. The values 0.1, 0.2, 0.3 and 0.4 were used for
the experiments in the previous section. The first two values are included because
the experimental results from the previous section show that sometimes even more
aggressive pruning is beneficial.

Table 2 shows the accuracies for the 27 datasets introduced above, and Table 4
shows the tree sizes in number of nodes. As well as results for standard reduced-
error pruning the tables include results for pruning with significance testing, both,
without (SIG) and with (SIG-SE) the one-standard-error rule. All estimates are
derived by repeating ten-fold cross-validation ten times. Note that these cross-
validation runs are performed in addition to the cross-validation performed during
internal optimization. The standard deviation for the ten data points correspond-
ing to the ten cross-validation estimates are also shown in the tables. The o (s)
symbol indicates for which datasets pruning based on significance testing produces
more (less) accurate trees than reduced error pruning—or smaller (larger) trees
respectively. A difference is considered to be significant if the corresponding cross-
validation estimates are significantly different at the 0.05% level according to a
paired two-sided t-test for the ten data points involved.

The results of the significance tests for accuracy and size are summarized in
Tables 3 and 5 respectively. In these tables, each entry indicates the number of
datasets for which the method associated with its column significantly outperforms
the method associated with its row.

Tables 3 shows that pruning with significance testing (SIG) produces trees that are
at least as accurate as those for reduced-error pruning (REP) if the one-standard-
error rule is not used. More specifically, SIG is significantly more accurate than REP
on two datasets (second column, first row) and never less accurate (first column,
second row). On the other hand, if the one-standard-error rule is used (SIG-SE),
performance degrades significantly compared to REP on 11 datasets. This indicates
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Table 2. Accuracies for reduced-error pruning (REP) compared
to significance pruning without (SIG) and with (SIG-SE) the one-
standard-error rule

Dataset REP SIG SIG-SE
anneal 98.54+0.4 98.6+0.2 98.440.4
audiology 72.8+1.5 72.1+2.1 69.941.0 e
australian 84.340.9 85.0+£0.4 o 85.440.2 o
autos 63.3+2.8 63.2+2.9 61.0+3.1
balance-scale 78.440.9 77.7£1.4 76.5+£1.2 o
breast-cancer 68.84+1.6 69.14+1.3 69.84+0.6
breast-w 94.3+0.7 93.7£0.8 93.5£0.4
german 72.44+1.4 71.5+0.8 70.4+1.2 =
glass-2 79.0+2.3 78.6+3.0 77.343.4
glass 66.6+3.4 66.0+2.9 62.5+2.6 o
heart-c 75.8+2.3 76.3+£1.5 74.8+1.4
heart-h 78.0+1.7 78.1+1.4 78.9+1.5
heart-statlog 76.31+2.8 77.243.1 75.6+3.6
hepatitis 80.8+2.5 79.6+2.0 80.0+1.7
horse-colic 84.5+0.8 84.0+0.8 83.9+1.1
ionosphere 89.040.8 89.740.9 o 89.84+0.8 o
iris 94.6+0.8 94.0+1.0 93.94£1.1
labor 79.5+3.9 77.5+7.5 75.8+6.9
lymphography 75.2+1.7 73.8+2.5 72.7£1.9
pima-indians 74.04+0.6 73.6+1.4 73.8%+1.6
primary-tumor  37.7+1.9 36.7+1.3 35.0%1.5 e
sonar 71.3+2.4 70.1£3.0 68.5+2.7 o
soybean 85.01+0.9 84.6+1.0 83.54+0.9 o
vehicle 71.0+1.1 70.1£1.1 69.2+1.5 e
vote 95.61+0.5 95.5+0.3 95.6+0.1
vowel 71.6+1.5 71.0+1.5 71.0£1.5
700 90.24+2.3 88.5+2.2 86.3+2.5 o

Table 3. Results of paired t-tests
(p=0.05) for accuracies: number
indicates how often method in
column significantly outperforms
method in row

REP SIG SIG-SE

REP - 2 2
SIG 0 - 1
SIG-SE 11 13 -

that SIG-SE overprunes on these 11 datasets: it produces decision trees that are
too small and do not capture all the relevant information.
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Table 4. Tree sizes for reduced-error pruning (REP) compared
to significance pruning without (SIG), and with (SIG-SE) one-
standard-error rule

Dataset REP SIG SIG-SE
anneal 43.84+2.7 43.14£2.5 42.312.8
audiology 40.2£2.6 36.9£2.3 o 28.2+£16 o
australian 34.34£7.9 9.443.1 o 42415 o
autos 53.6+2.8 53.5+1.9 48.0+2.3 o
balance-scale 54.64+3.2 48.64+2.0 o 33.84+25 o
breast-cancer 48.6+5.3 13.8+6.0 o 1.9£1.1 o
breast-w 15.1£1.5 14.1+£2.4 9.9+1.5 o
german 95.84+9.5 66.7+10.8 o 32.84+11.3
glass-2 12.742.3 9.6£1.0 o 7.6+1.3 o
glass 23.4+1.8 22.34+24 154419 o
heart-c 21.1£1.6 154426 o 8.3x1.2 o
heart-h 15.3%1.8 8.8+2.6 o 5.2+09 o
heart-statlog 15.7+1.6 12.842.3 o 7.1£1.5 o
hepatitis 6.541.9 3.6£1.0 o 1.94£0.3 o
horse-colic 17.3£3.9 11.1£3.0 o 6.4+0.9 o
ionosphere 10.6+2.1 7.6+0.8 o 6.8+0.6 o
iris 6.4+0.5 5.7+£0.4 o 5.6£0.3 o
labor 6.710.8 54408 o 4.8£0.7 o
lymphography 14.6+3.0 12,1422 o 7.4£1.3 o
pima-indians 35.84£5.4 21.6+45 o 9.0£2.5 o
primary-tumor 49.9£4.7 42.3£36 o 21.54£3.9 o
sonar 11.0+1.3 8.1£1.3 o 5.3£09 o
soybean 89.1+1.9 88.413.4 73.3+3.7 o
vehicle 65.5+4.5 58.3+4.9 o 37.1+£3.9 o
vote 7.5%1.2 4.240.6 o 34405 o
vowel 280.944.3 281.4+4.5 281.4+4.5
Z00 14.14+0.4 13.5+£0.6 o 12.041.0 o

Table 5. Results of paired t-tests
(p=0.05) for sizes: number indi-
cates how often method in column
significantly outperforms method

in row

REP SIG SIG-SE
REP - 21 25
SIG 0 - 24
SIG-SE 0 3 -

Tables 5 shows how the methods compare with respect to the size of the pruned
trees. Because SIG and SIG-SE can never prune less than REP, they never produce
larger trees. On the other hand, SIG produces significantly smaller trees than REP



REDUCED-ERROR PRUNING WITH SIGNIFICANCE TESTS 25

for 21 datasets. For several datasets, for example, australian, breast-cancer, heart-
h, hepatitis, pima-indians, and vote, the reduction in tree size is quite dramatic.
SIG-SE produces even smaller trees than SIG—on 24 datasets they are significantly
smaller. However, as Tables 3 shows, it often produces less accurate trees.

Taken together, these results mean that pruning with significance tests success-
fully improves on reduced-error pruning if the significance level is chosen according
to the properties of the domain. It often produces much smaller trees, and the
trees are never significantly less accurate, and sometimes more accurate. The ap-
propriate significance level can be identified automatically by cross-validation. If
the one-standard-error rule is used in conjunction with the cross-validation esti-
mate, tree sizes can be reduced even further. However, this sometimes results in a
significant loss of accuracy.

7. Related work

Pruning methods for decision trees are one of the most extensively researched areas
in machine learning. Several surveys of induction methods for decision trees have
been published (Safavian & Landgrebe, 1991; Kalles, 1995; Murthy, 1998), and
they also discuss different pruning strategies. In addition, empirical comparisons
of a variety of different pruning methods have been conducted. This section first
discusses the most popular pruning methods in the context of published experimen-
tal comparisons, highlighting their weaknesses as well as proposed remedies. Then
we summarize prior work on the problem of underpruning, of which a particular
instance is tackled in this paper. Finally, we briefly discuss less well known pruning
techniques and modifications to existing procedures.

Quinlan (1987) was the first to perform a comparison of pruning methods. He
presents experimental results for three of them: cost-complexity pruning, reduced-
error pruning, and pessimistic pruning. Another experimental comparison of sev-
eral pruning methods has been performed by Mingers (1989). As well as the three
methods investigated by Quinlan, Mingers includes two more procedures in his
comparison: critical value pruning and minimum-error pruning. However, his com-
parison has been criticized because he does not give all pruning methods access to
the same amount of data. Also, he uses a non-standard version of reduced-error
pruning. The critics, Esposito, Malerba, and Semeraro (1997), published a paper
comparing essentially the same pruning algorithms. In order to make a fair com-
parison, their experimental procedure assures that all algorithms have access to the
same amount of data when generating the pruned tree. In contrast to Mingers, they
use Quinlan’s original version of reduced-error pruning, as well as a more recent
incarnation of minimum error pruning. Their paper includes results for a successor
of pessimistic error pruning called error-based pruning.

7.1.  Cost-complexity pruning

Cost-complexity pruning was introduced in the classic CART system for inducing
decision trees (Breiman, Friedman, Olshen & Stone, 1984). It is based on the idea of
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pruning first those subtrees that, relative to their size, lead to the smallest increase
in error on the training data. The increase in error is measured by a quantity « that
is defined to be the average increase in error per leaf of the subtree. CART uses
« to generate a sequence of increasingly smaller pruned trees: in each iteration, it
prunes all subtrees that exhibit the smallest value for a. Fach tree corresponds to
one particular value a;. In order to choose the most predictive tree in this sequence,
CART either uses a hold-out set to estimate their classification error, or employs
cross-validation. Cross-validation poses the additional problem of relating the aé‘?
values observed in training fold k to the «; values from the original sequence of
trees. These values are usually different. CART solves this problem by computing
the geometric average a?' of a; and a;.; for tree 7 from the original sequence.
Then, for each fold k of the cross-validation, it picks the tree that exhibits the
largest af value smaller than af”. The average of the error estimates for these
trees is the cross-validation estimate for tree 7.

Discussion It can be shown that the sequence of pruned trees can be generated
in time that is quadratic in the number of nodes (Esposito, Malerba & Semeraro,
1997). This is significantly slower than the pruning methods investigated in this
paper, which are linear in the number of nodes. It implies that CART’s runtime
is quadratic in the number of training instances if the number of nodes increases
linearly with the number of training instances—a realistic scenario in noisy real-
world datasets. Note that, as well as allowing for cross-validated error estimates,
CART also introduced the one-standard-error rule discussed in Section 6.

Quinlan (1987, page 225) notes that it is unclear why the particular cost-complexity
model used by CART “...is superior to other possible models such as the prod-
uct of the error rate and number of leaves,” and he also finds that “...it seems
anomalous that the cost-complexity model ...is abandoned when the best tree is
selected.” Consequently he introduces two new pruning methods: reduced-error
pruning, which has been discussed above, and pessimistic error pruning.

7.2. Pessimistic error pruning

Pessimistic error pruning is based on error estimates derived from the training data.
Hence it does not require a separate pruning set. More specifically, pessimistic error
pruning adds a constant to the training error of a subtree by assuming that each leaf
automatically classifies a certain fraction of an instance incorrectly. This fraction
is taken to be 1/2 divided by the total number of instances covered by the leaf,
and is called a “continuity correction” in statistics (Wild & Weber, 1995). In that
context it is used to make the normal distribution more closely approximate the
binomial distribution in the small sample case. During pruning this adjustment is
used in conjunction with the one-standard-error rule above. A tree is made into a
leaf if the adjusted error estimate for the leaf is smaller or equal to the adjusted error
of the tree plus one standard error of the latter estimate. The standard error is
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computed by assuming that the adjusted error is binomially distributed. A subtree
is considered for replacement before its branches are pruned.

Discussion In contrast to reduced-error pruning, which proceeds in a bottom-
up fashion, pessimistic error pruning uses the top-down approach and considers
pruning a tree before it prunes its subtrees. Hence it is marginally faster in practice.
However, its worst-case time complexity is also linear in the number of nodes in
the unpruned tree. As Breslow and Aha (1997b) note, top-down pruning methods
suffer from the “horizon effect”: a tree might be pruned even when it contains a
subtree that “... would not have been pruned by the same criterion.”

In his experiments comparing cost-complexity pruning, reduced-error pruning,
and pessimistic error pruning, Quinlan (1987) finds that cost-complexity pruning
tends to over-prune: it generates the smallest trees but they are slightly less accu-
rate than those produced by the other two methods. He concludes that pessimistic
error pruning is the preferred method since it does not require a separate pruning
set.

Buntine (1992) also compares pessimistic pruning, and variants of cost-complexity
pruning. However, none of these variants seems to implement the version of cost-
complexity pruning as defined by Breiman et al. (1984): Buntine uses the pruning
data to compute the cost-complexity of a tree for a given « instead of the training
data used in the original formulation. In his terminology, the pruning data is called
the “test set,” and he claims that “The substitution error estimate is usually com-
puted on a test set” (page 93). He later acknowledges that “The most likely place
for bugs in the existing implementation [of the tree learner used in his experiments]
is in the cost complexity pruning module,...” (page 99). Buntine’s implementation
is likely to produce overly complex decision trees because it gives the algorithm a
chance to fit the pruning data before the final pruned tree is selected.

7.8.  Critical value pruning

Critical value pruning (Mingers, 1987) is a bottom-up technique like reduced-error
pruning. However, it makes pruning decisions in a fundamentally different way.
Whereas reduced-error pruning uses the estimated error on the pruning data to
judge the quality of a subtree, critical-value pruning looks at information collected
during tree growth. Recall that a top-down decision tree inducer recursively em-
ploys a selection criterion to split the training data into increasingly smaller and
purer subsets. At each node it splits in a way that maximizes the value of the
splitting criterion, for example, the information gain. Critical value pruning uses
this value to make pruning decisions. When a subtree is considered for pruning,
the value of the splitting criterion at the corresponding node is compared to a fixed
threshold, and the tree is replaced by a leaf if the value is too small. However, one
additional constraint is imposed: if the subtree contains at least one node whose
value is greater than the threshold, it will not be pruned. This means that a subtree
is only considered for pruning if all its successors are leaf nodes.
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Discussion  The performance of critical value pruning depends on the threshold
used for the pruning decisions. Assuming that the splitting criterion’s value in-
creases with the quality of the split, larger thresholds result in more aggressive
pruning. Of course, the best value is domain-dependent and must be found using a
hold-out set or cross-validation. The main difference between critical value pruning
and other post-pruning methods is that it looks solely at the information provided
by the splitting criterion, only indirectly taking account of the accuracy of the sub-
tree considered for pruning. Therefore, its performance depends critically on how
well the splitting criterion predicts the subtree’s generalization performance. Most
splitting criteria, however, do not take account of the number of instances that sup-
port the subtree. Consequently the procedure overestimates the quality of subtrees
that cover only a few instances. Among those splitting criteria used by Mingers,
only the chi-squared distribution is an exception. However, because it is used to
grow the tree, the derived probabilities are highly biased (Jensen & Schmill, 1997).

7.4. Mmimum error pruning

Minimum-error pruning was invented by Niblett and Bratko (1986). It is similar
to pessimistic error pruning in that it uses class counts derived from the training
data. However, it differs in the way it adjusts these counts in order to more closely
reflect a leaf’s generalization performance. In its initial version, which was used by
Mingers (1989), the adjustment is a straightforward instantiation of the Laplace
correction, which simply adds one to the number of instances of each class when
the error rate is computed. Like reduced-error pruning, minimum-error pruning
proceeds in a bottom-up fashion, replacing a subtree by a leaf if the estimated
error for the former is no smaller than for the latter. In order to derive an estimate
of the error rate for a subtree, an average of the error estimates is computed for its
branches, weighted according to the number of instances that reach each of them.

Discussion In alater version of minimum error pruning, Cestnik and Bratko (1991)
refine the Laplace heuristic. Instead of adding one to the count for each class, they
add a constant p; x m, where p; is the class’ prior probability in the training data
and m is a factor that determines the severity of the pruning process. Higher val-
ues for m generally produce smaller trees because they reduce the influence of the
training data and result in a “smoothing” effect that tends to equalize the proba-
bility estimates at different leaves. However, a higher value does not automatically
produce a smaller tree (Esposito, Malerba & Semeraro, 1997). This is a significant
disadvantage because it means that for each value of m considered, the procedure
must begin with an unpruned tree. Since the best value for m can only be found by
estimating the error of the pruned tree on a hold-out set, or using cross-validation,
this property makes minimum error pruning significantly slower than reduced error
pruning.

Mingers (1989) compares the five pruning methods discussed above. In his ex-
periments, those methods that use a separate pruning set outperform ones that
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are just based on estimates from the training data. However, the comparison has
been criticized for the experimental methodology employed (Esposito, Malerba &
Semeraro, 1997). In Mingers’ experiments, methods with a separate pruning set for
parameter selection or error estimation have an unfair advantage because the prun-
ing data is provided in addition to the training data used for the other methods.
His experimental results for critical value pruning, error-complexity pruning and
reduced-error pruning on the one side, and minimum error pruning and pessimistic
error pruning on the other side, can therefore not be compared directly.

However, his results can be used to compare the performance of the methods
within each group (Breslow & Aha, 1997b). They show, for example, that minimum-
error pruning produces less accurate and larger trees than pessimistic error pruning.
They also show that cost-complexity pruning produces smaller trees than reduced-
error pruning with similar accuracy. However, this latter result is questionable
because Mingers’ version of reduced-error pruning differs from the original algo-
rithm proposed by Quinlan (1987). In Mingers’ experiments, critical value pruning
is less accurate than both cost-complexity and reduced-error pruning, and it pro-
duces larger trees than cost-complexity pruning. Mingers also investigated whether
different splitting criteria and pruning methods interact, and found that this is not
the case. This means that these two components of a decision tree inducer can be
studied independently (Breslow & Aha, 1997b).

7.5.  Error-based pruning

Error-based pruning is the strategy implemented by the well-known decision tree
inducer C4.5 (Quinlan, 1992). A similar strategy has also been proposed by Kalka-
nis (1993). Like pessimistic error pruning, it derives error estimates from the train-
ing data, assuming that the errors are binomially distributed. However, instead of
the one-standard-error rule employed by pessimistic error pruning, it computes a
confidence interval on the error counts based on the fact that the binomial distri-
bution is closely approximated by the normal distribution in the large sample case.
Then, the upper limit of this confidence interval is used to estimate a leaf’s error
rate on fresh data. In C4.5, the confidence interval is set to 25% by default. Like
reduced-error pruning—and in contrast with pessimistic error pruning—a bottom-
up traversal strategy is employed: a subtree is considered for replacement by a leaf
after all its branches have already been considered for pruning. Replacement is
performed if the error estimate for the prospective leaf is no greater than the sum
of the error estimates for the current leaf nodes of the subtree. As well as sub-
tree replacement, C4.5 also performs a pruning operation called “subtree raising”
that replaces a subtree with its most popular branch if this does not increase the
estimated error.

Discussion Using a confidence interval is a heuristic way of reducing the optimistic
bias in the error estimate derived from the training data, but it is not statistically
sound, and Quinlan (1992) acknowledges this fact. From a statistical perspective
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this pruning procedure shares the problems of pessimistic error pruning. The use
of the normality assumption is also questionable because it is only correct in the
limit. For small samples with less than 100 instances, statisticians use Student’s
distribution instead of the normal distribution (Wild & Weber, 1995). In decision
tree induction, small samples are exactly those which are most likely to be relevant
in the pruning process.

Esposito et al. (1997) claim that error-based pruning and pessimistic error pruning
behave in the same way. However, this assertion seems to conflict with the experi-
mental results presented in their paper. For all but one of 15 datasets investigated,
pessimistic error pruning produces significantly smaller trees than error-based prun-
ing (see Table 8 in their paper). With respect to accuracy, however, the differences
between the two methods are only minor. Considering these results, it is not clear
why error-based pruning has replaced pessimistic error pruning in C4.5.

In contrast to Mingers (1989), Esposito et al. (1997) do not find that methods
operating with a pruning set produce more accurate trees than those that rely solely
on the training data. As mentioned above, this difference is due to the particular
experimental procedure that Mingers employs.

Esposito et al. (1997) also introduce the notion of an “optimally pruned tree.”
This tree is derived by applying reduced error pruning using the test set as the
pruning data. The authors claim that it is possible to determine if a particular
method overprunes or underprunes by comparing its tree size to the size of the
optimally pruned tree. However, this neglects the fact that reduced-error pruning
often overfits the pruning data. As the results from this paper show, their proce-
dure is likely to detect overpruning when in fact even more pruning is warranted.
However, it is safe to say that it correctly detects underpruning, and it shows that
minimum error pruning, critical value pruning, and error-based pruning generally
produce trees that are too large.

Breslow and Aha (1997b) summarize the main results from Mingers (1987) and
Esposito et al. (1997) by showing differences and similarities in their findings. They
conclude that pessimistic error pruning and error-based pruning produce the most
accurate trees among the methods compared. However, this claim seems too gen-
eral. The results from Esposito et al. show that these two pruning methods are
only superior when little pruning is warranted; in several cases they produce less
accurate trees than, for example, reduced-error pruning. This is a direct result of
their tendency to underprune, which is also mentioned by Breslow and Aha. They
conclude that “...these findings on post-pruning algorithms are preliminary ...”
and that “...further investigation is needed ...”

The same authors (1997a) have also published an empirical comparison of “tree-
simplification procedures” that includes two pruning methods: error-based prun-
ing in Revision 8 of C4.5 (Quinlan, 1996), and ITI’s pruning procedure (Utgoft,
Berkman & Clouse, 1997) that is based on the minimum description length prin-
ciple (Quinlan & Rivest, 1989). They found that C4.5 generally performed best.
They also performed an experiment in which they tuned C4.5’s pruning parame-
ters using nine-fold cross-validation. Unfortunately they compare these results to
those of an unpruned tree. Consequently it is difficult to judge whether parameter
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tuning improves on the default parameter settings. Kohavi (1995, page 122) also
uses cross-validation to choose parameter settings for C4.5. He reports that it is
“...hard to judge whether C4.5 with automatic parameter tuning .. .is significantly
superior to C4.5.” However, he only looks at the accuracy of the resulting trees,
not their size.

7.6.  Underpruning

QOates and Jensen (1997) were the first to observe that bottom-up procedures like
error-based pruning and reduced-error pruning can produce overly large decision
trees. They find that the size of pruned decision trees can be reduced significantly,
with only a small loss in accuracy, if a random subsample of the original training
data is passed to the induction algorithm instead of the full dataset. This im-
plies that the pruning process does not simplify the tree sufficiently when more
data becomes available. Later, they argue that the reason for this overfitting is a
phenomenon they call “error propagation” (Qates & Jensen, 1998). Error prop-
agation is due to to the bottom-up fashion in which pruning proceeds: a subtree
is considered for replacement by a leaf after its branches have been considered for
pruning. Recall that a subtree is only retained if it has lower estimated error than
the corresponding leaf. Because the subtree has already been modified before the
error estimate is computed, it is optimistically biased, rendering it less likely to be
pruned—spurious correlations in the lower parts of the subtree are propagated to
its root node, making it unduly likely that it will be retained. Of course, the deeper
the subtree, the more opportunities there are for these spurious associations to oc-
cur, and the more likely it is that the subtree will survive. QOates and Jensen (1999)
show that it is possible to quantify the survival probability in an approximate way
by making some simplifying assumptions. They also propose two ways of prevent-
ing overly complex decision trees from being built. Note that this paper shows
how standard significance tests can be used to detect spurious correlations, thereby
successfully preventing error propagation in reduced-error pruning.

Randomization pruning The first method proposed by Oates and Jensen (1998),
called “randomization pruning,” is based on the idea of a permutation test, and is
applied as a post-processing step to simplify the pruned tree. For each subtree of
the pruned tree, the probability p that an equally or more accurate subtree would
have been generated by chance alone is computed. To do this, the procedure collects
the training data from which the subtree was built, and randomly permutates its
class labels. Then it applies the decision tree inducer to this randomized data, and
records the accuracy of the resulting tree. This randomization procedure is repeated
N times. The probability p is the fraction of times for which the randomized
subtrees are no less accurate than the original subtree. If p is greater than a
certain threshold—the authors suggest 0.05—the subtree is discarded and replaced
by a leaf node. In the three datasets investigated by the authors, this procedure
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successfully reduces the size of the pruned trees built by error-based pruning, and
slightly reduces accuracy in only one of them.

This randomization procedure applies a significance test just like the methods
investigated in this paper. However, it differs in that it is computationally very
expensive. The induction algorithm is applied N times for each subtree in the
original pruned tree—and in order to obtain accurate probability estimates, the re-
quired value for IV can be anywhere between several hundred and several thousand.
Therefore this procedure is of theoretical rather than practical value.

Reduced-overlap pruning The second approach proposed by Oates and Jensen
(1999) is designed to improve reduced-error pruning. It is based on the idea that
unbiased error estimates for each subtree can be obtained if a fresh set of pruning
data is available to evaluate each of them. Using artificial datasets, where unlim-
ited amounts of new data can be generated, the authors show that this successfully
prevents reduced-error pruning from building overly complex decision trees. In
practice, however, only a limited amount of pruning data is available, and so the
authors propose to use random subsamples of the original pruning data instead of
fresh data to derive error estimates at each node of the tree. The idea is to minimize
the overlap between these random subsamples in order to minimize dependencies
between the error estimates. Using random subsamples, each containing 50% of the
original pruning data, Oates and Jensen find that this method leads to significantly
smaller trees for 16 out of 19 practical datasets investigated, and significantly de-
creases accuracy on only one of them. However, it is plausible that the reduction
in tree size is solely due to the smaller amount of pruning data that is used at each
node, and does not result from the increased independence between the samples.
We repeated their experiment using the datasets and the experimental setting from
the last section, and found that it significantly decreased accuracy for 12 of the 27
datasets and produced significantly smaller trees for all 27.

7.7.  Other pruning methods

Apart from the pruning algorithms discussed above, several less well-known meth-
ods have been proposed in the literature that are either modifications of existing
algorithms or based on similar ideas.

Crawford (1989) uses cost-complexity pruning in conjunction with the .632 boot-
strap (Efron & Tibshirani, 1993) for error estimation, substituting it for the stan-
dard cross-validation procedure. However, Weiss and Indurkhya (1994a,b) demon-
strate that cross-validation is almost unbiased and close to optimal in choosing
the right tree size. Kohavi (1995) shows that the .632 bootstrap has higher bias
but lower variance than cross-validation, noting that it can be preferable for small
sample sizes. Later, Efron and Tibshirani (1997) proposed an improved bootstrap
estimator, the .632+ bootstrap, with lower bias. Gelfand et al. (1991) modify
CART’s pruning procedure by interleaving the growing and pruning phases: a tree
is grown using one half of the data, then pruned using the other half. In subse-
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quent iterations, the existing tree continues to be modified by these two steps, but
in each iteration the roles of pruning and growing data are exchanged. According
to results presented by Gelfand et al., this procedure speeds up the pruning process
and produces more accurate trees. However, the trees are also larger.

Minimum description length principle Several authors have proposed pruning
methods based on the minimum description length (MDL) principle (Rissanen,
1978). These methods derive from the idea that a successful inducer will produce
a classifier that compresses the data, and exploit the fact that the complexity of
a model, as well as the complexity of a dataset, can be measured in “bits” given
an appropriate coding scheme. Induction is considered to be successful if the cost
of coding both the classifier, and its clagsification errors, is lower than the cost of
coding the training data itself. Moreover, the greater the reduction in coding cost
(the compression), the “better” the inducer. MDL pruning algorithms seek decision
trees that maximally compress the data. They differ in the coding scheme they em-
ploy. Successful application of the MDL principle depends on how well the coding
scheme matches the particular properties of the learning problem at hand. This is
a direct consequence of the fact that it is a reformulation of Bayes’ rule (Buntine,
1992), in which probabilities have been replaced by their logarithms. The prior
probability in Bayes’ rule determines the model’s coding cost, and it is essential
that the distribution of the prior probabilities is chosen appropriately. In the case of
decision trees, for example, different prior distributions result in different amounts
of pruning. Proponents of the MDL principle claim that it has two advantages: no
parameters need to be chosen, and no pruning data needs to be set aside. However,
they omit to mention that the choice of the prior distribution is a parameter in
itself, and one can argue that it is a disadvantage that this parameter can not be
freely adjusted.

Quinlan and Rivest (1989) were the first to use the MDL principle for pruning
decision trees. They compare it experimentally to pessimistic error pruning and
obtain mixed results. Wallace and Patrick (1993) point out flaws in their coding
scheme, but acknowledge that these flaws do not affect the outcome. Forsyth (1994)
also uses an MDL approach, as do Mehta et al. (1995). The latter authors report
that their method produces smaller trees than both pessimistic error pruning and
error-based pruning, but larger trees than cost-complexity pruning. Error rates are
similar in each case.

Optimal pruning Another line of research investigates “optimal” pruning algo-
rithms that produce a sequence of smaller and smaller pruned trees, where each
tree has the property that it is the most accurate one on the training data among
all pruned trees of the same size. Breiman et al. (1984) were the first to suggest
a dynamic programming solution to this problem, and Bohanec and Bratko (1994)
present a corresponding algorithm. They note that cost-complexity pruning, dis-
cussed above, produces a sequence of optimal trees that is a subset of the sequence
generated by their method. The worst-case time complexity of their algorithm is
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quadratic in the number of leaves of the unpruned tree. Almuallim (1996) presents
an improved optimal pruning algorithm, also based on dynamic programming that
has slightly lower worst-case time complexity. Neither method addresses the ques-
tion of how to choose tree size in order to maximize generalization performance.
Bohanec and Bratko suggest that this can be done using cross-validation, but do
not test this experimentally.

Pruning with costs  Often, real-world learning problems involve costs because some
classification errors are more expensive than others. The literature contains several
approaches to cost-sensitive pruning (Knoll, Nakhaeizadeh & Tasend, 1994; Brad-
ford, Kunz, Kohavi & Brunk, 1998; Vadera & Nechab, 1994). Ting (1998) presents
an elegant solution for incorporating costs that is based solely on weighting the
training instances. By resampling instances with a probability proportional to
their weight, his methods can be applied to learning schemes that cannot make use
of weights directly.

Pruning with significance tests Statistical significance tests have been applied to
learning algorithms before, but in almost all cases using information derived during
training—a procedure that is questionable if appropriate adjustments are not per-
formed (Cohen & Jensen, 1997). In Quinlan’s ID3 decision tree inducer (1986), for
example, the parametric chi-squared test is used to decide when to stop splitting the
training data into increasingly smaller subsets—the classical pre-pruning method.
The same technique is also used by the decision tree inducer CHAID (Kass, 1980).

Jensen et al. (1997) apply critical value pruning in conjunction with the chi-
squared distribution. However, instead of using the probabilities directly—which is
incorrect because they have been used for training—they apply a statistical tech-
nique known as the “Bonferroni correction” to make an appropriate adjustment.
Statisticians use the Bonferroni correction to adjust the significance levels of mul-
tiple statistical hypothesis tests (Westfall & Young, 1993). It requires that the
p-values of the tests are independent, which is unlikely to be true in real-world
learning situations (Jensen, 1992). If the independence assumption is not fulfilled,
a permutation test on the original test’s p-values is the statistically correct way of
adjusting for multiple comparisons (Westfall & Young, 1993). In order to apply
the Bonferroni adjustment, it is necessary to know in advance how many signifi-
cance tests will be performed. However, because pruning is a dynamic process, this
knowledge is impossible to achieve a priori. Despite these theoretical problems,
Jensen and Schmill (1997) report good results for their method in practice: it often
produces smaller trees than C4.5 and is seldom less accurate.

Some authors have investigated the use of permutation tests in learning algo-
rithms. Gaines (1989) uses the one-sided version of Fisher’s exact test to evaluate
classification rules, and employs the Bonferroni correction to adjust for multiple
tests. Jensen (1992) proposes a conditional permutation test based on the chi-
squared statistic to decide when to modify and expand rules in a prototypical rule
learner. In order to perform the significance test, he uses fresh data that has not
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been used for model fitting. Li and Dubes (1986) propose a version of Fisher’s
exact test for attribute selection and pre-pruning in binary domains. Frank and
Witten (1998b) use the more general Freeman and Halton test for the same purpose,
and find that post-pruning with error-based pruning performs better. Martin (1997)
proposes the test statistic of the Freeman and Halton test for attribute selection
and pre-pruning; however, results improve when the full significance test is used
instead (Frank & Witten, 1998b). Hong et al. (1996) compute the expected value
of the test statistic under the permutation distribution and use this to normalize
the value from the original data. They propose to use this normalized value for
attribute selection and pre-pruning.

Computational learning theory There has also been some work in computational
learning theory on post-pruning algorithms for decision trees. Kearns and Man-
sour (1998) extend earlier work by Mansour (1997), and present an bottom-up algo-
rithm similar to C4.5’s error-based pruning that produces a near-optimum pruning
so that—in a theoretical sense—its generalization error is almost as low as the one
for the hypothetical best pruning of the tree. However, the experimental results
presented by Mansour (1997) show that there is little difference between the two
methods in practice.

8. Conclusions

This paper investigates whether standard significance tests can be used to improve
the reduced-error pruning algorithm to make decision trees smaller and more ac-
curate. The experimental results show that, if the tests’ significance levels are
adjusted according to the amount of pruning required by the domain, the pruned
decision trees are indeed consistenly smaller, and at least as accurate, as with reg-
ular reduced-error pruning. They also show that an appropriate significance level
can be found automatically using cross-validation. This supports the primary hy-
pothesis of this paper.

Experiments comparing the performance of permutation tests and the paramet-
ric chi-squared test show that they all produce trees of different sizes for a given
significance level. However, the differences can be eliminated by tuning the signifi-
cance level for each test individually. Hence the secondary hypothesis of this paper
turns out to be incorrect: in practice the parametric test and the permutation tests
produce pruned trees with very similar size and accuracy if the significance levels
for each test are chosen appropriately. Since permutation tests are computation-
ally more expensive than parametric ones, there is no reason to use them in this
particular application.

For a fixed significance level, the additional computational complexity incurred
by a significance test is negligible when the parametric test is employed. However,
for best results the significance level needs to be chosen via cross-validation or a
hold-out set. Cross-validation, which is the preferred method for small datasets,
increases run time by a constant factor. The fully expanded tree needs to be
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generated once for each fold of the cross-validation. The error estimates for the
different significance levels can be obtained simultaneously because they produce
a nested sequence of trees—decreasing the significance level always results in more
pruning.

In time-critical applications, where the classifier’s perspicuity is not an issue,
there is often no advantage in using significance tests over the standard reduced-
error pruning procedure. However, when comprehensibility is important, the extra
time required for cross-validation is well spent.

Notes

1. Note that statisticians use the term “discrete” rather than “sparse.”
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Figure A.1. Comparison of significance tests (a)
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